

Instant Arcade Games
for the

Dragon
Jean Frost

@:!@:! ... :Ii.

Pan Books London and Sydney

Firsr published 1983 by Pan Books Lid,
Ca\1aye Place, London SWIO 9PG

in association wi1h Personal Compuler News
9 876543 21
©Jean Frost 1983

ISBN O 330 28271 9

Printed and bound in Great Britain by
Richard Clay (The Chaucer Press) Ltd, Bungay, Suffolk

This book is sold subject to the condition 1hat i1 shall nOI,
by way of trade or otherwise, be lent, re-sold,
hired ou1, or 01hern.•isc circulated wi1hout 1he publisher's prior consent
in any form of binding or cover other 1han that in which it is

published and withou1 a similar condition including
this condition being imposed on the subsequeni purchase.

-R-R··

CONTENTS

Preface 5
I BASIC and Games, Computers and Cheesecake 7
2 Building Blocks, an Example Construction 18
3 Arcade Games, a Selection of Lego Bricks 40

3. I Instructions
3.2 Backgrounds
3.3 Alien Graphics
3 .4 Player Graphics
3.5 Set-up Routines
3.6 Movement and Firing
3. 7 Collision Detection
3.8 Explosions
3.9 Scoring
3.10 Fuel and Ammunition
3.11 Status Display
3.12 Check for End of Game
3.13 End of Game Display

4 Starting to Write Your Own Games 99
5 Further Explanations and Understanding BASIC l07
6 Character Graphics 114
7 Arrays and Adventures 126
8 Adventure Games, a Selection of Lego Bricks 130

8.1 Initialisation
8.2 Assign Inventories
8.3 Instructions
8.4 Create the Maze
8.5 Describe the Room
8.6 Player INPUT
8. 7 Check INPUT is Legal
8.8 Perform Instructions
8.9 PRINT Response
8.10 Check for End of Game
8. 11 End of Game Message
8. 12 Round Again
8. 13 Food and Strength

8.14 Torch and Bameries
8.15 Trolls, Run, Fight and Teleport
8.16 Monsters and Magic Dust
8.17 Crystals and Shimmering Curtains

9 Further Adventures
lO Some Parting Remarks

APPENDICES
Appendix One
Appendix Two
Appendix Three
Appendix Four

Arcade game variables
Adventure game variables
ASCII character set
Decimal/Binary conversion tables

168
181

183

PREFACE

This book has been designed to help people with little or no
programming knowledge construct their own arcade and
adventure games. In its simplest form this book is like a Lego-set
with ready made pieces that can be put together, even by the
complete novice, to form a game. For those who wish to expand
their understanding of the BASIC programming language each of
the building blocks or routines is explained in straight-forward
terms. Further sections of the book explain the routines in
greater detail. More experienced programmers may also use this
book as a source of ready written and documented routines for
inclusion, perhaps with alterations, in their own programs.

Many people are left bewildered when they try to make the
transition from buying software to writing their own. Books on
BASIC are full of obscure jargon and tend to treat a simple, highly
practical subject as though it were an arcane, technical concept.
The authors here have attempted to redress the balance by
presenting a simple introduction to how a program is put
together. A worked example of how to construct a program is
given and this can be used as a step by step recipe by the readers
for creating their own unique programs. This piece by piece, easy
to understand approach allows the reader to become familiar with
BASIC programs by 'handling' the routines and using them. In
this way each small brick in the structure of programming
becomes an understandable everyday object. With continued use
these 'objects' will become less mysterious and will gradually
become as easy to use as building bricks. In much the same way
that children learn to speak English by playing with words, and
even alphabet blocks, the reader will assimilate and learn the
computing terminology and the BASIC language. This approach
allows the learning process to be carried out at your own pace
and, hopefully, through the games you construct, at your leisure.

Obviously this approach also requires that this book be used in
the same manner as a manual for mending cars or a recipe hook:
Keep it beside you as you work and refer to it for instructions at
the appropriate points. Do not attempt to read straight through
the book from cover to cover without keying in and trying many
of the routines listed. By the time you have looked at and used
most of the example programs you should find your confidence in
practical BASIC allows you to write your own programs. We hope
you enjoy this book and are rewarded for your studies by a
growing understanding of BASIC and many hours of fun.

Jean Frost and Frederick Siviter

CHAPTER 1

BASIC and Games, Computers and Cheesecake

Computer games are becoming a very popular form of
entertainment. They are also quite expensive. Many computer
owners would like to cut down on this expense by writing their
own games and this book is here to help you do just that. How do
you write a computer game, then? Well, I think we'd better start
by taking a general look at computers and the problems of
converting our ideas for games into computer programs.

Computers are really fast operators, and you may think an
accountant is pretty nippy on his calculator keyboard,
manipulating numbers, but that's just peanuts compared to the
speed at which computers work. Unfortunately computers are
also dumb. They can't do anything until you tell them what you
want doing. So how do we tell a computer to do something? Well,
if we really wanted to talk to a computer we would have to speak
entirely in numbers, because that's all they really understand!
Fortunately most computers are supplied with a built-in
interpreter. It's just like the Prime Minister using an interpreter
to tell the Russians exactly where they can put their missiles. The
BASIC interpreter can translate our words into the number which
the computer understands.

Great, so we can just stroll up to the computer, pat it on the
keyboard, and say "How much profit did I make selling
cheesecake today?" . . . Well it's still not quite that easy, we have
to phrase our question very simply and explain everything to the
computer in simple and exact terms. The BASIC interpreter can
only translate a limited number of words and it assumes that any
word it doesn't know is the name of somebody or something.
Right, first we need to tell the computer the facts:

The wholesale cost of a cheesecake is 30p each.
The retail price of a cheesecake is SOp each.

We also need to tell the computer things relating to these facts:

Profit is calculated as retail price minus wholesale price.
Total profit is profit per cake multiplied by the number of
cheesecakes sold.

Hopefully we have now given the computer all the information a
child would need to work out the answer. Of course if we forgot
to tell it something the small child might say "you forgot to tell
me how many you sold", and many computers would say
something dumb like "VARIABLE NOT FOUND" which actually
means the same thing. Your DRAGON is much too shy though,
and instead of telling you it would assume you hadn't sold any,
which is even worse, so we must make sure we tell it everything it

needs to know. To tell the computer anything we must express it
in BASIC terms. BASIC is like a restricted form of the English
language so in BASIC the above statements would be:

LET WHOLESALE = 30
LET RETAIL = 50
LET SOLD= 40

(That's what we forgot to tell it before.)

LET PROFIT = RETAIL - WHOLESALE
LET TOTAL = PROFIT* SOLD

(On computers the asterisk '*' is used instead of an x for multiply
because we might get the x mixed-up in the middle of some
letters.)

The DRAGON, unlike some computers, allows us to miss out
the word LET in statements like these, so to save you a lot of extra
typing we won't bother with LET from here on. So we can just
say:

WHOLESALE = 30

If you have typed in these lines in exactly as above, pressing
ENTER at the end of each line, the computer will have replied 'OK'

to each statement you made. The computer now knows what the
answer is but, hecause we didn't ask it to tell us, it just sits there
being stupid. To get it to give you the answer tell it to:

PRINT TOTAL

When you press ENTER the answer 800 will appear.
Let's re-examine how we got the computer to do something.

We started with a problem then split the problem up into parts:
We gave the computer the facts, we told it what steps it would
need to go through to work out the answer, then we told it to tell
us the answer. This sequence of instructions, like a recipe, is
called an algorithm and all programs are just such algorithms
(methods) written out in BASIC.

If we wish to use the recipe again we would have to type it in
again exactly as before. To save ourselves time we can store the
instructions as a program on the computer by numbering each
line or statement as we type it in.

I WHOLESALE = 30
2 RETAIL= 50
3 SOLD= 40
4 PROFIT= RETAIL - WHOLESALE
5 TOTAL= PROFIT* SOLD
6 PRINT TOT AL

9

This time as we type in each line the screen will show a LIST of all
the instructions we have given it. This is a computer program
(program comes from the word programme and, like the ones you
get at the theatre, it shows the order in which things are going to

be done).
When we want the computer to show us what instructions it

has stored we use the BASIC command LIST, followed by ENTER,
and the lines of the program will be displayed on the screen once
again.

When we want the computer to RUN through the LIST of
instructions we simply type the command RUN, then ENTER
(which activates the command).

The computer will then do all the instructions in the program
and almost instantaneously PRINT the answer on the screen.
Well, that was quicker than working it out in your head, but
what a time it took getting the question into a state where the
computer could answer it. Type in, exactly as shown:

10

3 INPUT "HOW MANY DID YOU SELL";SOLD

This will replace the old instruction number 3 and tells the
computer to ask you how many cheesecakes you sold each time
you RUN the program. If you type anything other than 40 then
the computer will give you a different answer. It will always be
the right answer and it will be worked out far faster than you
could have done it. To save the bother of typing RUN each time
we could add an extra instruction to our program:

7 GOTO 3

This simply tells the computer to GO TO instruction 3 and
continue from there down the lines of the program in order. Now
we have a program that will keep asking you how many you sold
and telling you what profits you would make. You will have to
press BREAK to stop the program.

Our program is numbered in consecutive numbers starting at
I. However this is not usually the case with computer programs.

Suppose we really had forgotten the line about the number of
cheesecakes. We would have typed in a program that looked like
this:

1 WHOLESALE = 30
2 RETAIL= 50
3 PROFIT= RETAIL- WHOLESALE
4 TOTAL= PROFIT* SOLD
5 PRINT TOT AL

If we typed RUN for this set of instructions the computer would
assume that SOLD was zero, because no one has told it otherwise.
It would therefore multiply PROFIT by zero in line 4 and make
TOTAL equal to the result, zero! PRINT TOTAL would therefore
print zero. Eventually we would realise what we had forgotten
and would want to insert a line to tell it how many cheesecakes it
had sold:

3 SOLD= 40

We would now have to retype all the lines except the first two to
create a gap for the new line. Although the computer goes down

11

the LIST of instructions in order it doesn't care if there are
numbers that aren't used. So, we can type our program with line
numbers that go up in tens (or any other steps). Now any other
lines we've missed out can be given a number between the
numbers of the lines already there.

10 WHOLESALE= 30
20 RETAIL= 50
30 PROFIT = RETAIL - WHOLESALE
40 TOTAL= PROFIT* SOLD
50 PRINT TOTAL

Oops! We forgot that line again, but this time we can simply type

25 SOLD= 40

and the computer will place it in the LIST of instructions at the
appropriate position.

OK, (to quote the computer) we now know roughly what a
BASIC program is, so how do we write one that plays a game?
We've got to think of the right LIST of instructions. That sounds
like a big job to tackle all at once, so we'd better split it up into
smaller sub-tasks. Let's start with an overview of the sub-tasks
that have to be performed in a typical Arcade-type game. These
are:

1. Initialisation. We must first set up the computer so that it is
in the

.
correct state to play the game.

2. Instructions. We need to tell the player how to control the
movement and firing, etc.

3. Alien graphics. Decide what the opposition looks like.
4. Player graphics. Decide what the good guys look like.
5. Background. Draw some sort of scene against which the

action takes place.
6. Set-up routines. Telling the computer the facts.
7. Movement and firing. Move the player and see if a shot is to

be fired.
8. Collision detection. See if an alien has been shot or the

player has crashed.

12

9. Explosions. Blow up the poor unsuspecting alien who is very
probably a victim of circumstances beyond his (or its) control.

10. Scoring. Award the player some points for his gleeful
destructive ability.

1 1 . Fuel and ammunition. Perhaps we might like to affect the
quantities of these available to the player.

12. Status display. Show the player how he is getting on.
13. Check for end of game. See if something fatal has happened

to the player or if the player has won. We will need to GOTO step
7 if the game isn't over.

14. End of game display. Say goodbye to the player.

Well, that's a lot of things to do. In fact some of them look as if
they need large programs just to do one sub-task. BASIC has a pair
of commands which allow us to treat small programs as though
they are sub-tasks or subroucines of a larger program. These
commands are GOSUB and RETURN. The first of these is a lot like
the GOTO command and makes the computer jump to the line
number given, however the G0SUB command also tells the
computer to remember where it came from. Once the computer
has obeyed the GOSUB command it carries on down the list of
instructions in the subroutine until it encounters the RETURN
command. At this point it goes back whence it came having
performed the sub-task.

Using these commands we can write a control program which
simply GOSUBs to the appropriate sub-tasks in the right order. All
we will need to do then is define the sub-tasks for it to perform
and it will achieve our total task of playing a game. The following
listing shows just such a control program constructed on the basis
of the need to perform the subroutines as laid out above. This
listing and all the other listings in this book have been produced
directly from the DRAGON computer. Using the LUST command,
which you need to be Welsh (or slightly BRAHMS & . . .) to
pronounce, you can tell the computer to LIST the program on to a
printer. This ensures that all the programs in this book are
correct, so if you have any trouble check that your typing
corresponds exactly with the listings given.

Control Program Listing

10 REM ****************

1 2 REM * I N I T I AL I SAT ION*

1 4 REM ****************

20 PCLEAR6 : PMODE4 , 3 : PCLS

25 NV=0
30 N=4 3 : PG= 3 : GOSUB 9000

40 D I MPB (l) : D I MN (l l : D IMAB (l l

50 GM=0 : REM *NO . OF GAMES PLAYED*

1 00 REM **CONTROL PROGRAM**

102

104 REM **************

1 06 REM * I NSTRUC T I ONS*

1 1 0 GOSUB 1 000

1 1 2 REM *****************

1 1 9 REM *GRAPH I C S < AL I EN l *

1 20 GOSUB 1 1 00

1 22 REM ****************

1 29 REM *GRAPHICS < SELF l *

1 30 GOSUB 1 200

1 3 2 REM ************

1 39 REM *BACKGROUND*

1 40 GOSUB 1 300 : GM=GM + l

1 42 REM ****************

1 4 9 REM *START-UP/ RESET*

1 50 GOSUB 1 400

1 52 REM ***********

1 59 REM *MOVE / F I RE*

1 60 GOSUB 1 500

1 62 REM ***************

1 69 REM *CHECK FOR H I T*

1 70 GOSUB 1 700

1 72 REM ***********

1 79 REM *EXPLOS I ON*

1 80 IF H I T= ! THEN GOSUB 1 800

1 82 REM *********

13

14

1 89 REM *SCOR ING*
l 91/J GOSUB 1 91/Jf/J
1 92 REM *****************
199 REM *FUEL , LASERS ETC*
21/Jf/J GOSUB 21/Jf/Jf/J
21/J2 REM ****************
21/J9 REM *STATUS DI SPLAY*
2 1 1/J GOSUB 2 1 1/Jf/J
2 1 2 REM **************
2 1 9 REM *END OF GAME?*
221/J GOSUB 22/i!J/i!J
222 REM *************
229 REM *ROUND AGAIN*
23/i!J I F F I N=/i!J THEN 1 6/i!J
232 REM ***********
239 REM *GAME OVER*
241/J GOSUB 23/i!JIIJ
242 REM *************
249 REM *START AGA I N*
25/i!J GOTO 1 4/i!J
252 REM *************

As you can see there are a lot of lines in the above program that
start with the word REM. This means that anything following the
REM is just a REMark or REMinder as to what is going on. The
computer ignores these lines completely but stores them in the
USTing so that we can understand what's going on.

In the next chapter there is an example of how to fill in the
subroutines for this control program and in the following chapter
there is a selection of routines that can be used to make up
different games.

However, before going on to that you should carefully type in
the two routines and the list of DATA statements given below in
listings l . 1 , l . 2 and l . 3 . These are special routines that will be
explained in Chapter 6, but they are important to the working of
the program, so they must be entered before going on. This
consitutes our first category of initialising the computer to get it
ready to play the game.

Listing 1. 1

9000 PMODE4 , PG : SCREEN1 , 1 : REMt h i s
i s j ust s o you can see i t happe

n i n 9
90 1 0 ST=7680 + 1 536* < PG - 2)
9020 FOR CH=0 TO N - 1 : RN= I NT < C H / 3
2)
9030 FOR Y=0 TO 7 : READ C D : I F CD=
999 THEN Y=7: GOTO 9050
9035 IF NV=l THEN C D=255-CD
9040 POKE S T + 224*RN+CH+32*Y , CD
9050 NEXTY , CH
9055 RETURN

Listing 1.2

9899 REM *PR INT STR I NG*
9900 I F P$= " " THEN RETURN
9910 A$=LEFT$ (P$, 1) : P$=RIGHT$ (P$
, LEN (P$) - 1)
9920 I F A$= " " THEN YG= 1 4 4 : XG=20
8 : GOTO 9950
9930 YG= 1 4 4 : AS=ASC (A$) - 65 : IF A$<
" A " THEN YG= 1 5 2 : AS=ASC (A$) -48
9940 XG=8*AS
9950 GOSUB 9960 : XS=XS+ S : GOTO 990
0
9960 PMODE4 , 3 : GET < XG , YG) - (XG + 7 , Y
G + 7 > , N , G
9970 PMODE4 , 1 : PUT < XS , YS) - (XS + 7 , Y
S + 7 > , N , PSET: RETURN

15

1 6

Listing 1 .3

500 DATA 0, 60, 66 , 66 , 1 26 , 66 , 66 , 0
502 DATA 0 , 1 24 , 66 , 1 24 , 66 , 66 , 1 2 4 ,
0
504 DATA 0 , 60 , 66 , 64 , 64 , 66 , 60 , 0
506 DATA 0 , 1 20 , 68 , 66 , 66 , 68 , 1 20 , 0
508 DATA 0, 1 26 , 64 , 1 24 , 64 , 64 , 1 2 6 ,
0
5 1 0 DATA 0, 1 26 , 64 , 1 24 , 64 , 64 , 64 , 0
5 1 2 DATA 0 , 60 , 66, 64 , 78 , 66 , 60 , 0
5 1 4 DATA 0 , 66 , 66 , 1 26 , 66 , 66 , 66 , 0
5 1 6 DATA 0 , 62 , 8 , 8 , 8 , 8 , 62 , 0
5 1 8 DATA 0, 2 , 2 , 2 , 66 , 66 , 60 , 0
520 DATA 0 , 68 , 72 , 1 1 2 , 72 , 68 , 66 , 0
522 DATA 0 , 64 , 64 , 64 , 64 , 64 , 1 26 , 0
524 DATA 0 , 66 , 1 02 , 90, 66 , 66 , 66 , 0
526 DATA 0 , 66 , 98 , 82 , 74 , 70, 66 , 0
528 DATA 0 , 60 , 66 , 66 , 66 , 66 , 60 , 0
S30 DATA 0, 1 2 4 , 66 , 66 , 1 24 , 64 , 64 , 0
532 DATA 0 , 60, 66 , 66 , 1 1 4 , 74 , 60 , 0
534 DATA 0, 1 24 , 66 , 66 , 1 24 , 68 , 66 , 0
536 DATA 0 , 60 , 64 , 60, 2 , 66 , 60 , 0
538 DATA 0, 254 , 1 6 , 1 6 , 1 6 , 1 6 , 1 6 , 0
540 DATA 0, 66 , 66 , 66 , 66 , 66 , 60 , 0
542 DATA 0, 66 , 66 , 66 , 66 , 36 , 24 , 0
544 DATA 0 , 66 , 66 , 66 , 90, 1 02 , 66 , 0
546 DATA 0 , 66 , 36 , 24 , 24 , 36 , 66 , 0
548 DATA 0 , 1 30 , 68 , 40 , 1 6 , 1 6 , 1 6 , 0
550 DATA 0, 1 26 , 4 , 8 , 1 6 , 32 , 1 26 , 0
552 DATA 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
562 DATA 999 , 999 , 999 , 999 , 999
564 DATA 0 , 24 , 36 , 44 , 52 , 36 , 24 , 0
566 DATA 0 , 8 , 24 , S , 8 , 8 , 28 , 0
568 DATA 0, 24 , 36 , 8 , 1 6 , 32 , 60 , 0
570 DATA 0 , 24 , 36 , 2 4 , 4 , 36 , 24 , 0
572 DATA 0 , 8 , 24 , 40 , 72 , 1 24 , S , 0

1 7

574 DATA 0, 60, 32 , 56 , 4 , 36 , 24 , 0
576 DATA 0 , 28 , 32 , 56 , 36 , 36 , 24 , g
578 DATA 0, 60, 4 , 8 , 1 6 , 32 , 32 , 0
580 DATA 0 , 24 , 36 , 24 , 36 , 36 , 24 , 0
582 DATA 0, 24 , 36 , 36 , 28 , 4 , 56 , 0
584 DATA 0 , 0 , s , 0, 0 , 0, a , 0

CHAPTER 2

Building Blocks, an Example Construction

In the previous chapter we got to grips with the fundamentals of
BASIC programming. In this chapter we will not be concerning
ourselves so much with understanding the programs but more
with using them. We will work through an example of how to
build up a game by adding subroutines to the control program. It
may be helpful to think of the control program as being like a
"blocks and holes" type of child's toy. To use it you must place
one block in each hole to get a complete program . Remember
that each block must be the right shape for the hole you are
putting it in, although there may be variation in details (like
colour) of the block. In the listing of the control program and in
the other listings throughout this book, you will see many lines
beginning with REM These lines are not instructions to the
computer but are merely REMarks or REMinders to us humans of
what we intended when we gave the instructions . If you wish to
leave these lines out to save time typing it won't make any
difference to the computer, the program or the game. It will
mean, however, that you will need to take longer to find the
section where some particular task is performed should you wish
to examine or alter it later. Most people do not have perfect
memories so these REMinders can be very important when trying
to read the program.

Right then, let's make a game. Obviously the first thing we
need to do is type, or LOAD from tape, the Control Program and
the initialisation routines given in Chapter 1 .

Having done this we need to decide what sort of game we wish
to produce: What will be the aim of the game? Is it going to be a
game of dodging ravenous spiders in the desert, or a game of
blasting alien invaders out among the stars? Of course due to the
nature of the system you could have cowboys shooting at alien
flies in the middle of the ocean - whatever appeals to your sense
of humour. It's entirely up to you. Well, whatever you decide the

18

19

first things to consider are whether you are going to shoot at
things or dodge, and which modes of movement are available to
your player. LEFT, RIGHT, UP, DOWN and even HYPER-space
jumps can be selected. For our example game let's choose to be a
tank holding off alien invaders amongst the stars.

Step I. Choose the INSTRUCTIONS. Type in the first listing
from the instructions section (listing 3. la, also given below),
which must always be used. Now we must select and add the
lines that allow us to move LEFT and RIGHT (listings 3.1 b and
3. l e). Finally we add the line which allows us to FIRE (listing
3. I f).

Listing 3. Ja

1 000 C LS : U=0: D=0: F=0 : H=0 : L=0: R=0
1 0 1 0 PRINT@1 0 , " I NSTRUC T IONS "
1 060 P R I NT@45 1 , " PRESS ANY KEY TO

CONT I NUE "
1 090 A$= INKEY$: I F A$= " " THEN 1 09
0
1 095 RETURN

Listing 3. Jb

1 020 PRINT@ 1 30 , " USE LEFT ARROW T
0 MOVE LEFT " : L= l

Lisring 3. 1 c

1030 PRINT@ 1 62 , " USE R I GHT ARROW
TO MOVE R I GHT " : R= l

Listing 3. if

1060 PRI NT@258 , " USE 0 TO F I RE " : F
= 1

20

Step 2. Choose the ALIEN. We have already decided that we
want an alien invader so we'll use listing 3.2h.

Listing 3.2h

1 1 00 REM ***************
1 1 10 REM *AL IEN I NVADER*
1 1 20 REM ***************
1 1 30 DATA 20 , 28 , 62 , 1 27 , 62 , 28 , 42 ,
73
1 1 40 PG=2 : N= l : GOSUB 9000
1 1 50 REM ********************
1 1 60 REM *STORE I N ARRAY ' A ' *
1 1 70 REM ********************
1 1 80 D I MA (1) : GET (0 , 1 4 4) - t 7 , 1 5 1) ,
A , G
1 1 90 RETURN

Step 3. Choose the PLAYER. We want a tank for our player so
we'll use listing 3.3b. It is worth noting at this point that we
could have chosen identical characters for both the alien and our
player (e.g. both helicopters as in listings 3.2g and 3.3a) but it
will look better if they are different.

Listing 3. 3b

1 200 REM *************
1 2 1 0 REM *PLAYER TANK*
1 220 REM *************
1 230 DATA 1 6 , 1 6 , 84 , 1 24 , 1 24 , 1 24 , 6
a , 0
1 240 PG=2 : N= l : GOSUB 9000
1 250 REM ********************
1 260 REM *STORE IN ARRAY ' B ' *
1270 REM ********************
1 280 D I MB (l) : GET C 0 , 1 44) - C 7 , 1 5 1) ,
B , G
1 290 RETURN

21

Step 4. Choose the BACKGROUND. We could select any listing
from section 3.4 of Chapter 3, but since we want an outer space

game let's choose the scene with small stars (listing 3.4f).

Listing 3. 4[

25 NV=0
1 300 REM ***************
1 305 REM * SMALL STARS *
1 3 10 REM ***************
1 350 PMODE4 1 1 : PCLSNV : SCREEN 1 , 1
1 360 FOR Q=0 TO 25
1 370 PSET C RND (255) , RND (1 75 l , - C NV
=0))
1 380 NEXT Q
1 390 RETURN

Part of the general scene (or superimposed upon it) will be
whatever we decide to display in the way of SCORES, AMMO and
FUEL, so these headlines can be displayed here. We will ignore
AMMO for the time being and just have FUEL and SCORE (listings
3.4i and 3.4j).

Listing 3.4i

1 385 P$= " SCORE : " : XS=96 : YS= 1 76 : GO
SUB 9900

Listing 3.4j

1 387 P$= " FUEL : " : XS= 1 84 : YS= 1 76 : GO
SUB 9900

Step 5. START/RESTART routine. There is no choice about
this one. We need to set all the variables even if we don't appear
to be using them in this particular incarnation of our game. This
is because some routines test them as a matter of course, and we

22

don't want AMMO=0 (for example) causing the game to end
prematurely.

Listing 3.5

1 400 REM ********************
1 405 REM *SET UP AND RESTART*
1 4 10 REM ********************
1 420 ALI ENS= 1 0 : REM *NO . O F AL IEN
S*
1 430 SCORE=0 : REM *SET SCORE TO Z
ERO*
1 440 AMMO= 1 0 : REM *SET LASERS TO
FULL*
1 450 FUEL= 1 0 : REM *SET FUEL TO FU
LL*
1 460 PY= 1 68 : PX= 1 20 : REM *START PO
S I T ION OF SELF*
1 470 IF F=0 THEN PY=S: REM *CHANG
E POSI TION FOR DODG I NG GAME*
1 475 GET < PX , PY J - (PX + 7 , PY+7 J , PB , G
: PUT (PX , PY J - (P X + 7 , PY+ 7 J , B , PSET
1 480 DD= l : P=0: F I N=0
1 490 XP=PX : YP=PY
1495 RETURN

Step 6. MOVE/FIRE routine. The main routine from this section
must always be typed in, so first of all add listing 3.6a. Now we
need the lines which allow us to move LEFT & RIGHT (listing
3.6b). Including this routine will only allow us to move LEFT or
RIGHT provided we added the appropriate line in the
INSTRUCTIONS routine.

Listing 3.6a

1 500 REM *************
1 502 REM *MOVE � F I RE*
1 505 REM *************

1 5 10 IF DD=0 THEN 1 540
1 520 DD=0
1 530 AYs8: AX=RND (32 l *8 - 8 : XA=AX
1 535 REM **MOVE ALIEN**
1 540 IF AY< >8 THEN PUT (XA , AY-8 l
< XA+7 , AY- l l , AB , PSET
1 545 GET < AX , AY J - < AX+7 , AY +7 l , AB , G
: PUT C AX , AY J - C AX + 7 , AY+ 7 l , A , PSET
1 550 XA=AX: AY=AY+8 : IF AY= l 68 THE
N DD= l : P=P+ l : AL I ENS=ALIENS - 1
1 555 I F DD=l THEN PUT C XA , AY- 8) - (
XA+7 , AY- l > , AB , PSET
1560 AX=AX+8* C RND (3) - 2)
1 565 IF F=0 AND AX>PX THEN AX=AX
- 8 : GOTO 1580
1 570 IF F=0 AND AX< PX THEN AX=AX
+ 8 : GOTO 1 580
1 580 IF AX< 0 THEN AX=0
1 590 IF AX>248 THEN AX=248
1 595 REM ****************
1 596 REM * MOVE PLAYER *
1 599 REM ****************
1 600 A$=INKEY$
1 630 IF PX<0 THEN PX=0
1 635 IF PY<0 THEN PY=0
1 640 IF PX > 248 THEN PX=248
1 645 IF PY> 168 THEN PY= l 68
1 650 IF PY=YP AND PX=XP THEN 1 68
0
1 660 PUT C XP , YP > - < XP+7 , YP+7 > , PB , P
SET
1670 GET < PX , PY > - < PX + 7 , PY+7 > , PB , G
: PUT C PX , PY > - C PX + 7 , PY+ 7 > , B , PSET
1 675 YP=PY : XP=PX
1 680 K=0: IF F=l AND A$= "0" THEN
K = l
1 690 RETURN

23

24

Liscing 3. 6b

1 598 REM * LEFT 8' R I GHT *
1 602 REM **LEFT AND R IGHT**
1 605 I F L=l AND A$=CHR$ (8 l THEN
P�:=PX-8
1 6 1 0 I F R = l AND A$=CHR$ (9 l THEN
PX=PX + 8

Step 7. CHECK FOR HIT routine. W e must select a routine
which will fire some sort of weapon so we won't use 3. 7a. Let's
use 3 .7c, the LASER routine.

Liscing 3. 7c

1 700 REM ***************
1 70 1 REM *CHECK FOR H I T*
1 702 REM * LASER *
1 705 REM ***************
1 7 10 H I T=O : I P K=0 THEN 1 790
1 7 1 5 SOUND 1 00 , 1
1 720 BX=PX+ 3 : BY= 1 6 7
1 730 COLOR (l A N D NV=0l , l : L I NE (BX
, BY) - (BX , 8) , PSET
1 745 I F BX > XA - 1 AND BX< X A + 8 THEN

H I T= l
1 755 COLORNV , 1 : L I NE < BX , B Y l - < BX , 8
l , PSET
1 790 RETURN

Step 8. EXPLOSION routine. When we hit something we want
to have some sort of acknowledgement of our success. We will
choose a BLIP noise (listing 3.8i) for our LASER. We must add
listing 3.8k because ours is a FIREing game and we need to wipe
the alien from the screen when we hit it.

Liscing 3.Si

1 800 RH1 *************
1 801 REM * EXPLOS ION *
1 802 REM * B L I P *
1 805 REM *************
1 8 HJ" FOR Q = l TO 5
1 820 SOUN O 1 50 , 1
1 840 NEXT Q

1 690 RETURN

Liscing 3.Sk

1 880 IF F=l THEN PUT I XA , AY-8 ! - I X
A + 7 , AY - 1 J , AB , PSET : DD = l : AL I ENS=AL
IENS - 1

25

Step 9. SCORE routine. When we hit something we also want to
have some sort of increase in our SCORE to tell us what great shots
we are. We will choose to give ourselves 10 points for each alien
we hit (listing 3.9d).

Liscing 3.9d

1 900 REM *****************
1 901 REM *SCOR ING ROUTINE*
1 902 REM * 10 P O I NTS *
1 905 REM *****************
1 9 1 0 IF H I T=0 OR F=0 THEN 1 990
1 920 SCORE=SCORE + 1 0
1 990 RETURN

Step 10. FUEL & AMMUNITION routine. As we have decided
to use FUEL and ignore Ai\lMUNITION, we will start with listings

3. l0b and 3. !0fto decrease our FUEL, or energy reserves each
time we fire our laser. We also want to increase the fuel when we
score a hit and we will be generous and give ourselves a total
reFUEL for each hit (listing 3. !Oh).

26

Listing 3. IOb

2fJfJfJ REM *********************
2fJfJ2 REM *FUEL AND AMMUN I T I ON*
2003 REM * *
2005 REM *********************
209/J RETURN

Listing 3. JO{

2037 RE�l ***************
2038 REM *DECREASE FUEL*
2039 REM *****· **********
2040 I F K=l THEN FUEL=FUEL - 1

Listing 3. /Oh

2047 REM ***************
2048 REM * RESET FUEL *
2049 REM ***************
2050 I F H I T= l THEN FUEL= 1 0

Step 11. STATUS DISPLAY. W e need t o update the display of
information on the screen. For the SCORE we will need to use
listing 3.11 b. As we have already decided to tell the player how
his fuel supply is progressing we will have to add listing 3.1 ld.

Listing 3. I I b

2 1 00 REM *****************
2 102 REM *STATUS D I SPLAY *
2 1 03 REM * *
2 1 07 REM *****************
2 1 1 0
2 1 1 7 REM ***************
2 1 1 8 REM *D ISPLAY SCORE*
2 1 1 9 REM ***************

2 1 20 P$=STR$ C SC ORE l + " " : XS = l 44 : Y
8= 1 76 : GOSUB 9900
2 1 90 RETURN

Listing 3.1 1 d

2 1 37 REM **************
2 1 38 REM *DI SPLAY FUEL*
2 1 39 RE�l **************
2 1 40 P$=STR$ C FUEL l + " " : XS=224 : YS
= 1 7 6 : GOSUB 9900

Step 12. CHECK FOR END. Now we need to decide what
conditions are going to indicate the end of the game. Obviously
we will want to end the game at some time, so we start with
listing 3 . 12a and add at least one of the other listings from that
section. For our game let's choose to end the game if we let 3 of
the opposition get PAST or if we run out of FUEL. So we have to
add listings 3 . 12d and 3. 12e.

Listing 3. 1 la

2200 REM ***********************
2202 REM *CHECK FOR END OF GAME*
2205 REM ***********************
2290 RETURt·J

Listing 3. 12d

2240 IF P=3 THEN F I N= l

Lis1ing 3. !le

2250 IF FUEL=0 THEN FIN=l

27

28

Step 13. END OF GAME DISPLAY. If it's the end of the game
we need to either stop the game, or ask the player if he wants
another go. Let's choose the POLITE STOP routine (listing 3 . 13b)
and, since we have a SCORE, we'll also add listing 3 . 1 3c to tell us
what we got.

Listing 3. I 3b

2300 REN *************
2302 REN * STOP GAME *
2303 REM *POL I TE STOP*
23.05 REM *************
2310 CLS
2330 PRI NT@235 1 " ANOTHER GO? " : A$=
INKEY$
2340 A$= I NKEY$: I F A$= " " THEN 234
0
2350 I F A$() " N " THEN 2390
2360 STOP
2390 RETURN

Listing 3. 13c

2320 PRINT@ 1 3 6 , " YOUR SCORE WAS " ;
SCORE

And that's it! Your final listing should look like the example
below. If it doesn't then make sure you've typed in all the listings
with the right line numbers. Now all you have to do is key in RUN

and press ENTER to play your game! GOOD SHOOTING!
If you have any problems or error messages then go back

through your listing and check it corresponds exactly with the
one below. The error message will tell you where the problem
was noticed and it would be a good idea to look there first. Since
the program is split up into sections you can check through just
one section at a time. Of course the error might be in one of the
previous sections and only have been noticed now. So, if you

can't see an error where it says, try working backwards.

Remember, anything out of place or mis-typed will alter the
program and could cause it to stop.

Example Program

H J REM ****l<***********
1 2 REM * I N I T I A L I SATI ON*
14 REM ****************
20 PCLEAR6 : PMODE4 , 3 : PCLS
25 M'J=0
30 N=43 : PG=3: GOSUB 90fJfJ
40 D I MPB C l) : D I MN (l l : D I M AB (l)
50 GM=0 : REM *NO , OF GAMES PLAYED
*

1 00 REM **CONTROL PROGRAM**
1 02

1 04 REM **************
106 REM *I NSTRUC T I ONS*
1 1 0 GOSUB 1000
1 1 2 REM *****************
1 1 9 REM *GRAPHI C S < AL I EN) *
1 20 GOSUB 1 1 00
1 22 REM ****************
129 REM *GRAPH I C S < SELF > *
1 30 GOSUB 1 200
1 32 REM ************
139 REM *BACKGROUND*
1 40 GOSUB 1 300: GM=GM+ l
1 42 REM ****************
1 49 REM *START-UP / RESET*
1 50 GOSUB 1 400
1 52 REM ***********
1 59 REM *MOV E / F I RE*
160 GOSUB 1 500
1 62 REM ***************
1 69 REM *CHECK FOR H I T*
1 70 GOSUB 1 700

29

30

1 72 REM ***********
1 79 REM *EXPLOSI ON*
1 8ft IF H I T= l THEN GOSUB 1 800
1 82 REM *********
1 8 9 REM *SCORI NG*
1 90 GOSLIB 1 900
1 92 REM *****************
1 99 REM *FUEL , LASERS ETC*
200 GOSUB 2.000
202 REM ****************
209 REM *STATUS D I SPLAY*
2 1 0 GOSUB 2 1 0.0
2 1 2 REM **************
2 1 9 REM *END OF GAME?*
220 GOSUB 22.0.0
222 REM *************
229 REM *ROUND AGA I N*
230 I F F I N=0 THEN 1 6.0
232 REM ***********
239 REM *GAME OVER-lf
240 GOSUB 2300
242 REM *************
249 REM -lfSTART �GA IN*
250 GOTO 1 40
252 REM *************
500 DATA 0 , 60 , 66 , 66 , 1 26 , 66 , 66 , 0
502 DATA 0 , 1 24 , 66 , 1 24 , 66 , 66 , 1 2 4 ,
0
504 DATA 0 , 60 , 66 , 64 , 64 , 66 , 60 , 0
506 DATA 0 , 1 20 , 68 1 6 6 , 66 1 68 , 1 20 , 0
508 DATA 0 , 1 26 , 64 , 1 24 , 64 , 6 4 , 1 2 6 ,
0
5 1 0 DATA 0 , 1 26 , 64 , 1 24 , 64 , 64 , 64 , 0
5 1 2 DATA 0 , 6 0 , 6 6 , 64 , 78 , 66 , 60 , 0

5 1 4 DATA 0, 6 6 , 66 , 1 26 , 66 , 66 , 66 , 0
5 1 6 DATA 0 , 62 , 8 r 8 , 8 , 3 , 62 , 0
5 1 8 DATA 0 , 2 , 2 , 2 , 66 , 66 , 60 , 0

520 DATA 0 , 68 , 7 2 , 1 1 2 , 72 , 68 , 66 , 0

522 Dl'.TA 0 , 64 , 64 , 64 , 64 , 64 , 1 26 , 0

524 DATA 0 , 6 6 , 1 02 , 90, 66 , 66 , 66 , 0

526 DATA 0 , 66 , 98 , 82 , 74 , 70 , 66 , 0

528 DATA 0 , 60 , 66 , 66 , 66 , 66 , 60 , 0

530 DATA 0 , 1 24 , 66 , 66 , 1 24 , 64 , 64 , 0

532 DATA 0 , 60 , 66 , 6 6 , 1 1 4 , 74 , 60 , 0

534 DATA 0 � 1 24 , 66 , 66 , 1 24 , 68 , 66 , 0
536 DATA 0 , 60 , 64 , 60 , 2 , 66 , 60 , 0

538 DATA 0 , 254 , 1 6 , 1 6 , 1 6 , 16, 1 6 , 0

540 DATA 0 , 66 , 66 , 66 , 66 , 66 , 60 , 0

542 DATA 0 , 66 , 66 , 66 , 66 , 36 , 24 , 0

544 DATA 0 , 66 , 66 , 6 6 , 90 , 1 02 , 66 , 0

546 DATA 0 , 66 , 36 , 24 , 24 , 36 , 66 , 0

548 DATA 0 , 1 30 , 68 , 40 , 1 6 , 1 6 , 1 6 , 0

550 DATA 0 , 1 26 , 4 , 8 , 1 6 , 32 , 1 26 , 0

._, ,_,c. DATA 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

562 DATA 999 , 999 , 999 , 999 , 999
564 DATA 0 , 2 4 , 36 , 44 , 52 , 36 , 24 , 0

566 DATA 0 , 8 , 24 , 8 , 8 , 8 , 28 , 0

568 DATA 0 , 24 , 36 , 8 , 1 6 , 32 , 60 , 0

570 DATA 0 , 24 , 36 , 24 , 4 , 36 , 24 , 0

572 DATA 0 , 8 , 24 , 40 , 72 , 1 24 , 8 , 0

574 DATA 0 , 60 , 32 , 56 , 4 , 36 , 24 , 0

576 DATA 0 , 28 , 32 , 56 , 36 , 36 , 24 , 0

578 DATA 0 , 60 , 4 , 8 , 1 6 , 32 , 32 , 0

580 DATA 0 , 24 , 36 , 24 , 36 , 36 , 24 , 0

582 DATA 0 J 24 , 36 , 36 , 28 , 4 , 56 , 0

584 DATA 0 , 0 , a , 0 , 0 , 0 , s , 0
999 F:EM i n s t r uc t i ons
1 0>J0 CLS: U=0 : D=0: F=0 : H=0 : L=0 : R=0
1 0 1 0 PRINT@ 1 0 , " I NSTRUC TIONS "
1 020 PRINT@ 1 30, "USE LEFT ARROW T
0 MOVE LEFT " : L= l
1 030 PRINT@ ! 62 , " USE R I GHT ARROW
TO MOVE R I GHT " : R= !
1 060 PRI NT@258 , " USE 0 T O FIRE " : F
= 1

31

32

1 080 PRI NT@451 , " PRESS ANY KEY TO
CONTI NUE "

1JJ9JJ A$= INKEY$: IF A$= " " THEN 109
/J
l /J95 RETURN
l /J99 REM a l i e n 9rap h i cs
1 1 00 REM ***************
l l lJJ REM *ALIEN INVADER*
1 1 2JJ REM ***************
1 1 30 DATA 20 , 28 , 62 , 1 27 , 62 , 28 , 4 2 ,
73
1 1 40 PG=2 : N=l : GOSUB 9/J00
1 1 5JJ REM ********************
1 1 6/J REM *STORE IN ARRAY ' A ' *
1 1 7/J REM ********************
1 1 8/J DI MA (1) : GET (0, 1 4 4) - < 7, 1 5 1) ,
A , G
1 1 90 RETURN
1 1 99 REM se l f 9rap h i c
l 2fffl RE�I *************
1 2 1 JJ REM *PLAYER TANK*
1 220 REM *************
1 230 DATA 1 6 , 1 6 , 84 , 1 24 , 1 24 , 124 , 6
8 , 0
1240 PG=2 : N= l : GOSUB 9JJ/J/J
1 250 REM ********************
1260 REM *STORE IN ARRAY ' B ' *
1270 REM ********************
128/J D I MB l 1) : GET C 0 , 1 44) - C 7 , 1 5 1) ,
B , G
1 290 RETURN
1 299 REM bac k 3round
1 3/J0 REM ***************
1 305 REM * SMALL STARS *
1 3 1 /J REM ***************
1 35/J PMODE4 , l : PCLSNV : SCREEN 1 , l
1 360 FOR Q=� TO 25

1 370 PSET C RND C 255) 1 RND l 1 75 J , - C NV
=0))
1 380 NE>'.T GI
1 385 P$= " SCORE : " : XS=96 : YS= 1 76 : GO
SUB 9900
1 387 P$= " FUEL : " : XS = 1 84 : YS= l 76 : GO
SUE 9900
1 390 RETURN
1 400 REM ********************
1 405 REM *SET UP AND RESTART*
1 4 1 0 REM ********************
1 420 A L I ENS= l 0 : REM *NO . OF ALIEN

1 430 SCORE=& : REM *SET SC ORE TO Z
ERO*
1 440 AMM0= 1 0 : REM *SET LASERS TO
FULL*
1 450 FUEL = 1 0 : REM *SET FUEL TO FU
LL*
1 460 PY= l 6 8 : PX= l 20 : REM *START PO
S I T ION OF SELF*
1 470 IF F=0 THEN PY=8 : REM *CHANG
E POS I T I ON FOR DOD G I NG GAME*
1 475 GET I PX , PY ! - I PX + 7

1 PY+ 7 J 1 PB , G
: PUT (PX , PY l - (PX + 7 , PY+ 7 > , B , PSET
1 480 DD= 1 : P=0: F I N=0
1 � 90 XP=P X : YP=PY
: 4 7 5 RETURN
1 5G0 REM *************
: 502 PEM *�JVE • F I RE*
1 505 REM **** '********

1 5 1 0 IF DD=0 THEN 1 540
1 52 .0 DD=0
1 530 AY=8 : AX=RND l 32 l *8 - 8 : XA=AX
1 535 REM **MOVE ALI EN**
1 540 IF AY< >8 THEN PUT I X A 1 A Y - 8 J
I XA + 7 , AY- 1) , AB 1 PSET

33

34

1 545 GET C AX , AY) - (A X + 7 , AY+ 7) , AB , G
: PUT I AX , AY) - (AX+ 7 , AY+ 7) , A , PSET
1 550 XA=AX : AY=AY+ 8 : IF AY= 1 68 THE
N DD= l : P=P+ l : ALIENS=AL IENS - 1
1 555 I F DD= l THEN PUT (X A , AY-8) - (
XA+ 7 , AY- 1) , AB , PSET

1 560 AX=AX +8* < RND C 3) - 2)
1 565 I F F=0 AND AX > PX THEN AX=AX
- 8 : GOTO 1 580
1 570 IF F=0 AND AX<PX THEN AX=AX
+ 8 : GOTO 1 580
1 580 IF AX < 0 THEN AX=0
1 590 I F AX , 248 THEN AX=248
1 595 REM ***-II************
1 596 REM * MOVE PLAYER *
1 598 �EM * LEFT � R I GHT *
1 599 Rn! ****************
1 600 A$= I NKEY$
1 602 REM **LEFT AND R I G HT**
1 605 I F L=l AND A$=CHR$ (8) THEN
P�>P>: - 8
1 6 1 0 I F R=l A N D A$=CHR$ (9) THEN
PX=P>(+ 8

1 630 IF PXi0 THEN PX=0
1 635 IF PY�O THEN PY:O
1 640 I F PX) 248 THEN PX=248
1 645 IF PY) 1 68 THEN PY= 1 68
1 650 I F P \'=YP AND PX=XP THEN 1 6 8
iiJ
1 660 PUT C XP , YP) - C XP + 7 , Y P + 7) , PB , P
SET

1 670 GET C PX , PY) - C PX + 7 , PY+ 7) , PB , G
: PUT < PX , PY J - C P X + 7 , P Y + 7) , B , PSET
1 675 YP=PY : XP=PX
1 68/iJ K=iiJ : I F F=l AND A$= " iiJ " THEN
K=l
1 690 RETURN

1 700 REM ***************
1 70 1 REM *CHECK FOR H I T*
1 702 REM * LASER *
1 705 REM ***************
1 7 1 0 H I T=0 : I F K=0 THEN 1 790
1 7 1 5 SOUND 100, l
1 720 BX=PX + 3 : BY= l 67
1 730 COLOR I I AND NV=B l , 1 : L I NE I BX
, BY I - I BX , 8 J , PSET
1 745 IF BX >XA- 1 AND BX<XA+8 THEN

H I T= !
1 755 COLORNV , l : L I NE I BX , B Y l - C BX , 8
I , PSET
1 790 RETURN
1 800 REM *************
1801 REM * E/(PLOS I O N *
1 802 REM * B L I P *
1 805 REM *************
1 6 10 FOR Gl=l TO 5
1 620 SOUND 1 50 , l
1 640 NEXT GI
1 860 IF F=l THEN PUT I X A , AY- 8) - (X
A+ 7 , AY- 1) , AB , PSET : DD= l ! AL I ENS=AL
IENS - 1
1 890 RETURN
1 900 REM *******************
1 902 REM *SCOR ING 1 0 POINTS*
1 905 REM *******************
1 9 1 0 IF HI T=0 OR F=0 THEN 1 990
1 920 SCORE=SCORE+ l0
1 990 RETURN
2000 REM ***********************
2001 REM * *
2002 REM * FUEL AND AMMUN I T I ON *
2003 REM * *
2004 REM ***********************

35

36

2037 REM *****************
2038 REM * DECREASE FUEL *
2039 REM *****************
2040 I F K= l THEN FUEL=FUEL - 1
2047 REM **************
2048 REM * RESET FUEL *
2049 REM **************
2050 I F H I T = 1 THEN FUEL = 1 0
2090 RETURN
2 1 00 REM *****************
2 1 02 REM *STATUS D I SPLAY *
2 1 03 REM * *
2 107 REM *****************
2 1 1 0
2 1 1 7 REM ***************
2 1 1 8 REM *D I SPLAY SCORE*
2 1 1 9 REM ***************
2 1 20 PS=STRS I SCORE I + " " : XS = 1 44 : Y
S=l 76: GOSUB 9900
2 1 37 REM **************
2 1 38 REM *D ISPLAY FUEL*
2 1 39 REM **************
2 1 40 PS=STRS I FUEL I + " " : XS=224 : YS
= 1 76 : GOSUB 9900
2 1 90 RETURN
2200 REM ***********************
2202 REM *CHECK FOR END OF GAME*
2205 REM ***********************
2240 IF P=3 THEN F I N=l
2250 I F FUEL=O THEN F I N= !
2290 RETURN
2300 REM *************
2302 REM * STOP GAME *
2303 REM *POL I TE STOP*
2305 REM *************
2 3 1 0 C L S

2320 PR I NT @ 1 36 1 " YOUR SCORE WAS " ;
SCORE

2330 PRI NT@235 , " ANOTHER GO? " ; A$=
INKEYS
2340 A$= INKEYS: IF A$= " " THEN 234
0
2350 I F AS< > " N " THEN 2390
2360 STOP
2390 RETURN
9000 PMODE4 , PG : SCREEN 1 , 1 : REMt h i s

i s j ust so you can see i t happe
n i ng
90 1 0 ST=7680 + 1 536* < PG-2 l
9020 FOR CH=0 TO N- 1 : RN=INT (CH / 3
2)
9030 FOR Y=0 T O 7 : READ C D : I F CD=
999 THEN Y=7 : GOTO 9050
9035 IF NV=l THEN C D=255-CD
9040 POKE ST+ 224*RN+CH+ 32*Y , CD
9050 NEXTY , CH
90'55 RETURN
9899 REM *PR INT STRI NG*
9900 IF P$= " " THEN RETURN
9910 A$=LEFT$ (P$, l l : PS=R I GHT$ (P$
, LEN (P$ l - l l
9920 I F A$= " " THEN YG= l 44 : XG=20
8 : GOTO 9950
9930 YG= 1 4 4 : AS=ASC (A$ l -65 : IF AS<
" A " THEN YG= l 52 : AS=ASC (A$) -48
9940 XG=S*AS
9950 GOSUB 9960 : XS=XS + S : GOTO 990
0
9960 PMODE4 , 3 : GET (XG , YG l - (XG+7 , Y
G + 7 l , N , G
9970 PMODE4 , l : PUT < X S , YS) - (XS+ 7 , Y
S + 7 l , N , PSE T : RETURN
10000 A$= " L I ST I NG 3 , "
1 00 1 0 INPUT " L I ST I NG 3 , WHAT " ; IS
10020 PRINT#- 2 , A$ + I $

37

38

SAVING YOUR PROGRAM

When you are satisfied with your game you will probably want to
SAVE it on cassette tape. This is done in the following way:

I . Position the tape in your cassette recorder, making sure that
you have wound it past any plastic header tape as this cannot be
recorded on.

2 . Decide on a name for your program - you can use up to ten
letters. For the purpose of this example let's use the name 'MY
GAME'.

3 . Now type in, without a line number:

CSA VE "MY GAME"

4. Press the RECORD and PLAY keys together on your
recorder then press ENTER. If you pressed ENTER before starting
the tape you will either have to wait until the computer has
finished and start again or you can stop it by pressing the RESET

button on the left side of the computer. This will always stop the
computer in its tracks and you will not lose your program. You
will find that the BREAK keys will not interrupt a CSAVE (or
CLOAD or SKIPF). However, be certain to press RESET and not the
POWER SWITCH on the back of the computer. That certainly
would cause the loss of your program.

S. Nothing much happens on the TV screen except that the
flashing black cursor disappears. When the program has been
saved the computer will once again chirp OK.

6. Now it would be nice to check that your program has been
recorded properly. There is no foolproof way of doing this on the
DRAGON but the following will usually fail with 'IO ERROR if
there is anything wrong with the recording.

First, rewind the tape and type either

SKIPF "MY GAME"
or
SKIPF (on its own)

In either case press ENTER and start the tape (PLAY this time not
RECORD!).

39

If it all goes fine and ends with OK then your program is
probably recorded properly, but the only way you will ever know
for sure is to switch off and on again and type CLOAD"MY GAME"
followed by ENTER to load the program in again. I suggest that
you have several successful SKIPFs before trying that.

If you have problems recording, try experimenting with
different volume levels and, if your recorder has a tone control,
turn it to maximum treble.

CHAPTER 3

Arcade Games, a Selection of Lego Bricks

This chapter is made up of thirteen sub-sections. Each of these
sections contains a selection of routines which can be used to fill
the holes in the control program. Remember to read the
instructions at the start of each section which tells you whether
listings are optional or not. If you don't feel too confident, why
not follow the example routine and just use one different
subroutine. Try, for example, a different background or a
different alien and you will see how easy it is to make changes to
the game. The more routines you decide to change the more your
game will differ. Remember as long as you don't try to fit a
square peg into a round hole you can use the routines in any
combination. Some games may look a little bizarre, but at least
they'll still be playable!

Following each section of listings is a brief explanation of how
the routines in that section work. This includes details of what
variables they change and how they relate to the other routines in
the overall program.

We hope you enjoy experimenting with these routines as much
as we enjoyed writing and testing them.

Section I: INSTRUCTIONS

In this section 3. la always needs to be used. This performs the
basic tasks of getting ready to give instructions. Add to this any
or all of the following listings 3.1 b - g to complete the instructions
block. It doesn't matter in what order you add the lines, because
the computer will place them in numerical order in its listing.

40

Listing 3. la

1000 CLS : U=0: D•0: F=0: H=0 : L=0: R=0
1010 PRINT@ 10, " INSTRUCTIONS "
1080 PRINT@45 1 , " PRESS ANY KEY TO
CONT INUE "

1090 AS=INKEYS : I F AS= " " THEN 109
0
1 095 RETURN

This listing gives the instruction for, and enables, LETT
movement. You would normally include the RIGHT movement
listing as well, but it's up to you.

Listing 3. /b

1020 PRINT@ 1 30, " USE LEFT ARROW T
0 MOVE LEFT " : L= l

This listing gives the instruction for, and enables, RIGHT

movement.

Listing 3. /c

1 030 PRINT@162 , " USE R I GHT ARROW
TO MOVE RIGHT " : R= l

This listing gives the instruction for, and enables, DOWNward
movement. You would normally include the UPward movement
listing as well, but again, it's up to you.

Listing 3. Id

1040 PRINT@ 1 94 , " USE DOWN ARROW T
0 MOVE DOWN " : D=l

41

42

This listing gives the instruction for, and enables, urward
movement.

Lis ring 3. I e

1 050 PRI NT@226 , " USE UP ARROW TO
MOVE UP " : U= l

This listing gives instructions for, and enables , FIREing.

Liscing 3. If

1 060 PR INT@258 1 " USE 0 TO F I RE " : F
= 1

This listing gives the instruction for, and enables, HYPER-drive

for HYPER-space movement.

Liscing 3. Ig

1070 PRI NT@290 1 " USE H TO HYPER-D
R I VE " : H= l

The main instruction routine (listing 3. la) clears the screen and
PRINTs up a heading "INSTRUCTIONS". It also sets a number
of variables that are used to indicate whether a particular ability is

enabled. These variables (L,R,U,D,F and H) are all set to 0 (to
indicate that they are disabled).

The other routines , when present, will be inserted in the list of
instructions at this point. Each of these will PRINT a message on
the screen telling you how to activate some action and also reset
the appropriate flag variable to 1 (indicating that it is enabled).
These flags are examined in other parts of the program to see
whether or not the player is allowed to perform a particular
action.

43

Flag variables are really just like any other variable, but we only
give them the values I or 0. In this way they are used as
indicators (either on or off), which can be quickly tested.

The final three lines of the main routine PRINT the message at
the bottom of the screen and then wait until a key is depressed
before RETURNing to the control program.

Section 2: ALIEN GRAPHICS

Choosing a shape for the aliens is very simple. Any of the
following routines will define a character to use as the aliens.
Each routine is accompanied by a display which shows the
character's shape enlarged. It is important to remember at this
stage that you will want to choose just one listing from this
section and it can be any of the thirteen routines presented.

ALIEN FIGHTER

Fig. 3.2a

N <;t N CO
(0 M CD V N -

0

3

1 4

3 1

1 26

3 1

1 4

3

44

Liscing 3.2a

1 1 00 REM ***************
1 1 1 0 REM *AL I EN F I GHTER*
1 1 20 REM ***************
1 1 30 DATA 0 , 3 , 1 4 , 3 1 , 1 26 , 3 1 , 1 4 , 3
1 1 40 PG=2 : N= l : GOSUB 9000
1 1 50 REM ********************
1 1 60 REM *STORE I N ARRAY ' A ' *
1 1 70 REM ********************
1 1 80 D I MA (l l : GET (0 , 1 4 4 l - < 7 , 1 5 1) ,
A , G
1 1 90 RETURN

ALIEN BUG

Fig. 3.2b

N V N (()
(O (") CO V N,

Liscing 3.2b

1 1 00 REM ***********
1 1 1 0 REM *AL I EN BUG*
1 1 20 REM ***********

40

1 6

84

56

254

56

84

0

1 1 30 DATA 40, 1 6 , 84 , 56 � 254 , 56 , 84 ,
liJ

1 1 4/iJ PG=2 : N=l : GOSUB 9/iJ/iJ/iJ
1 1 5/iJ RE�l ********************
1 1 6/iJ REM *STORE I N ARRAY ' A ' *
1 1 70 REM ********************
1 1 80 D I MA (1) : GET (/iJ , 1 44) - (7, 1 5 1 l ,
A , G
1 1 9/J RETURN

ALIEN FLY

Fig. 3.2c

N V N <O
<D C"1 CD "1· N

Listing 3. 2c

l l /J0 REM ***********
1 1 1/iJ REM *AL I EN FLY*
1 1 2/iJ REM ***********

36

24

60

90

1 53

1 65

1 95

0

1 1 3/iJ DATA 36 , 24 , 6/iJ , 9/iJ, 1 53 , 1 65 , 1 9
5 , /iJ
1 1 4/J PG=2 : N=l : GOSUB 9/J/J/iJ

45

46

1 1 50 REM ********************
1 1 60 REM *STORE I N ARRAY ' A ' *
1 1 70 REM ********************
1 1 80 D I MA C l l : GET C 0 , 1 4 4) - (7 , 1 5 l l ,
A , G
1 1 90 RETURN

ALIEN DESTROYER

Fig. 3.ld

N V N CO
fD ("") 00 V N -

28

20

99

42

34

54

20

0

Listing 3.ld

1 100 REM *****************
1 1 1 0 REM *AL IEN DESTROYER*
1 1 20 REM *****************
1 1 30 DATA 28 , 20 , 99 , 42 , 34 , 54 , 20 , 0
1 1 40 PG=2: N= 1 : GOSUB 9000
1 1 50 REM ********************
1 1 60 REM *STORE I N ARRAY ' A ' *
1 1 70 REM ********************

1 1 80 D I MA (1) : 0E T C 0 , 144) - (7 , 1 5 1) ,
A , G
1 1 90 RETURN

ALIEN SKULL

Fig. 3.2e

N V N CO
(() (") 00 V N,

1•
•• • • •

• ••
• •

•• •• •• -
Listing 3.2e

1 1 00 REM *************
1 1 1 0 REM *AL I EN SKULL*
1 1 20 REM *************

60

1 26

2 1 9

255

23]

1 26

36

60

1 1 30 DATA 60 , 1 26 , 2 1 9 , 255 , 23 1 , 1 26
, 36 , 60
1 1 40 PG=2 : N= 1 : GOSUB 9000
1 1 50 REM ********************
1 1 60 REM *STORE I N ARRAY ' A ' *
1 1 70 REM ********************
1 1 80 D I MA C 1 l : GET < 0 , 1 4 4) - < 7 , 1 5 1 l ,
A , G
1 1 90 RETURN

47

48

ALIEN INSECT

Fig. 3.2f

N V N CO
CO ("') OO V N

Listing 3.2[

1 1 00 REM **************
1 1 1 0 REM *AL I EN I NSECT*
1 1 20 REM **************

1 29

66

36

24

24

60

66

1 29

1 1 30 DATA 1 29 , 66 , 36 , 24 , 24 , 60, 66 ,
1 29
1 1 40 PG=2 : N= l : GOSUB 9000
1 1 50 REM ********************
1 1 60 REM *STORE IN ARRAY ' A ' *
1 1 70 REM ********************
1 1 80 D I MA < l) : GE T (0 , 1 4 4) - (7 , 1 5 1) ,
A , G
1 1 90 RETURN

ALIEN HELICOPTER

Fig. 3.2g

N <;j' N CO
-· CO M ffi ,:j· N -•

Listing 3.2g

0

0

246

33

1 26

.1 20

1 1 2

0

1 1 00 REM ******************
1 1 1 0 REM *AL I EN HEL ICOPTER*
1 1 20 REM ******************
1 1 30 DATA 0 , 0 , 246 , 33 , 1 2 6 , 1 20 , 1 1 2
, l!J
1 1 4/!J PG= 2 : N= 1 : GOSUB 9000
1 1 50 RE�! ********************
1 1 60 REM *STORE IN ARRAY ' A ' *
1 1 70 REM ********************
1 1 80 D I MA (l l : GET (0 , 1 44) - (7 , 1 5 1 l ,
A , G
1 1 90 RETURN

49

50

ALIEN INV ADER

Fig. 3.2h

N V N CO
(0 ('1 OO 'd· N --,

Liscing 3.2h

1 1fJ0 REM ***************
1 1 1 0 REM *AL IEN I NVADER*
1 1 20 REM ***************

20

28

62

1 27

62

28

42

73

1 1 30 DATA 20 , 28 , 6 2 , 1 27 , 62 , 28 , 42 ,

73

1 1 40 PG=2 : N= 1 : GOSUB 9000
1 1 5.0 REM ********************
1 1 60 REM *STORE IN ARRAY ' A ' *
1 1 70 REM ********************
1 1 60 D I MA (1 l : GET (0 , 1 44) - < 7 , 1 5 1 l ,
A , G
1 1 90 RETURN

ALIEN BATTLESHIP

Fig. 3.li

Liscing 3.li

0

0

1 95

1 53

90

1 89

24

24

1 1 00 REM ******************
1 1 1 0 REM *AL I EN BATTLESHIP*
1 1 20 REM ******************
1 1 30 DATA 0 , 0 , 1 95 , 1 5 3 , 90, 1 89 , 24 ,
24
1 1 40 PG=2 : N= 1 : GOSUB 9000
1 1 50 REM ********************
1 1 60 REM *STORE IN ARRAY ' A ' *
1 1 70 REM ********************
1 1 80 D I MA (1 J : GET (.0 , 1 44 1 - (7 , 1 5 1 J ,
A , G
1 1 90 RETLIRN

51

52

ALIEN CRUISER

Fig. 3.2j

N ,:;;r- N (0
(() M CO ,:;J· N __,

Listing 3.2j

1 1 00 RE�1 ***************
1 1 1 0 REM *AL IEN CRU I SER*
1 1 20 REM ***************

1 6

1 86

1 24

1 6

56

1 24

56

1 6

1 1 30 DATA 1 6 , 1 86 , 1 24 , 1 6 , 56 , 1 24 , 5
6 , 1 6
1 1 40 PG=2 : N = 1 : GOSUB 90.00
1 1 50 REM ********************
1 1 60 REM *STORE IN ARRAY ' A ' *
1 1 70 RH1 ********************
1 1 80 D I MA (1 l : GET < 0 , 1 44) - (7 , 1 5 1 l ,
A , G
1 1 90 RETURN

ALIEN SPIDER

Fig. 3.2k

N V N (0
<O M ro v N -

Listing 3.2k

1 1 00 REM **************
1 1 1 0 REM *AL IEN SPI DER*
1 1 20 REM **************

1 29

66

36

90

1 89

90

255

1 53

1 1 30 DATA 1 29 , 66, 36 , 90 , 1 89 , 90 , 1 5
5 ,.1 53
1 1 40 PG=2 : N= l : GOSUB 90f/f/
1 1 50 REM ********************
1 1 60 REM *STORE I N ARRAY ' A ' *
1 1 70 REM ********************
1 1 8f/ D I MA (l l : GET < 0 , 1 4 4 l - < 7 , 1 5 1 l ,
A , G
1 1 90 RETURN

53

54

ALIEN TANK

Fig. 3.21

CD
N tr N CO

<O M OJ V N _..

Listing 3.21

1 1 00 REM ************
1 1 1 0 REM *AL I EN TANK*
1 1 20 REM ************

0

68

1 24

1 24

1 24

84

1 6

1 6

1 1 30 DATA 0 , 68 , 1 24 , 1 24 , 1 24 , 84 , 1 6
, 1 6
1 1 40 PG=2 : N=1 : GOSUB 9000
1 1 50 REM ********************
1 1 60 REM *STORE I N ARRAY ' A ' *
1 1 70 REM ********************
1 1 80 D I MA (l l : GET < 0 , 1 44) - (7 , 1 5 1) ,
A , G
1 1 90 RETURN

ALIEN FROG

Fig. 3.lm

N V N CD
(O (") OO V N --<

Lisring 3.lm

1 1 00 REM ************
1 1 1 0 REM *AL IEN FROG*
1 1 20 REM ************

1 65

6 6

6 6

36

24

60

90

1 29

1 1 30 DATA 1 65 , 66 , 66 , 36 , 24 , 60 , 90,
1 29
1 1 40 PG=2 : N= l : GOSUB 9000
1 1 50 REM ********************
1 1 60 REM *STORE I N ARRAY ' A ' *
1 1 7.0 REM ********************
1 1 80 D I MA (1) : GET C O , 1 4 4) - (7 , 15 1) ,
A , G
1 1 90 RETURN

55

All the ALIEN graphics routines simply define a graphics
character for the alien (for further explanation of this see Chapter
6). This character will be PUT on the screen at the alien's
position.

56

Section 3: PLAYER GRAPHICS.

This is exactly the same as choosing a shape for the aliens. Any of
the following routines will define a character for use as the player.
Each routine is, once again, accompanied by a display to show
the character's shape enlarged. Remember that you want the
player to look different from the aliens. Some shapes might be
more suitable than others depending on whether you are dodging
or firing. You also need to take the background into account. Of
course, it is possible to have a surfer blasting away with fireballs
over a city skyline but it will look a bit strange. You need to
choose just one listing from this section and it can be any of the
fifteen routines presented.

PLAYER HELICOPTER

Fig. 3.3a

N V N CO
CO (") OO V N -

Listing 3.3a

0

0

246

33

1 26

1 20

1 1 2

0

1 200 REM *******************
1 2 1 0 REM *PLAYER HELI COPTER*
1 220 REM *******************
1 230 DATA 0 , 0 , 246, 33, 1 2 6 , 1 20, 1 1 2
, 0
1 240 PG=2 : N= 1 : GOSUB 9000

1 250 REM ********************
1 260 REM *STORE I N ARRAY ' B ' *
1 270 REM ********************
1 280 D I MB (1 l : GE T (0 , 1 44) - < 7 , 1 5 1 l ,
E , G
1 290 RETURN

PLAYER TANK

Fig. 3.3b

N V N (()
CD (") C.O V N

Lisring 3.3b

1 200 REM *************
1 2 1 0 REM *PLAYER TANK*
1 220 REM *************

1 6

1 6

84

1 24

1 24

1 24

68

0

1 230 DATA 1 6 , 1 6 , 84 , 1 24 , 1 24 , 1 24 , 6
8 , 0
1 240 PG=2 : N= 1 : GOSUB 9000
1 250 REM ********************
1 260 REM *STORE I N ARRAY ' B ' *
1 270 REM ********************
1 280 D I MB C l) : GET (0 , 1 44) - (7 , 1 5 1 l ,
E , G
1 290 RETURN

57

58

PLAYER SPIDER

Fig. 3.3c

N V N CO
CO C""J OO v N -

Listing 3.3c

1 21/J//J REM ***************
1 2 1 1/J REM *PLAYER SPI DER*

1 29

66

36

90

1 89

90

255

1 53

1 221/J REM ***************
1 230 DATA 1 29 , 66 , 36 , 90 , 1 89 , 90 , 25

5 , 1 53

1 241/J PG=2 : N= 1 : GOSUB 91/J//J//J
1 251/J REM ********************
1 261/J REM *STORE IN ARRAY ' B ' *
1 270 RE�l ********************
1 280 D I MB C 1 l : GET < l!J , 1 4 4) - (7 , 1 5 1 l ,
B , G
1 291/J RETURN

PLAYER FROG

Fig. 3.3d

N '<I' N CO
CO M CO V N -

Listing 3.3d

1 200 REM *************
1 2 1 0 REM *PLAYER FROG*
1 220 REM *************

1 29

90

60

24

36

66

66

1 65

1 230 DATA 1 29 , 90 , 60 , 24 , 36 , 66 , 66 ,
1 6 5
1 240 PG=2 : N=l : GOSUB 9000
1 250 REM ********************
1 260 REM *STORE IN ARRAY ' B ' *
1 2 70 REM ********************
1 260 D I MB (l) : GET (0 , 1 44 l - (7 , 1 5 1 > ,
B , G
1 290 RETURN

59

60

PLAYER SKULL

Fig. 3.3e

N V- N (0
i:D M (X) s;t· N ·-.

Listing 3.3e

1 201/J REM **************
1 2 11/J REM *PLAYER SKULL*
1 220 REM **************

60

1 26

2 l '3

255

23 1

1 26

36

60

1 230 DATA 60, 1 26 , 2 1 9 , 255 , 231 , 1 26
� 36 , 60
1 240 PG=2 : N= l : OOSUB 9000
1 251/J REM ********************
1 260 REM *STORE I N ARRAY ' B ' *
1 2 7fJ REM ********************
1 280 D I MB C 1 > : GET C 0 , 1 44 l - C 7 , 1 5 1) ,
B , G
1 290 RETURN

PLAYER AUTOMOBILE

Fig. 3.3[

N V N CO
CO M ro v 01 .-.

Listing 3.3[

0

0

0

1 20

84

254

255

1 08

1 200 REM *******************
1 2 1 0 REM *PLAYER AUTOMOBI LE*
1 220 REM *******************
1 230 DATA 0 , 0 , 0 , 1 20 , 84 , 254 , 255 , 1
08
1 240 PG=2 : N= 1 : GOSUE 9000
1 250 REM ********************
1 260 REM *STORE I N ARRAY ' E ' *
1 270 REM ********************
1 280 D I ME 1 1 1 : GET l 0 , 1 4 4 1 - (7 1 1 5 1 1 1

E , G
1 2?0 RETURN

61

62

PLAYER AIRPLANE

Fig. 3.3g

N V N CO
(() ("') OO V N -

Fig. 3.3g

8

8

8

28

62

1 2?

1 27

8

1 200 REM *****************
1 2 1 0 REM *PLAYER AI RPLANE*
1 220 REM *****************
1 230 DATA 8 , 8 , 8 , 28 , 62 , 1 2 7 , 1 27 , 8
1 240 PG=2 : N=1 : GOSUB 9000
1 250 REM ********************
1 260 REM *STORE IN ARRAY ' B ' *
1 27.0 REM ********************
1 280 D I MB C 1 1 : GE T C 0 , 1 4 4 1 - C 7 , 1 5 1 1 ,
B , G
1 290 RETURN

PLAYER FLY

Fig. 3.3h

N V N (()
{D (") CO V N,

Listing 3. 3h

1 200 REM ************
1 2 10 REM *PLAYER FLY*
1 220 REM ************

36

24

60

90

1 53

1 53

1 65

] 95

1 230 DATA 36 , 24 , 60 , 90 , 1 53 , 1 53 , 1 6
5 , 1 95
1 240 PG=2 : N= 1 : GOSUB 9000
1 250 REM ********************
1 260 REM *STORE IN ARRAY ' B ' *
1 270 REM ********************
1 280 D I MB (1 l : GET < 0 , 1 44) - (7 , 1 5 1) ,
B , G
1 290 RETURN

63

64

PLAYER BATTLESHIP

Fig. 3.3i

N V N CO
CO M (O s;1· N -

Listing 3. 3i

1 53

1 53

255

1 53

24

60

1 26

1 26

1 200 REM *******************
1 2 1 0 REM *PLAYER BATTLESH I P*
1 220 REM *******************
1 230 DATA 1 53 , 1 53 , 25 5 , 1 5 3 , 24 , 60 ,
1 26 , 1 2 6
1 240 PG=2 : N= l : GOSUB 9000
1 250 REM ********************
1 260 REM *STORE IN ARRAY ' B ' *
1 270 REM ********************
1 280 D I MB < l l : GET < 0 , 1 44 l - < 7 , 1 5 l l ,
B , G
1 290 RETURN

PLAYER COWBOY LEFT

Fig. 3.3j

N V N CC
CC M CX) V N -

Listing 3. 3j

0

24

60

24

2 1 6

56

20

54

1200 REM ********************
1 2 10 REM *PLAYER COWBOY LEFT*
1 220 REM ********************
1 230 DATA 0 , 24 , 60 , 24 , 2 1 6 , 56 , 20 1 5
4
1 240 PG=2 : N=1 : GOSUB 9000
1 250 REM ********************

1 260 REM *STORE I N ARRAY ' B ' *
1 270 RE�1 ********************
1 280 D I MB C l l : GET C 0 , 144 l - C 7 1 1 5 1 1 ,
B , G
1 290 RETURN

65

66

PLAYER COWBOY RIGHT

Fig. 3.3k

N V N CO
CO M CD V N .-.

Listing 3.3k

24

60

24

27

28

24

24

28

1 200 REM *********************
1 2 1 0 REM *PLAYER COWBOY R I GHT*
1 220 REM *********************
1 230 DATA 24, 60, 24 , 27 , 28 , 24 , 24 , 2
8
1 240 PG•2 : N• l : GOSUB 9000
1 250 REM ********************
1 260 REM *STORE IN ARRAY ' B ' *
1 270 REM ********************
1 280 D I ME C 1 1 : GET C 0 , 1 44) - < 7 , 1 5 1) ,
B , G
1 290 RETURN

PLAYER FIELD GUN

Fig. 3.31

N V N CO
CO (Y) CO V N --<

Lisring 3.31

0

2

36

24

1 6

1 24

2 1 8

1 200 REM ******************
1 2 1 0 REM *PLAYER F I ELD GUN*
1 220 REM ******************
1 230 DATA 0 , 1 , 2 , 36 , 24 , 1 6 , 1 24 , 2 1 8
1 240 PG=Z : N= l : GOSUB 9000
1 250 REM ******f*************
1 260 REM *STORE I N ARRAY ' B ' *
1 270 REM ********************
1 280 D I MB (l) : GE T (0 , 1 44) - (7 , 1 5 1) ,
B , G
1 290 RETURN

67

68

PLAYER SKIER

Fig. 3.3m

N V N CO
CO M CO v N -

Liscing 3.3m

1 200 REM **************
1 2 1 0 REM *PLAYER S K I ER*
1 220 REM **************

1 6

32

249

1 8

60

8

1 6

32

1 230 DATA 1 6 , 32 , 249 , 1 8 , 60 , 8 , 1 6 , 3
2
1 240 PG=2 : N= 1 : GOSUB 9000
1 250 REM ********************
1 260 REM *STORE I N ARRAY ' B ' *
1 270 REM ********************
1 280 D I MB (1 1 : GET < 0 , 1 44 1 - < 7 , 1 5 1 I ,
B , G
1 290 RETURN

PLAYER SURFER

Fig. 3.3n

Listing 3.3n

1 20/iJ REM ***************
1 2 1 0 REM *PLAYER SURFER*
1 220 REM ***************

1 8

1 24

1 44

1 6

40

80

255

64

1 230 DATA 1 8 , 1 2 4 , 1 4 4 , 1 6 , 40 , 80 , 25
5 , 64
1 240 PG=2 : N= l : GOSUB 9000
1 250 REM ********************
1 26/iJ REM *STORE I N �RRAY ' B ' *
1 27/iJ RE�1 ********************
1 28/iJ D I MB (l l : GET < !iJ , 1 44) - (7 , 1 5 1 > ,
B , G
1 29/iJ RETURN

69

70

PLAYER SAND Y ACHT

Fig. 3.30

N V N CO
(O (") Q) tj· ('\I ,.....,

Listing 3. 3o

\ 6

24

28

30

1 6

254

65

0

1 200 REM lf******************
1 2 1 0 REM *PLAYER SAND-YACHT*
1 220 REM *******************
1 230 DATA 1 6 , 24 , 28 , 30 , 1 6 , 254 , 65 ,
0
1 240 PG=2 : N= l : GOSUB 9000
1 250 REM ********************
1 260 REM *STORE I N ARRAY ' B " *
1 27.0 REM ********************
1 280 D I MB (l l : GET (0 , 1 44 l - < 7 , 1 5 1) ,
B , G
1 290 RETURN

All the player graphics routines simply define a character for the
player (for further explanation of this see Chapter 6). This
character will appear on the screen at the player's position.

71

Section 2: BACKGROUNDS

All the following routines set up a background scene against
which your game will be played. This is fairly important,
especially when it comes to dodging games. A skier switching
back and forth through the pines whilst dodging spiders is going
to have a harder time than one on a totally black background with
no stationary objects to avoid. You need to choose just one of
listings 3.4a to 3.4h, plus any of listings 3.4i, 3.4j and 3.4k
according to whether or nor you want to display SCORE, AMMO

and FUEL information. One more point to note is that each listing
includes line 25 from the initialisation section of the program,
which sets or resets the flag variable NV. This is an INVERSE flag
and it swaps the foreground/background colours. These are
normally white on black, but if we want a ski-slope, for example,
then we obviously want the background to be white, not black.
This flag also ensures that the characters are coloured the right
way round. We will say more about this in Chapter 6. Each of the
listings, apart from the first (totally black), is accompanied by a
black and white representation of an example scene produced by
that listing. This should help you decide which one to use.

TOTALLY BLACK

Listing 3.4a

25 NV=0
1 300 REM *****************
1 305 REM * TOTALLY BLACK *
1 3 1 0 REM *****************
1 350 PMODE4 , 1 : PCLSNV : SCREEN 1 , 1
1 390 RETURN

72

SEA-SCAPE

Fig. 3.4b

,,.._
'" ·"

.-,

A

_
_,

·"

�

Listing 3.4b

25 NV= l
1 300 REM *************
1 305 REM * SEA-SCAPE *
1 3 1 0 REM *************
1 3 1 5 IF GM>0 THEN 1 350
1 320 PG=2 : N= l : GOSUB 9000
1 330 DATA 0 , 0 , 0 , 0 , 8 , 20 , 98 , 1 29
1 340_ D I MU l l l : GET l 0 , 1 44 l - 1 7 , 1 5 1 l ,
U , G
1 350 PMODE4 , 1 : PCLSNV : SCREEN 1 , 0
1 360 FOR Q=0 TO 25
1 370 X2=RND l 32 1 *8 - 8 : Y2=RND l 22 l *8
- B : PUT I X2 , Y2 l - l X 2 + 7 , Y2+ 7 l , U , PSET
1 380 NEXT Q
1 390 RETURN

,,.._

·"

DESERT

Fig. 3.4c

<;'

4'4'

4'"'

Listing 3.4c

25 NV=l

4'

·"

1 300 REM **********
1 305 REM * DESERT *
1 3 1 0 REM **********

4' 4'

1 3 1 5 IF G M > 0 THEN 1 350
1 320 PG=2 : N= 1 : GOSUB 9000

4'

4'

1 330 DATA 0 , 1 6 , 1 8 , 26 , 94 , 88 , 1 20 , 2
4
1 340 D I MU ! l) : GET (0 , 1 4 4 l - (7 , 1 5 1) ,
U , G
1 350 PMODE4 , 1 : PCLSNV : SCREEN1 , 0
1 360 FOR Q=0 TO 25
1 370 X2=RND (32 l *8 - 8 : Y2=RND (22 l *8
-8 : PUT ! X2 , Y2 l - ! X2+ 7 , Y2+ 7 l , U , PSET
1 380 NEXT Q
1 390 RETURN

73

74

SKI SLOPE

Fig. 3.4d

•
•

• •

.. ..

• �

•
•

..
..

Listing 3.4d

25 NV= l
1 300 REM *************
1 305 REM * SK I - SLOPE *

•

1 3 1 0 REM *************
1 3 1 5 I F G M > 0 THEN 1 350
1 320 PG=2 : N= 1 : GOSUB 9000

• •

•

1 330 DATA 1 6 , 56 , 56 , 1 2 4 , 1 24 , 254 , 2
54 , 1 6
1 340 D I MU C 1 l : GE T (0 , 1 44 l - (7 , 1 5 1 l ,
U , G
1 350 PMODE4 , 1 : PCLSNV : SCREEN 1 , 1
1 360 FOR 61=0 TO 25
1 370 X2=RND < 32 l *8 - 8 : Y2=RND C 22 l *8
- 8 : PUT < X2, Y2) - (X2+ 7 , Y2 + 7 > , U , PSET
1 380 NEXT 61
1 390 RETURN

•

•

..

•

t

LARGE STARS

Fig. 3.4e

'It.

'If.

Liscing 3.4e

25 NV=.0

*
'it.

.'-If.

Jf:
':If; ':If;
¥. .

1 3.00 REM ***************
1 305 REM * LARGE STARS *
1 3 1 0 REM ***************
1 3 1 5 I F G M > 0 THEN 1 350
1 320 PG=2 : N= 1 : GOSUB 9000

Jf:;
.'if.

'}f.
.'-If.

1 330 DATA 1 45 , 82 , 52 , 3 1 , 248 , 44 , 74
, 1 3 7
1 340 D I MU (l l : GET < 0 , 1 44) - < 7 , 1 5 1) ,
U , G
1 350 PMODE4 , l : PCLSNV : SCREEN 1 , 1
1 360 FOR Q=0 TO 25
1 370 X2=RND (32) *8 - 8 : Y2=RND < 22) *8
- 8 : PUT < X2 , Y2) - (X2 + 7 , Y2+ 7) , U , PSET
1 380 NEXT Q
1 390 RETURN

75

*

* **

.¥:
_;\

76

SMALL STARS

Fig. 3.4[

Listing 3.4[

25 NV=0
1 300 REM ***************
1 305 REM * SMALL STARS *
1 3 1 0 REM ***************
1 350 PMODE4 , 1 : PCLSNV : SCREEN 1 , 1
1 360 FOR Q=0 TO 25
1 370 PSET C RND C 255 > , RND C 1 75) , - (NV
=0))
1 380 NEXT Q
1 390 RETURN

NIGHT SKYLINE

Fig. 3.4g

Listing 3.4g

25 NV=0
1 300 REM *****************
1 305 REM * N I GHT SKYL INE ¼
1 3 1 0 REM *****************
1 3 1 5 I F G M > 0 THEN 1 350
1 320 PG=2 : N= 1 : GOSUB 9000
1 330 DATA 255 , 1 7 1 , 255, 1 8 1 , 255 , 2 1
3 , 255 � 1 8 1
1 340 D HIU (1 l : GET (0 , 1 4 4) - (7 , 1 5 1 l ,
U , G
1 350 PMODE4 , 1 : PCLSNV : SCREEN 1 , 1
1 360 FOR Q=0 TO 248 STEP 8
1 365 FOR Y=0 TO C RND < 3 l - 1 l *8 STE
p 8
1 370 PUT C Q , 1 60- Y J - (Q+ 7 , 1 6 7 - Y l , U ,
PSET
1 380 NEXT Y : NEXT Q
1 390 RETURN

77

78

CITY SKYLINE

Fig. 3.4h

l.1. ..L ·• . ..i.

Listing 3.4h

25 NV=l
1 300 REM ****************
1 305 REM * c irY SKYL INE *
1 3 1 0 REM ****************
1 3 1 5 IF G M > 0 THEN 1 350
1 320 PG=2 : N= 2 : GOSUB 9800
1 330 DATA 2 , 2 , 3 , 50 , 1 79 , 25 , 25 5 , 25
5 , B , 8 , 62 , 62 , 255 , 25 5 , 2 5 5 , 255
1 340 D I MU l 1 1 : GET l 0 1 1 44 1 - 1 7 1 1 5 1 1 ,
U 1 G
1 345 D I MT C l l : GET C 8 , 1 44 1 - (1 5 1 1 5 1 1
, T , G
1 358 PMODE4

1
1 : PCLSNV : SCREEN1 1 1

1 368 FOR Q=8 TO 248 STEP 1 6
1 378 PUT C Q

1 1 6 0 1 - (Q + 7 1 1 67) 1 U , PSET

1 375 PUT { Q+ 8 , 1 60) - (Q + l 5 , 1 67 } � T , P
SET
1 380 NE�:T Q
1 390 RETURN

79

The background routines select PMODE4 with graphics pages l to
4 on screen. They then clear the screen to the background colour
(which depends on the setting of the NV flag). In the first routine,
listing 3.4a, this is all that is required. For the rest of the routines
a character for a suitable object is defined (for further explanation
of this see Chapter 6). This object is then PUT on the screen in
various random positions. (see Chapter 10). Listing 3.4f differs
from this general pattern by merely PSETing points at these
random positions instead of PUTting a character each time.
Listings 3 .4g and 3.4h do use characters but use special methods
of determining the positions where these will be PUT to achieve
the desired effect in each case. These routines are examined
separately and in greater detail, in Chapter 4.

The last three listings PUT the status headings on the screen by
way of the PUT STRING routine - this will be more fully explained
in Chapter 5.

Section 5: START/RESTART.

This routine is not optional. We always need to have this routine
exactly as listed. This ensures that all the variables which might
be used later on are initialised whether our game takes any
account of them or not.

Listing 3.5

1 400 REM ********************
1 405 REM *SET UP AND RESTART*
1 4 1 0 REM ********************

80

1 420 ALI ENS= 1 0 : REM *NO . OF ALIEN
s•
1 430 SCORE=0 : REM *SET SCORE TO Z
ERO*
1 440 AMMO= 10: REM *SET LASERS TO
FULL*
1 450 FUEL = 1 0 : REM *SET FUEL TO FU
LL*
1 460 P Y = 1 68 : PX= 1 20 : REM *START PO
S I T I ON OF PLAYER*
1 470 IF F=0 THEN PY=B : REM *CHANG
E POS I T I ON FOR DODGING GAME*
1 475 GET (PX , PY l - (PX + 7 , PY+ 7 l , PB , G
: PUT (PX , PY l - (PX + 7 , PY+ 7 l , B , PSET
1 480 DD= 1 : P=0 : F I N=0
1 490 XP=PX : YP=PY
1 495 RETURN

This routine essentially simply initialises all the variables used
in the game. For greater detail of what the variables are actually
used for see Appendix One. The number of ALIENS is set to 10,
your SCORE is set to zero and you are given 10 units of AMMO and
FUEL These variables must always be set to some starting value
even if they're nor used by the game.

PX and PY are the horizontal (x) and vertical (y) co-ordinates on
screen of the player's character and these must be set to some
initial values. For firing games you start off at the bottom of the
screen with PY= 168 (we leave some space at the bottom for scores,
etc.), and with PX= 120 which is about halfway across. If the game
is not a firing game you start at the top of the screen instead, with
PY=8. Your character is now PUT on to the screen at its initial
position, but first the bit of scenery at the position is stored in the
array PB (for player background) with the GET instruction. This is
so that we can PUT the scenery back again when you move. To do
this we need to know where the player was before he moved, so
we store a copy of the player's old position in the variables XP and
YP (the reverse of PX and PY).

81

Finally we set the flags that indicate whether a new alien is
required and whether the end of the game has arrived. To do this
we set DD (for dead) to 1 and set FIN to 0. (The French is because
END is a special BASIC word for the DRAGON computer, so we
cannot use it as a variable .) We also need to reset the counter
which tells us how many aliens have got past, so we set P equal to
0.

Section 6: MOVE/FIRE.

We must have the first, main routine from this section in our
program. If you allowed LETT & RIGHT movement then you will
need to add listing 3.6b. Similarly listing 3.6c must be added for
UP & DOWN movement. Don't worry if you have only allowed,
say, LEFT movement in the instructions. Just add the section for
both LEFT & RIGHT and you will find that only LETT movement is
actually enabled. If you have chosen HYPER-drive as a mode of
movement than you will need to add listing 3.6d.

Listing 3.6a

1 500 REN *************
1 502 REN *MOVE � F I RE*
1 505 REM *************
1 5 1 0 IF D0=0 THEN 1 540
1 520 DD=0
1 530 AY=8 : AX=RND (32 l *8 - 8 : XA=AX
1 535 REM **MOVE ALIEN**
1 540 IF AY< > B THEN PUT I XA 1 AY-8 l
(X A + 7 1 AY- l l 1 A B , PSET
1 545 GET < AX , AY) - (AX + 7 , AY+ 7 l , AB , G
: PUT (AX , AY l - < AX + 7 , AY+ 7 l , A , PSET
1 550 XA=AX : AY=AY+8 : I F AY=l68 THE
N DD=l : P=P+ l : ALI ENS=AL IENS - 1
1 555 I F DD= l THEN PUT (XA , AY- 8) - (
XA + 7 , AY- 1) , AB , PSET

82

1 560 AX=AX+8* < RND (3 l - 2 l
1 565 I F F=0 AND AX >PX THEN AX=AX
- 8 : GGTO 1 580
1 570 I F F=0 AND AX<PX THEN AX=AX
+ 8 : GOTO 1 580
1 580 I F A X < 0 THEN AX=0
1 590 I F AX > 248 THEN AX=248
1 595 REM ****************
1 596 REM * MOVE PLAYER *
1 599 REM ****************
1 600 A$= I Nl<EY$
1 630 IF PX<0 THEN PX=0
1 635 IF PY<0 THEN PY=0
1 640 IF PX > 248 THEN PX=248
1 645 I F PY > 1 68 THEN PY= 1 68
1 650 I F PY=YP AND PX=XP THEN 1 68
0
1 660 PUT (XP , YP) - (XP + 7 , YP+ 7 l , PB , P
SET
1 670 GET (PX , PY) - (PX + 7 , P Y + 7 l , PB , G
: PUT < PX , PY l - < PX + 7 , P Y + 7 1 , B , PSET
1 675 YP=PY : XP=PX
1 680 K=0 : I F F=l AND A$= " 0 " THEN
K=l
1 690 RETURN

The routine below allows LEFT or RIGHT movement providing
that the INSTRUCTIONS enable such movemcnl .

Liscing 3. 6b

1 598 REM * LEFT • R I GHT *
1 602 REM **LEFT AND R I GHT**
1 605 IF L=l AND A$=CHR$ (8 1 THEN
PX=PX-8
1 6 1 0 IF R=l AND A$=CHR$ (9) THEN
PX=PX + 8

This routine allows UP or DOWN movement providing
that the INSTRUCTIONS enable such movement.

Listing 3. 6c

1 597 REM * UP • DOWN *
1 6 1 2 REM **UP AND DOWN**
1 6 1 5 IF U=l AND A$=CHR$ (94 1 THEN

PY=PY -8
1 620 I F D = l AND A$=CHR$ C l 0 1 THEN

PY=P \' + 8

This next routine allows HYPER-space movement providing that
the INSTRUCTIONS enable such movement.

Listing 3.6d

1 622 REM **HYPER J UMPS**
1 625 IF H=l AND A$= " H " THEN PX=8
*RND (3 l l : PY=8*RND C 2 l l

The routine to control movement and firing is quite long and
performs several different tasks, so let's look at them in order.
Firstly it checks whether a new alien is required (if the previous
one is dead - DD= I - then we do need one). If we do start a new
alien then we must initialise the horizontal (x) and vertical (y)
screen co-ordinates for the alien. We set RY equal to 8 and RX
equal to a random multiple of 8 between 8 and 248. As with the
player we will need to remember the position of the alien so we
copy AX into XA. We do not need to remember the y co-ordinate
because it will always 8 less than the current y co-ordinate. Now
we set the flag to show that the alien is not dead (DD=O).

By now we have a live alien on our hands (well, on the screen
anyway) so we want to move it. We first PUT back the
background (array AB) over the alien to erase him from his old

83

84

position, and then we GET the background for his new position,
before PUTting the alien at his new position. We must now
calculate the next position for our alien. We add 8 to AY to move
him down the screen. At this point we test whether he has
reached the bottom of the screen (AY= 168). If he has, then he got
past us, so we add one to P (the past variable), and declare that
alien dead (DD= I). We also take one off the number of aliens left
(ALIENS= ALIENS-1). If the alien is dead then we PUT back the
scenery on top of him to erase him (or bury him).

Assuming he's not dead we would like our alien to move from
side to side as he descends. If it's a dodging game (not a firing
game, so F=O) we want the alien to move towards us so we test
which side of your x position (PX) he is and alter AX accordingly.

If he is directly above you, or if it a firing game, then we will
alter his horizontal position by one either side at random. Having
changed the alien's position we check that he hasn't gone off the
side of the screen and reset AX if he has. (Some funny things
happen if you try to PUT off the screen.)

Now we come to moving the player. It is at this stage that we
will encounter some of the lines from the other listings when they
have been added. If a particular sort of movement is allowed we
check to sec if the appropriate key is being pressed and then alter
PX or PY accordingly. If HYPER-space is included and the H key
has been pressed then we choose new values for PX and PY at
random (again in multiples of 8). Once again we must check that
the new co-ordinates are still on the screen and reset them if they
are not. Finally we PUT back the background (array PB) at the
player's old position, GET the background at his new position,
and PUT the player at the new position. Note that we do not do
this if the player has not moved since the last time around. This is
to prevent the player graphic from flickering when stationary.

The final action in this section is to check the FIRE button. If
this key has been pressed then we set the flag K to I to indicate
that a shot is to be fired.

Section 7: DETECT A HIT

This routine can have two completely different forms. This
depends on whether we are playing a firing game or a dodging
game. In the latter case what we need to detect are collisions
between the player and other objects. These objects may be
background objects or aliens. The first routine (listing 3.7a) in
this section deals with the detection of this sort of collision and
should be used if yours is a dodging game.

85

If we are playing a firing game then we might need to move a
missile up the screen and see if this hits any alien. For this type of
game we can pick either of the other two routines in this section
(listings 3. 7b or 3. 7c). These shoot bullets and lasers respectively.
Later, in Chapter 6, we will add another two routines to our
selection which shoot bombs and fireballs, but these will have to
wait until we have some techniques under our belts.

Listing 3. la

1 700 REM ***"*·***********
1 701 REM *CHECK FOR H I T*
1 702 REM * DODG I NG GAME*
1 705 REM ***************
1 7 1 0 H I T=0
1 720 PMODE4 , 2 : N=255*NV
1 730 PUT (0 , 1 44 1 - C 7, 1 5 1 1 , PB , PSET
1 740 FOR Y=7680 TO 7904 STEP 32
1 750 I F PEEK I Y l < > N THEN H I T= l
1 760 NEXT Y
1 770 PMODE4 , 1
1 790 RETURN

Listing 3. 7b

1 700 REM ***************
1 701 REM *CHECK FOR H I T*
1 702 REM * BULLET *

1 705 RE�l ***************

86

1 7 1 0 H I T=0: I F K=0 THEN 1 790
1 7 1 5 SOUND 1 00 , 1
1 720 BX=PX+ 3 : BY= 1 6 7
1 725 PSET C BX , BY , - C NV=0 l l
1 730 BY=BY-4
1 735 PSET I B X , BY , - I NV=0))
1 740 PSET C BX , BY+ 4 , NV l
1 74 5 I F XA=PX AND A Y / B = I NT (B Y / 8)

THEN H I T= l : GOTO 1 755
1 750 I F BY > 1 1 THEN 1 730
1 755 PSET C BX , BY , NV >
1 790 RETURN

Listing 3. 7c

1 700 REM ***************
1 701 REM *CHECK FOE H I T*
1 702 REM * LASER *
1 705 REM ***************
1 7 10 H I T=0: I F K=0 THEN 1 790
1 7 1 5 SDUND 100 , 1
1 720 BX=PX+ 3 : BY= 1 6 7
1 730" C OLOR (l AND NV=0) , 1 : L I NE C BX
, BY l - l BX , B l , PSET
1 745 IF BX > XA - 1 AND BX<XA+B THEN

H I T= l
1 755 COLORNV , 1 : L I NE I BX , BY J - (BX , 8
l , PSET
1 790 RETURN

The first routine in this section works by examining the
background underneath the player. This is stored in the array PB.
There is no easy direct way of examining an array which has
been used with GET, so what we do is to PUT the array onto the
hidden screen (PAGE 6) and then examine that part of the screen
for any foreground colour. If we find any then obviously the
player has hit something.

_j

87

The second routine in this section first checks to see if the fire
key was pressed (when we will have K= 1) . If it was, a bullet is
fired, starting with a bleep noise, up the screen. The position of
the dot is tested against the alien's position to see if it has hit him.
If it hasn't it keeps going until it gets to the top of the screen. If it
hits the alien the flag HIT is set to I .

The third routine (listing 3 . 7c) checks whether the fire key was
pressed and, if so, fires a laser using the LINE command. This is
accompanied by a bleep. The horizontal position of the laser is
checked against AX and if the two coincide then HIT is set to I .

Section 8: EXPLOSIONS

This section will be called from the control program only if a HIT

has occurred. In this section we wish to make some sort of noise
and possibly give a visible signal to indicate that this has
happened. You may choose any of the first ten routines (listings
3.Sa - j), as your main routine for this section. It is very
important to remember, whichever one of these you choose, that
listing 3.8k must also be added if you have a FIREing game. This
routine will wipe out the dead alien.

Listing 3. Sa

1 8.0/J REM ***********

1 8.0 1 REM *E>(PLOS I ON*
1 8.02 REM * BURBLE *
1 805 REM ***********

1 8 1 /J FS= " T5/JO2L 1 2AGBEDFADF# " ; F$=
F$+F$
1 82/J PLAY F$
1 890' RETURN

88

Liscing 3. 8b

800 REM *************
1 80 1 REM * EXPLOS I O N *
1 802 REM * T R I LL *
1 805 REM *************
1 8 1 0 F$= " T 1 50O5L 1 2C F#CF#CF#CF#CF
#CF#CF#CF# "
1 820 PLAY F$
1 8 90 RETURN

Liscing 3.8c

1 800 REM ***********
1 80 1 RE�! *EXPLOS I ON*
1 8.02 REM * H I T *
1 805 REM ***********
1 8 1 0 F$= " T l 50O 1L30GF#FED#DC #C "
1 82.0 PLAY F!li
1 890' RETURN

Listing 3.8d

1 800 REM *************
1 801 REM * EXPLOS ION *
1802 REM *START A G A I N*
1 805 REM *************
1 8 1 0 F$= " T3O3L6GE L 1 8AL6GE "
1 820 PLA'1' F$
1 8 9 0 RETURN

Listing 3.Se

1 800 REM *************
1 80 1 REM * EXPLOS ION *
1 802 REM *AL IEN F I RED*
1 805 REM *************

1 8 1 /J F$= " T l/J/J04L8CC #DD#EFF#GF#FE
D#DC#C "
1 820 PLAY F$
1 890 RETURN

Listing 3.8[

1 800 REM *************
1 80 1 REM * EXPLOSION *
1 802 REM * RASPBERRY *
1 805 REM *************
1 8 1 0 F$= " T500 1 L4CF#CF#CF#CF#CF# "
1 82/J PLAY F$
1 89/J RE TURN

Listing 3. 8g

1 800 REM *************
1 80 1 REM * EXPLOS I ON *
1 80'2 REM * FLASH *
1 80'5 REM *************
1 8 1 0 FOR Q=l TO H!J
1 8 20 SCREEN 1 , 0 : SOUND 1 50 ,
1 830 SCREEN 1 , 1 : SOUND 1 00 ,
1 840 NEXT Q
1 89/J RETURN

Listing 3.8h

.!. 80k:"l REM *************
1 80 1 REM * EXPLOS I ON *
1 802 REM * BL I PS *
1 805 REM *************
1 8 1 0 FOR Q=l TO 5
1 820 SOUND 1 00+RND (100l , 1
1 8 40' NEXT Q
1 890 RETURN

89

90

Liscing 3. Si

1 800 REM *************
1 801 REM * EXPLOS I ON ¼
1 802 REM * BL I P *

1 8.05 REM *************
1 8 1 0 FOR Q=l TO 5
1 82.0 SOUND 1 50 , 1
1 84.0 NEXT GI
1 89.0 RETURN

Listing 3.8j

1 80.0 REM *************
1 801 REM * EXPLOSION *

1 80'2 REM * :3 I REN *

1 8.05 REM *************
1 8 1 .0 rOR Q= 1 TO 5
1 8 1 5 FOR Y = 1 00 TO 1 3.0 STEP 5
1 8213 SOUND'(, 1
1 825 NEXT y
1 83.0' FOR Y= 1 3.0 TO 100 STEP - 5
1 835 SOUNDY , 1
1 840 NEXT y
1 850 ND(T G!
1 890 RETURN

This routine muse be added if there is FIREing in your game.

Liscing 3.8k

1 880 IF F= 1 THEN PUT < XA , AY- 8) - (X
A + 7 , AY- 1 1 , AB , PSET : DD= 1 : ALIENS=AL
I ENS- 1

All the routines in this section use either the SOUND or PLAY
command to produce the noises. PLAY is the more versatile by far

91

of these two commands and is hence used most often, but SOUND
can still be very effective for certain effects.

The routine 3 .8k simply PUTs back the background over the
alien to erase him when he has blown up. It then sets the flag DO

to I to tell the move routine to start a new alien, and finally, takes
one off the number of ALIENS left.

Section 9: SCORE ROUTINES

If you have HIT an alien there is obviously the question of how
much \Vas SCOREd. Well, these routines are fairly simple and give
you the choice of SCOREing one, five or ten points for each alien
you HIT. If yours is a dodging game then you will not want to
SCORE at all so use the first routine (listing 3.9a). Otherwise you
can pick any of the other routines from this section.

Listing 3.9a

1 900 REM *****************

1 90 1 RE�! *SCOR I NG ROUTI NE*

! 902 REN * NOT USED *

1 905 REM *****************

1 990 RETURN

Listing 3. 9b

I 9.00 REM *****************
1 ? 0 1 RE�1 *SCOR I NG ROUT I NE*
1 902 REM * l P O I N T *
1 905 REM ***********°******
1 9 1 0 IF H I T=0 OF F;0 THEN 1 990
1 �20 ; c oRE�S; C (iRE + l

92

Listing 3.9c

1 9 .0/!' ;,:EM *****************
1 901 REM *SCOR I NG ROUTI NE*
1 902 REM * 5 POI NTS *
1 9e· 5 REM *** **************
'. 9 1 0 IF H I T=0 OR F=0 THEN 1 990
1 920 SCORE=SCOR E + 5
.l 990 FETURN

Listing 3. 9d

1 900 REM *******************
1 902 REM *SCOR I NG 1 0 POI NTS*
1 905 REM *******************
1 9 1 0 I F H I T=0 OR F=0 THEN 1 990
1 920 SCORE=SCORE + l 0
1 990 RETURN

All the rourines in this section (except 3.9a) check to see if you
are playing a FIREing game and whether you just scored a HIT on
an alien. If you did then the required number of points are simply
added to your SCORE.

Section 10: FUEL AND AMMUNITION

In some games you can fail your mission because of lack of FUEL
or AMMO. If you do not wish to alter the quantities of either of
these then you can select just the first routine from this section.
If, however, you wish to alter the quantity use listing 3.10b and
add the appropriate listings from the rest of this section. Note
that you can only choose one out of each of the pairs of routines
(listings 3.10d and 3. !0e for AMMO and listings 3.10g and 3.10h
for FUEL) for increasing the quantities, since these occupy the
same line numbers.

Listing 3. /Oa

20iJ0 REl1 *********************
2002 REM *FUEL AND AMMUN I T I ON*
2003 REM * NOT USED *
2005 RE�I *********************
2.090 RETUFl·l

Listing 3. /0b

2000 REM ***********************
2001 REM * *
2002 REM * FUEL AND MIMU N I T ION *
2003 REM * *
2004 REM ***********************
2090 RETURN

Listing 3. /Oc

201 7 P.EM ******·!€-**·:+-*****
2� : B REM *DECREASE AMMO*
20c-;- REM ***************
2020 I F K: 1 THEN A��!O=AM�lO- 1

Listing 3. /Od

2027 ?E�I ***************
2022 RE� *I NCREASE AMMO*
=02; REM ***************
2030 ! F H I T = ! THEN AMMO=AMMO+ l

Listing 3. /Oe

2027 REM ***************
2028 REM * DOUBLE AMMO *
2029 REM ** *************
2030 IF H I T = l THEN AMMO=AMM0*2

93

94

Lisring 3. 10[

2037 RHl *****************
2038 REM * DECREASE FUEL *
2039 REM *****************
2040 I F K = l THEN FUEL=FUEL- 1

Lisring 3. !Og

2047 REM ***************
2048 REM *I NCREASE FUEL*
2049 REN ***************
2050 I F H I T= ! THEN FUEL=FUEL+ l

Lisring 3. !Oh

2047 REM **************
2048 REM * RESET FUEL *
2049 REM **************
2050 IF H I T = l THEN FUEL= 10

The routines for decreasing FUEL o r AMMO check whether the
fire key was pressed and take of

f

one unit per shot. The routines
for increasing FUEL or AMJ\·10 check whether you scored a HIT
and if you did they can add one unit, double the number of units
left, or reset the quantities to full.

Section 11: STATUS & DISPLAY

After all the excitement so far with explosions, lasers blasting
away and your SCORE rapidly rising we need to make sure the
relevant information is displayed on the screen. Of course if you
have been peacefully dodging a plague of flies in the desert you
won't need to display anything but you must still put a routine

into this slot. For a dodging game use listing 3.1 la. For a FIREing
game start with listing 3.11 b, which will display the SCORE. If

95

your game includes a varying supply of FUEL or AMMO then add
either listing 3 . 1 lc or 3 . 1 ld .

Listing 3. 1 Ja

2 1 0.0 REM *****************
2 1 02 REM *STA TUS D I SPLAY *
2 1 03 REM * NOT USED *
2 1 07 REM *****************
2 1 90 RETURN

Listing 3. 11 b

2 1 00
2 102

REM
REM

*STATUS DI SPLAY *

2 1 03 REM * *

2 1 07
2 1 1 0
2 1 1 7
2 1 1 8

REM

REM
REM

D ISPLAY SCORE

2 1 1 9 REM ***************
2 1 20 PS=STRS C SCORE l + " " : XS= 1 44 : Y
6 = 1 76 : GOSUB 9900
2 1 90 RETURN

Listing 3. llc

:C'. 1 2 7 REM **************
2 1 28 REM *DISPLAY AMMO*
2 1 29 REM **************
2 1 30 FS=STR$ C AMMO > + '' '' : XS=40 : YS=
1 76 : GOSUE 99.0.0

Listing 3. l ld

2 1 37 REM **************
2 1 38 REM * D I SPLAY FUEL*
2 1 39 RE�l **************
2 1 40 PS=STRS C FUEL > + " " : XS=224 : YS
= 1 7 6 : GOSUB 9900

96

These routines are quite straightforward. They convert the values
in question into strings and pass them, along with their required
screen positions, to the PUT STRING routine. The screen positions
are carefully arranged to ensure that messages do not overlap
even if they are all being used.

Section 12: CHECK FOR END OF GAME

In this section we provide all the checks that see whether we have
reached an end of game situation. If any of these checks are found
to be true then we must set the llag FIN to I. This will signal to
the control program that it is time to stop playing the game and
move on to the end of game display routine. If f'IN is zero the
control program will go back to the MOVE/FIRE subroutine. From

this section we need to type in the main routine (listing 3 . 1 2a)
and at least one of the remaining five routines. After all, we want
to stop the game sometime!

The first of the checks (listing 3. 1 2b) is on whether the number
of AI.IENS is down to 0: This could be used in a dodging game,
for instance, where you win if you managed to dodge ten aliens.
For a dodging game you will also need to test for a collision with
listing 3. 12c.

You might decide that you lose if more than 3 aliens get PAST
and over-run your base. This could be tested for by adding listing
3. 12d.

The final two listings deal with testing for running out of
AMMO or FUEL if you wish these to indicate the end of the game.

Liscing 3. 12a

2200 REM ***********************
2202 REM *CHECK FOR END OF GAME*
2205 REM ***********************
2290 RETURN

Listing 3. /lb

2 220 ! F � L ! ENS=0 THEN F I N=l

Listing 3. /le

223C I F H ! T = l THEN F I N = 1

Listing 3. 12d

2240 IF P=3 THEN F I N = l

Listing 3. / le

2250 IF FUEL=0 THEN F I N=l

Listing 3. 12[

2 2 1 0 IF AMMO=0 THEN FIN=l

97

These routines all test variables or nags set elsewhere in the
program and when one of the conditions is satisfied, they set the
FIN nag to I.

Section 13: END OF GAME DISPLAY

If the FI� llag has been set for some reason then we want to stop
the game. \Vie could just stop the game. This is the simplest and
most obvious method. You will then have to type RUN to play
again. Listing 3.13a is just such a QUICK STOP routine. However
it might be nice to end up with a polite question as to whether or
not you wish to try again. Well, since it costs nothing to be polite ,
listing 3. 13b is a POLITE STOP. If yours is a SCOREing game, then
you might also like to add listing 3. 13c to tell you what SCORE has
been achieved.

98

Listing 3. 13a

2300 REM *************
23.02 RE�l * STOP GAME *
2303 REM *QU I CK STOP *
2305 REM *************
2 3 1 0 STOP
2390 RETURN

Listing 3. 13b

2300 REM
2302 REM
230'3 REM
2305 REM
2310' CLS

* S TOP GAME *
POL I TE STOP

2330 PRI NT@235 1 " ANOTHER GO? " : A$=
I NKEY$
2340 A$= I NKEY$: I F A$= " " THEN 234
IJ
235/J I F A$< > " N " THEN 239/J
2360' STOP
239/J RETURN

Listing 3. I 3c

2320' PRINT@136 , " YOUR SCORE WAS " ;
SC ORE

The first routine in this section is fairly obvious. The second,
more polite, routine clears the TEXT SCREEN and PRINTS the
question ANOTHER GO? (Note that the TEXT SCREEN comes up as
soon as you PRINT anything on it - you do not have to ask for it

specifically.) The computer now waits for you to press a key, and
if you press anything except "N" it RETURNS to the control
program, which will start again, otherwise it STOPS. If you add in
listing 3. 1 3c then your score will be PRINTed on the screen above
the question.

CHAPTER 4

Starting to Write Your Own Games

Hopefully, you've had a lot of fun making your own games from
the routines in Chapter 3. But there is no reason why you
shouldn't make up your own routines to extend the variety
available for a section. Perhaps you are wishing there was a
different background available, or a different explosion. Well, in
this chapter we will take a good look at how we could change or
completely replace the routines given in Chapter 3. Let's go
through the routines as listed and see how they really work.

INSTRUCTIONS

These are fairly easy to alter. In BASIC a line can either be a
command on its own or several commands separated by colons.
These commands, plus whatever follows them up to the next
colon (or the end of the line), are known as statements. There are
a lot of PRINT statements in this section so let's take a look at
some of these first. Basically, anything inside the quote marks
gets printed on the screen, so for the example game you could
change line 1060 from:

1060 PRINT (!1 258,"USE 0 TO FIRE": F= I

to:

1060 PRINT �' 258, "USE 0 TO FIRE YOUR LASER":F= I

As you can see lhe only differences are inside the quotes and this
would simply PRINT the new message on the screen instead of the
original message. Altering the position of the message on the
screen is also fairly simple. The screen on your Dragon is divided
up into 16 rows of 32 columns, making 512 PRINT positions.
These are numbered 0 to 511, with the first row going from 0 to
3 1 , the second from 32 to 63 1 and so on. The 0 sign means "at",
and we can PRtNT "at" any of these 512 positions by typing PRINT

99

100

(<, (position). Let's display a 'GOOD LUCK" message on the
screen. We need to pick a line number that will go in between the
ones that are already used. 1075 seems like a good choice. We
want to PRrNT the message lower than the last instruction so we'll
put it two rows below it and centred, so it will be at position 365.
(If you want to think in terms of rows and columns then if you
number them from 0 to 15 and from 0 to 31 you can work out the
position as 32*row number + column number. So, our new line
of BASIC is:

1075 PRINT (<, 365,"GOOD LUCK!"

And it's as simple as that.

BACKGROUNDS

Most of the backgrounds in this book involve the RaNDom
distribution of shapes on a plain background. We will see how
the shapes are made up in Chapter 6 so let's not worry about that
now. Line 1360 (in listings 3 .2b to 3 . 5e) controls the number of
objects, in this case 25, that we have on the screen. If you wanted
to make the game a bit harder (for a dodging game), or just
wanted more shapes on the screen (for a firing game), then you
could change the 25 to a larger number. This would put extra
waves or stars (or whatever other shape is used) on the screen.

Line 1370 PUTs the shapes on to the screen at an x position
which is a RaNDom multiple of 8 in the range 0 to 248
(X2=RND(32)•8-8) and a y position which is a RaNDom multiple of
8 in the range 0 to 168 (YZ=RND(2Z)·8-8).

The routines that draw skylines are slightly different from the
others. In the first case you cannot have a different number of
buildings across the bottom of the screen as there is only space for
32 characters, each 8 points in width. Also we do not want the
buildings PUT at RaNDom positions. In listing 3.5g what we do is
to use RNDO to determine height of the buildings at random. So
in line 1360 I goes from o to Z48 STEP 8 for the X position, while in
line 1365 J goes from 8 TO s•RND(2) STEP 8 for the Y position.
Hang on, this means our buildings will be dangling down from

101

the top of the screen! We need to use 168-J as the Y position to
ensure that the storeys of the buildings are built up from the
bottom.

In listing 3.Sh we use two objects as buildings and then PUT
them in pairs across the bottom of the screen. In this case we have
I going from o TO 248 STEP 16 (instead of STEP 8). We could have
PUT four buildings at a time and then we would have needed to go
up in steps of 32.

If you are not playing a dodging game you can fill the screen
with anything you like - surreal space invaders?

PLAYER AND ALIEN GRAPHICS

These will be dealt with separately in Chapter 6.

SET UP AND RE-START

Although this is a small routine, and there is only one routine in
this section, there are quite a few major changes you can make.

You could change the number of aliens you have to fight -
either reducing the number to make the game easier to beat, or
increasing the number to make the game more difficult. At
present it is set to ten but if you wanted to have fifteen aliens then
you could change line 1420 to:

1420 ALIENS= IS

You could also change your starting level o f ammunition to make
the game harder or easier in much the same way as altering the
number of aliens. This is done in line 1440. Suppose you wished
to make the game a lot easier by having 100 bullets/bombs to start
with then you could change the line to:

1440 AMMO= 100

The amount of fuel can also be changed. Increasing the number
will make the game easier (your fuel will last longer) and

102

decreasing the number will make the game harder (you will run
out of fuel sooner). Line 1450 sets the amount of FUEL you have
to start with.

Remember that you might also want to change the routines in
the section where fuel and ammunition are altered.

MOVE AND FIRE

There is very little in this section that can be changed without
knowing exactly what you're doing. However it is worth looking at
how we move the characters around. Before a character is PUT
anywhere the background is always GOT first, so that when we
erase the player by PUTting the background back we
automatically ensure that the background is restored. This way
we avoid wiping out any stars, etc., when we pass in front of
them.

DETECT A HIT

These routines use simple animation techniques to move a missile
up the screen from the player. When you are more experienced at
writing programs you could rewrite these to, say, move the
missile in any of four directions from the player instead of just
restricting firing to up the screen. For the moment we won't
bother to look at these routines in detail.

EXPLOSIONS

You can really have a lot of fun in this section, creating different
noises to go with your game. Once you have grasped the methods
of producing music you could even add a signature tune to your
game! Sound on the Dragon can be achieved with one of two
commands - PLAY or SOUND. SOUND can vary the pitch over
most of the audible range and can vary the duration from about
1ft6 of a second to as long as you wish This is fine for many
applications, but for music and really spectacular effects we need
to PLAY. The PLAY command is always followed by a string

103

containing numbers and letters which represent most of the
musical parameters such as tempo, note length, volume, rests
and, of course, pitch. This is not the place for a music lesson, but
suffice it to say that you can use this command to make an
enormous variety of sounds.

The routine that flashes the screen does so by quickly
alternating between the two available colour sets with the SCREEN
command.

SCORING

There are one or two alterations that can be made to this routine,
mainly concerned with the way scoring is carried out. The
amount your score is incremented can be changed quite easily,
and this has already been done in the routines listed. If you
wanted to increase your score by 20 points for every alien shot
down then you could change line I 920 to:

1920 SCORE=SCORE+20

A more complex routine would give a higher score the earlier you
managed to hit the alien, so you would need a routine that
converts a low y coor:dinate to a high score. When the alien
reaches you AY will be 168, so if you subtract AY from 168 you
will score more for hitting the alien early on. You can divide the
result by, say, 8 to prevent ridiculously high scores, and rake its
INT value to avoid decimal scores. The new line would look like
this:

1920 SCORE=SCORE+ INT((l 68-A Y)/8)

You can experiment with different ratios as much as you like, of
course.

FUEL AND AMMUNITION

The routines in this section can be altered to increase or decrease
the amounts by which fuel and bullets ere used up. The value for

104

ammunition is stored in the variable AMMO and the amount of
fuel is stored in the variable FUEL. Another variable used in these
routines is HIT, which, as we have seen already, is used to
indicate whether or not you managed to hit an alien (it is set to 0
if you didn't, and I if you did). This variable is used in dodging
games to indicate that you have crashed. A variable used in this
way, as an indicator, is called a flag.

REDISPLAY THE SCREEN

There are not many changes you can make in this section,
however you could make a couple of alterations if you wanted to
make the game faster and a little harder. If you leave out lines
2 1 30 and 2 140 then you won't know what levels of fuel and
ammunition you have left. That will make the game much harder
to play, because you won't know if you're just about to run out of
fuel or bullets. Because the Dragon now has two less jobs to do,
the program runs faster. It's like someone taking away some of
your typing - you work much faster.

A more complicated change would be to put in a high score
variable, so that you could see whether you were improving or
not. This is more complex because you have to put extra lines in
other routines as well before you can print it on the screen.

First you must decide what lO call the variable in which you
keep the high score. If you look at Appendix One at the back of
this book, you will see a list of the variables and their uses.
Choose one that is not in the list. It is best to choose something
meaningful such as HISCORE.

Don't forget to keep track of which extra line numbers you use
or you could find yourself overwriting something you wanted to
keep. It's best to look at the listing on the computer before
adding any new lines.

In the END OF GAME routine we have to write a line which
compares the high score with the score you have just received. If
the latter is the greater it must alter the high score to be equal to
your score. This means we will have to use an IF statement and
we can write the statement out (in English) as IF (MY SCORE) IS

105

GREATER THAN (HIGH SCORE) THEN LET (HIGH SCORE) EQUAL
(MY SCORE). This is very easy to convert to the BASIC language
and is equivalent to:

IF SCORE >HISCORE THEN HISCORE=SCORE

Which goes to show how much like a shortened form of English
the BASIC language is.

Having done this we must return to altering the routine to
update the screen display. We need an extra line in here to PRINT

the high score on the screen and we could put one in that looked
like this:

2185 P$= STR$(HISCORE)+" ":XS=80:YS= 176:GOSUB
9900

You can of course put the high score anywhere you like, but try
to ensure it doesn't interfere too much with the rest of the game.
Look again at the section on changing the instructions if you're
not sure how to go about it.

CHECK FOR END OF GAME ROUTINES

These routines would be quite awkward to change but perhaps
when you have some more experience you could devise a system

which tells you why the game has ended. You would need to
examine the different variables to see why the game ended. For
example, a variable could hold the numbers I to 4 to show that:

I - The aliens overran your base

2 - You shot down all the aliens
3 - You ran out of fuel
4 - You can out of bullets

The variable that Oags the end of the game is FIN so you could
change 1he value Lhat is assigned to it in each line of the CHECK
routine. In the END OF GAME routine you could PRINT a different
message, dependent on the value of FIN, that would tell the
player why he had won or lost the game. These messages could be

106

slotted in between lines 2320 and 2330 and would look like this:

2321 IF FIN= I THEN PRINT @ 197, "YOU WERE
OVERRUN BY A LIENS"
2322 IF FIN=2 THEN PRINT @) 197, "YOU SHOT
DOWN ALL THE ALIENS"
2323 IF FIN=3 THEN PRINT @ 197, "YOU RAN OUT OF
FUEL"
2324 IF FIN =4 THEN PRINT (i, 197, "YOU RAN OUT OF
AMMUNITION"

Of course you could still add these lines even if you were using
the impolite ending.

That concludes this chapter on altering the routines in the

arcade games. Remember to take everything one step at a time,
testing as you go so that you don't have to look through reams of
alterations to find one mistake. It is also a good idea to keep
CSAVEing the program after making alterations just in case the
power goes off for any reason. Whether it's because grandma fell
over the plug or because the blackout for World War Three has
come, you're going to be very annoyed if several hours of unsaved
typing suddenly changes into a blank screen.

CHAPTER S

Further Explanations and Understanding BASIC

Some of the BASIC used in creating the routines has already been
explained in the previous chapter but from now on we will be
using and referring to more advanced techniques for
programming. If you have been working through the book and
want to learn more about the.technicalities of BASIC then carry on
with this chapter. In it we will examine the way BASIC actually
works.

MORE PRINT ITEMS

In previous routines you may have noticed that various parts of
the PRINT line are separated by semi-colons(;), these are, logically
enough, called PRINT separators, but they are not there just to
break up the statement, they have a definite purpose. Try the
following short routine:

10 FOR X = l TO 9
20 PRINT "!";
30 NEXT X

and notice the result - it should look like this:

! ! ! ! ! ! ! ! !

Now try the routine without the semi-colon a t the end o f the
PRINT statement:

J0 FOR X = I TO 9
20 PRINT "!"
30 NEXT X

107

108

The result is different - it looks like this:

Now try it with a comma:

10 FOR X= I TO 9

20 PRINT "!",

30 NEXT X

Once more the result is different:

From the above, we have noticed several things which can be
summarised as follows:

I. A semi-colon causes the PRINT items to be PRINTed one after
another with no spaces in between.

2. A comma causes the PRINT items to be PRINTed one in each
half of the screen.

3. The absence of either a semi-colon or a comma causes an
automatic line feed which means that each PRINT item is PRINTed
on a separate line.
If you try PRINTing numbers on the Dragon the rule for semi
colons may at first appear to go awry. Try the following:

10 FOR X = l TO 9

20 PRINT X;

30 NEXT X

109

and you will get:

2 3 4 5 6 7 8 9

Why the spaces? This is because whenever the Dragon PRINTS
numbers it always puts a space in front of them. This can be quite
useful sometimes for tabulating results, but at other times it can
be quite a nuisance ! Either way, you should keep it in mind
whenever you plan to PRINT numbers.

We have already used PRINT ((I and seen how you can use this
to PRINT anywhere on the screen, but there is another form -
PRINT TAB() - which PRINTS at a specific column on the screen,
rather like the TAB on a typewriter. You cannot use it to
backspace on a line, however. If you typed:

10 PRINT TAB(20);"MY NAME IS";TAB(l8);"FRED"

You would get

M!:I n a n1 e i s
F r e d

The computer did the best it could in the circumstances! I f you
use a TAB number bigger than 31 (31 would give you the 32nd
column on the screen because the first column is numbered 0) the
computer will move to the next line and PRINT at the column
which is 32 less than the TAB number you gave it, so that:

10 PRINT TAB(2); "WHAT'S UP"; TAB(34);"DOC"

would produce the following:

WHAT'S UP
DOC?

PRINTING VARIABLES

So far, we have only seen how to PRINT items enclosed in quotes
("") but we can also PRINT variables. We've already met numeric
variables, used to store numbers such as the score and the screen

110

positions. They can be PRINTed in just the same way as things in
quotes:

10 PRINT @' 0,SCORE

and if, for instance, the number 2200 is stored in SCORE, 2200
will be PRINTed in the top left-hand corner of the screen
(preceded by that space we mentioned earlier). This is how we
displayed the player's score at the end of the game:

2320 PRINT@l 36 1 " YOUR SCORE WAS " ;
SCORE

Notice that because the computer PRINTS a space in front of
numbers we didn't need to put one after "WAS" inside the
quotes.

There is another type of variable called a string variable and
these contain characters instead of numbers. We will talk about
these more in Chapter 7.

PRINTING ON THE GRAPHICS SCREEN

In the background routines are lines which place headings, such
as "SCORE:", on the screen. They do not use PRINT because this
command only works with the TEXT screen, which is completely
separate from the GRAPHICS screen. Instead they give a string
variable the characters for the heading and pass this (P$), along
with the screen co-ordinates where we want the headings to go, to
the PUT STRING subroutine at line 9900. This routine takes each
character in turn from P$, GETs it from the collection of characters
defined in the initialisation section of the program, and PUTS it on
screen. We will see more on GET and PUT in Chapter 6.

PROGRAM CONTROL

Programs are controlled by asking questions and then directing
flow to different parts of the program depending on the answer.
You ask a question in BASIC by saying IF (CONDITION)THEN

1 1 1

(ACTION). CONDITION can be many things and you can use the
following symbols (or operands) to make the test.

Equals
> Greater than
< Less than
< = Less than or equal to
>= Greater than or equal to
<> Not equal to

Here are a few examples of their use:

20 IF A>B THEN GOTO 40
30 PRINT A
40 PRINT B

If A holds a bigger number than B. the program will jump to line
40 and only the value of B will be PRINTed, but if A holds a
number equal to, or less than B then the values of both A and B
will be PRINTed, because the program will carry on with line 30,
instead of jumping to line 40.

20 IF A$<>B$ THEN STOP
30 PRINT A$
40 PRINT B$

In this case, we are testing to see if two string variables contain
the same letters. If they don't, the program will stop, and if they
are identical, the program will PRINT out the contents of A$ and
B$.

20 IF A-B= S THEN GOSUB 1000
30 GOSUB 2000

Line 20 checks to see if the result of subtracting the value of B
from the value of A is equal to 5, and if it is the program will
jump to the subroutine at line 1000, and will proceed to the
subroutine at line 2000 if it isn't. The contents of A and B are not
affected by this. ACTION can also be many things and we have
already used three different actions in the previous examples.
Here are some more:

20 IF Y<>0 THEN LET Y=0

1 1 2

This will reset Y to O if i t is some other number.

30 IF M$="Y" THEN SOUND 75, I

This will produce a sound if the string variable MS contains the
letter Y.

40 IF (X + Y)/2<Z THEN CLS

Line 40 will clear the screen (Cl..S) if the result of adding the
values in X and Y together and then dividing by two is less than
the value of z. Calculations in brackets are always performed
first; without the brackets multiplication and division will be
done first and the value of Y would first be divided by 2, and then
added to the value of X. This can be seen from the following
example:

(3+7)/2 = 10/2=5

whereas:

3 + 7/2 = 3 + 3.5 = 6.5

Two or more conditions can be tested at one time, using AND, OR
and NOT.

AND

This is very similar to its meaning in English and, when it is
used , the specified action will only happen when all the
conditions arc true. For example :

20 IF X =Y AND Ms="YES'' THEN STOP

or even:

30 IF H=67 AND X$<>"NO" ANO A-B=Z+W AND
G$= K$ THEN CLS: GOTO 20

In the above line , the screen will or!y be deared , and the
program then jump to line 20, when all four conditions are met.

OR

This is really the opposite of AND. in that the action will be

113

performed if either condition is true, but not if they are both
false. For example:

20 IF X=0 OR B = I THEN SOUND 75,l

The note will sound if X holds the value of 0, or B holds the value
I, or if both are true.

NOT

NOT can sometimes be very useful. Just as in English, it is used to
switch true (which the Dragon takes as -I), and false (0) values.
We can say, for example:

1 5 10 IF NOT (A=B) THEN GOTO 90

The condition A=B is true if A does equal B, false otherwise.
Putting NOT before the condition reverses the values the Dragon
uses as true and false, so that A is NOT equal to B then the
program will go to line 90, since NOT (A=B) is true.

Right, that's enough BASIC for now. In the next chapter we will
deal with all the fun and frolics of how to define characters like
the aliens and the player.

CHAPTER 6

Character Graphics

In this chapter we will be taking a look at one of the most
important parts of programming games: Graphics characters. We
have already used many of these without bothering to worry
about how they are made up or how they work. Let's take a look
at one of the routines that sets up a graphics character. For
example , look at the routines that define aliens. As you can see,
they are all very similar, in fact the only differences are in the
lines starting with REM and the line starting with DATA. The line
starting with REM, if you remember, just means REMark or
REMinder, so after REM you can write anything you like - the
program will ignore this statement - it's just there to help us
humans understand the program.

Next we'll deal with the DATA lines. You may have noticed
that there are always eight numbers in each DATA statement This
is because of the way in which our little characters are made up.
They are drawn on an eight by eight grid of squares. We have to
draw our character on a grid like this, and remember, you can

only use whole squares, not parts - it's all or nothing.

N -,. N (0
- CC M - (Xl s,- N -

• •
24

60

90

36

24

36

66

129

Above is a blank grid and next to it we've drawn a new alien, so
that you can see how to turn him into a set of numbers. If you
look again, you can see the row of numbers across the top of the
grid. Each square in the grid has a value, and that is given by the

1 14

1 1 5

number above i t , so to get the number for each line, you start at
one end, and if the square is blank you move to the next, and if
the square is blacked in you add it to your total. The first line is
hence:

16 + 8 = 24

and the rest of the lines are as follows:

32 + 16 + 8 + 4 = 60
64 + .16 + 8 + 2 = 90
32 + 4 = 36
16 + 8 = 24
32 + 4 = 36
64 + 2 = 66
128 + I = 129

Now you know enough to be able to design your own graphics
characters so that you can have different aliens or players. You
can even design new shapes for use in the background. What we
really need to know, though, is how the routine actually works.
So let's go back over it in greater detail.

I. The REM statement we have already dealt with, and we
know that REM is short for REMinder or REMark.

2 . There is a number system called binary, based on zeroes and
ones instead of our decimal system which is based on the digits 0
to 9. This binary system is the only number system that your
microcomputer directly understands. lt"seemS to understand
decimal numbers but that is only because there is a program
inside that converts everything - even the words - into binary
numbers.

We can use this system to represent our graphics character, by
putting a one where a square is blacked in and a zero where a
square is left blank. In this way we would get 8 binary digits. If
you look in Appendix Four you will see that a series of eight of
these binary digits are equivalent to a decimal number between 0
and 255, and the numbers of the DATA statements are the decimal
equivalents of these binary numbers. In computing we call a
binary digit a BIT for short. Eight bits make what is called one
BYTE, and your computer's memory is divided up into bytes.

1 16

Your Dragon has 65536 bytes of memory, 32768 of which are
available for you to put information into. Within a byte, as you
move along from right to left each bit is worth double that of the
one before it - hence the sequence of numbers at the the top of
our graphics grid:

128, 64, 32, 16, 8, 4, 2, I

If each bit was set to I, the number held in that byte would be
255 decimal, or l l l l l l l l in binary.

3. The next statement sets two variables, PG and N, and then
GOSUBs to the routine at line 9000 which does the actual defining
of the character.

4. This routine is very short, but it manages to do a lot of
work. The first line just arranges for us to see graphics pages PG,
PG+ I, PG+Z, and PG+3. You will notice that in our character
definitions we always set PG=Z so you will see pages 2,3,4 and 5.
This line is not really necessary, but we might like to see what's
going on. The next line sets the first address in memory which we
are going to write to. We want to define our characters on to page
5 of the graphics screen memory so that we can GET them
afterwards. This page starts at memory location 7680, and this is
what ST (the STart variable) is set to. The next statement is a FOR'
NEXT statement. We have used these quite a lot but they have not
yet been fully explained. The FOR statement always goes with a
NEXT statement and it is a way of counting and performing an
action a specified number of times, so, for example:

1 220 FOR 1=0 TO 7

1230 NEXT I

will carry out the instructions in between eight times - the count
starts from zero and goes up to seven in steps of one. It can be
made to go up or down in other steps, so that:

1 1 7

10 FOR K = 1 0 T O 2 0 STEP 2

50 NEXT K

will mean that K will hold the following values as the program
goes round the loop:

10, 12 , 14, 16, 18 , 20
and the FOR NEXT loop:

10 FOR T = 100 TO 10 STEP - 10

50 NEXT T

will give the following as values ofT:
100, 90, 80, 70, 60, 50 40, 30, 20, 10

You will notice that on the line after the FOR statement in line

9010, there is another FOR statement. This is perfectly
respectable, and it is called "nesting loops" (sounds cosy doesn't

it). It is OK as long as you remember that the loops must not

overlap, so the last loop "opened" with a FOR must be the first
loop "closed" with a NEXT. These two loops are both closed in

line 9050, but with just one NEXT statement This is a feature
special 10 the Dragon. It allows us to say NEXT Y,CH instead of

NEXT Y:NEXT CH, although we could still do it this way if we
wanted.

5. Now for what is going on inside the loops. Well, first we

READ the number in the DATA statement into the variable CD (for
Co De), then we check to see if the iNVerse flag (NV) is set (NV is

set or reset in the initialisation section of the program) and if it is
we set CD to 255-CD. This has the effect of changing all the zeros

to ones and vice versa - think about it. The next line POKEs this
value (CD) directly into memory, at the address worked out by the
expression ST+224*RN+CH+3211Y. Don't worry if you can't see

why this expression works. It's not obvious and you don't need to
understand it to use it. In fact, the terms 224*RN and CH are not

1 18

necessary for the character defining routines, they are only
necessary when you are defining more than one character at a
time, such as in the initialisation part of the program which
defines the entire alphabet, and the numbers I to 9, into page 6,
so that we can put scores, etc., on to the graphics screens during
the game. (That's what all those DATA statements are for in lines
500 to 584!).

6. When the subroutine at 9000 has RETURNed control to the
"ALIEN SKULL", or whatever, routine, we need to GET the
character into an array. We will be discussing arrays in their more
usual context in the next chapter. For now just think of it as
putting aside an area of memory in which we can store our
graphics character, ready to dump him on screen at a moment's
notice. A word of warning here: you can only dimension an array
once within a program - attempting to do it a second time will
cause an error report and stop your program. For this reason it is
often a good idea to include all DIM statements in the initialisation
part of the program. As we only visit the character definition
routines once, however, we can put them here and it does make it
clearer what they are being used for.

The GET instruction takes the form: GET(X,Y) - (X+P,Y+Q),A,G
where X and Y are the screen co-ordinates of the top left corner of
the rectangle of the screen which we want to GET. P is the width
of the rectangle minus 1, Q is the height of the rectangle minus 1,
and A is the name of the array into which we arc GETting the bit
of screen in question. GET's partner in crime is PUT and it looks
very similar: PUT(X,Y) - (X+P,Y+Q),A,PSET. This PUTS the area of
screen previously GOT into A. back on to thC screen at position
X,Y. The PSET means "put it back just alii you got it". Ifwe
wished we could use !'RESET, AND, OR, or NOT instead of PSET.

PRESET: This PUTS an inverted picture on to the screen. By
inverted we do not mean upside down, but that the foreground
becomes background and vice versa.
NOT, This ignores the array completely and just inverts whatever
is on that pan of the screen at the time.
AND: This compares each point in the array with each point
already on the bit of screen in question and sets the point on

screen if they are both set, otherwise it resets it.
OR: This is like AND except that it will set the screen point if
either of the points are set, otherwise it resets it.

1 19

Well, that's how the character definition routines work. Of
course you could do all this without using using READ, DATA, FOR

and NEXT, but the program would be badly styled, look very
cumbersome and be difficult to change.

Where else can we use graphics characters? Well, if you
remember we said we would be creating some more firing
routines in this chapter, and it is in these routines that we can
make further use of graphics characters. We will define a bomb
and a fireball which we can GET/PUT up the screen, and then we
will see how to utilise these in a firing routine. First, a picture of
a bomb:

N V N CO
CO (") 00 V N .-.

The numbers for it would be:
16 + 8 = 24
32 + 16 + 8 + 4 = 60
32 + 16 + 8 + 4 = 60
32 + 16 + 8 + 4 = 60
32 + 16 + 8 + 4 = 60
16 + 8 = 24
32 + 16 + 8 + 4 = 60
64 + 32 + 16 + 8 + 4 + 2 = 126

24

60

60

60

60

24

60

1 26

120

Now then, we need to decide where to put the lines which will
define the character. We do not want to put them in the firing
routine because that would mean redefining the character each
time we fired a shot. This is very inefficient, and it would slow
down the program intolerably. A good place would be in the alien
graphics routine, and it would look like this:

I 183 DATA 24,60,60,60,60,24,60, l26
1185 GOSUB 9000
I 187 DIMC(l):GET(0,l44) - (7,151),C,G

Notice that this time we don't need to set PG or N because they
will still be set from the alien definition. This would mean that
array C now contained a bomb! Here is the listing which can be
slotted into the firing routine part of the game if you wish:

Lisring 6. I

1 700 REM ***************
1 701 REM *CHECK FOR H I T*
1 702 REM * BOMB *
1 705 REM ***************
1 7 1 0 HIT=0: IF K=0 THEN 1 790
1 7 1 5 SOUND 1 00 , 1
1 720 BX=PXC BY= 1 60
1 725 GET (BX , BY > - (BX + 7 , BY+7 > , N , G :
PUT (B X , BYl - < BX+7 , BY+ 7 l , C , PSET
1 730 BY=BY-8
1 735 PUT <BX , BY+8) - < BX+ 7 , BY+ 1 5) , N
, PSET
1 740 GET < BX , BY > - < BX+7 , BY+7 > , N , G :
PUT < BX , BY) - (BX + 7 , BY+7 > , C , PSET
1 745 I F XA=PX AND AY=BY THEN H I T
= 1 : GOTO 1 760
1 750 IF BY>0 THEN 1 730
1 760 PUT (BX , BY > - (BX + 7 , BY+ 7 > , N , PS
ET
1 790 RETURN

121

If you want a fireball instead of a bomb just change the DATA to
this:

1 183 DATA 0,0,36,24, 126,24,36,0

By following the above format, you should be able lo create many
different types of missile.

Following this text is a utility program (a utility program is one
that helps you to design and create other programs) lo help you
make up your own characters and work out the DATA for them
without using reams of paper and wearing out lots of pencils.
(After all, what's a computer for, if not to make life easier?) Your
position in the grid is shown by a cross, which you can move with
the arrow keys. When you reach a square you want to change -
either from black to white or white to black - press C and it will
change. As you create your character you will see a real-size
version appear at the bottom of the screen, and under the word
DATA you will see the numbers that you will need to put into the
DATA statement in your definition routine.

This is a longish program, so be careful how you type it in. It
would be a good idea to CSA VE it for future use.

Characcer Ediror Liscing

1 0 PCLEAR5 : PMODE4 , 2 : PCLS1
20 PG=2 : N=44 : NV=1 : GOSUB 9000
30 DIMC < 1) : D I M0 (1) : D I MN ! 1 l : D IMDT
(7)
40 GET < 8 8 , 1 52) - (9 5 , 1 5 9 1 , C , G
50 GOSUB 1 000
60 GOSUB 2000
1 00 A$= INKEY$: I F A$= " " THEN 1 00
1 10 IF AS= " C " THEN GOSUB 3000 : GO
TO 1 00
1 20 IF A$=CHR$ (8) THEN IF CX >96
THEN F=F*2 : CX=CX-8: GOSUB 2000 : GO
TO 1 00
1 30 IF A$=CHR$ (9) THEN I F CX< 1 52

THEN F=F / 2 : CX=CX + 8 : GOSUB 2000 : G
OTO 1 00

122

1 40 I F AS=CHR$ (10 l THEN I F Y < 7 T
HEN AD=AD+32 : Y=Y + l : CY=CY+8 : GOSUB

2000 : GOTO 1 00
150 IF AS=CHR$ (9 4) THEN IF Y >0 T
HEN AD=AD-32 : Y=Y- 1 : CY=CY-8: GOSUB

200/lJ
1 6/lJ GOTO 1 /lJIZI
5/llllJ DATA 0 , 60, 66 , 66 , 1 26 , 66 , 66 , llJ
502 DATA 0 , 1 24 , 66 , 1 24 , 66 , 66 , 1 2 4 ,
0
504 DATA 0 , 60 , 66 , 64 , 64 , 66 , 60 , 0
506 DATA llJ , 1 2/lJ , 68 , 66 , 66 , 68 , 1 2/lJ , llJ
508 DATA 0 , 126 , 64 , 124 , 64 , 64 , 1 26 ,
0
5 1 /lJ DATA 0, 1 26 , 64 , 1 24 , 64 , 64 , 64 , 0
5 1 2 DATA llf , 6/lJ, 66 , 64 , 78 , 66 , 60 , llJ
5 1 4 DATA 0 , 66 , 66 , 1 26 , 66 , 66 ,�6 , 0
5 1 6 DATA 0 , 62, 0 , 0 , 0 , 0 , 62 , 0
5 1 8 DATA 0 , 2 , 2 , 2 , 66 , 66 , 60 , llJ
520 DATA 0 , 68 , 72 , 1 1 2 , 72 , 68 , 66 , 0
522 DATA 0 , 64 , 64 , 64 , 64 , 64 , 1 26 , 0
524 DATA 0 , 66 , 1 02 , 90 , 66 , 66 , 66 , 0
526 DATA 0 , 66 , 98 , 82 , 74 , 70 , 66 , lll
528 DATA 0 , 60 , 66 , 66 , 66 , 66 , 60 , lll
530 DATA 0 , 124 , 66 , 66, 1 24 , 64 , 64 , 0
532 DATA llJ , 6/lJ, 66 , 66 , 1 1 4 , 74 , 60 , 0
534 DATA llf, 124 , 66 , 66 , 1 24 , 68 , 66 , llJ
536 DATA llJ , 6/lJ , 64 , 60 , 2 , 66 , 6/ll , llJ
538 DATA 0, 254 , 1 6 , 1 6 , 1 6 , 1 6 , 1 6 , 0
540 DATA 0 , 66 , 66 , 66 , 66 , 66 , 60 , llJ
542 DATA 0 , 66 , 66 , 66 , 66 , 36 , 24 , 0
544 DATA 0 , 66 , 66 , 66 , 9/lJ, 1 02 , 66 , 0
546 DATA 0 , 66 , 36 , 24 , 24 , 36 , 66 , llJ
548 DATA 0 , 130, 68, 40, 1 6 , 1 6 , 1 6 , 0
55/lJ DATA 0, 1 26 , 4 , 8 , 1 6 , 32 , 1 26 , 0
552 DATA 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
562 DATA 999 , 999 , 999 , 999, 999
564 DATA 0, 24 , 36 , 44 , 52 , 36 , 24 , 0

566 DATA 0 , 8 , 24 , 8 , 8 , 8 , 28 , 0
568 DATA 0 , 24 , 36 , 8 , 1 6 , 32 , 60 , 0
570 DATA 0 , 24 , 36 , 24 , 4 , 36 , 24 , 0
572 DATA 0 , 8 , 24 , 40 , 72 , 1 24 , 8 , 0
574 DATA 0, 60, 32 , 56 , 4 , 36 , 24 , 0
576 DATA 0 , 28 , 32 , 56 , 36 , 36 , 24 , B
576 DATA 0 , 60 , 4 , 8, 1 6 , 32 , 32 , B
580 DATA 0 , 24 , 36 , 24 , 36 , 36 , 24 , 0
582 DATA 0 , 24 , 36 , 36 , 28 , 4 , 56 , B
584 DATA 0 , 0 , a , 0 , 0 , 0 , a , e
586 DATA B, 24 , 24 , 1 26 , 1 26 , 24 , 24 , 0
999 REM ¼¼DISPLAY GRIDH
1 000 PMODE4 , 1 : PCLSNV: SCREEN1 , 0
1010 COLOR0 , 1 : FOR X=96 TO 160 ST
EP 8
1 020 L I NE < X , 64 1 - < X, 1271 , PSET
1030 NEXT X
1040 FOR Y=64 TO 1 28 STEP 8
1050 L INE (96 , Y l - (1 59 , Yl , PSET
1060 NEXT Y
1070 PS= " DATA " : XS=56 : YS=48 : GOSUB

9900
1090 FOR YS=64 TO 1 20 STEP 8
1 100 XS=72 : PS= " 0 " : GOSUB 9900 : NEX
T YS
1 1 10 PS= " C TO CHANGE " : XS=168: YS=
96 : GOSUB 9900
1 1 20 CX=96 : CY=64 : OX=CX: OY=CY: AD=
6 1 60 : F = 1 28 : Y=0
1 1 30 GET <OX, OYl - (OX + 7 , OY+7l , O , G
1 140 RETURN
1999 REM HCROSSH
2000 PUT ! OX , OYl - (OX+7, OY+7l , O, PS
ET
2010 GET < C X , CYl - ! CX+7, CY+7l , O , G
2020 PUT !CX , CYl - (CX+7, CY+7 l , C , PS
ET

123

124

2030 OX=CX: OY=CY
2040 RETURN
2999 REM **CHANGE**
3000 PUT (CX, C Y I - ICX+7,CY+71 , 0 , PS
ET
3010 PUT ICX, CYI - ICX+7, CY+ 7 1 , C , NO
T
3020 GET I CX, CYI - I CX+7, CY+71 � 0 , G
3030 I F PPO I NT I CX+3 , CY+3 J =S THEN

DT C Y J =D T I Y l +F ELSE DT I Y l =DT I Y I
F
3035 A=DT I Y J : IF NV=1 THEN A=255-
A
3040 POKE AD, A
3050 P$=STR$ (DT I Y J l : P$=RI GHT$ 1P$
, LEN !P$J - 1 1
3060 XS=80-8*LEN (P$ 1
3070 YS=64+8*Y
3075 COLOR1 , 1 : LINE 1 56 , YS J - 1 8S, YS
+ 7 J , PSET , BF
3080 GOSUB 9900
3090 PUT C CX , C Y J - C C X + 7 , C Y + 7 J , C , PS
ET
3095 RETURN
9000 PMODE4 , PG : SCREEN 1 , 0 : REMt h i s

i s j ust so you can see i t happe
n i n g
9010 ST=7680+ 1 536* C P G - 2 J
9020 F O R C H=0 T O N- 1 : RN= INT C CH / 3
2)
9030 F O R Y=0 T O 7 : READ C D : I F CD=
999 THEN Y=7: GOTO 9050
9035 I F NV=l THEN CD=255-CD
9040 POKE ST+224*RN+CH+32*Y , CD
9050 NEXTY , CH
9055 RETURN
9899 REM *PR INT STR I NG*

9900 IF P$= " " THEN RETURN
9 9 1 0 A$=LEFT$ (P$, 1) : P!5=R I GHT$ (P$
, LEN (P$) - 1 l
9920 I F A$= " " THEN YG= 1 4 4 : XG=20
B : GOTO 9950
9930 YG= 1 4 4 : AS=ASC (A$) -65 : I F A$(
" A " THEN YG= 1 52 : AS=ASC (A$ l -48
9940 XG=B*AS
9950 GOSUB 9960: XS=XS + B : GOTO 990
0
9960 PMODE4 , 2 : GET < XG , YG l - (XG+ 7 , Y
G + 7 > , N , G
9970 PMODE4 , 1 : PUT < XS , YS l - (XS+ 7 , Y
S + 7 > , N , PSE T : RETURN

Here is a sample screen from the program:

DATA

1 15
5 6
5 6

:i. 2 4
1 2 4
2 !5 4
2 !5 4

1 6

C T O C H H H 1:; E

125

CHAPTER 7

Arrays and Adventures

By now you should be quite familiar with the idea of a variable.
We have been using variables to store scores, the number of
aliens and many other things.

These variables are called simple variables - they contain one
number only. If you want to store another number you either use
another variable or overwrite what was stored in the first one.

For example, going back to our cheesecake example for a
moment, suppose you wanted to keep track of your profit on
cheesecake over a week. One way would be to have seven
different variables, one for each day. Then your program would
be seven times as long, as it would be doing the same calculation
on seven different variables, and at the end it would print out
your profits for the seven days with a routine like this:

100 PRINT PI
110 PRINT P2
120 PRINT P3
130 PRINT P4
140 PRINT PS
150 PRINT P6
160 PRINT P7

Well , it would work, but there is a better way - using arrays.
An array is in effect a collection of variables with the same

name. But unlike simple variables, you cannot LET them equal
anything until you have told the computer that you are going to
use them. You do this with the DIM statement, and this is called
DIMensioning the array.

In our example, we need an array with seven "elements". Now
it is one of the peculiar facts in computing that computers usually
start counting from 0, not from I like humans, so it counts the
elements in an array as 0,l,2,3,4,S,6, and so on. So, to get seven
elements we only need to go up to 6. (This may seem odd at first,
but you will soon get used to it, and it is actually very useful in

126

127

some circumstances.) DIM P(6), then, will create an array of seven
elements, and we refer to them as P(O), P(l), and so on. Now, the
really clever bit about arrays is that the number inside the
brackets (called the subscript) can be another variable! This
means that we could store our cheesecake profits for each day in
P(O) to P(6) and to PRINT them out we could use a routine like this:

100 FOR N=0 TO 6
1 10 PRINT P(N)
120 NEXT N

and we think you will agree that this is much better than the
previous method.

This array is said to have one DJMension, with seven elements -
a one by seven array. We have used this DIMension for the days of
the week. However, you can have arrays with as many
DIMensions as you like. Let's say we wanted to find out which
flavours made the most popular cheesecake (so we can maximise
our profits !) We would set up a two DIMensional array. One
DIMension would have seven elements as before and the other

DIMension would have as many elements as we have flavours.
Let's keep it simple and say that we have strawberry, chocolate,
blackcurrant and plain - four flavours in all. Our array would be
seven by four, so our DIM statement would be DIM P(6,3). The
first day's profit for strawberry cheesecake would go into P(0.0),
for chocolate it would be P(0,I), for blackcurrant P(0,2) and for
plain P(0.31 . The second day's profit would be in P(l ,0J, P(l ,t), P (l ,2)
and so on. To PRINT these out at the end of the program, you
would be able to use a routine like this:-

100 FOR DAY=0 TO 6
1 10 FOR FLAVOUR= 0 TO 3
120 PRINT P(DAY,FLAVOUR);" "
130 NEXT FLAVOUR
140 PRINT
150 NEXT DAY

This would give us a neat table - flavours across and days down,
with 28 figures in all. Can you imagine using 28 variables and 28
PRINT statements to do the same job?

128

STRING VARIABLES AND STRING ARRAYS

Variables and arrays which contain numbers are called "numeric"
variables or arrays. This is not just a pointless piece of jargon; it
distinguishes them from another, quite different, type of variable
- a string variable - and another type of array - a string array.

We have used string variables in our arcade game to get scores,
etc., on to the Dragon's high resolution graphics screen, but we
have not really looked at them very closely

Whereas a numeric variable holds a number, a string variable
holds a string, and the same goes for arrays.This is the major
difference between the two types and it is a very important
difference. A string is a collection of characters. The computer
recognises a collection of characters as a string when they are
between quotes. So, "FRED" is recognised by the computer as a
string, but FRED without the quotes is assumed to be a numeric
variable.

The important thing to remember is that you cannot mix the
two types. If, for example, you tried to say LET A="FRED" the
computer would give you the error report ?TM ERROR which
stands for Type Mismatch, which is just what it was. String
variables can have the same kind of names as numeric variables,
but they always have a $ sign on the end to show that they are
string variables. So, LET A$='TRED .. would put the string "FRED ..
into the variable A$, and PRINT A$ would result in FRED
appearing on the screen. LET A$= 10, however, would give ?TM
ERROR again, because you cannot put a number into a string
variable.

Of course , digits are only characters, and they can be put in
strings, so LET A$=" 10" is fine. But remember it is a string not a
number and so, if you then tried to say LET X=2+ A$ you would
once again get ?TM ERROR. There are, however, two functions
which allow you to change a number into a string and vice versa.
LET A$=STR$(to) is quite acceptable, and would result in A$
containing the string " 10--. Notice the space. This is why the
computer PRINTS a space before numbers - because it uses the
STR$ function itself to convert the numbers into strings before

printing them. LET x-VAL(A$) is also perfectly OK, and if A$

contained the string ··10·· (or " 10") then X would be assigned the
value 10.

129

We can use string functions together with the two DIMensions
of P$(6,3) to formal the output from our cheesecake profits
routine. We can use the STR$ function to first turn the numbers

into strings, and then use another function which gives us the

length of a string (LEN) to get all the numbers lined up. The
program would look like this:-

100 FOR DAY=0 TO 6
I 10 FOR FLAVOUR =0 TO 3
120 LET A$= STR$ (P(DA Y ,FLA YOUR))
130 PRINT T AB(FLA YOUR *8 - LEN(A$)+ 8);A$
140 NEXT FLAVOUR
150 PRINT

160 NEXT DAY

Arrays and strings are used a lot in adventure games and this is
what we'll take a look at next. In the adventure game given in the
next chapter we will see multi·DIMensional arrays used to keep
track of things like the player's position and the contents of
rooms. The program in the next chapter builds up into a game in
much the same way that the sections of Chapter 3 built up into an
arcade game. Although there are some differences the process is
sufficiently similar not to need a full example program.

CHAPTER S

Adventure Games, a Selection of Lego Bricks

In this chapter we are going to write an adventure game. We will
begin as we did for our arcade game - by considering the basic
building blocks of such a game. These are as follows:

l . Initialisation.
2. Assign the Inventories.
3. Give Instructions.
4. Create the Maze.
5. Describe Situation.
6. Player's INPUT.
7. Check INPUT is Legal.
8. Perform Instruction.
9. Computer Response.

10. Check for End of Game.
I I . End of Game Message.
12. Round Again.

To begin with, we will write the simplest (well almost!) version of
the game. We have chosen a scenario of a maze of dungeons. The
player must search for a Crown of Emeralds left there aeons ago
by the king of a long forgotten race of Troglodytes. The only
"feature" of the game is that some of the passages from cave to
cave have doors that are locked, and to open them the player
needs to find and take a key, of which there are several lying
about in the maze. To prevent things from becoming too easy we
will not allow any keys to be used more than once - they will
always either break or get stuck in the lock.

Step I. Initialisation. OK! Let's build the game. Again we will
begin with the initialisation and control program, which follows
the sequence set out above . The pattern is a familiar one - for
each block, we just GOSUB to a subroutine which does whatever

130

131

the blockname says it must do (eg. create a maze), just as in our
arcade game.

The control program is shown in listing 8.1. Type it in exactly
as shown.

Listing 8. 1

1 0" REM ****************
20" REM ¼TREASURE TRA IL¼
30" REM ****************
40" REM ** I N I T I AL I SE DRAGON **
50" CLEAR 50"0"
60" D I M I A$ (7 , l l : D I M I B$ (1 0" 1 : D I M IC$
(2)

7 0" D I MRM$ (35 , 5 1 : D I MAJ$ (4 , l l : D IMP
S (5 1
80" FOOD=0" : BATTER I ES=0": MN=0"
90" DEF FNR (DR l = (6 AND DR=3 1 - (6 A
ND DR=2 1 + (1 AND DR=4 1 - (1 AND DR=
5 1 : DEF FND (D R > =DR- (DR=2 OR DR= 4)
+ (DR=3 O R DR=5 >
1 0"0" REM ********************
1 1 0" REM ¼AS S I GN I NVENTOR IES¼
1 20" REM ********************
1 30" GOSUB 1 20"0"
1 40" REM **************
1 50" REM ¼ I NSTRUCTI ONS¼
1 60" REM ¼¼¼¼¼¼¼¼¼¼¼¼¼¼
1 70" GOSUB 10"0"0"
1 80" REM ¼¼REPEAT UNT IL user qu i t
s¼¼
1 90" REM *************
20"0" REM ¼CREATE MAZE¼
2 1 0" REM *************
22/J GOSUB 1 4/J0" : NR= l : PRINT@448 , " "

230" REM ¼¼REPEAT UNT I L game over
**

132

240 REM ***********
250 REM *NEW ROOM?*
260 REM ***********
270 ON NR+ l GOSUB 2020, 2000
280 REM **************
290 REM *PLAYER I NPUT*
300 REM **************
3 1 0 GOSUB 2500
330 REM *****************
340 REM *LEGAL MANOUVRE?*
350 REM *****************
360 GOSUB 3000 : I F Q=l THEN 650
420 REM *****************
430 REM *VAL I D MANOUVRE?*
440 REM *****************
450 I F LG=l THEN GOSUB 4000
460 REM *****************
470 REM *DRAGON RESPONSE*
460 REM *****************
490 GOSUB 5000
500 REM **UNT I L 9ame over**
5 1 0 IF LOST=0 AND WON =0 THEN 27
0
520 REM *************
530 REM *END OF GAME*
540 REM *************
550 I F LOST=l THEN GOSUB 6000
560 I F WON= l THEN GOSUB 6 1 00
570 REM ***************
560 REM *ANOTHER GAME?*
590 REM ***************
600 I NPUT " DO YOU WANT ANOTHER GA
ME " ; U$
6 1 0 IF LEFT$ (US, 1 1 C > " N " THEN CLS
: GOSUB 6200 : GOTO 220
620 REM *****
630 REM *END*
640 REM *****
650 END

This control program will remain the same no matter which
version of the game we decide to write so we suggest that you
CSA VE it for future use.

The lines numbered less than 1 00 simply initialise the
computer. Line 50 CLEARS an area of 500 bytes at the top of
memory for the exclusive use of strings. Lines 60 and 70
DIMension the arrays which the program will use, and line 90
defines two functions which will be used later in the program.
These operations will be explained more fully in a later section.

133

Step 2. Assign Inventories. Now all we have to do is write the
subroutines which are called from the main program. The first of
these is given here.

Listing 8.2

1 1 99 REM *AS S I GN I NVENTOR I ES*
1 200 FOR N:0 TO 2
1 2 1 0 READ I AS < N , 0) , I AS (N , l l
1 220 NEXTN
1230 FOR N:0 TO 6
1 240 READ I B$ (N J
1 250 NEXT N
1 300 DATA GO , 01 23 , TAKE , 56 , OPEN , 4
1 3 1 0 DATA NORTH , SOUTH , EAST, WEST ,
DOOR , KEY, EMERALDS
1 330 DATA DAMP , M I SERABLE , COLD , OA
RK, SCAR Y , OPPRESS I V E , SMALL , GLOOMY
, LARGE , DRAUGHTY
1 340 FOR N:0 TO 4
1 350 READ AJ$ (N , 0 J , AJ$ (N , 1 l
1 360 NEXT N
1 370 RETURN

Type this in with the control program. This routine assigns the
inventories. The inventories are arrays containing all the words
(verbs and nouns) which the program needs to be able to
understand.

134

Step 3. Give Instructions. Instructions are needed to tell the
player what to do in the game and what the aim is. However it is
essential not to give too much information here - it is supposed to
be a game of exploration and adventure after all! Combine the
lines of listing 8.3 with your program to date.

Listing 8.3

999 REM *I NSTRUCT I ONS*
1000 CLS: PRINT@3 , " T R E A S U R
E T R A I L "
1010 PRI NT@64 , " YOU ARE IN THE DU
NGEONS OF GORM, " ;
1 020 PRINT" AND YOU ARE SEARCHING

FOR A "
1 030 PRINT" CROWN OF EMERALDS "
1 040 PRINT TAB l 3 l ; " THE COMPUTER
UNDERSTANDS THE "
1 050 PRINT " FOLLOWING VERBS : - • ;
1 060 FOR N=0 TO 2 : PRINT TAB l 1 8) ;
I A$ 1 N , 0) : NEXT N
1 1 90 PRINT@484 , " PRESS ANY KEY TO

START " ; ; A$= I NKEY$
1 1 95 A$= I NKEY$: I F A$= " " THEN 1 1 9
5
1 1 96 CLS: RETURN

Step 4. Create the Maze. It is essential to make absolutely certain
that you could win. This routine creates the maze and places the
target, the Crown of Emeralds, and the player at RaNDom
positions. There will always be a possible path from one to the
other but the rest of the maze is decided at random. Listing 8.4
gives the simplest version of the maze creation routine.

Listing 8.4

1 399 REM *SET STATUS , PLACE CROW
N t. PLAYER*
1 400 PRINT TAB l 1 3) ; " W A I T "

1 4 1 0 CE=RND < 35 l
1 420 X=RND < 35 l : I F X=CE THEN 1 420

ELSE PR=X
1 429 REM *BU ILD A PATH*
1 430 R=RND (4 l : ON R GOSUB 1 550, 1 6
5.0 , 1 7.00, 1 7.0.0
1 44.0 L$= " 0 " : I F KEY>.0 THEN L$=L$+
" D "
1 46.0 L=LEN (L$) : R=RND (L l : O$=M I D$ (
L$, R , 1 l
1 470 I F 0$= " 0 " THEN KEY=KEY - 1
1 480 Y=CE-X : I F Y > 5 THEN RM$ (X , 3 l
=0$: X=X +6 : RM$ (X , 2 l =O$: GOTO 1 540
1 490 IF Y< -5 THEN RM$ (X , 2 l =O$: X=
X - 6 : RM$ (X , 3 J =O$: GOTO 1 540
1 500 IF Y >0 AND (X+ l l l 6 < > I NT ((X +
1) / 6) THEN RM$ (X , 4 J =O$: X=X+ l : RM$
C X , 5 > =0$: GOTO 1 540
1 5 1 0 I F Y>0 THEN RM$ (X , 3) =0$: X=X
+ 6 : RM$ (X , 2 J =O$: GOTO 1 540
1 520 I F Y<0 AND X / 6 () I NT C X / 6 J TH
EN RM$ C X , 5 l =O$: X=X - 1 : RM$ (X , 4 l =O$
: GOTO 1 540
1 530 IF Y < 0 THEN RM$ C X , 2 l =O$: X=X
- 6 : RM$ 0< , 3 1 =0$
1 540 IF X=CE THEN GOSUB 1 800: RM$
(CE , 0 l = " E " : RETURN ELSE GOTO 1 430
1 549 REM *DEPOS I T OBJECT*
1 550 L$= " N " : I F RND < 0 > > , 5 THEN L$
=L$+ " K "
1 600 L=LEN (L$ l : R=RND C L) : 0$=M I D$ (
L$, R , l l
1 6 1 0 I F 0$= " K " THEN KEY=KEY + l
1 640 RM$ (X , 0 l =O$: RETURN
1 650 RETURN
1 700 RETURN
1 799 REM *COMPLETE MAZE*
1 800 OB$= " NKN " : L$= " 0D W "

135

136

1 805 L=LEN C L$l : O=LEN (O$ l
1 8 1 0 FOR N=0 T O 35: FOR M=2 T O 5
1 820 IF RM$ C N , M l = " " THEN RM$ C N , M
l =M I O$ (L$ 1 RND C L l 1 1)
1 825 GOSUB 1 950
1 830 NEXT �1
1 840 IF N < 6 THEN RM$ (N , 2 l = " W "
1 850 I F N >29 THEN RM$ (N , 3) = " W "
1 860 I F (N+ l l /6=INT C (N+ 1 l / 6 l THE
N RM$ (N , 4 l = " W "
1 870 I F N/6=INT (N / 6) THEN RM$ C N ,
5 l = " W "
1 890 I F RM$ C N 1 0 l = " " THEN RM$ C N , 0
l =M I D$ (OB$, RND < O l , l)
1 931/J NEXT N
1 940 RETURN
1 949 REM **COMPLEMENTARY DOORS**
19�0 IF M•2 THEN IF N > � THEN RM•
< N-6 1 3) =RM• < N , M) : RETURN
1 960 IF M=3 THEN IF N < 30 THEN RM
$ C N+ 6 , 2) =RMS < N , M) : RETURN
1 970 IF M=4 THEN IF C N + 1 l l6< > I NT
C C N+ l) / 6) THEN RM$ C N+ 1 , � l =RMS C N ,
M l : RETURN
1 980 IF M=5 THEN IF Nl6< > I NT C N / 6
l THEN RM$ C N- 1 , 4 l =RM$ C N , M l : RETUR
N
1 990 RETURN

Step 5. Describe Situation. Describe the situation and
surroundings to the player. At this point we embark on our
adventure, and it is to this point that the program will return
after our latest aucmpt at dcrring-do has met with total failure.
\Xlhen we enter each cave the computer describes ii and the
objects therein are detailed. It is this section which must produce
the excessive verbiage that is a pre-requisite of adventure games .
This routine produces a lot of pleonastic purple prose with much
repetirion and even tautology. Much of the information is, of

137

course, apocryphal. This task is dealt with by listing 8 . 5 which is
given below. Once again we must key in the whole lot to add this
function to our program.

Liscing8.5

1999 REM *DESCRIBE ROOM*
2000 N•RND (5) - 1 : M=RND (5) - 1 : A•=AJ
• < N , 0) : B••AJ. (M , 1)
2010 PRINT " YOU ENTER A " ; A•1 • , "
; B• ; • " : I F RND (0) > , 5 THEN PR INT"
CAVE " ELSE PR INT " PASSAGE"
2020 PRINT " YOU SEE : • ; : I F RM• < PR
, 0 > = " N " THEN PRINT " NOTH I NG " : GOTO

2 1 1 0
2040 I F RM• < PR , 0 l • " E " THEN PRINT

TAB (9) 1 " THE CROWN OF EMERALDS "
2080 IF RM• < PR , 0) = " K " THEN ON RN
0 (4) GOSUB 2 1 60, 2 1 70, 2 1 80, 2 1 90
2 1 1 0 FOR N=2 TO 5
2 1 20 IF RMS (PR , N l = " O " OR RMS < PR ,
N) = " D " THEN PRINT " THERE IS A DOO
R TO THE " ; I BS C N- 2 >
2 1 40 NEXT N
2 1 50 NR=0 : RETURN
2 1 60 PRINT TAB (9) ; " A RUSTY KEY " :
RETURN
2 1 70 P R I NT TAB < 9 > ; " A LARGE KEY " :
RETURN
2 1 80 PR INT TAB (9) ; " A GOLDEN KEY "
: RETURN
2 1 90 PRINT TAB (9) ; " A WOODEN KEY "
: NR•0: RETURN

Step 6 . Player's INPUT. We must allow rhe player to make his life
and death decisions, carefully weigh the pros and cons and finally
stumble blindly on. In other words, what do you want to do now?
This routine will accept the commands of the player as typed in at

138

the keyboard. We must cld this section to our rapidly growing
program (bear in mind that computer adventures are always fairly
large programs so you might want to save your program a few
times along the way as an insurance policy against power failure).

Listing 8.6 below contains the instructions to accept INPUT.

Listing 8.6

2499 REM **PLAYER I NPUT**
250'0' PRINT@5 1 1 , " " : P R INT@448 1 • • ;
2510' I NPUT U$
2520' RETURN

Step 7. Check INPUT is Legal. This section checks that what you
typed actually made sense, e.g. that it uses a legal verb like GO or
TAKE, and in a legal manner, such as GO NORTH. (GO BANANAS is
not legal input). Type this section in from the next listing.

Listing 8.7

2999 REM **LEGAL MANOUVRE?**
30'0'0' LG=0' : IF I NSTR < 1 , U$ 1 " G!U I T ") >
0' THEN G!= l : RETURN
301 0' IF LEFT$ (U$, l) = " " THEN U$=
R I GHT$ (U$, LEN (U$) - 1) : GOTO 30'10'
30'20' IF R I GHT$ (U$, l l = " " THEN U$
=LEFT$ (U$ 1 LEN (U$ l - 1) : GOTO 30'20'
30'99 REM *I NVENTORY SEARCH*
3 1 0'0' Z$= " " : Z1$=" " : Z2$= " " : L= I NSTR
C 1 , U$, " " >
3 1 0'5 I F L=0' THEN W l $=U$: GOTO3 1 20'

ELSE W 1 $=LEFT$ ((U$ l 1 L - l l : REM FI
ND VERB
3 1 1 0' Z$=RI GHT$ (U$, LEN (U$ l -L l : REM

REST OF STRING
3 1 20' X= - 1 : FOR V=0' TO 2
3 1 30' IF W l$= I A$ (V , 0') THEN X=V : V=
2
3 1 40' NEXT V

3 1 50 I F X=- 1 THEN RF=2 : RETURN
3 1 59 REM F I ND OBJECT OF VERB
3 1 60 L$= I A$ (X , 1 l : Y= - 1
3 1 70 FOR N = 1 T O LEN (L$ l
3 1 80 M=VAL (" �H " + M I D$ (L$, N 1 1 l l
3 1 90 IF I NSTR < 1 , Z$, I B$ (M l l >0 THE
N Z1$=IB$ (M l : Y=M : N=LEN (L$)
3200 NEXT N
3210 IF Y= - 1 THEN RF=3 ELSE LG=1
32 1 5 RETURN

139

Step 8. Perform Instruction. Well, we'll try to! Just because GO
NORTH seems like a reasonable idea doesn't mean we can
necessarily do it. There might be a blank wall in the way. There
are so many possibilities that the routine is made up of many
smaller routines which deal with individual words. This sort of
further subdivision of tasks is a common feature in structured
programs and makes both reading and writing them a lot easier.

Listing 8.8

3999 REM **VAL IDITY CHECK**
4000 RF•0: OK•0: ON X + 1 GOSUB 4100
, 4200 , 4300
4010 I F OK• 1 THEN RF• 1 6
4030 RETURN
4099 REM **GO**
4 1 00 REM
4 1 0� DR•- 1 : FOR N•0 TO 3
4 1 10 IF INSTR (1 , Z. , I B• < N)))0 THE
N DR•N+ 2 : N•3
4 1 20 NEXT N
4 1 2� IF DR•- 1 THEN RF• 1 4 : RETURN
4 1 30 IF RM• < PR , DR l • " O " THEN OK•1
: PR•PR+FNR < DR l : NR• 1 : RETURN
4 1 40 IF RM• < PR , DR l • " D " THEN RF=�

ELSE RF•4
4 1 �0 RETURN

140

4 1 99 REM **TAKE**
4200 REM

4210 IF RM* < PR , 0 l < >LEFT• < I B• < Y > ,
1 1 THEN RF=6 : RETURN
4220 OK=1 : PS (Y- 5 l =PS < Y- 5) + 1
4230 RM$ (PR , 0 l • " N "
4240 RETURN
4299 REM **OPEN**
4300 REM
4305 IF PS (0 > < 1 THEN RF•7 : RETURN
4310 LD=0: DR=0: FOR N=0 TO 3
4320 I F DR=0 THEN IF I NSTR < l , ZS ,
I BS < N l l >0 THEN DR=N+ 2
4330' I F LD=0 THEN I F RMS < PR, N + 2 l
= · n · THEN LD=l
4340 NEXT N
4350 IF DR=0 THEN RF= 1 4 : RETURN
4360 IF LD=0 THEN RF=8 : RETURN
4370 IF RMS (PR , DR l < > " D " THEN RF=
8 : RETURN
4380 RM$ (PR, DR) = " O " : R•PR+FNR (D R)
: DR=FND < D R l : RM$ (R , DR l • " 0 "
4390 PS (0) =PS (0) - 1 : K=- 1 : 0K•1 : RET
URN

Step 9. Computer Response. By now we have figured out what
has just happened with regard to the player's commands. We
need to tell the player what he has (or more likely what he has
not) achieved. Which response is given depends upon the RF
response flag set by the previous routines. The choice of response
is dealt with by listing 8. 9· so add this to your program.

Listing 8.9

4999 REM **RESPONSE**
5000 ON RF GOSUB 5200, 52 10 , 5220 ,
5230 , 5240, 5250, 5260 , 5270 , 5280 , 52
90, 5300, 5310, 5320, 5330 , 5340, 5350
, 5400 , 5500 , 5510, 5520

5fH0 I F PS (1) = 1 THEN WON= l : RETUR
N
5020 I F LOST= ! THEN RETURN
5 1 30 RETURN
5200 PRINT" WHAT? ! " : RETURN
5210' PRINT " ! DO NOT KNOW THE VER
B " ; W 1$: RETURN
5220 PRINT " YOU CANNOT " ; W t $; " " ;
Z 1 $; Z$: RETURN
5230 PRINT " YOU CANNOT GO " ; Z$: RE
TURN
5240 PRINT " THE DOOR IS LOCKED , " :
RETURN
5250 PRINT " ! SEE NO " ; ZS ; " HERE "
: RETURN
5260 PRINT " BUT YOU DO NOT HAVE A

KEY ! " : RETURN
5270 PRINT" THERE IS NO LOCKED DO
OR TO OPEN HERE " : RETURN
5330 PRINT " WHICH D I REC T I ON? " : RET
URN
5350 PRINT " YOU • ; us
5360 IF K= - 1 THEN PRINT " BUT " ;
5370 I F K•- 1 THEN I F RND (0) > , 5 T
HEN PRINT " THE KEY BREAKS " : K•0 E
LSE PRINT" THE KEY GETS STUCK , Y
OU MUST LEAVE I T BEH IND , " : K•0
5390 RETURN

141

Step 10. Check for End of Game. If the game is neither won nor
lost we have to loop back to the description routine (Step 5). This
task has been incorporated into the control program, so there is
no need to have a separate LISTing for this routine.

Step 11. End of Game Message. There are two routines in this
section of which only one will be called, depending on whether
the game has been won or lost. We will need to enter both,
though, to guard against the possibility of success. So type in

142

both listings below (listings 8.1 la and 8.1 lb).

Listing 8. I I a

5999 REM **LOST**
6/lJ/lJ/lJ PRINT " YOU HAVE LOST THE GAM
E, BAD LUCK"
6010 RETURN

Listing 8. I 1 b

6099 REM **WON**
6 1 /lJ/lJ PRINT " C ONGRATULAT IONS - YOU

HAVE " , " RECOVERED THE FABULOUS C
ROWN OF EMERALDS ! ! WELL DONE ! "
6 1 1 /lJ FOR N= 1 TO 2/lJ/lJ
6 1 2/lJ SOUND N , 1
6 1 30 NEXT
6 1 4/lJ RETURN

Step 12. Round Again. This section of the control program asks
the player if he wants another game, and if he does then the
subroutine in Listing 8.12 is called, which resets the flags and the
possessions array (more about that later) and RETURNS to the
control program, which promptly loops back to Step 3. If, on the
other hand, the player answers "NO" then the control program
carries on to its last statement - END. This produces the usual
chirpy OK and puts the computer back in command mode.

Listing 8. I 2

6 1 99 REM *RESET*
620/o WON=/o : LOST=/lJ
6210 FOR N=/lJ TO 5
6220 PS C N l =/lJ
6230 NEXT N
6290 RETURN

And that's it! Your final listing should look like this:

Listing 8. 13

10 REM ****************
20 REM *TREASURE TRAIL*
30 REM ****************
40 REM ** I N I T I AL I SE DRAGON **
50 CLEAR 500
60 D I M I A$ (7 , 1 l : D I M I B$ (1 0 l : D I M I C$
(2)
70 D I MRM$ (35 , 5 l : D I MAJ$ (4 , 1 l : D I MP
5 (5)
80 FOOD=0 : BATTER I ES=0: MN=0
90 DEF FNR < DR l = (6 AND DR=3) - (6 A
ND DR=2 l + (1 AND DR=4 l - (1 AND DR=
5 l : DEF FND < D R l =DR- < DR=2 OR DR=4)
+ < DR=3 OR DR=5 1
1 00 REM ********************
1 1 0 REM *AS S I GN I NVENTORI ES*
1 20 REM ********************
1 30 GOSUB 1 200
1 40 REM **************
1 50 REM *I NSTRUCT IONS*
1 60 REM **************
1 70 GOSUB 1000
1 80 REM **REPEAT UNT I L user qu i t
s**
190 REM *************
200 REM *CREATE MAZE*
2 10 REM *************
220 GOSUB 1 400 : NR= l : PRINT@448 , " "

230 REM **REPEAT UNT I L game over
**
240 REM ***********
250 REM *NEW ROOM?*
260 REM ***********

143

144

270 ON NR+ l GOSUB 2020, 2000
280 REM **************
290 REM *PLAYER I NPUT*
300 REM **************
3 1 0 GOSUB 2500
330 REM *****************
340 REM *LEGAL MANOUVRE?*
350 REM *****************
360 GOSUB 3000 : IF Q=l THEN 650
420 REM *****************
430 REM *VAL ID MANOUVRE?*
440 REM *****************
450 IF LG=l THEN GOSUB 4000
460 REM *****************
470 REM *DRAGON RESPONSE*
480 REM *****************
490 GOSUB 5000
500 REM **UNT IL game ov@r**
5 1 0 IF LOST=0 AND WON =0 THEN 27
0
520 REM *************

530 REM *END OF GAME*
540 REM *************
550 I F LOST= l THEN GOSUB 6000
560 IF WON=l THEN GOSUB 6 1 00
570 REM ***************
580 REM *ANOTHER GAME?*
590 REM ***************
600 I NPUT " DO YOU WANT ANOTHER GA
M E " ; U$
6 1 0 I F LEFT$ (U$ 1 l l < > " N " THEN CLS
: GOSUB 6200 : GOTO 220
620 REM *****
630 REM *END*
640 REM *****
650 END
999 REM * I NSTRUC T IONS*

1 000 CLS : PR INT@3 , " T R E A S U R
E T R A I L "
1 0 1 0 PRINT@64 , " YOU ARE I N THE DU
NGEONS OF GORM , " ;
1020 PRINT" AND YOU ARE SEARCH I NG

FOR A "
1 030 P R I N T " CROWN OF EMERALDS"
1 040 PRINT TAB l 3) ; " THE C OMPUTER
UNDERSTANDS THE "
1 050 PRINT " FOLLW ING VERBS : - • ;
1 060 FOR N=0 TO 2 : P R I NT TAB l 1 8) ;
I A$ 1 N 1 0) : NEXT N
1 1 90 PRINT@484, " PRESS ANY KEY TO

START " ; : A$= INKEY$
1 1 95 A$= I NKEY$: I F A$= " " THEN 1 1 9
5
1 1 96 C L S : RETURN
1 1 99 REM *ASS I GN I NVENTORI ES*
1 200 FOR N=0 TO 2
1 2 1 0 READ I A$ 1 N , 0) , I A$ 1 N , 1)
1 220' NEXTN
1 230 FOR N=0 TO 6
1 240 READ I B$ 1 N)
1 250 NEXT N
1 300 DATA GO , 01 2 3 , TAKE , 56 , OPEN , 4
1 3 1 0 DATA NORTH , SOUTH , EAST , WEST,
DOOR , KEY , EMERALDS
1 330 DATA DAMP , M I SERABLE , COLD , DA
RK, SCAR Y , OPPRESS IVE , SMALL , GLOOMY
, LARGE , DRAUGHTY
1 340 FOR N=0 TO 4
1 350 READ AJ$ 1 N , 0 > , AJ $ 1 N , 1)
1 360 NEXT N
1 370 RETURN
1 399 REM *SET STATUS, PLACE C ROW
N !< PLAYER-l(-
1 400 P R I NT TAB < 1 3 l ; " WA I T "

145

146

1 4 1 0 CE=RND C 3 5 J
1 420 X=RND C 35 1 : I F X=CE THEN 1 420

ELSE PR=X
1 429 REM *BU ILD A PATH*
1 430 R=RND C 4 1 : ON R GOSUB 1 550, 1 6
50, 1 700 , 1 700
1 440 L$= " O " : IF KEY >0 THEN L$=L$+
" D "
1 460 L=LEN C L$ J : R=RND C L I : O$=M I D$ C
L$, R , 1 1
1 470 I F O$= " D " THEN KEY=KEY- 1
1480 Y=CE-X : I F Y > 5 THEN RM$ C X , 3 1
=O$: X=X + 6 : RM$ C X , 2 l =O$: GOTO 1 540
1 490 IF Y < - 5 THEN RMS C X , 2 1 =O$: X=
X-6 : RM$ C X , 3 1 =O$: GOTO 1 540
1 500 I F Y >0 AND C X + 1 1 l6< > I NT C C X +
1 1 / 6 1 THEN RM$ C X , 4 l =OS : X=X+ 1 : RM$
C X , 5) =O$: GOTO 1 540
1 5 1 0 IF Y >0 THEN RMS C X , 3 l =OS: X=X
+6 : RM$ C X , Z l =OS: GOTO 1 540
1 520 IF Y < 0 AND Xl6< > INT C X / 6) TH
EN RM$ C X , 5 J =O$: X=X - 1 : RM$ C X , 4) =O$
: GOTO 1 540
1 530 IF Y<0 THEN RMS C X , 2) =O$: X=X
-6 : RM$ C X , 3 J =OS
1 540 I F X=CE THEN GOSUB 1 800: RM$
C C E , 0 1 = " E " : RETURN ELSE GOTO 1 430
1 549 REM *DEPOSIT OBJECT*
1 550 LS= " N " : IF RND C 0 > > . 5 THEN LS
=L$+ " K "
1600 L=LEN C L$ J : R=RND C L l : OS=M I DS C
LS, R , 1 l
1 6 1 0 I F OS= " K " THEN KEY=KEY + l
1 640 RMS C X , 0 J =OS : RETURN
1 650 RETURN
1 700 RETURN
1 799 REM *COMPLETE MAZE*

1 80'0' OB$= " NKN " : L$= " OD W "
1 80'5 L=LEN (L$ l : O=LEN (O$)
1 8 1 0' FOR N=0' TO 35 : FOR M=2 T O 5
1 820' I F RM$ (N , M l = " " THEN RM$ C N , M
l =M I D$ (L$, RNO (L l , 1)
1 825 GOSUB 1 950'
1 830' NEXT M
1 840' I F N < 6 THEN RM$ (N , 2 l = " W "
1 850' I F N > 29 THEN RM$ (N , 3 l = " W "
1 860' I F (N+ 1 l /6=INT « N+ 1 J / 6 J THE
N RM$ (N , 4 J = " W "
1 870' I F N / 6 = I NT (N/ 6 J THEN RMS C N ,
5 J = " W "
1 890' I F RM$ (N , 0' J = " " THEN RMS (N , 0'
J =M I D$ (OBS, RND (O J , 1 l
1 931/1 NEXT N
1 940' RETURN
1 949 REM **COMPLEMENTARY DOORS**
1 951/1 IF M=2 THEN IF N >5 THEN RM$
< N- 6 , 3 J =RM$ C N , M l : RETURN
1 960' IF M=3 THEN IF N (31/1 THEN RM
$ (N +6 , 2 J =RM$ < N , M l : RETURN
1 970' IF M=4 THEN IF (N+ 1 J l6< > INT
((N+ l l / 6) THEN RM$ (N+ 1 , 5 l =RM$ (N ,
M l : RETURN
1 980' IF M=5 THEN IF N / 6 < > I NT (N / 6
l THEN RM$ (N - 1 , 4 l =RM$ (N , M J : RETUR
N
1 990' RETURN
1 999 REM *DESCR I BE ROOM*
21/10'0' N=RNO (5 J - 1 : M=RND < 5 J - 1 : A$=AJ
$ C N , 0' l : B$=AJ$ (M , 1 l
20'11/1 P R I NT " YOU ENTER A " ; AS; " , "
; B$; " " : I F RND (0' J > . 5 THEN PRINT "
CAVE " ELSE PRINT" PASSAGE "
20'20' PRINT" YOU SEE : " ; : I F RM$ (PR
, 0' l = " N " THEN PRINT " NOTH I NG " : GOTO

2 1 1 0'

147

148

2040 I F RM$ (PR 1 0) = " E " THEN P R I NT
TAB (9) ; " THE CROWN OF EMERALDS "

2080 I F RM$ (PR 1 0 l = " K " THEN ON RN
0 (4) GOSUB 2 1 60 1 2 1 70 , 2 1 80 1 2 1 90
21 10 FOR N=2 TO 5
2 1 20 IF RM$ (PR 1 N) = " O " OR RMS (P R ,
N l = " D " THEN PRINT" THERE I S A D00
R TO THE " ; I B $ (N - 2)
2 1 40 NEXT N
2 1 50 NR=0 : RETURN
2 1 60 PRINT TAB (9) ; " A RUSTY KEY " :
RETURN
2 1 70 PR INT TAB < 9) ; "A LARGE KEY " :
RETURN
2 1 80 P R I NT TAB (9) ; "A GOLDEN KEY "
: RETURN
2 1 90 PRINT TAB (9) ; "A WOODEN KEY "
: NR=0: RETURN
2499 REM **PLAYER INPUT**
2500 PRI NT@51 1 , " " : PRI NT@448

1 " " ;
2510 INPUT U$
2520 RETURN
2999 REM **LEGAL MANOUVRE?**
3000 LG=0 : I F INSTR (l , U$, " Q U I T ") >
0 THEN Q=l : RETURN
301 0 I F LEFT$ (U$, l) = " " THEN U$=
R I GHT$ (U$ 1 LEN (U$) - 1) : GOTO 301 0
3020 I F R I GHT$ < U$, l) = " " THEN U$
=LEFT$ (U$ 1 LEN (U$) - 1) : GOTO 3020
3099 REM *I NVENTORY SEARCH*
3 1 00 Z$= " " : Z l$•" " : Z2$• " " : L=I NSTR
C 1 , U$, " " >
3 1 05 I F L=0 THEN W l $=U$: GOT03 1 20

ELSE W 1$=LEFTS ((US) , L- 1) : REM F I
N D VERB
3 1 1 0 Z$=R I GHT$ (U$ 1 LEN (U$) -L l : REM

REST OF STRING
3 1 20 X = - 1 : FOR V=0 TO 2

3 1 30 IF W l$= I A$ (V , 0 l THEN X=V : V=
2
3 1 40 NEXT V
3150 I F X=- 1 THEN RF=2: RETURN
3 1 59 REM FIND OBJECT OF VERB
3 1 60 L$= IA$ (X , l l : Y= - l
3 1 70 FOR N= l TO LEN (L$ l
3180 M=VAL < " �H " +M I D$ (L$, N , 1 l l
3 1 90 IF INSTR < l , Z$, I B$ (M l l >0 THE
N Z !$= I B$ (M l : Y=M : N=LEN (LSl
3200 NEXT N
3219 IF Y=- 1 THEN RF=3 ELSE LG=l
3215 RETURN
3999 REM **VALIDITY CHECK**
4900 RF=0 : 0K=0: 0N X + l GOSUB 4 1 00
, 4209, 4309
4010 IF OK=l THEN RF= 1 6
4030' RETURN
4099 REM **GO**
410'0' REM
410'5 DR=- 1 : FOR N=0 TO 3
4 1 10 IF I NSTR < 1 , Z$, I B$ (N l l }0 THE
N DR=N+ 2 : N=3
4 1 20 NEXT N
4 1 25 I F DR=- 1 THEN RF= 1 4 : RETURN
4 1 30 IF RM$ (PR , DR l = " O " THEN OK=l
: PR=PR+ FNR (D R l : NR= l : RETURN
4 1 40' IF RM$ (PR , DR l = " D " THEN RF=5

ELSE RF=4
4 1 50 RETURN
4 1 99 REM **TAKE**
420'0' REM
4210' IF RM$ (PR , 0l < > LEFT$ (I B$ (Y l ,
l l THEN RF=6 : RETURN
4220 OK=l : PS (Y-5 l =PS (Y- 5) + 1
4230' RM$ < PR , 0 l = " N "
4240 RETURN
4299 REM **OPEN**

149

150

4300 REM
4365 IF PS (0) (1 THEN RF= 7 : RETURN
4310 LD=0: DR=0: FOR N=0 TO 3
4320 I F DR=0 THEN I F I NSTR < l , Z$,
I B$ (N) > >0 THEN DR=N+2
4330 IF LD=0 THEN IF RM$ (PR , N+ 2)
= " D " THEN LD=l
4340 NEXT N
4350 I F DR=0 THEN RF= 1 4 : RETURN
4360 IF LD=0 THEN RF=8: RETURN
4370 IF RM$ (PR , DR > < > " D " THEN RF=
8 : RETURN
4380 RM$ (PR , DR > = " O " : R=PR+FNR < D R)
: DR=FND < DR > : RM$ (R , DR > = " O "
4390 PS (0 l =PS (0) - 1 : K=- 1 : OK= 1 : RET
URN
4999 REM HRESPONSE**
5000 ON RF GOSUB 5200, 5210, 5220,
5230, 5240, 5250, 5260, 5270 , 5280, 52
90, 5300 , 53 10, 5320, 5330, 5340, 5350
, 5400, 5500 , 5510, 5520
5010 IF PS (l) = l THEN WON= 1 : RETUR
N
5020 I F LOST=l THEN RETURN
5 1 30 RETURN
5200 PRINT"WHAT? ! " : RETURN
5210 PR I NT " ! DO NOT KNOW THE VER
B " ; W l$: RETURN
5220 P R I NT " YOU CANNOT " ; W1$1 " • ;
2 1$; 2$: RETURN
5230 PR I NT " YOU CANNOT GO • ; zs: RE

TURN
5240 PR I N T " THE DOOR IS LOCKED . " :
RETURN
5250 PRINT " ! SEE NO • ; zs ; • HERE "
: RETURN
5260 P R I NT " BUT YOU DO NOT HAVE A

K EY ! " : RETURN

5270 PRINT" THERE I S NO LOCKED DO
OR TO OPEN HERE " : RETURN
5330 PRINT"WHICH D IREC T I ON? " : RET
URN
5350 PR I NT " YOU • ; us
5360 IF K=- 1 THEN PR I NT " BUT " ;
5370 IF K=- 1 THEN I F RND (fiJ) > . 5 T
HEN PRI N T " THE KEY BREAKS " : K=0 E
LSE PRINT" THE KEY GETS STUC K , Y
OU MUST LEAVE I T BEHIND. " : K=0
5390 RETURN
5999 REM ffLOST**
6000 PR INT" YOU HAVE LOST THE GAM
E, BAD LUCK "
6fiJHJ RETURN
6099 REM **WON**
6100 PRINT" CONGRATULAT IONS - YOU

HAVE " , "RECOVERED THE FABULOUS C
ROWN OF EMERALDS ! ' WELL DONE ' "
6 1 1 0 FOR N=l TO 200
6 1 20 SOUND N , 1
6130 NEXT
6140 RETURN
6199 REM *RESET*
6200 WON=0: LOST=0
6210 FOR N=fiJ TO 4
6220 PS I N l =0
6230 NEXT N
629"1 RETURN

151

I suggest that you CSA VE it immediately, before Grandma comes
over again! When you've done that, RUN the program and see if
you can find the Crown of Emeralds. GOOD LUCK!

152

ADDING FEATURES TO THE GAME

Now that we have our basic (no pun intended) game, we can
think about adding various additional features to it. The features
which can be added are limited only by your imagination (and the
Dragon's memory of course). In the following sections we will see
how to add five sets of additional features and by the end of this
section you should have a reasonable idea of how the syst�m
works. Chapter 9 goes into the details of planning behind the
various routines and by the end of that chapter you should be
able to make your own alterations.

The program is designed so that features can be stuck on to it
like Lego bricks - in a similar way to that in which we could add
the ability to move up and down (for example) in our arcade
game. There is a difference, however , due to the very nature of
the game. Whereas in the arcade game, the routine for (say)
moving the alien didn't give a hoot whether you could move up
and down or not, in the adventure game alterations need to be
made to almost all sections when a new feature is added. This is
like the suggested alteration to allow a high score to be kept in the
arcade game. In that case we had to go through the program
altering quite a few of the routines to allow for the new feature. In
just the same way we are going to have to go methodically
through our adventure routines adding lines to each procedure.

FOOD AND STRENGTH

The first feature which we add we will call FOOD & STRENGTH.

The first thing to do to it is figure out how this feature is related
to the game scenario.

We conjure up an evil force which pervades the chill caverns in
which we are adventuring. The constant forces of cold and evil
sap your physical and spiritual strength. To combat this we
will have food which restores your fitness, body and soul. If
however you do not find any food you will weaken and die!

The first section we have to add is given in listing 8.2a and this is
adding to the inventory of objects in the dungeon. After all, if we

153

are going to put food in the maze, the computer is going to need
to know about it. So, with your original game in memory, add in
the following lines.

Listing 8.2a

1 200 FOR N=0 TO 3
1 230 FOR N=0 TO 7
1 300 DATA G0 , 0 1 23 , TAKE , 567, 0PEN ,
4 , EAT , 76
1 3 1 0 DATA NORTH , SOUTH , EAST, WEST ,
DOOR, KEY , EMERALDS , FOOD

The next thing we need to do is to tell the player about the
presence of the food and the evil spirit. We add these lines to the
instruction routine (listing 8.3a).

Listing 8. 3a

1 060 FOR N=0 TO 3 : P R I NT TAB (l8) ;
IA$ < N , 0) : NEXT N
1 070 PRINT@450, " PRESS ANY KEY TO

CONT INUE " ; : A$= INKEY$
1 080 A$= I NKEY$: IF A$= " " THEN 1 08
0
1 085 CLS
1 1 1 0 PRINT : PR I NT " THERE IS AN EVI
L FORCE I N THE "
1 1 20 PRINT " DUNGEONS , AND IT DRA I
NS YOUR "
1 1 30 P R I NT " STRENGTH, BUT IF YOU
ARE LUCf(Y "
1 1 40 PRINT " ENOUGH T O F I ND THE MA
G I C FOOD , "
1 1 50 P R I NT " YOU MAY SURV IVE . "

We now need to set the strength of the player and also change the
"create maze" routine so that it distributes some food around the

154

place as well as the other things. Add the couple of lines given in
listing 8.4a to take care of this.

Listing 8. 4a

1 40'5 ST= 1 0'0'0'
1 580' I F RND (0') > . 7 THEN L$=L$ + " F "

The next thing to add is a line to make the computer tell us if
there is actually some food in the room when we enter it . This is
done by the line in listing 8 . Sa

Listing 8 . 5a

2060' I F RMS (PR , 0') = " F " THEN PRINT
TAB (9) ; " SOME FOO D "

O f course at some stage w e are going lO want t o EAT FOOD. so the
computer must recognise this as a legal command. Add these
lines to the legality checking procedures (listing 8.7a).

Listing 8. la

3 1 20 X= - 1 : FOR V=0' TO 3
3 1 30' I F W l S= I AS < V , 0') THEN X=V : V=
3

Similarly, we must add a routine to deal with an EAT command.
Listing 8.8a has the lines to alter this section to call a new routine
which deals with EATing.

Listing 8. 8a

40'0'0' RF=0' : OK=0' : ON X+ l GOSUB 4 1 0'0'
, 420'0', 430'0', 440'0'
4399 REM **EAT**
440'0' REM
440'5 I F PS < Y- 5 > < 1 THEN RF= 1 0' : RET
URN
4 4 1 0' I F I BS < Y > < > " FOOD " THEN RF=l
1 : RETURN

4420 OK= 1 : PS C 2 > =PS (2) - 1 : ST=1 000
4430 RETURN

Finally to make life more fun add listing 8. 9a to the response
section. This will deal with PRINTing messages for the various
eating habits possible and also add lines to warn the player of
impending doom.

Listing 8. 9a

5030 ST=ST-30 : I F S T } 500 THEN 5 1 0
0
5040 I F S T > 400 THEN PRINT" YOUR S
TRENGTH I S FAD I NG . " : GOTO 5 100
5050 I F S T > 300 THEN P R I NT " YOU AR
E GETTING VERY WEAK " : GOTO 5 1 00
5060 I F S T > 200 THEN PRINT" YOUR S
TRENGTH I S EBB I NG FAST - YOU CA
N " T GO ON MUCH LONGER " : GOTO 5 1 fJfJ
5070 IF S T > 100 THEN P R I NT " I F YOU

DON ' T EAT SOON , YOU ' VE HAD I T
! " : GOTO 5 1 00
5080 I F S T > 0 THEN PR I NT " YOU ' RE 0
N YOUR LAST LEGS MATE ' " : GOTO 5 1 0
0
5090 PR INT " YOU HAVE D I E D OF EXHA
USTION ' " : LOST = 1 : RETURN
5 1 00 RETURN
5290 PRINT" YOU DO NOT HAVE THE
; Z$: RETURN
5300 P R I NT " YOU EAT THE • ; zs ; • . Y
ou • , " CHOKE TO DEATH ' " : LOST= l : RET
URN

That completes our first modification. RUN the program and
convince yourself that no disasters have occurred.

155

156

TORCH AND BATTERIES

Our next modification deals with TORCH & BATI"ERIES supplies.

You have a torch, and it's just as well, because the resident
goblins don't like the light. What they would like , though, is to
eat you. In fact they think that you're the best thing since
sliced bread and preferably between slices as a snack for them.
If your torch goes out then . . . The problem is that your
batteries only last for I 5 minutes, so unless you can find some
more within that time, you will be eaten.

Well, that should put the pressure on a bit. Once again we will
need to make modifications to several routines and as before the
first place to add things is in the inventory. Add listing 8.2b.

Lisring 8.2b

1 230 FOR N=0 TO 8
1 300 DATA G0 , 01 23 , TAKE , 5678 , 0PEN
, 4 , EA T , 768
1 3 10 DATA NORTH , SOUTH, EAST 1 WEST ,
DOOR , KEY, EMERALDS , FOOD , BATTER IES

We need to tell the player too (unless you are feeling heartless) so
add the lines of listing 8.3b to the instructions routine.

Lisring 8. 3b

1 1 60 PRINT: PRINTTAB (3 l ; " ALSO , ON
LY YOUR TORCHL I GHT "
1 1 70 PR INT" STOPS THE GOBL INS FRO
M EAT ING"
1 1 80 PR INT" YOU, AND BATTER I ES ON
LY LAST 1 5 " ; " M INUTES ! GOOD LUC
K ! .,

Now we need to let the maze creation routine know there are
extra objects to be distributed and we must also set the TIME
variable to allow us to keep track of the number of turns you've
had. Add listing 8.4b.

Listing 8.4b

1 405 ST= 1 000 : T IMER=0
1 800 OB$= " NKBN " : L$= " ODW "

Add the following to the room description routine.

Listing 8.5b

2070 IF RM$ (PR , 0 l = " B " THEN PRINT
TAB (9 l ; " SOME BATTER I ES "

Listing 8 .8b will save your b(e)acon if you pick up some
batteries.

Listing 8. Sb
4225 IF Y=8 THEN T I MER=0

157

Now give the computer a few words to say to tell you what a mess
you're making of the game.

Listing 8. 9b

5100 TM= 1 5 - INT (T I MER/3000 l
5 1 10 I F TM(! THEN PRINT" YOUR TOR
CH HAS GONE OUT . " , " THE GOBL INS H
AVE EATEN YOU. " : LOST= 1 : RETURN
5 1 20 IF TM< 6 THEN PRINT" YOUR BAT
TER IES HAVE ONLY " ; TM , "MINUTES PO
WER LEFT "

And that's it! Try the game again and see if you survive.

158

TROLLS, RUN, FIGHT AND TELEPORT

If you have not met the goblins yet you might be feeling lonely
wandering around the maze, so how about introducing some
trolls to keep you company !

Trolls are lurking in the caves, and you never know when you
are about to stumble upon one of these thin, rubbery and
loathsome creatures. When you do you will have to decide
whether to run or fight - if you try to do anything else he will
attack you anyway . Fortunately you can usually beat him in a
fight (although this might not be the case if your strength is
low). If you find yourself cornered you have one other option -
teleport - but heaven knows where you will end up if you use
it, and it weakens you considerably to do so.

This modification has brought in the three new verbs RUN, FIGHT
and TELEPORT and one new noun TROLL. Also it seems that
tangling with a troll will affect a player's strength (as will
teleporting) and that the presence of a troll will prevent him from
picking up objects, opening doors etc. We begin to see how
closely interrelated things become in adventure games as soon as
they have more than one or two features. Implementing this
feature follows the same pattern as the previous modifications.

First of all we add the new words in listing 8.2c.

Listing 8.2c

1 200 FOR N=0 TO 6
1 260 FOR N=0 TO 0
1 270 READ I C$ (N)
1 280 NEXT N
1 300 DATA G0 , 01 23 , TAKE , 5678 , 0PEN
, 4 , EA T , 768 , RUN , , F IGHT , , TELEPORT ,
1 320 DATA TROLL

Next we give the player a cryptic hint of what is to come with the
addition of listing 8.3c to the instructions.

Listing 8. 3c

1 060 FOR N=0 TO 6 : P R I NT TAB < 1 8) ;
I A$ C N , 0) : NEXT N
1 090 PRINT" THERE ARE H I DDEN HAZA
RDS IN THE " ;
1 1 00 P R I N T " DUNGEON S , WHICH YOU W
I LL HAVE TO " ; " OVERCOME . "

159

Again we alter the maze routine to deposit a few trolls on its way
to creating a maze.

Liscing 8.4c

1 649 REM *DEPO S I T HAZARD*
1 650 L$= " N " : I F RND C 0) > . 5 THEN L$
=L$+ " T "
1 670 L=LEN C L$) : R=RND C L) : O$=M I D$ (
L$, R , 1)
1 690 RM$ C X , 1) =0$
1 800 OB$= " NKBN " : L$= " 0DW " : H$= " NTN

1 805 L=LEN (L $) : O=LEN C 0$) : H=LEN < H
$ I
1 895 I F RM$ C N , 1) = " " THEN RM$ 1 N , 1
i =M I D$ (H$, RND (H I , 1 1

Next we make certain that the computer is actually going 10 tell
you when you bump into a troll. Add listing 8. Sc

Liscing 8.5c

2020 P R I NT " YOU SEE : " ; : I F RM$ (PR
, 0) = " N " AND RM$ (PR , 1) = " N " THEN P
R I NT " NOTH I NG " : GOTO 2 1 10
2090 IF RM$ (PR , 1 > = " T " THEN P R I NT

TAB (9) ; " A SMELLY TROLL " : MN = l

160

As before we have to alter the routine to recognise valid
commands so that it will accept these words. This is done by
listing 8.7c.

Listing 8. le

3 1 20 X=- 1 : FOR V=0 TO 6
3 1 30 I F W 1 $= I A$ (V , 0) THEN X=V : V=
6
3 1 SS I F X > 3 THEN LG= l : RETURN

You have probably noticed by now that the routine to perform
verbs has one smaller section for each verb. The following listing
contains routines for each of RUN, FIGHT and TELEPORT. Type in
all of the listing given below.

Listing 8. 8c

4000 RF=0: OK=0 : ON X+l GOSUB 4 1 00
, 4200, 4300 , 4400, 4700, 4800, 4900
4020 IF MN= ! AND RF< > 1 2 THEN RF=
1 7
4 1 00 I F MN=! THEN RETURN
4200 IF MN=! THEN RETURN
4300 IF MN= ! THEN RETURN
4400 IF MN=! THEN RETURN

4699 **RUN**
4700 IF RM$ < P R , l) = " N " THEN RF= ! :
RETURN
470S FOR N=2 TO S
4 7 1 0 DR=0: I F R M$ (PR , N l = " O " THEN
DR=N: N=S
4720 NEXT N
4730 I F DR=0 THEN RF=20 : RETURN
4740 PR=PR+ FNR (DR) : MN=0: RF= 1 8 : NR
= 1
47S0 RETURN

4799 REM **F I GHT**
4800 IF RM$ (PR, 1 l = " N " THEN RF= 1 :
RETURN
4810 MN=0 : ST=ST-RND (1 00)
4820 RM$ (PR , 1 l = " N " : RF = 1 9
4830 RETURN

4899 REM **TELEPORT**
4900 NR= 1 : PR=RND (36) - 1 : ST=ST-200
4910 RF= 1 6 : MN=0
4920 RETURN

Finally we add listing 8. 9c to the response section and we're
finished.

Listing 8. 9c

5400 PRINT" YOU TRY TO • ; us , " BUT
YOU ARE ATTACKED BY THE "
5420 I F RM$ (PR , 1 l = " T " THEN PRINT
" S�IELL Y TROLL "
5430 R=RND < 100) + 1 00 : ST=ST-R
5440 RM$ (P R , 1) = " N " : MN=0
5450 IF ST< 1 THEN LOST=!
5460 IF ST< 1 THEN PRINT " YOU ARE
TOO WEAK TO K I LL H I M , HEEATS YOU

5470 IF ST>0 THEN PRINT " YOU K I LL
H I M , HE CRUMBLES TO

5480 RETURN
DUST "

5500 PRINT" YOU RUN " ; I B$ (DR-2) : R
ETURN
5 5 1 0 PRINT" YOU F I GHT THE BEAST ,
YOU STAVE I N H I S SKULL . HE C RU
MBLES TO DUST " : RETURN
5520 PRINT" YOU CANNOT RUN - THE
ENTRANCES ARE CLOSED " : RETURN

RUN the program again and look out for the trolls !

161

162

MONSTERS AND MAGIC DUST

Well, things arc starting ro hot up a bit now, aren't they? Now for
another action packed feature.

Monsters are found in the dungeons. These have the same
effect on you as trolls but nastier. There are also little piles of
magic dust in the labyrinths. If you throw this at the monsters
then they will vanish.

This imroduces another verb, THROW, and two more nouns,
MONSTER and MAGIC DUST' so the first thing to do is add these
to the inventory section.

Liscing 8.2d

1 200 FOR N=0 TO 7
1 230 FOR N=0' TO 9
1 260' FOR N=0' TO
1 30'0 DATA G O , 0'123, TAKE , 56789, 0PE
N , 4 , EAT, 7689 , RUN , , F IGHT , , TELEPOR
T , , THROW, 56789
1 3 1 0' DATA NORTH , SOUTH , EAST , WEST,
DOOR , KEY, EMERALDS , FOOD, BATTERIES
, MAGIC DUST
1320' DATA TROLL , MONSTER

Add listing 8.3d to tell the player he can THROW things.

Liscing 8. 3d

1060 FOR N=0' TO 7 : PR I NT TAB (1 8 l ;
I A$ (N , 0 l : NEXT N

As usual we have to change the maze creation routine so that it
puts the new objects into the maze. We will also make sure that
there is always a monster guarding the Crown of Emeralds. To do
this we add the next listing.

163

Listing 8.4d

1 540 I F X=CE THEN GOSUB 1 800: RMS
< C E , 0' l = " E " : RM$ (CE , 1 l = " M " : RETURN
ELSE GOTO 1 430
1 570' IF RND C 0 1) . 6 THEN L$=L$+ " M "
1 630 I F O$= " M " THEN MD=MD+ l
1 660 I F MD >0' THEN IF RND (0' 1 > . 8 T
HEN L$=L$+ " M "
1 680 I F O$= " M " THEN MD=MD- 1
1 80'0 OB$= " NKBN " : LS= " ODW " : H$= " NTM
N "

Now we need to add listing 8.Sd to make sure the player is fully
informed when he enters a room.

Listing 8.5d

2050 I F RM$ C PR , 0l = " M " THEN PRINT
TAB C 9) ; " SOME MAG I C DUST"

2 1 00 I F RM$ C PR , 1 1 = " M " THEN PRINT
TAB C 9 l ; "A H I D EOUS MONSTER " : MN=J

Now we must extend the legal input check procedure to check
that you have thrown something which is throwable (e.g. not a
door). Add listing 8. 7d to the program.

Listing 8. 7d

3 1 20' X=- 1 : FOR V=0 TO 7

3 1 30 I F WlS= I AS < V , 0) THEN X=V : V=
7
3 1 55 I F X > 3 AND X < 7 THEN LG=1 : RE
TURN
3210 IF Y=- J THEN RF=3: RETURN
3 2 1 5 REM
3220 I F X < 7 THEN LG=1 : RETURN
3229 REM FIND TARGET
3230 L= INSTR C 1 , ZS , Z1$l ! Z= - 1

164

3240 2S=LEFTS (2S , L- 1 J +RIGHTS l 2S ,
LEN < ZS J - < L+LEN < 2 1 S J J J : REM REMOVE

OBJECT FROM 2$
3250 FOR N=0 TO 1
3260 IF I NSTR (l , 2S , I C$ 1 N J J)0 THE
N 22S= I CS (N J : 2=N: N=l
3270 NEXT N
3280 IF 2<) - 1 THEN LG= l : RETURN
3290 FOR N=4 TO 9
3300 IF INSTR l 1 , 2S , I BS < N J J)0 THE
N Z2S= I BS (N J : 2= - N : N=9
3310 NEXT N
3320 I F Z=-1 THEN RF=l ELSE LG= l
3330 RETURN

With a new verb we must obviously have a new action procedure
to perform the required task. The listing for THROW is given in
listing 8.8d.

Liscing 8. 8d

4000 RF=0: 0K=0 : 0N X + l GOSUB 4 1 00
, 4200, 4300, 4400 , 4700, 4800 , 4900 , 4
500
4499 REM **THROW**
4500 IF PS (Y-5 1 < 1 THEN RF=10: RET
URN
4520 IF 2)0 THEN IF LEFTS l 22S , 1 J
< >RMS (PR , 1 > THEN RF=6: RETURN
4530 IF Z<0 THEN IF LEFTS < ZZS, 1 1
< >RMS < PR, 0) THEN RF=6 : RETURN
4540 IF Z lS< > " MAG I C DUS T " THEN 4
580
4545 MD=- 1
4550 OK=l : PS (Y-5J =PS C Y- 5 J - 1
4560 I F Z >=0 THEN RMS I PR , 1 J = " N " :
MN=0 ELSE RMS (PR, 0l = " N "
4570 RETURN
4580 REM
4670 RF= 1 3 : PS I Y- 5) =PS (Y-5 J - 1
4680 IF Z2S= " MONSTER " OR 22S= " TR

OLL " THEN RF= 1 2
4690 RETURN

165

Finally for this section we add listing 8.9d to allow the Dragon to
make the appropriate responses.

Listing 8. 9d

5310 P R I NT " YOU THROW " ; Z l $; " AT
THE " ; Z2$, " HE EATS IT AND LAUGHS
, HA HA " : RETURN
5320 PRINT " YOU THROW THE " ; Z l $; "

AT THE " , Z2$; " , DO YOU FEEL BETT
ER NOW" " : FOR N= l TO 2000 : NEXT N :
PRINT " DON ' T ANSWER THAT ! " : RETURN
5380 IF MD=- 1 THEN PRINT " THE " ; Z
2$; " D I SAPPEARS ' " : MD=0
54 1 0 IF RM$ (PR , U = " M " THEN PRINT
" H I DEOUS MONSTER "

OK, try the game again, and try throwing objects other than
magic dust. Also, try throwing things at objects other than
monsters.

CRYSTALS AND SHIMMERING CURTAINS

Our final feature is the introduction of shimmering curtains of
impassable energy.

Some of the doorways in the cave are blocked by curtains of
shimmering energy. These can be neutralised by magic dust,
but you may need to save that for the monsters. Instead, try to
find a crystal, which will act as a key and totally remove the
curtain, leaving an open doorway.

No prizes by now for guessing that the first thing we do is add the
new words to the inventory. This is done in listing 8.2e.

Listing 8. le

1 230 FOR N=lil TO 1 0
1260 FOR N=0 TO 2
1 300 DATA GO , 0123, TAKE, 56789A, OP

166

EN, 4 , EAT , 7689A , RUN, , FI GHT , , TELEP
ORT , , THROW , 56789A
1 3 1 0 DATA NORTH , SOUTH , EAST , WEST,
DOOR , KEY , EMERALDS , FOOD, BATTE R I ES
, MAG I C DUST , CRYSTAL
1 320 DATA TROLL , MONSTER , SH I MMERI
NG CURTA I N

I will leave it up to you t o decide what you're going to add in the
instructions and we will move straight on to the "create maze"
routine. In this section we must make the computer deposit
articles around the dungeon, which we do by adding listing 8.4e.

Listing 8.4e

1 450 I F CRYSTAL >0 THEN L$=L$+ " S "
1 475 I F O$= " S " THEN CRYSTAL=CRYS
TAL - 1
1 560 I F RND (0) > . 6 THEN L$=L$+ " C "
1 620 I F OS= " C " THEN CRYSTAL=CRYS
TAL + l
1 800 OBS= " NKBN " : LS= " ODSW " : HS= "NT
MN"

Enter listing 8 .Se to describe these new occurences when we meet
them.

Lis ring 8. 5e

2030 I F RMS < PR , 0) = " C " THEN PRINT
TAB (9) ; " A SHINY CRYSTA L "

2 1 30 I F RMS < PR , N l = " S " THEN PRINT
" THERE IS A SH I MMER I NG CURTAIN 0
FENERGY TO THE " ; I BS (N- 2 >

The next listing copes with the existence o f a new object that
could be the target of THROW.

Listing 8. 7c

3250 FOR N=0 TO 2
3260 I F I NSTR < l , 2$, ICS (N) > >0 THE
N Z2$= I CS (N l : Z=N : N=2

3290 FOR N=4 TO 1 0
3300 IF INSTR (l , Z$ 1 I B$ (N)))0 THE
N Z2$= I B$ (N l : Z=-N : N= l 0

767

With all these options for THROW the procedure to check this is
getting a little complicated, but don't worry about this, we will
explain it all later. For the moment just add the next listing to
your program.

Listing 8. Se

4520 I F Z >0 THEN IF LEFT$ C Z2$ 1 l)
< > RM$ C PR , l > AND Z2$() " SH I MMER ING

CURTA I N " THEN RF=6 : RETURN
4545 MD=- 1 : IF Z2$= " SH I MMER I NG CU
RTA I N " THEN 4600
4580 IF Z lS< > " CRYSTAL " THEN 4670
4590 IF Z2S< > " SHI MMER I NG CURTA IN
" THEN 4670
4600 DR=0 : FOR N=0 TO 3
4 6 1 0 I F DR=0 THEN I F INSTR C l , Z$,
I B$ C N) l >0 THEN DR=N + 2 : N=3
4620 NEXT N

4630 I F DR=0 THEN RF= l 4 : RETURN
4640 IF RMS C PR , DR > < > " S " THEN RF=
1 5 : RETURN
4650 RM$ (PR , DR > = " O " : R=PR+FNR < DR)
: DR=FND C D R l : RM$ C R , DR l = " 0 "
4660 OK= l : PS < Y -5 l =PS C Y -5 l - l : RETU
RN

We now add just one more response co section 9 of the program
and that's it.

Listing 8. 9e

5340 PRINT " THERE I S NO SHIMMER IN
G CURTAIN TO THE " ; I BS C DR-2> : RE
TURN

We hope you enjoy the challenge of surviving and beating this final
version of our adventure game.

CHAPTER 9

Adventures - A Detailed Look

The previous chapter explained in a general way how the game
worked by explaining what each routine did. In this chapter we
will take a closer look at how each of the subroutines works, and
by the end of the chapter you should be well prepared for
inventing your own features to the game, or even for writing your
own game completely.

Before we get into the routines themselves, we shall have to
look at the DATA, or knowledge, upon which they work. This is
stored in the inventories, which represent the computer's
knowledge of the world of the dungeons.

The inventories are made up of three string arrays IA$, 18$ and
IC$. IA$ is a two DIMensional array of strings. In one DIMension is
a list of all the verbs which the program will recognise, and in
each corresponding element in the other DIMension there is a list
of numbers. This can be seen in figure 9.1. The numbers in !AS
are actually the subscript numbers of the words in 18$. So if we
take the verb GO, for example, it has an associated list of numbers
0123, and if we look at 18$, to 18$(3) we see that they contain the
words NORTH, SOUTH, EAST and WEST. You may be wondering
what the lener A is doing in the list of numbers. In fact we are
using it to represent the number 10, so that the computer doesn't
get mixed up over 10 being I and 0. We will see how this works
later.

168

169

Figure 9. I IA$ Array

0
0 GO 0123
1 TAKE 56789A
2 OPEN 4
3 EAT 56789A
4 RUN
5 FIGHT
6 TELEPORT
7 THROW 56789A

Figure 9.2 IB$ Array

0 NORTH
1 SOUTH
2 EAST
3 WEST
4 DOOR
5 KEY
6 EMERALDS
7 FOOD
8 BATTERIES
9 MAGIC DUS1

10 CRYSTAL

By looking at these arrays we can see that the player may GO to
the NORTH, SOUTH, EAST or WEST, but he may only OPEN a
DOOR. He may EAT a whole range of objects (although anything
but food will choke him, as we will see later).

When we look at the routine that checks the legality of a
player's INPUT we will see how it makes use of the information
being stored in this way. The third array IC$ is very similar to 18$.
It contains a list of objects, but these are objects which cannot be
refered to directly by any of the verbs in IA$. They are referred to
indirectly and, in our game, by only one verb - THROW. IC$ is
shown in figure 9.3.

170

Figure 9.3 IC$ Array

I TROLL
2 MONSTER
3 SHIM.M.ERING CURTAIN

Another "data structure" (to use the lingo) which we must look at
before going on to examine the various subroutines is the array
which stores the information about the maze itself. The game
assumes a maze of 36 rooms/caves/dungeons which are arranged
in a 6 x 6 block. If we think about what we need to know about
each room, we find that there are six essential pieces of
information.

I . Is there a "friendly" object?
2. Is there a "hostile" object?
3. What kind of doorway (if any) is to the NORTH'

4. What kind of doorway (if any) is to the SOUTH?

5. What kind of doorway (if any) is to the EAST?

6. What kind of doorway (if any) is to the WEST?

This means that we need a 36 x 6 array, and you can see the
statement DIM RM$(35.5) in line 70 of the Control Program. With
this array we can think of each room as having a number between
0 and 35, and to see if room number 4 (say) has a friendly object
(e.g. a key) we would look at RM$(l,O) and see if it is equal to K.

Now all we need is a convention for representing the various
objects, and the convention we have chosen is as follows:

In RM$(n,0) - Friendly objects
K = KEY

E = EMERALD CROWN

F = FOOD

B = BATTERIES

M = MAGIC DUST

C = CRYSTAL

In RM$M(n,I) - Hostile objects
T = TROLL

M = MONSTER

In RM$(n,2) to RM$(n.5) - Entranceways

O = OPEN DOORWAY
D = LOCKED DOORWAY
S = Sl1IMMERIN(i CURTAIN

\'<1 = WALL

171

The array RJ$ is simply filled with adjectives which are then
chosen at random to describe a room the player has just entered.
The last array we use in the game is the numeric array PS(4). This

is used to store each object the player has on his person.

PS(O) = Number of Keys
PS(!) = Number of Emerald Crowns
PS(2) = Number of Food Packs
PS(l) = Number of Piles of Magic Dust
PS(4) = Number of Crystals

Now that we know how the information is stored we can look at
how the various subroutines make use of it.

The first subroutine assigns the inventories, that is, it reads all
the verbs, etc . , from the DATA statements in lines 1300 to 1320
into the arrays IA$, 18$, IC$ and RM$. This should be easy to follow
as it is very similar to the way DATA was read in the sections of
our arcade game which defined graphics characters.

The next section, the instructions, is-also fairly self
explanatory. We have already looked at PRINT statements and
FOR/NEXT loops, so enough said!

By contrast, the next section, creating the maze, is probably
the most complicated routine in the program. Don't turn over,
though, it's still quite easy to follow what's going on. It begins by
choosing a random position in the maze at which to put the

Crown of Emeralds and another random position for the player's
starting point. These positions are stored in the variables CE and
PR respectively. The next thing it does is to "walk" from the
player's room to the Crown Room, hanging various types of doors
and depositing various objects on the way, in such a way as to
ensure a feasible path exists through the maze.

It does this by first calling at random either a routine to deposit
an object or a roucine to deposit a hazard. These routines make a

1 72

random choice between the various types of object or hazard, and
sometimes even deposit a N (which stands for "Nothing"). The
routine which deposits objects keeps a record of how many of
each type it has deposited. The number of keys deposited, for
example, is stored in the variable KEY

The next thing the routine does is to choose what kind of door
to put up. The choice available depends on what objects have
been deposited so far. For example, if KEY is equal to one or
more the character D (for locked door) will be added to the list of
possibilities (stored in L$) - this occurs in line 1440, and the
actual choice of door is made in line 1460. [fa locked door is
chosen we must assume that the player will use up a key in
opening the door (remember they alwavs get stuck or broken)
and so the routine takes one off the \'ariablc KEY

Well, now that the routine knows what type of (door or
shimmering curtain or whatever) it is going to put up, it needs to
figure out where to put it. This is done by calculating the
difference between the position of the Crown Room (CE' and the
current position of the computer on its "walk" (X). This
difference is stored in the variable Y Bearing in mind that we are
using a 6 x 6 grid of rooms, it should be clear that if Y is bigger
than six then the Crown Room must be in a row of rooms below
the computer's current position. Similarly, if Y is less than minus
six the Crown Room must be above us somewhere. A look at
figure 9.4 should make this clear. A similar bit of reasoning tells
us whether the Crown Room is to the left or right once we are on
the same row.

Figure 9.4 The Maze

0 2 3 4
6 7 8 9 10 11

12 13 14 15 16 17
20 19 20 21 22 23
24 25 26 27 28 29
30 31 32 33 34 35

Once the direction has been decided upon the computer puts the
chosen door on the chosen wall, "spirits" itself through the door

1 73

into the next room and - very important - puts the same type of
door on the other side. (It would be a bit silly to have a door that
was locked from one side and open from the other.) You can see
all this going on in lines 1480 and 1 540.

Once the Crown Room has been reached, Crown of Emeralds
and a monster guard are deposited in it and the computer then

goes through the entire maze room by room, putting up random
doorways wherever it finds blank walls (W) and depositing
random objects and hazards in empty rooms. This happens in
lines I 800 to I 990 - note lines I 840 to I 870 prevent doors to the
outside world from being put up.

Well, you can see that building the maze is quite a job, and this
fact is reflected in the twelve seconds which it takes the computer
(which is no slouch in these matters) to complete the task. It is so
unusual in games-type applications to find something that takes
the the computer so long to do, that the player might be forgiven
for thinking that the computer has "hung up" on him. That is
why the message WAIT is PRINTed at the beginning of the
routine.

Having created the maze, the control program now moves into
the main loop, which will go round until the game is either won
or lost. The first section in this loop calls the routine to describe
the room the player is currently in. If the player has just entered
the room, as opposed to still being there from the last time
around, this routine will also give a short description of the room
itself. This condition is "flagged" by the variable NR (for New
Room). If it is 1 the routine will describe the room, but if it is 0,
it will only describe the room's contents. The routine is in lines
2000 to 2 190, and the first two lines are the ones which describe a
new room. This is done by choosing two adjectives at random
from the array AJ$ and assigning them to the string variables A$
and B$, then including these in the PRINT statement in line 2010.
The word CAVE or PASSAGE is also chosen randomly.

If you look at line 270 in the control program you will see the
statement ON NR + I GO SUB 2020, 2000. This is how the program
decides whether or not to describe the room. The ON - GOSUB
statement looks at the number, or expression, following the word
ON, and if it is I, it GOSUBs to the first line number after the word
GOSUB, if it is 2, it GOSUBs to the second line number, and so on.

1 74

In this case, this means that if NR is 1 , then NR + I will be 2, and it
will GOSUB to line 2000, and describe the room. IfNR is 0,
however, NR+ I will be 1 , and so the control program will GOSUB
to line 2020, thereby missing out part of the subroutine which
describes the room, and going directly to the section which lists
the objects present in the room.

This part of the routine is quite simple. It tests RM$(PR,Ol, i.e.
the "friendly object" element of the room the player is in for each
type of object that could be there, and if it finds one it PRINTs it
out. Then it does exactly the same for RM$(PR. l l - the "hostile"
object element. Note the use of the TAB function to line them up
neatly. Just to make the description a bit more interesting, we
have added a selection of descriptions of keys - rusty, large,
golden and wooden, and these are chosen at random IF RMS(PR,O)
= "K", indicating the presence of a KEY. Finally the routine
checks the four directions NORTH, SOUTH, EAST and WEST
(elements 2 to 5 in RM$ second dimension) and PRINTS out
whether a door (it doesn't specify whether it is locked or not) or a
shimmering curtain is there.

Once the player has been told of his situation, it is time for him
to tell the computer what he wants to do. You will notice that
before the player makes his INPUT, there arc two PRINT
statements. The first of these PRINTs a space at the last position
on the screen, causing the screen to scroll up one line, which
makes space for the user to enter his INPUT. The second PRINT
statement merely serves to move the PRINT position (i.e. the
place wliere the next item will be PRINTed) to the beginning of
the last but one line on the screen, which is where we want the
player's INPUT to start. Then there is the INPUT statement itself -
INPUT U$. This makes the computer wait for the player to type in
his instructions, which are placed into the string variable US.

The next routine checks the player's instruction to see if they
make sense. It first makes a quick check to see of the player has
given up and typed QUIT, since if he has there is no point in going
any further. Look at line 3000. There is a word there that you
probably haven't seen before - INSTR. It stands for 'in string" and
it is one of many functions the Dragon has for handling strings.
What this does is to examine the strings in U$, starting at the first

175

character (because of the I inside the brackets) and see if the
string QUIT is to be found in it. The result of this function is a
number, not a string, and the number is the position i U$ of the

string QUIT. So if the player typed "I (a ! ! ! ? QUIT"", in a fit of
frustration, the INSTR function would produce the number 6. If
the "target string" (QUIT in this case) is not in the "object string"
(U$ in this case) then INSTR returns the number 0. We don't
really care where the word QUIT is within U$. only if it is there at
all, so we just ask if INSTR returns a number greater than 0, and if
so we set the QUIT flag, Q, to I, and RETURN. When the legal
check routine returns to the control program the QUIT flag is
tested, and ifit has been set, the program jumps to the END.

Usually the player will not have quit, and so the checking
routine has to flex its muscles a little harder. The routine finds
words within U$ by looking for spaces, so to avoid any confusion
the first thing it does is to remove any leading or trailing spaces
from U$. (eg. " GO NORTH " would be trimmed down to "GO
NORTH'". This is done by the use of another three string functions
- LEFT$, RIGHT$ and LEN. LEFT$ takes the form LEFT$(X$,N) and
returns a string which consists of the first N characters of the
string X$. RIGHT$ takes the form RIGHT$(X$,N) and returns a
string which consists of the last N characters of the string X$. For
the sake of completeness you may as well meet their sister MID$,
which takes the form MID$(X$,N ,M) and returns a string
consisting of M consecutive characters from X$, starting at
character number N. Brother LEN takes the form LEN(X$), and
does not return a string, but returns a number equal to the
number of characters in X$. With this information you should be
able to see how lines 3010 and 3020 strip off the leading and
trailing spaces.

The next thing the routine does is to split the player's INPUT
(U$) into two strings. The first word (which we assume to be the
verb) goes into WI$, and the rest of the string, if there is any
more, goes into 2$. Then the routine loops through each "verb"
element of IR$ checking it against WI$, and as soon as it finds a
match, it stores the verb's subscript number in the variable X and

exits the loop. Before entering the loop X is set to -1 , so if it is
still equal to -I when the loop has finished, it means that Wt$ was

•

176

not one of the allowed verbs, so we set RF, used to choose an
appropriate response to the player's input, and then RETURN.

If X is not equal to -1 we know that we must have found a legal
verb, so the next line tests to see if it was one of the verbs RUN,

FIGHT, or TELEPORT. Since these are different from the other
verbs in that they do not require any noun to make sense, we can
just set the flag LG to tell the control program that the player's
INPUT was legal, and RETURN. Otherwise, we will need to check
that the rest of the player's INPUT contains a word to which that
verb can refer. First, we assign L$ as the list of numbers from IR$
which correspond to the verb we have found. Then we set up a
loop which changes each of these numbers in turn from a
"character" into a number using the function VAL, and then uses
INSTR again to see if the object in IB$, pointed to by that number,
is in the player's INPUT. If it is, we store the word's subscript
number in Y, store the word itself in 21$, and exit the loop. We
set Y co -I before entering the loop so that on exit we can test it to

see if we found a legal word. You can see this in lines 3 160 to
3210. You may wonder what the "&W is for in line 3 180. This is
so the computer will interpret "A" as " 10" when the string is
turned into a number with VAL. ·'&H" stands for Hexadecimal, or
Hex for short. It is a different way of counting used in
computing, which counts in 16s instead of 10s, and uses the

letters A,B,C,D,E and F to represent the numbers 10
, 1 1 , 12, I 3, 14 and I 5. MI0$(L$,N, I) will provide a character which
is either 0 - 9, or A, and by putting "&W+ in front of it we will
build a string that reads ··&HJ'·, or "&HA", or whatever the number
was. You can "add" strings together like this, but you cannot use
other mathematical signs with strings, such as "-" or "*".

For most situations, this will be as far as the inventory search

goes. Either Y will still be equal to -I, in which case RF will be set
appropriately, or the player's INPUT must contain a legal verb/
word combination. There is one verb, however, which requires
further testing, and that is THROW. If the verb in the player's
INPUT is throw, then X will be equal to 7, and this is tested for
before setting LG and RETURNing. This is because the verb
THRO\'<' needs two other words to make sense. So, if we have
found a legal word combination we must now search the

177

remainder of the player's INPUT for the name of an object at
which he can throw things. At this point Z$ contains the player's
INPUT minus the first word - the verb. If we search it as it stands
we will find the name of the object which is being thrown and
conclude that there is an object in the INPUT which could be
thrown at. For example, if the player's INPUT is "THROW KEY" (a
daft thing to do but perfectly legal) then KEY would be correctly
identified as the object being thrown, but incorrectly identified as
the object being thrown at, when in fact no target has been
specified at all and the INPUT is illegal! We get round this by
removing the word KEY from Z$ before doing the search for a
target. This happens in lines 3230 and 3240.

There are two arrays containing objects which can be thrown
at. IC$ is the one most likely to contain the word in the player's
INPUT as this is the array with the words TROLL, MONSTER, and
SHIMMERING CURTAIN - the objects at which it is sensible to
throw things. For this reason, we search IC$ first. z is used to
store the subscript number of the word (if one is found). If a
word is not found (Z equal to -I) we then know that we must
search 18$ as well. We search 18$ from subscript 4 onwards. (It
doesn't make sense to throw something at a NORTH.) If we find a
word, instead of storing its subscript number we store its
subscript number multiplied by -I. (Still in z though). This is so
that another routine will know whether the object was found 18$
or IC$. Again, if no word is found, the response flag is set
accordingly, otherwise the LG flag is set. In either case there is no
more searching to be done so we RETURN.

If the INPUT was not legal, LG will be equal to 0 and the control
program will move straight on to the response section of the
game. If LG was set to I then the program needs to look at the
INPUT in the context of the player's current situation and carry
out the player's instructions, if possible, since a legal INPUT (for
example "TAKE THE KEY"), may still be invalid, if there is no key
in the room to take. There are clearly many possible situations
that need to be tested for by this routine, so we have split it up
into smaller routines, each of which has a much smaller number
of possibilities to look for. Which of these subroutines is called
depends on which verb has been used. The main routine first

178

resets a flag called OK to 0, and then calls the appropriate
subroutine. If all is well this subroutine will set OK to I, as well as
actually carrying out the player's instructions. The first routine
then checks to see if all is OK and sets the response flag
accordingly. Now we will look at what each of these subroutines
does.

The first one is called if the verb was GO. Like the subroutines
for TAKE, OPEN and EAT, the first line tests for the presence of a
monster or troll, because if one of these beasts is present, he
won't let you go anywhere, open a door, or take or eat anything
until you have dealt with him. Assuming there is no beasty
present, the routine checks LO see if a direction was specified. If
not the response flag is set accordingly and we RETCRJ\".
Otherwise, we set a variable DR for direction and then look in
RM$ to see if there is an open door in the specified direction. If
there is, we update PR and set the new room flag, otherwise we
set the response flag accordingly. In either case we RETURN. PR
holds the player's position within the maze - his room number.
\Y/c update it using a function defined in the initialisation section
of the program. We use it many times in the program and it's
much easier to say FNR(DR) than to write out the whole
expression every time.

The next subroutine is called when the verb is TAKE. It tests
whether the object is actually there for the taking, and also tests
whether the object in question is a set of BATrERIES, resetting
TIMER if it is. Then it updates the possessions array PS() and
RETURNS. TIMER is a special variable in the Dragon which is
constantly being incremented at a rate of 50 per second. If you set
it to 0 and then read it later by assigning it to a variable, you can
work out how much time has elapsed since you set it.

The next subroutine is OPEN. It first checks that the player has
a key and, if so, goes on to check that a direction was specified
(we must know which door he wants to open) and that the door is
locked. If all is well then the possession array is updated (i.e. he
loses a key), a flag is set (K) so that the response routine will tell
the player that he has lost a key, and RM$ is updated, then we
RETURN. (Remember that we need to update two rooms when the
state of a door changes, and again we use our defined functions.)

179

The subroutine EAT checks that the player actually has
whatever it is he is trying to eat. Then it checks that he is eating

food. If not, RF is set to make him choke, otherwise his strength
is replenished, and his possessions array updated, before

RETURNing.
The RUN routine finds an open door if there is one and puts the

player the other side of it, updating PR at the same time. If
however there is nothing to run from, or no open door to run
through, FR is set.

The FIGHT routine checks that there is something to fight. If so
it kills it, i.e. removes it from RM$ and resets the monster flag
MN. It also decreases the player's strength by a random amount,
and then RETURNS. TELEPORT simply assigns a random number
between 0 and 35 to PR and decreases the strength variable by
200 (teleporting is a strenuous activity).

The last subroutine is THROW, and it is the most complex of
these subroutines. It begins by checking that the player has the
object he is trying to throw. It then tests to see that the specified
target is actually in the room. If either of these tests prove
negative, RF is set and we RETURN. If we get past these tests we

then find out whether the player is throwing MAGIC DUST, a
CRYSTAL, or some other object. This information is in 21$, as a
result of the second part of the inventory search. If it is MAGIC
DUST then we disappear the target. (Such is the power of MAGIC
DUST.) If the target was a shimmering curtain, however, we must

first check that the direction was specifed. If the object thrown
was a CRYSTAL, then unless the target was a SHIMMERING
CURTAIN it will have no effect , as is true of any other object
THROWn. All we want to know is whether the object was thrown
at a monster or an inanimate object, so that we can set RF to
either make the monster laugh or the computer poke fun at the
player.

If the last two sections dealt with the "brains" of the program,
this section deals with the "mouth". This is the response routine,
and although it is the longest routine in the program, it is also one
of the simplest. All the work has already been done to decide
what the correct response to the player's INPUT should be. There
are 20 basic responses and the actual response is chosen by the

180

setting of RF (the response flag) to a number between I and 20.
All the response routine now has to do is make use of the ON .
GOSUB statement to call a small subroutine which PRINTs the
correct response. A full list of responses and their RF numbers is
given in Appendix Two.

After PRJNTing the response, the routine checks if the player
now has the Crown of Emeralds and, if so, the WON flag is set and
we RETURN. The LOST flag is also checked at this point, and if it
is set, we also RETURN. If the game is neither WON nor LOST. the
response routine examines the strength variable ST and makes an
appropriate comment on the state of the player's health. Then it
reads TIMER, and if time is running out, it PRINTS a warning to
that effect.

The last three routines are only called at the end of a game.The
first two simply PRINT out a message to commiserate or
congratulate the player, depending on whether he won or lost.
After this the control program invites the player to play again,
and if he accepts, it calls our final routine, which resets the WON
and LOST flags, and the possessions array. The control program
then loops back to section 4 of the program, which builds another
maze, and the whole thing starts over again. If the player declines
to play again the control program moves on to its last statement -
END.

CHAPTER 10

Some Parting Remarks.

Well by now you've probably learnt quite a lot about writing and
altering the sort of games we have discussed in this book .

.
There

should be nothing left to hold you back from writing your own
games now. You are now in position to write your own BASIC
games and save your hard-earned pennies for only the best, top
quality, machine code, commercial games. Before we leave this
introductory book behind though it is probably a good idea to
have a look at one of the most important and much used BASIC

functions in game writing. Random numbers have been used
throughout this book and we have never quite got round to
looking at them in detail. They are used a lot because they can
help you produce unexpected events, and that is far more
interesting than having a game that does exactly the same thing
all the time. Without random numbers the aliens would always
appear in the same place at the top of the screen and the maze in
the adventure would be totally predictable. Of course we could
write so complex a program that we wouldn't know which one of
the many parts of the program we were playing against but this
would take up a lot of memory and, more importantly, a lot of
effort from the people writing the game.

The BASIC word associated with random numbers is RND with
a parameter to suitably modify the range of the output. RND(I}

gives us a random number between 0 and I and although it can
give a value of 0 it cannot reach I (the highest it will ever get is
about 0. 99999999). Look at the range of numbers with this little
program:

100 PRINT RND(l)
1 10 GOTO 100

You should see many different numbers between 0 and I with no
discernable pattern. Actually if you carry on long enough the
pattern would repeat after 65536 numbers. This is because RND

is really only a pseudo-random function. The computer actually

181

182

calculates the next random number from the current one by
adding a large prime non-divisor of 2 j 32 then reducing this
modulo 2 j 32 to give a number between 0 and 65536. The
random number returned is either this number interpreted in
two's complement notation for an integer (i.e. for RND with a
parameter greater than I) or this number divided by 65536 for
RND(l), so it's all very rational really! !

Here is a short program to simulate the throwing of a die:

10 REM PROGRAM TO THROW A DIE
20 PRINT RND(6)
30 GOTO 20

The above program will give random numbers in the range I to 6.
Of course if we wanted to simulate two dice being thrown we
would have to produce numbers in the range 2 to 12 but we
would work it out by calculating two numbers in the range I to 6
and adding them together, not by producing a new function call
along the lines of INT (RND(I I)+ I .)

Well, that's enough about random numbers. I f you have spent
enough time playing with (and altering) the games in this book
you will be feeling ready to use BASIC in the development of your
own games and adventures. Who knows, you may even decide to
start writing programs to keep track of your bank balance and
such like. Whatever you decide to do remember to keep clearly in
mind the overall job. Always split your task up into smaller sub
tasks and never try to solve all the details of one sub-task before
you even have an idea what the rest of the tasks are going to be. If
you approach programming, or even writing a book, in this way,
you will find that you can easily get through even the longest of
jobs. This sort of approach is known as structured programming
and although BASIC is not intrinsically a structured language we
can still approach the building of a program in an orderly fashion.
It would almost certainly be worth your while getting a book on
structured BASIC programming to help you to expand your
knowledge of working BASIC. Remember to go for one that has
plenty of programming examples and if possible one with
exercises that you can work through. If you got on well using the
BASIC blocks in this book then maybe you should consider a
career in computing! !

APPENDIX ONE

Arcade Game Variables

ALIENS
AMMO
AS

AX
AY
BX
BY
CD

CH
D
DD
F
FIN
FUEL
GM
H
HIT
K

L
N

NV

I'
PG

PX
PY
Q

R

RN
SCORE

Number of aliens left.
Numberofbullets, etc., left.
ASCII code of character to be PUT by PUT STRING
routine.
Current x co-ordinate of alien.

Current y co-ordinate of alien.
x co-ordinate of bomb/fireball.
y co-ordinate of bomb/fireball.
Value to be POK Ed to the screen in character
definition routine.
Numberof character being defined in any batch.
Flag to enable downward movement of player.
Flag to indicate dead alien.
Flag to indicate firing game.
Flag ro indicate end of game situation.

Amount offuel left.
Number of games played.
Flag to indicate hyperdrive enabled.
Flag to indicate alien hit, or player crashed.

Flag to indicate shot has been fired.
Flag to indicate left movement enabled.
Number of characters to be defined in a given
batch.
Inverse tlag. If set (I) reverses foreground/
background.
Number of aliens that have got past.
Page numberoffirst visible graphics page in
character definition routine.
Current x co-ordinate of player.
Current y co-ordinate of player.
Control variable in background loop.
Flag to indicate right movement emabled.
Row number of character being defined.
Player's score.

183

184

ST

u
X2
XA
XG

XP

xs

y

¥2

YG
yp
YS
A$
F$
P$

ARRAYS
A(!)

AB(l)

B(I)
C(l)

N(I)

PB(I)
T(l),UK(l)

First address to be POK Ed in character definition
routine.
Flag to indicate up movement enabled.
X co-ordinate of background object.
Old x co-ordinate of alien.
X co-ordinate of character to be GOT in
PUT STRING.
Old x co-ordinate of player.
X co-ordinate of first character in string to be PUT.
Control variable in character definition loop.
Y co-ordinate of background object.
Y co-ordinate of character to be GOT in PUT STRING.
Old y co-ordinate of player.
Y co-ordinate of first character in string to be PUT.
Used with INKEY$ to wait for player response.
PLAYed in firing routine.
String passed to PUT STRING for PUTting on screen.

Stores alien character.
Stores alien background.
Stores player character.
Stores bomb/fireball character.
Used for PUTting alphanumerics on to the screen.
(And for background in bomb routine.)
Stores player background.
Store background object characters.

APPENDIX TWO

Adventure Game Variables

FLAGS
K Set to -I when a key is used up (in opening a door).
LD Set to I to indicate presences of a locked door.
LOST Set to I when player dies 1

MD Set ro-1 when magic dust is thrown.
MN Set to I to indicate presence of monster or troll.

185

NR Set to I when player changes room.
OK Set to I when program successfully performs

player's instructions.

Q Quit flag. Set to I when player quits.
RF Response flag. Set to a number between I and 20 to

indicate which of 20 responses is to be used in
response routine.

WON Set to I when player takes Crown of Emeralds

NUMERIC VARIABLES
CRYSTAL

CE

DR

KEY

L
M,N
PR
R
ST

TM

V

X,Y,Z

Used in computer "walk" through maze. While
greater than zero it indicates that more crystals than
shimmering curtains have been placed in the maze.
Room number of Crown of Emeralds.
Indicate direction of doorway being referred to.
2 to S are NORTH, SOUTH, EAST and WEST.

Used on maze "walk". While greater than zero it
indicates that more keys than locked doors have
been placed in the maze.
Temporary store oflengths of various strings.
Control variables for various loops.
Player's current room number.
Temporary store for random numbers.
Strength level. Starts at 1000. Player dies of
exhaustion at zero.
Time passed (in minutes) since game started or
since player last acquired new batteries.
Control variable for loop in verb inventory search.
Used in inventory searches to store subscript
numbers of words found. X and Y are also used in
building the maze. X stores the computer's room
number during the "walk". Y stores the difference.

STRING VARIABLES
A$,B$ Store adjectives from AJ$(4, I) for room

description. A$ is also used with INKEY$ to wait for
the player to read the instructions.

H$ Strings of hazards in maze building routine.
L$ Temporary store for various strings.
0$ Stores chosen object, hazard, or door to be placed.

186

0B$ String of objects in maze building routine.
U$ Player's INPUT
2$ Player's INPUT minus verb. (And minus 21$ in

inventory search part three.)
ZI$ Object of verb in player's INPUT.
Z2$ Indirect object of verb "throw".

ARRAYS
PS(4)

IA$(7, I)

IB$(1O)
IC$(2)

RM$(35,5)

AJ$(4,I)

RF

10
I I
12

13

14
IS

Numeric array. Stores quantities of each item in
player's possession.
List oflegal verbs, and pointers to objects to which
verbs may refer directly.
List of objects to which verbs may refer directly.
List of objects to which the verb THROW may refer
indirectly.
Room array. Stores information about presence of
friendly objects, hostile objects and doorways, for
each room in the maze.
List of adjectives, for room description.

RESPONSES
WHAT?!
I DO NOT KNOW THE VERB .
YOU CANNOT . . . THE .
YOU CANNOT GO . .
THE DOOR I S LOCKED.
I SEE NO . . . HERE.
BUT YOU DO NOT HA VE A KEY.
THERE IS NO LOCKED DOOR TO OPEN
HERE.
Not used. (Reserved for future use).
YOU DO NOT HAVE THE .
YOU EATTHE . . . YOU CHOKE TO DEATH!
YOU THROW . . . AT THE . . . HE EATS IT
AND LAUGHS. HA HA.
YOU THROW . . . AT THE . . . , DO YOU FEEL
BETTER NOW? DON'T ANSWER THAT!
WHICH DIRECTION?
THERE IS NO SHIMMERING CURTAIN TO
THE . . .

187

16 YOU . . . (Echo player's INPUT).
17 YOU TRY TO . . . BUT YOU ARE ATTACKED

BY THE .
1 8 YOU RUN.
19 YOU FIGHT THE BEAST, YOU STAVE IN

HIS SKULL, HE CRUMBLES TO DUST.
20 YOU CANNOT RUN - THE ENTRANCES

ARE CLOSED.

APPENDIX THREE

ASCII Character Codes

Code Character Code Character

32 space SS 7
33 ! 56 8
34 57 9
35 # 58
36 $ 59
37 % 60 <

38 & 61
39 62 >

40 63
41 64 @'
42 65 A

43 + 66 B
44 , 67 C
45 - (minus sign) 68 D
46 69 E
47 I 70 F
48 0 71 G
49 l 72 H
50 2 73 I

51 3 74 J
52 4 75 K

53 s 76 L
54 6 77 M

188

Code Character Code Character

78 N 104 h
79 0 105
80 p 106 j
81 Q 107 k
82 R 108 I
83 s 109 m
84 T 110 n
85 u 111 0

86 V 112 p
87 w 113 q 96 -127
88 X 114 appear on screen as

89 y 115 inverse characters.

90 z 116
91 [117 u
92 / 118 V

93 l 119 w
94 i 120 X

95 121 y
96 01 122 z

97 a 123 {
98 b 124 I
99 125 }

100 d 126 i
101 e 127
102
103 g 128 to 255 are block graphic characters.

APPENDIX FOUR

Decimal/Binary Conversion Table

DECIMAL BINARY

0 00000000 00000101 10 00001010
I 00000001 6 00000110 I I 00001011
2 00000010 7 00000111 12 00001100
3 00000011 8 00001000 13 00001 101

4 00000100 9 00001001 14 00001 1 10

189

DECIMAL BINARY
I S 00001111 54 00110110 93 0101 I 101
16 00010000 SS 00110111 94 01011110
17 00010001 56 00111000 95 01011111
18 00010010 57 00111001 96 01100000
19 0001001 I 58 00111010 97 01100001
20 00010100 59 001 I 101 I 98 01100010
21 00010101 60 00111100 99 0110001 I
22 00010110 61 00111101 100 01100100
23 00010111 62 00111110 101 01100101
24 00011000 63 00111111 102 01100110
25 00011001 64 01000000 103 01100111
26 00011010 65 01000001 104 01101000
27 00011011 66 01000010 105 01101001
28 00011100 67 01000011 106 01101010
29 0001 I 101 68 01000100 107 01101011
30 00011110 69 01000101 108 01101100
31 00011111 70 01000110 109 01101101
32 00100000 71 01000111 I 10 01101110
33 00100001 72 01001000 I l l 01101111
34 00100010 73 01001001 112 01110000
35 00100011 74 01001010 113 01110001
36 00100100 75 010 0101 I 114 01110010
37 00100101 76 01001100 115 01110011
38 001001 Iv) 77 01001101 116 01110100
39 00100111 78 01001110 117 01 I 10101
40 00101000 79 01001111 I 18 01 I10110
41 00101001 80 01010000 119 011101 I I
42 00101010 81 01010001 120 01111000
43 00101011 82 01010010 121 01111001
44 00101100 83 01010011 122 01111010
45 00101101 84 01010100 123 0111101 I
46 00101110 85 01010101 124 01111100
47 00101111 86 01010110 125 01111101
48 00110000 87 01010111 126 01111110
49 00110001 88 01011000 127 01111111
50 00110010 89 01011001 128 10000000
51 00110011 90 01011010 129 10000001
52 00110100 91 01011011 130 10000010
53 00110101 92 01011100 131 1000001 I

190

CECIMAL BINARY
1 32 10000100 1 7 1 101010 1 1 2 10 1 1010010

1 33 10000101 1 72 10101 100 2 1 1 1 10100 1 1

134 10000 1 1 0 I 73 10101 101 2 12 1 1010100

I3S 100001 1 1 174 10 101 1 10 2 1 3 I 10 10 101

1 36 10001000 I 7S 10101 1 1 1 2 14 1 10 1 0 1 1 0

1 37 10001001 176 10 1 10000 2 1 S 1 10 101 1 1

1 38 10001010 1 77 1 0 1 1 0001 2 16 1 10 1 1000

1 39 1000101 I 178 10 1 10010 2 17 1 10 1 1001

140 10001 100 1 79 101 1001 I 2 1 8 1 10 1 10 10

14 1 1000 1 101 180 1 0 1 10100 2 19 1 10 1 1 0 1 1

142 10001 I 10 1 8 1 10 1 10101 220 1 10 1 1 100

143 1000 1 1 1 1 182 1 0 1 1 0 1 1 0 2 2 1 I 101 1 101

144 10010000 183 10 1 10 1 1 1 222 1 101 1 1 10

14S 10010001 1 84 10 1 1 1000 223 1 101 1 1 1 1

146 10010010 I8S 10 1 1 1 00 1 224 1 1 100000

147 100100 1 1 1 86 10 1 1 10 10 22S 1 1 1 00001

148 10010100 1 87 10 1 1 10 1 1 226 1 1 100010

149 10010101 1 88 10 1 1 1 100 227 1 1 10001 I

IS0 100101 10 1 89 101 1 1 101 228 1 1 100100

I S I 100101 1 1 190 101 1 I I 10 229 1 1 100 10 1

IS2 1001 1000 19 1 10 1 1 1 1 1 1 230 1 1 100 1 1 0

I S 3 100 1 1 001 192 1 1000000 231 1 1 1 00 1 1 1

I S4 1001 10 10 193 1 1000001 232 1 1 10 1000

!SS 100 1 10 1 1 194 1 1000010 233 1 1 10 100 1

IS6 100 1 1 100 19S I 100001 I 234 1 1 101010

IS7 100 1 1 101 196 I 1000100 23S 1 1 10 10 1 1

IS8 1001 1 1 10 197 I 1000101 236 1 1 1 0 1 100

I S9 1001 1 1 1 1 198 I 10001 10 237 1 1 10 1 101

160 10100000 199 1 1000 1 1 1 238 1 1 10 1 1 10

1 6 1 10100001 200 1 1001000 239 1 1 101 1 1 1

162 10100010 201 1 1001001 240 1 1 1 10000

163 1010001 1 202 1 10010 10 241 1 1 1 10001

164 10100 100 203 I 100101 I 242 1 1 1 10010

16S 10100101 204 I 100 1 100 243 1 1 1 1001 1

166 10100 1 10 20S I 100 1 101 244 1 1 1 10 100

167 101001 1 1 206 I 1 00 1 1 10 24S 1 1 1 10101

168 1010 1000 207 1 1001 1 1 1 246 1 1 1 10 1 10

169 10101001 208 1 1 010000 247 1 1 1 101 1 1

1 70 10101010 209 I 1010001 248 1 1 1 1 1 000

191

DECIMAL BINARY

249 11111001
250 11111010
251 11111011
252 11111100
253 11111101
254 11111110
255 I I I I I I I I

Robert Erskine & Humphrey Walwyn w11h Paul Stanley and Michael Bews

Bumper Book of Programs for the Sinclair ZX Spectrum [4.95

Robert Erskine & H umphrey Walwyn with Paul Stanley and M1ct1ael Sews

Bumper Book of Programs for the B BC Micro [4 95

Robert Erskine & Humphrey Walwyn with Paul Stanley and Michael Bews

Bumper Book of Progams for the Dragon 32 [4.95

Robert Erskine & Humphrey Walwyn with Paul Stanley and Michael Bews

Bumper Book of Programs for the Orie 1 [4.95

Ian Adamson

The Definitive Companion to the Orie 1 [4.95

Geoff Wheelwright

The Definitive Companion to the BBC M icro £4.95

Jean Frost

Instant Arcade Games for the Sinclair ZX Spectrum [3.95

Jean Frost

Instant Arcade Games for the BBC Micro [3.95

Jean Frost

Instant Arcade Games for the Dragon 32 [3.95

J. J. Clessa

Micropuzzles [2.95

Send 10 Pan Books (CS Department). PO Bo:,; 40. Bas,ngstoke. Hants

Please enclose rem111ance to the value of 1he cove, pnce plus

35p !or the first book plus 1 Sp per copy lor each add11,onal book 01dered

to a ma:,;,mum cha1ge of (1 25 to cover postage and packing

Applicable only m the UK

While every etton ,s made to keep prices low. 11 1s sometimes

necessary to increase Pflces at sho1t no•,ce Pan Books reserve

the right 10 show on covers and charge new 1e1a,I p"ces which

may differ from those ad11e111sed ,n the 1c:,;t or elsewhere

	1
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p152
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	lc-p159
	lc-p160
	lc-p161
	lc-p162
	lc-p163
	lc-p164
	lc-p165
	lc-p166
	lc-p167
	lc-p168
	lc-p169
	lc-p170
	lc-p171
	lc-p172
	lc-p173
	lc-p174
	lc-p175
	lc-p176
	lc-p177
	lc-p178
	lc-p179
	lc-p180
	lc-p181
	lc-p182
	lc-p183
	lc-p184
	lc-p185
	lc-p186
	lc-p187
	lc-p188
	lc-p189
	lc-p190
	lc-p191
	lc-p192
	z

