

DRAliON32
programmer's

reference guide

DRA&ON32
-,,ragrammer•s

reference g11ide

iiW_is MELBOURNE HOUSE

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Melbourne House,
Church Yard,
Tring, Hertfordshire HP23 5LU,
ISBN 0-86161 -134-9

Published in Australia by:
Melbourne House (Australia) Ply. Ltd.,
Suite 4, 75 Palmerston Crescent,
South Melbourne, Victoria, 3205,
National Library of Australia Card Number and
ISBN 0-86759-136-6

Published in the United States of America by:
Melbourne House Software Inc.,
347 Reedwood Drive,
Nashville TN 37217.

This book was edited by John Vander Reyden.
With contributions from Denver Jeans.

Copyright (c) 1983 Beam Software

All rights reserved. This book is copyright. No part of this book may be
copied or stored by any means whatsoever whether mechanical or
electronic, except for private or study use as defined in the Copyright Act.
All enquiries should be addressed to the publishers

Printed in Hong Kong by Colorcraft Ltd.
1st Edition

Contents

Introduction . 1

What's included 1
How to use this guide 2

Chapter 1
BASIC 3

Constants 3
Variables . 4

Arrays 4
Conversion 5

Lines 7
BASIC Commands 7
BASIC Functions 28

Errors in BASIC 35

Chapter 2
GRAPHICS 36

Pixels and Resolution 37
Modes 37
Video Memory 39

Lo Resolution Graphics•................. 42
CLS 43
SET /RESET 43
Graphics using STRINGs 43

Hi Resolution Graphics 46

Initialising commands 46

Producing Graphics 48
Assembler/Machine Code Graphics 54
Graphics Modes•................. 55

Chapter 3
SOUND
Example programs

.. 70
. 72

Chapter 4
MACHINE CODE ... 81

What is Machine Code 81
The CPU 82
Registers .. 84
Addressing Modes 85
Using M/C programs on the DRAGON 90
Handy ROM Routines 93
Handy Memory Locations . • . • 96

Now BASIC Stores Variables ... 97
String Stack 98
How Numerics are stored in the Variable Block 98
How to access BASIC variables from

Machine Language programs 99

Chapter5
PERIPHERALS 1 07

Joysticks 1 01
Printer .. 1 01
Cassette 1 02
Monitor/TV 1 02
Edge Connector 1 03

Chapters
HANDY ROUTINES and TIPS 104

Speeding things up 1 04
Disable/Enable break key 1 05
Auto Key Repeat 106
Reading Two Keys at Once ... 107
Recovering a Program after a NEW command ... 1 07

Merge 1 08
Redefining BASIC Keywords 109
Page Swapping 109
Various Circles .•.............................. 1 10
Lines 1 12
Scrolls .. 1 12

Appendix A
Basic Keywords
Basic Symbols

Appendix B
Error Messages

AppendixC
Memory Map

AppendixD

Colour Codes
Colour-set Table

AppendixE
Character Codes (CHA$ & ASC)

AppendixF
Print@GRID

AppendixG
ASCII Codes

Appendix H
Character Codes (PEEK & POKE)

Appendix I

Base Conversions

AppendixJ
6809 Instruction Set

.. 120

.. 122

.... 123

.. 125

.. 126
...... 127

. 128

. 129

. ... 130

132

..... 133

.... 137

INTRODUCTION

This book has been developed as a reference source for people like you,
who want to get the most out their DRAGON. It contains the information
you need for your programs, from the simplest exercises right though to
complex business or game applications. The DRAGON
PROGRAMMERS GUIDE is designed so that everyone from the
beginning BASIC programmer to the professional experienced 6809
machine language programmer can get information to develop their own
creative programs. At the same time this book shows you just what your
DRAGON can do.

This PROGRAMMERS GUIDE is not designed to teach the BASIC
programming language to a beginner but as a reference to the DRAGON
which includes the DRAGON's BASIC language. If you have not already
done some programming, I suggest that you read the other book in this
series, THE COMPLETE DRAGON BASIC COURSE, which will teach
you the BASIC language.

The DRAGON PROGRAMMER'S GUIDE is just that; a guide. Like most
reference books, your ability to apply the information depends on your
knowledge of the subject. In other words, if you are a novice programmer
you will not be able to use all the facts and figures in this book until your
knowledge and experience increases.

What is in this book is a considerable amount of valuable programming
reference material written in easy to read English with the programming
jargon explained. On the other hand, the programming professional will
find all the information needed to use the capabilities of the DRAGON 32
effectively.

WHAT'S INCLUDED?
• Complete "BASIC dictionary" includes the DRAGON BASIC
language commands, statements and functions, a detailed description of
each word and examples on how to use it, even the average time it takes
to execute each one, useful for "time critical" game programs.
• An introduction to machine code programming and how to use
machine code programs from BASIC.
• A complete listing of the 6809 instruction set.
• The peripherals chapter (Chapter 5) shows how the DRAGON can

communicate with the outside world via its ports.
• Useful routines and memory locations you can access from both
BASIC and machine code
• BASIC and machine code routines for you to type in yourself which will
make your program even more powerful and user friendly.

HOW TO USE THIS GUIDE
Throughout this manual certain conventional notations are used to
describe the syntax (programming sentence structure) of BASIC
commands to show both the recuired and the optional parts for each
keyword. The rules to use for interpreting statments' syntax are as
follows:
• BASIC keywords are shown in capital letters. They must appear
where shown in the statement, entered and spelled exactly as shown.
• Parameter names are shown enclosed in square brackets ([]) and
these must be substituted with values. These can be either a single
constant, a single variable name or any complex expression unless
otherwise stated.
• TIME - Most commands have a time quoted for them at the end of their
description. This is the approximate average time that the command
takes to run, measured in seconds. It is included to enable comparison of
different ways of performing a certain routine when programming time
critical programs.

2

CHAPTER 1

BASIC

This chapter is a reference guide to the DRAGON 32's BASIC. If you are
new to programming then I suggest that you use a book like THE
COMPLETE DRAGON BASIC COURSE which is written for people who
don't have a lot of BASIC programming experience. If you are a
competent programmer but have not used BASIC before, this chapter is
probably sufficient to teach you the basics of the BASIC language.

CONSTANTS

DRAGON BASIC has two fundamental types of constants; string and
numeric.

String constants are made up of alphanumeric characters and are
enclosed in quotation marks (""). A character string can be up to 255
characters long. A string which does not contain any characters is called
a "null string".
Examples:
"DRAGON32 "
"!!23!"
"m"
"" - null string

Numeric constants can have three formats:
a) DECIMAL
These can contain the digits O through 9, a decimal point (.) and a sign
(+or-).
Example:
-2783.796, 1200
Decimal numbers can also be stored in EXPONENTIAL FORMAT and
are automatically displayed in this format for numbers greater than 1 ,000
million and less than 1 thousandth. The highest value the exponent can
take is 38; actually the largest number is about 1.1 x 1038 • The
mantissa has a maximum of 9 digits.
Example:
9.76E13, - 9.67E-2 1

b) HEXIDECIMAL
These can contain the digits O through to 9, A through to F and a sign (+
or -), where:
A represents 1 0
B represents 11
C represents 12

3

D represents 13
E represents 14
F represents 15
"&H" is placed at the start of the number to indicate that it is in
hexadecimal format. If a sign is specified then it must come before "&H".
Example:
&H1A00, -&H1A0F

c) OCTAL
These can contain 0 through to 7 and a sign (+ or -). "&" or "& O" is
placed at the start of the number to indicate that it is an octal number. If a
sign is specified it must be placed at the very head of the number.
Example:
&0707, -&0707, & 147

VARIABLES

Again, the DRAGON has two types of variables, string and numeric, the
only difference being that all numeric variables are floating point. A
variable. need not be declared unless it is an array with more than 10
elements.

Variable names have the following rules:
a) The first character must be alphabetic (A - Z) followed by
alphanumeric characters.
b) Up to 255 characters may be used as a name but only the first 2 are
used to identify the variable. Therefore, SNAKE and SNAP are
considered the same by the DRAGON.
c) Variable names cannot start with a BASIC keyword.
Examples:
ABCD, IDATA, INPRINT2 - correct
1DARE, DATA1, T OM - incorrect
String variables are signified by a dollar sign ($) added at the end of their
names. Up to 255 characters can be stored by any one string variable.

Whenever a program is RUN or changes made to the program, string
variables are initialized to the null string, and numeric variables to 0.

ARRAYS

An array is a group, or table of values with the same variable name.
Individual values (called elements) are referenced by subscript(s) of
numeric expressions. Multiple dimensioned arrays are available and the
number of subscripts must agree with the number of dimensions that the
array was declared with (see the DIM statement).

4

CONVERSION
When a constant of hexadecimal or octal format is assigned to a numeric
variable, or printed, it is automatically converted to a floating point
number. String constants or variables cannot be mixed directly with
numeric variables and constants but there are functions forth is purpose.

EXPRESSIONS
The following is the formal priority or execution sequence in BASIC
numeric expressions, their symbols and function:
1. Parenthesis () Give sub-expressions higher

2. Functions
3. Arithmetic

operators

4. Relational
operators

5. Logical Operators
NOT (negation)

OR (logical add)

AND (logical multiply)

+

execution priority
(see pages 28-35)
Exponentation e.g. 2 1 3 = 23

make numbers negative
Multiplication
Division
Addition
Subtraction
Equivilence

< >,> < Not equal
less than
greater than

<
>

< = , = <
> =, = > less than or equal to

greater than or equal to

X NOTX
true (-1) false (0)
false (0) true (-1)
X Y XORY
true (-1) true (-1) true (-1)
true(-1) false(0) true(-1)
false (0) true (-1) true (-1)
false (0) false (0) false (0)
X Y XANDY
true(-1) true(-1) true(-1)
true (-1) false (0) false (0)
false (0) true (-1) false (0)
false (0) false (0) false (0)

The relational operators return a value of -1 (for true) or 0 (for false).
Example:
X=3
PRINTX=3;X > 4;X > = 2-result is -1 0 -1
The logical operators use two byte 2s compliment numbers and do a full
bit by bit operation on these bytes. This means that not only can they be

5

used to connect relational operators in a condition but they can also be
used to set and reset specific bits without affecting the others.
Example:
7 AND 3 = 3 7 - 00000000 00000111

7OR8 = 15

AND
3 - 00000000 00000011

3 - 00000000 00000011

7 - 00000000 00000111

OR
8 - 00000000 00001000

15 - 00000000 00001111

The OR operator is used to set specific bits. To set a particular bit,X, in a
variable, Y,OR it with 2 t X (e.g. to set bit 7, Y = Y OR 2 t 7). This sets
up the second pair of bytes to contain all 0's except in the bit you specified
and when this is ORed with the original number, that bit is set and the
others are unaffected. Note that more than one bit can be set at the same
time.
Example:

Y = Y OR 2 t 7 + 2 t 3 sets both bits 7 and 3.

To reset specific bits is a bit harder. The AND operator is used with a
number which has all its bits set except for the one you wish to reset.
Probably the easiest way to produce this number to be ANDed is to use
the NOT operator which simply sets all the bits reset, and resets all the
bits set. Therefore, to reset bit 7 in Y the expression, Y = Y AND NOT
2 t 7 is used. Again as with the OR operator more than one bit may be
reset with the one AND operation.

The AND operator can also be used to check if particular bits are set, eg.
to see if bit 7 is set in Y then AND Y with 2 t 7. If bit 7 is set then 2 1 7
will be returned otherwise 0 will be returned. As conditions are taken to
be true if the number is non-zero then this can easily be used in an IF
statement.
e.g. IF (Y AND 2 t 7) THEN PRINT" BIT 7 IS S ET" ELS E PRINT" BIT

7 IS NOT S ET"

Numerics are stored as a 4 byte mantissa and 1 byte exponent (see
chapter 5) and are operated on in this format, but converted into two byte
2's complement format for comparison.

Possibly the best way to become familiar with the OR, AND and NOT
functions is to try out various examples and see what results you obtain.

6

Character strings can be linked together with the operator"+". They
can also be compared using the same comparison operators as used
in numerics.

The comparison operators work on the character ASCII codes for each
string. Strings are equal if all character codes are equal. The character
string first having an ASCII code smaller than the other is said to be less
than the other. If strings are the same except that one is longer then the
shorter one is considered to be the smaller.
Examples:

"ASM" > "ASB"
"ASMT" < "ASMTQ"
"ALL" < "ZERO"

LINES

BASIC statements can be executed directly from the keyboard or stored
in a program. If a statment is typed in preceeded by a line number
(0-63 999) then the statement is automatically put in the program, sorted
in numerical order, otherwise it is executed immediately.
More than one BASIC statement can be on the same line, both for a
program or for immediate execution by separating them with a colon (:).
Spaces are optional in BASIC. Extra spaces between keywords, variable
names, symbols and constants are ignored and the only time a space is
required is if a BASIC keyword follows on from a variable name, these
must then have a space between them.
Example:
IF A = B THEN- correct
IFA = B THEN-correct
IFA = BTHEN - incorrect, as BTHEN would be regarded as a variable

name

BASIC COMMANDS

AUDIO

• Connect/disconnect cassette output to 1V
•AUDIO ON
AUDIO OFF

• Connecting the cassette to the 1V allows you to record sound effects
on tape then play them back under program control (see MOTOR) to add
special sound effects to programs.
• AUDIO ON .00050 sec.

AUDIO OFF .00044 sec.

7

CIRCLE
• Draw a circle on the graphics screen
• CIRCLE ([x],[y]), [r]

CIRCLE ([x],[y]), [r], [attribute list]
where the [attribute list] is made up of some or all of the following options:
[c], [hw]. [start], [end], separated by commas.
• This command will draw a circle on the current graphic page (see
PMODE, Chapter 2.)
Parameters are:
- x,y: position of the centre of the circle (x=0-255,y=0-191)
- r : radius of circle
- c : colour (0 - 8) optional, default is foreground colour
- hw: height-width ratio : (used for drawing elipses) optional. The width
of the circle is always two times the radius you specified. The height
width ratio determines how high the circle is, default is 1
- start, end: starting and ending positions of the circle (0 - 1), posijion 0
of the circle is 3 o'clock, .25 is 6 o'clock position, etc. Whenever the
starting position is greater than the ending position, or when either start
or end is omitted, a complete circle is drawn. When the start and end
positions are specified the hw option must also be specified.

•CIRCLE (128, 96), 30
CIRCLE (128,96), 30., 0.5
CIRCLE (128,96), 30., 1.25, .75

•CIRCLE (1, 1). 1 -0.0958 sees
CIRCLE (1,1),1000-0.1514secs
CIRCLE (1, 1), 10,2,3.5-0.1125 secs
CIRCLE (1, 1), 10, 2, 3.5, .75-0.0812 sees

CLEAR
• Initialize variables, reserve string space and set highest BASIC
address
• CLEAR [string space], [address]
• Sets all numeric variables to 0 and string variables to null strings. If the
[string space] is specified then that many bytes is reserved for string
storage space, default is 200. If the [address] is specified then that is the
highest address that BASIC will use, leaving a 'safe' area for machine
code routines. Note that if [address] is specified then [string space] must
also be specified
• CLEAR

CLEAR 100
CLEAR 300, 10000

8

CLOAD

• Load a BASIC program from tape
• CLOAD

CLOAD""
CLOAD "[filename]"

• Will load a program from tape in either token form or ASCII form (see
CSAVE). I f [filename] is specified the program with that name will be
loaded otherwise the first program found is loaded. [filename] must be 8
characters or less.
• CLOAD

CLOAD "DRAGON 1"
CLOAD "''

CLOADM

• Load a machine code program from tape
• CLOADM

CLOADM""
CLOADM''[filename]"
CLOADM"", [offset]
CLOADM"[filename]", [offset]

• This loads a machine code program (or block of memory - see
CSAVEM) from tape. If [filename] is specified the file with that name will
be loaded otherwise the first file found will be loaded. If the [offset] is
specified, this is added to the value of the addresses that were saved,
otherwise the original addresses are used.
• CLOADM

CLOADM "DRAGON M"
CLOADM "DRAGON M", 1024

CLOSE

• Closes open files or devices
• CLOSE [device-number]
where [device-nu mber] is either #-1 or #-2
• When a cassette data file (#-1) is CLOSEd, if it has been used in
output mode, the data remaining in the buffer and an EOF marker is put
on the tape; if it has been used as input then the buffer is cleared; either
way the buffer is made available for another OPEN command.
There seems to be no effect when closing files for device #-2 (the
printer).
CLOSE with no parameter closes all currently open files.
(See OPEN#-1)
• 0.00280 sees.

9

CLS

• Clear the screen and set background colour
• CLS [colour]
• Clears the screen and if [colour] is specified sets the screen to that
colour otherwise green is used by default.
• CLS

CLS3
• CLS .00807 sees

CLS x .00997 sees

COLOR

• Set foreground and background colours on a graphic page.
• COLOR [foreground], [background]
• Set the foreground and/or the background colours (within limits - see
Colour Sets) for a graphic page.
Defaults are : [foreground] - lowest available colour
[background] - highest available colour
• COLOR3

COLOR3 .5
• COLOR x .00225 sees

COLOR x,y .00412 sees

CONT

• Continue a program
• CONT
• After the BR EAK key is pressed or a STOP or END statement is
executed, the program can be re-started from the next statement using
the CONT command. CONT will not work if any changes have been
made to the program (by EDIT or adding lines) or if another command
was entered incorrectly and an error message given between the
BR EAK and CONT. CONT always resumes execution at the next
statement after the program was stopped.
• CONT

CSAVE

• Save BASIC programs on tape
• CSAV E

CSAV E ""
CSAVE "[filename]"
CSAV E "",A
CSAV E "[filename]",A

• Saves a BASIC program on tape either in token format (the internal
tokens are saved) or ASCII format (actual words saved) selected by
',A'at the end of the command. The program name can be up to 8
characters (any character except " can be used).

10

Note: If ASCII format is to be specified then the quotation ("'') marks must
be used, even if no program name is to be specified.
• CSAVE

CSAVE "" A
CSAVE "DRAGON 1 "

CSAVEM

• Save a machine language routine on tape.
• CSAVEM "",[start],[end]. [entry]

CSAVEM "[filename]", [start], [end], [entry]
• Blocks of memory are saved on tape. [filename]is the name of the file,
[start] is the first address to be saved, [end] is the last address to be
saved and [entry] is the first address to be executed when the first EXEC
command is given after the program is reloaded.
• CSAVEM "SCROLL", 10000, 1 1000, 10100
Note: The parameters may be specified in decimal, hexadecimal or octal
by following the normal rules for numeric constants.

DATA

• Stores data in your program
• DATA [value], [value]. .
• The DATA statement allows you to keep both numeric and string data
in your program. Each piece of data is separated by a comma. If you
require a comma in your string then that piece of data must be enclosed
in quotation ("") marl<s. If a piece of data starts with a quotation (") mark
then every character (including commas) up to the next quotation mark
will be put in the string-variable.
• 1 0 FOR I = 1 TO 5 : READ X$: PRINTX$: NEXT I

20 DATA ",.10, ",HELLO"DRAGON", 1 0,HELLO,GOODBYE"
Result:
. . 10 ,
HELLO"DRAGON"
10
HELLO
GOODBYE"

DEFFN

• Define numeric function
• DEF FN [name] ([var]) = [expression]
• This sets up a user defined function. [expression] may be any
mathematical expression and use any of the program variables. Note
that the variable defined in brackets (after the name) can only be used
inside the formula and will not affect a variable of the same name outside
the definition. The function can then be called in your program like any

11

other BASIC function. If a function is defined in two places of a program
then the last executed definition is used.
Note: DEF FN cannot be executed in immediate mode, only in a
program.
Example:

5 Y = 10
1 0 DEF FNRR(X) = X/ 2 + Y
1 5 PRINTFNRR(7)
Result - 1 3.5

DEFUSR

• Define machine language routine
• DEFUSR[n] = [address]
• Specifies the starting address of a machine language routine (0 -
65535). You can specify up to 10 user machine language routines by
specifying [n] as O - 9, default is o.
• 10 DEFUSR = 11000

DEL

• Deletes program lines
• DEL [lines-desc]
• Delete lines specified in [lines-desc]. Values of [lines-desc] are:
[n] - delete line [n]
[-1 - delete entire program
[-n] - delete up to and including line [n]
[n-] - delete from line [n] including line [n]
[n1-n2] - delete from line [n1] to line [n2] inclusive
• DEL 10-50

DIM

• Define (dimension) one or more arrays
• DIM [name] ([dim-list]), [name]([dim-list]), . .
• Define one or more arrays with the name [name] and size [dim-list].
When a single number is used in [dim-list] that is the upper bound of the
array and subscripts are in the range O to upper bound inclusive. Multi
dimensional arrays are defined by separating each dimension upper
bound by a oomma in the [dim-list]. Both oonstants and variables may be
used in [dim-list]
• DIM A(10), 8(5,7), C(D), E$(7)

DRAW

• Draw a line on a graphic page.
• DRAW [oommand string]
• [oommand string] can be a oonstant string (enclosed in quotes) or a
string variable, or a combination ooncatenated with ·+·.
[command string] may oontain any of the following:

12

C OMMANDS:
M- move draw position. Mx, y- position on screen (x = 0 - 255, y = 0

- 1 91). M + x, + y - move relativeto current position. Note that if it
is a positive offset the plus sign must be included.

U - move/draw position up. Ux go up x positions
D - move/draw position down. Dx go down x positions
L - move/draw position left. Lx go left x positions
R - move/draw position right. Rx go right x positions
E - move/draw position 45° angle x positions
F - move/draw posttion 1 35° angle x positions
G - move/draw position 225° angle x positions
H - move/draw position 315° angle x positions
X - execute a substring and return

MODES:
C - change colour to x
A - tilt every1hing at an angle. x = 0 - 3 means angle is O', 90', 180',
27()<>
S - change the scale of every1hing. x = 1 - 64 indicates the scale factor
in units of 1 /4
Example:
x = 2 Scale factor 2/ 4 or 1 /2
x = 8 scale factor 8/4 or 2 (double)

OPTIONS:
B- immediately before any motion command, blanks that command i.e.
move but not draw.
N - immediately before any motion command, does not update posttion
i.e. draw but return to original cursor position.

•DRAW "BM128,96; CB ; U25 ; R25; D25; L25
A$ = "U1 0 · L10 · D10 · R10"
DRAWA$ ' '
B$ = "128,96"
DRAW A$ + "M" + B$
DRAW "BM128,96 XA$;C8 U10 L10 D10 R10"

EDIT
• change program lines
• EDIT [line]
• After typing EDIT and a line number the line is displayed and the
cursor placed underneath the line : it is now ready for editing
Commands are:
nC - change n characters
nD- deletes n characters

13

I - insert new characters
H - deletes rest of lines and waits for new input
L - list current line and continue edit
nSc - searches for the nth occurence of the character 'c'
X - extend line; add new characters to the end of the line
SHIFT t - escape from sub command
n SPACE - move n spaces to the right
n ... - move n spaces to the left
K - deletes rest of line- from current position
nKc - deletes the line up to the nth occurence of the character 'c'

END

• Ends program execution
• END
• Terminates program execution. Program maybe restarted on the next
line with CONT. This is optional and, if not included, program execution
ends with the last BASIC statement.

EXEC

• Transfer control to machine language program
• EXEC [address]
• Control is passed to a machine code program starting at [address]. if
the address if not specified control passes to the address used in the last
CLOADM command. When the machine code program executes an
RTS command, control is returned to the next BASIC command (if
entered directly, to the command level)
• EXEC 10000

FOR
• Create a loop in the program
• FOR [variable] = [n1] TO [n2) ... /NEXT [variable]

FOR [variable) = [n1) TO [n2] STEP [n3] ... /NEXT [variable]
• Creates a loop which executes the commands between the FOR and
the NEXT commands. The variable specified in [variable] is initialized to
[n1]. Each time through the loop [n3] (default 1) is added to the [variable)
and the statements executed until [variable) equals or surpasses [n2].
When [variable) equals [n2] the statements are executed and control is
passed to the statement after the NEXT statements. If [variable) does not
equal [n2] (has incremented past [n2)) control is passed directly to the
statement following the NEXT statement.
Note:
The loop is always executed once.
10 FOR I = 1 TO 5 STEP 2 : X$(I) = "HELLO" + STR$(I) : NEXT I
20 FOR I = 1 TO 5
30 PRINT I, X$(I)

1 4

40 NEXT I
50 FOR I = 5 TO 1 STEP -3 : PRINT I, X$(I): NEXT I
Result:
1 HELLO1
2
3HELLO3
4
5HELLO5
5HELLO5
2
• FOR I = 1 TO 10 : NEXT I - 0.001868 sees per loop

GET

• Save a rectangle of graphics screen
• GET ([x1],[y1]) - ([x2],[y2]) , [variable]

GET ([x1],[y1]) - ([x2],[y2]) , [varable] , G
• Gets a rectangle of the screen specified by the diagonally opposed
corners, [x1],[y1] and (x2],[y2] and places it in the array [variable] (see
Chapter 2 for a full discussion). The syntax also allows for a 'G' to be
added at the end of the command to specify that full graphic detail is to be
saved.
• GET (10, 10) - (20,20), A
• GET (10,10) - (15,15), A - 0.01 808 secs

GET (10, 10) - (30,30), A - 0.03231 sees
GOSUB

• Perform a subroutine
• GOSUB [line-number]
• Control is passed to the BASIC line whose number is specified by
[line-number] and execution continues until a RETURN is encountered,
then control is passed to the statement following the originating GOSUB.

10 GOSUB 100
20 PRINT "HELLO";
30 END

100 PRINT "SAY "
110 RETURN
Result:
SAY HELLO
• GOSUB/RETURN - 0.00181 sees

GOTO

• Pass control of program to another line
• GOTO [line-number]
• Control is passed to the BASIC line whose line number is specified by
[line-number] and execution continues from there.

15

1 0 GOT0 40
20 PRINT "THERE"
30 END
40 PRINT "HELLO"·
50 GOT0 20

,

Result:
HELLO THERE
• 0.00093 sees

IF/THEN/ELSE

• Test relationships
• IF [condition] THEN [statements or line-number]

IF [condition] GOTO [line-number]
IF [condition] THEN [statements or line-number] ELSE [statements or
line-number]
IF [condition] GOTO (line-number] ELSE [statements or line-number]

• [condition] can be any numerical or relational expression and is said to
be true if it does not equal zero. If [condition] is true then the statements
following THEN (up to ELSE or the end of the line) are executed or
control is passed to the line having (line-number] after THEN or GOTO.
If [condition] is not true (false, zero) and there is an ELSE, the statements
following it are executed or control passed to the line having [line
number] after ELSE.
If [condition] is false and there is no ELSE, control is passed to the next
BASIC line.
• A = 27 : B = 16 : X = 1 1 : A$ = "YES"
IF A = B THEN 200 ELSE300 - Next line executed is 300.
IF X GOTO 1 000 - Next line executed is 1 000.
IF A$ = "YES" THEN PRINT "OK" ELSE B$ = "NO" : GOTO 20 - OK is

printed.
iF A < B THEN A = B: B = 0: GOTO 300 - Nothing will happen; next

line executed is the next
line number.

• 0.00274 sees
INPUT

• Enter data from keyboard
• INPUT "[prompt string]" ; [var1], [var2], .
• When the INPUT command is executed the [prompt string] is
displayed (if one has been given) then a question mark and the computer
waits for the keyboard input.
The [prompt string] must be a constant in quotes. The question mark is
placed directly after the string with no blanks. Note that if [prompt string]
is used it must be followed by a semicolon (';'). If no [prompt string] is
used, the quote marks ("") are not required.

16

When multiple variables are to be entered on one line they can either be
entered one at a time with an ENTER keystroke after each one or all on
one line separated by commas.
• INPUT "TWO NUMBERS PLEASE" ; A, B
INPUT A$
INPUT "YES OR NO" ; ANS$

INPUT#-1

• Enter data from tape
• INPUT#-1 [prompt string] ; [var1], [var2], .

INPUT#-1 [var1], [var2], .
• Accepts data from tape that has been previously recorded using
PRINT #-1. Note that if the data on tape is of a different type or format
the program will halt with an FM, FD or 10 error.
If a prompt string is used it is ignored and has no effect. It can be used as
a comment in the program. (see OPEN#-1)
• INPUT#-1 "TAPE DAT A", AB$

INPUT#-1, A, B

LET

• Assign a variable a value.
• LET [var] = [expression]
• The LET keyword is an option when assigning variables values. It is
included because many version of BASIC require it and programs from
these machines can, at times, be used on the DRAGON without
extensive modification.
• LET A = 34 / X
• LET B$ = "DRAGON"
• LET B$ = B$ + "IS HERE"
• 0.00157 sees

LIST

• List program on the screen.
• LIST (line-desc]
• List entire program or lines specified in [line-desc] onto the screen.
Format of [line-desc] is as follows:
n - list line n
-n - list all lines up to and including n
n- - list all lines after n, including n
n1 -n2 - list all lines between n1 and n2 inclusive
If no (line-desc] is given then the complete program is listed.
• LIST
LIST -30
LIST 40-70

1 7

LLIST

• List program on line printer
• LUST [line-desc]
• Same as LIST except the listing is done on the printer.
• LUST

LLIST 100-

LINE

• Draws a line
LINE ([x1],[y1]) - ([x2],[y2]), [a]
LINE ([x1],[y1]) - ([x2],[y2]), [a], [b]

• Draws a line from the starting point [x1],[y1]to the end point [x2], [y2]. If
the starting point is omitted the ending point of the last LINE or DRAW
command is used or, if there isn't a previous LINE or DRAW command,
the line will start at (126, 96).

[a] must be either PSET or PRESET. If PSET is used then the line is
drawn in the foreground colour. If PRESET is used the line is drawn in the
background colour, that is, the line is erased.

Either B (Box) or BF (Box Filled) can be used as the [bi option. If B is
specified a rectangle is drawn using the start and end positions as two
diagonally opposed corners. If the BF option is used the rectangle is
drawn, then filled in with solid colour.
• LINE (0,0) - (100,100), PSET, B

LINE - (120,150), PSET
LINE (0, 100) - (100,100), PSET

• LINE .03 sees
BOX .037 sees
BOXFILLED 4 sees

LINE INPUT

• Enter data from keyboard
• LINE INPUT "[prompt string]" ; [var]

LINE INPUT [var]
• The difference between INPUT and LINE INPUT is that LINE INPUT
will take the entire line including leading blanks and commas and place it
in a string variable. LINE INPUT cannot be used for numerical input and
has a maximum length of 255 characters. Only one variable may be
used. There is no question mark after the prompt string.
• LINE INPUT "HELLO LINE?" ; ANS$

18

MOTOR
• Turn the cassette motor on or off
• MOTOR ON

MOTOR OFF
• Allows the motor of the cassette to be controlled by a program for
creating special effects (see AUDIO)
• MOTOR ON 0.5272 sees

MOTOR OFF 0.0005 sees

NEW
• Clears the current BASIC program from memory. This does not
actually erase any of the memory but rather modifies the pointers to the
BASIC program so that it cannot be accessed.

ON .. GOSUB
• Multibranch to subroutines
• ON [var] GOSUB [line-number1]. [line-number2], .
• This allows multiple GOSUB commands on the one line. Depending
on the value of [var] a branch to a subroutine is executed. If [var] is 1 , then
[line-number1] is used, if [var]is 2, then [line-number2] is used, etc. If [var]
is zero or greater than the number of line numbers specified then the
statement following the ON-GOSUB statement is executed. Negative
values of [var] will cause an error. Values of [var] that are not integers are
reduced to integers by removing the fraction.
• ON X GOSUB 100, 200, 300, 400, 500
• 0.00258 sees

ON .. GOTO
• Multi-branches
• ON [var] GOTO [line-number1], [line-number2], .
• Same as ON . GOSUB except the branches are to lines not to
subroutines.
• ON X GOTO 10, 20, 30, 40, 70
• 0.00258 sees

OPEN
• Opens a data file.
• OPEN "[a]",#-1, [filename]
• Opens a file on tape for either reading or writing. [a] determines
whether you can read or write. The legal values of [a] are 'O' and 'I' which
stand for Output and Input respectively.

When a file is opened a buffer of 255 bytes is set up in BASIC's work
area. If the file was opened for input this will then be filled up with data

1 9

/

from the tape and whenever all the data is INPUT#-1ed from the buffer
it will be filled again from the tape automatically. When a file is opened for
output and PRINT #-1 statements are executed the data does not
immediately get put onto tape, but rather, into this buffer and when the
buffer is full or the file is closed the data is transferred onto the tape.
• OPEN "l",#-1, "ADDRESSES"
• 0.00387 sees

PAINT

• Paints a section of a graphics page.
• PAINT ([x],[y])

PAINT ([x],[y]), [colour]
PAINT ([x],[y]), [colour], [border]

• Paints a section of a graphics page, starting at position [x], [y], with
colour [colour]. If [colour] is not specified the current foreground colour is
used. The painting will be contained by a border of colour [border]. Note
that if there is any small gap in the border then the painting will 'escape'
outside of the border and continue until it is contained by another border
or fills the whole screen. If [border] is omitted then the entire screen will
be painted, regardless of the values of x and y.
• PAINT (10,10), 3, 1

PAINT (100, 100)
• Time is approx. 4 sees for half a screen.
PCLEAR

• Reserve memory for graphics
• PCLEAR [n]
• Reserve [n] pages for graphics memory. [n] can be in the range 1-8.
The contents of the memory reserved are not affected. This should be
done near the start of the BASIC program as there may be strange
side-effects if done in the middle.
This effects the amount of memory available for BASIC. For the
maximum memory available to BASIC use PCLEAR
• PCLEAR s P L "l..S , 6 : N ,\.., . i, " , o)
• 0.00477 sees

PCLS

• Clears graphic pages
• PCLS [n]
• Clears the current graphics page to colour [n]. If [n] is not specified the
current background colour is used.
This should be done whenever PMODE selects a new graphics
resolution.
• PCLS

PLC S 4
• 0.0274 sees

2 0

PCOPY

• Copy graphics pages
• PCOPY [n1] TO [n2]
• Copies the graphic page [n1] to the graphic page [n2].
• PCOPY 2 T0 4
• 0.02605 sees for PMODE 1

PLAY

• Play music
• PLAY [command string]
• Play music as specified in [command string]. Commands in the string
are:
A-G
1-12
On
Vn
Ln
Tn
Pn
Xn$
or +

notes
tones
Octave n (0-5) default 2
Volume n (0-31) default 15
Length of notes (1-255) default 1
Tempo n (1-255) default 2
Pause n (1-255)
Executes string n$ and returns
Sharp
flat
½ as long again

For a more detailed explanation of the PLAY command see Chapter �.
• PLAY "A ; B ; C ; D ; E #"

PMODE

• Select resolution and graphic page
• PMODE [n1], [n2]
• Selectthe resolution to be [n1] and the starting graphic page to be [n2].
Defaults are 2 for resolution and the last page is used for start page.
• PMODE, 3

PMODE 1
PMODE 1, 3

• 0.00448 sees

POKE

• Fill a memory location with a specified value.
• POKE [address], [val]
• Set the memory location specified by [address] (0 - 32538) to the value
specified by [val]. The value 'poked' is to be between O and 255 (one
byte).
• POKE 10000, 1 00
• 0.00931 sees

21

PRESET
• Set to background colour
• PRESET ([x],[y])
• Set a point on the graphic page to the background colour. The point is
specified by [x] (0 - 255) and [y] (0 - 191).
• PRESET (10, 10)
• 0.00477 sees

PRINT
• Display information on the screen
• PRINT [expression] [separator] [expression] [separator] ...
• Outputs character on the TV screen. When no expression is given, a
blank line is left. The [expression] may be any numeric or string
expression, including string constants. The legal values of the
[separator] are comma ',' , semicolon ';' , or a space ' ' If a
comma is used the output will be in two columns, each 15 characters
wide. If the first expression is longer than 15 characters then the second
expression is printed on the next line down. If the second is too long it
'wraps around' onto the next line down.

With a semicolon, or a space, strings are printed next to each other and
numeric items have a space on either side of them. The semicolon holds
the cursor in its last position ready for the next PRINT statement.

Note that a question mark may be used instead of the PRINT keyword.
• PRINT "12345678910"

A$= "12345678910"
PRINT A$
? A, B;
PRINT B$A

• PRINT "1234567891 O" - 0.00506 sees
PRINT A$- 0.00487 sees

PRINT USING
• Formatted output
• PRINT USING [format string] [output list]
This outputs variables in a specified format. [format string] specifies how
the data is to be printed and can be either a string constant or string
variable.

[output list] is a list of variables to be printed separated by commas (,).
[format string] may contain the following:
'.' - indicates the column in which the decimal point is to be displayed.
'#' - indicates the column to display a digit.
The format creates a field which size should be the same as the number
of digits in the number to be printed. If the number to be printed has less

22

digits than specified it is right justified, ie., it is pushed to the right, up to
the decimal point or the end of the field. The remaining columns in the
field are filled with blanks. If there are no integer digits in the number, a
zero is placed to the left of the decimal point. If the number to be printed
has more digits than the specified field a '%' is placed at the start of the
number and the complete number is printed.

',' -indicates that there is to be a comma to the left, of every third digit to
the left of the decimal point. The comma must be specified between the
start of the field and the decimal point.
'**' - placed at the start of a field specifies that all unfilled columns to the
left be filled with asterisks.
'$' - indicates that the number is to be preceded by a dollar sign at the
start of the field definition.
'$$' - indicates the dollar sign is to be on the immediate left of the number,
i.e. it is floating.
'**$' - indicates that the unused columns to the left of the floating dollar
sign will contain asterisks.
'+' - placed at the start or end of a field specification will be printed as "+"
for positive numbers or " -" for negative numbers in the appropriate
place (indicates sign).
' - ' - placed at the end of a field specification will be printed " - " for
negative numbers and " " for positive numbers (indicates negative sign
only).

t t t t -indicates that the number is to be printed in exponential form
('scientific notation').
! -indicates that only the first character of the string is to be printed.
%spaces% -specifies the length of the string variable to be printed. If the
length of the string to be printed is smaller than the length of the
specification it is left justified, if it is greater then only the first characters -
up to the length of the specification - will be printed.
Any other characters will be printed as they appear.
PRINT U SING "#####";66.2 66
PRINT USING "##;66.2 %66
PRINT USING "#.#";66.25 %66.3
PRINT USING "########,";1234567 1,234,567
PRINT USING ,,..####";66.2 •••• 66
PRINT USING "$####.##";1 8.6735 $ 18.67
PRINT USING "$$####.##";18.6735 $18.67
PRINT U SING $.###";8.333 •$8.333
PRINT USING " +••###";6.217 + 6
PRINT USING "####.#-";-8124.420 8124.4-
PRINT USING "##.####t t t 1 ";123456 1.2346E+ 05
PRINT USING "!"·"ARITHMETIC" A
PRINT USING "�/: %";"NUMERALS" NUMERAL
PRINT U SING "SCORE######,";SC SCORE 1,000
PRINT U SING "### IS LESS THAN ###";A,B 10 IS LESS THAN 11

23

PRINT @

• Place output at a specified location
• PRINT @ [expression], [print list]
• [expression] can be any numeric expression between 0 and 51 1 and
specifies where on the screen to start the printing (see Appendix H for
locations).
[print list] is the same as for a normal PRINT statement
• PRINT @ 192, "HELLO"
• 0.00740 sees

PRINT#

• Output to other devices
• PRINT#-1, (print list]

PRINT#-2, [print list]
PRINT USING #-1, [format string] ; [print list]
PRINT USING #-2. [format string] ; [print list]

• Has the same function as other PRINT statements except output is
directed to: cassette for #-1, printer for #-2.

PSET

• Set a point on the graphic page to a specific colour.
• PSET ([x],[y].(c])
• Set a point on the graphic page to the colour specified by [c]. If [c] is
omitted then the colour is set to the foreground colour. The point is
specified by [x] (0 - 255) and [y] (0 - 191).
• PSET (1,1,2)
• 0.00694 sees

PUT

• Puts the graphics stored in an array onto the graphic page.
• PUT ([x1],[y2]- [x2],[y2]), [a], [b]
• Puts the graphics stored in array [a] onto the graphic page at location
specified by [x1], [y1] (top left corner) and [x2], [y2] (bottom right corner)
with the action specified in [b].
Values of [b] can be:
PSET - sets all the points set in the array.
PRESET - resets all the points set in the array.
AND - sets all points that are set both in the array and on the screen,
otherwise reset the point. (Sets all points common to both.)
OR - sets all points that are set in either the array or the screen. (Sets all
points that are set).
NOT - reverses the screen in the area specified regardless of what is in
the array. That is, all points set are reset and all points reset are set.
The array must be the correct size (see Chapter 2).
• PUT (10,10) - (20,20), A, PSET
• 0.01149 sees for a 1Ox10 array

24

READ

• Gets the next item from a DAT A statement.
• READ [var1], [var2], . . .
• Reads the next item of data from a DATA line and places it in [var]. An
error results if there is no data to READ. A pointer is kept at the next
element to be read (see RESTORE).
• READ A

FOR X = 1 TO 10 : READ A : NEXT X
• 0.00998 sees

REM

• Remark
• REM

• Allows the use of comments in the program. Everything from the REM
to the end of the line is ignored.
• 10 'THIS IS IGNORED

20 X = 0 : REM INITIALIZE X
• empty -0.00042 sees
100 characters - 0.00485 sees

RENUM

• Renumbers the program lines
• RENUM [newline], [startline], [increment]
• Renumbers all program lines from [startline] to the end of the program.
[newline] is the value that the [startline] is renumbered to. All line
numbers after [startline] are incremented by the value of [increment]. All
line numbers embedded in the program (eg. GOTO 200) are changed
accordingly. All parameters are optional and the default value for all
parameters is 1 0.
• RENUM

RENUM,,5
RENUM, 100, 100

RESET

• Set a point on the text screen to the background color.
• RESET ([x],[y])
• Sets a point on the text screen to the background color, that is, erases
it. The point is specified by [x] (0 - 63) and [y] (0 - 31).
• RESET (0,0)

RESET (10,10)
• 0.00460 sees

25

RESTORE

• Allow rereading of data
• RESTORE
• Restores the data pointer to the start of the DATA statements allowing
them to be reread.
• RESTORE
• 0.00039 sees

RETURN

• Return from subroutine
• RETURN
• Returns control to the main BASIC program after a subroutine has
been executed. Processing is resumed at the statement following the
last GOSUB executed. RETURN is the last statement in a subroutine.
• 10 PRINT "THIS IS A SUBROUTINE"

20 RETURN

RUN

• Start a program
• RUN [line]
• Start the BASIC program executing at [line]. If [line] is omitted then
execution starts at the lowest line number. This can also be used inside a
program.
• RUN20
RUN

SCREEN

• Set graphics or text screen and colour set.
• SCREEN [type], [colour-set]
• The [type] parameter sets the type of screen to use either text (0) or
graphics (1). The [colour-set] determines the colour set to be used and is
either O or 1. The colours available depend on the current PMODE
setting (tor more information see Chapter 2, page 47 and Appendix D).
The default settings tor both is 0. Note that at least one parameter must
be given.
• SCREEN 1

SCREEN, 1
SCREEN1, 0

• 0.00476 sees

SET

• Set a point on the screen.
• SET ([x],[y],[c])

2 6

• This sets a point on the text screen. The position of point set is [x] (0 -
63) and [y] (0 -31). The [c] parameter specifies the colour to use (0 - 8),
irrespective of the current colour set.
Note that the rest of the points in the character block that contains the
points that haven't been specifically SET, are reset to black.
• SET (1,1,7)

SET (61,25,1)
• 0.00669 sees

SKIPF
• Move past a file on tape
• SKIPF

SKIPF ""
SKIPF "[filename]"

• If no name is given at the end of the command, one file is skipped, that
is, the tape runs through and stops at the end of the first file encountered.
If [filename] is specified the tape will run until the end of the file named. If
no file of the name is found the tape will run to the end.
• SKIPF
SKIPF "PROGRAM1"

SOUND
• Generate sound
• SOUND [pitch], [duration]
• [pitch] is a number between 1 and 255 with 1 being the lowest tone.
[duration] is a number between 1 and 255. A duration of 16 is
approximately 1 second. Note that while the sound is being generated no
other processing can be done and the program cannot be stopped with
the BREAK key.
• SOUND 100,100

STOP
• Terminate program execution.
• STOP
• The STOP command is the same as the END command except that a
"BREAK IN #" message is printed. The CONT command will start
execution at the next statement as for END.
• IF ANS$ = "N" THEN STOP ELSE 30

TRON/TROFF
• Turn trace mode on/off.
• TRON

TROFF

27

• Trace mode is switched on by TRON and off by TROFF. When a
BASIC program is executed in trace mode the line numbers of the
program are displayed as they are encountered. The numbers are
enclosed in square brackets (T and ']') .
• TRON

TROFF
• TRON -0.00033 sees

TROFF -0.00037 sees

BASIC FUNCTIONS

ABS
• Absolute value
• ABS ([argument])
• Returns the absolute value, ie. regardless of + or - signs.
• PRINT ABS(3 -2 • B + 7)
• 0.00230 sees

ASC
• ASCll code
• ASC ([string])
Returns the ASCII code of the first character in the [string] argument.
• 1 0 AS = ASC ("AND")

20 PRINT AS
• 0.00267sees

ATN
• Arctangent
• ATN ([argument])
• Returns the arctangent (inverse tangent) of the [argument] in radians.
• PRINT "ANGLE : " ; ATN(R3)
• 0.00622 sees for 0

0.05562 sees for 100

CHR$
• Character conversion
• CHR$ ([argument])
• Takes the [argument] as an ASCII code and returns the character
equivalent (see Appendix E for codes). The argument must be between O
and 255.
• A$ = CHR$(129)
• 0.00287 sees

28

cos

• Cosine
• COS ([argument])
• Returns the cosine of the [argument], which is assumed to be in
radians.
• CS = COS(X)
• 0.02856 sees

EOF

• End of file
• EOF ([file-number])
• Indicates whether the file specified has more data in it or not. If an
INPUT is given when there is no data in the file an error occurs.
• IF EOF(-1) THEN 150 ELSE INPUT#-1 ; A, B$
• 0.00292 sees

EXP

• Natural exponential
• EXP ([argument])
• Raise e (natural logarithm) to the power [argument]. Inverse of LOG
• A = EXP(2) + B
• 0.00547 sees for O

0.03023 sees for 100

FIX

• Truncate
• FIX ([argument])
• Truncates (removes all digits to the right of the decimal point).
• PRINT FIX (7.75)
• 0.00275 sees

HEX$

• Converts to hexadecimal
• HEX$ ([argument])
• Returns a string containing hexadecimal digits O - 9 and A- F which
is the equivalent to the decimal [argument] (0- 65535).
• PRINT HEX$(1 5), HEX$(73)
• 0.00337 sees

INKEY$

• Character input from keyboard.
• INKEY$
• This returns the last key pressed that has not been INPUT. If no key
has been pressed since the last INPUT, LINE INPUT or INKEY$ a null
string is returned (ie. the keyboard has a one character buffer).

29

• ANS$ = INKEY$
• 0.00167 sees

INSTR
• String search
• INSTR ([argument], [string1], [string2])
• Searches [string1] for [string2]. The search starts at the character
number, [argument] and returns either the starting posttion of [string2] or
0 if [string2] is not found.
• IF INSTR (1, "NYny", ANS$) = 0 THEN 30
• 0.00358 sees

INT

• Convert to integer
• INT ([argument])
• Rounds [argument] downwards. Therefore if [argument] is positive the
function is the same as FIX.
• A = INT(B / 2.3)
• 0.00340 sees

JOYSTCK
• Find position of joystick
• JOYSTCK ([argument])
• Returns the current horizontal or vertical position of either the left or
the right joystick according to [argument]. Values of [argument] are:
0 - horizontal left joystick
1 - vertical left joystick
2 - horizontal right joystick
3 - vertical right joystick
• LX = JOYSTK (0)
• 0.00443 sees

LEFT$

• Left part of string
• LEFT$ ([string],[argument])
• Returns a string which contains the left characters of [string]. The
number of characters returned is specified by [argument].
• PRINT LEFT$ ("WILL NOT BE PRINTED", 4)
• 0.00498 sees for 5 characters

LEN

• Length of string

30

• LEN ([string])
• Returns the number of characters in [string] including characters that
are not displayed on the screen (ie. control characters put there either by
the system or by the CHA$ function).
• PRINT LEN ("FOUR")
• 0.00285 sees

LOG
• Natural logarithm
• LOG ([argument])
• Returns the natural logarithm of [argument] which must be positive.
• A = LOG (X I 2) + LOG (Y)
• 0.02651 sees

MEM

• Free memory
• MEM
• Returns the amount of memory that is not being used by the system
(ie., available for programs and data). MEM does not include the memory
needed for the screen and graphics pages etc.
• PRINT MEM
• 0.00159 sees

MID$
• Middle of string
• MID$ ([string], [argument1], [argument2])
• This returns a substring which is in the middle of [string]. [argument1]
specifies which character to start at and [argument2] specifies how many
characters are to be returned. If [argument2] is omitted, all the characters
from [argument1] to the end, are returned. Note that this can be used the
other way to replace characters in the middle of a string. The parameters
have the same function when it is used this way, except when
[argument2] is omitted the number of characters assigned is the length of
the string replacing the original string.
• PRINT MID$ ("THIS WILL NOT BE PRINTED!", 1, 4)
A$ = "I AM VERY HAPPY" : MID$(A$, 6, 4) = "NOT " PRINT A$
Results-THIS

I AM NOT HAPPY
• 0.00683 sees for 3 characters.
PEEK

• Returns contents stored in memory
• PEEK ([address])
• Returns the current value of memory location [address] (0- 65535).
• PRINT PEEK (15000)
• 0.00292 sees

31

POINT
• Check for dot on text screen.
• POINT ([x], [y])
• Test a position on the text screen. If the position is a text character, -1
is returned. If there is nothing there, 0 is returned, otherwise the colour (1
- 8) of the dot is returned. [x] is the horizontal position (0- 63) and [y] is
the vertical position (0 - 31).
• IF POINT (X,Y) = C THEN 200
• 0.00509 sees

POS
• Current cursor position
• POS ([argument])
• Returns the current horizontal position of the cursor. Values of
[argument] are O for screen cursor or -2 for printer head.
• IF POS (0) = 31 THEN PRINT ELSE PRINT "
• 0.00469 sees

PPOINT
• Check for dot on graphic screen
• PPOINT ([x], [y])
• Checks the position on a graphic screen as specified by [x] and [y] and
returns O if cell is off and its colour (1 - 8) if it is on.
• IF PPOINT < >- 0 THEN 20
• 0.00469 sees

RIGHT$
• Right part of string
• RIGHT$ ([string], [argument])
• Returns a substring which contains the right portion of [string]. The
number of characters in the returned string is specified by [argument].
• B$ = "HELLO"
PRINT RIGHT$ (B$,3)
Result - LLO
• 0.00472 sees for 2 characters
0.00751 sees for 20 characters

RND
• Random numbers
• RND ([argument])
• Returns a random integer between 1 and [argument]. If [argument] is 0
then a real number between O and 1 is returned.
• B = A (RND (10))
• 0.01149 seesfor RND(1)

32

SGN

• Sign of argument
• SGN (argument])
• Returns the sign of [argument]. If [argument] is negative, -1 is
returned. If [argument] is positive, 1 is returned, otherwise [argument] is
0, in which case 0 is returned.
• IF SGN (A) = -1 THEN PRINT "NEGATIVE"
• 0.00269 sees

SIN

• Sine value
• SIN ([argument])
• Returns the sine of [argument]. It assumes that [argument] is in
radians.
• PRINT X, "SINE = ";SIN (X)
• 0.00588 sees for 0

0.03374 sees for 2000

STRING$

• String building
• STRING$ ([argument1], [argument2] or [string])
• Makes a string of length [argument1] which contains either the
character with the code [argument2] or the first character of [string].
• PRINT STRING$ (10, "AS")
Result - "AAAAAAAAAA"
PRINT STRING$ (10, 45)
Result - "EEEEEEEEEE"
• 0.00423 sees for 1 character

0.00371 sees for O character
0.00847 sees for 1 00 characters

STR$

• Numeric to string conversion
• STR$ ([argument])
• Converts a numeric expression, [argument], to a string of digits (0 -
9). Note that the minimum length of the string returned is 2 as the first
character of the string is a blank (space).
• PRINT LEFT$ (STR$ (1 / 3), 4)
Result - 0.33
• 0.00292 sees for O

0.00904 sees for 50

SQR

• Square root.
• SQR ([argument])

33

• Returns the square root (v) of [argument]. If [argument] is negative
then the program halts with an error.
• PRINT SOR (16)
• 0.00245 sees for 0

0.06150 sees for 1,000,000

TAN
• Tangent of argument
• TAN ([argument])
• Returns the tangent of [argument]. It assumes that [argument] is in
radians.
• X = TAN (Y / 2)
• 0.02824 sees for 0

0.05921 sees for 10,000

TIMER
• Set or return time
• TIMER
• TIMER acts as a variable in that you can both get its value and assign it
a value but it is continuously being incremented (approximately 50 times
a second).
The maximum value of TIMER is 65535 and it is reset to O if this value is
reached.
• TIMER = 0
PRINT TIMER
• 0.00185 sees

USR
• Call user defined routine.
• USR n ([argument])
• Calls a machine language routine that was defined earlier in the
program using DEFUSR. For details of machine language routines and
the argument see Chapter 4.
• X = USR (Y)

VAL

• String to number conversion
• VAL ([string])
• Returns the numeric equivalent of the digits (0 - 9) in [string]. If
[string] contains non-digit characters then only digits to the left of the first
non-digit character are converted; if there are no digits before the non
digit character then O is returned.
Note that hexadecimal numbers can be converted also.
• B = VAL ("1 2345")
PRINT VAL ("&HFF")

34

• 0.00337 sees for 1
0.00875 sees for 120,000

VARPTR

• Address of variable
• VARPTR ([argument])
• This gives the head address where the variable specified by
[argument] is located. To find the head address of array variables,
specific elements of the array must be passed, e.g. B = VARPTR (A (0)) .
When one address is known the others can be calculated as each
consists of 5 bytes. For details of how variables are stored see Chapter 4.
• B = VAPPTR (A)
• 0.00223 sees

ERRORS IN BASIC

We have found one problem when executing BASIC programs and this is
in floating point addition. The error is that if a number is the result of an
addition it does not always exactly equal the number displayed.
e.g. 53.74 does not equal 51 + 2.74

This can be demonstrated by the following program:
10X= 53.74 :Y =51 + 2.74
20 PRINTX, Y
30 IF X = Y THEN PRINT "RIGHT" ELSE PRINT "WRONG"

The problem is caused by the last byte of the number (see section on how
numbers are stored) being rounded by the addition process and thus
there seems to be no set pattern to how the decimal representation is
affected (whether the above program, for different numbers, produces
RIGHT or WRONG). One way to overcome the problem is to convert the
numbers to strings; using STR$, and comparing these as it seems that
BASIC converts them into strings correctly.

For example, the above program will work correctly if an extra line is
added and line 30 changed. They should read.
15 X$ = STR$ (X) : Y$ = STR$ (Y)
30 IF X$ = Y$ THEN PRINT "RIGHT" ELSE PRINT "WRONG"

35

CHAPTER 2

GRAPHICS

Probably the most impressive and powerful feature of the DRAGON is
unfortunately also its most confusing; its graphics.

Powerful because of the many BASIC statements which can do just
about anything you want to on the high resolution screens but confusing
because of the multitude of modes the screen can be set in and the
various commands needed to set up these modes.

All these modes and commands are covered later in the chapter, but let
me give you a brief, simple (if that's possible) rundown on how the
DRAGON handles its graphics.

Basically there are two different things the screen can display; text
(normal writing etc.) and graphics (more on this later). The text screen is
the old familiar standard screen which you see when you switch most
computers on, ie. letters, numbers and the other symbols which also
appear on the keyboard. On the DRAGON this is green with a black
border and black writing.

The graphics are a little more complicated (most of this chapter is
dedicated to it) but basically consists of lines, dots, circles, pictures, etc.

On the DRAGON, high-resolution graphics and text cannot be mixed on
the screen at the same time but rather the text screen is displayed unless
a program specifies otherwise and even then the text screen will
automatically be displayed whenever BASIC references it (e.g. with a
PRINT, INPUT, error message or when a program finishes).

On the other hand anything can be put on any particular graphic screen
without effecting any of the others or what is being displayed (unless that
screen is currently being displayed) at any time. This allows many things
to be done 'behind the user's back' on the graphics screen, for example,
while he is busy with the text screen, etc.

Not only can the program be setting up pictures on a high resolution
screen while the user sees a text screen but also while the user is looking
at other high resolution screens. This means that the user may not see
the pictures while they are being drawn but instead sees the finished
product. Also several high resolution screens can be drawn each one
only slightly different. When these are changed at high speed it will
appear as if the objects on the screen are moving.

36

PIXELS AND RESOLUTION
In computer graphics (similar to photographs and printed pictures) the
different shapes are made up by many small dots. Each of these dots can
be made to be one of several colours and when seen with the other dots
around, it creates a picture. These are called picture elements or 'pixels'
for short. It is the number of these pixels which control the resolution.
Resolution is a measure of the 'quality' of the picture. The higher the
resolution (the more pixels),the better the quality of the picture (e.g.
photographs have higher resolution than newspaper print which has
higher resolution than most computers).

Obviously the higher the resolution, for a given number of colours, the
more memory needed to store the information. so there must be a
trade-off between the resolution and the amount of memory to be used or
the number of colours on the screen. There is also a trade-off between
speed and resolution as the more pixels there are, the longer it will take to
change them all.

MODES
When the BASIC interpreter was written for the DRAGON the designers
decided to implement 1 semigraphic mode and 5 high resolution modes.
What they didn't tell you is that the VDG (Video Display Generator) chip
that they used is capable of handling 14 different modes; 5
semigraphic and 8 true graphic plus the standard text mode! However,
most of these extra modes are not really useful (which is probably why
they didn't bother to implement them).

TEXT
The text mode is the old standard that you use for most of your
programming. This is the mode you use to type in, run and edit your
programs as well as INPUT, PRINT, etc. from inside your BASIC
programs. The text mode also incorporates semigraphic 4 as shown
below.

SEMIGRAPHIC
Semigrahic modes are so called as each character block is divided into a
number of elements (pixels). The number of elements per character
block is used to name the mode, i.e. Semigraphic 4 has four elements per
character block, Semigraphic 8 has eight elements per character block,
etc.

Semigraphic 4 is not really a separate mode as it is available at the same
time as the text mode and is the only semigraphic mode implemented by
BASIC.

37

The other semigraphic modes use the same area of memory as the text
mode so that when using these modes the text screen is not preserved.

However information can be put onto the text screen while the graphics
screen is being displayed by using POKE. Using the POKE to put
information on the text screen is quite simple as the following program
demonstrates.
10CLS
20 A$ = "THIS IS PRINTED OUT"
30 FOR I = 1 TO LEN (A$)
40 A = ASC (MID $ (A$, l,1))
50 IF A < 33 or A > 128 THEN A = 96
60 IF A < 64 THEN A = A + 64
70 POKE 1151 + I, A
80 NEXT I

Lines 50 & 60 ensure that no inverse, control or graphic characters are
printed. Remove these lines if these characters are desired.

GRAPHIC
The true graphic modes are of much higher resolution and are based on
dot graphics. The graphic modes implemented by BASIC are the higher
resolution graphic modes of the VDG and have very powerful BASIC
commands such as LINE, CIRCLE, etc. as well as the low level PSET
and PRESET dot graphic commands.

A table comparing the different modes and their attributes is given below.
A more detailed description as well as how they are stored in memory
and how to set the screen to these modes is given at the end of the
chapter.

The graphic modes which are not directly implemented by BASIC are
probably not as useful or practical as those that are. These 'non-mode'
modes can be set up by a series of PEEKs and POKEs and are
cumbersome to set up and use.

Possible applications for all the modes are given below:
Semigraphic 4 - for crude figures and solid blocks of colour, where
multiple colours, speed and the ability to mix in text is important.
Semigraphic 6-24 - for higher resolution (in the vertical axis); could be
good for accurate bar charts but can be quite wasteful on the space ij
uses.
Graphics 7-9 - where the amount of memory used by each screen is of
paramount importance, e.g. when the program is very large and/or many
pages of graphics are used.

38

Graphics 1 0 , 1 1 - when resolution has to be reasonable but time and the
amount of memory used is still important.
Graphics 12 , 13- probably the most useful mode as resolution is quite
good and speed and memory size is still acceptable.
Graphics 1 4 - for very high resolution graph plotting such as cos, sin
and complex 3 -D graphs; could also be used in games where speed and
memory size are not important; limited however in that only two colours
are available.

MOOE RESOLUTION IMPlEMENTED
NUMBER NUMBER

OF OF
IN

COLOURS BYTES
BASIC PER PER

X
SCREEN SCREEN

y

1. Alphanumeric 32 1 6 Y ES 2 512 (0 .5K)
2 . Semigraphic 4 64 32 Y ES 8 512 (0.5K)
3 . Semigraphic 6 64 48 NO 4 512 (0.5K)
4. Semigraphic 8 64 64 NO 8 2048 (2 K)
5. Semigraphic 12 64 96 NO 8 3072 (3 K)
6. Semigraphic 2 4 64 1 92 NO 8 61 44 (6K)
7. Graphic 64 64 NO 4 102 4 (1 K)
8 . Graphic 128 64 NO 2 1 02 4 (1 K)
9. Graphic 128 64 NO 4 2048 (2 K)

10. Graphic 128 96 Y ES 2 153 6 (1 .5K)
1 1 . Graphic 128 96 Y ES 4 3072 (3 K)
12 . Graphic 128 1 92 Y ES 2 3072 (3 K)
13 . Graphic 128 1 92 YES 4 61 44 (6K)
1 4. Graphic 256 1 92 Y ES 2 61 44 (6K)

VIDEO MEMORY
Video memory is the area of RAM used for storing the information to
display on the screen.

The area is from 102 4 (&H400) upwards. The minimum size for this area
in BASIC is 2048 (2 K) bytes (enough for the tex1 screen and one graphic
page) and can be expanded up to 12800 (12 .5K) bytes by using the
PCL EAR command. This area can be shrunk down to 512 (0.5K) bytes
and expanded up to the top of RAM by setting the Start of BASIC pointer
and the Start of Free Memory pointer before loading the program. These

3 9

pointers are located at 25 (&H19), 26 (&H1 A)and 31 (&H1 F), 32 (&H20).
To reduce this area to 0.5K bytes these pointers must be set to 1536
(&H600) by the following:
POKE 25, 6
POKE 31 , 6

SCREENS AND PAGES
The video memory area is further divided into two sections; the text
screen section and the graphics section. The graphics section is again
divided this time into 8 pages, each 1536 (1.5K) bytes.

13824 3600
PMODE O S"ooo8

}

}-··-·
12288 3000

q
PMODE 1&2 Screen4

Page 7

10752 2AOO

} PMODE , &2 &,ooo 3
Page6

9216 2400

Pages

7680 ,eoo

Page4

}PMODE ,&2 &,0002

]---
6'44 '800

Page3
4606 '200

PMODE 0 Sc,ooo 2 }
3072 ocoo PMODE 1&2Screen 1

MODE 0 Screen 1
'536 0600

1024 0400 Standard-TeKtand
Semigraphics 4

Video Memory

The above diagram shows how the video memory is divided up into
pages and screens for the different modes.

PAGE SWAPPING
Apart from having all these different modes, the VDG also has the ability
to have the screen displaying the contents of any section of memory.
This is limited to a certain number of pages (depending on the resolution)
in BASIC but by following the instructions below (setting up addresses
&HFFC6 to &HFFD3) or the program Listing 1 the screen can display any
section of memory you want to.
Listing 2'aemonstrates this by cycling through the entire memory.

40

LISTING 1
This routine allows easy setting of the start of display area for
initialization prior to doing graphics work. Before using this program set
the variable S to the address to start, the bottom 9 bits of this address are
ignored as addresses can only be multiples of 512.
1 00 S = INT(S / 512)
110 FOR I = &HFFC6 TO &HFFD2 STEP 2
120 R = S - INT (S I 2) • 2 : S = INT (S / 2)
130 POKE I + R, 0
140 NEXT I

LISTING 2
I=O: GOSUB100

'.' GOT02

5 PRINT"F'F':ESS ANY KEY TO MOVE ONTO THE NEXT Bl.OU: "
10 FOR!=2 T0128
20 GOSUBlO(•
30 A$=INKEY$: IFAl= " "THEN30
40 NEXT!
50 FORI=OT02

60 A$=INKEY$: IFA$=""THEN6(•
70 GOSUBlOO
80 NEXTI
90 END

100 ' ** SET UF' STAfn OF SCf.:EE�
1 05 PRINT "UP TO"HEXI(I*512 l
106 A$=INKEY$: JFM= " " THEN106
1 10 S=I/2
120 FORK=IHFFC6 TO IHFFD2 STEP:
130 P=S-INTI S/2)12: S=!NTI S/2)
140 Pm:E K+h l•
1 50 NEXTK

160 RETURN

There is a 7-bit register in the VDG which controls the start address of the
screen. The number in this register is multiplied by 512 to give the actual
starting address.

To set this register there are 14 different memory locations, two for each
bit.

The relationship between the locations and the register is shown below.

41

6

I I

F FD3 (65491) SET
F FD2 (65490) RESET
F FD1 (65489) SET

FD0 (65488) RESET
F FCF (65487) SET
F FCE (65486) RESET

� FCD (65485) SET
FCC (65484) RESET

F FCB (65483) SET
F FCA (65482) RESET

- F FC9 (65481) SET
- F FC8 (65480) RESET

� F FC7 (65479) SET
� F FC6 (65478) RESET

0

I
512 - ADDRESS OF START
OF SCREEN

BIT 6

BIT 5

BIT4

BIT 3

BIT2

BIT 1

SIT O

Either a 1 or 0 may b e POKEd into the above locations to achieve the
appropriate setting or resetting of the bit according to the location. For
clarity it is best to use POKE [address], 0 when resetting the bit and
POKE [address], 1 when setting the bit.

In BASIC this can be achieved with the PMODE command but only over
a limited range of memory. Using this feature can greatly speed up
programs which need fast, repetative movement on screen. You can set
up in advance slightly different pictures in different areas of memory and
cycle through! them rapidly to create the effect of movement.

The rest of this chapter looks at each BASIC graphic command in detail
and finishes with a summary of the modes and how to select them.

LOW RESOLUTION (SEMI) GRAPHICS

Unfortunately this is the only resolution in which you can mix graphics
and text freely and have all 8 colours on the screen at once. Unfortunate
because the resolution is too low (64x32) for any serious picture or

42

games graphics, a,1d even lower (32 x 1 6) if you are not using a black
background (see SET /R ES ET). Because of these limitiations it is only
suitable for work such as bar charts, crude block figures, etc. The only
real advantages of this resolution are that text can be intermingled with
the graphics and it is simple and therefore can be fast.

CLS
This command is used to set the entire screen to a particular colour. Note
that it does not make this colour the background colour but rather sets all
the colour bits to the particular colour and sets all the on/off bits on. When
text is put on screen after a CLS [n], wherever the text appears, it is the
familiar black on green.

The two exceptions to this are: a CLS without any parameter - this
reverts to the standard black on green - and a CLS O simply causes all
the on/off bits to be off (ie. 0).

SET/RESET
The S ET command sets one element to a specified colour. However,
there are some surprises. Because the semigraphic 4 mode (standard)
has each byte containing four elements, only two colours can exist in the
same block (the size of a character) and that is black (i.e. the on/off bit's
off) and the color specified in the color bits (i.e. the on/off bit's on).
Therefore, when one individual element is turned on the others are
turned off. If you are not using a black background you get a big black
block with a quarter of it the colour you specified. If any other SETs are
done in this block the old one will change to the new one's colour.

The easiest way (but not necessarily the best) to overcome this problem
is to only turn the complete block on and off but this reduces the
resolution dramatically (to 3 2x1 6).

The RESET command simply sets the on/off bits so that that particular
element is turned off.

GRAPHICS USING STRINGS
Another way of producing graphics in all the semigraphics modes is to
use strings and PRINT them on the screen. By using the CHA$ function
with codes greater than 128 (see table below) and adding these together
to form strings, pictures can be built up.

43

GRAPHICS CHARACTERS FOR SEMIGRAPHICS 4

D 1 28 � 1 3 2 � 1 3 6 � 1 40

� 1 2 9 [I 1 3 3 � 1 3 7 � 1 41

� 1 3 0 � 1 3 4 I] 1 38 � 1 42

� 1 3 1 � 1 3 5 -- 1 3 9 • 1 43

The filled in elements represent those that have their on/off bit set to 1
{i.e. a colour); the other elements have their on/off bits set to 0 (i.e.
black).

The above codes represent the filled in elements being green.
different colours add the numbers shown below.
+ 1 6 - yellow
+3 2 - blue
+48 - red
+64 - buff
+80 - cyon
+96 - magenta
+ 1 1 2 - orange
Example:

CHR$ (1 3 1)
CHA$ (13 1 + 80)
CHA$ (142 + 32)

green
cyan
blue

For

The advantages of using strings to produce graphics is the speed and
comparative ease of production and manipulation of shapes (using string
handlers such as L EFT$, MID$, etc.). To give some idea of the time
saved by using strings, take a shape with 10 characters in it, and in such
a way that one PRINT will do all ten. The PRINT statement takes
approximately 0.0048 7 seconds to execute. Each S ET statement takes
approximately 0.00669 seconds therefore between 10 and 40 S ETs
(each character can set up to 4 elements) takes between 0.0669 and
0.2676 seconds!

Note that when a PRINT statement is executed, no matter what mode the
screen has been set to, it will revert to the standard black on green
alpha/semigraphic 4 mode. Strings can still be used in other modes by

44

doing all the PRINTing on the standard screen before setting the screen
to a different mode.

Note also that for different modes the CHR$ function will produce
characters (see byte mapping for the various modes at the end of this
chapter).

SET /RESET VERSUS STRINGS

Here are two programs to demonstrate the speed advantage of strings,
using the old favorite, INVADERS.
Version 1
10 Al$=CHR$(128 l+CHR$(133)+CHR$(138 :•+CHRJ;(128 •
20 B l l=CHR$1 1 28 l+CHRl(142 µ(HR$(141 l+CHR� 128)

30 A$=Al$: B$;Bl$
40 FORI=l T05
50 A$=A$+Al$: B$=Bl+Blt
60 NEXT
70 CLSC,
80 FDRI=64T072

90 PRINT@ I , A$ 1 : PRINT@I+32 , BS '
1 00 FDRJ=1T060: NEXT
110 NEXT
120 FDRI=7 1T065 STEP -1
130 PRINT@ I , As ; : F� I NT@I+32 ,B$ '
1 40 FORJ=1T060: NEXT

150 NEXT
160 Gorn Bo
Version 2
10 CLS
20 FORJ=1T01 4 : GOSUB50: NEXTJ
30 FORJ=13T02STEP-1 : GOSUB50 : NEXTJ
�O GOT020

50 FDRI=1T048 STEF'B
60 RESETI J+I-1 , 4 1 : RESETI J+l-1 , 5) : RESET! J+l-l , 6) :

RESET(J+I-1 � 1)
70 RESETI J+l , 4) : RESETI J+I , 5 ,
80 SET< J+I+l , 4 , 0) : SET(J+!+l , 5 , 0) : SET(J+l+2 � 4 � 0) :

S£T� J+1 -.· 2 � s � o)
90 SETI J+I , 6 , 0) : SET(J+I , 7 , 0) : SETI J+l+ l , 6 , 0) :

SEH J+l-'·2 � 6 1 0 _,

100 RESET< J+I+ l , 7) : RESET(J+! +2 ,7 l

1 10 SET(J+I+3 , 6 , 0 J : SET(J+ I+3 , 7 , 0 ,
120 RESET< J+I+3 ,4) :RESET(J+l + 3 , 5) :RESET(J+I+4 ,6) :

RESET(J+I+4 , 7)

45

130 NEXTI
l.'tO RETURN

Obviously neither of these would be used for a serious INVADERS
program but it demonstrates the speed which can be acheived using
strings.

Note also the ease with which indivual invaders can be removed from
strings - simply use the MID$ function to change the middle of the string.

HIGH RESOLUTION GRAPHICS

Altogether there are 1 5 BASIC commands which work on the hi-res
graphic modes. 6 of these are for initializing and manipulating complete
screens, 3 for dot graphics and 6 high level graphics commands.

INITIALIZING COMMANDS

SCREEN
The SCREEN command sets the display to either text or the current
graphics page as well as selecting the colour set to use. The format of
SCREEN is:
SCREEN [type],[colour-set]
Where [type] is O for text and 1 for current graphics and [colour-set] is
either 1 or 0. The colours available for each colour set depends on the
current mode (see below for colours available). The SCREEN command
can be used anywhere in a BASIC program but the screen is
automatically set to text and color set O whenever BASIC has text to
display, e.g. PRINT, INPUT, errors, etc.

PCLEAR
The PCLEAR command is used to reserve up to 8 pages of graphic
memory. The memory immediately after the graphics pages reserved is
used for your BASIC program. For this reason if PCLEAR is to be used it
should be close to the beginning, otherwise there may be strange results.
There are four pages of graphics reserved when BASIC is initialized.
Each page is 1536 bytes long. PCLEAR is used to either increase the
number of graphic pages allowing more to be 'flipped through', or to
decrease the number of graphic pages leaving more RAM space for your
BASIC programs.

46

PMODE
The PMODE command is used to change the current resolution and
starting page of the display. Only modes 1 O through 14, and pages 1 to 8,
can be selected by PMODE. For imformation about setting other modes
and pages see the end of the chapter. PM ODE can be used at any time to
change the resolution of the screen (note that the SCREEN command
must be given to actually see the current page). Below is a table which
shows the colours that are available for the various page and colour-set
combinations.

PMODE # COLOUR-SET COLOURS AVAILABLE

4 0 BLACK/GREEN
1 BLACK/BUFF

3 0 GREEN/YELLOW/BLUE/RED
1 BUFF /CYAN/MAGENTA/ORANGE

2 0 BLACK/GREEN
1 BLACK/BUFF

1 0 GREEN/YELLOW/BLUE/RED
1 BUFF/CYAN/MAGENTA/ORANGE

0 0 BLACK/GREEN
1 BLACK/BUFF

PMODE is also used to set the starting mode of the screen display so it
can be used to 'flip through' pages of graphics giving a movement effect.

Below is a table showing how many pages are needed for each mode
and therefore how many different screens can be stored simultaneously.

MODE Pages/Screen # of Screens

4 4 2
3 3 2
2 2 4
1 2 4
0 1 8

Note that if PMODE is used to change resolution or starting pages, even
though you may already be in graphics display mode the SCREEN
command selecting graphics display mode must be given again as this
initializes the variables needed by BASIC to work on the screen. If the
SCREEN command is not given after a PMODE strange things will
happen to the screen and to how it is accessed.

47

PCOPY
The PCOPY command is used for copying one graphics page onto
another. This allows multiple pages of the same picture or multiple
pictures on the same screen by copying a page into the page above it
then a high resolution mode is used to display the page.

PCLS
The PCLS command clears the current graphic screen to the specified
colour. If the specified colour is not in the current colour set or the colour
has not been specified then the current background colour is used. Note
that the entire screen is cleared, which may contain more than one page.

COLOR
The COLOR command allows the background and foreground colours to
be set. The border (in graphics) is either green or buff and if we set the
background to this colour the border disappears. The foreground colour
is used as the default colour in other graphic commands.

PRODUCING GRAPHICS

PSET AND PRESET
So much for initializing the screen, now to actually put something on it.
The simplest way to produce something on the screen is to use PSET
and PRESET. As you may have guessed they are the same as SET and
RESET except they work on the graphics screen. Instead of having only
64x32 addressable points on the screen you have 256x192 on the
highest resolution and 128x96 on the lowest resolution. It does not
matter what resolution is set, the co-ordinates are always 0- 255 on the
horizontal axis and O - 191 on the vertical axis. The difference between
the resolutions is the size of the points that can be turned on and off. In
the lower resolutions there will be more than one co-ordinate that refers
to the same point on the screen.

The PSET command is useful for drawing curves such as SIN etc. as the
program below shows.
10 PMODE O, 1
20 PCLS
30 SCREEN 1, 1
40 1 = 0
50 SS = SIN (I)
60 CS = INT (SS • 80) + 96
70 PSET (I • 20 - 0, CS)
80 I = I + 0.01
90 IF I < 12. ? THEN 50

100 GOT0 100

48

Try this program changing the resolution of the graphics in line 1 0. See
how the curve stays the same but it becomes smoother as the resolution
gets higher.

PPOINT
The other low level graphic command is PPOINT which simply samples a
particular pixel and returns the colour the pixel is set to.

HIGH LEVEL
So far we have discussed dot graphics which is OK for curve plotting and
simple pictures, etc. but why spend useful time on something that is
already done for you?

The BASIC high level commands LINE, CIRCLE and DRAW produce
shapes for you without all the complex functions, loops, data, etc. (for
examples of the use of these commands see the chapter on handy
routines).

LINE
The LINE command not only draws lines, boxes and filled in boxes but
also erases lines, boxes and filled in boxes. The format of the LINE
commmand is
LINE ([x1],[y1]) -([x2],[y2]), [fn1], [fn2]

Execution of LINE produces a line that runs from the first co-ordinates
through to the second co-ordinates. The colour of the line drawn
depends on [fn1]. This is either PSET or PRESET (sound familiar?). If
PSET is specified then the line is drawn in the the current foreground
colour (set with the COLOR command) and if PRESET is specified the
current background colour is used, effectively erasing a line.

[fn2] is an optional function and can be either B or BF, specifying Box or
Box Filled. When this option is used a box (rectangle) is drawn with its
diagonally opposite corners on the two co-ordinates specified. If the B
option is used the box is a line, one graphic element wide, if the BF option
is used the box is a solid colour.

CIRCLE
The CIRCLE command, like the LINE command, does more than draw
circles; it also draws arcs and elipses. To draw a plain circle the format is:
CIRCLE ([x],[y]), [r], [c]

Were [x] and [y] are the co-ordinates (same as PSET) of the centre of the
circle and [r] is the radius. The legal values of [x] are 0 -255and [y] are O
- 1 91 .

49

The radius is specified by [r], [r] can have any value. Any part of the circle
that happens to go outside the screen area is ignored. The [c] parameter
specifies the colour that the circle is drawn in. If [c] is omitted the current
foreground colour is used and if [c] is set to the background colour the
circle is effectively erased.

To make the circle an elipse there is an option which allows you to
change the height/width ratio. This option immediately follows the colour
option. If you are using the H/W parameters but not the colour option, a
comma must still be used (e.g. CIRCLE (10, 10), 10,,3 signifies no colour
specified by a height/width ratio of 3). When using the height/width
option the width of the elipse produced is as specified by the radius
parameter, and the height is changed accordingly.

The next and final option availble on the CIRCLE command controls the
start and end position of the circle allowing arcs to be drawn. Both start
and end values must be between 0 and 1. The way this relates to degrees
is shown below:

9 o'clock
27()0
0.5

12 o'clock
(JO
0.75

6 o'clock
18()0
0.25

3 o'clock
9()0
0 and 1

To calculate the parameter (0- 1) using degrees divide by 360 then, if
the result is negative, add 1.
If the end point is smaller than the start point, or either start or end is
omitted then a complete circle is drawn starting from the start point and
going clockwise. So the final format of circle is:
CIRCLE ([x],[y]) , [r], [c], [H/W], [START], [END]

When the start/end options are used the H/W option must also be
specified (use 1 for true circles).
Using the CIRCLE command with different radii, H/W ratios and start/
end option, almost any curve can be drawn. (See the program on page
1 10, Circle Example Program.)

50

DRAW
Another very powerful graphic command available from BASIC is DRAW
and it would take a chapter on its own to describe fully.

The DRAW command takes a string (either constant or variable) which
contains the commands for DRAW. The commands that can appear in
this string are given below:
MOTION
M = Move to an absolute position, x,y.
U = Move up 1
D = Move down �
L = Move left <-
R = Move right -+
E = Move 45° ?
F = Move 135° ...
G= Move 225° '
H =Move315° ,
MODE
C = Colour change
A = Angle change
S = Scale change
OPTIONS
N = draw but don't move starting position
B = move starting position but don't draw
OTHER
X = execute substring

The way that the DRAW command works is by having a current starting
position that it remembers but you cannot see. Whenever any of the
motion commands are encountered in the string this starting position
moves either to an absolute position on the screen (same co-ordinates
as PSET, x = 0 - 255, y = 0 - 191) or relative to its current position and
as it moves, it leaves a trail behind it. Therefore a string,
"U 1 0L 10D10R10", will draw a closed in box and the start position will be
the same as when it started. Before any motion commands have been
executed the start position is in the centre of the screen (128, 96). As
always there are exceptions to this rule and they are the two options N
and B. N causes the line to be drawn as normal but the starting position
does not move so that the next command starts from the same position.
B causes the starting position to move as normal but it doesn't leave its
trail behind.

In reality the B option is not 'move but don't draw' but draw in background
color (similar to PRESET) so that if its path takes it over the top of another
line, it effectively erases it.

51

The main difficulty encountered when using the DRAW motion
commands is that the commands that move at an angle (E, F, G,H)use a
different scale than the others. These lines are approximately 1 .42 times
longer than those in the horizontal and vertical planes. Therefore, to draw
a perfect triangle you use the string "R50U50G50" and you have a
perfect triangle but the line that runs at 45° is actually 71 units long.

The mode commands allow the 'current' settings to be altered. When a
program is run the current colour is the current foreground colour, the
current angle is 0 and the current scale is 4. The colour command (C) can
change the current colour to any in the current colour set. The angle
mode (A) allows you to rotate what is being drawn 0 - 3 times 45�
For example, after the command A 1 is given then the motion command U
will draw a line left while an L command gives a line down, etc.

The scale mode (S) is not as simple as it looks. The number directly
following the S (1 - 62) indicates the scaling factor, however each unit of
scale represents 0.25 or a quarter, thus 1 = 0.25 : 1 scale, 4 = 1 : 1 scale
and 1 0 = 2.5: 1 scale, therefore S4 has no effect, S1 - S3 make things
smaller and S5 - S62 make things bigger.

The final command available in the DRAW command string is X for
execute substring. This has an effect similar to GOSUB in that it
branches to different commands and then returns to the same spot to
continue execution. The command X is followed immediately by the
name of the substring to execute. This is a string variable which has been
previously assigned a string of DRAW commands. This allows all the
basic shapes, e.g. letters, men, etc, to be defined as substrings and
these to be executed (drawn) at any time/place in the program. It even
allows the size, angle and color of the basic shapes to change from one
execution to the next.

Any of the commands may be separated by a semicolon for clarity (eg.
U1 0;L 1 0) but the X command must be followed by a semicolon even if it
is the last comand in the string.

An example of the DRAW command showing most of its features is given
below.

1 0 DO = 2
20 PMODE 1 , 1
30 PCLS : SCREEN 1 , 1
40 B$ = "C4R90C2U10L30D1 0BL60"
50 DRAW "A0;XB$;A1 ;XB$;A2;XB$;A3;XB$;"
60 DRAW "S2"
70 DO = DO � 1
80 IF DO > 0 THEN 50 ELSE 80

52

PAINT
The PAINT command does exactly what you think it would do, that is fill in
the screen with a specific color. The format of PAINT is:
PAINT ([x],[y]), [c], [b]

Where [x] (0 - 255) and [y] (0 - 1 91) are the standard graphic co
ordinates and specify where the painting is to start from; [c] is the colour
that the area is to be set to and [b] is the colour of the border of the area to
be painted. [c] and [b], like all the other colour definitions can be any of
the 8 colours but depend on the current colour set. What happens when
the PAINT command is executed is that the screen is painted within the
confines of the boundary, the colour specified by [c]. If the boundary has
the smallest of gaps in it (ie. one element) then the entire screen will be
painted.

The boundary can be defined by LINE, DRAW, CIRCLE or by PSETing a
shape. The painting starts at the point specified and paints over
everything but the border colour.

GET AND PUT
The last two BASIC graphic commands are used together and form a
very powerful combination for animated drawings. Basically what they do
is get and put sections of the screen into and out of an array. The GET
command is the one to use first. This gets the data off the screen and puts
it into an array. The format of GET is:
GET ([x1], [y1]) -([x2], [y2]), [a], G

Where the co-ordinates [x1], [x2], [y1] and [y2] define a rectangle the
same as for LINE, [a] is the name of the array in which the data is to be
stored and 'G' is an option which specifies full graphic detail (this seems
to have no effect, except slightly less space is needed). The size of the
array to hold the data must be set by a DIM statement. The array must
have two dimensions which between them have enough bytes to contain
all the data.
The easiest way to work out the dimensions is make the first dimension
equal to [x2] -[x1] and the second dimension [y2] -[y1]. This method is
quick to calculate but wastes space. To calculate the most efficient array
storage use the one dimension O and the other calculate as below.
1 . Find the number of elements to be stored
x2 -x1 • y2 - y1
2. If using PMODE 4 or 3 divide this by 8.
If using PMODE 2 or 1 divide this by 1 6.
If using PMODE O divide this by 3 2.
Round up.

3 . Divide this by 5 and round it up again.

53

The number you have now should be right but may need adjustment by 1,
either up or down. Try this number; if you get a FC error when you try the
GET command increase the number in the DIM statement by 1, and try
again.
Using this saves quite a bit of memory. For example, in PMODE 4, with
the G option, if the rectangle being 'got' from the screen was (10, 1 0) -
(30, 30), the first method requires an array DIM (20, 20) or 121 O bytes but
the second method requires an array DIM (0, 1 1) or 11 bytes, less than
10% of the first.
The PUT statement has much the same format as GET.
PUT ([x1],[y1]) - ((x2],[y2]), [a], [action]
Where [x1], [y1], [x2], [y2] and [a] all have the same meaning as for GET.
The [action] parameter can have the following values: PSET, PRESET
(our old friends), AND, OR or NOT.
With PSET the picture on screen is exactly as it was when the GET
statement was used, as would be expected. The PRESET options will
erase (PRESET) all the points that are set in the array.
The AND option performs an AND operation on the points set in the array
and the points on the screen, then any points set both in the array and on
the screen it sets on the screen and all the rest are reset. This option can
be used to mask out certain areas of graphics.
The OR option performs an OR operation on the points set on screen and
the points set in the array and will set the points that are set in either the
screen or the array, resetting all others. this can be used to make two
shapes appear on the screen at once.
With the NOT option, it doesn't matter what is in the array even though
one must be specified. When the NOT option is used all points on the
screen inside the defined rectangle are reversed, ie set points are reset
and reset points are set. This can be used to get reverse video effects,
etc.
ASSEMBLER/MACHINE CODE GRAPHICS
Using graphics from assembler or machine code is quite a deal harder
but startling results can be achieved.

The first thing that must be done is set the mode you want by setting
memory location 654 72 - 654 77 as described at the end of the chapter.
Once one of the 14 modes and the starting address of the screen have
been set then there are many different methods to produce graphics.
One way could be to calculate each byte value and save this as data then
all your program does is load it into the screen memory. This is a simple
program, but it is hard to create the 'picture'. Another way would be to
write your own machine code routine to fake the BASIC commands
LINE, DRAW, PAINT, etc.

54

Whichever method you choose, graphics from machine code can be
both detailed and fast, much more so than from BASIC.

The following section has details on how each graphic mode stores the
pixels and how to use these modes from both BASIC and machine
language.

GRAPHICS MODES

This next next section is a description of the 1 4 graphic modes and how
to use them. This page is an explanation of the pages describing the
modes. It has the same format and headings but instead of data under
the heading it has an explanation of the heading.

MODE number and name of this mode.
ELEMENTS how may elements this mode has. horizontal x vertical
MEMORY MAPPING Where each element is stored

Addresses e.g.
from start + 0
i.e.

is the start
address + 1

+1
"the contents o f this address"

BYTES The number of bytes needed to hold one screen
ADDRESS How to calculate the address for each element. START is the
address which the screen starts at, see page 41.

BYTE MAPPING What each bit in each byte of memory relates to
COLORS Which colors are available
SELECT How to set the screen to this mode

NOTE: With byte mapping the elements name in a bit means that if a 1 is
there the element is 'ON' and if a zero is there the element is 'OFF', an X
means that that bit is not used.

55

MODES

MODE 1
ALPHANUMERIC - NORMAL TEXT

ELEMENTS 32 x 16
Memory mapping

+O
+1

+ 32
+33

LINE 1, CHARACTER 1
LINE 1, CHARACTER 2

LINE 2, CHARACTER 1
LINE 2, CHARACTER 2

BYTES = 512
ADDRESS = 32 • Y + X + START

BYTE MAPPING 7 0

I O I I I I I I I I
�

SEE APPENDIX H

COLOURS:
BORDER = BLACK
FOREGROUND COLOUR SET = 0 - GREEN

COLOUR SET = 1 -ORANGE
SELECT:
This is the standard screen.

56

MOD E 2
SEMI GRAPHIC 4

ELEMENTS 64 x 32
ELEMENT FORMAT

MEMORY MAPPING

+O
+ 1

LINE 1 , CHARACTER 1
LINE 1 , CHARACTER 2

+32 ' LINE 2, CHARACTER 1 t
+33 LINE 2, CHARACTER 2

BYTES = 512
ADDRESS = 32 • Y + X + START

BYTE MAPPING 7 0

I 1 ! C I C I C I L,I L, I L, I Loi

COLOURS BORDER
CCC

SELECT:

BLACK
000
001
01 0
01 1
1 00
1 01
1 1 0
1 1 1

SET /RESET when in TEXT mode
Alphanumeric and this mode are together

57

GREEN
YELLOW
BLUE
RED
BUFF
CYAN
MAGENTA
RED

MODE 3
SEMI GRAPHIC 6

ELEMENTS 64 x 48
ELEMENT FORMAT

L,

L,

L,

L,

½

'-o
MEMORY M.�A�P� P�IN=G������

+ 0 LINE 1 , CHARACTER 1
+ 1 i, LINE 1 , CHARACTER 2

+32 I- LINE 2, CHARACTER 1 '
+33 LINE 2, CHARACTER 2

BYTES = 512
ADDRESS = 32 • Y + X + START

BYTE MAPPING 7 0

l c l c l �l�I L,l t.,I �l'-ol

COLOURS BORDER = BLACK

SELECT:

cc = 00
01
1 0
1 1
00
01
1 0
1 1

GREEN
} YELLOW COLOUR SET = 0

BLUE

:0�F }
CYAN COLOUR SET = 1
MAGENTA
ORANGE

A = PEEK(65314): POKE 65314, (A and7) + 1 6 + X
Where X = 0 for colour set 0

X = 8 for colour set 1
POKE 65476,0: POKE 65474,0 POKE 65472,0

58

MODE 4
SEMI GRAPHICS 8

ELEMENTS 64 x 64
ELEMENT FORMAT

MEMORY MAPPING

A
B
C
D

L, ¼
L, L,

L, L,
L, ¼

+o �R�w- A- ,�L�I N�E-1�, -c�H�AR�1�
+1 ROW A, LINE 1, CHAR 1

+32
+33

+128
+129

ROW B, LINE 1, CHAR 1
ROW B, LINE 1, CHAR 2

ROW A, LINE 2, CHAR 1
ROW A, LINE 2, CHAR 2

BYTES = 2048
ADDRESS = 128 • Y + 32 • ROW + X + START

BYTE MAPPING

COLOURS BORDER
CCC

SELECT:

BLACK
000
001
010
011
100
101
110
111

GREEN
YELLOW
BLUE
RED
BUFF
CYAN
MAGENTA
ORANGE

A = PEEK(65314) : POKE 65314, (AAND 7)
POKE 65475, 0 : POKE 65475, 1 : POKE 65472,0

59

MODE S
SEMI GRAPHIC 12

ELEMENTS 64 x 96
ELEMENT FORMAT

+32
+ 33

+192
+193

ROW B, LINE 1, CHAR 1
ROW B, LINE 1, CHAR 2

ROW A, LINE 2, CHAR 1
ROW A, LINE 2, CHAR 2

BYTES = 3072
ADDRESS = v · 192 + Row • 32 + X + START

BYTE MAPPING
7

A
B
C
D
E
F

1
1
1
1
1
1

C
C
C
C
C
C

COLOURS BORDER
cc

SELECT:

C C
C C
C C
C C
C C
C C

L,,
i...
L,
X
X
X

BLACK
000
001
010
011
100
101
110
111

L10
i..
L.
X
X
X

0
X X
X X
X y

L, L,
L,
L, I.,,

GREEN
YELLOW
BLUE
RED
BUFF
CYAN
MAGENTA
ORANGE

A = PEEK (65314) : POKE 65314, (A AND7)
POKE 65477, 1 : POKE 65474, 0 : POKE 65472, 0

60

MODE 6
SEMI GRAPHICS 24

ELEMENTS 64 x 192
ELEMENT FORMAT A

B
C
D
E
F
G
H
I
J
K
L

L,,
½1
L,•
L,,
L,s L,, L,,

L,
L,

L,
MEMORY MrA�P�P�IN�G������

+0 ROW A, LINE 1 , CHAR 1
+1 ROW A, LINE 1, CHAR 2

+32
+33

+384
+385

ROW B, LINE 1, CHAR 1
ROW B, LINE 1, CHAR 2

ROW A, LINE 2, CHAR 1
ROW A, LINE 2, CHAR 2

BYTES = 6144

½o
L,.
L,.
L,.
L,,
L,o
La

L•
½
¼

ADDRESS = Y • 384 + ROW • 32 + X + STARTS

BYTE MAPPING
7

A 1
F 1
G 1
L 1

C
C
C
C

COLOURS BORDER
CCC

C C
C C
C C
C C

L,,
L,, X
X

BLACK
000
001
010
011
100
101
110
111

61

L,,
L,,
X
X

0
X X '
X X
L, , L,o
L, ¼

GREEN
YELLOW
BLUE
RED
BUFF
CYAN
MAGENTA
ORANGE

SELECT:
A = PEEK(65314) : POKE 65314, (A AND 7)
POKE 65477, 1 : POKE 65475, 1 : POKE 65472, 0

MODE?
G RAPHICS 64 x 64 FOUR COLOUR

MEMORY MrA�P�P�IN�G=--,,���- �-
+0 ROW 1, COLUMN 1-4
+ 1 ROW 1, COLUMN !>----8

+16
+17

ROW2, COLUMN 1-4
ROW 2, COLUMN !>----8

+1022
+1023

ROW 64, COLUMN 57- 60
ROW 64, COLUMN 61-64

BYTES = 1024
ADDRESS = Row·15 + FIX((COLUMN-1)/4) + START

COLOURS BORDER = GREEN
BUFF

SELECT:

cc = 00
01
10
11
00
01
10
11

COLOR SET=0
COLOUR SET = 1
GREEN

} YELLOW COLOUR SET = 0
BLUE

:��F
} ���NTA COLOUR SET = 1

ORANGE

A = PEEK(65314) : POKE 65314, (A AND 7) + 128 + C
Where C = 0 for COLOUR SET 0

C = 8 for COLOUR SET 1
POKE 65473, 1 : POKE 65474, 0 : POKE 65476, 0

62

MODE S
GRAPHICS 128 x 64 TWO COLOUR

MEMORY MAPPING
+0 =R�O�W:-;.-=c1,�c=o=L�U�M=N�1�-8� - �
+ 1 ROW 1, COLUMN 9-16

+15
+ 16

+ 1022
+1023

ROW 1, COLUMN 120-128
ROW 2, COLUMN 1-8

ROW 64, COLUMN 112-119
ROW 64, COLUMN 120-128

BYTES = 1024
ADDRESS = Row·16 + FIX((COLUMN - 1)/8) + START

BYTE MAPPING

COLOURS BORDER

7 0

COL N + 7
COL N + 6

'----- � ------+ COL N + 5
L___ _ __ _, COL N + 4

L___ _ _ __ � COL N + 3
L---- --- ------> COL N + 2

COL N + 1
L---- - - - --- --> COL N

GREEN COLOUR SET = 0
BUFF COLOUR SET = 1

C = 0 BLACK COLOUR SET = 0
1 GREEN
0 BLACK COLOUR SET = 1
1 BUFF

SELECT:
A = PEEK (65314) : POKE 65314, (A AND7) + 128 + 16 + C
Where C = 0 for COLOUR SET = 0

C = 8 for COLOUR SET = 1

63

MODE 9
G RAPHICS 128 x 64 FOUR COLOUR

MEMORY MrA�P�P�IN�G
c'---.=---,----0-- --,

+ 0 ROW 1, COL 1-4
+1 ROW 1, COL 5-8

+31
+ 32

+2046
+2047

ROW1, COL 61 - 64
ROW2, COL 1-4

ROW 64, COL 57-60
ROW 64, COL 61-64

BYTES = 2048
ADDRESS = Row · 32 + FIX((COLUMN-1)/4)

+ START
BYTE MAPPING 7 0

COL N + 3
COL N + 2

'-- -- --....,, COL N + 1
'-- -- - - -- ----, COL 1

COLOURS BORDER GREEN COLOUR SET = 0

SELECT:

CC = 00
01
10
11
00
01
10
11

BUFF COLOUR SET = 1
GREEN

} YELLOW COLOUR SET = 0
BLUE

;��� } COLOUR SET = 1
MAGENTA
ORANGE

A = PEEK (65314) : POKE 65314, (A AND 7) + 128 + 32 + C
Where C = 0 for COLOUR SET = 0

C = 8 for COLOUR SET = 1
POKE 65472, 0 : POKE 65475, 0 : POKE 65476, 1

64

MODE 10
GRAPHICS 128 x 96 TWO COLOUR

MEMORY MAPPING
+0 -R�O�W�1. �c

=o�L�u=M�N�1�-8�- ---,
+1 ROW1, COLUMN9-16

+15
+16

+1534
+1535

ROW 1, COLUMN 120-128
ROW 2, COLUMN 1-8

ROW96, COLUMN 113-120
ROW96, COLUMN 121-128

BYTES = 1536
ADDRESS = Row· 16 + FIX((COLUMN-1)/8) + START

BYTE MAPPING 7 0

! c ! c ! c ! c ! c ! c ! c ! c !

COLOURS BORDER GREEN COLOUR SET = 0

SELECT:
PMODE0
or

C = 0
1
0
1

BUFF COLOUR SET = 1
BLACK } COLOUR SET = 0
GREEN
BLACK } COLOUR SET = 1
BUFF

A = PEEK (65314) : POKE 65314, (AAND7) + 128 + 32 + 16 + C
POKE 65476, 0 : POKE 65475, 1 : POKE 65473, 1

65

MODE 11
128 x 96 FOUR COLOUR

MEMORY MAPPING
EACH BYTE HOLDS 4 COLUMNS
BYTES = 3072
ADDRESS = Row · 32 + FIX ((COLUMN-1)/4) + START

BYTE MAPPING 7 0

cc I cc I cc I cc 1

COLOURS BORDER GREEN
BUFF
GREEN
YELLOW
BLUE

COLOUR SET = 0
COLOUR SET = 1

SELECT:
PMODE1
or

CC = 00
01
10
11
00
01
10
11

} COLOUR SET = 0

:5�F }
CYAN COLOUR SET = 1
MAGENTA
ORANGE

A = PEEK (65314) : POKE 65314, (A AND7) + 128 + 64 + C
POKE 65477, 1 : POKE 65474, 0 : POKE 65472, 0

66

MODE 12
GRAPHICS 1 28 x 192 TWO COLOUR

MEMORY MAPPING
EACH BYTE HOLDS 8 COLUMNS
BYTES = 3072
ADDRESS = ROW " 16 + FIX ((COLUMN-1)/8) + START

BYTE MAPPING 7 0

l c lc l c l c l cl c l c l c l

COLOURS BORDER GREEN COLOUR SET = 0
COLOUR SET = 1

C = 0 :��, l COLOUR SET = 0

SELECT:
PMODE 2
or

1
0
1

GREEN
BLACK COLOUR SET = 1 BUFF

A = PEEK (65314) : POKE 65314, (AAND 7) + 128 + 64 + 1 6 + C
POKE 65477, 1 : POKE 65474, 0 : POKE 65473, 1

67

MODE 13
GRAPHICS 128 x 192 FOUR COLOUR

MEMORY MAPPING
EACH BYTE HOLDS 4 COLUMNS
BYTES =6144
ADDRESS = Row · 32 + FIX ((COLUMN-1)/4) + START

BYTE MAPPING 7 0

1 cc I cc I cc I cc 1

COLOURS BORDER

SELECT:
PMODE 3
or

CC =00
01
10
11
00
01
10
11

GREEN COLOUR SET = 0
BUFF COLOUR SET = 1
GREEN

} YELLOW COLOUR SET = 0
BLUE

g��� } COLOUR SET = 1
MAGENTA
ORANGE

A = PEEK (65314) : POKE 65314, (A AND 7) + 128 + 64 + 32 + C
POKE 65477, 1 : POKE 65475, 1 : POKE 65472, 0

68

MODE14
GRAPHICS 256 x 192 TWO COLOUR

MEMORY MAPPING
EACH BYTE H OLDS 8 COLUMNS
BYTES 6144
ADDRESS = Row · 32 + FIX ((COLUMN-1)/8) + START

BYTE MAPPING 7 0

l c l c l cl c l c l c l c l c l

COLOURS BORDER GREEN COLOUR SET = 0

SELECT:
PMODE 4
or

C =0
1
0
1

BUFF COLOUR SET = 1
BLACK }
GREEN COLOUR SET = 0
BLACK } BUFF COLOUR SET = 1

A = PEEK(65314) : POKE 65314, (AAND7) + 128 + 64 + 32 + 16 + C
POKE 65477, 1 : POKE 65475, 1 : POKE 65472, 0

69

CHAPTER 3

SOUND

There are a variety of methods to make your DRAGON roar. There are
the two BASIC commands, SOUND and PLAY as well as generating
sound using a machine code routine.

The BASIC command SOUND is useful for creating sound effects in your
programs. You may want to prompt peoplethat they are required to enter
data, maybe even different tones for different types of data and another
when a mistake is made.
Try this line for when people make mistakes:
FOR I = 150TO 10STEP - 1 0 : SOUND I, 1 : NEXT

Sound is fine for special effects but what about some music. The PLAY
command is very powerful and designed for just that. The string of
commands needed for PLAY is very easy to produce from a sheet of
music. Notes, sharps and flats, length of notes and pauses are directly
converted, even the tempo and the volume can be changed.

Notes can be defined in different ways; by their letter (A - G) (with
sharps and flats) or by number. Using numbers is a more concise way of
defining notes but makes the string harder to read for those who are
musically minded. The relationship between number and letter is shown
in figure 4.1 and how both of these are related to a keyboard in figure 4.2

NUMBER
1
2
3
4
5
6

3

NOTE NUMBER
C 7
C#/D- 8
D 9
D#/E- 10
E/F- 1 1
F/E# 1 2

Figure 4.1 Musical Number/Note Table

5 6 8
Fig 4.2 Keyboard

70

10

NOTE

F#/G-
G
G#/A-
A
A#/B-
B

1 2

Note thatC# is the same note as D-and D#the sameas E- etc., but be
warned DRAGON does not recognise C- as being B or B# as being C.

The play command has a five octave range. When notes are played they
are played from the current octave (the initial current octave is 2).
Octaves are changed using the O option and once the octave has been
set it remains at that until either it is reset by another O option or the
machine is switched off. The same is true for volume, length and tempo.

The length of notes is selected by the L option. The value following L is
the reciprocal of the length of the note. Therefore, L2 means a half note or

2 notes per beat and L4 means a quarternote or 4 notes per beat, etc. As
in sheet music a note followed by a dot means that that note is to be half
as long again. For example, L2. specifies notes of three-quarters
duration (half+ quarter).

The P option lets you pause between notes and the number which
follows the P has the same effect as in L options, the only difference
being you can't add a dot at the end. To make a pause of half as long
again use two P's in a row. e.g. P2P4.

The T option lets you change the overall speed of music or how many
beats there are in every second. The number following T multiplied by 0.4
gives you how many beats there are per second or 2 .5 times the number
of beats per second you want gives you the value to use in the T option.

The PLAY command, like DRAW, has the ability to execute substrings.
This is done with the X option followed by the name of the string to be
executed. Note that a semicolon (;) must be placed after the dollar sign in
the string name (it is optional between all other commands). After the
substring has been executed control returns to the option after the
semicolon.

Instead of using a number after some commands (T, V, L, 0) one of the
following symbols may be used:
+ - increase the current value by one.
- - decrease the current value by one.
> - multiply the current value by two.
< - divide the current value by two.

Note that the program will halt with an error if the value of these options
goes outside their legal range (ie., T = 1 -2 55, V = O -3 1 , L = 1 -
255, 0 = 1 - 5).
Here are a couple of songs, already programmed, to give you some idea.

71

10 '** GOD SAVE THE QUEEN U ·

20 A$="T3; L3DDEL3. rnL6DL3E"

30 B$="F»FttGL3. F!!L6EUDEL<CiWP2"

sO C$="L3AAAL3. AL6GL3F�GGGL3 .. GL6nL:3E"

50 D$="L3FttL6GF"EDL3 . F»L6GL3A"

60 ES="L6BGL2F"ED"

70 PLAY Al+B$+C$+[1$+Et

'.O ' ** ENGLISH COUNTRY GARDEN •• •

20 A$="04T4 ; L4CL6C03L8BL4AAGL6GL8FL4£"

30 B$="L8EFL4GCDFL2EL8DL2C"

40 C$="04L6CL8DL6C03L8AL6BL8AL4G"

50 Dl="Ol1L4CL6C03LBBL4A04D03L2BL8AL2G"

60 E1= "03L6ELBFL4G04L6C03L8BL4AAL6GL8AL6GL8•L4£"
70 PLAY "XA$, XB$; XA $, XBi , "

8 0 PLAY "XCH XC$; X[l$; XE$; XBI ' "

Using Machine Language

Producing your own sounds from machine code programs is a little
harder to do. The only control you have over the sound is to switch the
speaker on and off. To produce audible sounds the speaker must be
turned on and off at certain rates (frequencies) approximately 20Hz -
1 BKHz, rembering the limitations of your speaker and ears.

The speaker is connected to the PIA and is controlled through the PIA
registers. These registers are located in memory from &HFFOO to
&HFF3 F.

For sound we are only interested in &HFF22 and &HFF23 . Bit 3 of the
&HFF23 register is the sound enable/disable register. To enable the
one-bit sound this bit must be set to 0. Bit-1 of the register &HFF22 is the

72

bit that actually controls the speaker. However, it must first be setto be an
output bit, not an input bit. The short assembly program below sets up the
PIA registers ready for production of sound.

7002
7005
7006
700A
700D
700 F
7012
701 4

86 FF2 3
84 F3
87 FF2 3
F6 FF22
CA 02
F7 FF22
SA 04
87 FF2 3

LDA
ANDA
STA
LDB
ORB
STB
ORA
STA

$FF2 3
#$F3
$FF2 3
$FF22
#$02
$FF22
#$04
$FF2 3

After the PIA registers have been set up as above, then toggling bit 2 of
register &HFF22 turns the speaker on and off. (Be careful that no other
bits are affected by toggling as they cotrol the VDG.) The easiest way to
accomplish this is shown below.

7055
7058
705A

86 FF22
88 02
87 FF22

LDA
EORA
STA

$FF22
#$02
$FF22

As you will no doubt have noted the addresses look like they come from a
bigger program. This program is in the HANDY ROUTINES CHAPTER
(called SOUND) and is quite good for all types of effects.
When using sounds in a BASIC games program it is best to keep the
sounds short as the processor is tied up producing the sound and the
program has to wait until it has finished.

When using sounds in machine language programs you ,can d� some
processing in between the toggling of the speaker and so longer notes
can be played without disturbing the flow of the game.

Reproducing Human Speech

Here is a program which allows you to store sounds in digital form.
Sounds are analysed and stored away to be replayed at a later date. Any
sound including music, noise and voices can be stored this way.
The heart of the program is a small machine language routine which
does the sampling, storing and replaying of the sounds. This is included
in assembler format as well as in a BASIC program as DATA statements.
The sounds are entered through your cassette player and replayed
through your TV set so no special equipment is needed.
Since the cassette port can have only one of two values (a high level (1)
and a low level (0)) the speech is stored as a series of values between 0
and 2 55 (this range is used because it is the range of values that can be
stored in a single byte of the computer's memory). Each value is simply

73

the length of time between changes of the level of the cassette port, ie.
suppose the cassette port is low (0) then we start counting until it goes
high (1) at this stage we save the count in memory and reset the counter
to zero. We then start counting again until the port goes low again save
the count, reset it to zero, etc. This process is continued until the
available memory is filled up.

The stored speech takes up 6K of memory and will last about 1 to 4
seconds depending upon the content.

HOW TO RUN THE BASIC PROGRAM
When the program is run there will be a short pause while the machine
code is put into memory. It is placed atthe top of the available memory (at
locations 28672 onwards) and protected with a CLEAR statement. When
this is done a menu of options will be displayed and pressing one of the
keys I, 0, R, A, S, L will select the option you desire.

I - INPUT SPEECH
The speech is input from the cassette port using one of two methods
described below.

When the I key is pressed the computer will display the message
"PRESS ANY KEY TO START", at this point the cassette should be
readied to send the speech to the computer. When all is ready press any
key and the computer will start to store the speech. The computer will
display a graphic screen which will fill up with what looks like rubbish but
is actually the values that make up the input speech. When the screen is
full the computer will return you to the menu.

Actually getting the speech to the computer is very simple and can be
done in one of two ways, both using your cassette recorder.

Method 1:
Prepare a cassette with the speech you want the computer to record
using either the built in microphone or an external microphone (note the
better the sound of this recording the better the results will be when the
computer plays back the speech, so rt is usually best to use an external
microphone).

Once the cassette is ready it is simply played into the computer just like a
program cassette. Note that since the program will not start the cassette
motor you should unplug the remote jack from the cassette recorder.

Method 2:
This is similar to the above except that you don't need to record what you
want to say you just say it directly to the computer. Firstly your cassette

74

recorder must be able to send what it is recording to the external speaker
jack. If it can do this then all you need to do is put the machine into record
mode and talk into the microphone when the computer is inputting
speech.

To put the cassette recorder into record mode without a cassette in it you
must open the cassette door and look inside. You should see a small
switch at the back left hand side. If this is pressed in then with the
RECORD and PLAY buttons pressed in the cassette will be in record
mode.

0 - OUTPUT SPEECH
This will call the machine language subroutine to send the recorded
speech to the speaker in the television set. The graphic screen
containing the speech is displayed while it is talking and if you look
carefully you will see a small white line moving around the screen. This
line is tracing the speech on the screen as it is sent to the speaker.

R- REPEATED SPEECH OUTPUT
This is similar to O except that it will repeat the same speech over and
over until a key is pressed.

A- ANALYSE SPEECH
Since the sound is stored as a sequence of numbers we can draw a
graph of them and see the distribution of frequencies in what was said to
the computer. The graph is drawn on the highest resolution graphics
screen with the vertical scale being the total count that each number
occurs (ie. the higher the line the more times that number occured), while
the horizontal scale is the numbers (from O to 255, see above for how
these numbers are calculated).

When this graph is finished the screen will change colour and the
computer will wait until you hit a key. You will probably notice on this
graph that the left side of the screen is full of tall lines while the right side
of the screen is fairly empty. This is because in a given time interval you
can fit more short counts (hence small numbers) than long ones. To try
and correct this problem a new graph is drawn, after you press a key, in
which the vertical scale is the total time used by each interval length.
When this graph is finished the computer will again wait for a key to be
pressed at which time it will return to the menu.

S - SAVE SPEECH (to cassette)
This gives you the option to save the speech in the digital form the
computer uses to store it.

75

The computer will ask you for a name to use when it saves your speech to
cassette. After you press ENTER it will save the speech in digital form on
the cassette so make sure your recorder is ready and that the
microphone and remote plugs are back in.

L - LOAD SPEECH (from cassette)
This will load a previously saved block of data representing speech from
the cassette. The computer will prompt you for a name (optional). Note
this can only be used to load blocks previously saved with the S
command.

TIPS

To get the best results you will need to experiment with the volume levels
on your cassette recorder. Since it may take a number of tries to find the
optimum setting we suggest that you make a recording of some speech
first and use method 1 to input the speech initially. Remember the better
the sound on the cassette the better the results will be.

On some cassette recorders the silences between words will have
enough background noise in them so that the computer will record the
noise. Since the computer is only using two levels when the speech is
outut this background noise will be reproduced at the same volume level
as the speech. This can be overcome somewhat by adjusting the volume
level but if you have a noisy cassette recorder you will have to live with it.
If your recorder does produce silent gaps between words you will notice
that no matter how long the gap between two words, when the speech is
played back the gap will have been cut to a much shorter value. This is
caused by having only values between 1 and 255 for the lengths between
changes.

MAKING OTHER PROGRAMS TALK

To use the machine code routines in your own program it would be
easiest to save the machine code together with the speech that you want
to use on tape.

RUN the above program then press BREAK when at the command
menu.

Prepare your cassette recorder for saving a program and type in:
CSAVEM "SCODE",&H7000,&H705D,&H7029
This will save the machine code to tape.

RUN the program again. Input the speech you wish to use and save it to
tape - note that you can save as many blocks as you like and include
them all in your program.

76

Now suppose you have saved the machine code and two blocks of
speech to tape, and you wish to have a program that puts these two
blocks at memory location &H4000 and &H5800 respectively then in
your program you will need the following:

10 CLEAR 200, &H4000 : 'PROTECT MEMORY
20 CLOADM "SCODE" : 'LOAD MACHINE CODE
30 CLOADM "name1 ", &H4000 -&H0600

This line loads the first block of speech (with name name1) at location
&H4000 onward (the normal location is &H0600 so the offset to put it at
&H4000 is &H4000-&H0600) .

40 CLOADM "name2", &H5800-&H0600
Similarly for the second block.
When you want to output the first block of speech you should use
POKE &H7000 ,&H40 : POKE &H7001 ,0
EXEC &H7029
To output the second block you need the lines
POKE &H7000 ,&H58 : POKE &H7001 ,0
EXEC &H7029

THE TALKING DRAGON

1 0 ' SPEECH PROGRAM
20 ' FOR THE DRAGON
30 PCLEAR 8: CLEAR 200, �H7000
40 CLS:PRINT" STORING MACHINE CODE"
50 D I M A < 255)
60 SS=&H0600: SE=SS+&Hl ?FF

' START & END OF SPEECH MEM
70 READ I S , OS , I : IS=IS+ I : OS=OS+I
80 READ P
90 IF P>=0 THEN POKE I , P: l = I + l : GOTO 80

1 00 '
1 1 0 ' COMMAND LOOP
12'11 SOUND 40, 1 : AUDIO OFF:CLS: SCREEN 1 , 0
130 PRINT"COMMAND KEYS : "
140 PRINT" I - I NPUT SPEECH"
150 PRINT" 0-0UTPUT SPEECH ONCE"
160 PRINT" R-OUTPUT SPEECH REPEATEDLY"
170 PRINT" A-ANALYSE SPEECH"
180 PRINT" 5-SAVE SPEECH"
190 PRINT" L-LOAD SPEECH"
200 GOSUB 730
2 1 0 ON INSTR (" IORSLA " , Af.)

GOTO 260, .340, 390,440,490,540
220 PRINT" � �"
230 GOTO 200
240
2S0 ' SPEECH INPUT
260 PRINT"PRESS ANY KEY TO START"
270 PMOOE 4, 1 : PCLS
280 AUDIO ON: GOSUB 730
290 SCREEN 1 � 1

77

300 EXEC 15' INPUT SPEECH
3 1 0 GOTO 120
320
330 ' OUTPUT SPEECH ONCE
340 PMODE 4 1 ! : SCREEN I , I
350 AUDI O ON:EXEC 05' OUTPUT SPEECH
360 GOTO 1 2 0
3 7 0 '
380 ' OUTPUT SPEECH REPEATEDLY
390 PMODE 41

1 : SCREEN 1 1 1: AUDI O ON
400 EXEC 05: IF I NKEY$= " " THEN 400
4 1 0 GOTO 120
420
430 ' SAVE SPEECH TO CASSETTE
440 I NPlJT"NAME " ; Af.
450 CSAVEM A$, SS, SE, 0
460 GOTO 1 2 0
4 7 0 '
480 ' LOAD SPEECH FROM CASSETTE
490 INPlJT" NAME" ; A$
500 CLDAOM A$
5 1 0 GOTO 120

520
530 ' ANALYSE SPEECH
540 PMODE4 , 5: PCLS: SCREEN 1 , 1
550 FOR 1=0 TO 255: A < I J =0: NEXT I
560 FOR I =SS TD SE
570 P=PEEK (1)

580 I F A (P) < 192 THEN PSET < P , 192-A (P))
590 A (P) =A C P J +l
600 NEXT I
6 1 0 SCREEN 1 , 0: GOSUB 730
620 FOR 1 = 1 TO 255
630 A (I > =A (I) *I ' CORRECT VALUES
640 IF A (l) >P THEN P=A < I J
650 NEXT I
660 P = 1 9 1 /P
670 FOR I = l TO 255
680 LINE (I , 1 9 1) - (I , 1 91-PtA (I)) , PSET
690 NEXT I
700 GOSUB 730
7 1 0 GOTO 1 2 0
7 2 0 '
730 ' SUBROUTINE TO WAIT FOR KEY PRESS
740 A$=INKEY$: IF A$= " " THEN 740
750 IF ASC (A$) =3 THEN STOP
760 RETURN
770 '
780 ' SPEECH ROUT INE OFFSETS FROM START OF CODE
790 DATA 4 , 4 1
8'!10 -· CODE START ADDRESS
8 1 0 DATA �H7'i'l00
820 ' SPEECH MEMORY START H I GH�LOW BYTES
830 DATA 6, 0
840 ' SPEECH MEMORY LENGTH H 1 GH�LOW BYTES
850 DATA 24, 0
B60 ' SPEECH SUBROUT INES

B70 DATA 26, 8 0 , 206,255, 32, 1 7 4 , 1 40, 244, 1 6 , 1 74 , 140, 242

78

880 DATA 95,92, 1 4 1 , 72 , l i?l0, 196• 37,249 , 23 1 , 1 28,95,
92, 1 4 1 , 62 , 100, 196

890 DATA 36, 249 , 23 1 , 1 28 , 49 , 62, 38, 232,57, 26,80,

206, 255, 32, 204, 52

900 DATA 63, 1 6 7 , 93 , 76, 1 6 7 , 95, 231 , 67 , 174, 140, 197,
1 6 , 1 74, 140, 195, 230

910 DATA 128, 99, 132, 1 34, 128, 167, 196 , 1 4 1 , 19, 90,38,

247, 99, 132, 230, 128

920 DATA 1 1 1 , 196, 1 4 1 , 8, 90, 38,249, 49, 62, 38,228, 57, 57

930 DATA - 1

THE TALKING DRAGON MACHINE LANGUAGE ROUTINE

'110'P3 01'€�
'11�4. 7'110'11 �1?10
0� . 7'1102 18'110

'11'11% 70�
'11'1107 7'11'114 1 AS0
1?1'1100 7'11'116 CEFF20
0009 7'11� AE8CF4
'11010 7t110C 1 '1'AE8CF2
001 I 7'111 '11

0012 7'1110 5F
0'111 -3 7'111 1
'110 1 4 701 1 �
01.)l!j 7'1112 8048
<t\'1116 7014 64C4
0017 7'1116 25J:"9

lfl'!tl B 7'1118 E78'11

001q 701A SF
0</12121 7'1118
1!1'112 1 701B 5C
'1>1!122 7'111C 8D3E
0023 7!lltE 64C4
<?>024 702<?> 24F9

0025 7022 E7B0
'il'1126 711>24 3 1 3-E
0027 7'1126 26£8

NAl'I SPEECH
I SPEECH JNF'UT ANO OUTF·UT ROUTINES
I SUBROUT I NE INPUT MON I TORS THE
I CASSETTE I NF'UT LI NE ANO RECORDS
t THE LENGTHS OF THE H I GHS ANO LOWS .
t SU BR OUT I NE OIJTPUT T Alo, ES THESE
t LENGTI-IS ANO OUTPUTS HIGHS AND .
I THE SPEECH l'IEP10AY LOCAT fON AND
I S I Z E .::.RE SPEC IFIED AT TSTART
I ANO LENGTH RESPECT IVELY .
t EACH LOOP IS :'-3 CYCLES LONG

P I A EQU $FF2'11 P I A LOCATION
t B I T '11 I S THE CASSETTE I NPUT LEVEL
I B I TS 7- ! CONTROL THE DtA CONVERTER

�G $7�0 START PROGRAl'I AT 7'!1% HEk
TSTART FOB S'116'110 START OF TEH
LENGTH FOB S t 800 LENGTH OF SPEECH
* INPUT SPEECH SUBROU T I NE
INPUT

!LOOP

ORCC •S".51!1 D I SABLE INTERF;1. JPTS
LOU •i:-JA POINTER TO PIA
LDt TST.c.RT. PCR POINTER TO STAAT OF !'!EMORY
LOV LE"IGTH, PCR MEMOAY LEFT FOA SPEECH

t T I ME HIGH S I Gl'UlL

I H
CLF<B RESET T I ME COUNTER

INCB I NCREMENT T I ME COU"ITER
BSR [iELAY OELAV
LSR , U TEST B I T� OF P I A
£<CS H-1 LOOP IF ST ILL SET

ST£< , ll -t- SAVE TI ME COUNT
* T I ME LOW S I GNAL

I L
CLl'sB

INC•
BSA DELAY
LSR . U
BCC J L

STE.< , ;t -+
LE;lY - 2 . v
BNE !LOOP

79

RESET T I ME COUNTER

I NCREMENT T I ME COUNTER
DELAY
TEST B I T.; OF P I A
LOOP I F ST I L L CLEAR

SAVE TI ME COUNT
'Z BYTES OF MEMORY USED
LOOP I F NOT OUT OF MEl'IORV

'!1028 7'!128 3? R,S

ti!029 7029

• OUTPUT SPEECH

OUTPUT

0i1130 7029 1A50
0031 702B CEFF20
011132 702E CC343F
0033 711131 A75D
0034 7033 4C
012135 7034 A75F
0036 7036 £743
0037 7038 AE8CC5
0'1138 703B 1 0AE8CC3
0039 703F OLOOP

ORCC #$50
LDU #PIA
LDD #$343F
STA -3, U
INCA
STA - 1 , U
5TB 3 , U
L D X TSTART, PCR
LOY LENGTH, PCR

• OUPUT H I GH S I GNAL
0'?!40 703F E680
0041 7041 6384
111042 7043 OH
0'1143 7043 8680
0044 712145 A7C4
0045 7047 8D13
0046 7049 SA

LOB • X +
C O M , X

LDA #$80
STA , U
BSA DELAY
DECB

011147 71!14A 26F7 BNE OH

004B 704C 63B4 COM ,)(
• OUTPUT LOW SIGNAL

0049 704E E680 LOB , X+
0050 7050 OL
0051 7050 6FC4
0052 7052 8D08
0053 7054 SA
0054 7055 26F9

0055 7057 3 1 3E
0056 7059 26E4
011157 7058 39

0058 705C 39

'21059 705D

CLR , U
BSR DELAY
DECB
BNE OL

LEAY -2, Y
BNE OLOOP
RTS

DELAY RTS

END

80

DISABLE INTERRUPTS
POINTER TO PIA

SELECT DAC
BE I NG CAREFULL ABOUT

MOD I FYI NG INTERRUPTS
SOUND ENABLE
POINTER TO START OF MEMORY
MEMORY FREE FOR SPEECH

GET T I ME COUNT
FLASH NEXT BYTE (TO SEE I T >

OUTPUT LEVEL
SEND TD P I A
DELAY

DECREMENT TI ME COUNTER
LOOP UNTIL 0

RESTORE NEXT BYTE

GET T I ME COUNT

SET OUTPUT LEVEL TO 0
DELAY

DECREMENT TI ME COUNTER
LOOP UNTIL 0

2 BYTES OF MEMORY USED
LOOP IF MEMORY LEFT

RETURN TO BASIC

DELAY 12 CLOCK CYCLES

CHAPTER 4

WHAT IS MACHINE CODE?

At the heart of every micro computer, is a central microprocessor. It's a
special chip called the CPU (Central Processing Unit). This is the 'brain'
of the computer. Each type of CPU has its own language and
instructions. These instructions go together to make up machine
language. In other words machine language is the only language which
the CPU can understand. It is the native tongue of the machine.

All the instructions are numbers of one or two bytes long. So how does
the DRAGON understand BASIC programming language?

To answer this question, you must first see what happens inside the
DRAGON. Apart from the CPU there are also two types of memory; RAM
and ROM. RAM (Random Access Memory) is the memory where the
programs you enter are stored.RAM is volatile, which means that unless
there is a power supply to the memory it 'forgets' everything. The other
type of memory is ROM (Read Only Memory). This type of memory has
the operating system in it. The operating system is a huge machine
language program stored in ROM (so that it can't be changed and is
automatically run when the DRAGON is turned on).

The operating system is in charge of 'organizing' all RAM in your
machine for various tasks. It can be thought of as the 'intelligence and
personality' of the DRAGON as it does all the 'talking' to you.

All the commands that are available in BASIC are simply reorganized by
another big machine language program called the interpreter, which is
also stored in ROM.

The interpreter simply deciphers each BASIC statement one by one and
executes the appropriate machine language program, unless you do
something wrong in which case it puts an error message on the screen.
So why bother with machine language if somebody else has already
written these vast programs to make your computer 'friendly' and 'talk' a
language which is easy for you to learn?

Well, programs written in machine language are very fast, use less
memory and are usually more complex. You may have noticed with the
programs you have bought, those that were written in machine language
have more graphical detail and run so much faster than those written in
BASIC.

81

If at this stage you are still interested in machine language programming
but don't really understand what I am talking about then probably the best
way to go about learning machine language is to read the other book in
this series DRAGON MACHINE LANGUAGE FOR THE ABSOLUTE
BEGINNER.

THE CPU
The CPU used in the DRAGON is the M6809, one of the most powerful
8-bit micros available today. The power of the M6809 over other 8-bit
CPUs is by specific improvements in architecture, software and
hardware over its predecessor, the M6800.

On the architectural side, the M6809 has a multitude of registers. Each
register will be discussed in detail later but basically they are:
- two 8-bit accumulators, A and B, which can be used together to form
one 1 6-bit accumulator, D
- two 1 6-bit index-registers, X and Y
- two 1 6-bit stack pointers, S and U
- one 8-bit Direct Page register, DP
- one 1 6-bit Program Counter, PC
- one 8-bit Condition Code register, CC
The software features are probably the main reason for the M6809's
power. The very complex addressing modes almost need a full chapter
by themselves to describe and I will introduce them to you briefly later on.
Specific instructions which are not common on 8-bit CPUs include:
- an 8x8 unsigned multiply which generates a 16-bit number.
- a 2-byte instruction to push or pull any or all of the registers onto or
from either stack (S or U).
- a 1 6-bit add, subtract, load, store and compare which uses the D
accumulator.
- instructons to add any of the accumulators (A, B, D) to any of the index
registers or stack pointers (X, Y, S, U).
- instructions for exchanges or transfers between any two like size CPU
registers.

The hardware improvements over the M6800 include:
- either internal clock (M6809) or external clock (M6809E).
- FIRQ, Fast Interrupt ReOuest which doesn't save all the registers.
- BS, Bus Status and BA, Bus Available, used together to provide
interrupt acknowledge and bus status.
- Q and E, the clock lines. Q leads E by a quarter cycle (90°). These
two together provide 4 effective timing edges.
- MRDY, Memory ReaDY, for interfacing w�h slow memories.
- OMA REO, Direct Memory Access REOuest, input control line to
suspend processor execution and free buses for direct memory access
such as a peripheral device, etc.

82

To show the relative power of the M6809 the table below shows time
comparisons for eight different software operations on the popular CPUs
used today.

68092.0MHz 28
2804.0MHz 38.3
99003.0 MHz 72
68002.0MHz 24.5
8080 3.0MHz 52.7
80S5 2.0MHz 79

287.5
220.5
66' ...
506.,
'60

3'.5
73.3
98
6' 5 "·'

83

DOUBLE SHIFT

RIGHT S BITS

" "
22 "
91.3

1 6 BIT

ADDS

325 "'
53'
993.5
"'
•098

8 81T 16x16 MOVEBlOCK

ADDS MULT (64 BYTES)

,., 82 3'4.5
323 '" 3'2
53' " 53'
498.5 "'9.5 1 123.5 "' ,,
'38 1176 '262

REGISTERS

The internal register structure of the M6809 is shown below followed by a
brief description of what each register is used for.

�
7 _ _ _ _ A _ _ __ oJ.

1
_7 _ _ __ B _ _ __ O--,l

8-B�r
Accumulators A & B

1 5 D O
. 16-Bit Accumulator D

� - ---- ---- --- - -- - �

J 1 5 X O I X index register
�- ---- --- -- -- - ---�

15 y 0 Y index register
� - -- -- ---- - - -- - - - �

LI _15 _ _ ___ _ _ _ u _ _ ___ ___ o�f U stackpointer

L

I

1_5 _ ___ _ __ _ s ____ ____ o�I S stack pointer

LI 7 _ _ __ D_P _ _ _ �o I Direct Page Register

L

I

1_5 _ _ __ __ __ P_C _ _____ __ o�I Program Counter

ENTIRE STATE SAVE

FAST INTERUPT MASK

HALF CARRY (FROM BIT 3)

INTERUPT MASK

ACCUMULATORS

CARRY (FROM BIT 7)

OVERFLOW

ZERO

� -- - NEGATIVE

There are two 8-bit accumulators which are used to hold the current data
to work with. These two can be combined to form one 16-bit accumulator,
the D accumulator. Almost every instruction uses one of these registers
and most data manipulation instructior.s (ADD, SUB, etc.) work only on
the accumulators.

84

INDEX REGISTERS
These two 1 6-bit registers are used mainly to 'point' to sections of data
and can be accessed automatically during load and store instructions
(see Indexed Addressing Mode) with all sorts of fancy tricks to make
large data manipulation very fast. They can also be used to store 1 6-bit
numbers temporarily while the accumulators are manipulating other
data.

STACK POINTERS
The M6809 is one of the few 8 -bit CPUs to have two stackpointers. With
most CPUs, if the user wanted to implement a stack he would have to do
some very tricky manoeuvering because the stack pointer is needed for
interrupts and other system usage. With the two stack pointers, one can
be used solely for the system leaving the other for the user's use.

DIRECT PAGE REGISTER
This register has very few instructions that can access it directly, namely
EXG and TFR but it is accessed automatically every time direct
addressing mode is used (see appropriate section).

PROGRAM COUNTER
The program counter controls the execution of a program and contains
the address of the next instruction to be executed. This register cannot
be accessed directly but is automatically changed during branching
operations, etc. The program counter can be used with an offset in
indexed addressing mode allowing position independent code.

CONDITION CODE REGISTER
This register contains the 'status' of the last operation. Most instructions
will modify some bit of this register and conditional branches use these
bits for their decision on whether to branch or not.

ADDRESSING MODES
You are about to see what makes the M6809 such a powerfull CPU. The
addressing modes of the M6809 is one of the main factors in the M6809's
power. The M6809 has 59 different instructions which utilize 10
lundamental addressing modes bringing the total number of unique
instructions to 1 464. An addressing mode describes how the data, that
the instruction is going to use, is to be found.

INH ERENT
This is sometimes called implied addressing and is the simplest mode as
the instructions which use this mode do not need any data. Instructions
such as INC, D EC and ASL work on the accumulators only and do not
need any data.

8 5

IMMEDIATE
Immediate addressing is where the data to be used with the instruction
immediately follows the instruction. The analogy in BASIC would be a
constant, whereas the other modes that follow are analogous to various
types of variables.

EXTENDED
This mode of address requires two bytes, following the instruction, which
contain the address of the data to be used. With extended addressing a
full 64K of memory can be accessed.

DIRECT ADDRESSING
This is a limited form of extended addressing and only requires one byte
to follow the instruction. This is sometimes called zero page addressing
as only the first 255 bytes of memory can be accessed but reduces the
time and space that a program needs to run in as only the low byte needs
to be specified. The advantage of the M6809 over most other CPUs is
that it allows this 'zero page' to be moved about in memory by setting the
Direct Page register which in effect becomes the high byte of the
address.

OP CODE (1 or 2 bytes)

DATA OPERAND (1 or2 bytes)

(A) IMMEDIATE ADDRESSING

RELATIVE ADDRESSING

(B) EXTENDED

ADDRESSING

OP CODE (1 or 2 bytes)

LOW ADDRESS BYTE

(C) DIRECT ADDRESSING

NOTE: HI ADDRESS IS IN

DP REG.

There are two main types of relative addressing: Branch Relative and
Program Counter Relative and using the two allows completely
relocatable code to be written.

BRANCH RELATIVE
There are two types of branch instructions, short and long, both of which
use a two's complement (signed) relative address offset. Upon execution
of the branch the offset is added to the program counter's contents to
form the address of the next instruction to be executed. Note that when
the instruction is executing the program counter is already pointing to the
next sequential instruction. The short branch uses one byte offset which
allows a branch length of -128 through to +127, whereas the long
branch uses a two byte offset allowing branches of -32768 through to
+32767 in length.

86

PROGRAM COUNTER RELATIVE
This is really an indexing mode but is covered briefly here as it, in
combination with branch relative addressing, is needed to write
relocatable code. Basically, what is done is to use the index addressing
mode which allows you to have a 16-bit register and an 8-or 16-bit offset
field and specify the PC as the register to use (see constant offset
indexed addressing).

INDEXED ADDRESSING
There are four basic forms of index addressing, each of which can use
the four pointer registers (X, Y, S, U). They are: zero-offset, constant
offset (which can also use PC), accumulator offset and auto-increment/
decrement.

OP CODE 1 or 2 b es

POST BYTE

OFFSET (0. 1 or 2 bytes)

GENERAL INDEXED ADDRESSING INSTRUCTION FORMAT

As you can see the instruction is always followed by the post byte which
specifies the form of indexing to use and register to use as the pointer
that will be used in determining the effective operand address. The post
byte may or may not be followed by an offset.

ZERO-OFFSET INDEXING
This type of indexing uses the pointer registers as the effective operand
address, with no offset. The post byte specifies the zero-offset mode and
which register to use.

CONSTANT OFFSET INDEXING
This type of indexing is similar to other machines' indexing modes as any
of the pointer registers (X, Y, S, U, PC) can be used and the signed offset
can be 5, 8 or 16 bits. The post byte contains the pointer register and
offset size. When a 5-byte offset is used this is included as part of the post
byte and therefore is the most efficient as it uses less bytes and CPU
cycles compared to other constant offset modes.

ACCUMULATOR-OFFSET INDEXING
This form of indexing is similar to the constant offset form except that the
contents of one of the accumulators (A, B, D) is added to the specified
index register (X, Y, S, U). The obvious advantage of this is that the offset
can be calculated just prior to the indexing operation.

87

AUTO-INCREMENT /DECREMENT INDEXING
This mode of indexing is a blessing as it eliminates the need to
increment/decrement the index register with a separate instruction when
stepping through memory or moving blocks of memory. When
incrementing, the register is changed after the contents have been used
to find the effective address and when decrementing,the register is
changed before the contents are used. So it is post-increment and
pre-decrement. The post byte specifies the auto-imcrementing/
decrementing, the pointer register to use and the amount to increment/
decrement by (1 for 8-bit data or 2 for 16-bit data).

POST-BYTE REGISTER BIT INDEXED
ADDRESSING

7 6 5 4 3 2 1 0 MODE

0 R R O F F S E T EA=R±4 bit offset

1 R R 0 0 0 0 0 R+

1 R R 0 0 0 1 R++

1 R R 0 0 0 1 0 -R
1 R R 0 0 1 1 - - R

1 R R 0 1 0 0 EA=A±O offset
1 R R 0 1 0 1 EA=A±ACCB offset

1 R R 0 1 1 0 EA=R±ACCA offset
1 R R 1 0 0 0 EA=A±7 bit offset
1 R R 1 0 0 1 EA::::A±15 bit offset
1 R R 1 0 1 1 EA=R±D offset
1 X X 1 1 0 0 EA=PC± 7 bit offset

1 X X 1 1 0 1 EA=PC+ 1 5 bit offset

1

rr·
1 1 '1 INDIRECT EXTENDED

I _, ADDRESSING MODE
OR

4-BIT OFFSET

• INDIRECT FIELD •
OR

SIGN BIT FOR 5-BIT OFFSET

.. REGISTER SELECT
00 = X

01 = Y
1 0 = U
1 1 = S

X = NOT USED

FIVE BIT OFFSET FIELD
0 = FIVE BIT OFFSET

1 = OTHER MODE SEE
ADDRESSING MODE FIELD

* INDIRECT FIELD (see next section)

88

INDIRECT ADDRESSING
With indirect addressing the operand's address (where the data is
stored) is contained at the location specified by the operation. Indirect
addressing can be used with any of the indexing modes except for
auto-increment/decrement by 1 (see table above) as well as with
extended addressing. To specify indirect addressing in the indexing
modes, set bit 4 of the post byte. To get indirect addressing using
extended mode the post byte must have:

bit 7 = 1 - not 5-bit offset mode
bit 6, 5 = 0 - no register used
bit 4 = 1 - indirect field
bit 3-0 = 1 - extended mode

When using indirect extended mode the opcode (for indexing mode) is
followed by the post byte (&H9F) followed by the address which contains
the address of the operand.

REGISTER ADDRESSING
The last addressing mode covered is register addressing which is used
on the EXT and TFR instructions. With these instructions the post byte
contains two fields: bits O - 3 specify the destination register and bits 4
- 7 specify the source register.

EXG or TFR OPCODE

POST BYTE

(A) INSTRUCTION FORMAT

(C) FIELD DESIGNATIONS

4 BIT FIELD REGISTER

0000 ACC D

0001 X

0010 y

0011 u
0100 s
0101 PC

1 000 ACC A

1 001 ACC B

1010 cc
1011 DP

8 9

SOURCE

REGISTER

DESTINATION

REGISTER

(B) POST BYTE FORMAT

USING MACHINE LANGUAGE PROGRAMS ON THE

DRAGON

ENTERING AND RUNNING MACHINE LANGUAGE PROGRAMS.
There are only two ways to enter information directly into memory:
POK Eing and CLOADMing. These two commands allow you to actually
set memory locations to certain values.

If you are not going to be writing a multitude of machine language
programs the easiest way to store, enter and run your programs. while
they are being developed, is to have them as DATA in a BASIC program.
This makes editing them quite simple especially if you use a convention
such as only have one instuction/operand per DATA statement. When
your program is finished, immediately after doing a RUN in BASIC,
CSAV EM your program for future use. Remember, whenever you are
mixing BASIC programs with machine code programs, to set the upper
limit that BASIC can use with the CLEAR statement, otherwise the
programs can destroy each other.

On the other hand if you are going to be doing a lot of machine language
programming then you need a monitor program, or better still a full
Assembler/Editor. If you look around you will find a few assembler/
editors on the market but if you want to get out of it cheaply, I have
included a simple monitor program with which you can enter, modify, and
display parts of memory as well as find a string of characters in memory,
execute a machine language program and convert numbers from
hexadecimal to decimal and vice-versa.
The commands, their format and a description of each is given below
followed by the program listing and a brief outline of how the program
works.

M - M[address]- Memory examine and change.
- when this command is used, the address, the contents of the
address and a hyphen are displayed. The two arrow keys on the left,
display the next higher or lower address respectively. If at any time you
want to change the contents of a memory address hit C and enter the
value (in hex.). To return to command level, key ENTER directly after a
hyphen.

D- D[address] - Display memory.
- This will display the memory in groups of four bytes followed on the
same line by the four characters which represent by the memory's
contents. After one screen full of memory is displayed, the listing waits for
you to enter- a space will give you another screen full of information

- any other key will return to the command mode.

90

F - F[b address] [e address] [string]- Find a string in memory.
- This searches memory beginning at [b address] through to [e address]
for the character string, [string]. All the addresses which point to the start
of the string, if there are multiple strings, are displayed. If [string] is not
found, nothing is printed.

C - C D [number]
; - C H [number]

- This converts the number [number] to either hex or decimal depending
on whether H (decimal to hex) or D (hex to decimal) is specified.

J - J[address]- Jump to Machine Language Program.
- This causes the machine language program starting at [address] to be
executed.

E - E - Exit to BASIC.
NOTE: All addresses must be four hex digits.
Formats must be exactly as shown, ie. no spaces between the command
letter and the first address (except for C) and 1 space between all other
parameters.

LISTING

10 ' II MACHINE CODE MONI TOR #f
20 PRI NT ' 1 COMMANDS� M r D, �- , c � J, E " ;
3 0 I NPUT Clf, : CH=LEFT$(CL'> , 1 •
40 IF CT$= " " THEN 20

50 CT=INSrn("MDFCJE " , CU ,
60 IF CT=O THEN 20
70 ON CT GOSUB 100, 300 , 400 , 500 , 600 , 700

80 GOT020
100 BA=VAL< "&H"+MID$(CLI , 2 , 4 ", •
1 1 0 IF BA(O OR BA) IHFFFF THEN 900

120 AC=F'EEK(BA -'
130 PRINT HEX$(BA)" "HEX$(AC)" ·· " :
140 MC$=INKEY $: !FMC$=""THD-' 1�(,
150 MC=ASC(MC$ i
160 IF MC=94 fHEN ll/\=BA+ l : PRIMT : GOTD l H·
1 70 IF MC=lO THEN BA=BA-1 :PRIN T , GOT!l l l.O

180 IF MC=13 THEN PRINT: RETURN
190 IF MC$() "C" THEN 140
200 INPUT MC$
210 NB=VAU "lH"+MC$) : IFNB < O Ot� NB) �.i'ffT THEN F'F'.INT �RETU(\N
220 POKE BA, NB

91

230 BA=BA+l : G0T/J:!.20
300 BA=VAL("IH"+MIDl(CLS , 2 , 4) ,
310 I F B < O OR BAl lHFF�• THEN 900
320 CNT=C•
325 PRINT HEX$(BA) ;
330 FORI=O TO �. : f'Rn�T" ' ' H E:Xi�(f:o�Ei..-.:(E>h-t· I .i) ; :; NE/T l �

p�:; . u..ir;
3lf(, FOf\I;:,:i) TIJ J ! f'l:UNT' 1 11CHf..:$(H::E!\� I1A+ I)) ;: : NEXT I � f-' fi i f/ l'
345 BA=BA+"+
350 IF CNT C 1 2 fHEN CNT=CNT+ 1 : GQTOJ25
360 PRINT: CNi =C•
370 MC$=INKEY$: IF MC%= 1 1 1 1 T�·!EN37(1

380 IF MCit= 11

1 1 THEM 32!5 EL'.:)E F:E·:�UF:�i
400 BA=VAL(1 (f.H 1 1 -�Mlilt,(CL.r, � 2 � 4) J
410 EA=VAL< " &H"+Ml[IS,: CLt , 7 , 4 :> :,
420 IF BA < O OR BA > &HF;F� OR EA< BA OR EA) &HFF�� THEN 900
430 FS$;:,:MID$(CL$ � 1 2) � FL=LEN(FSt •
440 FORI=BA TO EA
450 IF PEEK(!) (>ASC(LEF.f$(FS$, 1) � THE� 49(,
460 FORJ=I TO I+FL- 1 : IF PEEK(J) ()ASC(M tD�r F·s·� , J-·· I � 1 � !))

TH!'.:N 11?0
470 NEXTJ
480 PRINT HEX� !)
490 NEXT l : RETURN
500 IF M ID1(CLJ � 3 ' 1) < } " D " THEN 5 :20
510 F'RINi 1JAL(1 1.?,J.·l' 1 +MII1 1!;(CL(!'· r :'_;) :, � ;::.:f:TUF:H
520 IF M ID$(CL 1> � 3 � .!. �iETU�U•l
530 PRINT HEXS(VALC �) � RETllRN
600 Bf-i=VAL(" �J -! "+MID$(Cl..�� � 2))
610 IF BA< O OR BA > KHFFF� rµE� 900
620 EXEC BA
630 RETURN
700 END
900 PRINT " ILLEGAL
910 RETUf.:N

VARIABLES
AC
BA
CL$
CT, CT$
EA
FL
FS$
MC. MC$
NB

- Address Contents
- Begin Address
- Command Line
.- Command Type
- End Address
- Find string Length
- Find String (string searched for)
- Modify Command
- New Byte

92

10 INITIALIZE
20-8 0 MAIN CONTROL LOOP

100-230 MEMORY EXAMINE AND MODIFY
300-380 DISPLAY MEMORY
40G-490 FIND A STRING
500-530 CONVERT NUMBERS
600-630 JUMP TO MACHINE LANGUAGE PROGRAM

700 END
900-910 ERROR IN ADDRESS

This is only a sample of what a machine language monitor can do. Other
functions which are very useful (but outside the scope of this book) are an
assembler, disassembler, block moves, etc.

HANDY ROM ROUTINES

These following routines are included in your DRAGON's ROM and can
easily be used in your machine language programs.
Each routine has a name which is used to identify it followed by an entry
address in hexadecimal. However, an EXEC or a USA function call will
not invoke all of these routines correctly. Some need entry conditions
such as having the A accumulator and the X index register initialized.

A brief summary of what the routine does and what the entry and exit
conditions are, is also included. At the end of the section there is a list of
the variables (memory locations) that are used in the routines and a brief
word on what they do.

INIT &HBB40
Initialize hardware interfaces such as printer, cassette, video, memory,
etc.

Shouldn't be used except for auto-start cartridge programs.

SETUP &HBBBB
Sets U;J BASIC system variables such as keyboard debounce, cassette
leader length, printer variables, etc.

BLINK &HBBB5
Decrements location 0OBF and when this counter reaches zero the
cursor is toggled from black to green or vice-versa.

TOUCH &HBE 1 2
Write the character in the accumulator A onto the cassette.

93

BYTE-IN &HBDAD
Gets 8 bits off the cassette and puts them into the A accumulator.

BIT-IN &HBDA5
Gets the next bit on tape and puts it into the carry bit.

BLKIN &HB93E

Reads a block from cassette
CONDITIONS
ENTRY - cassette must be on and in bit synchronization (see
CSRDON)
- CBUFAD(7E) contains the buffer address.
I
EXIT -BLKTYP(7C) contains the block type
- BLKLEN(7D) contains number of data blocks in the block (0-255).
-Z = 1, ACC = 0 if no errors CSRERR(81) = 0
-Z = 0, ACC = 1 if checksum error CSRERR(81) = 1
- Z = 0, ACC = 2 if memory error CSRERR(81) = 2

-Unless there was an error X points to the last byte in the buffer
-U, Y preserved, all others changed.
Interrupts are masked.

BLKOUT &HB999

Writes a block to cassette
CONDITIONS
ENTRY -Tape should be up to speed

-a leader of &H55's should have been written if this is the first block to
be written after motor on
- CBUFAD(7E)-buffer address
-BLKTYP(?C) - contains block type
-BLKLEN(?D)-contains number of bytes in block
EXIT -X points to last byte in buffer

-All registers modified
Interrupts are masked.

WRTLDR &HBE6A
Turns cassette on and writes a leader.
CONDITIONS
ENTRY-none
EXIT -U preserved, all others modified.

CSRDON &H8021
Turns cassette on and gets in bit sync.
CONDITIONS
ENTRY-none

94

EXIT -FIRQ and IRQ are masked.
-U, Y preserved, all others modified.

CHROUT &HB54A

Outputs a character
CONDITIONS
ENTRY -DEVNUM(SF) set to -2 (printer) or O (screen).
- A character to be used.
EXIT - All registers except CC preserved.

JOYIN &HBD52

Sample joystick ports
CONDITIONS
ENTRY-none
EXIT - Y preserved, all others changed.
- POTVAL (15A) through to POTVAL + 3 (15D) contain the position of
joysticks.

POLCAT &HBBE5
Polls keyboard for a character
CONDITIONS
ENTRY-none
EXIT

-Z = 1, A= 0-no key pressed.
-Z = 0, A = key code -if key seen.
-B and X preserved, all others modified.

VARIABLES FOR ABOVE ROUTINES
BLKLEN(?D) length of cassette block
BLKTYP(?C) type of cassette block

0 = File Header
1 = Data
FF = End of File

CBUFAD(?E) cassette buffer address
CSRERR(81) cassette error type

0 = no errors
1 = checksum error
2 = memory error

DEVNUM(6F) device for CH ROUT
-2 = printer
0 = screen

POTVAL(15A) 4 bytes holds current joystick position
15A = left joystick up/down
15B = left joystick left/right
15C = right joystick up/down
15D = right joystick left/right

95

HANDY MEMORY LOCATIONS IN THE DRAGON
START ADDRESS DESCRIPTION END ADDRESS
DEC HEX DEC HEX
00025 0019 Address of start of BASIC program 00026 001A
00027 001B Address of Start of variable storage

also address -1 is end of Basic program 00028 001C
00029 0010 Address of start of array storage 00030 001E
00031 001F Address of start of free memory 00032 0020
00033 0021 Address of start of string stack 00034 0022
00035 0023 Address of BASIC upper limit 00036 0024
00039 0027 Highest available RAM address 00040 0028
00108 006C Current column position of cursor
00111 006F Device number DEVNUM
00113 0071 Warm start flag RSTFLAG

&HO = Condition before cartridge program
Starts created by BASIC

&H 12 = Do warm start
&H55 - If RSTVEC points to a NOP

then execute from address
RSTVEC else start BASIC

00114 0072 Warm start Vector RSTVEC 00115 0073
00116 0074 Highest physical memory address 00117 0075
00124 0076 Block type BLKTYP

0 = file header
1 -data
FF -end of file

00125 0070 Bytes in block BLKLEN
00126 007E Buffer address CBUFAD also program 00127 007F

end + 1 after CLOADM
00128 0080 Checksum
00129 0081 CSRERR
00140 008C Sound frequency
00141 0080 Sound duration 00142 OOBE
00157 0090 Transfer address after CLOADM 00158 009E
00182 OOB6 Current Pmode
00256 0100 SWl3vector 00258 0102
00259 0103 SWl2vector 00261 0105
00262 0106 SWI 1 vector 00264 0108
00265 0109 NMl vector 00267 010B
00268 010C IRQ vector 00270 010E
00271 010F FIRQvector 00273 0111
00289 0121 Pointer to BASIC command Token Table 00290 0122
00290 0123 Pointer to BASIC command Jump Table 00292 0124
00294 0126 Pointer to BASIC function Token Table 00295 0127
00296 0128 Pointer to BASIC function Jump Table 00297 0129
00337 0151 KEYBOARD Recover Table 00345 0159

96

00337 0151 Bit cleared if any bit in same column cleared
7 6 5 4 3 2 1 0

00338 0152 ENTER X p H @ 8 0

00339 0153 CLEAR Y a A 9 1

00340 0154 z R B 2
00341 0155 t s K C 3
00342 0156 l- T L D 4

00343 0157 .. u M E 5

00344 0158 V N F 6

00345 0159 spaceW 0 G 7
00346 015A Joystick 0- left x position
00347 015B Joystick 1 - left y position
00348 015C Joystick 2 - right x position
00349 015D Joystick 3 - right y position
00466 0102 CASSETTE file name 00473 0109

00474 OlDA CASSETTE buffer 00731 0208

00485 01E5 Transfer address used in CSAVEM 00486 01E6

00733 02DD Keyboard buffer 00988 03DC

01024 0400 Text screen memory 01535 05FF

01536 0600 GRAPHICS Screen memory (in 8 pages
of 1536 bytes each) 13823 35FF

03072 ocoo User RAM note can start 32767 7FFF

anywhere between 03072 (OCOO)

and 13224 (3600) depending
on graphics pages.

32816 8033 BASIC command word table 33064 8128

33108 8154 BASIC command jump table 33225 81C9

33226 81CA BASIC function word table 33359 824F

33360 8250 BASIC function jump table 33427 8293

33449 82A9 BASIC error message table 33499 82DB

33504 82EO BASIC interpretor 49151 BFFF

49152 cooo cartridge slot 65279 FEFF

65280 FFOO PIA (Parrallel 1/0 Adapter) 65521 FFF1

65522 FFF2 SWI 3 vector (contains 0100) 65523 FFF3

65524 FFF4 SWI 2 vector (contains 0103) 65525 FFF5

65526 FFF6 FIRQ vector (contains 010F) 65527 FFF7

65528 FFF8 IRQ vector (contains 010C) 65529 FFF9

65530 FFFA SWI 1 vector (contains 0106) 65531 FFFB

65532 FFFC NMI vector (contains 0109) 65533 FFFD

65534 FFFE RESET vector (contains B384) 65535 FFFF

HOW BASIC STORES VARIABLES

At the top of user RAM a space is reserved for the string stack. This
space can be increased or decreased by the CLEAR command. Possible
reasons for changing the size of the stack are:
Increase -you have a short program which uses a lot of strings and
string manipulations.

97

Decrease -you have a large program (ie. r unn ing o ut o f memory for the
program itsel f) that does not use many str ings .
Immediately belo w this s pace is the variable stack.

For every ne w var iable used the variable stack grows down wards 6 bytes
and contains -for:
Strings : byte 1 -length o f string
bytes 2, 5, 6-reserved for system
bytes 3, 4-address, in string stack, o f the first byte o f the string
Numer ics : byte 1 -ex ponent
bytes 2-5 -mantissa
byte 6 -reserved for system

STRING STACK

Whenever a str ing var iable is made, even i f it is for the same var iable
name, it is put on 'to p' of the stack. So when a string variable is assigned
a di fferent str ing , the ne w string is put on 'to p' of the stack and the
address in the var iable stack is u pdated. Note that the old str ing is still in
the str ing stack but cannot be accessed. This means that a program that
does a lot o f string mani pulations , wastes a lot of s pace on the str ing
stack.

10 A$ = "HELLO"
20 B$ = "DRAGON"
30A$ =A$+ B$

7 7 7 7 7 7 7
F F F F F F F
F F F F F F F

StackAdr F E D C B A 9 8 7 6

Afterline10 H E L L 0
Atterline20 H E L L O D R A G O N

F

E

4 3 2 1 0 F E D C B A

Atterline30 H E L L O D A A G O N H E L L O D A A G O N

EXAMPLE OF HOW THE S TRING S TACK 'GROWS'
After l ine 10, A$'s po inter w ill be 7FFF
After l ine 20, A$'s pointer w ill be 7FFF and B$'s pointer w ill be 7FFA.
After l ine 30, A$'s pointer w ill be 7FF4 and B$'s pointer will be 7FFA.

HOW NUMERICS ARE STORED IN THE VARIABLE STACK

Numbers are stored in 5 bytes, 1 byte ex ponent and 4 bytes mantissa.
The most sign ificant bit of the most sign ificant byte of the manit issa is
assumed to be 1 (as float ing point mantissas are al ways normalized),

98

and this bit is used to store the sign of the mantissa (positive = 0,
negative = 1).

To convert a decimal number (X) into the internal representation follow
the simple procedure below.
1. If X = 0 then all bits are set to 0.
2. Convert decimal to binary-leave decimal point in its place.
3. Exponent (1 byte)
If there are any digits to the left of the binary point then the exponent
equals the number of digits to the left.
If the first digit on the right is a one then the exponent is zero
otherwise the exponent equals the complement of the number of zeros,
going left to right, up to the first digit.
Add hex 80 to the exponent calculated so far.
4. Now remove the binary point and all leading zeros and add zeros to the
end until there are 32 digits in all.
5. If the original number was positive, change the first 1 to a 0.
6. Group into 8 groups of 4 and convert to hex.

HOW TO ACCESS BASIC VARIABLES FROM MACHINE
LANGUAGE PROGRAMS
The first thing that has to be done if you are going to mix machine
language and BASIC is to reserve a space at the top of memory by using
the CLEAR command. Failure to reserve space may lead to BASIC
programs 'destroying' your machine language programs or vice-versa.

After reserving space for your program it must then be put into memory.
This can be done by CLOADM, POKEs or a BASIC program.

There are two ways to start it; EXEC and USR. The main difference
between the two commands is that with USR you can pass parameters
from BASIC to machine language and have values returned from
machine language to BASIC.

Using EXEC simply causes a jump to a memory address. When the
machine language program executes an RTS, control will be returned to
BASIC at the next command if inside a program, or at command level if
the EXEC was entered directly.
On the other hand, USR is used as a normal BASIC function, ie A =
USR1 (B). The advantage of using a USR call to start up the machine
language program is that it allows data to be transferred. After a USR call
the A register contains the type of data that was used in the call (A = 0 -
numeric data, A = non-zero -string data) and the X register points to
the actual data.
For numeric data the X register points to the FAC (Floating point
ACcumulator) which contains the number in the format described above.

99

It is possible to convert this to an integer by calling the ROM routine
INTCNV (hex BB30) which returns a 1 6-bit two's compliment integer in
the D register. If the data was a string, INTCNV causes an overflow error
and control is returned to BASIC.

For string data the X register points to the 5-byte descriptor as described
above.

The USA function always returns at least one value to BASIC. If the
machine language program does not explicitly return a value, the value is
the same one as that passed to the program. In general, the type of data
returned is the same as that passed, in the same location and in the same
format.

However, regardless of the original data, an integer may be returned by
loading the D register with a 16-bit two's compliment integer and calling
the ROM routine GIVABF (hex BC37).

There are a few rules when modifying string variables and returning them
to BASIC.
The length of the string may be changed by changing the length byte in
the string's descriptor. Strings may be shortened by this but a USA
routine should never lengthen a string. To allow variable length strings to
be returned, the string should be forced to a maximum length of 255
before the USA call. For example:
A$ = USR0 (STRING$("", 255))
The starting address may be modified by changing the address in the
descriptor. However, the new address should generally be that of a
memory location contained in the original string and the length reduced
by the appropriate amount. It is possible to swap the addresses of two
strings which would be useful for a fast string sorting routine.
The GOLDEN RULE when modifying strings is to never let two strings
intercept.

Apart from using the USA call it is possible to transfer data to and from
machine language programs by POKEing data into memory locations
reserved by the CLEAR command. The address to POKE into is also
known by the machine language routine and can be used and modified in
any way and then left to be PEEKed at by the BASIC program after the
machine language routine has finished.

1 00

CHAPTERS

PERIPHERALS

JOYSTICKS
The two ports marked for joysticks are really four analogue to digital
converters. One left/right right converter, one up/down right converter,
one left/right left converter, and one up/down left converter. These ports
are accessed in BASIC by the command JOYSTK with the parameter 0
- 3 selecting which AD converter to sample. Memory location 65280
indicates if the fire buttons have been pushed. The values of the location
are: 255 means no buttons pushed, 254 means the right button, 253 the
left and 252 means both fire buttons have been pushed.
Apart from plugging joysticks into these ports, other analogue devices
may be used and the information converted to digital form.

GND

FIRE
100K

Figure 6.1

Figure 6.1 gives details for the pin connections when joysticks are used
and using this diagram and some initiative virtually any analogue device
could be connected. Useful devices to interface could be a thermister for
a digital thermometer, multi-turn potentiometers for a trackball or with
strings and pullies for a pen tracer. The possibilities are endless, the only
limitations being your imagination and initiative.

PRINTER
The parallel printer port can be used from BASIC by the LUST command
and also the PRINT #-2 command. The port can be used not only for
printer connections but also other devices that accept parallel data such
as a down loader etc. Pin connections for the printer port are shown in
Figure6.2.

101

ACK D7 D6 D5 D4 D3 D2 D1 DO S TB

19 • • 1

20 • • 2

BUSY GND +5V
Figure 6.2

CASSETTE
The cassette port is used from BASIC by the commands relating to
saving and loading programs and the INPUT#-1 and PRINT#-1
commands. Having the ability to switch the motor on and off could be
used with another relay to control home electrical appliances. This could
be a heater and using a thermister wired into a joystick port your
DRAGON could be used as a thermostat for energy saving. The pin
connections for the cassette ports are shown in Figure 6.3

ear jack

FIGURE6.3

MONITOR/TV

micjack

remote control jack

There are two ways to get video signals on a screen. There are
connections for a standard UHF TV or an RGB monitor. When an RGB

102

monitor is being used the sound can be heard from the cassette
interface, via the lead normally connected to the microphone socket. If a
TV is being used it should be tuned to approximately channel 44UHF.

EDGE CONNECTOR
The edge connector is designed for using ROMpack games, disk drives,
memory expanders, etc but could also be used for any hardware that you
can think of to interface. Building circuitry with address decoders etc.
would allow you to have memory mapped 1/0, program and use your
own EPROMs etc.

The connections of the board edge are shown in Figure 6.4

Figure 6.4
PIN
1
2
3
4
5
6
7
8
9

-12V
+12V
HALT
NMI
RESET
E(6809 CLOCK)
0(6809 CLOCK)
CB1
+5V

10-17
18
19-31
32
33, 34
35
36
37-39
40

103

D0-D7
R/W
AO-A12
CODD- FEFF (chip select)
ov

Analogue in
FF40 -FF5F select
A13 - A15
Turn off internal ROM

CHAPTER S

HANDY ROUTINES AND TIPS

SPEEDING THINGS UP

There are three d i fferen t speeds at w hich the DRAGO N can run :
0.9MHz , 0.9/1.8MHz and 1 .8MHz. The standard speed at wh ic h t he
DRAGO N runs is 0.9MHz. T he faster speed o f 0.9/ 1 .8MHz is ac hieved
b y hav ing t he CPU opera te at 0.9MHz when accessing RAM and 1 .8MHz
when access in g ROM. Th is means w hen runn ing BAS IC progra ms
where most of the processing is done in ROM, and RAM is onl y used for

da ta and programs , e tc. t he progra m will r un quite a bit faster. Ho wever,
mach ine lang uage progra ms w hich operate al mos t entirel y in RAM do

no t ac hieve an e quivalen t step up in speed . T he 0.9/1 .8 speed can be
activa ted b y PO KEing 65495 wit h O and can be re turned to nor ma l b y
PO KE ing 65495 with 1 26.

The 1 .8MHz speed will ef fectivel y double the speed o f bo t h BAS IC and
machine language prog rams a like . T he proble m wi t h th is speed is that
the VDG (Video Displa y Generator) gets out o f s ynchronization w ith t he
CPU and the displa y turns to r ubbis h. T his simple mac hine language
routine will get the CPU and VDG back in to s ynch ronizat ion .
B 7 FF D8 S TA $FF D8 E xi t 1 .8 MHz mode
1 3 S YN C S ync hronize CPU & UDG
39 R TS Return

T his s hould be ente red, saved on cassette and tested be fore t rying to
enter the 1 .8MHz mode . Even t houg h t he displa y is meaningless w hile
t he DRAGO N is in t he 1 .8MHz mode, an yt hing put on the screen can be
v ie wed once 0.9 MHz mode is re t urned . The 1 .8MHz can be entered b y
PO KEing 65497 w i t h zero and ex i ted as descr ibed above .
T he charac ter is t ics o f the t hree modes a re :

MO DE
0.9MHz 0.9/1.8 MHz

S PEE D 1 .0 :::; 1 .35
displa y yes yes
cassette yes no
pr in ter yes no
so und yes yes
jo ys t icks yes yes
graphics yes yes

• -ou tput viewed upon returning to 0.9 MHz mode
•• -baud rate doubled

1 04

1 .8MHz
2.0
no •
yes ••
yes ..
yes
yes
no •

NO TES:
1 . When the reset butt on is p ushed while i n 1 .8MHz m ode the

c ompu ter may or may n ot ret urn t o 0.9MHz m ode even th ou gh the CPU
and VDG w ill still be out of sync .
2. S ome of the CPUs pr oduced by Mot or olla may n ot be capable of
handl in g the extra speed s o we d o n ot rec ommend that y ou use th is as a
rule .

DISABLE/ENABLE BREAK KEY

I t is often handy t o disable the B REA K key . Here are t w o ways of
acc omplish in g it : one is sh ort b ut can only be en tered direc tly fr om the
keyb oard (n ot fr om a pr ogram), the other can be placed in y our pr ograms
b ut is qu i te a bit l on ger .

T o disable the B REA K key en ter the f oll owin g c ommands, directly f rom
the keyb oard .
PO KE 41 1, 228
PO KE 412, 203
PO KE 41 3,4
PO KE 414, 237
PO KE 41 5, 228
Then t o t urn the B REA K key on and off use :
PO KE 410, 236 t o t urn it off
PO KE 41 0, 57 t o turn it on

Bel ow is a mach ine lan gua ge r ou t ine wh ich w ill all ow y ou t o turn the
B REA K key on and off fr om y ou pr ogram. T o make thin gs easier there is

a BAS IC pr ogram t o p ut th is r outine int o h igh mem ory, which y ou can
then save with a CSA VEM "B REA K", &H7FE 0, &H7 FF$, &H7FE 0 t o be
used w ith other pr ograms .

10 CLEA R 300, &H7FE 0
20 FO R A D = &H7 FE 0 TO &H7FF4
30 REA D B$: B = VA L ("&H " + B$)
40 PO KE A D, B
50 NEX T A D
60 PO KE &H019B, &H7F : PO KE &H019C, &HE 0
7 0 PRI NT "B REA K D ISA B LE D " : PO KE &H019A, &H7E
80 FO R I = 1 TO 2000 : NEXT
90 PRINT "B REA K E NA B LE D " : PO KE &H019A, &H39

1 00 FO R I = 1 TO 2000 : NEX T
1 1 0GO TO 7 0
1 20 DA TA 32,62, 1 C,AF,BD,80,06,26,07,81, 13,26,03
1 30 DA TA 7E,85,2B,97,87,7E,84,A 6

1 05

..

?FED 32 62 START LEAS 2,S
7FE2 DC AF ANDCC #$AF
7FE4 BD 8006 JSR $8006
7FE7 26 07 BNE :1
7FE9 81 13 CMPA #$13
?FEB 26 03 BNE :1
?FED 7E 852B JMP $852B
?FF0 97 87 :1 STA $87
7FF2 7E 84A6 JMP $84A6

SET /RESET FOR SEMIGRAPHIC MODES

This allows the SET /RESET comands to be implemented for
semigraphics. First set the mode (see MODE CHANGES) and the
appropriate variables. The variables are: X - horizontal co-ordinate; Y
- vertical co-ordinate; C - color (1 - 8); SR = 1 - RESET-SET; ST =
start of display array.
1 00 IF SR = 0 THEN M = 1 28 + (C - 1) • 1 6 : IF (XAND 1) = 0 THEN M

= M + 10 ELSE M = M + 5
1 1 0 IFSR = 1 THEN M = 128 + (C - 1)'16 : IF (X AND 1) = 0THEN N =

5 ELSE N = 10
1 20 AD = ST + Y • 32 + INT(X / 2)
1 30 IF SR = 0THEN A = (PEEK (AD)AND 1 5) : A = AOR M : POKE AD,

A
140 IF SR = 1 THEN A = (PEEK (AD) AND N) : A = A OR M : POKE AD,

A

AUTO KEY REPEAT
The problem with using the DRAGON keyboard, especially for action
type games, is that you cannot tell if someone is holding down one key or
if a key is pushed while another is being held down. A very simple way to
overcome this is to use the keyboard rollover table located in memory
addresses 337 (&H01 51) - 345 (&H0159)

ADDRESS
DEC HEX 7
337 0151
338 01 52
339 0153
340 0154
341 0 155
342 0156
343 0157
344 0158
345 0159

l"1 1 'L.1-1 'l..>'1 'lJ.tl 15• �D 'cS'-
BITS I

6 5 4 3 2 0

ENTER X p H @ 8 0
CLEAR Y Q I A 9 1

z R J B 2
t s K C 3
• T L p 4

u M E 5
... V N F • 6
SPACE W 0 G 7

L l J .'°6 c) ""�

106

When there are no. keys pressed this table is completely filled with 1 's.
Whenever a key is pressed its corresponding bit in the table is reset to 0.
e.g. when A is pressed bit 2 of memory location 339 (01 53hex) is 0.
Memory location 337 (0151 hex) has the property that if any bit in the
same column in the table is O then it will be 0. This is the reason that when
a key is held down and another pressed then the first released (if both
keys are in the same column of the table) the second key does not
register as being pressed. To overcome this problem simply POKE 337
with 255 immediately before an INPUT or INKEY$ command.

To allow keys to be repeated when a key is pressed and held down, then
each time an INKEY$ call is made the key value is returned, set the entire
table to 1 's before each INKEY$. For example:

10 FOR I = 337 TO 345 ; POKE I, 255 : NEXT
20 A$ = INKEY$
30 PRINT A$
40 GOTO 10

This program will continue to print the key held down. If you now change
line 1 0 to contain a REM then the program will only print the key once -
no matter how long you hold it down.

READING TWO KEYS AT ONCE

Reading two keys pressed simultaneously can be done by reading the
keyboard rollover table. When you want to check if a particular key is
pressed or not (for action type games) the best way to accomplish this is
by POKEing 337 with 255 then PEEKing at the appropriate location and
checking to see if the appropriate bit is set or reset. This will tell you if the
key is pressed no matter if it has been held down for a while or if any
number of other keys are pressed at the time. For example, to check if the
up arrow is pressed try this program:

10 CLS
20 PRINT @ O, " "
30 POKE 337, 255
40 IF PEEK(341) AND 32 THEN PRINT "NOT PRESSED" ELSE

PRINT "PRESSED"
50 GOTO 20

If line 30 is removed then if two keys in the same column of the rollover
table are pressed at the same time then only the first will be recorded in
the table.

RECOVERING A PROGRAM AFTER A NEW COMMAND,

After a NEW command has been executed but before any new BASIC
lines are added or variables defined the previous program may be
restored by the following machine language program.

107

9E 19 LOX $19
BD 83F3 · JSR #83F3
30 02 LEAX 2,X
9 F 1 B STX $ 1 B
9F 1D STX $1 0
9F 1F STX $ 1 F
37 RTS

This program may be entered by the following BASIC program
10 CLEAR 200, 32753
20 FOR I = 32754 TO 32767
30 READ X : POKE I, X
40 NEXT I
50 END
60 DATA 158,25, 189,131,243,48,2, 159,27,1 59,29,159,31,57

After running this program and saving it, type NEW; then LIST, then
EXEC 32754, then LIST. If everything was correct your program should
be the same as the original program you just entered.

If you have inadvertantly keyed in NEW and you wish to restore your
program DO NOT type in the BASIC program above as it will destroy your
original program. If you have not CSAVEMed the machine language
program then you will have to POKE each number in the DATA
statement into its right address (start at 32754 and add 1 for each number
POKEd). I recommend that you type in this program now and CSAVEM
it, then it can be ready for use whenever you need it (use CSAVEM
"UNNEW", 32753, 32767, 32753 and CLOADM whenever you need it)
or have this routine at the start of each of your programs.

MERGE
Often it is handy to merge two or more BASIC programs together. For
example, you might have a standard sorting routine or a standard menu
controller. Merging two programs can be accomplished by the following :
1. CLOAD one of the programs
2. FOR I = 25 TO 28 : PRINT I, PEEK(!)
3. POKE 25, (the number beside 27)
4. POKE 26, (the number beside 28 - 2)
5. Now write down 25 and 26 and numbers beside them
6. CLOAD the second program
7. Make sure all line numbers are greater than those in the first program
(see below)
8. POKE 25, (the number you wrote beside 25)
9. POKE 26, (the number you wrote beside 26)

Step 7 (above) is essential otherwise your program line numbers will be

108

out of order and BAS I C won 't be able to follo w t hem pro perly so strange
things may occur .
There are several ways to ensure t ha t t he line numbers are correct.
1 . Write all your standard rou tines with ve ry large numbers (e.g. 10,000

on wards) or small (e .g . less than 1 00) and wr ite your programs
inbet ween .
2. A fter loading in the second program bu t before the PO K Es in s te ps 8
and 9, R EN UMber . At th is stag e i t will only change the line numbers of
the second program.

REDEFING BASIC KEYWORDS
By shi f ting the token table and jum p tables out o f the ROM into some hig h

RAM loca tions , resetting the poin ters in &H121,122 (token table),
&H 1 23, 1 24 (command jum p table) and &H126, 127 (function jum p table)
and substituting the addresses of your o wn command handling routines
in the a p pro pria te place of the jum p table , you can easily redefine t he
act ion to ta ke place when a BAS IC key word is executed.

By taking a careful loo k a t the s truc ture o f these tables and ex panding
t hem so t hat their layout is s t ill the same Qus t bigger) you can even define
ne w BAS I C key words and a p pro pr iate actions to take place on their
execution.

Belo w is a small mach ine language rout ine which rede fines the SO UN D
command (this could use t he machine language program in t he sound
c ha pter (4)).

7000 !OBE 7D9F START LDY ll?DSF
7004 BE 8033 LOX IIB033
7007 !OBF 0121 STY 10121
700B Ab 80 LOOP LDA , X+

7000 A7 C\1 STA ' Y+

700F BC 8293 CNP! 11829B

7012 2D F7 BLT LOOP
7014 BE 7ECO LDI 117ECO
7017 BF 0113 STI 10123
701A BE 7F36 LOI 117F36
7010 BF 0116 STX 00126

7010 BE me LDX 117FBC

7023 BF 0128 m 10128
7026 BE , . LDX 'START DF SOUND ROUTINE"
7029 BF JEBC m l7E8C
702C 39 RTS

• De pen ds on where you load you r sound ro utine

1 09

BOXES SHOWING PAGE SWAPPING
This program, although not very useful, shows just how fast pages of
screen can be swapped to make fast animation.

10 PCLEAR 8
20 FOR f"D=lT OB

30 F·MODE O , Pr•
40 PCLS
50 SCREENO, (•
60 L I NE� 1 28-l l*PD, 96- l l *PD)·-(1 2B+ll

*PD , 96+! l*PD) , PSET , B
7 0 NEXT PD
80 I = l : SP=l

90 I = l +SF·
1 00 IF ! (= 1 OR 1 = • 8 THEN SP= -SP
110 F"MODEO , I
120 SCREEN l , O
130 GOTO 9(•

VARIOUS CIRCLES
This program shows the power of the CIRCLE command and produces
some quite nice pictures.

' ' ** MAIN F"ROGf;:AM H '
10 CLS
20 PRINHl42, "CIRCLES"

30 F'RI NT@98, " r - fiANDiJM"

40 F'RINT@162, 1 1 f F-' lLL OWN OPTI ONS"
50 F'RINT@226 l' "9 PIE GRAPH 1 1

60 F'RINTl!,290, "p ' F"ACMAN ' "

7 0 F'RINT@354 , "" 1, FACE"
80 PRINT@450 , "PRESS ONE OF THl M)OI.IE KEYS"
90 F'RINT@482l' "ent1:�i-- TO RETUm� TD THE ME�.il.J " ;
1 0 0 A$=1NK[Y $: JF A$="" -,-flEN 1.00
1 10 A=!NSTR(" Ffr"Gf·A" , A$.•
120 IF A=O THEN 100

130 F'MODE3 , 1 : PCLS • SCREEN 1 , 0
140 O N A GOSUB 200, 300 , 400,500, 600
150 GOTOlO

199 ' ** RANOM CIRCLES U'

200 PCLS
210 C I RCLE(RND< 250 l , RND(i80 l l d':ND(70) , O , F:NI:•(4)

220 FOR I= 1 T0200 : NEX T I

1 1 0

230 A$=INKEY$: IFA$= " " THEN 200

2'10 IF ASC< A$)=13 THEN RETURfJ EI_SE 20(•

299 ' ** OWN OPTIONS ** '

300 CLS
310 I NPUT "CO-ORDINATES(Xd i" : x , r

320 INPUT"RADIUS" ; F:
330 I NPUT "COLOR(0-7) " ; C

340 INPUT "HEIGHT··WIDTH RAT IO<: 0-4 '" ; H•'

350 I NPUT 1 1 START(0-1) 11 ; S

360 INPUT" END(0-1 !" ; ,:
370 PHODE3 , l : PCLS : SCREEN1 , 0

380 CIRCLE< X , Y l , R , C , HW , S , E

390 A $=INKE'/ $: IF A$= " " THEN 390

395 IF ASC(M '=13 THEN RE: fURN EL.SE 39(•

399 ' ** PIE GRAPH 11 '

400 CIRCLE(l l B , 1 06 1 , 60 , 0 , 1 , 0 , . 75
410 CIRCLE(138 , 86) , 60 , 0 , 1 , . 7 5 , l

420 LINE< 1 1 8 , 106 :,-(1 1 8 , 4 6 l , PSET

430 LINE< 1 18 , 106 H 178 , 106 i , F·SET

440 LINE< 138 , 86)-(1 3B , 26 l , F'SET

450 LINE(138 , 86 }-(198 � 86) , F'SET

460 PAINT< 149 , 75 1 , 0 , 0
470 A$=INKEY$: I F A$= " " THEN '170

480 IF ASC< AS l=l3 THEN RETURN ELSE 470

,,99 ' ** PACK MAN **

500 CIRCLE(1 28 , 96 1 , B0 , 0 , 1 , . 06 , .9�

510 C I RCLE(148,50) , 9 , 0

520 L INE(128 , 96)-·(200 , 65 :• , F'SET

530 LINE(128 , 96)-(200 d 19) , F'SET

540 PAINT(120 ,20) , 0 , 0
550 A$=INKEY$: I F A$='"' THEN 550

560 IF ASC(Al 1=13 THEN RETURN ELSE 550

599 ' ** A FACE **

600 CIRCLE(128 ,96) , 7 0 , 0 , 1 . 2
610 C IRCLE< S0 , 96) , 10 , 0 , 3

620 C I RCLE(207 ,96 1 , 1 0 , 0 , 3

630 C IRCLE(l00,70) , 1 2 , 0 , . 7

640 CIRCLE< 1 56 , 70 l , 12 , 0 , . 7

650 C I RCLE(128,96) , 6 , 0 , 3

660 C I RCLE(128 , 130) , 45 , 0 , . 7 , 0 , . 5
670 CIRCLE(128 , J.30) , 47 , 0 , . 25 , 0 , . 5

111

680 PAINT< 12E h 150) 1 0 , 0
690 A$=INKEY$: IF A$= "" THEN 690

700 IF ASC(A$)=13 THEN RETURN ELSE 69(•

LINES
This program, like the last few, is not particularly useful but demonstrates
the power of the graphics and produces some interesting effects.

lO CLS

20 PMODE4 , 1 : PCLS

30 P I =3. 1 41592654

40 R=lBO/PI

50 SX=192/'12767
60 SY;;:;255/4276;

70 INPUT" STEF· SIZE" ; I

80 I F I =O THEN END
90 f'CLS : SCREEN! , 1

100 A1=128 : B1 =96

1 1 0 A2=128 :B2=96

120 FOR�=l TO 16000 STEP

130 I =K/R

140 A=K*COS(I)*SY+A�
150 B=K*SIN(I)*SX+B.2

160 LIN8 A , B l-(A 1 , B l > , PSET

1 70 Al=A : Bl=B

180 NEXT�

1 90 AS=INKEYl : JFAl=" "THEN190

200 GOT070

SCROLLS
Here are some machine language programs to scroll the text screen.

7000 C6 01 LEFT LDB 101
7002 BE 04(,0 : 1 LDX 11400

7005 A6 85 :2 LDA B, X
70(,7 5A DECB
7008 A7 85 STA B,X
700A SC INCB
700B 30 BB 20 LEAX 31,X
700E BC 0600 cm 11600
701 1 2D F2 BlT : 2
7013 5C INCB

1 12

:;:

7014 C l IF C"PB 131

7016 2F EA BLE : !
701B 39 RTS

7019 Co IE RIGHT LDB 130
701B 8E (1400 : I LOX moo

701E A6 85 : 2 LDA B , l

7020 5C INCB
7021 A7 85 STA B, l
7023 5A DECB
7024 3(1 88 20 LEAi 32,X
7027 BC 0600 cm moo

702A 2D F2 BLT : 2

702C 5A DECB
702D Cl FF C"PB UFF

702F 26 EA BNE : I

7031 39 RTS

7032 BE 0400 UP LDX 11400

7035 IOAE BB 20 : I LDV 32, X
7039 lOAF BI STV , X++

703C BC 0600 C"PX 11600
703F 2D F4 BLT : I

7041 39 RTS

7042 BE 05E2 DOWN LOX U5E2
7045 IOAE B3 : I LDY ,--x

7048 !OAF 88 20 STV 32, X

me BC 0400 cm 11400

704F 2E F4 861 : I
7051 39 RTS

NOTE: These scroll routines leave the last line to be scrolled (e.g. right:
the far left column, up: bottom line) untouched. This means that repeated
calls to these routines will fill up the screen with the last line.

To use these routines in a game for scrolling; as soon as these routines
have finished then fill in that last line with the new information to go on the
screen.

To use these routines on the graphics screens the starting and ending
addresses need to be changed as well as the 'gap' between each line.
On the text screen the 'gap' is 32, the start address &H400 and end
address &H600.

1 1 3

APPENDIXB

ERROR MESSAGES
MESSAGE
10

AO

BS

CN

DD

DN

DS

FC

FD

FM

ID

IE

10

LS

NF

NO

OD

EXPLANATION
Division by zero
Attempting to open a file which is already open
Bad Subscript. Trying to use an array subscript
outside the range it was defined as. Sometimes if
a computer cannot recognize a function this
message is given.
Can't Continue. When you use the CONT
command after making changes to the program
or the program is at the end.
Trying to dimension the same array more than
once.
Device number error. There are only three
device numbers. -0- standard, screen,
keyboard; -1 - tape; -2- printer.
Direct Statement. This occurs if a direct
statement is in a data file on tape.
Illegal Function Call. This occurs when a function
or statement parameter is out of range.
Bad File Data. This occurs when the wrong type
of data is being read from a file, that is if numeric
data is being INPUT into a string variable and
vice-versa.
Bad File Mode. This occurs when you try to
INPUT data from a file OPEN for OUTPUT or
vice-versa.
Illegal Direct Statement. For example, when an
INPUT statement is executed outside a program.
Input Past End of File. Use EOF to check for the
end of the file.
Input/Output Error. Olten caused by bad tapes,
i.e. when the DRAGON cannot understand what
is on the tape.
String too Long. A string can only have 255
characters in it.
NEXT without FOR. Occurs when a NEXT
statement is encountered without a
corresponding FOR statement.
File Not Open. You cannot access a data file
without first opening it.
Out of Data. When a READ statement is
executed and there are no elements left in any
DAT A statements.

123

OM

OS

ov

RG

SN

ST

TM

UL

Out of Memory. All available memory has been
used or reserved.
Out of String Space. There is not enough space
for string operations. You may be able to CLEAR
more space.
Overflow. A number has been made too long for
the computer to store. The range of numbers
available is + 1. 7E +38.
RETURN without GOSUB. A RETURN
statement has be encountered without a
previous GOSUB statement.
Syntax Error. This message is given whenever
the DRAGON cannot understand the command.
May result from misspelling the word or incorrect
number of parameters, etc.
String formula too complex.Break up the
formula into shorter steps.
Type Mismatch. This occurs when numeric data
is assigned to a string variable (e.g. A$= 8) or
vice-versa.

Undefined Line Number. This happens when any
command references a line number which does
not exist.

124

APPENDIXC

MEMORY MAP

DECIMAL ADDRESS CONTENTS HEX ADDRESS

0-1023 ::;ystem Work Area 0-3FF

1024-1535 Text Screen 400-5FF

1536-3071 Graphic- page 1 600-BFF
3072-4607 Graphic- page 2 C00-11FF
4608-6143 Graphic- page 3 1200-17FF

6144- 7679 Graphic- page 4 1800-1DFF

7680-9215 Graphic- page 5 1E00-23FF
9216-10751 Graphic- page 6 2400-29FF

10752-12287 Graphic- page 7 2A00-2FFF

12288-13823 Graphic - page 8 3000-35FF
13824 -3Z767 Program and Variables- user's 3600-7FFF

3V68-49151 BASIC ROM 8000-BFFF

49152 -65279 Cartridge Port COOO-FEFF

65280 -65535 Input/Output FFOO-FFFF

125

APPENDIXD

COLOUR CODES

These are codes for each of the nine colours you can create

Code Color

0 Black
1 Green
2 Yellow
3 Blue
4 Red
5 Buff
6 Cyan
7 Magenta
8 Oranae

The colour may vary in shade from these, depending on your TV. Colour
0 (Black) is actually an absence of colour.

126

COLOUR-SET TABLE

PMODE TwoColor FourColor

Color Set Combination Combination

4 0 Black/Green -
, Black/Buff -

3 0 - GreenNellow/Blue/Red , - Buff/Cyan/Magenta/Orange

2 0 Black/Green -
, Black/Buff -

, 0 - Green/Yellow/Blue/Red , - Buff/Cyan/Magenta/Orange

0 0 Black/Green -
, Black/Buff

127

APPENDIXE

CHARACTER CODES

For use with CHR$ function and ASC function.

HEX 20 30 40 50 60 70
OFC: '.'12 48 "4 An Q6 1 1�

0 0 0 @ p @ p
1 1 ! 1 A Q A Q
2 2 " 2 B R B R
3 3 # 3 C s C s

4 4 $ 4 D T D T
5 5 % 5 E u E u

6 6 8 6 F V F V
7 7 7 G w G w
8 8 (8 H X H X
9 9) 9 I y I y
A 10 J z J z

B 11 + K [K
12 L L

D 13 - = M I M I
E 14 • N � N

F 15 I ? 0 - 0 -
NOTE:
1) The last two columns are the lower case values of the previous two
columns and will be shown as inverse video on the screen.
2) Characters 0- 31 are ASCII control characters and have no effect on
screen. Two exceptions are 8 which is backspace and 13 which is
carriage return.

128

APPENDIXF

PRINT@GRID

•�+'---.'
0

r' r'�· r'n' r'n' r'n�'-,-'�r'-r'-,-'--r'-r'-TC..,---.'-r'-,�--.'�..C..,.'-,-',-'-,

129

APPENDIXG

ASCII CODES FOR KEYS

Kev Hex If Decimal#

Unahlfted Shifted Unshltted Shifted

IIBml 03 03 03 03
m!B) oc - 12 -
l!HIIBl 00 OD 13 13

llfilEm!) 20 - 32 32
! - 21 33 -- 22 34 -
• - 23 35 -
s - 24 36 -
% - 25 37 -
& - 26 38 -- 27 39 -
(- 28 40 -
! - 29 41 -

- 2A 42 -
+ - 2B 43 -
- 20 - 45 -

2E - 46 -
I 2F - 47 -
0 30 - 48
1 31 - 49 -
2 32 - 50 -
3 33 - 51 -
4 34 - 52 -
5 35 - 53 -
6 36 - 54 -
7 37 - 55 -
B 38 - 56 -
9 39 - 57 -

3A - 58 -
3B - 59 -

< 3C - 60 -
. 30 - 61 -
> 3E - 62 -
? 3F - 63 -
� 40 13 64 19
A 61 41 97 65
B 62 42 98 66
C 63 43 99 67
D 64 44 100 68
E 65 45 101 69
F 66 46 102 70
G 67 47 103 71
H 68 46 104 72
I 69 49 105 73
J 6A •• 106 74
K 6B 48 107 75
L 6C 4C 108 76
M 60 40 109 n

130

Key Hex# Decimal#
Unshifted Shifted Unshlfted Shifted

N 6E 4E 110 78
0 6F 4F "' 79
p 70 50 112 80
a 71 51 113 81
A 72 52 114 82
s 73 53 115 83
T 74 54 116 84
u 75 55 117 85
V 76 56 118 86
w n 57 119 87
X 78 56 120 88
y 79 59 121 89
z 7A SA 122 90 � SE SF 94 95 � OA 58 10 91

(I) 08 15 8 21
(I) 09 5D 9 93

Note: For characters A through Z, press the key combination of SHIFT 0
to utilize the upper/lowercase option. The unshifted codes will then
apply.

131

APPENDIXH

CHARACTER CODES

For use with PEEKs and POKEs direct to the text screen.

HEX 0 10 20 30 40 50 60 70

DEC 0 16 32 48 64 80 96 112

0 0 @ p 0 @ p 0
1 1 A Q ! 1 A Q ! 1
2 2 B R " 2 B R " 2
3 3 C s # 3 C s # 3
4 4 D T $ 4 D T $ 4
5 5 E u % 5 E u % 5
6 6 F V 8 6 F V 8 6
7 7 G w 7 G w 7
8 8 H X (8 H X (8
9 9 I y) 9 I y ! 9
A 10 J z J z

B 1 1 K [+ K [+

C 12 L L
D 13 M I - = M I - =

E 1 4 N • N .
F 15 0 - I ? 0 - I ?

132

APPENDIX I

BASE CONVERSIONS

The following table lists base conversions for all one-byte values.

I DEC. BINARY HEX. OCT. DEC. BINARY HEX. OCT.
! 0 00000000 00 000

1 00000001 01 001
2 00000010 02 002
3 00000011 03 003
4 00000100 04 004
5 00000101 05 005
6 00000110 06 006
7 00000111 07 007
8 00001000 08 010
9 00001001 09 011
10 00001010 0A 012
11 00001011 0B 013
12 00001100 0C 014
13 00001101 0D 015
14 00001110 0E 016
15 00001111 0F 017
16 00010000 10 020
17 00010001 11 021
18 00010010 12 022
19 00010011 13 023
20 00010100 14 024
21 00010101 15 025
22 00010110 16 026
23 00010111 17 027
24 00011000 18 030
25 00011001 19 031
26 00011010 1A 032
27 00011011 1B 033
28 00011100 1C 034
29 00011101 1D 035

30 00011110 1E 036
31 00011111 1F 037
32 001130000 20 040
33 00100001 21 041
34 00100010 22 042
35 00100011 23 043
36 00100100 24 044
37 00100101 25 045
38 00100110 26 046
39 00100111 27 047
40 00101000 28 050
41 00101001 29 051
42 001Cl1010 2A 052
43 00101011 2B 053
44 00101100 2C 054
45 00101101 2D 055
46 00101110 2E 056
47 00101111 2F 057
48 00110000 30 060
49 00110001 31 061
50 00110010 32 062
51 00110011 33 063
52 00110100 34 064
53 00110101 35 065
54 00110110 36 066
55 00110111 37 067
56 00111000 38 070
57 00111001 39 071
58 00111010 3A 072
59 00111011 : 3B 073

133

DEC. BINARY HEX. OCT. DEC. BINARY I HEX. OCT.

60 00111100 3C 074 94 0Hl11\H) SE 136
61 001111')1 30 075 95 01011111 SF 137
62 00111110 3E 076 96 01100000 60 140
63 00111111 3F 077 97 01100001 61 141
64 01000000 40 100 98 01100010 62 142
65 01000001 41 101 99 01100011 63 143
66 01000010 42 102 100 011')0100 64 144
67 01000011 43 103 101 01100101 65 145
68 01000100 44 104 102 011')0110 66 146
69 01000101 45 105 103 01100111 67 147
70 01000110 46 1060 104 01101000 68 150
71 01000111 47 107 105 01101001 69 151
72 01001000 48 110 106 01101010 SA 152
73 01001001 49 111 107 01101011 68 153
74 01001010 4A 112 108 01101100 6c 154

75 01001011 48 113 109 01101101 60 1550
76 01001100 4C 114 110 0110111e SE 156

77 01001101 40 115 111 01101111 SF 157
78 01001110 4E 116 112 01110009 ,. 180

79 01001111 4F 117 113 01110001 71 161
.. 01010000 se 126 114 0111001e 72 162
81 01010001 51 121 115 01110011 73 163
82 01010010 52 122 118 01110100 74 164
83 01010011 53 123 117 01110101 75 165
84 01010100 54 124 118 01110110 76 168
85 01010101 55 125 119 01110111 77 167
66 01010110 56 126 120 01111')01 78 170
87 01010111 57 127 121 01111001 79 171

86 01011009 56 130 122 01111010 7A 172
89 01011001 59 131 123 01111011 78 173
90 01011010 SA 132 124 01111101 7C 174
91 01011011 58 133 125 01111101 70 175
92 01011100 5C 134 126 01111110 7E 178
93 01011101 50 135 127 01111111 7F 177

1 34

DEC. BINARY HEX. OCT. DEC. BINARY HEX. OCT.

128 10000000 80 200 162 10100010 A2 242
129 10000001 81 201 163 10100011 A3 243
130 10000010 82 202 164 10100100 A4 244
131 10000011 83 203 165 10Hl0101 AS 245
132 10000100 84 204 166 10100110 A6 246
133 10000101 85 205 167 10100111 A7 247
134 10000110 86 206 166 10101000 AB 250
135 10000111 87 207 169 10101001 A9 251
136 10001000 88 210 170 10101010 AA 252
137 10001001 89 211 171 10101011 AB 253
138 10001010 BA 212 172 10101100 AC 254
139 10001011 BB 213 173 10101101 AO 255
14B 10001100 BC 214 174 10101110 AE 256
141 10001101 80 215 175 10101111 AF 257
142 10001110 BE 216 176 10110000 B0 260
143 10001111 BF 217 177 10110001 B1 261
144 10010000 90 220 178 10110010 B2 262
145 10010001 91 221 179 10110011 B3 263
146 10010010 92 222 180 10110100 B4 264
147 10010011 93 223 181 10110101 BS 265
148 10010100 94 224 182 10110110 B6 266
149 10010101 95 255 183 10110111 B7 267
156 10010110 96 226 164 10111000 B6 270
151 10010111 97 227 185 10111001 B9 271
152 10011000 98 230 186 10111010 BA 272
153 10011001 99 231 187 10111011 BB 273
154 10011010 9A 232 188 10111100 BC 274
155 10011011 9B 233 189 10111101 BO 275
156 10011100 9C 234 190 10111110 BE 276
157 10011101 90 235 191 10111111 BF 277
156 10011110 9E 236 192 11000000 co 300
159 10011111 9F 237 193 11000001 Ct 301
160 10100000 A0 240 194 11000010 C2 302
161 10100001 At 241 195 11000011 C3 303

135

OEC. BINARY HEX. OCT. OEC. BINARY HEX. OCT.

196 11')00100 C4 304 227 11100011 E3 343
197 11000101 CS 305 228 11100100 E4 344
198 11000110 CS 306 229 11100101 ES 345
199 11000111 C7 307 230 11100110 E6 346
200 11001000 C8 310 231 11100111 E7 347
201 11001001 C9 311 232 11101000 ES 350
202 11001010 CA 312 233 11101001 E9 351
203 11001011 CB 313 234 11101010 EA 352
204 11001100 cc 314 235 11101011 EB 353
205 11001101 co 315 236 11101100 EC 354
206 11001110 CE 316 237 11101101 ED 355
207 11001111 CF 317 238 11101110 EE 356
206 11010000 DO 320 239 11101111 EF 357
209 11010001 01 321 240 11110000 F0 360
210 11010010 02 322 241 11110001 F1 361
211 11010011 D3 323 242 11110010 F2 362
212 11010100 D4 324 243 11110011 F3 363
213 11010101 OS 325 244 11110100 F4 364
214 11010110 D8 326 245 11110101 F5 365
215 11010111 07 327 24a 11110110 F6 366
216 11011000 D8 330 247 11110111 F7 387
217 11011001 09 331 24a 11111000 FS 370
218 11011010 DA 332 249 11111001 F9 371
219 11011011 DB 333 250 11111010 FA 372
220 11011108 DC 334 251 11111011 FB 373
221 11011101 DO 335 252 11111100 FC 374
222 11011110 DE 330 253 11111101 FD 375
223 11011111 OF 337 254 111111HII FE 376
224 11100001 EO 340 255 11111111 FF 3TT
225 11100001 El 341 - ,. �·

136

APPENDIX J

00 NEG
03 COM

e• LSR

" ""-
IIA oec
0C INC

8D TST

ee JMP

6 2 IC ' " ' ,,
6 2 21
6 2 22 SHI

2 23 8L$

2 24 8HS18CC

6 2 2$ BtOIBCS '"'
8F CLR Olf1EC? 6 2 27 SEO

INHERENT 2 28 eve

16 LBRA

1 1 L8SA
' ,. ' "

19 OA,A INHERENT 2 1 2C BGE
1A ORCC

U LSRA INHERENT 2

46 RORA 2

48 ASLAILSV,
49 ROI..A
o. DECA

•C INCA

TSTA.
•F CtRA

50 NEGB
53 COMB
s• LSRB

57 A$RA

5,8 ASLBILSLB

59 ROLB ...
SC INCB INHERENT 2

3 2 20

1 SO TSTB

"

CLAS
-,o

"' ,o,
66 AL/Ll

69 ROL

COM
74 LSR

76 ROA

IMMED 3 2 2E

INHERENT 2 2F

I 8 2 38 LEAX

INHERENT 7 2 31 LEAY

RELATIVE 3 2 32 LEAS

INHERENT 2

INHERENT 2
INDE)(EO

' ,. ' "
3 2 36 PSHU

' "
2 JA ABX

38 RTI
2 JC CWAI

so,

oec

6 2 7C !NC

m

2 7F CLR
2 ee sue"

SBCA

SUIID

INOE)(EO 6 BITA '" ' ..
7 3 89 ADCA

EXTENDED 7 ORA

137

INHERENT $ 2

5 '

611 5 1 " ' " " '

' ' ' '

"
6C CMPX

" "
" " " "
97 STA
98 EORA "
9A ORA ..
9C CMPX

CS 81TB

C6 LOB

C, "
CB ADOB

ce

oe SUBB

01 CMPB

02 SBCB

05 81TB
D6 LOB

AODB

FC LOO

FE LOU

SW

1022 LBHI

1023 LBLS

1'!124 LBHSILBCC
1825 LBCSILBLO

1028 LBMI
1&2C LBGE

1820 LBLT

IMMEO 2 2 9E
4 3 9F '
3 3 Al '
4 2 SUBD ' " " " " ..

2 2 07 STB
3 06 EORB

"
2 2 DB

3 3 Ee

coo
srn

3 3 E1 CMPB

2 E2 SBCB

4 2 EJ ' "
2 E6 LOB

2 E7 $TB ' "

EXTENDED 5 3 1112E LBGT

6 3 182F LBLE

6 3 IBJF SWl/2 '
EXTENDED 6 1"'8C CMPY

RELATIVE 5 4 1&8E LOY

5(6) •
5(6) , Hl9E LOY

5(6) •

5(61 '
5(6) 4 1ME LOY

5(6) 4 ll)AF STY

5(6) 4 H�BC CMPY
5(6) 4 1&BE LDY

RELATIVE 516) 4 1IBF STY

DIRECT 5 2 81 ' "
� " ' " ' " ' "

' "
BB AOOA

"
C,

CMPX

E)(TENOEO 6 ' '
CMPB IMMEO

2 E9 .-.oca
2 EA ORB ' " ' " ' "
2 EE LOU

FI CMPB
IN0€)(E0 F2 SBCB

' "
6 2 FS

4 2 F6 ' " ' "
2 F9 AOCB

INDEXED 4 ORB

RELATIVE 5{6) • 10CE LOS

RELATIVE 5{6) •
INHERENT 20 2 10OF ST$
IMMEO H�EE LOS

I 1&EF STS
!MMEO

I ,
EXTENOEO 7

1 38

3 113F SWIil

3 1183 CMPU

J 1193 CMPU

J 11!1C CMPS

EXTENDED 5

s '
s ' ' '

,
EXTENDED 5

INHERENT 20 2 ' .

INDEXED ADDRESSING
POST BYTE REGISTER

BIT ASSIGNMENTS

POST-BYTE REGISTER BIT INDEXED
ADDRESSING

MODE 7 6 5
0 X X

, 3 2
X X X

' 0

X X EA • , A :!: 4 BlTOFFSET
1 X X O O O O 0
1 X X X O O 0
1 X X O O O 1
1 X X X O 0
1 X X X 0 1
1 X X X 0 1

' X
X 0

X '

,A+ +
, -R

,--R
0 EA = . A :t O OFFSET

1 EA • ,A :!: ACCB OFFSET

O EA • ,A :!: ACCA OFFSET
0 EA = ,A :t 7 BIT OFFSET

1 X X X 1 0 0 1 EA ,. ,R :t 15 81T OFFSET

1 X X X 1 0 1 I EA • , A :!: D OFFSET)
1 X X X 1 1 O O EA = , PC :t 7 BIT OFFSET

1 X X X 1 t 0 1 EA • , PC :t 1 5 BtT OFFSET
t X X 1 1 1 1 1 EA a ,ADDAESS

ADDRESSING MODE FIELD
I FIELD

FOR B7 • 1: INDIRECT
FOR 87 ,. 0: SIGN BIT

REGISTER FIELD
00:A • X
01:R • Y
10:R • U
1 1 :R = S

PUSH/PULL POST BYTE 6809 STACKING ORDER

TRANSFER/EXCHANGE POST BYTE

I ��AC� I O�ST>�A '?" I

REGISTER FIELD
0000 • D (A:B)
0001 � X
0010 ,. Y
0011 • U
0100 ,. S
0101 = PC

1000 � A
1001 • B
1010 = CCR
1011 = OPA

1 39

PULL ORDER

1
cc

A
B

DP
X Hi
X Lo
Y Hi
Y Lo

U/SHi
U/S lo
PC Hi
PC Lo

l
PUSH ORDER

INCREASING
MEMORY

6809 VECTORS
FFFE Restart
FFFC NM•
FFFA SWI
FFF8 ,aa

FFF6 FIAO
FFF4 SWI2
FFF2 SWl3
FFF0 Reserved

INDEXED ADDRESSING MODES

NON INDIRECT

FORMS
CONSTANT OFFSET FROM A NO OFFSET

581T0FFSET
8 81T OFFSET

1 6 81T OFFSET

A 1 RR00100 0 0 L Al l1RR10100 3 0
n, R ORRnnnnn 1 O de!aults to8-bit

�: = :��i:�� � ; :�:=l 1:==::� ; ;
ACCUMULATOR OFFSET FROM A A-REGISTER OFFSET

8-REGISTER OFFSET
0-REGISTER OFFSET

A. A 1RROOt10 \ 0 IA,RI
1

1 RR10 1 l 0 4 0
8, A IAR00101 \ 0 18. AJ 1AA10101 4 0
D. R 1RR01011 4 0 ID.Al 1RRl1011 7 0

UTO INCREMENT !DECREMENT A INCREMENT BY 1
INCREMENT BY 2
DECREMENT BY 1
DECREMENT BY 2

ICONST ANT OFFSET FROM PC

EXTENDED INDIRECT

NOTES·

8 81T OFFSET

1 6 81T0FFSET
16 BIT ADDRESS

R • X, Y. U.or S
X w OONTCARE

n, PCR 1)()(01100 1 1

n. PCA 1 x xo1 10 1 5 2

In, PCAI
1

1 x x 1 1 1 00 4 1

ln,PCR] 1 X X 1 1 1 0 1 8 2
(nl 11001 1 1 1 1 5 2

1 G,ven , n me 111ble arethe base cycles and byte coun1s To determ,ne 1he tot11t cycles and byte counts add lhe values
trom1he '68091ndex,ng modes· table

2. R1 and R2may beany pair ol 8 M or any pair o 1 1 6 b1t reg,s1e1s
The 8 bot registers are A. B. CC. OP
The 1 6 b1t reg,s1e,sa,e X. Y. U. S. O. PC

J EA•s lhe eHect,veaodress
4 n,e PSH and PUL >nst,uct,ons ,equore scye1es p1us 1 cycle to, each ovte pusr.ed 01pulled
5 5(6) means 5 cydes " Dranch not taken. 6 cycles ,1 taken
6 SW1 sets l&F bots SW12andSWl300 no1auec1 1&F
7 Cond11,ons Cooes set asa dorecl result olthe ,ns11uc1,on
8 Va1ue o1 hall·cany llag,s undehned
9 Spec,a1 Case-Carry set � b7 ,s SET

LEGEND:
OP Operat,on Code (Hexadec,mal).

Number ot MPU Cycles.
N1,l<Tl0er of Program Bytes.
A1,1rime1,c Plus,
Antnmeuc M,nus.
Mulhply

M Complement ot M
- T•ansfer lntc,
H Halt-carry hom bitJ,
N Ne9a11ve (s,9n b11)

Z Zero (byte)
Overflow. 2·s complement
Carryfrom t>ot7
Test andset ofuue. c1eared olherw,se
No1 Allected

CC Cond,t,on Code Aeg,ster
Conca1enat,on
Log,calor
Log,cal ana
Log,cal Exclus,ve or

140

6809 ADDRESSING MODES
INHE RENT DIRECT EXTENOEI IMMEDIATI INDEXED' RELATIVE 5 3 2 1

INSTRUCTION I
FORMS OP • OP • OP . • OP • OP # OP -• * DESCRIPTION H N '

ABX JA 3

ADC ADCA
ADCB

ADO AOOA
AOOB
ADDO

ANO ANDA
ANOB
ANDCC

ASL ASCA ..
ASLB 5B
ASL

ASA ASRA ., 2
ASA 57 2 "'

,cc BCC
LBCC

BCS BCS
LBCS

BEO BEO
LBEQ

BGE BGE
LBGE

BGT BGT
LBGT

'"' ""'
LBHI

BHS BHS

LBHS

"" BITA
81TB

BLE BLE
LBLE

"'° 8'Q
LBLO

BLS BLS

LBLS

"" ""
LBLT

""' ""'
LBMI

BNE BNE
LBNE

8PC BPC
LBPL

'

' '

99 . 2 B9 ' 3 89 2 A9 4 , 2 •
0, . 2 " ' 3 C9 2 E9 4• 2 •
98 . 2 •• ' 3 .. 2 AB 4+ 2+
08 . 2 F8 ' 3 �· , ,. 4+ 2+
03 6 2 " 7 3 �3 3 E3 16+ 2+ ,. . 2 " 3 " 2 .. 4 + 2 +
o, . 2 " 3 c, 2 " 4 . 2 ·

,c 2

0B 6 2 " 7 3 66 6 + 2+

07 6

95 2 65 3 85 2 A5 4 • �'
05 2 F5 3 CS 2 ES 4• 2•

1 41

B +)(--, X
(UNSIGNED)

A • M • C - A
B • M · C - B

B + M - B
O + M M • l - 0
A M - A . M - B
cc IMM - CC

�}��o

��9
2 Branch C = O

1 0 5(6) 4 Long Branch ,. c . ,

3 2 Branch C • 1
10 5(61 4 Long Branch
25 C = 1
27 3 2 Branch z - o

1 0 5(6 4 Long Branch
27 z - o

2C 3 2 Branch ;, Zero
1 0 516) 4 LongBranch ;,
2C Zero
2E 3 2 Branch > Zero
1 0 5(6) 4 Long Branch >
2E Zero
22 3 2 Branch Higher
1 0 5(6 4 Long Branch
22 Higher
24 3 2 Branch Higher

or Same
10 5(6) 4 Long Branch
24 Higher or Same

1 1 1 1 1
1 1 1 1 1
! t l l i
1 1 1 1 1
! l ! I I
• I I O •
• 1 1 0 ;

B I i i !
B I i i !
B l i l l
S l l • l
S I i • !
S l ! • t

Bit Test A(M A A) • 1 1 O •
BitTes! B (M A B) • 1 1 0 •

1 0 5(6 4 Long Branch "'
2F Zero
25 3 2 Branch Lower
1 0 5(6) 4 Long 8ranch
25 Lower
23 3 2 Branch Lower

or Same
10 5(6) 4 Long Branch
23 Lower or Same
20 3 2 Branch < Zero
10 5(6) 4 Long Branch <
20 Zero
2B 3 2 Branch Minus
1 0 5(6) 4 Long Branch
28 Minus
26 3 2 Branch Z 1' o
10 �(6) 4 Long Branch
26 Z " 0
2A 3 2 Branch Plus
1 0 516) 4 Long 8ranch
2A Plus

tN::.,Hu..; Tlf.)Ni
INHfRENT DIRECT EXTEND€D �MEDIATE INDE�� R

_
EL�:1v

_
e 7�

FORMS ()p - 11bP - II OP - II bP - 11bP - II OP _ , II DESCRIPTION Hfl, z v

BRA BRA 20 3 2 Branch Always
LBRA 3 LongB<anchAlways • • . . .

BAN BAN " 3 2 Branch Never
LBRN ,0 5 4 LongBranchNever • • . . . "

,SR ,SR ,o 7 2 Branch to
Subroutine

LBSA 3 long 8ranch 10
Subrou1ine

8'C 8'C 2 9ranch V = O
LBVC 1 0 516) 4 Long Branch

2B , . ,
B'5 8'S " 3 2 Branch V = 1

LBVS 1 0 5(6 4 LoC9
_

e;anch
29

CLR CLRA " 2 ' 0 - A • 0 1 olo
CLRB " 2 ' o - B • 0 1 0 0
CLR " 6 2 " 7 3 6f l6. 2· 0 -• M • 0 1 0 0

CMP CMPA " . 2 " 5 3 " ' " 4• 2+ Compare M from A 8 t 11 1
CMPB o, 2 " 5 ! �� ' " .. ,. compare M from B 8 t II I
CMPD ,0 3 ,0 ' . 1 0 7+ 3+ Compare M: M + 1 • f 11 1

93 BJ " AJ !rom D
CMPS " 7 3 " B . " 5 . 11 7+ 3+ Compare M : M + 1 • t 11 1

9C BC ,c AC !rom S
CMPU " 7 3 " ' . " 5 . 11 7+ 3 • Compare M: M + 1 • I 11 1

93 BJ " A3 1rom U
CMPX 9C 6 2 BC 7 3 ,c . 3 ,c 16+ 2+ Compare M: M + 1 • t II I !rom X
CMPY ,0 7 3 ,0 ' . ,0 5 1 0 7 • 3 • Compare M: M ... 1 • I I II

,c BC ,c AC lrom Y
COM COMA <l 2 ' A - A • : 1 0 1

COMB 53 2 ' 0 - B • : 1 0 1
COM 03 6 2 73 7 3 63 6 • 2� M - M · : : 0 1

CWAI 3C 20 2 cc IMM -CC
Wa,1 tor lnterrupt

DAA " 2 ' Decimal Adjust A • ! !I O I
DEC OECA .. 2 ' A - 1 - A • I l l •

OECB SA 2 ' 8 - 1 - B · I l l •
oec OA 6 2 7A 6A 6 • 2 · • I l l •

EOR EORA 98 . 2 B8 2 Aa 4 • 2+ A .,. M - A • 1 1 0 •
EORB o, . 3 c, 2 " 4+ 2• B..- M- B : � r : E<G A1. A2 " 7 2 A1 - R2'

INC INCA ,c 2 • l t l •
INCB SC 2 B + 1 - B • l l f •
INC oc 6 2 7C 7 3 6C 6 + 2+ M • 1 - M • I l l •

JMP OE 3 2 7E . 3 6E 3 · 2 · EA' - • PC

JSR ,o 7 2 BO ' 3 AD 7- 2• l.iumptoSubroutine
CD LOA 98 . 2 86 5 3 " 2 A6 4 · ,. M - A • ! 1 0 •

LOB °' 2 F6 5 3 C6 2 E6 4 · M - a • 1 1 0 •
LDD De 2 FC 6 3 cc 3 EC 5 · M M • ' - D · 1 1 0 •
LOS , 0 3 ,0 7 . ,0 . 1 0 6 · M M , , _ , . "

I
' .

DE " CE EE
LDU DE 2 " 6 3 CE 3 J EE 5 · M M : : :1 6 : ,o, " 2 BE 6 3 BE 3 3 AE 5 • M M

,o, ,0 3 ,0 7 . ,0 . 1 0 6 · M M • • 1 1 0 • " BE BE AE

I

LEA LEAS

I I I I I I I I I I I I f '� I

I
EA" - S

·1 ·1 · · ·'1
LEAU 33 4 + 2 EA' - U
LEA> 30 4+ 2 EA' - X • • I • •
LEAY 3 1 4 + 2 EA' - Y • • I • •

142

INHERENT DIRECT EXTENOEC WAEOIATI INDEXED' RELATIVE Ii J 2 I 0
NSTRlJf1��� p I-' -• # DESCAIFl IOf� ; . t, C.

LSL LSLA "
LSLB 56
LSL

LSA LSAA ..
LSAB "
LSA

MUL 30 " '
NEG NEGA 40 2 1

NEGB 50 2 1

" 6

.. 6 2 ,. 7 3

NEG 00 6 2 70 7 3 60 6 • 2 ·
NOP 12 2 1
OA ORA

ORB
OACC

PSH PSHS 34 5 • ' 2

PSHU 36 S , • 2

PUL PULS

PULU

AOL ROLA
AOLB
AOL

ROA AOAA
ROAB
ROA ""

ATS

SBC SBCA
SBCB

s"

ST STA
STB
srn
STS

STU
sr,
m

SUB SUBA
SUBB
SUBD

35 5·

37 5•

., 2
59 2

" 2
56 2

3B II

" '

, o '

SWI SWI" 3F 19
SWl2" 10 20 "

'
2

' '
' '
'
'

'

SWl3' 11 20 2
3F

SYNC 13 2 1

TFR R 1 , R2 1F 7 2
TST TSTA 40

TSTB SO

9A 4 2 BA 5 J 8A 2 2 AA 4, 2•
DA 4 2 FA 5 3 CA 2 2 EA 4 • 2 •

2

09 6 2 79

06 6 2 "

92 2 B2
o, ' "
97 . > B7
07 . ' F7
00 ' ' ,o
,0 6 3 "
o, "
o, ' ' " " ' 2 " " 6 3 "

7 3

3 82
3 c,

' ' .
7

69 6+ 2 •

66 6· 2 •

2 A2 4 + 2• ' " 4 • 2 •

A7 4 + 2•
E7 • • 2 •
ED 5 , 2•
10 6• 3 • "
EF S• 2 •
AF S • 2 • "
AF 6 , 3 <

90 4 2 BO J 80 2 2 AO 4 • 2 •
DO 4 2 FO 3 CO 2 2 EO 4 , 2 •
93 6 2 83 3 83 4 3 AJ 6• 2 •

TST OD 6 2 7 0 7 3

143

:}o...mmrn- o : i : : :
M C c., bo • 1 1 I t

:1o_JI[Jfill)-! : g l : l
M b, bo c • 0 I • t
A >< 8- 0

(Uns,gr.ed)
A , 1 - A
a + 1 - e
M , 1 - M
No Operahon

8 1 1 1 1
e I 1 t1
B t l l l

A v M - A • I I 0 •

�c" � �� - cc .
t 1 0 ;

Push Reg,s1ers on • • • • •
S Stack

PushRe91s1erson • • • • •
U Stack

Pu11 Reg,ster5 1rom • • • • •
S S1ack

Pull Reg,sters trom • • • • •
U Stack

:ILO-llilIIIDJ : f l f f
M c b, - bo • I I t I

: l CO-iiliimP : : : : l
Mr C b, - bo •) I • l
Retu,n From

lnlerrupt
ReturnF,om

Sut>foutme
A - M - C - A 8 t I t I
B - M - c- B a 1 1 1 1
S19n Ex1end B • 1 1 0 •

on10A ·-· - -
0 - M· M • 1
S - M: M • 1

U - M: M + 1
X - M: M • 1
Y - M : M • 1

• 1 1 0 •
• It O •
• 1 1 0 •
• I I o •

• ! I D •
• ! I D •
• 1 1 D •

A - M - A 8) 1 1 1
B - M - 8 I ! I I 1 1
0 - M M • l - D • I I I I
Soltwarelnterrupt l • • • • •
Sottwa1e lntern.,pt2 • • • • •

SottwarelnterruptJ • • • • •

Syncruon,zelo
lnte.,ul)I

Tes1 A
TestB
Tes1 M

• 1 1 0 •
• l l 0 •
• 1 1 0 •

INDEX

A
ABS 28
Addressing modes 85-89
AND 5,6
Arrays . . .4
ASC . 28
ASCII . . 10, 130
Assembler graphics . . 54, 112
Assemblersound . 72, 114
ATN 28
AUDIO .7
Autokey repeat . . . 106

•
Bose Conversions .
BASIC

- address space . 8,31
-commands 7-35
-constants 3,4,7,29
-errormessagas . .

-el(press10ns .
- keywords .
- lines .
- symbols . .
-variables . .

BLINK . .
BLKIN . .
BLKOUT .
Boxes
BYTEIN .

C

. 123, 124
. 5

2.109. 120-121
. 7

. 122
. 4,6,7,98

93
94

. 94
. . . . 110

94

Cassette recorder 7-11, 17, 19,24, 27,29, 102
CharacterCodes44, 128, 132
Characters in hi-res 118
CHA$. 28
CHROUT 95
CIRCLE . . . 49. 110
CLEAR 8,90
CLOAO . . 9
CLOADM . . .9
CLOSE9
c� . ,o.a

COLOR10,48
ColourCodes 126
Colour Sets . . 46, 127
Conditions 6, 16
CONT . 10
Conversion . . . 5,33,34
cos . .29
C.P.U. . .82, 104
CSAVE . . 10
CSAVEM 1 1 , 90
CSADON . . 94

D

DATA .
DEFFN . 1 1
DEF USR . . 12
DEL . 12
�M A, 12
Direct Addressing 86
Disable/Enable BREAK key 105
DRAW . 12,51 , 118

E

Edge Connector .
EDIT
ELSE .

. . 103
13
16

END .
EOF
Errors in BASIC . .
Error messages
EXEC .
EXP
Exponential Format .
Extended Addressing . .

F

Files .
FIX .
FOR/TO/NEXT

G

14
. 29

. 35
. .123
14,99

. 29
. 3

. . 86

9, 17, 19, 24,27,29
. .29

14

GET 15, 53, 114 , 1 18
GOSUB/RETURN .
GOTO . .
Graphics . .

- Hi-res .
- Lo-res
- Modes
- Using S1rings

H
HEX$
Hexadecimal . .

. 15
. 15

. 36-69
. 36, 38, 46-54

. .37,42-46
. 37,39. 55-69

. 43-46

29
. 3,29

High Resolution graphics . 36,38, 46-54

I

IF/THEN/ELSE .
Immediate Addressing . .
Indexed Addressing .
Indirect Addressing
Inherent Addressing .
INIT .
INKEY$
INPUT
INPUT#
INSTA .
INT .

J
JQYIN
JOYSTK
Joysticks .

. . . 16
.86

. 87,88
. 89
. 85

. 93
. . 29
. . 16

. 17
. 30

. . 30

. . 95
30

101

K
Keywords 2, 109, 120, 121

L
LEFT$.
LEN
LET .
LINE .
LINE INPUT
UST
LUST
LOG
Low-resolutiongraphics .

M
M6809

- instruction set .

JO
. 30

.17
. .18,49, 110 . 1 12

. 18
.17

. . 17
. 31

37,42-46

Memo�
- map 93-96, 125
-video · . . . 39,40

Merge • 106
MID$ • • . . • . 31
MOTOR 19
Moving Graphics 11•
Music . 21,27.70-80

Numeric
- constants . 3
- variables 4, 98

0

Octal . .
ON-GOSUB
ON-GOTO . .
OPEN . .
OR .

p

. . . • .4
. 19

. 19
. 9,19

. 5 ,6

PAINT . 20, 53
Parameters . 2
PCLEAR • . . 20, 46
PCLS . 20,48
PCOPY . 21, 48
PEEK 31
PLAY • . • • • . . . • . . 21, 70
PMOOE • • 21,47, 110
POINT • 32
POKE 21
POLCAT 95
P0S . 32
PPOINT . • • • • • • . . . • . . . 32, 49
PRESET . • 22, 48
PRINT . • • • 22
Printer 9,24, 101
PRINT USING . 22
PRINT@ . • . . . • • 24

-grid . 129
PRINT# . 24
PSET 24,48
PUT • • 24. 53, 114. 1 18

R
READ . . .25
Reading two keys at once 107
Recovering from a NEW 107
Redefining BASIC keyworcls • • . 109
Register Addressing 89
Registers - C.P.U. • 84, 85
Relative Addressing86
REM . • . . . 25
RENUM . . • • • • • 25
RESET . • • • 25, 43, 106
Resolution • . . • • 37,47
RESTORE • • • . . • • . . . • 26
RETURN • • • . . • 26
RIGHTS • • • 32
AND • . . • •32
ROM Routines 93-95
RUN 26

s
SCREEN
Scrolling
Semigraphics

. . 26,46
• . • . . . • 1 12

. 37,42-46

SET • • • . . 26, 43, 106
SETUP .. • . . . • . . . • . . . • 93
SGN . . .33
SIN . 33
SKIPF 27
SOUND . . • • • . . . • • . . • • . . . 27, 70
SpeachReproduction . • • • . • • • 73-80
SJ:-:ling Things up . 104
SOR 33
Startofscreen memory 40-42,47, 1 10
STRING$ 33
STRS . ..33
String

- oonstants 3,7
- space/stack .• 8,98
- variables . .

SubscriptS .
Symbols . •
Syntax .

T
TAN
Text .
THEN .
TIMER .
Times .
TO
TOUCH
TRON/TROfF .

u
USA

V
VAL . .
Variable

. 4, 7, 98
• . • 4

. 5
. . . . 2

. 34
. 36,37

. 16
. . 34

. • . . 2
. 14

. 93
. . . 27

. . . . 34,99

• • . . • . . . • . . . 34

- names . 4,6
- stack . 97

VARPTR 35
V.D.G. . . . • • • • 37, 40, 41
Video Memory . . . • • . . • . . . • 39, 40

w
WRTLDR 94

DllAliON 32
pragrammer•s reference guide

REGISTRATION CARD

Please fill out this page and return it promptly in order that we may keep
you informed of new software and special offers that arise. Simply cut
along the dotted line and return it to the correct address selected from
those overleaf.

Where did you learn of this product?

D Magazine. If so, which one?

D Through a friend.

D Saw it in a Retail Store

D Other. Please specify

Which Magazines do you purchase?

Regularly: . .

Occassionally: . . .

What age are you?

0 1 0-15 D 1 6-1 9 0 20-24 o over 25
We are continually writing new material and would appreciate receiving

• your comments on our product.

How would you rate this book?

D Excellent
D Good
D Poor

D Value for money
D Priced right
D Overpriced

Please tell us what software you would like to see produced for your
DRAGON.

Name . . .

Address

. . . . Code

	1
	lc-n001
	lc-n003
	lc-n004
	lc-n005
	lc-n006
	lc-n007
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p145
	lc-p146
	lc-p151
	z

