

LANGUAGEOFTHEDRAGON

Mike James

}sigma Technical Press

Copyright© 1983 by Mike James

All Rights Reserved

No part of this book may be reproduced or transmitted by any means without
the prior permission of the publisher. The only exceptions are for the
purposes of review, or as provided for by the Copyright (Photocopying) Act
or in order to enter the programs herein onto a computer for the sole use of the
purchaser of this book.

ISBN O 905104 35 6

Published by:
SIGMA TECHNICAL PRESS
5 Alton Road
Wilmslow
Cheshire
UK

Distributors:
Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester
West Sussex, England

Australia, New Zealand, South-East Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,
JOHN WILEY & SONS INC.,
GPO Box 859, Brisbane,
Queensland 40001, Australia

Typeset, Printed and Bound by Commercial Colour Press, London E7.

ii

Preface

The6809 microprocessor that lies at the heart of the Dragon is one of the most
logical and easy-to-program of today's microprocessors. This makes it
particularly suitable for learning assembly language with the minimum of fuss
and confusion.

The aim of this book is to introduce 6809 assembly language programming
to anyone with a prior knowledge of Dragon BASIC. Starting off from first
principles of machine code, the need to use assembly language is quickly
established. However, rather than rely on a particular commercial assembler,
the book presents its own BASIC assembler which is built up stage-by-stage.
This approach has the advantage of making absolutely clear the details of
what an assembler does by giving a practical demonstration of why each new
facility is required and how each is added. Although the BASIC assembler can
cope with any of the programs and routines in this book, its limitations (in
terms of speed) are apparent when handling the longest of them. So, while
the BASIC assembler provides a useful tool for coming to terms with
assembler, and provides a good model if you wish to write your own, once
you've mastered the assembly language needed to do so, it is not intended to
be used extensively as it stands. So, if you do foresee making a good deal of
use of an assembler, then at some stage you will probably want to consider
buying one of the commercially available ones. The details of two such
packages are given in Appendix II. If course, if you already have such a piece
of software available, then it can be used in place of the BASIC assembler as
you work through this book. It is still worth inspecting the BASIC listing,
however, as it will reveal HOW an assembler works and some of the problems
it has to overcome.

There are no short cuts to learning assembler and, unlike BASIC, where
you can start to write simple and useful programs when you've mastered only

iii

a few commands, there is a lot of ground to cover before you can do anything
that seems at all impressive. It IS worth the struggle however as, at the end of
the day, assembly language programming does bring all the promised
benefits of increased power and speed. Above all, assembly language
programming is a challenge which it is great fun to pursue.

iv

1.

2.

3.

Why Assembler?
BASIC is easy
Which assembler?

Contents

Machine code and assembler
An assembler
Trial and error

Registers and Operations
Memory, addresses and data
Registers- the CPU's own memory
A short program
Summary
The BASIC Assembler
Storing the code- CLEAR and EXEC
AD Ding - a simple operation
Micro projects

Addressing
Operations and addresses
Direct addressing
Bits, bytes and binary
Hexadecimal and binary
Extended addressing
A practical program
Adding addressing modes to the BASIC assembler
Trying it out
Immediate addressing
Summary
Micro projects

1
1
2
3
4
6

7
7
8

11
14
15
18
19
20

21
21
22
22
24
26
27
30
33
34
35
36

v

4.

5.

Jumps, Loops and Labels
TheJMPinstruction
Address labels
Adding labels to the BASIC assembler
Forward jumps and two-pass assembly
Changing the BASIC assembler into a two-pass assembler
Subroutines, JSR and RTS
Using subroutines- more labels
Adding EQU to the BASIC assembler
UsingEOU
Summary
Micro projects

Logic Instructions
The logical operations
ANDA address and ANDB address
ORA address and ORB address
EORA address and EORB address
COMA, COMB address and COM address
Adding logic to the BASIC assembler
Bit manipulation
The shift instructions
The logical shift instructions, LSL and USR
The ROtate instructions, ROR and ROL
Adding shifts to the BASIC assembler
Labels and Data- RMS, FCB and FDB
Summary
Micro projects

37
37
40
41
43
44
47
47
49
49
50
51

52
53
53
54
55
56
57
58
61
62
64
65
66
69
70

6. Arithmetic Instructions 71
Assembly language arithmetic 71
Negative binary numbers-two's complement 72
The ADD and SUB instructions-the D register 74
Arithmetic with simple binary numbers 75
Arithmetic with two's complement numbers- the NEG instruction 76
The CLR, INC and DEC instructions 78
Adding arithmetic to the BASIC assembler 79
Extended precision arithmetic 80
Multiplication-thearithmetic shiftsand MUL 83
Binary coded decimal- the DAA instruction 86

vi

Adding shifts, DAA and SEX to the BASIC assembler 88
Summary 88
Micro projects 89

7. Branch Instructions 91
Unconditional branches and relative addressing 92
Relative addressing and the BASIC assembler 95
Conditional branches- the Condition Code register 98
Setting the condition codes directly-ANDCC and ORCC 101
The simple conditional branches 102
The signed conditional branches 105
The unsigned conditional branches 106
Addirlg conditional branches to the BASIC assembler 108
Testing without changing-CMP, TST and BIT 109
BSR and LBSR 112
Thinking BASIC- IF, conditional loops and FOR loops 113
Summary 115
Micro projects 116

8. Using the Dragon from Assembler 117
Making the BASIC assembler friendly 117
Printing hex numbers 122
Multiple precision arithmetic-ADC and SBC 125
Example-a 'squash' game 128
Adding simple indexed addressing to the BASIC assembler 135
Testing and perfecting the bounce program 135
Adding the bat 136
Detecting the bat 140
The complete squash program 142
Conclusion 145

9. The Addressing Registers: Indexed Addressing 146
The addressing (or pointer) registers 147
Operations on the pointer registers 147
Simple indexing 148
The TFR and EXG instructions 150
Accumulator offset indexed addressing 152
Auto increment/auto decrement indexing 154
The effective address-the LEA instruction 156
The ABX instruction 157

vii

Program counter relative 157
Indirection 158
Summary of indexed addressing modes 1 61
Machine code details of indexed addressing 1 62
Direct addressing and the DP register 163
Adding the addressing registers to the BASIC assembler 164
A general multiple-precision arithmetic subroutine 167
Using Dragon sound 168
Summary 175
Micro projects 176

10. The Stack Pointers and Interrupts
A stack
The6809 stack pointers, U and S
Subroutines and the system stack
Interrupts
The RTl instruction
Condition codes and interrupts
The instructions CWAI and SYNC
Software interrupts- SW1, SW12, SW13
Adding stack operations to the BASIC assembler
The Dragon's use of interrupts
Summary
Micro project

1 1 . Assembly Language Style and Practice
Subroutines
The role of BASIC in Assembler
Assemblers and other packages

177
177
178
181
181
182
183
186
186
187
189
191
192

193
193
196
199

Appendix I List of instruction codes 202

Appendix II Two commercial assemblers: DASM and DREAM 209

Appendix Ill Complete Listing of Assembler 211

Appendix IV Rom Subroutines 223

Answers to Micro Projects 224

Index 230

viii

Chapter One

Why Assembler?

The only way to get the maximum power from any computer is to program
it in assembler. This is the only reason for using assembler as opposed to
friendlier computer languages such as BASIC. Even powerful, up-to-date
microcomputers such as the Dragon don't really run languages such as
BASIC fast enough for anything other than small programs and
applications where the user is prepared to wait. Until microcomputers
become much faster there will always be the need to take advantage of the
improved efficiency offered by assembler.

Of course, there are a number of secondary reasons why particular
individuals might decide to learn assembler. For example, assembler brings
you closer to the inner workings of your machine than any other language.
Another reason that is not often acknowledged is that, if you are using
computers for fun, then you might like to try something a little more
challenging than BASIC! However, it is important to realise that, while
there are endless personal reasons for choosing a particular language, the
only practical advantage that assembler has is speed.

BASIC is easy

The transition from a high level language to assembler is bound to come
as something of a shock. For a start, a high level language lets the
programmer takes a good deal for granted and is therefore very much
more compact than assembler. One of the first things you now have to
realise is that one line of BASIC is often equivalent to several lines of
assembler. There is no denying that assembler is more difficult to learn and
use than BASIC. If this were not the case, then all personal computers

1

Language of the Dragon

would come equipped with assembler instead of the standard BASIC. The
fact that assembler IS more difficult should not put you off the task of
learning it even if you are a relative newcomer to computing. BUT, if you
don't already know BASIC then do not attempt to learn assembler until
you do - assembler isn't a good first language! For the rest of.this book it
will be assumed that you can write BASIC programs on the Dragon. If you
have this knowledge of programming, then learning assembler is well
within your reach. To make full use of assembler it is an advantage to
know something of binary numbers and one or two other topics but it is
better to leave these until they become necessary.

As assembler is a language that is closely tied to the design of the
computer, so a knowledge of the internal workings of the Dragon is useful
but not necessary. The need for assembly language often arise::: when you
are trying to make creative use of some part of the machine's hardware
where speed is essential. For example, the Dragon's sound generator can
be controlled directly from BASIC but not fast enough to make any sounds
other than a low pitched buzz - from assembler the range of sounds that
you can make is unlimited. Many of the examples later in this book use
hardware features of the Dragon and if you would like a fuller
understanding of the overall hardware design, then you might like to
consult the companion volume to this book, "The Anatomy of the
Dragon", which is also published by Sigma. Indeed it may be that the
difficulty inherent in using BASIC to control the Dragon's hardware directly,
encountered so often in "The Anatomy of the Dragon", is what that has
pulled you toward assembler.

Which assembler?

Although the term 'assembler' has so far been used as if it referred to a
single computer language, this i.s unfortunately far from the truth. In fact,
each different microprocessor or CPU (Central Processing Unit) used at
the heart of a complete machine has its own particular assembly language.
Notice that two different machines may use the same assembly language if
they also use the same microprocessor. For example, both the BBC Micro
and the APPLE use the 6502 microprocessor so they both recognise 6502
assembly instructions. But, in practice, assembly language programs tend
to make use of particular features of the machine and so the chance of an
APPLE assembly language program working on the BBC Micro is very

2

Chapter I Why Assembler

small. For this reason it is better to think of assembly language programs
being completely machine specific. In other words, you are writing Dragon
assembly language for the Dragon and no other m·achine (with the obvious
exception of the very similar Tandy Color computer).

The microprocessor used inside the Dragon is a very advanced device
called the 6809. Although the 6809 is advanced you shouldn't fall into the
trap of thinking that 'advanced' implies difficult. In fact the 6809 is a very
suitable microprocessor from the point of view of learning a first assembly
language because it is a very logical and well designed device. An
assembly language, in common with almost any language, becomes
difficult to learn if it is full of 'exceptions' and special rules. As far as is
possible, 6809 assembly language is based on a number of simple general
rules and ideas and, once you have mastered these, the whole language
seems very e.:isy.

Machine code and assembler

Life is just a little more complicated than the last section would suggest.
A microprocessor doesn't work in terms of assembly language as written
by programmers but in 'machine code'. There is a lot of confusion about
the relationship between machine code and assembler that is worth
clearing up at this earty stage.

As will be clear by the end of this book, computers work entirely in
terms of numbers. The wordy commands of BASIC are not directly
recognised by a machine. Instead there is a great deal of software in the
system devoted to converting them to a sequence of numeric commands.
These numeric commands form the only language the the machine can
obey directly and are usually referred to as 'machine code'. And so, to
program a computer directly, we have to make lists of numbers, with each
number corresponding to a single fundamental operation. This is fine for
the computer but what about the programmer? Imagine if all of the
command words in BASIC (e.g. GOTO, IF, FOR etc) had to be written in
terms of code numbers. Apart from making programs unreadable, it would
take quite some time to remember which code number corresponded to
which command. The point is, that while computers can only deal with
code numbers, humans find it much easier to work with meaningful
words. This is where assembler comes into the picture.

3

Language of the Dragon

The fact that a computer needs all of its instructions in the form of
numbers is something that we can do nothing about. However, there is
nothing stopping us from writing our programs in terms of easy to
remember 'command names' and then translating them into the numeric
codes used by the computer. For example, the 6809 machine code
instruction that plays the same role as GOTO in BASIC (i.e. it transfers
control from one position in a program to another) is 14 but it is much
easier to read and write the three letter command name JMP, which is
short for JuMP. Such easy to remember command names are usually
called 'mnemonics' because they help you to remember the commands.
(Mnemonic derives from the Greek word "mnemon", meaning "mindful".)
To this end long names are avoided in preference for three-, or at most
four-letter abbreviations. The collection of mnemonic commands is called
the machine's 'assembly language' and the act of converting it to the
numeric codes is called 'assembling the program'.

You should now be able to see that there is such a close connection
between machine code and assembly language that there is a tendency to
treat them as the same thing. But there are important distinctions:

1) Machine code is composed of nothing but numbers and is the
language that the computer obeys directly.

2) Assembly language is an easy-to-use form of machine code with
the numeric codes replaced by short memorable command words
called 'mnemonics'.

3) Assembly language must be converted to machine code before a
computer can obey it. This conversion is called 'assembling the
program' and can be achieved by a special program called an
'assembler'.

An Assembler

Producing an assembly language program has a number of stages, some
of which are the same as the stages in producing a BASIC program.
Obviously the first stage is to write the program, it then has to be
converted to machine code, loaded into the machine and run. As a result

4

Chapter 1 Why Assembler

of the run, errors or other misbehaviour have to be noted, their cause
found and then the whole cycle repeated after corrections have been
made.

You can see that an important component of this production cycle is the
conversion of assembly language to machine code. For a small program
this can be achieved by the programmer looking up the numeric
equivalents of each instruction in an appropriate table - such as the one
given in Appendix I. This method of conversion is known as 'hand
assembly' and if you are only going to write the occasional small assembly
language program it is good enough. However it soon becomes tedious if
you are writing any number of assembly language programs and error
prone if the program is at all long.

The solution is to make use of the power of the computer to automate
the process of hand assembly. Instead of you looking up the numeric code
in a table why not write a program that does just that. Such a program is
called an 'assembler'. So an assembler takes assembly language as its
input and outputs machine code thus -

assembly language--> assembler --> machine code

This sounds like a good idea but where do you get an assembler from?
There are a number of standard assemblers on the market and there is no
doubt that if you are going to use assembly language often then it is worth
investing in one of them. However, so that you can try out the ideas
explained in this book without having to resort to tiresome hand assembly
or an expensive assembler a simple assembler will be given using nothing
but BASIC. Writing an assembler in BASIC may sound like a difficult
program but, as you will see as things progress, it is fairly straightforward.
To make it even easier to understand, rather than quoting a listing of the
complete assembler, it will be built up chapter by chapter. In each case
only the commands and facilities discussed in the chapter will be added
and so, you should not only be able to understand the assembly language
of the Dragon, you should also be able to build up a picture of how an
assembler works. If you are not interested in how an assembler works,
then you can skip the explanations and just use the program (a complete
listing of which is given in Appendix II.) However, there is nothing like
understanding the principles behind software for demonstrating how
simple it really is.

5

Language of the Dragon

Trial and error

In the next chapter the practical side of assembly language is introduced
and it is important that you do try out the examples. So far, most of the
ideas that have been presented come into the category of theory but it is
surprising how a little theory can make practice seem easier. The reverse
is also true and so, after you have reached Chapter Three or, Four try
returning to this chapter and look over its contents. You might be pleased
to discover that things fit together to form a complete picture! This
principle of reading on and then going back is a technique for reading
computer books that you should always apply. If you find that you are not
understanding something don't immediately stop and go back to earlier
material, carry on reading to the end of the chapter or section and THEN
go back. It is often the case that later information clarifies earlier
misunderstandings but going back too soon simply reinforces them!

6

Chapter Two

Registers and Operations

The microprocessor, or CPU, is the powerhouse of any computer. It is the
place where all of the calculations and operations on data are carried out.
From the point of view of the assembly language programmer, the CPU is
also the most important part of the computer because it determines the
operations that are possible and so dictates the form of the assembly
language. However, even the all-important CPU has to work along with
the other parts of the computer. In particular, it works in a close
partnership with the computer's memory. In this chapter the idea of the
CPU taking both its data and its instructions from memory is explained,
some simple assembly language instructions are introduced and the first
part of the simple assembler are given.

Memory, addresses and data

You probably already know that the best way to think of a computer's
memory is as a l_arge collection of boxes or pigeon holes each capable of
storing a single number. These boxes or 'memory locations' are used by
the CPU to store information. Obviously to be of any use it is important
that each 'box' in the memory has a unique name so that the CPU can
refer to the box that it wants to store something in or retrieve something
from. This name is usually referred to as an 'address' and, as computers
work only with numbers, it makes good sense to restrict ourselves to
numeric addresses. Thus, each memory location has associated with it a

7

Language of the Dragon

number, its address, and a number stored within it, its data. The Dragon's
RAM occupies addresses from O to 32767 and each memory location can
store a number in the range O to 255. The reason for the limits being 32767
and 255 are connected with the way that a computer actually stores
numbers in binary and this will be discussed a little later in this chapter.

Now that we understand the way that memory works in terms of
addresses and data, we need to ask what role the CPU plays. First it is
important to realise that the memory can only contain data, either
representing a computer program or the information used by the program.
Any changes or operations on data are done within the CPU. Indeed, the
memory cannot take the necessary steps to store and retrieve data without
the aid of the CPU and in this sense it is best thought of as the CPU's
slave. The relationship between the CPU and memory can be seen in fig
2.1 where a portion of memory is shown as a column of boxes and the
CPU supplies the address of the box that it uses to either store or retrieve
data. Fig 2.1 shows the data from memory being produced from the CPU
and stored in memory or vice versa. This poses the question, what
happens to the data once it is inside the CPU_? In memory data is stored in
a particular location. Where is it stored while it is inside the CPU? The
answer to both of these questions lies in the study of the internal structure
or, to use the accepted jargon, the 'architecture' of the CPU.

Registers - the CPU's own memory

The storage of data implies that some kind of memory is in use and so it
is with the CPU. Within the CPU are a small number of very special
memory locations called 'registers'. To be absolutely clear, registers have
nothing to do with the computer's main memory and addressing methods.
They are more like internal 'notepads' that the CPU uses to hold data

while it is working with it. As there are only a small number of registers
inside the CPU it is usual to give each one a name rather than a numerical
address. There are nine registers inside the 6809 microprocessor that
makes up the Dragon's CPU. Rather than examining them all in one go, it
is less confusing to introduce them as the need arises. Perhaps the two
most useful registers are the A and 8 accumulators. The reason why they
are called accumulators is a little difficult to explain at this stage but,
roughly speaking, an accumulator is a register where data cannot only be
stored but can also be changed (i.e. the result is 'accumulated'). The ways

8

Chapter 2 Registers and Operations

address data

109

108

107

1 06

1 05

1 04 u

1 03

1 02

101

100

memory

(only a small section shown)

Fig2.1 Memory and the CPU

Language of the Dragon

in which data can be changed are fairly limited and it is this limitation that
generally makes assembly language programming more difficult than say
BASIC.

The 6809's A and B registers are just like ordinary memory locations in
that they can each hold a single number in the range O to 255. This means
that the contents of a single memory location can be transferred to either
the A or the B register. The 6809 carries out the instructions LOA, short
for LoaD the A register, and LOB, which is short for LoaD the B register,
for just this purpose. So, when the 6809 comes to obeying the numeric
code in a machine code program that is associated with LOA, it loads the
A register, but from where? Obviously an instruction to load a register
from memory must include information about which memory location is to
be used. The complete form of the LOA is in fact LDA 'address' where
'address' is a number that is used as the address of the memory location
whose contents are transferred (or loaded) into the A register. So, for
example, LOA 421 would read the contents of memory location 421 and
store them in the A register. It is important to notice that following the
transfer the contents of memory location 421 is unaltered. Indeed the only
thing that has changed is that the A register now has the SAME contents
as location 421 .

T o change the contents o f location 421 , o r any other location for that
matter we have to use the STA (standing for STore the A register) or the
STB (standing for ST ore the B register) instructions.

STA 'address'
and

STB 'address'

will store the contents of the A or B register in the memory location whose
address is given by 'address'. For example STB 421 will store the contents
of the B register into the memory location whose address is 421 . Once
again notice that following this instruction the B register is unaltered.

At this point it is worth clearing up some common misconceptions
about memory. Whenever the Dragon is switched on every RAM location
will contain some data - there is no such thing as 'empty' memory! The
memory locations are initialised to contain random values, some of which
are quickly changed to meaningful data by BASIC or whatever you are
using. The -value in a memory location is changed only by storing a new

1 0

Chapter 2 Registers and Operations

value in it and, when that happens, the value that rt formerly contained is
lost forever - in other words storing a new value in memory {or a register
for that matter) overwrites the old value. Moreover, retrieving (i.e. reading)
the contents of a memory location (or again a register) doesn't alter its
contents in any way - its contents are simply copied.

A short program

Now that we have four assembly language instructions LOA, LOB, STA
and STB we can write a very simple program -

LDA 100
LDB200
STA200
STB 100

This program first loads the A register from memory location 100 and the B
register from memory location 200 and then stores A in 200 and B in 1 00 so
effectively swapping the contents of the two memory locations. Notice
that even for this very simple operation of swapping the contents of two
memory locations the data still had to be brought inside the CPU before
anything could be done to it! This is such a simple program that hand
assembling it is not too much trouble and is also quite instructive. The
code that corresponds to LDA is 146, for LDB it is 214, for STA it is 147
and for STB it is 215. (If you have tried to use the table in Appendix I to
look up the codes for LOA etc you will have noticed that the values it
contains are all in hexadecimal. Don't let this worry you now. By the end
of the next chapter you will be confident about using hex. You may also
have been puzzled by the fact that there is more than one choice of code
for each mnemonic. Again don't worry about this for the moment it will
be fully explained in the next chapter!) So in machine code the program is

146100
214200
147200
2 1 5 1 00

and perhaps now you can see why programmers prefer to use assembly
language mnemonics instead of machine code!

1 1

Language of the Drsgon

address data

59

58

57

56

55

54

53

52

51

50

100

21 5

200

147

200

214

100

146

Fig 2.2 The "swap" program stored in memory

1 2

Chapter 2 Registers and Operations

The list of eight numbers given above is indeed a machine code program
that the 6809 inside the Dragon will obey to swap the contents of memory
locations 100 and 200. The next question that has be be asked is how does
the 6809 ever get to 'see' the list of numbers that constitutes the program
that we want it to obey? At the moment the list exists only on paper and
the 6809 has no access to itl Obviously the program must be stored in
memory as this is the only place that the CPU can obtain any sort of
information from.

The fact that machine code program is stored in memory should not
come as, any great surprise after all where else is a BASIC program
stored? However, there are some important differences between the way a
BASIC program and a machine code program are stored in memory. ln
particular the lines of a BASIC program are 'marked' by line numbers so
that at any given moment the computer is obeying a particular line number
but the commands of a machine code program are only 'marked' by the
address of the memory location that they are stored in. Notice that a single
instruction can occupy more than one memory location and so correspond
to more than one address. For example the LOA 1 00 instruction takes two
memory locations and is stored in 50 and 51 . In obeying the program the
6809 would first carry out the instruction stored starting at 50 (i.e. the LOA
100) it would then move on to carry out the instruction starting at 52 and
so on until the program was finished. (Notice that in this simple example
the problem of stopping the computer at the end of the program has been
totally ignored!)

You should be able to see that the address that an instruction is stored
at can function in exactly the same way that line numbers do in BASIC.
That is the 6809 can keep track of where it is in a program simply by
remembering the address of the instruction that it is carrying out. Also, like
a BASIC program, a machine code program is obeyed in order of
increasing address, unless it is made to do otherwise by the machine code
equivalent of a GOTO, a GOSUB or a RETURN. As you might guess, the
address of the instruction that is being carried out is kept inside the CPU in
yet another register - the PC or Program Counter - bringing the total
number of registers that we know about to three. To make the 6809 obey
the swap program the PC register would first be loaded with 50 (how, will
be explained later) then the instruction starting at address 50 would be
carried out and the PC register adjusted to point to the next instruction
and so on until the program was complete.

1 3

Language of the Dragon

The only thing that you have to be careful of is that the area of memory
that is used to store the program isn't being used for something else. For
example, it wouldn't be a good idea to store the swap program starting at
memory location 100 (because this is one of the memory locations that is
swapped and so we have to assume it contains data.) You should now be
able to see that the Dragon's memory stores only numbers but these
numbers can serve two different functions. They can be data that a
program operates on or they can be instructions within machine code
programs. Sometimes the CPU takes data from memory and sometimes it
takes its next instruction.

Summary

So far the only machine code instructions that have been explained are
LOA, LOB, STA and STB. However, a lot of new ideas have been
introduced in this chapter, so it is worth gathering them together and
attempting to summarise the main ideas:

1) Each memory location is identified by an address and can store a
single number in the rangeO to 255.

2) Data is stored and manipulated inside the CPU using registers.

3) A machine code program isa list of numbers stored in memory;
memory is, therefore, used to store both data and programs.

4 l The address that an instruction is stored at is used in a way that is
similar to a line number in BASIC. That is, itisusedbothto keep
track of the current instruction and, as will be explained in the next
chapter, as a way of referring to any instruction.

5) The address of the instruction being carried out is stored inside the
CPU in the PC or Program Counter register. Instructions are normally
carried out in order of increasing address.

6) The 6809 has two registers used to manipulate data, the A and B
registers.

14

Chapter 2 Registers and Operations

The BASIC Assembler

Although hand assembling the swap program was easy enough it is
worth making a start on the BASIC assembler even at this early stage. So
far, the only process that has to be carried out while assembling the swap
program is to look up the commands such as LOA and replace them by
their numeric codes. This is easy with a little BASIC program. The idea is
to build a table of mnemonic codes and their corresponding numeric codes
using a DATA statement and then, when a line of assembly language is
typed in, the mnemonic code is compared to each entry in the table until a
match is found. So far there are only four instructions to deal with but it is
important to remember that the number will grow and so the BASIC
assembler must be written so as to be easily expanded. Before trying to
understand the program it is worth reminding yourself of the format of a
line of assembly language -

Each line starts with an optional space then there are a number of
letters forming the mnemonic then at least one space followed by
digits forming the address.

The program that follows will assemble the swap program given earlier if
you type it in line by line. After the last line of the program type END and
then the BASIC assembler will produce a listing of the machine code
identical to that produced by hand assembly.

1 REM BASICASSEMBLERV2.1

10 DATA LDA,146,LDB,214,STA,147,STB,215,=,999

500GOSUB1000
510 GOSUB2000
520 GOSUB3000
530 GOSUB4000
540 GOSUB 5000
550 GO SUB 6000
560 1 = 1 + 1
570 I F I> TTHEN STOP
580G00520

1000DIMA$(50)
1010 1 = 0
1 020 P = 50

1 5

Language of the Dragon

1030 RETURN

2000 IN PUT L$
2010 IFL$ = "END"THEN T = I:I = 1 :RETURN
2020 1 = 1 + 1
2030 A$ill = L$
2040 GOT02000

3000J = 1
3010 1F MID${A$11l,J, 1 1 = " "THENJ =J + 1 :GOTO3010
3020 M$ = MID${A$11),J, 1 I
3030 J = J + 1
3040 IF MID${A$11l,J, 1 1< > " " THEN
M$ = M$ + MID${A${I),J,1 I:J =J + 1 :GOTO 3040
3050J = J + 1
3060RETURN

4000 RESTORE
4010 READC$,C
4020 IFC$ = "ZZZ"THEN ER = 1 :GOTO9000
4030 IFC$= M$THEN RETURN
4040 GOTO401 0

5000 A = VAL{MID${A${I1,JII
5010 RETURN

6000 PRINT P;TAB{51;C;TABI 1 0l;A
601 0 P = P + 2
6020 RETURN

9000 PRINT "ERROR-";ER;"****"
901 0 RETURN

After you have typed the BASIC assembler in it is important that you
save it on tape because in subsequent chapters it will be improved on and
added to. The program is written using BASIC subroutines for each job
that the assembler must carry out. This makes later modification a matter
of altering subroutines. A brief description of the program follows-

1 6

Line number/
subroutine

1 0

500-560

1000

2000

3000

4000

5000

6000

9000

Chapter 2 Registers and Operations

purpose

Identification-the first figure is a chapter
reference, the second indicates updates within
the chapter.

Defines correspondence between machine code
and mnemonics. The end of the list is marked by
the dummy mnemonic Z.ZZ.

Main program

Initialisation

Reads assembly language program into the array
A$ until END.

Finds mnemonic code by scanning through the
string to find the first group of non-blank
characters. Stores the mnemonic code in C$.

Looks for mnemonic code in the table and returns
the appropriate machine code for it in C. If a
match is not found then GOTO 9000 to report an
error.

Gets the address that follows the mnemonic code
and stores it in A.

Prints the machine code produced from one line
of assembly language and keeps track of the
address that it is to be stored in using P.

Prints an error message.

So far the BASIC assembler is not very sophisticated. For example, it
doesn't handle errors at all well, but it does contain the start of the
subroutines that will be developed to give the full assembler.

If you can't follow the workings of the BASIC assembler so far then
don't worry: just type it in and see that it really does change the assembly
language in the program swap to machine code.

1 7

1

Language of the Dragon

Storing the code - CLEAR and EXEC

The first part of the BASIC assembler will change mnemonic codes to
machine code and produce a list of numbers that corresponds to the
assembled program. It has already been pointed out that for a machine
code program to be of any use it has to be stored in memory and not just
listed on the screen or on paper. There are two stages to storing the
program in memory. Firstly, some memory has to be set aside so that
BASIC will not try to use it and secondly, each piece of machine code has
to be transferred to the correct memory location.

Reserving some memory is easy with the Dragon. The command CLEAR
s,h will reserve s memory locations for string storage and move the top of
memory down so that memory location h is the highest that will be used
by BASIC. In other words CLEAR s,h will reserve memory from address
h + 1 up to 32767. Once some memory is available, tranferring machine
code to it is easy using the BASIC command POKE a,d which will store
the number 'd' in the memory location whose address is 'a'. Adding these
ideas to the BASIC assembler gives -

1 REM BASIC ASSEMBLER V2.2

5 CLEAR 1000,28671

1 020 P = 28672

601 0 POKE P,C
6020 P = P + 1
6030 POKE P,A
6040 P = P + l
6050 RETURN

Line 5 reserves 1 K of memory for machine code programs starting at
address 28672 and ending at 32767 This is more than enough for most of
the machine code prog·ram examples in this book. Line 1020 initialises P to
ensure that the first item of machine code is stored in the first reserved
memory I location. The changes to subroutine 6000 make it store each
item of machine code in a new memory location (in addition to its original
job of printing the machine code so that we can examine it.

18

Chapter 2 Registers and Operations

With these changes, the BASIC assembler now leaves the machine
codes stored in the reserved memory when it finishes. If you want to
check that this is true then you could use the BASIC command PRINT
PEEK(a) to examine the contents of each memory location.

All that is left now is to discover a way of actually running the machine
code stored in the reserved memory. Once again Dragon BASIC makes
this particularly easy for us in that if provides the EXEC 'address' command
which will start the 6809 obeying a machine code program whose first
instruction is stored at 'address'. So, to start the swap program running,
all you would have to type is EXEC 28672. However, DON'T try this for the
swap program because apart from it not doing anything useful (or visible)
it doesn't contain any way to stop itself or to return control to BASIC!

AD Ding - a simple operation

So far, all that the 6809 inside the Dragon has done is move numbers
from memory and back to memory. To show the sort of thing that the A
and B accumulators are more often used for and to give an example of a
running machine code program, it is worth introducing the new assembly
language instructions AOOA 'address' and ADDS 'address'. These simply
add the contents of the memory location 'address' to the current contents
of the A or B register respectively. Notice that this leaves the contents of
'address' unaltered and the result of the sum stored in the register. This is
the reason that the A and B registers are called accumulators because they
'accumulate' the answer to a sum. Suppose that we want to add the
contents of memory location 200 to the contents of memory location 201
and, for simplicity, leave the answer in one of the registers. This problem
can be solved as follows:

first, load the A register from one of the locations, then add the
contents of the second location to the A register leaving the answer
in A

In other words:

LOA200
ADOA201

Although this is a simple program, notice that it is more complicated than
writing C + D to add two numbers in BASIC! It is a characteristic of

1 9

Language of the Dragon

assembly language that operations that would be carried out in a single
BASIC statement have to be broken down into individual steps. It would
be easy to add the mnemonics ADDA and ADDB and their corresponding
machine codes 153 and 217 to the DATA statement in the BASIC
assembler but it is better to wait until we have looked at a few more 6809
operations and add them all in one go.

Micro projects

1) Using the information given in this chapter, hand assemble the two line
addition program in the last section. Show the address that each item of
machine code is stored in given that the program is to start at address
28672.

2) If memory location 200 contains 56 and memory location 201
contains 4 before the program is run what do they contain after it is run
and what does the A register contain?

20

Chapter Three

Addressing

There are two parts to any assembly language instruction the operation
to be carried out and the address of the memory location that it is to be
carried out on. The subject of how assembly language instructions can
address memory is very important and in this chapter some of the simpler
but more useful methods are described. As addressing is about the use of
numbers and how they are stored inside the computer, it is difficult to
avoid the subject of binary and hexadecimal numbers. Both of these topics
are treated in this chapter, although only in as much as they are useful to
the assembly language programmer.

Operations and addresses

You should be able to see that; in all the examples of assembly language
instructions that have been introduced so far, there is a general pattern.
Each instruction consists of a short mnemonic that determines the
operation to be carried out such as LOA or ADDA and a number that
determines a memory location that is to be involved in the operation. In
general an instruction can take the form -

operation address expression

Where 'operation' is, as already described, a mnemonic defining the
operation to be carried out but 'address expression' can be one of the
many ways that the 6809 allows a memory location to be specified. At first

21

Language of the Dragon

it is often difficult to see why a wide range of ways of specifying an
address is at all useful! In this chapter only the most obviously useful
methods, or 'addressing modes', will be described. The more exotic ones
will be dealt with later. So far, the only form of addressing mode that has
been introduced is simply writing the address of the memory location after
the operation. This is usually known as 'direct addressing' and it is more
restricting than has so far been admitted!

Direct Addressing

If you go back and look at the few examples given in the previous
chapter you will indeed find that they fit into the format of

operation I address

but what you may not have noticed is that all of the addresses were
smaller than 255. This allowed the address to be stored in a single memory
location following the machine code for the instruction. For example, LOA
255 can be assembled to 146,255 and each number can be stored in a
single memory location but what about LDA 256? Remember, a single
memory location can only hold numbers in the range O to 255. The answer
is of course to use more than one memory location to store the address
but this takes us to a second method of addressing memory called
'extended addressing'. In short, direct addressing can be used to specify
an address in an instruction only if the address is in the range O to 255.
Obviously, this is very restrictive and, as you might imagine, direct
addressing is not often used. (In fact there is rather more to direct
addressing than it is worth going into at this stage and, at a more
advanced level, it does have some advantages over extended addressing.)
However before we can move on to using extended addressing it is worth
looking at some details of how numbers are actually stored in memory.

Bits, bytes and binary

So far all that has been said about the nature of a single memory
location is that it can store a number in the range O to 255. In fact, a
memory location doesn't store a decimal number at all. Instead, it stores a
pattern of eight zeros and ones, in other words eight 'bits'. A group of ·

22

Chapter 3 Addressing

eight bits forms a single unit, referred to as a 'byte'. What this pattern of
eight bits represents is not something that is uniquely defined. For
example, you might use each bit to represent the state, open or closed, of
eight doors in a house. One of the differences between BASIC and
assembly language is the BASIC has numbers and characters to work with
but in assembler the only raw material is the bit pattern. It is important to
realise that, even though the eight bits that are stored in a memory
location are normally interpreted as a number, this is just one
interpretation. However, this conventional interpretation is so important it
is worth going over the details of standard 'binary numbers'. Later on it
will be necessary to change the way that the pattern of bits is interpreted
to include negative numbers.

For most people, the decimal system is the best known way of
representing numbers. Using the digits O to 9 it is easy to count up to nine
objects. The answer to how to count beyond 9 is so familiar to all of us
that it hardly seems a problem. The decimal system uses a second digit to
record the number of groups of ten that have been counted, a third digit
for the number of hundreds and so on. This is called a 'place value' system
since each place represents a multiple of the 'base' value. In other words,
the number 245 is to be understood to mean two lots of 100, four lots of 10
and five lots of 1 . The binary system is also a place value system that
works in exactly the same way as the decimal system - except that only
the figures 0 and 1 are available for counting. This restriction gives rise to a
place value system that counts in lots of 1 's,2's,4's,8's and so on. So the
binary number 101 is to be read from left to right as one lot of 4, no lots of
2 and one lot of 1 , giving the number that we call five in decimal. As
another example, consider the binary number 1010110. This can be written
as:

place value

decimal

128
1

128+
= 1 72

64 32 16 8 4 2
0 1 0 1 1 0 0
0 + 32 + o+ 8+ 4+ O + 0

Notice that the place value increases by a factor of 2 for each place to the
left and the decimal equivalent is just the sum of the place values wherever
a 1 occurs.

It is not too important that you know how to convert binary to decimal
and vice versa but it is important that you are not worried by binary

23

1

Language of the Dragon

numbers and are prepared to look up the extra details that you need to
know. Now the reason why a memory location can hold numbers in the
range 0 to 255 should be clear. The smallest number that can be
represented by eight bits is 00000000 or 0 and the largest is 11111 111
which, if you convert it to decimal, gives 255.

Hexadecimal and binary

The representation of numbers in binary is not difficult to understand
but it is tiresome to have to convert from binary to decimal and vice versa.
For this and other reasons, assembly language programmers have always
tended to use 'hexadecimal numbers' which are very easy to convert to
and from binary. Hexadecimal, or just 'hex', numbers also use a place
value system but this time there are 16 digits: the usual set of O to 9 and six
new ones composed of the letters A to F. Because of the use of letters to
represent 10 to 15 hex numbers look very intimidating! However, to count
in hex is easy, first count O to 9 as usual but then instead of counting 10,
11 up to 15 count A, B, C up to F. The hex place value system works in the
same way as for binary and decimal except that the value increases by a
factor of 16 for each place to the left. For example, the hex number A30F
is:

place value

decimal

4096 256 16
A 3 0 F

4096*10 + 256*3 + 0*16 +15*1 = 41743

As you can see, the place value increases very rapidly and this means that
hex numbers use fewer digits than decimal for the same number.

You don't have to worry about converting hex numbers to decimal and
vice versa because the Dragon can do it for you. To convert from decimal
to hex use the HEX$ function - e.g. PRINT HEX$(41743) - and to convert a
hex number to decimal simply precede it by &H - e.g. PRINT &HA30F. In
fact the Dragon can do a little better than just converting hex numbers to
decimal because you can use a hex number anywhere that you can use an
ordinary number.

24

1

Chapter 3 Addressing

Unfortunately, the Dragon offers us no help in converting from hex to
binary and vice versa. However, this is not difficult. It takes four bits to
represent a number in the range 0 to 1 5 (to check, convert 1 1 1 1 to
decimal) and so a single hex digit can be represented by four bits.

hex
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

bin
0000
0001
0010
001 1
0100
0101
011 0
011 1
1000
1001
1010
1 01 1
1 100
1 101
1 1 1 0
1 1 1 1

T o convert from hex t o binary all you have t o d o i s take each hex digit in
turn and write down its four bit binary equivalent from the table, For
example the binary equivalent of F3A2 is -

F
1 1 11

3
0011

A
1 01 0

2
0010

To convert from binary to hex all you have to do is form the bits into
groups of four starting from the right then look up each group in the above
table. For example, to convert the number 1 01 1011 1 0 to hex -

0001 1
1

01 1 0 I
6

1 1 1 0
D

Perhaps the best reason for using hex numbers is the simple observation
that a two figure hex number corresponds to eight bits and so can be
stored in a single memory location. In other words a single memory

25

Language of the Dragon

location can store a hex number in the range 00 to FF. In the same way a
four figure hex number can be stored in exactly two memory locations and
so on. It is this correspondence between the number of figures in a hex
number and the number of memory locations it takes to store it, coupled
with the natural way hex and binary work together, that makes hex
numbers so useful in assembly language programming, From now on,
unless there is a good reason otherwise, all of the numbers used in this
book will be hex numbers. Although the Dragon uses &H in front of a
number to indicate that it is in hex it is almost universal in assembly
language to use $ in front of a hex number and this will be used in the rest
of this book. So 10 is ten but $10 is 16!

Extended addressing

After a long digression into binary and hex numbers it is time to return
to 6809 addressing modes. Direct addressing uses a single memory
location to store the· address of the memory location to be used in the
operation. Extended addressing takes two memory locations to store the
address. This corresponds to an address in the range O to 65535 which is
as much memory as the 6809 can handle. Thus using extended addressing
you can select ANY memory location within the Dragon and there is no
need to extend the number of memory locations used to store an address
to three or more.

To distinguish between an instruction with a direct and an extended
address is fairly easy:

LDA$3F
isa direct address because it is less than $FF but

LDA$3F2C
needs two memory locations for the address and so it is extended.

What is more interesting is that the machine code for the two instructions
is different. The code for LOA with direct addressing is $96 and its code
using extended addressing is $B6. (Notice the use of hex numbers to
represent the machine codes.) Notice that this means that it is no longer
possible to convert assembly language mnemonics to machine code simply
by looking them up in a table. Now we have to take into account the
addressing mode used as well as the mnemonic. If you look at the row

26

Chapter 3 Addressing

containing the mnemonic LDA in the table of Appendix I, you will see that
there is a range of machine codes, each one corresponding to LDA used
with a different addressing mode. You should be able to find the two
values quoted above in the columns headed 'direct' and 'extended'. From
now on, the BASIC assembler is going to have to examine both the
mnemonic and the addressing mode before it can determine the machine
code for a given instruction. So

LDA $3F2C
hand assembles to

B6 3F 2C

Where each pair of numbers occupies a single memory location. Notice
that if the instruction code $86 is stored at memory location 'a' then the
first pair of figures of the address are stored at 'a + 1' and the second pair
at 'a + 2'. In other words, the 'most significant' byte (eight bits) is stored
first and the 'least significant' byte next.

A practical program

Now that we can address all of the 6809's memory it is possible to write
a program that will add the contents of any two memory locations
together. In other words, the program will be the assembly language
equivalent of the one line BASIC program -
10 A � B + C
First, i t i s important t o notice that, unlike the BASIC program, all that the

assembly language program can do is to add two numbers in the range 0
to $FF. For the sake of simplicity let's use memory' location $7FFF to store
the result and $7FFD and $7FFE to store the two numbers to be added
together (see fig 3.1). ($7FFF is 32767 which is the highest Dragon address
occupied by RAM used for storing programs. l The program has to perform
the assembly language equivalent of:

add the contents of $7FFD to $7FFE
and put the result in $7 FFF

As already explained at the end of Chapter Two you cannot implement this
idea as it stands in assembly language. The reason for this is that the only
add instructions that the 6809 has add the contents of a memory location

27

Language of the Dragon

Result --+

to be 1---------1
Two numbers <

added

Fig 3.1 Data for simple addition

28

$7FFF

$7FFE

$7FFD

Chapter 3 Addressing

to the A or B registers, where they also leave the result. So the program
has to written

LDA$7FFD
ADDA$7FFE
STA$7FFF
RTS

You should recognise this as being essentially the same as the addition
program given at the end of Chapter Two but now using extended
addressing. The instruction RTS has been added to the end of the
program so that when it is finished the program returns to BASIC rather
than running on out of control. The details of RTS will be discussed later
but, for now, all that you have to know is that assembly language program
that you intend to run should always end with RTS.

Once again it is worth hand assembling the program to see what the
BASIC assembler has to do. The only real difference is that now, when
looking up the mnemonic codes in Appendix I, you have to take into
account the addressing mode used. In this case the extended mode is used
throughout, apart from RTS for which there is only one choice of machine
code anyway! If the program is loaded into memory starting at $7000
(which is the same as 28672 used in Chapter Two) then the finished
machine code program is -

7000 B67FFD
7003 BB7FFE
7006 B77FFF
700939

Notice that the listing is given totally in hex but the usual $ sign
signifying a hex number has been left out to make the listing more
readable. Also notice how much neater the listing is for being in hex: there
are always four figures to the address in the first column, every pair of hex
figures is stored in its own memory location, with each pair stored
consecutively. Thus 86 is stored in memory location 7000, 7F at 7001, FD
at 7002 and so on to 39 stored at 7009. The time has now come to modify
the BASIC assembler so that it can handle different addressing modes and
at last run our first assembly language program

29

Language of the Dragon

Adding addressing modes to the BASIC assembler

The main change to the BASIC assembler from V2.1 is that now the
DATA statements holding the information on each mnemonic code have
to include the machine code for each addressing mode possible on the
6809. Rather than just making allowance for the two addressing modes,
direct and extended that have been introduced so far it makes sense to
write DATA statements for each of the five possible addressing modes. A
suitable format and the one that will be used for the rest of the program is

DATA mnemonic,code1 ,code2,code3,code4,code5

Where codel through code5 are the machine codes for the five addressing
modes 1 to 5. The names of these modes are -

1 Immediate
2 Direct
3 Indexed
4 Extended
5 Inherent

The only problem is that any given mnemonic may not use all five
addressing modes. To record the fact that any addressing mode is illegal
with the mnemonic in question a code of -1, which normally cannot occur
is used. Once the format of the DATA statements has been fixed the rest
of the assembler follows. -

1 REM BASIC ASSEMBLER V3.1

5 CLEAR 1000,&$6FFF

10 DATA LDA,&H86,&H96,&HA6,&'-IB6,-1
11 DATA LDB,&HC6,&HD6,&HE6,&HF6,-1
12 DATA STA,-1,&H97,&HA7,&HB7,-1
13 DATA STB,-1,&HD7,&HE7,&HF7,·1
14 DATA ADDA,&H8B,&H9B,&HAB,&HBB,·1
15 DATA ADDB,&HCB,&HDB,&HEB,&HFB,·1
16 DATA RTS,·1,-1,-1,-1,&H39
99 DATA ZZZ,·1,-1,-1,-1,-1

500 GOSUB 1000
510 GOSUB 2000

30

520 GOSUB 3000
530 GOSUB 4000
540 GOSUB 5000
550 GOSUB 6000
560 1 = 1 + 1
570 I F I> TTHEN STOP
580 GOTO 520

1 000 DIM A$(501,C(5)
1 0 1 0 1 = 0
1 020 P = &H7000
1 030 RETURN

2000 INPUT L$
201 0 IF L$ = "END" THEN T = 1 : 1 = 1 : RETURN
2020 1 = 1 + 1
2030 A$(1) = L$
2040 GOTO 2000
3000 J = 1

Chapter 3 Addressing

3010 IF MID$(A$111,J,1 I = " " THEN J = J + 1 :GOTO 301 0
3020 M$= MID$IA$11),J, 1 I
3030 J =J + 1
3040 IFJ< = LEN(A$I I I ITHEN IFMID$IA$(11,J, 1)< > " "THEN
M$= M$+ MID$(A$(11 ,J,1):J =J + 1 :GOT03040
3050 J =J + 1
3060 RETURN

4000 RESTORE
401 0 READ C$
401 5 FOR K = 1 TO 5:READ C(K):NEXT K
4020 IF C$ = "=" THEN I = I + 1 :ER = 1 :GOTO 9000
4030 IF C$ = M$ THEN RETURN
4040 GOTO 401 0

5000 GOSUB 5500
501 0 IF AF$= "" THEN TYPE= 5:RETURN
5020 A =VAL(AF$)
5030 IF A<256 THEN TYPE= 2
5040 IF A > = 256 THEN TYPE=4
5050 RETURN

31

Language of the Dragon

5500 AF$ = ""
5510 FOR K = J TO LEN(A$(I))
5520 L$ = MID$(A$11l,K,1)
5525 I F L $ = "$" THEN L $ = "&H"
5530 IF L$< >" " THEN AF$ = AF$ + L$
5540 NEXT K
5550 RETURN

6000 PRINT HEX$(P);TAB(5);HEX$(CITYPE));TABl10 1;
6010 POKE P,CITYPEI
6020 P = P+ 1
6025 IF TYPE=5 THEN PRINT:RETURN
6030 IF TYPE = 2 THEN PRINT HEX$(A):POKE P,A
6040 IFTYPE = 4 THEN PRINT HEX$(A):POKE
P,INTIA/2561:P = P + 1 :POKE P,A-INT(A/2561'256
6050 P = P + 1
6060 RETURN

90 0 0 PRINT "ERROR --";ER;"*""

9010 RETURN

In going to this second version, the opportunity has been taken to change
all of the relevant constants to hex and to change the listing of the
program to hex. The main changes are in subroutines 40 0 0 , 50 0 0 and 6 0 0 0 .
Subroutine 40 0 0 now scans through the DATA statements t o find the
mnemonic stored in M$ but now, when it finds it, it returns the five
possible codes in the array C rather than a single code. Subroutine 50 0 0
now has not only t o work out the address following the mnemonic but has
to determine the type of the address and so select the correct code from
the array C. A new subroutine has been added (55 0 0) which called at the
start of subroutine 50 0 0 . Subroutine 550 0 takes the addressing information
and packs it character by character into the variable AF$ (AF standing for
Address Field). As this transfer is accomplished, a number of changes are
made. First, any blanks that have been included are removed and,
secondly, any $ signs are changed to &H so that the BASIC VAL function
can work the address out correctly. Subroutine 50 0 0 then sets the variable
TYPE to 2 if the address is less than 256 and to 4 if it is greater than 255. If
there is no address field i.e. if AF$ = '"' then the instruction must be like
RTS and then the appropriate type is 'inherent' or TYPE =5. Subroutine
6000 is changed to PRINT and POKE a different number of items
depending on the addressing mode.

32

Chapter 3 Addressing

Notice that only DATA statements for the 6809 instructions that have
been described so far have been included in the program. In principle there
is no reason why the list of DATA statements shouldn't be extended to
include all of the instructions in the operation code table given in Appendix
I. However there are a great many instructions in the table and typing in all
the DATA statements in one go is no small task! If you don't feel like
tackling this particular project then the easier alternative is to add the
appropriate DATA statements as instructions are encountered in future
chapters. An advantage of this method is that the BASIC assembler grows
as your knowledge does!

Trying it out

After typing in the above version of the BASIC assembler the obvious
thing to so is to try to assemble and run the simple addition program. RUN
the assembler and type in

LDA$7FFD
ADDA$7FFE
STA$7FFF
RTS
END

You should see the same listing that you got from the earlier hand
assembly. After the assembler has finished the machine code is stored in
memory starting at $7000. Once again you can check that this is so by
PEEKing each of the memory locations i.e. PRINT HEX$(PEEK(&H7000))
etc. You can run the machine code by simply typing EXEC &H7000. If
everything goes according to plan (or rather program) you should see the
usual Dragon OK printed on the screen indicating that the machine code
program has returned control to BASIC. If anything else happens your
only hope of regaining control of the machine is to press the reset button.
If you are lucky your program will be intact, on the other hand it might not
be! It is worth learning very early on that assembly language is not as
friendly or as safe as BASIC. If you make a mistake in a machine code
program you won't get a error message, just a Dragon that behaves
oddly.

33

Language of the Dragon

If everything did work OK, and with such a short program there is no
reason why it shouldn't, then you should find the the content of memory
location $7 FFF is indeed the sum of the contents of $7FFD and $7 FFE. The
easiest way to check that this is true is -

PRINT PEEK(&H7 FFF),PEEK(&H7 FFDl,PEEKl&H7 FFE)

You can use POKE to change the contents of the two memory locations
$7 FFD and $7 FFE and then EXEC the machine code again just to make
sure that it all works.

Immediate addressing
So far, the only two addressing modes that we have looked at - direct

and extended - are hardly different enough to give the flav0ur of the
subject. After extended addressing, the most frequently used addressing
mode is probably 'immediate addressing' and so it is important to
introduce this mode as early as possible. Consider the problem of adding a
constant, for example, 3 to the contents of a memory location. So far, the
only way that this could be done would be by using the addition program
used as an example in this chapter. Immediate addressing is sometimes
called 'immediate data' because it allows the data to be stored in the
memory location following the machine code for the instruction. Notice
that in this case the number following the instruction code IS the data not
the address of the data. In assembly language, immediate addressing is
indicated by a # sign. For example,

LOA jl$3

loads the A register with 3 in contrast to

LOA $3

which loads the A register from memory location 3. The hand assembly of
LOA #3 is -

86 03

To change the BASIC assembler to handle immediate addressing is
easy. Simply add the following lines -

1 REM BASIC ASSEMBLER V3.2

5025 IF TYPE = 1 THEN RETURN

34

Chapter 3 Addressing

5522 IF L$ = " JI" THEN TYPE= 1 :AF$ = "":GOTO 5540

6045 IF TYPE = 1 THEN PRINT HEX$(A):POKE P,A

6060 TYPE = 0
6070 RETURN

Notice that immediate addressing doesn't make sense with all types of
instruction. For example, STA #3 is illegal because there would be no
point in storing the contents of the A register in the memory location
following the instruction code so what would the 3 mean? Immediate
addressing only makes sense when used with instructions that obtain data
from memory and not with those that store data in memory.

Summary

1 l There are many ways of specifying where the data that an
instruction will operate on is located in memory. These ways are
called 'addressing modes'.

2) Direct addressing is used to access data in memory locations0 to
$FF. In this case, the address is stored in a single memory location
following the instruction code.

3) Extended addressing can address memory from O to $ FFFF which
is the whole of the6809's address range. In this case, the address is
stored in the two memory locations following the instruction code.

4) Immediate addressing is different from the previous two modes in
that the data for the instruction is stored ir:-a the memory location
following the instruction code.

5) Bit patterns and binary numbers arethe fundamental data of
assembly language programming.

6) Hex numbers are more convenient then decimal numbers and are
almost always the standard way of writing addresses, data and
instruction codes in assembler.

35

Language of the Dragon

Micro Projects

1) How many memory locations does the number $F3095E6F require to be
stored in memory?

2) Convert the following hex numbers to binary -
al $0100
bi $1000
cl $7FFF
di $FFFF

Do any of these numbers seem familiar !?

3) What is wrong with -
alSTB #$34
bi LDA #$FF32

4) Hand assemble the following program -
LDA #$10
ADDA$7FFF
STA $7FFF
RTS

Check your answer by using the BASIC assembler.

What does this program do?

36

Chapter Four

Jumps, Loops and Labels

Imagine how limited BASIC would be if you didn't know about the GOTO
statement. Without GOTO, you could not code jumps or loops in your
program. This is such a fundamental part of programming in any language
that it is important that you become familiar with the assembly language
equivalent of GOTO. This also leads us on to consider what is really the
last new idea to be included in the BASIC assembler - labels. If you have
been disappointed by the example assembly language programs in the
earlier chapters because of how little they manage to do, then you will be a
little happier with the main example in this chapter, at least it displays
something on the screen!

The JMP instruction

As described in Chapter Two, the address of the memory location that an
instruction is stored in is in some ways like the line number of a BASIC
command. In particular the assembly language instruction -

JMP address

will cause the next instruction to to be the one starting at 'address'. There
are three addressing modes that can be used with the JMP instruction,
direct, extended and indexed, the last of which is yet to be described. So
JMP $4323 is a valid JMP instruction which causes the instruction at $4323
to be carried out next. If there isn't an instruction stored at this address
then things will go very wrong. Once again, unlike BASIC, machine code
won't give you a friendly error message to tell you that there is no such line
number, rather address, because of course the address referred to in a
JMP instruction always exists! What happens if you JMP to a memory

37

Language of the Dragon

location that doesn't contain machine code is that the 6809 will obey
whatever collection of numbers the memory does contain as machine code
and so the result is entirely unpredictable behaviour. For this reason you
have to be very careful that JMP instructions do go to the correct location.

The JMP instruction look simple enough to use for any one familiar with
the GOTO instruction. However there is fundamental problem that both
GOTO and JMP share. lf you are in the middle of writing a BASIC
program and you know that you want to GOTO a line further on in the
program then how do you know its line number? The trouble is that you
only know the line numbers of commands that you have already written.
This is known as the 'forward jump' problem (see fig 4.1). The usual
solution in BASIC is to either guess the line number and then correct the
GOTO statement when the program is finished or just leave it undefined
and go back and fill in the missing line number later. In assembly
languagge the problem is agravated because while you are writing the
program using mnemonics you don't know the address that any given
instruction will be stored at, this is something that is only discovered when
you assemble (by whatever method) the program. This makes 'backward'
jumps difficult to handle, let alone forward jumps! For example, suppose
that you are writing a program that will load the A register from a number
of memory locations in turn and store its contents in a single location (why
you might want to do this will become clear after the sound producing
examples in Chapter Nine.) The program that you would write might look
something like -

LDA$7F00
STA $FF20
LDA$7F01
STA$FF20
JMP??/1

Where the four question marks indicate that the address for the JMP is
unknown. To make the program into a loop the JMP should transfer
control back to the first instruction of the program. The address of the first
instruction obviously depends on where the program is loaded into
memory. If the program is loaded, as in all the previous examples, starting
at $7000 then obviously the correct address for the JMP instruction is JMP
$7000. However, suppose you wanted to JMP to the third instruction in

38

960

970

980

990

1 000

Chapter 4 Jumps, Loops and Labels

(BASIC program)
already written

GOTO ????

program to
be written

Fig 4.1 The forward jump problem

39

Language of the Dragon

the program, i .e. LOA $7F01 , how would you know its address? The
answer is that you would have to assemble the program! This doesn't
sound too difficult until you realise that if you make any changes to the
program that inserts or deletes instructions then the chances are that the
address of the instruction that you are JM Ping to will change and, to make
the program continue working, you have to change the JMP addresses. If
you think about the difficulties of actually using an instruction that jumps
to a particular address then you will soon see the need for adding address
labels to the BASIC assembler.

Address labels

The use of a mnemonic code to represent the machine code
corresponding to an instruction should seem like a fairly straightforward
but very useful idea by this stage. A very similar idea can be used to make
the handling of addresses just as easy. If the example of the last section
had been written as·-

START LDA $7 FFO
STA$FF20
LDA$7FF1
STA$FF20
JMPSTART

then the meaning of the program would have been clear. The final JMP
instruction is obviously intended to transfer control to the instruction
'labelled' START so forming a loop. When the program is assembled
START as used in JMP START has to be changed to an address. To be
more precise it has to be changed to the address of the instruction that it
labels. START is an example of an 'address label' (or just 'label') There are
just enough similarities between a BASIC variable and a label to be
confusing. A BASIC variable has a value associated with it and so does a
label (i.e. the address of the instruction that it labels) but a label is used
only in the translation of assembly language to machine code whereas a
BASIC variable exists while a program is running. It is better to think of a
label as more like a mnemonic code that stands for an address rather than
as one which stands for machine code.

There are two ways that a label can appear within a program:

40

Chapter4 Jumps, Loops and labels

1) As part of an instruction, standing in place of an address.

2) In front of an instruction, so labelling a position within the
program.

The use of a label in front of an instruction can be thought of as defining
its value or address. If you think about it for a moment, it only makes
sense to define a label once in a program but once so defined it can be
used as part of any instruction as often as required.

Adding Labels to the BASIC assembler

Adding a label facility to the BASIC assembler is very easy. First, a new
pair of arrays needs to be defined, T$ to hold the labels and T to hold their
corresponding address values. When a label is defined, T$ is searched and
as long as the label isn't already in T$ (in which case an error is reported) it
is added to the list and its addre�s is stored in T. The only problem is, how
do we tell the difference between a label and an ordinary mnemonic code?
Some assemblers demand that a label should always start at the beginning
(i.e. without any blanks before it) and a mnemonic should always have at
least one blank before it. Following the convention of DASM, the
assembler from Compusense, labels will be distinguished by starting with
"@". So legal labels take the form:

etc.

@START
@LOOP

This convention is very handy because it allows the BASIC assembler to
detect a label by examining just the first character. If, when using this
method, a label is detected following the mnemonic code, then the array
T$ is searched. If the label isn't found, then it hasn't been defined and an
error should be reported. If the label is present in T$ then the

41

Language of the Dragon

corresponding address stored in T is used to replace the usual contents of
AF$. The changes required are -

1 REM BASIC ASSEMBLER V4.1

17 DATA JMP,-1 ,&H0E,&H6E,&7E,-1

1 000 DIM A$(50),Cl5),T$(50),Tl50)
1 030 LC = 0

1 400 RETURN

3060 IF LEFT$(M$,1 I = "@" THEN GOTO 3500
3070 RETURN

3500 S$ = M$
3510 GOSUB 7000
3520 IF F> 0 THEN ERR = 0:GOTO 9000
3530 LC = LC+ 1
3540 T$ILC) = M$
3550 TILCI = P
3560 GOTO 3010

5550 IF LEFT$(AF$, 1 I< > "@" THEN RETURN
5560 S$ = AF$
5570 GOSUB 7000
5580 IF F = 0 THEN ERR = 3:GOTO 9000
5590 AF$ = STR$ITIFII
5600 RETURN

7000 K = 1
7010 IF K> LC THEN F = 0:RETURN
7020 I F T$IKl =S$ THEN F = K:RETURN
7030 K = K+1
7040 GOTO 701 0

Apart from the updates to the existing subroutines, this version includes
two new modules. Lines 3500 to 3560 check for the existence of the label
in the array T$ and, if it isn't there, it adds it along with the current address
in T. Subroutine 7000 searches for the string S$ in the array T$. On, return

42

Chapter4 Jumps, Loops and labels

the variable F is 0 if the string wasn't found and equal to its position in the
array if it is. Lines 5550 to 5600 detect a label in the address field, use
subroutine 7000 to find it in the array T$ and then substitute the address
stored in T. Also notice that the DATA statement for the JMP instruction
has been included.

To test the new version of the BASIC assembler try -

@STARTLDA$7FF0
STA$FF20
LDA$7FF1
STA$FF20
JMP @START

The ability to handle labels can be seen in the way that the last line is
assembled to -

7E 700C

Now that labels can be used, the JMP instruction is easy to use. All you
have to do is label any instruction in the program that you want to JMP to
and, as long as you don't define the same label twice, you can JMP to it as
often as you like. However, this simple picture is still spoiled by the
problem of forward jumps.

Forward jumps and two-pass assembly

The BASIC assembler V4.1 will handle labels but only if they are defined
before they are first used in an address field. For example, if you try to
assemble -

LDA$7FF0
JMP @SKIP
STA$FF20
@SKIP LDA$7FF1
END

43

Language of the Dragon

you will get an error message because when the assembler reaches the
JMP @SKIP instruction the label @SKIP is not yet defined - it is further
down the program. This restriction on the use of labels is so serious that, if
allowed to persist, it would make assembly language programming very
difficult. Fortunately the solution is quite simple. To make sure that any
label that might be used in a program is defined, all that the assembler has
to do is read through the program, picking up all the label definitions
before it attempts to produce a final machine code assembly. In other
words, the assembly should make two passes though the assembly
language program. The first pass just serves to record the label definitions
and the second pass uses these definitions to produce a correctly
assembled program. Notice that the first pass that the assembler makes
through the program has to assemble the program the best it can so that
the instructions take up the correct amount of memory and the labels are
defined at their correct addresses. This implies that the easiest way to
change the V4.1 assembler into a two-pass assembler is just to make it
automatically run twice over any assembly language program, the first
time ignoring any errors that are generated because labels are undefined
and the second time using the definitions collected in the first pass.

Changing the BASIC assembler into a two-pass assembler

Adding a two-pass facility to the BASIC assembler is much simpler than
you might think. All that has to be done is to change the main program
into a loop,

initialise l
FOR PASS - 1T02
initialise 2
assemble
NEXT PASS

and be careful about where things are initialised. For example, there would
be no point in doing the first pass if the array T$ used to hold the labels
was cleared between passes! The only other changes to the assembler
involve the use of the variable PASS to decide when an error should be
reported. If an undefined label is encountered then this is now only an

44

Chapter4 Jvmps, Loops and labels

error if the assembler is on pass 2. Also, as all the labels should have been
defined after pass 1 , discovering that a label is already in T$ isn't an error
in pass 2. Make the following modifications to the BASIC assembler:

1 REM BASIC ASSEMBLER V4.2

5 15 FOR PASS = 1 TO 2
518 I= 1 : P = &H7000

570 IF I< = T THEN GOTO 520
575 PRINT
580 NEXT PASS
590 STOP

3520 IF F>0 AND PASS = 1 THEN ERR =2:GOTO 9000
3525 IF F> 0 AND PASS =2 THEN GOTO 3010

5580 IF F = 0 AND PASS =2 THEN ERR =3:GOTO 9000

If you run the new version of the assembler on any of the previous
examples you will find that you now get a listing of the machine code
twice - once on each pass through the program. Although the second one
is the only one that has any chance of being correct, the first listing does
provide some information about the way that the assembler is working and
so it will be left as a feature for the time being, until a better version of
subroutine 6000 is written later on.

When an undefined label ls encountered on the first pass the value zero
is used as its temporary address so · that the rest of the program can be
assembled. However, the current way that the assembler selects direct or
extended addressing causes something of a problem. For example, if you
try-

JMP @SKIP
LOA lf0
@SKIPLDA jt1

(a correct program that doesn't do anything useful!) you will find that on
the first pass the JMP @SKIP is assembled as a direct address because
@SKIP has the temporary address of 0 but on the second pass JMP

45

Language of the Dragon

@SKIP is assembled as an extended address because @SKIP now has an
address greater than 255. This change in addressing modes is a problem
because extended addressing uses one more memory location than direct
and so, on the first pass, the address that @SKIP labels is different from
the address it labels on the second pass - obviously, the resulting machine
code will not work. The problem is that on the first pass the assembler
doesn't know whether undefined labels are going to be defined as direct or
extended addresses. The solution to the problem is to change the way that
a direct address is selected as the correct addressing mode. If the
assembler assumes that, unless otherwise informed, all addresses are
extended then the amount of memory used on the first pass will be the
same as the amount of memory used on the second pass and the
addresses assigned to labels will not change. A her all, there is no real need
to use direct addressing, other than to save one memory location. In other
words LDA $0030 (in extended model works just as well as LDA $30 (in
direct mode). Later on, other features of direct addressing will be
explained that make it more useful so, to be able to carry on using it, the
convention that a direct address must start with a '> ' sign will be used
from now on. So

LDA > $30

will be assembled as a direct address but

LDA $30

will be assembled as an extended address.

The changes to the BASIC assembler to make extended addressing the
default mode and introduce the new symbol for direct addressing are:

5030 IFTYPE = 2 THEN RETURN
5040TYPE=4

5521 IF L$ = "> " THEN AF$ = "":TYPE=2:GOTO 5540

Now the BASIC assembler will handle forward and backward JMPs by
making two passes through the program correctly. To check this, try
assembling any of the previous examples. Make sure that the address
following a JMP ins..truction really is the address of the first memory
location in which the correct instruction is stored.

46

Chapter4 Jumps, LoopsandLBbels

Subroutines, JSR and RTS

Now that the assembly language equivalent of the BASIC GOTO has
been introduced, it is only a small step to the assembly language
equivalents of the BASIC GOSUB and R ETURN. The JSR address (Jump
to SubRoutine) will transfer control to the instruction stored at 'address'
but like the BASIC GOSUB it causes the 6809 to store the address of the
instruction following it. This stored address is used by the instruction RTS
(Re Turn from Subroutine) to transfer control back after the JSR. Thus the
JSR and RTS pair exactly mimic the behaviour of the BASIC GOSUB and
RETURN instructions and so allow us to write and use assembly language
subroutines.

The JSR instruction can be used with the same three addressing modes
as the JMP instruction - direct, extended and indexed. The fact that the
RTS instruction is a little odd when it comes to addressing modes has
already been mentioned. The RTS instruction does use an address, but the
address is supplied by the 6809. In other words, when you use the RTS
instruction, you do not have to explictly give the return address and in this
sense the address is 'inherent' in the instruction. There are other
instructions like RTS that sometimes do not need a programmer-supplied
address and this gives us a fourth addressing mode to add to direct,
extended and immediate: 'inherent addressing'. (Corresponding to
TYPE =5 in the BASIC assembler.I

Before going on, enter the DATA statement for the JSR instruction in
the BASIC assembler IRTS is already present) :

1 8 DATA -1 ,&H9D,&HAD,&HBD,-1

Using subroutines - more labels

Since the JSR instruction uses the same addressing modes as the JMP
instruction it make sense to allow labels to be used in the same way.
However, the JSR instruction is often used to gain access to machine
code subroutines already present in the BASIC ROM and this makes the
use of labels a little more complicated. For example, there is a machine
code subroutine that will print a character on the Dragon's text screen that
starts at $800C. The character to be printed is stored as its ASCII code in

47

Language of the Dragon

the A register before transferring to the subroutine. The following short
program will repeatedly print the letter A on the screen -

@LOOP LOA lf$41
JSR $800C
JMP @LOOP
ENO

The first instruction loads the A register with $41 which is the ASCII code
for the letter A. The second instruction calls the subroutine at $800C which
prints the A on the screen and then returns control to the JMP instruction
which repeats the program forever - or until you press the reset button. If
you enter this program using the BASIC assembler you can run it using the
usual EXEC &H7000. After the screen has filled with As you may find it
difficult to see the As being printed - this is your first taste of how much
faster assembly language is than BASIC!

Programs would be easier to read and assembly language generally
more friendly if labels could be defined to correspond to fixed addresses
outside (i.e. in the ROM) the program that you are currently writing. For
example, if the label @PRINT could be defined to be $800C the JSR
instruction in the previous example could be written as JSR @PRINT
which is much easier to understand. Most assemblers allow a label such as
@PRINT to be defined by the statement -

@PRINT EQU address

where address is a number in the range O to $FFFF. The statement would
be read as 'the label @PRINT is EQUal to address' and its effect would
indeed be to set @PRINT to correspond to the 'address'. The form of the
statement looks like a standard assembly language instruction but as
should be obvious that EQU ISN'T an assembly language mnemonic. It is
an instruction to the ASSEMBLER to give a label a value to be used in the
rest of the assembly. Instructions like EQU are called 'pseudo operations'
because they look like 6809 mnemonics but they are in fact instructions to
the assembler. The pseudo op EOU is worth adding to the BASIC
assembler.

48

Chapter 4 Jumps, Loops and Labels

Adding EQU to the BASIC assembler

EOU is just the first of a number of pseudo ops to be incorporated into
the BASIC assembler so it makes sense to prepare for them by adding
EQU in a general way.

1 REM BASIC ASSEMBLER V4.3

550 IF PS =0 THEN GOSUB 6000
555 IF PS>0 THEN GOSUB 6500
560 I= I + 1 :PS =0

4001 IF M$= "EOU" THEN PS= 1 :RETURN

6500 IF PS< > 1 THEN RETURN
651 0 IF PASS = 1 THEN T(LC) = A
6520 I F PASS =2 THEN PRINT TAB(15);A$(1)
6530 RETURN

As the form of the EQU statement is the same as a standard assembly
language instruction, the approach used is to let the assembler process it
as usual and then correct the result later on. Line 4001 detects the EQU
and sets PS (for PSeudo op) to 1 . The label in the instruction is
automatically added to the array T$ but its definition is the address of the
current instruction rather than the address following the EQU. This is
corrected by subroutine 6500 which also handles the printing of pseudo
ops on the second pass.

Using EQU

Now that the BASIC assembler can define labels using the EOU pseudo
op, the previous 'print A on the screen' program can be written as-

@PRINT EOU $800C
@LOOP LDA jl$41
JSR @PRINT
JMP@LOOP
END

Once again you should be able to enter the program to the BASIC
assembler and then run it using EXEC &H7000 with the same result as
before.

49

Language of the Dragon

The interesting thing about EQU is that, once you have introduced it,
there are all sorts of other ways that you can use labels. For example, the
second instruction in the program loads the A register with the ASCII code
for the letter 'A' but this is not something that is very clear just by reading
the program. If however the program is written as -

@PRINT EQU $800C
@A EOU$41
@LOOP LOA #@A
JSR @PRINT
JMP @LOOP

then the use of a label as part of the immediate address field of the LDA
instruction once again makes the program slightly more readable. What
might surprise you is that this program can be assembled by the current
version of the BASIC assembler without any modifications! In other
words, although not their primary purpose, labels can be used in place of
data values in instructions.

As a final example of using the @PRINT subroutine try -

@PRINT EOU$800C
LOA #0
@LOOP JSR @PRINT
ADDA #1
JMP @LOOP
END

The first instruction loads the A register with 0. The next three instructions
form a loop that prints the character corresponding to the ASCII code in
the A register, then adds one to the A register and so on. The result is that
every character that the Dragon can display is repeatedly printed on the
screen. You may be wondering what happens when the contents of the A
register reach 255 and you try to add one more to it? The answer is that lt
resets to zero and so the whole cycle repeats itself.

Summary

1) The main topics ofthis chapter have been the way the instructions
JMP, JSR and RTS are used to transfer control together with the

50

Chapter 4 Jumps, Loops and Labels

idea of address labels and their implementation. Inherent addressing
was introduced.

2) The problems encountered with forward jumps lead to the
solution of a two�pass assembler, the first pass to gather the
definitions of the address labels and the second pass to correctly
assemble the program.

3 l Finally the idea of an assembler pseudo op was introduced byway
of EOU used to set labels to given values.

Micro Projects

1) Add subroutine6900 to print a list of all the labels used in a
program along with their corresponding addresses. Make sure that
the table is only printed at the very end of the second pass.

2) A machine code subroutine starting at$8006 in the BASIC ROM
reads the Dragon's keyboard and returns the result in the A register.
If no key is pressed then the A register contains0. If a key is pressed
then the A register contains the ASC 11 code of the corresponding
character. Write and test a machine code program that will read the
keyboard and print the result on the screen no matter what itis. Try
to make an intelligent use of labels in your program.

51

Chapter Five

Logic Instructions

At some point in learning assembly language, you have to become
acquainted with the entire range of instructions that are at your disposal.
This problem didn't arise when you were learning BASIC because the
operations of BASIC are the familiar operations of arithmetic, + ,-,* and / .
In assembler the only type of data that you have is a pattern of bits and
each of the operations is concerned with changing or manipulating these
bit patterns. The problem for most people beginning assembly language is
to see how to use these primitive operations to produce meaningful
operations on the data that the bit patterns represent.

This may sound like a very abstract and strange way of thinking about
things. Surely a bit pattern is always nothing more than a binary number?
The answer is, that while a bit pattern can always be interpreted as a
binary number, this is not always the best way to think about it. For
example, if you consider the contents of two memory locations as
numbers in the range O to $FF then it makes sense to consider arithmetic
operations, such as addition, on these numbers. However, suppose the bit
patterns stored in the two memory locations are being used to represent
characters, i.e. they are ASCII codes, then, although they can still be
interpreted as numbers, adding them together makes very little sense!

This lack of familiarity with the use of bit patterns doesn't make the
range of machine code operations any more difficult to understand; after
all, they are very simple operations. What is difficult is seeing how these
very simple operations can be put together to do anything useful. The
purpose of this and the next chapter is to explain the action of all of the
6809's operations on data. At this stage you may find that you understand
what the operations are doing, but not why you would ever want to use
some of them. For now, concentrate on gaining a rough idea of what the

52

Chapter 5 Logic Instructions

operations are all about and later on as you examine the examples and write
your own programs you will find that the use of each instruction will
become clear.

The logical operations

The logical operators AND, OR and NOT should be familiar to you from
Dragon BASIC and their use in IF statements. What you might not be so
familiar with is that AND, OR and NOT are operators in the same sense as
+, • etc are. The only difference is that, instead of working on numbers,
AND, OR and NOT operate on the two values True and False, or T and F
for short. If A and B are two statements that are either true or false then
the following table illustrates the meaning of A AND B

A B

F F
F T
T F
T T

A AND B

F
F
F
T

You should be able to work out the result of each line of the table using
nothing more than common sense. For example, if A is false and B is true
then the combined statement A ANO B is clearly false. In fact the
statement A AND B is only true if BOTH the statements A and B are true.

You probably already know that the above table is called a 'truth table'
and that all of the operations of logic can be summarised by similar truth
tables. The way that the logical operators of 6809 assembly language are
also best described by using truth tables. The only real change is that
instead of T and F they work in terms of 1 and 0 and on all the bits of a
memory location at once.

ANDA address and ANDB address

The 6809's AND, instruction in keeping with all of the other logical
instructions, will AND the contents of a memory location with the current
contents of the A or B register where it also leaves the result. The idea that

53

|

|
|
|
|

language of the Dragon

an operation works on a value from memory and a value in one of A or B is
something that is familiar from the way that ADDA and ADDB work. The
truth table for the AND operation is -

reg. mem. result

0 0 0
0 1 0
1 0 0
1 1 1

where reg. and mem. signify a bit in the appropriate register and in
memory respectively. The only extra complication is that the operation is
applied 'bitwise' to the two eight bit values. The meaning of 'bitwise' is
best explained by an example. If the A register contains $D5 and the
memory location contains $E7 then the result of AN Ding them together is -

A register
memory
result

0
1
0

0
1
0

0
1
0

or in other words, $C4. You can see that there is only a 1 in the result
when both the A register and the memory location contain a 1 in the same
place. This is because the result is obtained by applying the truth table to
each pair of corresponding bits i.e to the first bit in A and the first bit in the
memory location and so on.

Of the addressing modes that have been introduced so far, the ANDA
and ANDB instructions can be used with immediate, direct and extended.
So,

ANDA lf$34

and
ANDB $4020

are both legal examples.

ORA address and ORB address

The ORA and ORB instructions work in a similar way to the AND

54

|

|
|
|
|

1 1 1 1 1
1 1 0 1 0
1 1 0 1 0

Chapter 5 Logic Instructions

instruction, but they produce the bitwise OR of the current contents of the
A or B register and a memory location and leave the result in the register.
The only difference is that the truth table used is -

reg. mem. result

0 0 0
0 1 1
1 0 1
1 1 1

If you examine the table carefully you will see that the result is 1 if either of
reg. or mem. are 1. As an example of the OR instruction suppose that the
B register contains $E3 and the memory location contains $78. The result
would be -

B register
memory
result

0
0
0

1
0
1

or $FB. Notice that there is a 1 in the result wherever either value has a 1.
The ORA and ORB instructions support the immediate, direct and
extended addressing modes, so

ORB jl$F3
and
ORA $2950

are valid examples.

EORA address and EORB address

The 'exclusive OR' is not as well known as the OR operation but it is just
as useful. The two instructions EORA and EORB perform the exclusive OR
operation on the contents of the A or B register and a memory location,
leaving the result in the register. The exclusive OR is taken bitwise
according to the following truth table -

reg. mem. result

0 0 0
0 1 1
1 0 1
1 1 0

55

Language of the Dragon

Notice that the result is a 1 only when one of reg. or mem. is 1 . That is the
result is 1 if either but not BOTH is a 1 . As an example of the EOR
instruction suppose the A register contains $CE and the memory location
contains $5F then the result is •

A register
memory
result

0
0
0

or $91 . Notice that there is a 1 in the result only where there is exactly one
1 in either of the register or memory values. You can use all the addressing
modes that we have met so far (�ith the exception of inherent addressing)
with EDRA and EORB so

EDRA lf45

and

EDRA $A32A

re both valid examples.

COMA,

COMB and

COM address

The COM (standing for COMplement) is the assembly language
equivalent of the BASIC NOT. It is different from the previous three logical
operations in that it works on a single value. COMA changes the current
value in the A register so that 0s become 1 s and 1 s become 0s (as always,
the result it left in the register). COMB carries out the same operation on
the value stored in the B register. In both cases there is no need to specify
an address in the address field because only the value in the A or the B
register is involved in the operation. Like the RTS instruction both COMA
and COMB use the inherent addressing mode. The truth table for the COM
operation is particularly simple •

reg. result

56

Chapter 5 Logic Instructions

and this is applied bitwise as usual. For example, if the A register contains
$6F then the result of COMA is

register
result

1
0

1
0

1
0

or $90. The only addressing mode that can be used with COMA and
COMB is inherent and the BASIC assembler can already deal with this
mode.

The COM operation also has an extra form - COM address. This
instruction will perform the COM operation on the memory location given
by 'address'. This seems to invalidate an earlier fundamental observation
that for any operation to take place the data must be brought from
memory into the CPU. For example, COM $7F00 will complement the
contents of memory location $7 FOO without the intervention of the A or
the B register. In fact this 'direct' memory modification is nothing but an
illusion because the contents of the memory are brought into memory and
stored in a nameless temporary register, operated on and then restored
back in the original memory location. (This nameless register is of no great
interest from the programmer's point of view, in that you cannot use it in
any other situation, but it is nevertheless there). This apparent direct
modification of memory by the COM instruction is something that is
available as an extra with nearly all of the 6809's instructions that operate
only on a single data value. An example of the COM instruction is-

COM $7032

which complements the contents of memory location $7032. Of those we
have met up to now, COM can be used with the direct ·and extended
addressing modes.

Adding logic to the BASIC assembler

All that is needed to extend the BASIC assembler to handle the 6809's
complement of logical operations is the addition of the appropriate DATA
statements

57

Language of the Dragon

1 REM BASIC ASSEMBLER V5.1

1 9 DATA ANDA,&H84,&H94,&HA4,&HBB,-1
20 DATA ANDB,&HC4,&HD4,&HE4,&HF4,-1
21 DATA DRA,&H8A,&H9A,&HAA,&HBA,-1
22 DATA ORB,&HCA,&HDA,&HEA,&HFA,-1
23 DATA EORA,&H88,&H98,&HA8,&HB8,-1
24 DATA EORB,&HC8,&HD8,&HE8,&HF8,-1
25 DATA COMA,-1,-1,-1 ,-1 ,&H43
26 DATA COMB,-1,-1 ,-1 ,-1,&H53
27 DATA COM,-1,&H03,&H63,&H73,-1

Bit manipulation

The principal use of the logical operators is in changing individual bits
within a memory location. Usually the problem is that a particular bit or
group of bits has to be set to 0 or 1 without altering the rest. This is usually
referred to as 'bit manipulation'.

Setting any bit to zero is easy once you recall that the result of an AND
is only one if both of the corresponding bits in the register and memory are
1. Suppose the problem is to set b5 and b2 to zero in memory location
$7F00 which currently contains $36 -

b7 b6 b5 b4 b3 b2 b1 b0
0 0 1 1 0 1 1 0

(Notice that the bits in a memory location are numbered starting from
zero.) Then, ANDing the memory location with the bit pattern -

1 1 0 1 1 0 1 1

produces the result

0 0 0 1 0 0 1 0

which is the same as the original contents of the memory location except
that b5 and b2 are 0 . If you look at the value that the memory location was
ANDed with then you should see that it is a sort of 'picture' of what we

58

Chapter 5 Logic Instructions

wanted to happen, in the sense that at each bit position where nothing
was to be changed there was a 1 and at each bit position to be zeroed
there was a 0 . For example, to zero b7 ,b5 and b1 you would AND the
contents of the memory location with

b7 b6 b5 b4 b3 b2 b1 b0
0 1 0 1 1 1 0 1

or $5D. If the memory location in question was $7FOO then an assembly
language program to achieve this would be

LDA$7 F00
ANDA *$5D
STA$7 F00

Notice the way that the A register is used to form the AND of the memory
location and the immediate data.

The second problem of bit manipulation, setting a bit or a group of bits
to 1 while leaving the rest unaltered, can be solved in roughly the same
way using OR. In this case the contents of the memory location have to be
ORed with a bit pattern that is zero apart from the bit positions that you
want to set to 1. For example, if you want to set b4, b3 and bO to 1 in
memory location $7FFO which currently contains $54 -

b7 b6 b5 b4 b3 b2 b1 bO
$54= 0 1 0 1 0 1 0 0

then it should be ORed with

0 0 0 1 1 0 0

or $19 which gives -

0 1 0 1 1 1 0 1

or $50. A program to carry this out would be -

LDA$7FFO
ORA *$19

59

1

language of the Dragon

STA $7FF0

Apart from setting a group of bits to 0 or 1 it is occasionally necessary
to 'flip' a bit or a group of bits. In other words if a bit is currently 1 it
should be changed to 0 and vice versa. This action can be achieved using
the EOR operation. In this case the contents of the memory location have
to EORed with a value that is made up of 0s apart from the bit positions
that have to be 'flipped'. For example, to flip b6, b5 and b3 of memory
location $7 FF0 which currently contains $A5 or

b7 b6 b5 b4 b3 b2 bl b0
1 0 1 0 0 1 0 1

it has to be EORed with

0 1 1 0 1 0 0 0

or $68 to give the result -

1 1 0 0 1 1 0 1

or $CD. The assembly language program to carry this out would be

LDA$7FF0
EORA ff,$68
STA$7FFO

You should be able to see that there is a pattern in these three ways of
manipulating bits. Each time the contents of a memory location are
combined using AND, OR or EOR with an immediate data with a particular
bit pattern. The immediate data is usually called a 'mask' and the rules for
construction and using a mask can be summarised as follows:

1) To set a group of bits in a data value to 0 without affecting the
rest, construct a mask with all 1 s apart from the bit positions that
have to be set to 0, then ANO it with the original value.

2) To set a group of bits in a data value to 1 without affecting the
rest, construct a mask with all 0s apart from the bit positions that
have to be set to 1 , and OR it with the original value.

60

Chapter 5 Logic Instructions

3) To flip a group of bits in a data value without affecting the rest,
construct a mask with all 0s apart from the bit positions that have to
be flipped and EOR it with the original value.

Of course if you want to flip all of the bits in a memory location or in
either of the A or B registers then you can dispense with masks and just
use the COM instructions. All bit manipulation that you might want to do
can be carried out using combinations of these operations.

The shift instructions

The logical operations change bits at particular positions within the bit
pattern. The shift instructions are also used in bit manipulation but rather
than changing bits at given bit positions they move the whole bit pattern
to the right or to the left - hence the name 'shift operations'. To
understand the way that shifts work it is important that you realise that a
memory location and the A and B registers always hold exactly eight bits,
no more and no less. As an example of a shift operation, consider a simple
shift of all the bits one place to the left. ln other words, b7 takes on the
value of b6, b6 takes the value of b5 and so on. This is perfectly simple but
there are two questions that have to be answered. What happens to the
old value of b7 and what value does bO take on? If the bit pattern was $C3
i.e. -

b7 b6 b5 b4 b3 b2 b1 bO

1 1 0 0 0 0 1 1

then after shifting one place to the left we have

b7 b6 b5 b4 b3 b2 b1 bO
< - 1 0 0 0 0 1 1 < -

As you can see the old value of b7 has 'fallen' off the end of the number
and there is a problem about what value should be 'shifted into' b0. There
are only two ways that shift instructions can vary -

61

?0 1

Language of the Dragon

in, their direction i.e. right shifts and left shifts

and, in the way that they solve the problem of what happens to b7 and
what value should be shifted into bO

It is worth keeping these two things in mind when reading the following
descriptions of the 6809's range of shift operations.

The logical shift instructions, LSL and LSR

The characteristic that marks out the logical shift instructions is that the
bit that is shifted 'off the end' of the number is stored in a special register
inside the CPU and a O is shifted into the 'other end'. This special register
is called the condition code register and is fully described in the next
chapter. All that you need to know to understand how shift instructions
work is that a single bit of this register - the C or 'Carry bit' - is used to hold
the bit that would otherwise be lost as a result of the shift.

There are three forms of the LSL (Logical Shift Left) instruction

LSLA
LSLB

and

LSL address

The first two perform the LSL operation on the A and B register
respectively and the third on the memory location at 'address'. The LSL
operation can be imagined as -

C - b7 b6 b5 b4 b3 b2 b1 bO - 0

indicating that all the bits are moved one place to the left, that b7 is shifted
into the C bit and a O is shifted into bO. For example, if the A register
contains $C5 or -

b7 b6 b5 b4 b3 b2 b1 bO
1 1 0 0 0 1 0 1

62

then the result of LSLA is -

C � � � M � � � �
1 1 0 0 0 1 0 1 0

Chapter 5 Logic Instructions

or $8A with a 1 stored in the C bit. Notice that LSLA and LSLB are both
inherent but the direct and extended addressing modes can be used with
LSL address.

There are also three forms of the LSR (Logical Shift Right) instruction-

and

LSRA
LSRB

LSR address

The operation of the LSR instruction is roughly the same as the LSL
instruction except of course that all the bits are moved to the right. In this
case it is bO that is stored in the C bit and the O is shifted into b7. This is
best imagined as -

0--> b7 b6 b5 b4 b3 b2 bl b0 --> C

For example, if the A register contains $C5 or

b7 b6 b5 b4 b3 b2 bl b0
1 1 o o o 1 o 1

then the result of LSRA is -

� � � M � � � � C
0 1 1 0 0 0 1 0 1

or $62 with 1 stored in the C bit. All the other details of the LSR
instructions are the same as for the LSL instructions.

63

Language of the Dragon

2 The rotate instructions, ROR and ROL

The rotate instructions also make use of the C bit to store the bit that
'falls off' the end but they also use it as the source of the bit shifted in at
the other end.

There are three forms of the ROL (ROtate Left) instruction -

ROLA
ROLB

and

ROL address

which ROL the A register, the B register and the contents of the memory
location at 'address'. The ROL operation is best imagined as -

--<--- b7 b6 b5 b4 b3 b2 b1 b0 --< ---
[I
I I
-------> ------- C ---------> ----------------------

in other words each bit moves one place to the left as in a LSL but the
value of the C bit is moved into b0 and b7 is moved into C. If you look at
the diagram you will see why the term rotate is used in ROL. For example,
if the A register contains $C5 -

b7 b6 b5 b4 b3 b2 b1 b0
1 1 0 0 0 1 0 1

and the C bit is 0 then after a ROLA the result is -

1 0 0 0 1 0 1 0

or $8A and the new value of the C bit is 1 .

There are also three forms of the ROR (ROtate Right) instruction

RORA
RORB

and

ROR address

64

Chapter 5 Logic Instructions

which apply the ROR operation to the A register, the B register and the
memory location at 'address' respectively. The ROR instruction works in
the same way as ROL only the bits are moved to the right. The best way to
think of the R()R operation is -

I
I

--> --- b7 b6 b5 b4 b3 b2 b1 b0 -->--
1
I

-------< ---------- C -------< -

In other words each bit moves one place to the right, the value of the C bit
is moved into b7 and b0 is moved into the C bit. For example, if the A
register contains $C5 or

b7 b6 b5 b4 b3 b2 b1 b0
1 1 0 0 0 1 0 1

and the C bit is 1 the result of RORA is -

1 1 1 0 0 0 1 0

or $E2 and the new value of the C bit is 1 .

The key feature of the ROL and ROR instructions is that they both
involve the current value of the C bit. So far the only way that we have of
determining the C bit is via the use of the shift instructions themselves.
Instructions to change the C bit directly are discussed in the next chapter
and these make the ROR and ROL instructions much more useful.

The 6809 does have another shift instruction but this is also better
described as part of the next chapter, on arithmetic.

Adding shifts to the BASIC assembler

Once again the shift instructions present no problems for the BASIC
assembler and adding them is simply a matter of including the new DATA
statements.

1 REM BASIC ASSEMBLER V5.2

28 DATA LSLA,-1,-1,-1 ,-1 ,&H48
29 DATA LSLB,-1,-1,-1,-1 ,&H58

65

Language of the Dragon

30 DATA LSL,-1,&H08,&H68,&H78,-1
31 DATA LSRA,-1 ,-1 ,-1 ,-1,&H44
32 DATA LSRB,-1,-1 ,-1 ,-1 , &H54
33 DATA LSR,-1 , &H04,&H64,&H74,-1
34 DATA ROLA,-1,-1 ,-1 ,-1 , &H49
35 DATA ROLB,-1 ,-1 ,-1,-1,&H59
36 DATA ROL,-1 , &H09,&H69,&H79,-1
37 DATA RORA,-1,-1,-1,-1 ,&H46
38 DATA RORB,-1,-1 ,-1 ,-1 ,&H56
39 DATA ROR,-1 , &H06,&H66,&H76,-1

Labels and data - RMB, FCB and FDB

In the last chapter the idea of using a label to represent an address was
introduced. It may not have been clear from the description that an
address label can be used anywhere that an address can. In particular, as
well as being used in JMP instructions to specify the 'destination' address
labels can be used to specify the location of data in operations such as
AND etc. For example, suppose you are using memory location $7FF0 to
store some data, then to load it into the A register you could use-

LDA $7FF0

but perhaps -

@DATAEQU$7 FF0
LDA@DATA

is easier to read and understand. Also, if you suddenly decide on a major
program change that moves the location that the data is stored to $7000
then the only change that you have to make to the second version is -

@DATA EQU $7000

ln short, labels are just as useful when used to represent the addresses of
data as destination addresses in JMP instructions. However, it is very
important to preserve the distinction between immediate addressing and
extended addressing. For example

66

Chapter 5 Logic Instructions

LDA !f@LABEL

will load the A register with the value of @LABEL and

LDA @LABEL

will load the A register with the value stored in the memory location whose
address is the value of @LABEL.

This idea of using labels for data is worth extending by the use of three
new pseudo ops - RMB (Reserve Memory Bytes), FCB (Form Constant
Byte) and FOB (Form Double Byte). When a label is used as a destination
address it isn't defined using the pseudo op EQU, instead it is defined by
the position that it occupies in the program - i.e. by the instruction that it
labels. This idea can be used to define labels that 'mark' memory locations
used to store data. For example, suppose you want to use three memory
locations to store some information and you don't really mind exactly
where they are as long as they are out of the way of the program and you
know exactly where to find them. The RMB pseudo op can be used to
reserve any number of memory locations anywhere in a program. For
example,

LDA@DATA
ANDA jf$0F
JMP @LOOP
@DATARMB3

the RMB instruction reserves 3 memory locations for data storage at the
end of the program and the label @DATA is equal to the address of the
first of them. The effect of-

label RMB n

is simply to reserve the next n memory locations for data and set the value
of the label to the address of the first one. In many ways RMB looks just
like a standard machine code instruction that takes n memory locations to
store!

RMB is useful for reserving memory (for large tables, for example) but
often in a program it would be an advantage to define a single memory
location as holding data and also initialise it to some value. This is exactly
what the FCB pseudo-op does -

@DATA1 FCB $76

67

Language of the Dragon

FCB stores $76 in the next free memory location and sets the label
@DATA1 to its address. It is important to be clear that FCB is not an
instruction that the 6809 carries out - after all it is a pseudo-op, an
instruction to the assembler to do something. What happens when the
assembler meets

label FCB value

is that it stores 'value' in the next memory location (i.e. the one that it
would have used to store the machine code of the next instruction) and
sets 'label' to its address. When the assembled machine code program is
run, the only effect that the FCB has had is that memory location 'label'
contains 'value'. The pseudo-op FOB works in more or less the same way
as FCB except that it uses two memory locations to store its value and the
label is set to the address of the first of the two memory locations.

Adding these pseudo-ops to the BASIC assembler is easy, if a little long
winded. The existing test for the pseudo-op EOU at line 4001 has to have
tests for RMB, FCB and FDB added to it and subroutine 6500 (the
pseudo-op handler) has to be extended.

1 REM BASIC ASSEMBLER V5.3

4002 IF M$ = "RMB" THEN PS=2:RETURN
4003 IF M$ = " FCB" THEN PS =3:RETURN
4004 IF M$= "FDB" THEN PS =4:RETURN

6500 IF PS< > 1 THEN GOTO 6540

6540 IF PS< > 2 THEN GOTO 6570
6545 IF PASS =2 THEN PRINT TAB(15I;A$(1)
6550 P= P + A
6560 I F PASS= 2 THEN GOTO 6520

6570 IF PS< > 3 THEN GOTO 6650
6580 A= A-INTIA/256I*256
6590 IF PASS= 1 THEN GOTO 6620
6600 PRINT HEX$IPl;TAB(5I;HEX$(A);
6610 PRINT TAB(15I;A$III

68

6620 POKE P ,A
6630 P = P + l
6640 RETURN

6650 IF PS< > 4 THEN RETURN
6660 IF PASS= 1 THEN GOTO 6710
6670 LB = A-INTIA/256I*256
6680 HB = INTIA/256I

Chapter 5 Logic Instructions

6690 PRINT HEX$(Pl;TAB(5);HEX$(HB);TABl8);HEX$(LBI;
6700 PRINT TAB(15);A$(1)
6705 POKE P,HB:POKE P + l ,LB ,
6710 P = P + 2
6720 RETURN

Lines 4002-4004 detect the new pseudo-ops and set the variable PS to a
value that indicates which one has been found. Lines 6540-6560 process
RMB, the only effect of which is to increase the value of P by the number
of memory locations to be reserved. Notice that any label used with RMB
(or FCB and FOB) will be processed in the normal way, just as if the new
pseudo-ops were standard mnemonics and the 'value' that follows the
pseudo-ops will be processed as an address field and stored in the variable
A. Lines 6570-6640 process an FCB pseudo-op. The only point to notice
here is that the value POKEd into memory is truncated by line 6580 to be in
the range O - 255. In other words, an fcb like FCB $1234 will be interpreted
by the assembler as FCB $34. Lines 6650-6720 process a PDB pseudo-op.
This is done in much the same way as for the FCB, only now two values
are POKEd into memory HB, and LB representing the 'high' or 'most
significant' byte and the 'low' or 'least significant' byte of the value
respectively. Quite a few of the statements in the pseudo-op handler look
complicated but are simply formatting and printing the results of the
assembly so that you can keep track of what is going on.

If you are a little unsure of the way that RMB, FCB and FOB are used
then you will find plenty of examples in forthcoming chapters!

Summary

1 I The logicaloperators AND, OR, EOR and COM have been
described in this chapter along with the logical shifts LSL, LSR, ROR

69

Language of rhe Dragon

2) The idea that the 'bit pattern' is the fundamental type of data that
assembly language programs work with has been emphasised by a
discussion of bit manipulation using the logical operators.

3) Finally the use of labels to mark the location of data was intro
duced along with the pseudo-ops RMB, FCB and FOB.

Micro Projects

1) Some information is stored in an memory location labelled by @DATA.
Write a short program that will set b6 to 1 and b3, b2 and bl to O without
affecting any other bits.

21 The value $OF is stored in a memory location labelled by @FLIPPER.
Write a program in the form of a loop that will change the value stored in
@FLIPPER to $FO the first time through and then to $OF the second time
through, and so on alternating the value $OF with $FO.

3) How could you use LSL and ROL to move the top four bits in the A
register into the bottom four bits in the B register? (In other words b7, b6,
b5 and b4 of the A register should occupy b3, b2,b1 and bO respectively of
the B register.)

4) Write a program which defines two memory locations as data using the
FCB pseudo-op and then ANDs their contents together placing the result
in yet another memory location.

70

Chapter Six

Arithmetic Instructions

This chapter examines the ways in whiCh the6809 can handle bit patterns that
represent numbers. It is important that you are clear about the way that
numbers can be represented by bit patterns and what sorts of things can go
wrong with seemingly simple arithmetic. Fortunately there is no need to
understand and actually be able to do binary arithmetic because the 6809 can
do it for you! As you read this chapter, try to keep in the back of your mind that
the fundamental data for assembly language programming is the bit pattern
and everything else, including numbers, is a result of the way that you are
using bit patterns.

Assembly language arithmetic

The use of the ADDA and ADDB instructions to add two numbers together
has already been described in earlier chapters. However, there is more to 6809
assembly language arithmetic than these two instructions. In particular, there
is the question of working with numbers larger than $FF and that of working
with negative numbers. Before these and other aspects of arithmetic are
explained it is worth explaining the role that arithmetic plays in assembly
language programming. It is probably true to say that in BASIC, arithmetic is
basic! But this is not so in assembler. It takes many assembly language
instructions to perform the apparently simple sum

2.321 / 1 .422

that BASIC would accept in one go or even as part of another instruction! The
result of the high level of difficulty encountered with assembly language
arithmetic is that complex calculations are rarely found in assembly language
programs. If you are planning to write a program that needs much in the way
of calculation, then it is better to think in terms of BASIC or a mixture of

71

Language of the Dragon

assembly language and BASIC. If you really do need the undoubted speed
advantage of assembler in doing complicated calculations than you will need
to use a very special collection of assembly language subroutines called a
'software floating point package'. In most cases, however, the sort of
application that assembly language is put to only needs the addition,
subtraction and occasionally multiplication of fairly small numbers and this is
not so difficult.

Negative binary numbers - two's complement.

So far the only sort of numbers that we have been able to deal with are
positive numbers in the range O to $FF. There is more than one way to
represent a negative number in binary but the most common and the one
used by the operations in the 6809 is the so-called 'two's complement form'.
There is an extensive theory behind two's complement negative numbers but
all that you need to know to use the negative numbers in assembly language is
their format.

If you ask yourself what makes a number like -6 a negative number, the
answer is that ·if you add it to + 6 the answer is 0. That is to say, the
fundamental property that makes a number negative is that, if x is a number
then its negative, i.e. -x, is a number that when added to x gives the answer
zero. This definition of a negative number seems to be interesting but hardly
useful until you recall an observation made in Chapter Four. If you add one to
a memory location or a register you will eventually reach the maximum value
that can be stored, i.e. $FF. The question is what happens if you add one to
this maximum value? The answer is not that you get an error message,
instead the result is zero.

In other words, 6809 arithmetic works on eight-bit numbers in such a way
that if you start at zero and repeatedly add one you will reach $FF and then
'roll over' to zero and carry on round again, just like the mileometer on a car or
a bicycle. The importance of this observation is you can add two binary
numbers together and get the result zero. For example, 2 +254 (in decimal)
gives the resultO as2 + 253 gives the result255 and adding 1 to this makes the
value roll over to 0. In this special sense254 behaves as if it was the negative of
2. For any number between O and 1 27 it is possible to find another number
greater than 127 that produces a sum of zero.

72

Chapter6 Arithmetic Instructions

Now you should be able to see how negative numbers can be represented
in binary in such a way that they play their correct part in arithmetic. Instead of
using the whole range O to 255 as representing positive numbers the range is
divided into two halves, the positive numbers from O to 127 and the 'negative'
numbers from 128 to 256. This representation of negative numbers as the
second half of the total range is known as 'two's complement
representation'. Its single great advantage is that if you use it you can carry
out any arithmetic that you like without worrying about whether a number is
positive or negative - that aspect looks after itself! Notice that this isn't true of
the usual decimal way of handling negative numbers. For example, if you do
the sum 3 +4, then you add the two numbers; but the sum 3 + (-4) would be
done by subtraction. In binary, both sums would be done using addition, the
first 3 +4 in the usual way but 3 + (-4) would be done by finding the two's
complement of 4 and then ADDING it to 3.

You needn't worry about the details of carrying out arithmetic in two's
complement form because the 6809 will look after you, but you do need to
know the essential features of a two's complement number. Any number
between O and $7F (0 - 127 in decimal) is a regarded as a positive number.
Putting this another way, any binary number that has b7 equal to O is regarded
asa positive number. Any number between $80 and $FF (128 -255 in decimal)
is regarded as a negative number. Putting this another way, any binary
number that has b7 equal to 1 is regarded as a negative number. Thus, if you
are using two's complement arithmetic all you have to do to decide if a
number is positive or negative is to look at b7 - if it's O then the number is
positive, if it's 1 then the number is negative. For example,

b7 b6 b5 b4 b3 b2 bl bO
0 1 0 1 1 0 0 0

is a positive number equal to $58 and

b7 b6 b5 b4 b3 b2 bl b0
1 0 1 1 0 1 0 1

is a negative number numerically equal to $B5, or 185 in decimal, and (as
71 + 185 =0 using eight bit arithmetic that rolls over at 255) it represents-71 .
Don't worry about converting negative numbers to their standard decimal
representation and vice versa, because the 6809 contains instructions that
will do it for you.

73

Language of the Dragon

The representation of negative numbers in two's complement form is not a
difficult idea. However, it does contain an illustration of the subtle point about
bit patterns being the fundamental data for assembly language. The example
of a two's complement number given above is the representation of -71,
however, it is also the binary representation of 185. You should be able to see
that the question "which is correct?" is not sensible. Which of the two
numbers the bit pattern 10110 101 represents depends on how you view it-as
a two's complement number or a simple binary number. This is an important
point because, as far a 6809 arithmetic is concerned, two's complement
numbers and simple binary numbers are treated in the same way. The only
difference arises when you come to interpret the answer. If, at the start of the
arithmetic, you considered the numbers to be simple binary then you must
interpret the answer as simple binary, but if you regarded the numbers as
two's complement then the answer must be interpreted as two's complement
- it's all up to you. So, if you are going to need negative numbers, then select
the two's complement form. Otherwise stick to simply binary arithmetic.

The ADD and SUB instructions - the D register

The instruction ADD has already been introduced in earlier chapters.
However, as well as its ADDA and ADDB forms it can also be used to add
numbers in the range O to $FFFF. To make this possible the A and B register
have to be used together as a single register capable of holding 16 bits. This
giant register is called the D register but this new name shouldn't be allowed
to obscure the fact that the D register is nothing more than the familiar A and
B registers working together. The instruction -

ADDD address

adds the contents of the memory locations at 'address' and at 'address + 1' to
the current contents of the D register, leaving the result in the D register.
Notice that two memory locations are used to store the value that is added to
the D register and, in line with the way that extended addresses are stored,
the most significant eight bits are stored in 'address' and the least significant
eight in 'address'+ 1. In the case of the D register, the A register holds the
eight most significant bits and the B register holds the eight least significant
bits. These two facts can be illustrated thus -

data = address I address + 1
D A I B

74

=

Chapter 6 Arithmetic Instructions

Apart from the advantage of working on 16·bit numbers, the ADDD
instruction is very similar to the ADDA and ADDB instructions. It does,
however, pose a slight problem for the BASIC assembler in that ·

ADDD *$FE72

looks like a standard immediate mode instruction but, as the D register is 1 6
bits long, the immediate data i s also 1 6 bits o r 2 memory locations. This
means that the assembler now has to detect such 16·bit operations and POKE
the correct amount of DATA. There are other instructions that use the D
register and there are other 1 6·bit registers in the 6809 so this modification to
the assembler will be left until later. As well as the ADDD instruction there are
also the LDD and STD instruction which can be used to load and store the
register. As well as the three ADD instructions, ADDA, ADDB and ADDDthe
6809 also has a corresponding set of three SUB (SUBtract) instructions ·
SUBA, SUBS and SUBD. These instructions can be used with the same
addressing modes that can be used with the ADD instruction and work in
roughly the same way, except of course that they subtract the contents of
memory from the current contents of the register, leaving the result in the
register.

Arithmetic with simple binary numbers

The ADD and SUB instructions can be used to carry out arithmetic on
simple binary numbers as long as the result is in the same range as the original
numbers. For example,

LDA *$0A
ADDA *$06

will correctly add $0A to $06 leaving the result $10 in the A register or ·
LDA *$0A
SUBA *$06

which will correctly subtract $06 from $0A leaving the result $04 in the A
register. You can carry out any arithmetic with the A register as long as the
numbers are in the range O to $FF and get a correct answer as long as the
result is also in this range. If the result is outside this range then the 'roll over'

75

Language of the Dragon

behaviour will make a nonsense of the answer. This is called 'arithmetic
overflow'. For example,

LDA jl$F0
ADDA jl$1 5

leaves the result 5 i n the A register which i s certainly not correct and

LDA jl$06
SUBA jl$07

leaves the result $FF in the A register which once again is far from correct.
When performing arithmetic on bit patterns that you are considering as
simple binary numbers, the rule is that the result must be in the same range as
the original numbers. For arithmetic on the A and 8 registers the range is O to
$FF and for the D register the range isO to $FFFF. Notice in particular this rules
out any negative results for, after all, negative numbers are no part of simple
binary!

You may be worried about the possibility of carrying out some arithmetic in
a program and using invalid results because of overflow. This problem will be
dealt with in the next chapter where instructions that can be used to test for
overflow will be described.

Arithmetic with two's complement numbers · the NEG in
struction

The rule for carrying out arithmetic with two's complement numbers is the
same as for simple binary numbers in that the result must lie in the same range
as the numbers involved in the arithmetic. The main difference is that, of
course, now we can work with negative numbers and get negative results.
For example,

LDA jl$06
SUBA jl$07

gives the result $FF which is the two's complement form of -1, which is
correct. Notice that the result is only correct because we are working with
two's complement numbers. You might be thinking that this distinction
between two's complement and simple binary is something that can be

76

Chapter 6 Arithmetic Instructions

ignored until you get a negative result. However, if you are using two's
complement representation

LDA jl$FF
ADDA jl$05

has to interpreted as adding $FF or-1 to $05 which when you take the roll over
into count give the answer $04 which is quite correct. However, if you
interpret the numbers as simple binary then the answer is the same, i.e. $05,
but it isn't the correct answer to $FF+ $05! Once again the point is that the
arithmetic is the same no matter what the bit patterns represent but the
meaning of the answer depends on whether you are using simple binary or
two's complement. You can still get an overflow while using two's
complement if the result is outside the range of numbers that can be
represented. How to detect a two's complement overflow will be described in
the next chapter.

You may be wondering how to convert a negative number to its two's
complement representation. This is quite easy to achieve using the NEG
instruction. There are three forms of the NEG instruction -

and

NEGA
NEGB

NEG 'address'

which will perform the NEG operation on the A register, the B register and the
contents of the memory location at 'address' respectively. (Notice that there
is NO NEGD instruction.) The NEG operation changes a two's complement
positive number into a two's complement negative number. For example,

LDA jl$01
NEGA

results in $FF in the A register which is of course the two's complement
representation of-1. One of the most useful facts about the NEG operation is
that it will not only change a positive number into a negative number but vice
versa. This is rather like the familiar -(-3) giving the result 3. For example,

LDA jl$FF
NEGA

77

Language of the Dragon

results in $01 in the A register. So, using NEG you can easily convert between
positive and negative numbers.

To summarise -

1) Using two's complement representation you can do arithmetic
with positive and negative numbers.

2) The valid range for eight-bit two's complement numbers is -128 to
+ 127 and for 16-bit two's complement numbers is -32768 to
+32767.

3) The result of a two's complement operation is only valid if the
correct result lies in the range that can-be represented.

4) The NEG instruction can be used to convert between positive and
negative eight-b i t two's complement numbers.

The CLR, INC and DEC instructions

The three instructions CLR, INC and DEC are in some senses unnecessary
in that they perform operations that can be carried out using other
instructions. However, they are very convenient to use and, as will be
explained in the next chapter, they do have a slightly different action than
their equivalents.

The CLR (CLeaR) instruction has three forms -

and

CLRA
CLRB

CLR 'address'

which perform the CLR operation on the A register, the 8 register or the
contents of the memory location at ' address' respectively. The CLR operation
is simplicity itself, it loads the register or the memory location with O (i.e. eight
zeros).

78

Chapter 6 Arithmetic Instructions

The ING (INCrement) instruction has three forms -
INCA
INCB

and

INC 'address'
which perform the INC operation on the A register, the B register and the
memory location at 'address' respectively. The INC operation simply adds
one to the register or the memory location.

The DEC (DECrement) instruction also has three forms -

and

DECA
DECB

DEC 'address'

which performs the DEC operation on the A register, the B register and the
memory location at 'address' respectively. The DEC operation, as you might
suspect, subtracts one from the contents of the register or memory location.

These three operations CLR, INC and DEC are faster and take less memory
than their equivalents and are nearly always to be preferred.

Adding arithmetic to the BASIC assembler.

Adding the instructions that have been introduced so far is mainly a matter
of including the appropriate DATA statements. The one exception is the
introduction of the operations on the D register that allow immediate
addressing i.e. LDD,ADDD and SUBD. Currently the BASIC assembler can
only handle eight-bit immediate addressing. All that has to be done to cope
with the possibility of 1 6-bit immediate data is to test for the presence of "D"
at the end of an instruction and then POKE two memory locations, the first

79

Language of the Dragon

with the most significant byte and the second with the least significant byte of
the value of the address field.

1 REM BASIC ASSEMBLER V6. 1

4 0 DATA ADDD,&HC3,&HD3,&HE3,&HF3,-1
41 DATA SUBA,&H80,&H90,&HA0,&HB0,-1
42 DATA SUBB,&HC0,&HD0,&HE0,&HF0,-1
43 DATA SUBD,&H83,&H93,&HA0,&HB0,-1
44 ATA CLRA,-1 ,-1 ,-1 ,-1 ,&H4F
45 DATA CLRB,-1 ,-1 ,-1 ,-1 ,&H5F
46 DATA CLR,-1 ,&H0F,&H6F,&H7F,-1
47 DATA INCA,-1 ,-1 ,-1 ,-1 ,&H4C
48 DATA INCB,-1 ,-1 ,-1,-1 ,&H5C
49 DATA INC,-1 ,&H0C,&H6C,&H7C,-1
50 DATA DECA,-1 ,-1 ,-1 ,-1 ,&H4A
51 DATA DECB,·1 ,-1 ,-1,-1 ,&H5A
52 DATA DEC,-1 ,&H0A,&H6A,&H7A,-1
53 DATA NEGA,-1 ,-1 ,·1 ,-1 ,&H40
54 DATA NEGB,-1 ,-1 ,-1,-1 ,&H50
55 DATA NEG,-1,&H00,&H60,&H70,-1
56 DATA STD,-1,&HDD,&HED,&HFD,-1
57 DATA LDD,-1,&HCC,&HDC,&HEC,&HFC,-1

6024 I F TYPE = l AND RIGHT$(M$, 1) = "D" THEN TYPE=4

The only line that needs any explanation is 6024 which checks for a " D" at the
end of the mnemonic in immediate mode i.e. when TYPE= 1. If this is
detected, TYPE is changed to 4 so that two memory locations will be POK Ed
with the value in A (see line 6040 in the existing program).

Extended precision arithmetic

So far, the only arithmetic that has been described in detail is eight-bit
simple or eight-bit two's complement arithmetic using the A and B registers.
As already briefly discussed, you can use the A and B registers together - as
the D register - but the range of operations on the D register is rather limited.
However, the D register is the simplest way of carrying out 1 6-bit arithmetic.
If you use the 16 bits to represent only positive numbers i.e. simple binary

80

Chapter 6 Arithmetic Instructions

then you can cope with a range of O to 65535. If you use 1 6-bit two's
complement then the range is -32768 to + 32767 In either case the range is
often large enough not to have to worry about extending it any further. For
example, if you want to add two numbers that are too large to be represented
in eight bits but are within the 1 6-bit range then -

LDD @NUM1
ADDD @NUM2
STD @NUM3

where @NUMl , @NUM2 and @NUM3 each label the first of TWO memory
locations that hold the 1 6-bit numbers. Subtraction can be achieved by
replacing the ADDO @NUM2 instruction by SUBD @NUM2 instruction. All
the comments about overflow and two's complement form apply to
arithmetic on the D register if you take into account the much increased
range. So for example, $FFFF is the 1 6-bittwo's complement representation
of -1 (because adding 1 to $FFFF makes it 'roll over' to 0).

The lack of a NEGD instruction makes it a little difficult to obtain the two's
complement form of a number. This little problem is easy to solve once you
recall that 0-x is -x. So to obtain the two's complement of a 1 6-bit number
use-

LOO fi,O
SUBD@NUM

where @NUM labels the first of two memory locations that holds the value.

Another problem that often occurs is combining eight-bit and 16 results.
For example, if during a program you have been calculating something that
can easily be represented correctly by eight bits, then it is a waste of time and
memory to use 16 bits when 8 will do. However, if at the end of the calculation
the result has to be added to or subtracted from a 1 6-bit number how can this
be done? The solution is simply to load the eight-bit value into the B register
,clear the A register and carry out the 1 6-bit arithmetic using the D register.
For example,

LDB@SMALL
CLRA
ADDD @LARGE
STD @ANS

81

Language of the Dragon

where @SMALL labels a single memory location holding the eight-bit value,
@LARGE labels the first of two memory locations holding the 16-bit value
and @ANS labels the first of two memory locations used to store the 1 6-bit
result. You could subtract the two numbers simply by changing the ADDO
@LARGE to SUBD @LARGE. This method works for simple binary numbers
because, to change an eight-bit value into, a 16-bit value all you have to do is
write eight zeros in front. However, things are not so simple for negative
two's complement numbers. For example, $FF is eight-bit two's complement
for -1 but adding eight zeros in front gives $0 0 FF which is 1 6-bit two's
complement for 255. The correct thing to do is to add eight ON ES to the front
of a negative two's complement number. For example, writing eight ones in
front of $FF gives $FFFF which is the 1 6-bit two's complement representation
of -1 . Obviously, for positive two's complement numbers the correct thing to
do is to write eight zeros in front of the number and so it looks as though
extending two's complement eight-bit to 16 bits is difficult. Once again the
6809 comes to our rescue- this time with the SEX (Sign EXtend) instruction.
If you load the B register with an eight-bit two's complement number and
than use the SEX instruction the A register will be loaded with eight zeros if
the number in B is positive and eight ones if the number is negative, correctly
extending the number. So, the two's complement equivalent of the previous
eight-bit/ 1 6-bit addition is -

LDB @SMALL
SEX
ADDD@LARGE
STD@ANS

where the labels have the same meaning as before. Notice that if the values to
be added were simple binary then using SEX to set the A register would give
you an incorrect answer - so take care and think about which representation
you are using.

Going back the other way, that is from 16 bits to eight bits, is also easy. If
you are using simple binary then obviously if the result of an operation leaves
the A register with nothing in it then you can ignore it and use the contents of
the B register as a correct eight-bit result. In other words, taking eight zero
bits off the front of a 1'6-bit number converts it into an eight-bit number. For
example·, $0 032 is the sameas$32 but $0132 is not the same as $32. For two's

82

ChBpter 6 Arithmetic Instructions

complement representation things are just a little more complicated. If you
throw away eight zero bits in front of a positive 16-bit two's complement
number then you can get the wrong answer. For example, $GOFF is 256 in
16-bit two's complement form but $FF is -1 in eight-bit two's complement
form. The solution is that you have to reverse what the SEX instruction does
in extending eight bits to 16. If the 1 6-bit number is positive and you can
remove eight zero bits from the front and leave a positive eight-bit number, or
if the 16-bit number is negative and you can remove eight ones from the front
and leave a negative eight-bit number, then you will have the correct result. If
you cannot do either of these then the 16-bit number is outside the range of
representation by an eight-bit number. FOr example, $0 0 0 4 is positive and
removing eight zero bits leaves $04 which is still positive and both numbers
represent 4, $FFFF is negative and removing eight ones leaves $FF which is
still negative and both numbers represent -1 . Fortunately it is not often that a
16-bit two's complement value has to be reduced to eight bits but this
difficulty should emphasise how carefully you have to treat binary numbers,

Multiplication - the arithmetic shifts and MUL

Today's microprocessors are reasonably good a t addition and subtraction
but most of them make a very poor job of the other two operations,
multiplication and division. The 6809, however, does at least have a simple
multiplication instruction but even with this advanced microprocessor it is
necessary to use a collection of special purpose subroutines if you want to do
very much multiplication or division. Before dealing with the multiplication
instruction it is worth introducing the easiest way of multiplying and dividing
by two - the arithmetic shifts.

The logical shifts were introduced in the last chapter and the arithmetic
shifts work in a similar way but their purpose is very different. If you are using
a bit pattern to represent a simple binary number then shifting the pattern one
place to the left is the same as multiplying the number by 2 and shifting it one
place to the right is the same as dividing it by 2 and ignoring any fractional
part. (Compare this to what happens to a decimal number when you multiply
it by 10 or divide it by 10 . 1 This means that LSL and LSR can be used to
multiply and divide by 2. For example, if the A register contains $0A (1 0 in
decimal) or

b7 b6 b5 b4 b3 b2 bl bO
0 0 0 0 1 0 1 0

83

Language of the Dragon

then the result of a LSLA is

0 0 0 1 0 1 0 0

or $14 (20 in decimal) and the result of a LSRA (on the original $0 A) is

0 0 0 0 0 1 0 1

or $05.

This use of the logical shifts is fine for simple binary numbers but when it
comes to two's complement representation, things start going wrong. If you
shift a negative two's complement number to the right using a LSR then a O is
shifted into b7, which changes the number from negative to positive and this
is not what is supposed to happen when dividing by 2. For example, if the
number in the A regi�ter is $86 {which represents -122),

b7 b6 b5 b4 b3 b2 b1 b0
1 0 0 0 0 1 1 0

then following a LSRA it contains

0 1 0 0 0 0 1 1

or $43 (which represents + 67). The correct answer to-122 divided by2 is-61
or in two's complement -

1 1 0 0 0 0 1 1

If you compare this number against the original you will see that to get the
correct answer only needs a 1 to be shifted into b7 when the right shift is
performed. However, this is not the whole answer because always shifting a 1
into b7 would give the wrong result when the number was positive. The
correct solution is to perform the right shift in such a way that b7 keeps its
value. This is the essence of an ASR (Arithmetic Shift Right) operation. The
ASR operation is available in the usual three forms -

84

and

ASRA
ASRB

ASA 'address'

Chapter 6 Arithmetic Instructions

which perform the ASA operation on the A register, the B register and the
contents of the memory location at 'address' respectively. The ASA
operation is can be thought of as -

--> - b7 b6 b5 b4 b3 b2 bl bO --> - C

I I
I I
-< ---

in other words, all the bits move one place to the right, bO is stored in the C bit
and b7 retains its current value.

Fortunately, there are no complications with the application of LSL to
two's complement numbers but it is usual to allow the mnemonic ASL to be
used to mean the same thing as LSL to make neat pairs of arithmetic shifts. In
other words, shifting a two's complement number to the left one place and
shifting a O into bO (as in LSL) is the same as multiplying the number by 2.
However, if multiplying the number by 2 would take it outside the range that
can be represented then, just as with addition and subtraction, you will get an
overflow (i.e. the wrong answer). For example, if the A register contains $20
or

b7 b6 b5 b4 b3 b2 bl b0

0 0 1 0 0 0 0 0

then following a ASLA instruction the A register contains -

0 1 0 0 0 0 0 0

or $40 which is twice $20. However, following a second ASLA the A register
contains -

1 0 0 0 0 0 0 0

or $80 which is the two's complement representation for -128 which is
definitely not twice $40 (+ 64 in decimal).

85

Language of the Dragon

You may be wondering what all the fuss about multiplying and dividing by
two is. The answer is that you can often multiply by small constants using
nothing but shifts and adds. For example, to multiply the contents of a
memory location by 5 you could multiply by 2 twice and then add the original
number to the result i.e. if a is the number 5a = 4a + a. Converting this to a
program (assuming that the memory location to be multiplied is at $7FOO)
gives-

LDA$7F00
ASLA
ASLA
ADDA$7F00
STA$7F00

This program will multiply the contents of $7 FOO but it is hardly complete in
the sense that it makes no checks for an invalid result due to overflow: to do
this would need instructions introduced in the next chapter!

For the general multiplication of two simple binary numbers the 6809
provides the MUL instruction. The MUL instruction multiplies the two simple
binary numbers in the A and B registers and leaves the result in the D register.
As the largest result that this can produce is $FFFF there is no chance of any
sort of overflow and there is nothing that can go wrong when using the MUL
instruction. For example, if the A register contains $0A (10 in decimal) and the
B register contains $52 (82 in decimal) then following a MUL instruction the D
register contains $0334 (820 in decimal). Notice that the MUL instruction will
only give the correct answer if the two numbers to be multiplied together are
in simple binary. In other words you can only directly multiply together
positive numbers using MUL.

Binary Coded decimal - the DAA instruction

This section introduces a third method of representing numbers using bit
patterns, 'Binary Coded Decimal' or 'BCD'. This representation is useful for
doing small amounts of arithmetic on numbers that have been typed in from a
keyboard and in situations where it is important that the 6809 does its
arithmetic, for reasons of accuracy, in the same way that it would be done
with pencil and paper,

86

Chapter 6 Arithmetic Instructions

The basic idea behind the BCD representation of a number is that using
four bits you can represent the decimal digits O to 9 (using simple binary).
Using this idea a number such as 2389 can be written as

2 3 8 9
001000111000 1001

lr. other words each digit of the number is coded separately in binary as a
group of four bits. This means that a single eight-bit memory location can be
i.Jsed to store a BCD number in the range O to 99 which should be compared to
the range of a simple eight-bit binary number i.e. 0 to 256. P It should be
obvious that you cannot add two BCD numbers and get the correct answer in
BCD using the standard ADD instruction. To make BCD arithmetic easier the
6809 provides that DAA (Decimal Adjust Al instruction. This instruction is a
little different from all the other instructions that we have looked at so far in
that it does nothing useful when used on its own. To be of any use the DAA
instruction has to used in conjunction with the ADD instruction. Indeed it is
probably better to think of the pair of instructions -

ADDAaddress
DAA

as a BCD ADD instruction. The DAA instruction corrects the result of an
ADDA instruction so that the correct BCD result is left in A. Notice that the
DAA will only correct the result of addition in the A register. Thus the DAA
instruction is one instruction that makes the A and B registers different. As an
example of BCD arithmetic consider adding decimal 12 to decimal 9. The
BCD representation of 12 is -

1 I 2
0001 I 0010

or $12. The BCD representation of 9 is -

o I s
00001 1001

or $0A. Adding them together using the ADD instruction e.g.

LDA 4f $12
ADDA 4f$0A

87

Language of the Dragon

gives the result $1 C which is not the correct answer in BCD. However,
following a

DAA

instruction the A register contains $21 or

2 I 1
0010 10001

which is the correct BCD result.

For completeness it is worth mentioning that you can write programs to
add more than two BCD digits using the ADC instruction (to be introduced in
Chapter Eight) to take account of the C bit. The DAA instruction adjusts not
only the result but also produces a correct value for the carry in BCD
arithmetic.

Adding shifts, DAA and SEX to the BASIC assembler.

None of the instructions introduced in the second half of this chapter
require any modification to the BASIC assembler other than the addition of
the appropriate DATA statements -

58 DATA SEX,-1,-1,-1,-1,&Hl D
59 DATA ASRA,-1,-1,-1,-1,&H47
60 DATA ASRB,-1,-1,-1,-1,&H57
61 DATA ASR,-1,&H07,&H67,&H77,-1
62 DATA ASLA,-1,-1,-1,-1,&H48
63 DATA ASLB,-1,-1,-1 ,-1,&H58
64 DATA ASL,-1,&H08,&H68,&H78,-1
65 DATA MUL,-1,-1,-1,-1,&HJD
66 DATA DAA,-1,-1,-1,-1,&H19

Summary
1 l There are three common ways of using bit patterns to represent
numbers -

i) simple binary - for positive numbers
ii) two's complement - for negative and positive numbers
iii) BCD - for doing decimal-like arithmetic

88

Chapter 6 Arithmetic Instructions

2) The range that can be represented by simple binary is -

for eight bits0 to 255 - represented by $00 to $FF for 1 6 bits0 to 65535 -
represented by $0000 to $FFFF .FI .IN 0 .IN 5

3) The range that can be represented by two's complement is-

for eight bits -128 .. 0 .. + 1 27 - represented by $FF .. $00 ... $7 F for 1 6
bits -32768 .. 0 .. + 32767- represented by $FFFF .. $0000 . . $7FFF

4) A single memory location can hold two BCD digits giving a range
of 0 to 99.

5) Arithmetic on binary numbers, both simple and two's
complement, can be carried out on eight-bit values using ADD, SUB
and NEG. Multiplication on simple eight-bit values can be carried out
using MUL and the arithmetic shift instructions can be used to
multiply and divide two's complement numbers by two.

6) Sixteen bit arithmetic can be achieved using the D register and
LDD, STD, ADDO and SUBD for both simple and two's complement
binary numbers. Eight-bit two's complement values can be converted
into 1 6-bit two's complement values by the use of the SEX
instruction.

7) Finally BCD addition can be carried out two digits at a time using
the instruction pair ADDA, DAA.

Micro projects

1) Write a short program that will add together a pair of eight-bit
simple binary numbers. Assume that the first number is stored in
@DATAl, the second in @DATA2 and that the result has to be
stored in @ANS. Would your program be capable of adding together
200 and 50?

2) Make any modifications that are necessary to the program in
question 1 so that it can add together a pair of two's complement
numbers. Would your program be capable of adding together 105
and -15?

89

Language of the Dragon

3) Write a short program that will multiply an eight-bit two's
complement number by 9. (Hint: you cannot use the MUL instruction
on two's complement numbers!)

4) Write a short program to subtract a 16-bit number from an
eight-bit number assuming that both are two's complement
representcitions. Assume that the first number is stored in a pair of
memory locations the first of which is labelled @BIG and the second
is stored in a single memory location labelled @LITTLE. How many
memory locations will you need to store the answer if you do nothing
more to it after the subtraction?

90

Chapter Seven

Branch Instructions

This chapter introduces the assembly language equivalent of the IF .. THEN
GOTO instruction of BASIC, However, instead of a single instruction that can
cause a jump as a result of a range of different conditions, as with the BASIC
IF, assembler uses a range of instructions each one causing a jump in
response to a different condition. This range of instructions is collectively
referred to as the 'branch' group or the 'conditional branches'. Once you
know how to use the conditional branches the way is clear to use the
assembly language equivalents of IF statements, conditional loops and FOR
loops.

As these program forms are so important, you may be wondering why they
have been left so until such a late chapter for discussion. The reason is that all
the conditional branches make use of another register in the 6809 - the CC or
'Condition Code' register - that records certain facts about the result of the
last operation. This is simple enough. The complication is that these factsare
always recorded but whether they make any sense or not depends on what
you are using the bit patterns to represent. For example, the CC register
records whether or not the last result was negative or positive but this
information is only meaningful if you are working with two's complement
numbers. For this reason, a consideration of the conditional branches have
been left until you have made the acquaintance of not only simple binary but
two's complement and BCD representations as well. It is possible to use the
branch instructions without worrying about the subtleties of what the bit
pattern is representing but sooner or later such an approach will lead you to
make a programming error that you have little chance of finding! The branch
group of instructions are best treated as a special group by the BASIC
assembler because they all use a new addressing mode, 'relative addressing',
which is also described in this chapter.

91

Language of the Dragon

Unconditional branches and relative addressing.

The 6809 has two instruction BR/\ (BRAnch) and LBRA (Long BRanchl
that seem to do the same job as the J MP instruction in that they both transfer
control to an instruction at a specified address. However, the way that the
address is specified in a BRA or LBRA instruction is different and has certain
advantages over the addressing modes that can be used with the JMP
instruction. The addressing mode used with the BRA and LBRA instructions
is known as 'relative addressing'. The form of the BRA instruction is -

BRA offset

where 'offset' is an eight-bit two's complement binary number. As the
machine code for BRA is $20 and the offset is eight bits the whole BRA
instruction can be stored in just two memory locations. As already
mentioned, the BRA instruction behaves like the JMP instruction in that it
transfers control to the machine code instruction at a particular address, The
only question that remains to be answered is how the offset determines the
destination address (i.e. the address that control will be transferred to). This it
does in a very clever way by giving how far away, in terms of memory
locations, the destination address is. To be more exact the offset specifies the
number of memory locations the destination address is away from the
location of the next instruction to be carried out (see fig 7 .1) . The reason for
this use of the start of the next instruction as the position that the distance to
the destination address is measured from is a result of the way that the 6809
works. If you recall, the PC or Program Counter always points at the address
of the ne�t instruction that will be obeyed. While the BRA instruction is in the
process of being carried out the PC register is pointing at the first memory
location of the next instruction and all that the BRA instruction does is to add
theoffsettothisvalue of the PC register (see fig 7 .1). lfthe addressof the start
of the BRA instruction itself is M then the destination address can be
anywhere in memory from -

M + 2-128 up to M + 2 + 127

As M + 2 is the start of the next instruction and the range of an eight-bit two's
complement number is-128 to + 127. Thus you cannot transfer control to any
memory location using the BRA instruction. You might think that only being
able to reach memory locations roughly 100 locations higher and lower than
the position of the BRA instruction would be so restricting that the JMP

92

Chapter 7 Branch Instructions

destination _H
address

0
... ___ _

Start of _..

next instruction

offset

$20 BRA

memory

PC + offset

PC

Fig 7.1 Relative addressing and BRA

93

Language of the Dragon

instruction would always be preferred. This is not the case because, in
practice, many of the destinations of jumps within a program are less than 100
memory locations away and the BRA instruction takes less memory to store
and is slightly faster than the equivalent JMP instruction. These
considerations of efficiency are, however, only a small part of the reason for
using the BRA instruction. If you JMP to a location within a program then,
when it is assembled, the address of the destination is built into the machine
code. This is fine as long as the program is stored in the position in memory
that it was assembled to occupy. However, as the destination of a BRA
instruction is assembled into the program as an offset from the current
address that the BRA instruction occupies, the BRA will work no matter
where the program is loaded into memory. For example, if a BRA instruction
transfers control to an instruction 10 memory locations away then the
instruction will be 10 memory locations away no matter where the whole
program is loaded in memory. If the program uses nothing but relative
addressing then it can be loaded and run correctly anywhere in memory- that
is it is 'position independent'. Position Independent Code {PlC) is a fairly
advanced topic and it is best left until you have gained plenty of standard 6809
programming experience. It is, however, worth commenting on the fact that
the 6809 can produce completely position independent code.

The position independence property of relative addressing is so useful that
the 6809 has a second unconditional branch instruction, LBRA (Long
BRAnch), which uses a 1 6-bit two's complement offset, allowing the
destination address to be anywhere in memory. The format of the LBRA
instruction is -

LBRA offset

where the machine code for LBRA is $ 1 6 and the offset occupies two memory
locations in the standard two's complement format. Once again, the
destination address is obtained by adding the offset to the address of the next
instruction. The only difference is that the LBRA instruction takes up three
memory locations and the offset is a 1 6-bit two's complement number. This
makes the addressing range of the LBRA instruction

M + 3-32768 up to M + 3 + 32767

where M is the address of the start of the LBRA instruction .

94

Chapter 7 Branch Instructions

Relative addressing and the BASIC assembler

Relative addressing is an addressing mode unique to the branch group of
instructions For this reason, it makes sense to deal with it and the branches
separately from the rest of the 6809 instructions and addressing modes. The
easiest and most efficient way of doing this is to change subroutine 4000 to
check for a mnemonic starting with B or LB. With one exception, the
instruction BIT, any mnemonic that starts with B is a member of the branch
group and any instruction starting with LB is a long branch. The machine
codes for the branch group are kept as a separate list of DATA statements
starting at 400. This list can be simpler than the list used for other machine
code instructions because the branch instructions either use eight-bit or
1 6-bit relative addressing. The format of each 'branch' data statement can
therefore be -

DATA mnemonic, code for eight-bit relative, code for 16-bit relative

and this has the added advantage of being very similar to the format of the
branch table in Appendix I. Once a branch instruction has been detected then
all that has to be done is to read through the table of other instructions until
the Zl.Z. that marks the end is encountered and then search though the branch
table, remembering to use the new format for the DATA statements.

1 REM BASIC ASSEMBLER V7 .1

400 DATA BRA,&H20,&H16
499 DATA ZZZ,-1 ,-1

4009 IF (LEFT$(M$, 1) = "B" AND LEFT$(M$,3)< > "BIT") OR
LEFT$(M$,2) = "LB" THEN GOT04500

4500 READC$
4510 FOR K = l TO5:READC(K):NEXT K
4520 IFC$< > "ZZZ"THEN GOTO4500
4530 IF LEFT$(M$, 1) = "L" THEN M$= RIGHT$(M$,3):BR =2 ELSE
BR = l
4535 TYPE= BR
4540 READC$
4550 FORK = 1 TO2:READC(K):NEXTK
4560 IFC$= "ZZZ"THENI = I + 1 :ER = 1 :RETURN
4570 IFC$ = M$THENRETURN
4580 GOTO 4540

95

Language of the Dragon

Lines 400 and 499 are the only DATA statements in the branch list so far (499
marks the end of the list with llZ). Line4009 detects the the mnemonic is one
of the branch group and passes control to the routine at 4500 to 4580. This
routine first skips over the rest of the instruction table and then reads the
branch table to find the matching mnemonic. Line 4530 test to see if the
instruction is a branch or a long branch. If it is a long branch then the L is
removed from the front of the mnemonic and BR is set to 2. If it is a normal
branch then BR is set to 1. The variable TYPE is then set to the same value as
BR, because once the matching mnemonic in the table is found the code for a
branch will be in C(1) and for a long branch in C(2). It should be noticed that
this doesn't imply any connection between relative addressing and address
modes corresponding to TYPE= 1 and TYPE =2 (immediate and direct) it is
simply a programming convenience.

The problem of detecting branch instructions and finding the correct
machine code is fairly easy but what about handling relative addressing? In
machine code the destination address is specified as an offset from the
address of the next instruction but is there any need to inflict this difficult
calculation on the assembly language programmer? The answer is clearly no!
The assembler should allow the programmer to specify addresses in the usual
way either by writing the actual address or by using a label, and then it should
produce the correct machine code by calculating the necessary offset. This
means that instructions like -

BRA @LOOP
LBRA $BF00

are perfectly correct assembly language. To a certain extent, this normal use
of addresses hides the fact that BRA and LBRA are using relative addressing.
However, you will soon be reminded of the fact if, for example, @LOOP is too
far away to be reached by an eight-bit offset!

The modification to the BASIC assembler has to convert the address value
in A to a relative address if the instruction is a branch. Detecting that the
address field belongs to a branch instruction is simply a matter of testing the
variable BR for a value greater than O (BR= 1 is a branch, BR =2 is a long
branch). Converting the address to relative form is a little more complicated.
If the branch is to transfer control to the address stored in A and the address at

96

Chapter 7 Branch Instructions

which the branch instruction will be stored is in P, then the offset can be
calculated using -

OF = A - 2 - P

for a branch and

OF = A - 3 - P

for a long branch.

Recalling that the value of BR for branches and long branches is 1 and 2
respectively, you should be able to see that the offset is equal to -

OF = A - BR - 1 -P

in both cases. If the offset turns out to be positive then there is nohing else to
be done apart from POKEing 1 memory location for an eight- bit relative
address and 2 memory locations for a 1 6-bit relative address. If the offset is
negative then it has to be converted to the correct two's complement form
before being POKEd into memory. For an eight-bit relative address this can be
done by -

256-0F

and for a 1 6-bit relative address by

65536-0F

Putting all this together gives the following modification

5024 IF BR>O THEN GOTO 5700

5700 IF PASS = 1 THEN A = O :RETURN
5705 OF= A-BR- 1 -P
5710 IF BR = 1 ANO (OF< -128 OR OF> 1271 THEN
ER =4: 1 = I+ 1 :GOT09000
5720 IF OF> =0 THEN A= OF:RETURN
5730 IF BR = 2 TH EN GOTO 5760
5740 A = 256-0F

97

Language of the Dragon

5750 RETURN
5760 A= 65536-OF
5770 RETURN

6021 IF B R = 2 THEN TYPE = 4
6060 TYPE=0:BR=0

Line 5024 detects a branch instruction and hence a relative address and
transfers control to a new routine at 5700. This calculates the offset, including
conversion to two's complement if necessary, as described earlier. Line 5710
checks that an eight-bit relative address is in the correct range.

Conditional branches - the Condition Code regist:?r

The BRA and LBRA instructions always transfer control to their
destination addresses - in this sense they form another two assembly
language equivalents of the BASIC GOTO instruction. The conditional
branches are similar to the BRA and LBRA instruction in that they use the
same addressing modes - eight-bit and 16-bit relative addressing -
respectively - but they do not always transfer control to their destination
addresses. In this sense the conditional branches form the assembly
language equivalent of the BASIC IF condition THEN GOTO xxx. However,
in this particular case the range of conditions that can be tested is very
restricted. Also, whether or not the branch is taken depends on the result of a
previous operation rather than any calculation built into the branch
instruction itself. For example, the BEO (Branch EOual) instruction will
transfer control to its destination address if the result of the last operation was
zero. So if an addition or subtraction instruction is followed by a BEQ it is the
result of this prior arithmetic which is tested to see if it was 0 to decide
whether or not the branch is taken.

This idea of looking back at the result of the last operation to decide the
outcome of a branch instruction is perhaps easier to appreciate once you
know how it works. The CC or Condition Code register has already been
mentioned in earlier chapters as the place where the C or Carry bit is stored. In
fact it is an eight bit register in which each of the bits has a special name and a
special function. For example, one of the bits in the CC register, b2, is called
the Z or Zero bit and this is set to 1 if the result of the last operation was zero
and a 0 otherwise. Notice that the Z bit, like the C bit, is changed by the

98

Chapter 7 Branch Instructions

previous operations even if it is not going to be used in anyway later on. In this
sense the CC register really does monitor the 'condition' of the 6809 by
continually recording information about previous results.

Not all of the eight condition bits within the CC register are of interest to us
at this stage. Of the eight bits only five are concerned with the outcomes of
operations on data and so only these five are described below:

The Condition Code Register

b7 b6 b5 b4 b3 b2 b1 bO
H N Z V C

where '.' indicates that the purpose of the bit will be described in Chapter Ten.

The H bit
The H or Half carry bit is used by the DAA instruction to do BCD arithmetic.

(See Chapter Six). Normally this bit isn't of any direct interest or use to the
assembly language programmer. The best policy is to accept that the DAA
instruction uses it and then forget about it.

The N bit
The N or Negative bit is always equal to b7 of the last result. Obviously if

you are working with simple binary numbers all that the N bit will indicate is
whether or not the last result was equal to or bigger than $80 and this is not
very useful. However, if you are working with two's complement numbers,
b7 is 1 if the number is negative and O if it is positive. Thus for two's
complement numbers the N bit indicates whether or not the last result was
negative or not.

The Z bit
The Z or Zero bit has already been discussed briefly. It is 1 if the previous

result was zero and O otherwise.

99

...

Language of the Dragon

The V bit

The V or overflow bit is the most complicated of all the condition code bits.
It is 1 if the last operation caused a two's complement overflow and 0
otherwise. Of course if you are not using the two's complement
representation then the V bit's value makes no sense at all!

The C bit

The C or Carry bit has already been described in Chapters Five and Six in
connection with the logical and arithmetic shift operations. Its most common
use is as a carry or borrow in multiple precision arithmetic and this is explained
fully in Chapter Eight. However, it is also used to test for overflow in simple
binary arithmetic and as a way of discovering the value of the bit shifted out as
a result of a shift instruction. In its role as a carry bit used to detect overflow it
is best thought of as a ninth bit produced as a result of an eight-bit addition or
subtraction. You should be able to see that following simple eight-bit binary
arithmetic the C bit should.be 0 if the result can be represented in eight bits. In
the same way it can be thought of as a 17th bit as a result of 1 6-bit addition or
subtraction. Once again if the result can be correctly represented in 1 6 bits
there should be no carry and the C bit should be 0.

Notice that the four condition code bits N, Z, V and C that are used by the
conditional branches fall into two groups. The N and Z bits both reflect a
property of a single number or bit pattern - i.e. is it negative or zero
respectively. However, the V and C bits reflect an aspect of the result of an
operation - i.e that an overflow or a carry occurred. For this and various other
reasons, not every instruction changes all, or even any, of the condition
codes. It is obviously very important to knbw which of the condition code bits
any given instruction will change but to fist each one here would take too
much space. A complete list of which bits each instruction affects is given as
part of Appendix I and this should be used for reference. Fortunately, it is
usually easy to work out which instructions do and do not change the
condition codes. For example, instructions which load registers set the N and
Z bits so that tests can be made on the value loaded. The C bit is left unaltered
lit is difficult to see how a 'carry' can arise when you are not doing any
arithmetic!) and the V bit is zeroed because no overflow has occurred.
However, until you are familiar with 6809 assembler the best policy is to look
up in Appendix I which condition codes are affected by the instructions prior
to making use of the condition codes.

1 00

Chapter 7 Branch Instructions

Setting the condition codes directly - AND CC and ORCC.

The condition code bits are used by the conditional branch instructions to
determine whether or not the branch should be taken. Before discussing the
details of each conditional branch instruction it is worth examining ways of
intentionally setting the condition code bits.

There are two instructions that allow the assembly language programmer
to alter the condition code register directly - ANDCC and ORCC. Both
instructions can only be used with immediate addressing and the action of -

ANDCC jldata

is to form the AND of the current contents of the CC register and the eight bit
value 'data' leaving the result in the CC register. The action of

ORCC jldata

is to form the OR or the current contents of the CC register and the eight bit
value 'data' leaving the result in the CC register. If you followed the discussion
of bit manipulation in Chapter Five you will realise that AN DCC and ORCC
allow you to set any bit in the CC register to either O or 1 without affecting the
current state of any of the other bits. For example, if you want to set the C bit
to zero (sometimes referred to as 'clearing the carry') then use-

ANDCC jl$FE

lf you want to set the C bit to 1 then use -

ORCC jl$01

Although you can change any of the bits in the CC registE!r in practice it is only
the C bit that is ever changed directly in this way. Generally before any ROL or
ROR instruction the C bit should be initialised to either O or 1 as appropriate.
(This is also the case when using multiple precision arithmetic with the ADC
and SBC instructions to be explained in Chapter Eight.)

10 1

Language of the Dragon

The simple conditional branches
The conditional branches are best thought of as being made up of three

different groups:

he simple conditional branches that each test a single condition code
bit.

The signed conditional branch instructions that are used with two's
complement numbers.

The unsigned conditional branches that are used with simple binary
numbers.

In this section the simple conditional branch instructions will be described.

As the simple conditional branch instruction each test one of N, Z, V and C
in the condition code register you might expect that there would be exactly
four such instructions. In fact there are eight simple condition branches
because each condition code bit is associated with a pair of branches - one
that is taken if the bit is O and one that is taken if the bit is 1 . The complete set
of simple branch instructions is -

bit branch taken if 0 branch taken if 1
N BPL - Branch Plus BMI - Branch Minus
z BNE - Branch Not SEO-Branch EQual

Equal
V BVC - Branch V BVS - Branch V Set

Clear
C BCC - Branch C BCS- Branch C Set

Clear

Each of these instructions can only be used with eight-bit relative addressing.
If the destination address is outside the range of eight-bit relative addressing
then each of the simple branch instructions is available in a long branch form,
e.g. BPL is also available as LBPL (Long Branch Positive).

The way that each of the above simple conditional branches behaves is
easy enough to understand. What is not so clear is that way that each one
might be used as part of a program. It is perhaps worth dealing with each pair
in turn.

102

Chapter 7 Branch lnsrructions

BPL and BMl - telling positive from negative
As already described the N bit is equal to b7 of the last result that affected the
condition codes. Testing the state of this bit can be used to tell the difference
between a two's complement positive or negative result. In the following
example,

LDA jl$05
SUBA jl$08
BMl @MINUS

the branch to @MINUS will be taken because the result of the subtraction is
negative. Notice that as far as BPL and BMI are concerned O is a positive
number. Of course, there is nothing stopping you from using BPL and BMI
when the numbers involved in the arithmetic are simple binary. Howev_er, the
interpretation of the branch as a test for positive and negative numbers then
becomes a nonsense. There is one problem that can occur with the use of
BPL and BMI. If during the course of a two's complement calculation the
result becomes invalid due to an overflow, the BMI or BPL will still be selected
according to the value of b7 of the result but this result may not be what you
expect it to be. In other words, it is possible to take a correct branch from an
incorrect answer! For example, consider -

LDA jl$7F
ADDA jl$2
BPL@PLUS

$7F is the two's complement representation of 1 27. Adding $2 to this should
give the result 129 and so the BPL should transfer control to @PLUS.
However, 1 29 is outside the positive range of an eight-bit two's complement
number and so the result is actually $81 which is the two's complement
representation of -1 28 and the branch to @PLUS is therefore not taken and
control passes to whatever instruction follows the BPL. This problem of
branching or not branching on an invalid result is a problem to be found in
other branch instructions.

BEO and BNE - testing for zero
There are no complications in using the BEO and BNE instructions. If the
result of the last operation was zero then a BEO branch will be taken. If the
result was anything else other than zero then the BNE branch will be taken.
The interesting and useful thing about the BNE and BEQ pair is that there is no
need to worry about number representation. Perhaps the best way to

103

Language of the Dragon

understand this is that a BEO will be taken if all eight bits of the results bit
pattern are 0 . This all 0 pattern can arise in a number of ways. For example, if
the bit patterns are being used as two's complement numbers then -

LOA Jl$10
SUB Jl$10
BEQ@ZERO

The result of the SUB instruction is $0 and so the BEO transfers control to
@ZERO. A less obvious example is -

LDA Jl$FO
ANDA Jl$0 F
BEQ @ZERO

The result of AN Ding $FO with $OF is $00 and so the branch to @ZERO is
taken.

BVC and BVS - testing for overflow
The instructions BVC and BVS test whether or notthe last operation resulted
in a two's complement overflow. The V bit is so specialised that there is really
only one use for the BVC and BVS instructions and that is to test for a valid
result at the end of any two's complement arithmetic. For example,

LOA Jl$7F
ADDA Jl$0 2
BVS @ERROR

results in control being transferred to @E�ROR as, in two's complement, $7 F
is 1 27 and adding 2 takes the result outside the valid range so overflow occurs
and the V bit is set. You can use BVS and BVC in this way to call or skip an
error handling routine. The problem of detecting overflow in multiple
precision arithmetic (see Chapter Eight) is easily solved by testing for
overflow after the last addition or subtraction.

BCC and BCS - testing for simple binary overflow
BCC and BCS are used following simple binary arithmetic in much the same
way that BVC and BVS are following two's complement arithmetic. In other
words following simple binary arithmetic there should be no carry if the result
is valid. For example,

104

LOA 1f$FE
ADDA 1f$02
BCS @ERROR

Chapter 7 Branch Instructions

results in the branch to @ERROR being taken because $FE added to $02 gives
the result $01 and a carry. There are other uses for BCC and BCS apart from
detecting simple binary overflow. By using LSL and LSR instructions it is
possible to shift any bit into the C bit and then use the BCS and BCC
instruction to take a branch depending on whether the bit was 0 or 1 . By
detecting simple binary overflow following a subtract instruction it is possible
to tell that the value in the register was less than the value in the memory- but
more of this later.

The signed conditional branches

The signed conditional branches are concerned with comparing the
relative magnitudes of 2 two's complement numbers. In this sense they come
closest to the BASIC conditional tests < , > , < = and> = . Indeed there is a
signed conditional branch for each of these relations and, if BEG and BNE are
included, for = and < > as well. The signed conditional branches are -

test branch if true

r> m BGT-Branch
Greater Than

r> = m BGE-Branch
Greater than or
Equal

branch if false

BLE-Branch less than or equal

BLT-Branch Less Than

r= m BEQ-Branch Equal BNE-Branch Not Equal

where the branches are to be used following a subtract instruction, r is the
contents of the register and m the contents of the memory. The relationships
in the first column are to be interpreted as two's complement relationships.
That is, in eight-bit two's complement representation $80 is less than $7F as
$80 is-128 and $7F is + 127. Consider, for example-

LDA 1f$50
SUBA 1f$24
BGT @BIGGER

105

Language of the Dragon

The branch to @BIGGER is taken because $50 is greater than $24. (In this
case r, the value in the register, is$50 and m, the value in the memory, is$24.)
This is all there is to using the signed conditional branches.

If you subtract two numbers, one stored in a register and one in memory (or
immediate data) then you can use any of the above branch instructions as
long as you remember to interpret the numbers as two's complement
numbers. You might think that two's complement overflow might be a
problem with the signed conditional branches. In other words, do the signed
branches work when a two's complement subtraction results in an invalid
result? The surprising answer is that they do! Even when the result of the
subtraction is invalid, i.e. a BVS is taken indicating an overflow, the signed
conditional branches still work correctly. The reason for this is that the signed
conditional branches can deduce the sign that the correct result would have
had if it could have been worked out correctly! Consider, for example-

LDA jl$80
SUBA jl$01
BLE @SMALL

In this case the result of the subtraction should be -129 (because $80 is -128 in
two's complement and subtracting 1 gives -129). However, because -1 29 is
outside the range of representation of eight-bit two's complement arithmetic,
the result is actually $7F or + 127 which is incorrect (and the V bit is 1 to
indicate overflow) but the branch to @SMALLis correctly 1-128 is less than 11
taken. It is worth remembering that (and trying to understand why) the signed
conditional branches will work even IT the result of the subtract is invalid.

The unsigned conditional branches

The unsigned conditional branches are the simple binary equivalents of the
signed conditional branches. In other words they can be used to compare two
simple binary values. The unsigned conditional branches are -

1 0 6

test branch if true branch if false

Chapter 7 Branch Instructions

r> m SHI-Branch Higher BLS-Branch Lower or Same

r> = m BHS-Branch
Higher or Same BLO-Branch LOwer

r= m BEG-Branch EOual BNE-Branch Not Equal

Once again the branch instruction have to follow a subtract operation. r is the
numbers stored in the register and rn is the number stored in the memory
location (or immediate data), for example -

LDA lf$80
SUBA lf$7F
BHl @HIGHER

In simple binary $80 is 128 and $7 F is 127 so the result is 1 and the contents of
the register are larger or higher than the memory location and hence the
branch to @HIGHER is taken. In the same way that the signed conditional
branches will branch correctly on an invalid result so will the unsigned
conditional branches. Consider, for example -

LDA lf$7F
SUBA lf$80
BLO @LOWER

The result of 127 minus 128 is -1 and this cannot be represented in simple
binary (no negative number can be represented in simple binary!) but even
though the result is incorrect ($FF) the branch to @LOWER is still correctly
taken.

It is worth pointing out that BLO is identical to the BCS instruction and the
BHS instruction is identical to the BCC instruction. The additional
mnemonics BLO and BHS are used mainly for convenience and to distinguish
the uses of the BCS and BCC instruction that are concerned with testing the
value of bit shifted into the carry during logical shifts etc and applications of the C
bit that involve arithmetic. It is important not to confuse the signed and
unsigned conditional branches. If you are using two's complement
representation, i.e. if you are using negative numbers, then use the signed

107

Language of rhe Dragon

conditional branches. If you are not using negative numbers then you are free
to choose a simple binary representation and the unsigned conditional
branches.

Adding conditional branches to the BASIC assembler

Adding the conditional branches to the BASIC assembler is a matter of
adding the appropriate DATA statements to the separate branch list starting
at-400. It seems worth also adding the DATA statements for the instructions
that will be described in the rest of the chapter at this point to avoid generating
too many versions of the BASIC assembler.

1 REM BASIC ASSEMBLER V7.2

67 DATA CMPA,&H81 ,&H91,&HA1,&HB1,-1
68 DATA CMPB,&HCl ,&HDl ,&HEl ,&HF1 ,-1
69 DATA CMPD,&H1083,&H1093,&H10A3,&H10B3,-1
70 DATA BITA,&H85,&H95,&HA5,&HB5,-1
71 DATA BITB,&HC5,&HD5,&HE5,&HF5,-1
72 DATA ANDCC,&Hl C,-1 ,-1 ,-1,-1
73 DATA ORCC,&Hl A,-1,-1 ,-1 ,-1
74 DATA TSTA,-1,-1,-1,-1,&H4D
75 DATA TSTB,-1 ,-1 ,-1,-1,&HSD
76 DATA TST,-1 ,&H0D,&H6D,&H7D,-1

401 DATA BCC,&H24,&H1024
402 DATA BCS,&H25,&H1025
403 DATA BEQ,&H27,&H1 027
404 DATA BGE,&H2C,&H102C
405 DATA BGT,&H2E,&H102E
406 DATA BHl,&H22,&H1 022
407 DATA BHS,&H24,&H1024
408 DATA BLE,&H2F,&H102F
409 DATA BLO,&H25,&H1025
410 DATA BLS,&H23,&H1023
411 DATA BLT,&H2D,&H102D
412 DATA BMl,&H2B,&H102B
413 DATA BNE,&H26,&H1026
414 DATA BPL,&H2A,&H102A

108

415 DATA BSR,&H8D,&H17
416 DATA BVC,&H28,&H1028
417 DATA BVS,&H29,&H1029

Chapter 7 Branch Instructions

The only other modification to be made to the assembler is to take account of
the fact that most of the long branch instructions use two memory locations
for their machine code. This use of two memory locations to code an
instruction is a way of getting round the limitation of a single memory location
only being able to code 256 different instructions. The 6809 uses two codes
$10 and $11 as special markers to indicate that there is a second part to the
code stored in the next memory location. In other words there are two groups
of instructions that use two memory locations to store their code, a group
calleci 'page two instructions' that start $10 and a group called 'page three
instructions' that begin $11 . Apart from taking up more memory and being a
little slower, instructions that need more than one memory location for their
code are only a problem to the assembler. However, this double·length form
of the instruction can be dealt with in the BASIC assembler very easily -

601 0 IF CITYPEI< 256 THEN POKE P,CITYPEI
6011 IF CITYPEI> 255 THEN POKE P,INTIC(TYPE)/256): POKE
P + 1,C(TYPE)-INTICITYPE)/256)*256:P= P + 1

Testing without changing - CMP, TST and BIT

The conditional branches do provide us with a way of transferring control
to some part of a program depending on the result of comparing two numbers
in a way that is not unlike the BASIC IF statement. However, to compare two
values it is necessary to subtract one from the other as shown in the many
examples above. This subtraction produces a result (i.e. the difference
between the two numbers!) that may not be required by the program. For
example, it may be that you want to use the BEO instruction to test when thE!
A register is equal to a particular value. The obvious and direct way of doing
this would be -

SUBA 1\$10
BEQ @LOOP

where the contents of the A register are compared to $1 0 by having $10
subtracted and then a BEQ takes its branch if the result was zero. This method
works but it destroys the current value in the A register, replacing it by the

109

La�guage of the Dragon

result of the subtraction, and it might be that if A isn't equal to $10 then the
current value is used by later parts of the program. One solution would be to
save the A register before the subtraction and re-load it with its old value after
the subtraction and the branch but this is a very inefficient way of comparing
two values.

The correct solution is to use the CMP instruction which will carry out the
subtraction and set the condition codes in exactly the same way as a SUB
command but will not save the result. In other words, following a CMPA
#$10 command the condition codes are set as if $10 had been subtracted
from the A register but the contents of the A register are left unchanged. Now
the problem of comparing two numbers is completely solved and the previous
example can be written -

CMPA #$10
BEQ @LOOP

The branch will be taken if the A register is equal to $10 but the contents of the
A register remain unaltered no matter what happens.

The CMP instruction has another advantage over the SUB instruction in
that it is available as

and

CMPA address
CMPB address

CMPD address

The final form allows you to compare the contents of the D register (see
Chapter Six) with a 16-bit value and branch on the result. For example-

CMPD #$0172
BLT @LESS

will take the branch to @LESS if the contents of D are less than $0172 in two's
complement representation.

1 1 0

Chapter 7 Branch Instructions

The problem of testing to see if a value is zero, positive or negative is so
common that there is a special instruction for just this purpose. The TST
instruction has exactly the same effect as a CMP to zero but it can be used to
test the value stored in a memory location directly. TST comes in three forms.
The first two are

TSTA

and
TSTB

which have the same effect (but take less memory) than

CMPA 1\0

and

CMPB 1\0

The third form

TST address

effectively subtracts zero from the memory location at address and sets the
condition code bits accordingly. TST can be used with direct and extended
addressing.

In the same way that the CMP operation performs a subtraction without
altering the contents of the register involved, the BIT (Bit Test) instruction
performs the AND operation with out changing the register. A typical
application of the BIT instruction is to discover when two bit patterns,
whatever they represent, are the same or not. For example, suppose you
wanted to know if the value stored in the A register had b4 set to 1 irrespective
of the setting of the other bits. Then you could use -

11 1

Language of the Dragon

BITA lf$10
BNE @SET

because the result of AN Ding anything with $10 can only be non-zero if b4 is
set to 1 - try it! As with the CMP instruction, following BITA the contents of
the A register are unchanged. The BIT instruction has only tw_o forms-

BITA address

and

BITB address

In other words, there is NO 1 6-bit BITD form.

Adding CMP and BIT to the BASIC assembler is simply a matter of adding
their DATA statements and this has already been done in V7 .2 given above.

BSR and LBSR

There are two remaining unconditional branches to be described. To a
certain extent this is because they are not really needed unless you are trying
to write position independent programs (see earlier in this chapter). The BSA
(Branch to SubRoutine) instruction behaves exactly like the JSR instruction
in that it transfers control to a subroutine except that, like all the branches, it
uses relative addressing. If the subroutine is out of the range of eight-bit
relative addressing then you can use LBSR (Long Branch to SubRoutine)
which, using a 16-bit offset, can reach a subroutine anywhere in memory. lt is
good assembly language programming practice to use BSR and LBSR to
jump to subroutines within a program that you are writing but JSR to jump to
a subroutine external to your program - in the BASIC ROM say. The reason
for this is discussed more fully in the last chapter but, essentially, subroutines
within your program will move their location if you move your program and so
to produce position independent you should use relative addressing.
However, subroutines that are outside your program generally don't move
when your program does and so relative addressing would be inappropriate
in this case. BSA and LBSR have already been added to the BASIC
assembler.

112

Chapter 7 Branch Instructions

Thinking BASIC - IF, conditional loops and FOR loops

Most of the work in a BASIC program is done using IF statements,
conditional loops and FOR loops. Now that we know about the conditional
branches it is possible to see how these familiar statements can be made up in
assembler.

The only form of the IF statement that has an easy translation into assembly
language is IF condition THEN GOTO where the 'condition' is a simple
relation between two values. For example, the BASIC -

10 0 IF ANS> CONST THEN GOTO 30 0

is similar to the assembler -

LDA @ANS
CMPA @CONST
BGT @SKIP

where @ANS and @CONST are memory locations holding the two values to
be compared and @SKIP labels an instruction further down the program.
Notice that as BGT has been used the assumption is that the two values are
two's complement numbers in the range-128 to + 127. If boh values cannot
become negative then the positive range could be extended to + 255 but the
branch instruction would then have to be changed to BHI @SKIP. Once
again it is important to be clear what the bit patterns are being used to
represent.

The conditional loop in BASIC is simply a GOTO statement arranged to
form a loop and an IF statement to transfer control out of the loop when a
condition is satisfied. For example -

10 COUNT =0
20 COUNT = COUNT+ 1 0
30 IF COUNT= 1 0 0 THEN GOTO 1 0 0 0
4 0 GOTO20

is a simple conditional loop that adds 10 to COUNT until it is equal to 1 0 0 . The
assembly language equivalent of this would be -

113

Language of the Dragon

@LOOP
CLRA
ADDA
CMPA
BEQ
BRA

lf$0A
lf$94
@FINISH
@LOOP

Notice the way that the BRA instruction is used to form a loop in the same
way that a GOTO would be in BASIC. Also notice that as the BEO instruction
works with any representation the form of the program remains the same
even if you are working with two's complement numbers. In this case 1 00 is
outside the range of eight-bit two's complement numbers so a simple binary
representation is used.

Following the conditional loop the assembly language equivalent of the
FOR loop is particularly easy. For example, the assembly language equivalent
of-

is

@FOR1

FOR 1 = 1 TO 1 0

NEXT I

LDB lf$01
'other
assembly
language'

INCB
CMPB lf$0A
BLE @ FOR 1

This form of the assembly language FOR loop can be modified to include a
negative step by changing INCB to DECB and to allow for STEP sizes larger
than 1 by using ADDB lf@STEP. For all its flexibility, however, the needs of
assembly language programming can often be met by something a lot simpler
than this. Very often all that is required is to repeat a section of program a
number of times. For example, suppose you wanted to shift the contents of
the A register to the left four times you could use -

114

. . .

...

LOB J!$04
@ LOOP LSLA
DECB
BNE@LOOP

Chapter 7 Branch Instructions

The way that this works is to load the B register with the number of times you
want to repeat the instruction inside the loop and then DECrement the B
register each time through. When the contents of the B register reach O the
BNE is not taken and the loop ends. Notice that using this method of counting
down to O there is no need to use a CM P instruction to discover when the loop
is at an end because the Z bit is automatically set by the DEC instruction.

There are so many ways of using conditional branches to construct
equivalents of BASIC statements that there isn't enough room to give a
complete list. In any case it is one of the features of assembly language
programming that exactly how something is best done depends very much
on the requirements of the rest of the program. In short, you should
understand assembly language well enough to make up your own equivalents
to fit in with the rest of your program.

Summary

1) The condition code register is used to record certain features of
the result of 6809 operations. Only four condition code bits that are
used by the conditional branches the N, V, Z and C bits. The
condition code bits can also be modified directly using the AN DCC
and ORCC instructions.

2) The relative addressing mode is used with the branch group of
instructions. Roughly speaking, a relative address specifies a memory
location in terms of how far away, in terms of number of memory
location it is from the current position within the program.

3) The branch instructions come in two forms, the branches and the
long branches using eight and 16-bit relative addressing respectively.
The conditional branches fall into three groups -

1 15

Language of the Dragon

i) the simple branches that test a single bit in the CC register
ii) the signed conditional branches that work with two's complement
numbers
iiil the unsigned conditional branches that work with simple binary
numbers

4) The CMP, TST and BIT instructions can be used to compare
numbers and bit patterns without storing any results and so without
modifying the contents of the registers. As well as the usual A and B
register form of the CMP instruction, there is a very useful 16-bit
CMPD form. The TST instruction can be used to test for a zero,
positive or negative value stored in the A or B registers or in a
memory location.

Micro projects
1) Using ANDCC and ORCC set the 2 bit to 1 and the C bit to 0 .

21 Write a short program that is the assembly language equivalent of

FOR I = 10 TO 1 STEP -1

NEXT I

Use the B register as the index variable I.

3) Write a program that adds two simple binary numbers together
and calls the machine code subroutine @RESULT if the answer is
valid and @ERROR is not. You do not have to write the subroutines
@RESULT and@ERROR.

4) Change the program in (3) to add a pair of two's complement
numbers.

1 1 6

. . . .

-

Chapter Eight

Using the Dragon from Assembler

Although there have been plenty of short examples of 6809 assembly
language programs throughout this book, this is the first chapter where the
examples are of any size or usefulness. To start the chapter a few simple
routines are developed showing how data can be manipulated using the
instructions introduced in the last few chapters. The largest example in this
chapter is a simple video game. The reason for choosing a video game is that it
is easy to understand the objectives of the program and easy to see if they
have been met. Also, moving an object around the screen provides an
excellent example of how careful you have to be in handling numbers and
doing arithmetic. All in all a video game makes an excellent example,
illustrating both the advantages and the difficulties of assembly language
programming!

However, before we can move on to the examples proper, something is
going to have to be done to make the BASIC assembler easier to use.
Although it is has been good enough to assemble the short program examples
given so far it is not really suitable for developing programs from scratch or
even for typing in examples longer than a few lines. It's not that the assembler
won't cope with the problems of assembling the programs, it's just that it
provides none of the niceties of of any sort of editing, of saving and loading
assembly language programs on tape, or a reasonably clear and useful listing.

Making the BASIC assembler friendly

Changing the BASIC assembler to include editing and other features to
make it easier to use is not difficult but it is the largest single change so far.
None of the methods used are in away new or difficult and rather than give a

11 7

Language of the Dragon

detailed explanation of the whole program, a table giving the purpose of each
subroutine"is given at the end of the listing.

1 REM BASIC ASSEMBLER V8.1

5 CLEAR 2000,&H6FFF

590 I= T:GOSUB 1980
600 LC =O:GOTO 515

1000 DIM A$(150),C$(5),T$(50I,T(50)
1980 PRINT "PRESS ANY KEY TO CONTINUE";
1990 IF INKEY$ = "" THEN GOTO 1 990

2000 CLS
2010 PRINT@66,"BASI C A SS E M BLER"
2020 PRINT
2030 PRINTTAB(lO); "SELECT ONE OF"
2040 PRINT
2050 PRINTTAB(8); "INPUT/EDIT 1 "
2060 PRINTTAB(8I; "ASSEMBLE 2"
2070 PRINTTAB(8); "SAVE ONTAPE 3"
2080 PRINTTAB(S); "LOAD FROMTAPE . .4"
2090 PRINTTAB(S); "EXECPROGRAM 5"
2100 INPUT ACTION
211 0 IF ACTION< 1 ORACTION>5THEN GOT02000
2120 0 N ACTION GOTO 2200 ,2800 ,2850 ,2920 ,2990

2200 CLS
2210 PRINT@76,"E D I T"
2220 PRINT
2230 PRINTTAB(lO); "SELECT ONEOF"
2240 PRINT
2250 PRINTTAB(8);"LISTPROGRAM 1 "
2260 PRINTTAB(8);"LISTTO PRINTER.2"
2270 PRINTTAB(S);"ADDTOPROGRAM .. 3"
2280 PRINTTAB(8);"DELETE LINES4"
2290 INPUTED

118

Chapter 8 Using the Dragon from Assembler

2300 IFED< 1 ORED>4THEN GOTO2000
2310 ON ED GOTO2400,2400,2500,2700

2400 GLS
2405 IFI = 0THENGOTO1 980
2410 FOR K = l TOI
2420 IF ED = 1 THEN PRINT K;":";TABl4);A$IK) ELSE
PRIN T jj,-2,K;":";TAB(4);A$(K)
2430 NEXTK
2440 GOTO 1 980

2500 IFI =0THENGOTO2620
2505 INPUT"ADDLINESFOLLOWINGLINENUMBER";LN
2510 IFLN> = ITHENLN = l:GOTO2620
2520 INPUT"NUMBEROFLINESTOINSERT";IN
2530 IFI + IN> 1 50THENPRINT"TOOMANY":GOTO2000
2540 FORK = ITOLN + 1 STEP-1
2550 A$(K + IN) = A$IKI
2560 NEXTK
2570 FORK = LN + l TOLN + IN
2580 PRINTK;":";TABl4I;
2590 LINEINPUTA$(K)
2600 NEXTK
2605 l = l + IN
2610 GOTO1980
2620 PRINT"TYPE END TO FINISH"
2630 K = l + l
2640 PRINTK;":";TABl4I;
2650 LINEINPUTL$
2660 IFLEFT$(L$,3) = "END"THENGOTOl 980
2670 I = K:A$(1) = L$
2680 GOTO 2630

2700 INPUT"FIRST LINE TO DELETE";FL
2710 INPUT"LAST LINE TO DELETE";LL
2720 IFLL< FL THENPRINT"NOT DELETED":GOTO1 980
2730 FOR K = LL+ l TOI
2740 A$(FL + K-LL-1 1 = A$(K)
2750 NEXTK

1 1 9

Language of the Dragon

2770 GOTO 1980
2760 I = HLL-FL+ 1 I:PRINT "DELETED"

2800 INPUT "SCREEN IOI OR PRINTERl1 l";PRT
2810 T = I
2820 PRT = PRT*2
2830 RETURN

2850 INPUT"FILE NAME";F$
2860 PRINT "PRESS PLAY AND RECORD"
2870 PRINT "PRESS ANY KEY WHEN READY"
2880 IF INKEY$ = ""THEN GOTO2880
2890 OPEN "O", jj,-1,F$
2900 FOR K = 1 TOl:PRINT lf-1,A$IKl:NEXTK
2910 CLOSE jj,-1 :GOTO 1980

2920 INPUT"FILE NAME";F$
2930 PRINT "PRESSPLAY"
2940 OPEN "I", jj,-1 ,F$
2950 1 = 0
2960 I F EOFl-1 I THEN CLOSE lf-1 :GOTO 1980
2970 I = I + 1:INPUTjj,-1,A$(1)
2980 GOTO 2960

2990 CLS:EXEC &H7000
2995 GOTO 1980

6000 IFCITYPEl = -1 THEN ERR =5:GOTO 9000
6010 IF PASS = 1 THEN GOTO6200
6020 PRINT1f-PRT,RIGHT$(" "+ HEX$(Pl,41;TABl51;
6030 PRINT jj,-PRT,HEX$(CITYPEll;TABl8I;
6040 IF TYPE< > 5 THEN PRINT lf-PRT, HEX$(A);
6050 PRINT jj,-PRT,TABl15I;A$11)
6200 IF CITYPEI< 256 TH EN POKE P ,CITYPE)
6210 IF CITYPEI>255 THEN POKE P,INTIC(TYPE)/256): POKE
P+ 1 ,CITYPE)-INTIC(TYPEl/2561*256:P = P + 1
6220 P = P + 1
6230 IFBR =2THENTYPE = 4
6240 IFTYPE = 1 ANDRIGHT$(M$, 1 I = "D"THENTYPE =4
6250 IFTYPE=5THENRETURN
6260 IFTYPE =2ORTYPE = lTHENPOKEP,A

120

Chapter 8 Using the Dragon from Assembler

6270 IF TYPE=4 THEN POKE P,INT(A/256):P = P + l : POKE
P,A-INTIA/256I*256
6280 TYPE=0
6290 BR =0
6300 P = P + l
6310 RETURN

6500 IFPS< > 1 THENGOTO6540
6510 IFPASS= l THENTILCl = A
6520 IFPASS =2THENPRINT jl-PRT,TAB(1 5);A$(I)
6530 RETURN
6540 IFPS< > 2THENGOTO6570
6545 IFPASS = 2THENPRINTjl-PRT,HEX$(PI;
6550 P = P + A
6560 IFPASS=2THENGOTO6520
6570 IFPS< > 3THENGOTO6650
6580 A = A-INTIA/256I*256
6590 IFPASS = 1 THENGOTO6620
6600 PRINTjl-PRT,HEX$(P);TAB(5);HEX$(A);
6610 PRINT jl-PRT,TAB(15);A$(1)
6620 POKEP ,A
6630 P = P + 1
6640 RETURN
6650 IFPS< > 4THENRETURN
6660 IFPASS = 1 THENGOTO6710
6670 LB = A-INTIA/256I*256
6680 HB = INT(A/256I
6690 PRINTjl-PRT,HEX$(P);TAB(5);HEX$(HB);TAB(8);HEX$ILBI;
6700 PRINTjl-PRT,TAB(1 5);A$(1)
6705 POKEP,HB:POKEP+ 1,LB
6710 P= P + 2
6720 RETURN

9000 PRINT jl-PRT, "ERROR--";ER;"*** ATLINE";I
9010 RETURN

routine
1 980-1990
2000-2120

purpose
press any key to continue entry to 2000
main menu and selection

121

Language of the Dragon

2200 2310
2400 -2440
250 0-2680
270 0-2770
280 0-2830
2850-2910
2920-2980
2990-2995
60 00-6310
6500 -6720
900 0-9020

editing menu and selection
list to screen or printer
add/insert lines to program
delete lines from program
assemble program
save to tape
load from tape
EXEC program
new version of subroutine 6000 to list assembly
new version of subroutine 6500 to list pseudoops
new version of error handler

Subroutine 60 00 is almost completely new and it is better to delete the old
version and type the new one in from scratch. However, the only changes
to subroutine 6500 are to the PRINT statements at 6520, 6545, 6600, 661 0 ,
6690 and 6700 and s o i t i s worth editing the old version.

The assembler's new facilities mean that you can type in a program, list
it, insert and append new lines to it and delete incorrect lines from it. You
can also save and load programs to tape. As assembly language errors are
very often destructive it is a good idea always to save a program before
trying it out. Other features should be self-explanatory when you come to
use the assembler.

Printing hex numbers

The machine code subroutine @PRINT at $80 0 C will print characters on
the Dragon's text screen. The character printed is set by storing its ASCII
code in the A register before transferring control to the subroutine. It is
often useful, especially when debugging a program, to be able to print the
contents of the A or B register in hexadecimal form on the Dragon's
screen. The problem is to convert the simple binary number in the 8
register into two ASCH characters in the sets 0-9 and A-F. Thus, each of
the ASCII characters is determined by 4 bits, the first character to be
printed by bits b7-b4 and the second by b3-b0 . What we have to do is to
write a program to separate the two groups of 4 bits and then convert
them to the correct hex character.

122

Chapter 8 Using the Dragon from Assembler

The problem of separating the two groups of 4 bits is easy to solve using the
AND operation and shifting. What about converting a simple 4 bit binary
numbertothe correctASCII character? FortunatelytheASCll codesfrom0-9
and A-F run in sequence but there is a 'gap' between 9 and A. To see what this
means examine the following table

binary hex ASCII code
0000 0 0011 0000
0001 1 00110001
0010 2 00110010
00 1 1 3 00110011
0100 4 0011 0100
0101 5 0011 0101
0110 6 00110110
0 1 1 1 7 00110 1 11
1000 8 00111000
1001 9 0011 1001

1010 A 01000001
1 0 1 1 B 0 1000010
1 100 C 0 1000011
1101 D 0 1000100
1110 E 010001 0 1
1111 F 01000110

For a value in the range 0 to 9 you can convert the 4 bit binary to its
corresponding ASCII code by adding 001 1000 or$30. lfyou examine the table
for values greater than 9 you should be able to see that the 4 bit value can be
converted to the corresponding ASCII code by adding $37 (this is simply the
difference between the two codes).

Armed with this information the program-is now fairly easy to write-

@PRINT
@HEX

EQU
STB
LDA
LSRA
LSRA
LSRA

$800C
@TEMP
@TEMP

123

language of the Dragon

LSRA
BSR
LDA
ANDA
BSR
RTS

@HPRN CMPA
BHI
ADDA
JSR
RTS

@HP1 ADDA
JSR
RTS

@TEMP FCB

@HPRN
@TEMP
jl$0F
@HPRN

jl9
@HP1
jl$30
@PRINT

jl$37
@PRINT

0

The first part of the program, starting at @HEX performs four left shifts to
move the top for bits b7�b4 down into b3·b0. Notice that, by using LSRA,
zeros are shifted into the top four bits. After this subroutine @HPRN is called
to print the ASCII character corresponding to these four bits. The bottom 4
bits are then isolated by the ANDA jl$0F which sets the top four bits to 0
leaving the rest unaltered (see bit manipulation · Chapter Five). Then
subroutine @HPRN is called again to print the second four bits in hex. The
only thing left to describe is the action of subroutine @HPRN. This first tests
to see if the value in the A register is greater than 9. If it isn't it adds $30 and
uses subroutine @PRINT to print the ASCII character on the screen. lf it is
bigger than 9 then $37 is added and @PRINT is used to print the ASCII
character on the screen.

Even in this simple program there are a number of subtle points. Notice the
way that the task of adding the correct value to the four bits is implemented as
a subroutine so that it can be used more than once. The principle of using
subroutines as often as possible applies just as much to assembly language
programming as to BASIC. Also notice the way that the jump to the 'internal'
subroutine @HPRN is achieved using a BSR and to the 'external' subroutine
using JSR. This is such good 6809 assembly language practice that it is worth
getting used to early on but exactly why it is such a good idea will have to wait

1 24

Chaprer 8 Using the Dragon from Assembler

until Chapter Eleven. The branch instruction BHI is used because the four·bit
numbers might as well be considered to be simple binary although, with the
limited range of O to 15, two's complement could just as easily be used.

Although this hex number printing subroutine works it is worth adding a
small program to test it. The following short program will print all the binary
numbers from O to 255 in hex, over and over again.

@START CLRB
@LOOP BSR

LOA
JSR
INCB
BRA

@HEX
jl$20
@PRINT

@LOOP

This should be typed in before the @HEX subroutine and EXECuted. You will
see the screen fill with pairs of hex digits faster than you can read! The JSR
@PRINT in the main program print a space (ASCII $20) between each pair of
hex digits.

Multiple precision arithmetic - ADC and SBC.

So far, assembly language arithmetic has been limited to eight�bit
arithmetic using the A and B registers and 1 6·bit arithmetic using the D
register. Although these two ranges suffice for many applications it is
important to know how to go about extending the range to anything that is
desired. In this section, the problem that is tackled is the addition and
subtraction of numbers that need four memory locations to represent them.
Even though four memory locations, or 32 bits, can represent numbers in the
range

0 to 4,294,967,296

using simple binary, and roughly

125

Language of the Dragon

-2,147,483,648 to +2,147,483,647

using two's complement, it is possible that you might want to use even more
memory locations to increase the range. This is quite easy once you have seen
the general principle behind extended arithmetic. In practice it is this rather
more complicated subroutine that is of practical use but it will have to wait for
the next chapter to be completed,

Consider first the simpler problem of adding together a pair of 16-bit
numbers but without using the D register. If the two numbers are stored in
memory as shown -

1st
2nd

Most
significant
@HNUM1
@HNUM2

Least significant
@LNUM1
@LNUM2

then the first thing to do is add the two least significant eight bits together by-

LOA @LNUM1
ADDA @LNUM2

This produces the correct answer for the least significant byte of the answer
but, if the values stored in @LNUM1 and @LNUM2 are large enough, the
correct answer may be so large that it needs nine bits to represent it. If you
look back to the description of the C or Carry bit in Chapter Seven you will see
that it is used to store the 'overflow' from any arithmetic. After adding
together the least significant bytes and storing the result, the next stage is to
add the most significant bytes of the pair of numbers. The only difficulty is
that any 'carry' produced from the adding the least significant bytes should
also be added into the result. The 6809 has two extra arithmetic operations
that will perform addition or subtraction, taking into account any carry from a
previous operation - ADC (ADd with Carry) and SBC (SuBtract with Carry).
Both ADC and SBC work in roughly the same way as the familiar ADD and
SUB instruction in that they leave the result of the operation in the register.
The only real difference is that ADC and SBC take account of any carry from a
previous operation and there is no ADCD nor SBCD operation. To add the
two instructions to the BASIC assembler .include the following four DATA
statements -

126

Chapter 8 Using the Dragon from Assembler

REM BASIC ASSEMBLER VB.2

77 DATA ADCA,&H89,&H99,&HA9,&HB9,-1
78 DATA ADCB,&HC9,&HD9,&HE9,&HF9,-1
79 DATA SBCA,&H82,&H92,&HA2,&HB2,-1
80 DATA SBCB,&HC2,&HD2,&HE2,&HF2,-1

The final program for adding the pair of 16-bit numbers together is

LOA
ADDA
STA
LOA
ADCA
STA

@LNUM1
@LNUM2
@LANS
@HNUM1
@HNUM2
@HANS

which stores the most significant byte of the answer in @HANS and the least
significant byte in @LANS.

The program for adding numbers taking four memory locations is just as
simple if rather �onger,

LOA
ADDA
STA
LOA
ADCA
STA
LOA
ADCA
STA
LOA
ADCA
STA

@1NUM1
@1NUM2
@1ANS
@2NUM1
@2NUM2
@2ANS
@3NUM1
@3NUM2
@3ANS
@4NUM1
@4NUM2
@4ANS

where the two numbers are stored in memory locations @1 NUM1 to
@4NUM1 and @1 NUM2 to @4NUM2 and the result is stored in @1ANS to
@4ANS. To subtract numbers taking four memory locations just use the
same program given above but replace the ADDA by SUBA and ADCA by

127

Language of the Dragon

SBCA. Notice that the first add or subtract in each of these programs ignores
the carry bit.

It is possible to write a general program that will add and subtract any
number of memory locations but this requires yet a little more assembly
language and it is covered in the next chapter. The problem is that to operate
on a variable number of memory locations requires some way of keeping track
of the all the addresses. The idea of using labels such as @1 NUM1 to
@1 NUM4 is all very well for four memory locations, but imagine trying to use
the same method for 10 or 20 memory locations!

Example: a 'squash' game

The program that is the subject of this section plays the familiar video game
of squash. It is far from a finished game in the sense that it doesn't include
scoring or any sort of 'user friendliness'. However, it is a complete program
from the point of view of the essential working parts of the game. The ball, a
square block, bounces around the screen. A small bat can be moved to the
right and left using the left and right arrow keys and the ball will bounce off it if
it happens to be in the correct position at the correct time. The most
important thing about the program, however, is that it is an excellent example
of assembly language arithmetic in action and of the way in which a larger
assembly language program is put together.

Rather than tackle the problem in one go it is easier to approach the finished
program in three main stages ·

first, bounce a solid block around the screen;
second, add the bat and the logic to move it;
third, add the logic which will bounce the ball off the bat.

Bouncing a 'ball'

The techniques involved in bouncing a ball around the Dragon's text screen
should be well known to you from BASIC. (For general information about the
principles involved consult Chapter Six of "The Complete Programmer"
published by Granada.) The idea is to keep a record of the ball's position in
two variables X and Y. These are updated by adding the current values of two
other variables XV and YV i.e.

128

Xnew = Xold + XV
Ynew = Yold + YV

Chapter 8 Using the Dragon from Assembler

The values XV and YV can be thought of as velocities governing the motion in
the X and Y direction. To make the ball appear to move, it has to be displayed
at the screen location given by X, Y, then removed by printing a blank at the
same location and the Co-ordinates updated and then the whole cycle if
repeated. To make the ball appear to bounce all that is necessary is to reverse
one of the velocities when the ball 'hits' a wall. For example, if the ball hits a
horizontal wall the vertical velocity has to be reversed, i.e. VY = -VY, and
likewise the horizontal velocity has to be reversed for a vertical wall.

Perhaps the best way to illustrate the methods employed in bouncing a ball
around the screen is to give a BASIC program. This not only shows how
things work, it provides a model for the assembly language program and will
give you a good idea of the speed advantage inherent in assembler.

20 YCORD = 0
3 0 XVEL= 1
40 YVEL= 1
50 C$ = CHR$I128I
60 GOSUB 1000
70 C$ = " "
80 GOSUB1000
90 GOSUB2000
100 GOTO50

1000 LOC= XCORD +32*YCORD
1010 PRINT@LOC,C$;
1020RETURN

2000 XCORD= XCORD +XVEL
2010 IFXCORD = 0 ORXCORD=31 THENXVEL= -XVEL
2020 YCORD = YCORD + YVEL
2030 IFYCORD =0 ORYCORD = 15THENYVEL= -YVEL
2040 RETURN

129

Language of the Dragon

Subroutine 1000 prints the character stored in C$. Subroutine 2000 updates
the X and Y values and checks for a possible 'collision' with the edge of the
screen! If a collision is detected then the appropriate velocity is reversed.
Notice that the velocities are either 1 or -1 for simplicity.

Implementing the above BASIC program in assembler is mainly a matter of
writing a subroutine to 'print' the ball on the screen and to update the
co-ordinates and velocities. The first problem to tackle isto write a subroutine
that will print any character on the screen at XCORD,YCORD. This can be
done by calculating the screen memory location corresponding to the
position XCORD,YCORD and then storing the appropriate character code in
it. Calculating the text screen memory location is easy, in theory at least,
using -

address � $400 + XCORD + 32*YCORD

(For the details of this equa�ion see "The Anatomy of the Dragon", also
published by Sigma.) Before this expression can be implemented in
assembler it is necessary to decide on a suitable representation for XCORD
andYCORD. The possible range forXCORD isO to31 andforYCORDO to 1 5.
Both of these values can easily be stored in a single memory location using
simple binary as there is no possibility of a negative number ever occurring.
However, as the address calculated by the above expression is a 1 6-bit
quantity we must be prepared to combine eight-bit values and 1 6-bit
arithmetic (see Chapter Six). Also, as the velocities are going to have to vary
between 1 and -1 , two's complement arithmetic is going to enter into the
program somewhere. So, assuming that @XCORD and @YCORD label
single memory locations used to hold the ball's co-ordinates and @CHAR
labels a single memory location holding the character code character to be
'printed', the subroutine to calculate the screen memory location is -

@DRAW LOB @YCORD
CLRA
ASLB
ASLB
ASLB
ASLB
ASLB
ROLA
ADDB

130

@XCORD ADCA
ADDO

Chapter 8 Using the Dragon from Assembler

jl$00
#$0400

The first part of the program multiplies the value in @YCORD by 32. This is
achieved using five shift lefts. The calculation starts off using eight-bit
arithmetic but, as the final answer is going to be 16 bits, the A register is
cleared to produce a valid 1 6-bit number in the D register. Since the value lies
in the range O to 1q, i.e. it is held in the first four bits, there is no chance of an
overflow for the first four shifts but the fifth shift could produce a number
outside the range of eight-bit simple binary representation. If you look back at
the definition of ASL you will see that b7 is shifted into the C bit and so, if the
fifth shift causes an overflow it will be in the C bit. The question is how to
move this C bit into the A register. This can be achieved using the ROLA
instruction which shifts the C bit into bO of the A register which is just what we
want. So multiplication by 32 can be achieved by five ASLB instructions
followed by one ROLA, leaving a valid simple binary number in the D register.
The next part of the program adds the @XCORD value. As this is an eight-bit
value it has to be added to the D register in a round about way. First, the least
significant bytes are added using ADDB @XCORD. This may produce a carry
which then has to be added to the most significant byte in the A register. This
is done using an ADCA #$00 instruction. To understand this just ask yourself
what the eight most significant bits of @XCORD are - the answer is eight
zeros. Adding Zero to take account of the carry is something that is often
encountered in eight-bit/16-bit register arithmetic. Now that @XCORD has
been added, the only operation left is the addition of $400 to give the final
address. As this is a constant there is no trouble about representing it as a
16-bit simple binary value and adding it to the D register using ADDO
Jl$0 40 0 .

The reason why this piece o f arithmetic was s o complicated is that the
values involved in the calculation were mainly best represented as eight-bit
quantities but the answer has to be a 16-bit quantity. This mixing of the
number of bits couldn't have been completely avoided even by representing
all the values as 16-bit values- there is no 16-bit shift - and the alternative way
of multiplying by 32 using the MUL instruction uses eight-bit values in the A
and 8 registers. In most assembly language programming there is no avoiding
this sort of 'mixed precision arithmetic'.

At the end of this routine we have in the D register the address of the screen
memory location in which the character code has to be stored. The question
now is what to do with it? So far we have no way of storing a value in a

131

Language of the Dragon

memory location whose address has been worked out in the course of a
program. What we need is the facility to say 'use the number stored in a
register as the address of a memory location'. The 6809 does provided this
facility as a separate addressing mode called 'indexed addressing'. Indexed
addressing is in fact a whole family of addressing modes and for this reason it
is given a whole chapter - the next one - to itself! However, one form of
indexed addressing is so useful that its introduction cannot be postponed any
longer.

The 6809 has another register called the X register that is a full 16 bits in
length and can be used to hold an address. It can be loaded and stored using
the instructions LDX and STX in much the same way that the D register can.
However, it is different from the D register in that it isn't used to do
calculations. It is primarily an 'addressing' or 'pointer' register. That is, it is
used to hold the address of the memory location that another instruction will
operate on. For example, the instruction -

STA ,X

will store the contents of the A register in the memory location whose address
is stored in the X register. Don't worry for the moment about the "," in front of
the X. All it is used for at this stage is to alert the assembler to the fact that
indexed addressing is being used.

Now we have the solution to what to do with the address of the screen
location left in the D register -

STD
LDX
LDA
STA
RTS

@SCREEN
@SCREEN
@CHAR
,x

The first two instructions transfer the contents of the D register to the X
register by way of the pair of memory locations labelled by @SCREEN (a
more direct way to do this will be introduced in the next chapter). The next
instruction loads the A register with the character code and the STA ,X stores
this value into the screen memory location whose address is in X. Finally RTS
completes the @DRAW subroutine.

1 32

Chapter 8 Using the Dragon from Assembler

The next subroutine that is required it the subroutine that updates the
co-ordinates and changes the velocities when there is a collision. The
@UPDATE subroutine is another exercise in assembly language arithmetic
but this time with the added interest of using conditional branches to test the
results. The subroutine is best thought of in two parts -

update @XCORD and check for a bounce
update @YCORD and check for a bounce

Updating @XCORD is just a matter of adding the contents of @XVEL to it -
the only complication is that @XVEL has to be a two's complement number
to represent 1 and -1 . In practice this causes no problem because the values of
the co-ordinates are small and positive and so they can be just as easily
considered to be in two's complement representation as in simple binary.
{Notice that simple binary numbers in the range O to 127 have exactly the
same bit pattern in two's complement.) This settled, the subroutine is easy to
write by using the BASIC subroutine as a guide -

@UPDATE LDA @XCORD
ADDA @XVEL
STA @XCORD
BNE @SKIP1
NEG @XVEL

@SKIP1 CMPA #31
BNE @SKIP2
NEG @XVEL

@SKIP2 LOA @YCORD
ADDA @YVEL
STA @YCORD
BNE @SKIP3
NEG @YVEL

@SKIP3 CMPA #15
BNE @SKIP4
NEG @YVEL

@SKIP4 RTS

The section of the program from @UPDATE to @SKIP2 updates @XCORD
and @XVEL and the section from @SKIP2 to @SKIP4 does the same for

133

Language of the Dragon

@YCORD and @YVEL. As these two halves are so similar, only the first half
will be described. All of the arithmetic in this subroutine can be carried out in
eight bits using the A register. The contents of @XCORD are added to
@XVEL and then stored back into @XCORD. The only thing to notice here is
that @XVEL could be negative (i.e. -1 1 and so @XCORD could decrease in
value. The BNE checks for a zero result. If one is found the @XVEL has its
sign changed using the NEG instruction. Notice that there is no need to use
CMPA #0 because the condition code bits are set by the ST A instruction. To
check for the other extreme value, however, it is necessary to use CMP #31 .
Once again, however, a BNE instruction is used to skip round the NEG
@XVEL instruction. The second half of the program updates @YCORD and
@YVEL in roughly the same way.

All that now remains is to write the main program that uses the
subroutines-

@START BSR @UPDATE
LOA jl$80
STA @CHAR
BSR @DRAW
LOA jl$8F
STA @CHAR
BSR @DRAW
BRA @START

@XCORD FCB 0
@YCORD FCB 0
@XVEL FCB 1
@YVE FCB 1
@CHAR FCB 0
@SCREEN FOB 0

This works in the same way that the BASIC main program given earlier did.
The program is in the form of a loop and each time through the @UPDATE
subroutine is used to move the ball and the @DRAW subroutine is used
twice, once to display the ball and once to print a blank to remove it. If you
were to put the main program together with the subroutines and EXEC the
program you would see the ball bounce around the screen very fast. The only
trouble is that at the moment the BASIC assembler cannot handle the
instructions LDX and STA ,X.

134

Chapter 8 Using the Dragon from Assembler

Adding simple indexed addressing to the BASIC
assembler

The simplest way to add indexing to the BASIC assembler is to test for a H, H

in the address field and then set TYPE= 3 as a result. There are a few other
matters to be cleared up but the changes are not at all difficult-

1 REM BASIC ASSEMBLER V8.3

81 DATA LDX,&H8E,&H9E,&HAE,&HBE,-1

5035 IF TYPE= 3 THEN RETURN

5526 IF L$= "," THEN GOTO 5800

5800TYPE=3
581 0 AF$ = "&H84"
5820 RETURN

6260 IF TYPE=2 OR TYPE = l OR TYPE = 3 THEN POKE P,A

Subroutine 5800 will eventually be expanded to cope with the job of coding
other varieties of indexed addressing.

Testing and perfecting the bounce program.

Now that the BASIC assembler can handle the indexed addressing mode
used in @DRAW the whole program can be typed in and tested. Remember
to include all of the two subroutines following the main program. Once you
have entered the program correctly you can EXECute it and see the results,
You might be a little disappointed at what you see as the ball zips about the
screen a little too fast! In fact it zips about the screen so fast that it is difficult to
see the whole ball at any given moment. The solution to this problem is to
include a delay subroutine between the first and second uses of the @DRAW

135

Language of the Dragon

subroutine. The standard way of implementing any sort of delay in BASIC or
in assembler is via a time-wasting loop - a 'delay loop'.

@DELAY LDD
@DLOOP SUBD

BNE
RTS

@TIME FOB

@TIME
lf1
@DLOOP

$1000

The longest possible delay is produced by a value of @TIME equal to 0. If you
insert BSR @DELAY following the first BSR @DRAW and re-run the
program you will see a distinct improvement. Try altering the value stored in
@TIME to see the effect of different delays.

Adding the bat

Producing a moving bat controlled by two keys on the keyboard is in some
ways easier than moving and bouncing the ball and in some ways more
difficult. Rather than being a single character like the ball, the bat has to be
made up from a number of characters to be large enough to make the game
playable. However, the actual positioning of the bat is easier because it only
moves from side to side.

The bat is made up from three solid blocks and its position on the screen is
controlled using the x co-ordinate of the leftmost block (see fig 8. 1). The
problem of drawing the bat is considerably eased by the fact that it only
moves horizontally. If the x co-ordinate of the lefthand block of the bat is
stored in @XBAT, then the address of the corresponding screen memory
location is -

address = base + @XBAT

where 'base' is the address of the screen memory location on the far left of the
same line that thebatison. lfthebatistobe printed on line 14, base is equal to
$05CO. The subroutine to draw the bat at @XBAT is -

@DBAT LOB @XBAT
CLRA

136

Chapter 8 Using the Dragon from Assembler

•
@XBAT { + 1 1 { + 21

Fig 8.1 The bat

ADDD ajf$05C0
$05C0
STD
LDX
LDA
STA
LDD
ADDD
STD
LDX
LDA
STA
LDD
ADDD
STD
LDX
LDA
STA
RTS

@ADDRESS
@ADDRESS
@CHAR
,x
@ADDRESS
jj,1
@ADDRESS
@ADDRESS
@CHAR
,x
@ADDRESS
jj,1
@ADDRESS
@ADDRESS
@CHAR
,x

137

Language of the Dragon

The way that this program works is straightforward, in that it first calculates
the address of the screen location corresponding to the left hand block of the
bat and then stores the character code in @CHAR in it, but as the bat consists
of three blocks, it then has to store the same character code at
@ADDRESS + 1 and @ADDRESS + 2. This it achieves by using the D
register to add one to the contents of @ADDRESS and then using it in the X
register to govern where the contents of the A register are stored. This is a
rather long way of storing something in three consecutive memory locations.
There is a more concise way of achieving the same ends and this will be
described in the next chapter.

All that is needed now is a second subroutine to update the bat's position
depending on which of the two arrow keys is pressed. The update procedure
is simple. If the left arrow key is pressed then @XBAT should be decreased by
one and if the right arrow key is pressed @XBAT should be increased by one.
There are a number of extra considerations apart from just moving the bat
that make the update subroutine just a little more complicated than this. In
the first place it is important to make sure that the bat doesn't go off the edges
of the screen and in the second it would be easier to play the game if the
keyboard had a fast auto-repeat feature. The first requirement merely
involves checking that the value in @XBAT is greater than O before
subtracting one from it and less than 29 before adding one to it. The
auto-repeat facility is also easy to produce once you know that the Dragon
maintains a table of keys pressed at $150 to $1 59 and the way to fool it into
thinking that a new key has been pressed is to store $FF in each of these
locations. In fact, as a press of either arrow key is recorded in memory
locations $1 51 , $157 and $158 these are all that have to be set to $FF in this
case. The update subroutine is -

@UPBAT JSR
BEQ
CMPA
BNE
LDB
BEQ
DEC

@RARR CMPA
BNE
LDB
CMPB
BEQ

@KEYB
@REPKEY
jj,$08
@RARR
@XBAT
@REPKEY
@XBAT
Jj,$09
@REPKEY
@XBAT
jj,29
@REPKEY

138

JNC
@REPKEYLDA

STA
STA
STA

@ROLL
@ROLL2
@ROLL3
@KEYB

RTS
EQU
EQU
EQU
EQU

Chaprer 8 Using rhe Dragon from Assembler

@XBAT
jf$FF
@ROLL
@ROLL2
@ROLL3

$151
$157
$158
$8006

The first instruction uses the machine code subroutine @KEYB to read the
keyboard. This subroutine returns the ASCII code of any key pressed in the A
register or returns zero if no key is pressed. If no key is pressed the second
instruction transfers control to the end of the @UPBAT subroutine. The rest
of the subroutine checks for a left or right arrow key press and only updates
@XBA T if it is in the correct range. The last part of the subroutine, starting at
@REPKEY implements the auto-repeat key described earlier.

All that is now required is a new version of the main program given earlier.
@START BSR @UPDATE

LBSR @UPBAT
LOA lf$80
STA @CHAR
BSR @DRAW
BSR @DBAT
BSR @DELAY
LOA jf$8F
STA @CHAR
BSR @DRAW
BSR @DBAT
BRA @START

@XCORD FCB 0
@YCORD FCB 0
@XVEL FCB 1
@YVEL FCB 1
@CHAR FCB 0
@ADD
RESS FOB 0

@XBAT FCB 12

1 39

Language of the Dragon

(Notice the.need to use LBSR to jump to the @UPBAT subroutine because it
is now too far away from the start of the program to be reached using BSR). lf
you type this program in .along with all the subroutines used and then EXE
Cute the program you will see the ball bounce around the screen as before but
now there is a bat, initially positioned roughly in the middle of the screen, that
you can move from one side of the screen to the other using the arrow keys.
The only trouble is that the ball passes right through the bat just as if it wasn't
there!

Detecting the bat

This is the final part of the. squash program, consisting of a single new
subroutine to detect the ball hitting the bat and to act upon it. There are a
number of ways that the ball colliding with the bat could be detected but the
most instructive from the point of view of assembler is by comparing the

"

BAT

- 3 ball positions

Fig 8.2 3 possible ball positions "hitting" the bat

140

Chapter 8 Using the Dragon from Assembler

co-ordinates. If the ball is in contact with the bat it can be in any one of the
three positions shown in fig 8.2. This implies that you can detect when the ball
should be bounced from the bat by the following condition -

@YCORD = bat's horizontal position - 1

and

0 < = XCORD - XBAT < = 2

To express this another way, to detect a bounce the subroutine has to test
that the difference between @XCORD and @XBAT lies in the range O to 2:

@BBOUNCE LDA @YCORD
CMPA ff,$13
BNE @NBOUNCE
LDA @XCORD
SUBA @XBAT
BMI @NBOUNCE
CMPA ff,2
BGT @NBOUNCE
NEG @YVEL

@NBOUNCE RTS

If the @YCORD of the ball is just one line above the bat (as shown in fig 8.2)
then the x co-ordinates are checked. This is done by subtracting them. If the
result is negative then the difference is less than zero so a bounce cannot
occur. If the difference if positive it is compared to 2, once again if it is greater
a bounce cannot occur. If the co-ordinates do satisfy all the conditions the the
bounce is implemented simply by reversing @YVEL.

The @BBOUNCE subroutine is easily added to the previous main program
by inserting a LBSR @BBOUNCE following the LBSR @UPBAT instruction.
When you EXEC the entire program you will see the ball bouncing round as
before but now it will bounce off the bat if you happen to get it into the correct
position! Obviously, to make a finished game out of the program you would
have to add extra features, including a count of the hits and misses, but you
should be able to do this on your own.

141

Language of the Dragon

The complete program

To make sure that you get everything in the right place the output of the
BASIC assembler for the squash program is given below -

7000 8D 26 @START BSR @UPDATE
7002 1 7 AC LBSR @UPBAT
7005 1 7 D4 LBSR @BBOUNCE
7008 86 80 LDA Jl$80
700A 87 7022 STA @CHAR
700D 8D 44 BSR @DRAW
700F 8D 68 BSR @DBAT
7011 8D 5E BSR @DELAY
7013 86 BF LDA Jl$8F
7015 87 7022 STA @CHAR
7018 8D 39 BSR @DRAW
701A 8D 60 BSR @DBAT
701C 20 E2 BRA @START

701 E 0 @XCORD FCB 0
701 F 0 @YCORD FCB 0
7020 1 @XVEL FCB 1
7021 1 @YVEL FCB 1
7022 0 @CHAR FCB 0
7023 0 0 @SCREEN FOB 0
7025 0 0 @ADDRESS FDB 0
7027 C @XBAT FCB 12
7028 86 701 E @UPDATE LOA @XCORD
7028 88 7020 adda @XVEL
702e 87 701 E STA @XCORD
7031 26 3 BNE @SKIP1
7033 70 7020 NEG @XVEL
7036 81 1 F @SKIP1 CMPA Jl31
7038 26 3 BNE @SKIP2
703A 70 7020 NEG @XVEL
7030 86 701 F @SKIP2 LOA @YCORD
7040 88 7021 ADDA @YVEL
7043 87 701 F STA @YCORD
7046 26 3 BNE @SKIP3

142

Chapter 8 Using the Dragon from Assembler

7048 70 7021 NEG @YVEL
704B 81 F @SKIP3 CMPA #15
704D 26 3 BNE @SKIP4
704F 70 7021 NEG @YVEL
7052 39 @SKIP4 RTS

7053 F6 701F @DRAW LDB @YCORD
7056 4F CLRA
7057 58 ASLB
7058 58 ASLB
7059 58 ASLB
705A 58 ASLB
705B 58 ASLB
705C 49 ROLA
705D FB 701E ADDB @XCORD
7060 89 0 ADCA jl$00
7062 C3 400 ADDD jl$0400
7065 FD 7023 STD @SCREEN
7068 BE 7023 LDX @SCREEN
706B B6 7022 LDA @CHAR
706E A7 84 STA ,X
7070 39 RTS

7071 FC 707A @DELAY LDD @TIME
7042 83 1 @DLOO SUBD #1
7077 26 FB BNE @DLOOP
7079 39 RTS
707A 10 0 @TIME FDB $1000
707C F6 7027 @DBAT LDB @XBAT
707F 4F CLRA
7080 C3 5C0 ADDD jl$05C0
7083 FD 7025 STD @ADDRESS
7086 BE 7025 LDX @ADDRESS
7089 86 7022 LDA @CHAR
708C A7 84 STA ,X
708E FC 7025 LDD @ADDRESS
7091 C3 1 ADDD #1
7094 FD 7025 STD @ADDRESS
7097 BE 7025 LDX @ADDRESS

143

Language of the Dragon

709A B6 7022 LDA @CHAR
709D A7 84 STA ,X
709F FC 7025 LDD @ADDRESS
70A2 C3 1 ADDD j\1
70A5 FD 7025 STD @ADDRESS
70A8 BE 7025 LDX @ADDRESS
70A8 86 7022 LDA @CHAR
70AE A7 84 STA ,X
7080 39 RTS

7081 8D 8006 @UP8AT JSR @KEY8
7084 27 1A 8EQ @REPKEY
70B6 81 8 CMPA j\$08
70BB 26 8 8NE @RARR
708A F6 7027 LD8 @X8AT
70BD 27 11 BEQ @REPKEY
70BF 7A 7027 DEC @XBAT
70C2 81 9 @RARR CMPA j\$09
70C4 26 A 8NE @REPKEY
70C6 F6 7027 LDB @XBAT
70C9 C1 1 D CMP8 j\29
70C8 27 3 BEQ @REPKEY
70CD 7C 7027 INC @X8AT
70D0 86 FF @REPKEY LDA lf$FF
70D2 87 151 STA @ROLL
70D5 B7 157 STA @ROLL2
70D8 B7 158 STA @ROLL3
70D8 39 RTS

@ROLL EQU $151
@ROLL2 EQU $157
@ROLL3 EQU $158
@KEYB EQU $8006

70DC 86 701F @B8OUNCE LDA @YCORD
70DF 81 D CMPA j\13
70E1 26 F 8NE @N8OUNCE
70E3 86 701 E LDA @XCORD
70E6 BO 7027 SU8A @X8AT
70E9 28 7 8MI @N8OUNCE

144

70EB
70ED
70EF
70F2

81
2E
70
39

Conclusion

2
3
7021

Chapter 8 Using the Dragon from Assembler

CMPA jf2
BGT @NBOUNCE
NEG @YVEL
@NBOUNCE RTS

In this chapter you have seen the way that a large assembly language
program is built up from subroutines. You should now have the flavour of
assembly language programming and if you have typed in and tried the
squash program an idea of some of the difficulties and rewards. The BASIC
assembler is working at its limits to assemble a program of over 100 lines and
fortunately the examples in the rest of the book do not approach this length I It
should now be clear that if you are going to use assembler at all often you
should purchase a good, fast assembler. Study the squash program until you
understand what each part is doing. To check that you do understand try
taking it a little further, add a routine to make the ball go out of play if you miss
it, a score line and so on.

145

Chapter Nine

The addressing registers
indexed addressing

It may come as something of a shock to discover that there are still five
registers inside the 6809 yet to be discussed! All of these registers are
concerned with manipulating addresses rather than data and so it makes
sense to treat them all together in one chapter. The idea of using a register to
specify an address was briefly introduced in the previous chapter in
connection with the the squash program. Even though this was a fairly simple
example it was difficult to avoid using a register to specify a memory location
whose address had been calculated in the course of the program. This idea of
calculating the address of a memory location is a very general and powerful
and forms part of almost all assembly language programs of any size. As a
6809 address uses 16 bits it is clear that a general addressing register has to be
able to store 16 bits. What is less obvious is that the range of operations that
are generally applied of addresses is smaller than the range applied to data.
For this reason, the6809's addressing registers are associated with a different
set of operations from the A and B registers. The use of the addressing
registers and their associated operations gives the 6809 a whole family of
extra addressing modes collectively known as 'indexed addressing'.

Indexed addressing is such a large subject that it would be possible to write
a reasonable length book on how the indexed addressing modes work and
liow they are used! Fortunately, once you have picked up the idea of
calculating an address using the addressing registers, then all the different
variations are fairly easy to understand. What is more difficult is trying to see
what use some of the more exotic indexed addressing modes might be useful
for. The best answer to this question is that when you are writing a program
that needs or would benefit from their use you will soon recognise it!
However, to help you get started with indexed addressing there are some
'sound' examples at the end of the chapter!

146

Chapter 9 The addressing registers · indexed addressing

The addressing or pointer registers

There are five registers within the 6809 that are exclusively concerned with
the matter of specifying address�s. Four of them are full addressing registers,
in the sense that they are 16 bits long and able to hold a complete address, and
one of them, the DP or 'Direct Page' register, is only eight bits long and has to
be used in conjunction with other information to determine a full address. In
fact the OP register is so different and special that it is better to treat it in a
section all on its own towards the end of this chapter. The four full addressing
or 'pointer registers' are called the X, Y, U and S registers. Although all four of
them can be used in the same way as far as index addressing goes, the X and
Y registers are a little more limited than the U and S registers. In particular, the
U and S registers are involved in so-called 'stack operations' which are
explained in the next chapter. Also the S register is used by the 6809 to keep
track of return addresses during subroutine calls and returns. For this reason
the X and Y registers are called the 'index registers' and the U and S registers
are called the 'stack pointers'. Despite the different names used for the
registers, it is important to realise that as far as indexed addressing is
concerned the four registers are identical. However, even though they are
identical in theory, the Dragon uses the S register extensively and it is safer to
use the index registers for indexing and the stack registers mainly for stack
operations, as described in the next chapter.

Operations on the pointer registers

Although the pointer registers are used for a different purpose to the A and
B registers there are a number of operations that they share with them. For
example, in the same way that you can load and store the A and B registers
using LOA, LOB, STA and STB you can load and store the pointer registers
using similar instructions e.g. LOX loads the X register. Because they are so
similar to the already familiar A and B register operations, rather than treat
each of the operations on the pointer registers at length, it should be
sufficient to list them:

147

Language of the Dragon

the load instructions

LDS address
LDU address
LDX address
LDY address

the store instructions

STS address
STU address
STX address
STY address

the compare instructions

CMPS
CMPU
CMPX
CMPY

address
address
address
address

The action of each of these instructions should be obvious. However, it is
worth pointing out that each pointer register is 16 bits long. For example, LOX
address loads the X register taking the most significant byte from 'address'
and the least significant byte from 'address + 1 '. Apart from these three forms
of instruction, load, store and compare, there are some completely new ones
that also work with the pointer registers and they will be described later in this
chapter.

Simple indexing

The idea of using a register to hold the address to be used by an instruction
is not a difficult one. Any instruction that can be used with indexed
addressing can take its address from any of the four pointer registers. The
way that simple indexing is indicated in assembler is by writing the name of
the pointer register that contains the address in the address field of the
instruction preceded by a comma. So for example,

1 48

Chapter 9 The addressing registers - indexed addressing

LDA,X

loads the A register from the memory location whose address is stored in the
X register. Similarly,

STA ,U

stores the contents of the A register in the memory location whose address is
stored in the U register.

You may be wondering what the comma in front of the register's name is
for. The answer is that you can write a number in the range -32768 to32767 in
front of the comma that will automatically be added to the contents of the
register and the result used as the address of the memory location. For
example, if the X register contains $6000 the instruction

LDA 3,X

will load the A register from $6003. The number to the left of the comma is
known as the 'offset' because, rather like the offset used in relative
addressing, it indicates how far away, in terms of memory locations, the data
is from the address currently in one of the pointer registers. So the general
form of 'simple' or 'constant offset indexing' as it is more properly called is -

mnemonic offset,pointer register

Some valid examples of constant offset indexing are -

LDA
ADDB

INC

-32,X
5,U

1,Y

(load the A register from X-32)
(add the contents of U + 5 to the B
register)
(add one to memory location Y + 1)

Notice that the LOA , X is a shorthand way of writing LOA O,X.

It is important to realise the contents of the pointer isn't altered in any way
by being used in indexed addressing. For example, LOA 1 , X only adds 1 to X
to work out the address to be used. The contents of X after the instruction are
the same as they were before the instruction. In other words, the address
calculation only produces a temporary result.

149

Language of the Dragon

As an example of how convenient constant offset indexing can be,
consider subroutine @DBAT in the previous chapter. The problem that the
subroutine solved was to calculate an address and then store the contents of
@CHAR in 'address', 'address'+ 1 and 'address' +2. Now this can be solved
much more directly using constant offset indexing

@DBAT LOB @XBAT
CLRA
ADDO jl$05CO
STD @ADDRESS
LOX @ADDRESS
LOA @CHAR
STA o,x

STA 1 ,X
STA 2,X
RTS

The address is calculated in the same way and then transferred to the X
register using @ADDRESS as an intermediary. Then the A register is loaded
from @CHAR and stored in the three consecutive memory locations given by
X, X + 1 and X + 2. If you compare both versions of the subroutine you will
immediately see that indexed addressing not only makes the program
shorter, it also makes it easier to understand. The subroutine would be even
shorter and easier to understand if there was some way of transferring the
contents of the D register directly into the X register. There is indeed an
instruction that will transfer the contents of any register to any other.

The TFR and EXG instructions

Although the two instructions TFR (TransFeR registers) and EXG
(EXchanGe registers) are not really connected with the main subject of this
chapter, they can now be described because all of the 6809's registers have
been introduced, if not fully discussed. The instruction -

TFR r1,r2

will transfer the contents of register rl into register r2 without altering the
contents of r1 . For example,

150

Chapter 9 The addressing registers - indexed addressing

TFR A,B

results in the contents of the A register also being stored in the B register. (In
other words, both registers now contain the same value.) The instruction-

EXG r1,r2

is superficially like the TFR instruction but it transfers the contents of register
r1 into register r2 AND it also transfers the original contents of r2 into r1. That
is, it swaps the contents of the registers. For example,

EXG A,B

exchanges the contents of the A and B registers. After the instruction, the A
register contains the value that was in the B register and the B register
contains the value that was in the A register.

The instructions TFR and EXG can be used to transfer or exchange the
contents of any pair of 6809 registers that are the same size. That is, you can
transfer or swap any pair of eight-bit registers, and any pair of 1 6-bit registers,
but you cannot transfer or exchange between an eight- and 1 6-bit register.
For example,

TFR A,CC

is valid because the both the A and CC (Condition Code register) are both
eight-bit registers, but

TFR A,X

is not allowed because the A register is eight-bit and the X register is 1 6-bit.
However, as the D register is 16-bit and is made up of the A and B registers
this forms a link between the 6809's eight- and 16-bit registers that can be
used to transfer and exchange values between all the registers.

Using the TFR instruction and constant offset indexed addressing, the
@DBAT subroutine becomes -

@DBAT LOB @XBAT

151

Language of the Dragon

CLRA
ADDD
TFR
LDA
STA
STA
STA
RTS

jl$05C0
D,X
@CHAR
0,X
1,X
2,X

and now looks particularly simple!

Accumulator offset indexed addressing

Constant offset indexed addressing is very useful if you want to use a few
memory locations next to each other, as in the @OBAT subroutine, but
consider the problem of zeroing a whole section of memory. You could use
something like -

LDX # @START
CLR 0,X
CLR 1,X
CLR 2,X
CLR 3,X

and so on until the appropriate amount of memory had been cleared. (The
addre5:5 of the first memory location to be cleared is labelled by @START.)
However, if the program had to clear say 100 locations this method would
result in rather a long program.

What is required to solve the problem is the facility to specify a 'variable
offset'. This is provided by the next level of indexed addressing, 'accumulator
offset indexed addressing'. As you might be able to guess from its name,
accumulator offset indexed addressing works in the same way as constant
offset indexed addressing except that the offset ls taken to be the current
contents of one of the accumulators A, B or D. For example,

1 52

Chapter 9 The addressing registers - indexed addressing

LDA B,Y

loads the B register from the memory location whose address is obtained by
adding the contents of the B register to the contents of the Y register. Notice
that once again neither the contents of the B register nor the contents of the Y
register are affected by this instruction. The contents of the eight-bit registers
A and B are treated as two's complement values so, that using these
registers, you can address the current contents of a pointer register from -128
to + 127. The value in the D register is also treated as a two's complement
value when it is added to the pointer register so this gives a range of-32768 to
+ 32767 from the current contents of the pointer register. You may be a little
puzzled by an instruction like -

LDA A,Y

because the A register's value is changed by this instruction. There is no need
to worry! The original contents of the A register are added to the contents of
the Y register and then this result is used as the address of the memory
location that A is loaded from.

Using accumulator offset indexed addressing the problem of clearing 100
memory locations is easily solved -

CLRA
LDX #@START

@LOOP CLR A,X
INCA
CMPA #99
BLE @LOOP

which can be further simplified if the memory can be cleared starting from
@START + 99 and working down to @START -

LDA #99
LDX #@START

@LOOP CLR
DECA
BNE

A,X

@LOOP

1 53

Language of the Dragon

If you want to clear (or do anything else!) to more memory locations than
can be addressed by an eight-bit two's complement offset then you can
always use the D register to specify a 16-bit two's complement offset.
However, you should keep in mind the fact that while the D register is being
used to specify an offset, both the A and B registers are unavailable for
calculations unless the D registers value is saved and restored. One possible
solution is to use the EXG instruction to swap the D register's value with one
of the other pointer" register's.

Auto increment/auto decrement indexing

There is a second way of 'stepping' through a series of memory location
using indexed addressing, known as 'auto increment/decrement indexing',
The basic idea is that you can specify that the pointer register automatically
has either 1 or 2 added to or subtracted from it each time it is used. For
example,

LDA ,X+

means "load the A register from the memory location whose address is stored
in the X register and then add onetoX". In general, writing one plus sign after
the pointer register's name is taken to mean that 1 should be added to the
register AFTER the operation is complete, thus leaving the register 'pointing'
at the next memory location. Writing two plus signs after the register's name
will cause it to be incremented by 2 following the operation. Unfortunately
this is where it finishes. Writing three plus signs will simply give you an error
message. This adding one or two to the p0inter register after the operation is
known as 'auto increment mode'. If you want to use memory locations that
differ by 1 or 2 in ascending order then auto increment mode is by far the best
method. For example, the program to clear 100 memory locations is best
written as

@LOOP

CLRA
LDX
CLR
INCA
CMPA
BLE

Jl@START
,X +

jl99
@LOOP

1 54

Chapter 9 The addressing registers - indexed addressing

Notice that auto increment is only allowed with a constant offset of zero.

'Auto decrement' works in a very similar way to auto increment apart from
subtracting 1 or 2 BEFORE the instruction is completed. For example,

LDA ,-X

will first subtract 1 from the contents of the X register and then use the result
as the address of the memory location that A is loaded from. Notice that the
minus sign is written in front of the pointer to indicate that the
subtraction is done before the contents of the register are used as the address
of the memory location. In the same way, writing two minus signs in front of
the pointer register's name will subtract 2 from the register's value before it is
used as an address. Notice that in both cases the addition or subtraction
actually alters the value stored in the pointer register. Some valid example of
auto increment and decrement are -

LDA ,-X

STA ,--U

CLR ,Y +

NEG ,S+ +

subtract 1 from the X register and then load the A
register from the memory location that it 'points'
at

subtract 2 from the U register and then store the
A register in the memory location that it 'points'
at

clear the memory location that Y 'points' at and
then add one to Y
performs the NEG operation on the memory
location whose address is stored in S and then
adds2 to S

I n general, i f you want t o use a series of memory locations that differ by 1 o r 2,
use auto increment or auto decrement indexed addressing - it is fast and
efficient. If you want to use memory locations that differ by more than 2 or
that differ by a variable amount then use accumulator offset indexed
addressing and use the arithmetic operations on the accumulators to update
the address.

155

Language of the Dragon

The effective address - the LEA instruction

All of the indexed addressing methods described so far have one thing in
common, they all work out ar;, address to be used by the instruction that they
are part of. The address that is calculated in the course of indexed addressing
is usually called the 'effective address'. On some occasions it would be an
advantage if this effective address could be stored for later use. For example,
suppose during the course of a program it was necessary to use a memory
location specified by indexed addressing more than once, then, rather than
use the same indexed addressing mode, it would be better to re-use the
effective address calculated the first time. This is where the LEA {Load
Effective Address) instruction comes The LEA instruction can only be used
with the indexed addressing mode and its action to store the resulting
effective address in one of the pointer registers. For example,

LEAY 3,X

will load the Y register with the effective address calculated by 3,X. In other
words, after the instruction the Y register will contain the value in the X
register plus 3. You can use the LEA instruction to store an effective address,
calculated using a given pointer register, back into itself. For example,

LEAX 3,X
will store the effective address obtained by adding 3 to the current value of the
X register back into the X register. A common use of the LEA instruction is as
an increment or decrement of a pointer register. For example, another way to
write the program that clears 100 memory locations is,

CLRA
LDX @START

@LOOP CLR 0,X
LEAX 1,X
INCA
CMPA jl99
BLE @LOOP

where the LEAX instruction adds one to the X register each time through the
loop. Notice that the LEA instruction can be used with any of the indexed
addressing modes. So for example,

156

Chapter 9 The addressing registers - indexed addressing

LEAX , S +
LEAY A,X
LEAU D,U

are all valid LEA instructions. Notice that LEAX 1,X and LEAX -1 ,X are the
pointer register equivalents of INC and DEC.

The ABX instruction

The ABX (Add B to X) instruction is not really in the mainstream of 6809
instructions in that it singles out the X register for special treatment! The
effect of the ABX instruction is to add the contents of the B register
considered as a simple binary number to the X register. You might think that
ABX is the same as LEAX B,X. However, there is an important difference.
The LEAX B,X instruction treats the contents of the B register as a two's
complement number and so the range of the effective address is X-128 to
X + 127 but the ABX instruction treats the contents of the B register as a
simple binary number and this give a range of X to X + 255.

Program counter relative

'Program counter relative addressing' is an advanced form of indexed
addressing that you can easily use without understanding. For this reason,
you might like to postpone reading this section until you are entirely happy
with the other indexed addressing modes.

In the chapter on branching, it was briefly mentioned that one of the
advantages of relative addressing was the fact that a program that used
nothing but relative addressing could be moved about in memory and run
without having to be re-assembled. The trouble is, that while branch and
branch-to-subroutine instructions use relative addressing, instructions that
manipulate data actually quote the address of the memory location that they
are going to use. If you want to write a fully position-independent program
then there has to be a way of using relative addressing with any instruction.
The similarity between constant offset indexed addressing and relative
addressing has already been noted. The only difference between relative
addressing and constant offset indexed addressing is that relative addressing
adds the offset to the PC register and indexed addressing adds the offset to

1 57

Language of the Dragon

one of the pointer registers. The PC register is not a general purpose pointer
register but, to make relative addressing available to all 6809 operations, it can
be used in a constant offset indexed addressing mode called 'PC relative'. For
example,

LDA 5,PC

would access the memory location five memory locations further on from the
start of the next instruction (see relative addressing in Chapter Seven). In the
same way that the BASIC assembler automatically calculates two's
complement offsets for relative addressing, most assemblers will calculate
the correct offset for PC relative from the value of an address label. So -

LDA @DATA,PC

would calculate the offset required to load the A register from the memory
location labelled by @DATA,

Using PC relative addressing to produce position independent programs is
not a difficult technique but it is better to concentrate on writing assembly
language programs that work before venturing into producing more
sophisticated programs. For this reason, PC relative addressing will not be
built into the BASIC assembler and won't play any part in forthcoming
examples. This facility is to be found in both of the commercially available
assemblers detailed in Appendix II.

Indirection

Like the last section, this one deals with a topic that can be left until you are
ready to tackle something new! 'Indirection' is, in principle, a simple idea that
can get a little complicated in practice! The idea of using an address to specify
a memory location is something that you should already be thoroughly
familiar with. However, in the 6809, an address is nothing more than a 16-bit
simple binary number and so it can be stored in two memory locations just like
any other 1 6-bit number. The idea behind indirection is that, instead of giving
the address of the memory location that holds the data, you supply the
address of a pair of consecutive memory locations that contain the address of
the memory location that contains the data! This idea is easier to understand
than it is to describe! If simple addressing is imagined as,

1 58

Chapter 9 The addrBssing registers . indexed addressing

memory

address � B

then indirect addressing can be depicted as:

address --------;,-

two memory
locations memory

address 1� a
Indirect addressing is sometimes expressed as "giving the address of the
address". Once you see the general idea you will not be surprised to learn that
you can apply indirection more than once. lf first level indirection is giving the
address of the address then second level indirection is 'giving the address of
the address of the address'. And so on to third level indirection and so on to

.. ! Perhaps fortunately, the 6809 will only handle orie level of indirection in
an address field. In particular, yo·u can only use indirect addressing in
conjunction withhextended addressing and indexed addressing. The usual
way of indicating indirection is to enclose the address field in square brackets
but as these are not easy symbols to type on the Dragon we will use ()
brackets. For example,

LDA $40 0 0

means load the A register with the contents o f memory location $40 0 0 but

LDA ($40 0 0 1

means that $40 0 0 and $4001 contain the address that the A register should be
loaded from. When indirection is used with indexed addressing the principle
is that the effective address is calculated first (ignoring the indirection) and
then this effective address is used as the address of the memory location
where the actual address is stored. For example,

1 59

Language of the Dragon

LDA 14,XI

will first add 4 to the contents of the X register to get the effective address and
then use this as the address of'the pair of memory locations that hold the
address of the data.

Indirect addressing is available on all of the indexed addressing modes
apart from auto increment by 1 and auto decrement by 1 . That is,

STA 1,X+ + I

and

STA 1,--XI

are perfectly good but

STA l,X + I

and

STA 1,-XI

are both invalid. The reason for this restriction is not difficult to see. If a
pointer register contains the address of a 1 6-bit address stored in two memory
locations, what is the purpose of adding or subtracting 1 from it to make it
point at half of the address pair?

The reason that indirect addressing is treated in this chapter is that ALL
indirect addressing including extended indirect addressing is implemented as
a variety of indexed addressing. You will find indirection a valuable tool when
you come to write large assembly language programs that are intended for
use by other programmers. For example, the Dragon's BASIC ROM contains
many uses of indirection. One that is worth mentioning is the indirect jump. If
you look at the table in Appendix I you will see that the JMP and JSR
instructions can be used with indexed addressing and so

JMP (address)

and
JSR (address)

7 60

Chapter 9 The addressing registers - indexed addressing

are both valid. You may find it difficult to think of a reason for using indirect
jumps but suppose that you were writing a large program consisting of a
collection of subroutines that kept changing. As the subroutines changed in
size their starting addresses would also change and any program that used
the subroutines would have to be updated to take into account their new
positions. However, if you followed the simple rule of placing all the
subroutine start addresses together in the form of a table · a 'jump table' • at
the start of your program and insisting that other programmers used the
subroutines by indirect jumps through the table then, as long as you kept the
table up-to-date, you could move the start addresses of the subroutines as
much as you liked without affecting anyone. This is in fact what is done in
most large programs but the use of indirect jump tables and such like really
comes under the heading of advanced assembly language programming and
be will returned to briefly in Chapter Eleven.

Summary of indexed addressing modes

If you include indirection there is a very wide range of indexed addressing
modes available to the programmer and it is worth gathering them together in
one place ·

Mode example indirect example

Constant offset LDA 5,X LDA I5,XI
Accumulator offset LDA D,Y LDA ID,YI
Auto increment by 1 LDA ,S + not valid
Auto increment by 2 LDA ,Y + + LDA l ,Y+ +)
Auto decrement b y 1 LDA ,-Y not valid
Auto decrement by 2 LDA ,--U LDA 1,--U)
PC relative LDA3,PC LDA (3,PCI
Extended indirect LDA ($4001

These are all of the possible indexed addressing modes. Notice that you
cannot combine modes to obtain new addressing modes. For example, LOA
3,X + + is illegal because auto increment can only work without an offset,
LOA -X + + + is illegal because you can only auto increment by 1 or 2 and

161

Language of the Dragon

LDA ,X-- is illegal because you can only auto decrement before the effective
address is used.

Machine code details of indexed addressing

You can use indexed addressing without ever worrying about how it is
implemented in 6809 machine code but if you are at all interested in
understanding how an assembler works, or if you are interested in producing
efficient code, then it does help to know how an instruction like LDA 5,X is
assembled. In fact the constant offset indexed mode can be assembled into
machine code in four different ways depending on the range of the offset.

The fact that an instruction is using indexed addressing is conveyed in its
machine code in the same way as extended, immediate or direct addressing.
For example, $86 is the code for LDA using immediate addressing and $A6 is
the code for LDA using indexed addressing, but which FORM of indexed
addressing? The additional information about which of the many variations of
indexed addressing is contained in an additional code that follows the
machine code. This is called the 'post byte'. In other words, an instruction
using indexed addressing uses two memory locations, one to store its
instruction code and the following one to supply information about the actual
form of indexing being used. The format of the post byte can be seen in the
Indexed Addressing Modes Table in Appendix I. The coding of an indexed
instruction using this table is quite straightforward. For example, LDB A,Y
assembles to $E6, $A5. The $E6 is obtained from the Instruction Code Table
in Appendix I in the usual way and the $A5 is obtained from the Indexed
Addressing Modes Table, taking RR to be 01 for the Y register.

The section of the table dealing with constant offset indexed addressing
deserves a closer look. When writing assembly language the offset can be in
the range-32768 to + 32767 but always to include a 16-bit two's complement
offset would be very wasteful of time and memory. Most constant offset
indexed addresses are of the form O,X or 4,X, that is the offsets are usually
small. For this reason the machine code form of the constant offset indexed
address depends on the size of the offset. If the offset is zero or in the range
-16 to + 15 it can be included into the post byte giving a very fast, very short
instruction. If it is in the range -128 to + 127 the offset is too large to be
included in the post byte and so it has to be stored in the next memory location
giving the resulting indexed instruction the following form

162

Chapter 9 The addressing registers inde1<ed addressing

machine code I post byte I 8 bit offset I

lf theoffsetisin the range-32768 to32767 then there is no choice but to follow
the offset with two memory locations holding a full 16-bit offset. This gives
the indexed instruction the following form -

machine code I post byte I offset 1 I offset 21

(where offset 1 holds the most significant byte and offset 2 holds the least
significant byte.) Notice that a constant offset indexed addressing mode
instruction can occupy as little as two memory locations or as many as five if
the machine code itself occupies two of them. Also notice that there is more
than one way to write an instruction involving a small offset. For example,
LDA O,X can be assembled as a zero offset instruction into two bytes, as a
five-bit offset instruction in two bytes, as an eight-bit offset in three bytes or
even as a 16-bit offset in four bytes! In most cases a good assembler will
choose the most economical form of any indexed addressing mode and leave
the programmer to worry about more interesting things.

Direct addressing and the DP register

The only addressing register yet to be described is the DP or 'Direct Page
register'. When direct addressing was first introduced it was described as a
method of addressing memory from O to 255. The question is why should the
256 memory locations starting at zero be so favoured by direct addressing?
The answer is obviously that a direct address is only eight bits long and this
gives a range of O to 255. But this is missing the point that an address is a 16-bit
number, and so to select one memory location the eight bits specified in direct
addressing are extended to 16 bits by adding eight zeros. In other words -

LDA > $31

i s interpreted as an instruction to load the A register from $0031. (Recall that
> is used to indicate direct addressing - see Chapter Four, "Changing the
BASIC assembler into a two-pass assembler#.) The $0 0 that is written in front
of the direct address is in fact stored in the DP register. In other words, the DP
register holds the most significant eight bits of a direct address. If the DP
register was loaded with something other than $00 then a direct address
would specify a memory location outside the range O to 255. There isn't a

163

Language of the Dragon

LOOP instruction and so the only way to modify the OP register is by the TFR
or EXG instructions. For examDle, following

LDA jl$04
TFR A,DP

the OP register contains $04 and any direct addresses refer to the range $0400
to $04FF. ln other words an instruction like STA > $32 will store the contents
of the A register in memory location $0432, the most significant eight bits
coming from the OP register and the least significant eight bits coming from
the direct address.

This use of the OP register allows direct addressing to be used to access
any 256 byte block of memory starting at an address of the form $XXOO where
$XX is stored in the DP register. The DP register can significantly reduce the
amount of space that a program takes up in memory and can even make it run
a little faster but these are not normally considerations that trouble the
Dragon assembly language programmer. The best advice is to leave the OP
register alone as the BASIC ROM occasionally uses it!

Adding the addressing registers to the BASIC assembler

There are three parts to adding the addressing registers to the BASIC
assembler - the 1 6-bit register instructions such as LOY etc, indexed
addressing modes and the EXG and TFR instructions. Adding the rest of the
1 6-bit register commands is simply a matter of adding the appropriate DATA
statements and making allowance for 1 6-bit immediate data (as for the D
register). Adding the indexed addressing modes is a little more tricky in that
there are so many different forms to indexing. To keep things as simple as
possible only 1 6-bit constant offset, accumulator offset and auto
increment/decrement indexed addressing will be implemented. Thus the
BASIC assembler ignores indirection and PC relative addressing. This is not
too much of a restriction in that both forms are best left for more advanced
programming. Notice also that the only form of constant offset that is allowed
is 1 6-bit offset. This means that instructions like LOA O ,X that could be
assembled into two memory locations will in fact takes four but this waste of
space is worth the simplification it brings to the BASIC assembler. The
instructions EXG and TFR can be adding by included their DATA statements
and extending the way that the address field is handled to allow for

164

Chapter 9 The addressing registers - indexed addressing

instructions like EXG A,B. Which registers are to be exchanged or transferred
is indicated by the byte following the machine code for the instruction
according to the following table -

D = 0 X = 1 Y = 2 U = 3 S = 4
PC = 5 A = 8 B = 9 CC = 10 DP = 11

where the code for the source register is stored in the most significant four
bits and the code for the destination register is stored in the least significant
four bits. So, for example, TFR U,S would assemble to -

$1 F $34

where $1 F is the machine code for TFR and $34 is the code for the U register
($31 and the S register ($4) is indicated in the table given above.

1 REM BASIC ASSEMBLER V9.1

81 DATA LDX,&H8E,&H9E,&HAE,&HBE,-1
82 DATA LDY,&H108E,&H109E,&H10AE,&H10BE,-1
83 DATA LDS,&Hl0CE,&Hl0DE,&Hl0EE,&Hl0FE,-1
84 DATA LDU,&HCE,&HDE,&HEE,&HFE,-1
85 DATA STS,-1,&H10DF,&H10EF,&H10FF,-1
86 DATA STU,-1,&HDF,&HEF,&HFF,-1
87 DATA STX,-1,&H9F,&HAF,&HBF,-1
88 DATA STY,-1,&H109F,&H10AF,&H10BF,-1
89 DATA CMPS,&H118C,&H119C,&H11AC,&H11BC,-1
90 DATA CMPU,&H1183,&H1193,&H11A3,&H11B3,-1
91 DATA CMPX,&H8C,&H9C,&HAC,&HBC,-1
92 DATA CMPY,&H108C,&H109C,&H10AC,&H10BC,-1
93 DATA LEAS,-1,-1,&H32,-1,-1
94 DATA LEAU,-1,-1,&H33,-1,-1
95 DATA LEAX,-1,-1,&H30,-1,-1
96 DATA LEAY,-1,-1,&H31,-1,-1
97 DATA ABX,-1,-1,-1,-1,&H3A
98 DATA EXG,&Hl E,-1,-1,-1,-1
99 DATA TFR,&Hl F,-1,-1,-1,-1

199 DATA ZZZ,-1,-1,-1,-1,-1

165

Language of the Dragon

5000 IF M$= "EXG" OR M$= "TFR" THEN GOSUB 5100 ELSE
GOSUB5500

5100 FOR K = J TO LEN(A$(I))
511 0 IF MID$(A$(1),K,1 I = "," THEN GOTO 5130
5120 NEXT K
5130 L$= MID$(A$(1),K-2,2)
5140 GOSUB 5200
5150 A F$ = L$
5160 L$= MID$(A$(1), K + 1,2)
5165 IF RIGHT$(L$,1) = " " OR LEN(L$) = 1 THEN L$ = "
" + LEFT$(L$, 1)
5170 GOSUB 5200
5180 AF$ = "&H"+ AF$+ L$
5185 TYPE = l
5190 RETURN
5200 IF L$ =" D" THEN L$ = "0"
521 0 IF L$ = " X" THEN L$ = "1 "
5220 I F L$ = " Y " THEN L$ = "2"
5230 IF L$ =" U" THEN L$ = "3"
5240 IF L$ = " S" THEN L$ = "4"
5250 IF L$ = "PC" THEN L$ = "5"
5260 IF L$ =" A" THEN L$ = "8"
5270 IF L$ =" B" THEN L$ = "9"
5280 IF L$ = "CC" THEN L$ = "A"
5290 IF L$ = "DP" THEN L$= "B"

5800 TYPE =3
5810 L$ = MID$(A$(1),K-1 , 1)
5820 OF=0
5830 IF L$ = "A" THEN OF= &H86
5840 IF L$ = "B" THEN OF= &H85
5850 IF L$ = "D" THEN OF= &H88
5860 L$ = MID$(A$(1),K + 1, 1)
5870 IF L$= "-" THEN L$= MID$(A${1),K+ 2,1):OF = &H82
5880 IF L$ = "-" THEN L$ = MIDIA(1), K +3,1):OF = &H83
5890 RF=0
5900 IF L$ = "Y" THEN R F = l
5901 I F L$ = "U" THEN R F = 2
5902 IF L$ = "S" THEN R F = 3

166

Chapter 9 The addressing registers · indexed addressing

5910 IF MID$(A$(11,K + 2,1 1 = " + "THEN OF= &H80
5920 IF MID$(A$lll ,K+2,21 = " + + " THEN OF= &H81
5930 IF OF< > 0 THEN AF$= STR$1RF + OF):RETURN
5950 OF= &H89 + RF
5955 AF$ = " "+ AF$
5960 A = VAL(AF$)
5970 IA = 1
5980 IF A> =0 THEN RETURN
5990 AF$ = STR$(65536 + Al
5995 RETURN

6035 IF IA = 1 THEN PRINT jl-PRT,HEX$(OFI;

6241 IF TYPE= 1 AND RIGHT$(M$, 1 I= "X" THEN TYPE = 4
6242 IF TYPE= 1 AND RIGHTIM, 1 1 = "Y" THEN TYPE=4
6243 IF TYPE= 1 AND RIGHT$(M$, 11 = "U" THEN TYPE= 4
6244 IF TYPE= 1 AND RIGHT$(M$,1 I = "S" THEN TYPE= 4

6255 I F IA = 1 THEN POKE P,OF: P = P + 1:TYPE= 4

Subroutine 5800 processes indexed addressing by making up the code for the
post byte in accordance with the Indexed Addressing Modes Table in
Appendix I Subroutine 5100 handles the coding of the byte following the EXG
or TFR instruction indicating which pair of registers are involved. Notice that
subroutine 6000 has to be modified to print and POKE the correct number of
memory locations for a 16-bit constant offset.

The processing of the address fields for both indexed addressing and the
EXG and TFR instructions is very crude and doesn't allow for blanks included
in the instruction. So, for example, you must write EXG A,B rather than EXG
A, B and LDA 0,X rather than LDA 0 ,X.

A general multiple-precision arithmetic subroutine

Before moving on to practical examples involving the Dragon's sound
there is some unfinished business concerning multiple-precision arithmetic,
dealt with in Chapter Eight, that needs clearing up. To add two numbers
together, each @N bytes long, the first stored with its most significant byte at

1 67

Language of the Dragon

@NUM1 and the second stored with its most significant byte at @NUM2 and
store the answer starting at @ANS use -

@ADD LOB
LOX
LEAX
LOY
LEAY
LOU
LEAU
ANDCC

@A LOOP LOA
ADCA
STA
DECB
BNE
RTS

@N
#@NUMl
B,X
#@NUM2
B,Y
#@ANS
B,U
jl$FE

0,-X
0,-Y
0,-U

@ALOOP

To subtract the two numbers simply change the ADCA instruction to SBCA.
Notice the way that the three pointer registers X, Y and U are used with auto
decrement to 'step through' the memory locations of each number. Also
notice the way that the C bit is cleared before the first add so that the ADC
instruction can be used to add the first memory locations without error. The
LEA instructions at the start of the program adjust the pointer registers to
point to one memory location before the least significant byte of the numbers
because the auto decrement happens before the effective address is used.

Using Dragon Sound

Although you might not think so from the limited beeping that BASIC
restricts you to, one of the most flexible features of the Dragon is its sound.
This section ls concerned with generating sounds on the Dragon and
provides plenty of opportunity to use indexed addressing.

The Dragon's sound hardware is fully described in the companion volume
to this book, "The Anatomy of the .Oragonu. However, the only essential
detail from the point of view of the following assembly language subroutines
is that, after a few operations concerned with initialisation, storing a number

168

Chapter 9 The addressing registers - indexed addressing

in memory location $FF20 will produce a voltage proportional to the number
which is fed to the speaker of the TV set via a UHF modulator. To be more
exact, only b7 to b2 of the location actually affects the output. What this
means is that you can produce a voltage that varies from 0 to the maximum
level in 64 equal steps by storing a number in the range 0 to 63 in bits b7 to b2
of memory location $FF20, Using just this simple fact it is possible to create an
almost unlimited range of sounds.

There are three ways in which a steady tone can vary, in volume, in pitch
and in quality. All steady -tones are the result of periodic waveforms. The
volume is related to the amplitude of the waves, the pitch to the rate of
repetition and the quality to the shape of the wave. For example, the purest of
all tones is a perfect sine wave (see fig 9 .1 l. A particularly rough sounding
tone is produced by the 'sawtooth' wave form (see fig 9.2). To produce the
sawtooth wave form all that is necessary is to store a series of numbers that
increase to some maximum and then reduce to zero and so on in location
$FF20. Obviously to create tones with a given quality it would be useful to
have a program that allowed the user to specify a series of numbers and then
hear the tone that they produce. An assembly language program to do this is
quite easy to write, the only difficult part being to find a good way of letting
the user specify the series of numbers. This is a task that is better suited to
BASIC and so in this section the use of assembler together with BASIC will be
examined.

The following assembly language program will take the series of values
stored in memory starting at $7F00 and then repeatedly store them in memory
location $FF20 so that you can hear the quality of the sound they produce.
This part of the program is fairly easy but to provide flexibility, the program
has to allow the user to decide how many values are specified and how long
the delay should be between storing each value. The number of values is
stored at $7EFF and the delay at $7EFE. Also, if the program is going to be
used as part of a BASIC program for designing sounds, there should be some
way to determine how long the sound should last. The sound duration is thus
specified in memory location $7EFD in fiftieths of a second so that it can be
compared with the Dragon's TIMER clock.

@SOUND EOU $FF20
@TABLE EOU $7FOO
@NUM EOU $7EFF
@PITCH EOU $7EFE
@OUR EOU $7EFD

169

Language of the Dragon

MAX

O Volts

Fig 9.1 A sine wave: the purest of tones

MAX

0 Volts

Fig 9.2 A saw tooth wave form - a rough sound

1 70

@TIMER

@START

@REP

@LOOP

@INIT

@DELAY
@LDEL

EOU

BSR
CLR

CLRA
LDB
ASLB
ASLB
STB
BSR
INCA
CMPA
BLO
LDA
CMPA
BHI
RTS

LDA
ORA
STA
LDA
ANDA
STA
LDA
ANDA
STA
RTS

LDB
DECB
BNE
RTS

Chapter 9 The addressing registers - indexed addressing

$113

@INIT
@TIMER
LDX @TABLE

A,X

@SOUND
@DELAY

@NUM
@LOOP
@DUR
@TIMER
@REP

$FF23
jl8
$FF23
$FF01
jl$F7
$FF01
$FF03
jl$F7
$FF03

@PITCH

@LDEL

Subroutine @INIT sets up the Dragon's sound channel so that you can hear
the results of the program and @DELAY is a typical delay subroutine as
described in Chapter Eight. The rest of the program is concerned with moving
the values in memory to $FF20 over and over again for the correct duration.

171

Language of rhe Dragon

Notice the way that the A register is used to determine both which memory
location will be transferred to $FF20 and when all of the locations have been
transferred.

If you just EXEC this program you the results that you get will depend on
whatever happens to be stored in the memory locations used for its data. To
make the program useful it has to be used with a BASIC program that sets the
data area to something appropriate. A machine code program can be saved
on tape using

CSA VE "filename" ,start,end,transfer

TH is command will save on tape the contents of memory from 'start' to 'end'
(where 'transfer' = end - start). To save the sound program use -

CSA VE "SOUND" ,&H7000,&H7030,&H31

After saving the sound program delete the BASIC assembler using NEW and
type in the following program -

10 CLEAR 1000,&6FFF
20 INPUT "HOW MANY VALUES";V
30 IF V>255 THEN GOTO 20
40 POKE &H7EFF,V
50 FOR I -1 TO V
60 PRINT "VALUE ";I;" - ";
70 INPUT A
80 IF A> 255 THEN GOTO 60
90 POKE &H7F00 + I-1,A
100 NEXT I
110 INPUT "PITCH";P
1 20 IF P> 255 THEN GOTO 110
130 POKE &H7EFE,P
140 INPUT "DURATION";D
150 IF D> 255 THEN GOTO 140
160 POKE &H7EFD,D
170 EXEC &H7000
180 GOTO 110

then load the sound program using -

172

Chapter 9 The addressing registers - indexed addressing

CLOAOM "SOUNO",O

When the BASIC program is RUN it will use the machine code to let you hear
the quality of the note produced by the list of values that you type in.

Altering the quality of the sound using the waveform works well for steady
tones but most sounds contain a range of pitches. For example, a typical
'laser zap' in a space game will start off at a high pitch and descend to a low
pitch. This is fairly easy to do if the wave form is kept simple and the simplest
waveform to program is a square Wave.

@LASER

@LOOP

@DELAY
@DLOOP

BSA
LOB
LOA
STA
BSA
CLA
BSA
INCB
CMPB
BNE
ATS

TFA
DECA
BNE
ATS

@INIT
#1
lf$FC
$FF20
@OELAY
$FF20
@OELAY

lf180
@LOOP

B,A

@DLOOP

The B register is used to determine the length of the delay produced by
@DELAY which increases by one each time through the program.

Steady tones and tones that change in pitch are not all that the Dragon can
produce. Many special effects are based upon 'white noise'. White noise, a
sound rather like that made by a radio between stations corresponds to a
jumbled non-repeating wave form (see fig 9.3). To produce this sort of wave
form requires a source of numbers that are as good as random. The trouble is
that it takes rather too long to generate random numbers using the BASIC
AND function. An alternative source of varied numbers that provides a fair

1 73

Language of the Dragon

MAX

0 Volts

Fig 9.3 White r.oise

approximation to a random sequence is the BASIC ROM! The following
program allows you to listen to the sound of BASIC -

@START
@END

@WHITE

@LOOP

@SOUND
@DELAY
@DLOOP

EQU
EQU

BSR
LDX
LDA
BSR
CMPX
BNE
RTS

STA
LDA
DECA
BNE
RTS

$9000
$B000

@INIT
Jl@START
,X+
@SOUND
jl@END
@LOOP

$FF20
jl20

@DLOOP

1 74

Chapter 9 The addressing registers - indexed addressing

You can send different sections of the ROM to the sound generator simply
by changing @START and @END.

To give you some idea of how to use white noise the following program
generates a 'gunshot' effect by progressively fading down the white noise-

@START

@CRAK

@LOOP

@VOL

EQU

BSR
CLR
LOX
LOA
ANDA
BSR
LOA
ANDA
BSR
LDA ,X+
ANDA
BSR
DEC
BNE
RTS
FCB O

$9000

@INIT
@VOL
!!@START
,X+
@VOL
@SOUND
,x+
@VOL
@SOUND

@VOL
@SOUND
@VOL
@LOOP

Notice the way that the volume is faded down by AN Ding the number with
the contents of @VOL.

Summary

1 l There are five addressing registers-

the two 1 6-bit index registers X and Y
the two 1 6-bit stack pointers U and S
and the eight bit direct page register DP

2) Both the index registers and the stack pointers can be used for
indexed addressing.

3) There are three indexed addressing modes-

1 75

Language of the Dragon

constant offset indexed
accumulator offset indexed
auto increment/auto decrement indexed

4) Indirect addressing specifies the address of the address that is to
be used in an operation.

5) Indirection can be used with any indexed addressing mode apart
from auto increment and auto decrement by one.

6) Indirect extended addressing is also available and is implemented
asa special indexed addressing mode.

7) The DP register holds the most significant byte of a direct address.

8) The TFR and EXG instructions can be used to move data between
all of the 6809's registers.

Micro projects

1 1 In Chapter Eight a delay subroutine was given that used the D register.
Re-write it using one of the pointer registers as a counter.

2) Write a short BASIC program that will use the SOUND subroutine
given earlier to produce white noise by POKEing random numbers in the
sound table (starting at @TABLEl. Use RND to generate the numbers (in the
range O to 63) and try experimenting with the values of pitch and duration.

176

Chapter Ten

The Stack Pointers and Interrupts

A 'stack' is one of the most useful ways of storing temporary data. The 6809
uses a stack to hold the return address following a JSR or BSR instruction. As
well as this implicit use of a stack by JSR and BSR instructions, assembly
language programs can make more direct use of stacks to store data. The
subject of stacks and how they are used brings us to a consideration of
'interrupts'. Interrupts are the main way that a computer can be made to
respond to the outside world. In the case of the Dragon, the most interesting
use of interrupts is in providing the BASIC TIMER facility. In this chapter both
general stack operations and interrupts are described. The chapter closes
with an example of how an interrupt routine can improve the Dragon's
keyboard.

A stack

A stack is simply an area of memory used in conjunction with a stack
pointer. The stack pointer contains the address of the item of data stored in
the stack. The normal method of storing data on the stack is via the PSH
(PuSH) operation which subtracts one from the stack pointer and then stores
the -data in the memory location that it points at. The normal method of
removing data from the stack is via the PUL (PULi) instruction which
accesses the item that the stack pointer is pointing at and then adds 1 to the
stack pointer. Notice that for a PSH operation the stack pointer moves down
one BEFORE the item is stored but for a PUL operation the stack pointer
moves up one AFTER the item has been accessed.

177

Language of the Dragon

The PSH and PUL operations on the stack produce a 'Last In First Out' or
'LIFO' effect. For example, if you push three numbers on to the stack in the
order 1, 2, 3 the stack will look like this (SP is the stack pointer):

I 1

I 2

SP -------> I 3

Carrying out a PUL on the stack will retrieve 3 and leave the stack pointer
pointing as 2. Thus a second PUL will retrieve thevalue2 and a third, the value
1 . The numbers went in 1 , 2, 3 but came out 3, 2, 1 . That is, the last number
onto the stack came out first.

The 6809 stack pointers U and S

The fact that the S and U addressing registers are also stack pointers was
mentioned in Chapter Nine. The S register is so called because it acts as the
stack pointer for the 'System stack'. The system stack can be used to store
temporary data generated by a program but it is also used automatically by
the 6809 to store temporary data generated in the course of running your
program. In this sense the system stack has to be shared with the 6809. The U
register is so called because it acts as the stack pointer for the 'User stack'.
The user stack isn't used by the 6809 and is free for any assembly language
program to use as required. The only trouble is that subroutines inside the
BASIC ROM may use the U stack, so applications program have to take care
if they are going to use any part of the BASIC ROM.

The basic stack operations on the S and U registers are PSHS, PULS,
PSHU and PULU. Each operation can PSH or PULany of the6809's registers.
For example, the PSHS instruction take the form -

PSHS 'register list'

where 'register list' is a list of the names of the registers to be pushed onto the
S stack. So -

PSHS X,Y,A

178

|

|

|

||

|

Chapter 10 The Stack Pointers and Interrupts

will push the contents of the X, Y and A registers onto the S stack. The other
three instructions, PULS, PSHU and PULU, can also pull or push a list of
registers. For example,

PULS X,Y,A

will restore the values that were pushed onto the S stack by the PSHS X,Y,A
instruction to the X, Y and A registers - as long as nothing else has been
pushed onto the stack in the mean time. The only restriction on the regiSter
list is that you cannot pull or push the S register onto the S stack nor the U
register onto the U stack.

You might be wondering about the order that the registers are pushed or
pulled. The order that you write the registers in the register list doesn't affect
the order that the registers are pushed or pulled. For example,

PSHS X,Y

is the same as

PSHS Y,X

In fact the order that the registers are pushed on to the stack is strictly
predetermined by the following priority -

1 PC
2 U or s
3 y
4 X
5 DP
6 B
7 A
8 cc

From a list of registers that are to be pushed onto the stack the registers
corresponding to the lowest numbers are pushed first. For example, in

PSHS CC,A,X

179

Language of the Dragon

the X register is pushed first, then the A register then the CC register. In other
words PSHS CC,A,X is the same as

PSHS X
PSHS A
PSHS CC

The order in which registers are pulled from the stack is the reverse of the
order in which they are pulled. That is, the registers in a register list will be
pulled so that the highest numbered registers are pulled first. So

PULS X,B,CC

is the same as

PULS CC
PULS B
PULS X

Apart from the PSH and PUL instructions, there are no other stack
operations. However, as the stack pointers are both general pointer registers,
values on the stack can be manipulated using indexed addressing. For
example,

PSHSA
ADDA,S+

doubles the value in the A register by first pushing its value on the stack and
then adding it back into the A register. Notice the way that auto increment on
the S register returns it to its original value before the PSHS - thus 'cleaning
up' the stack. It is important that, if you use a stack to store temporary data,
you remove it and leave the stack as you found it. Otherwise you could find
some odd things happening. In particular, if you push more onto the stack
than you pull off the stack will eventually grow to occupy all of the memory!
Notice that it is in general necessary to allocate sufficient memory to a stack
so that it doesn't overflow into areas of memory that are being used for other
purposes. ln the Dragon the S stack is usually initialised by the system to be
just below the temporary string storage area used by BASIC.

180

Chapter 10 The Stack Pointers and Interrupts

Subroutines and the system stack

The two stack pointers U and S are identical in their use apart from the way
that the 6809 automatically uses the system stack to store, among other
things, the return address following a subroutine call. Whenever you use
BSR or JSR the address of the next instruction is automatically stored on the
system stack. The action of an RTS instruction is to pull two bytes off the
stack and place them in the PC register which, if everything has gone to plan,
should return control to the instruction following the branch. In other words
RTS has the same effect as PULS PC. This use of a stack to store the return
address has the advantage that a subroutine can call another subroutine and,
because of the Last In First Out. property of a stack, the return addresses
come back in the correct order. The only thing that can go wrong with this
mechanism is that the subroutine stores more on the stack than it takes off
and then the RTS instruction will simply pull rubbish off the stack with
predictable disastrous consequences.

Interrupts

The idea of an interrupt is so familiar to humans that it is hardly worth a
second thought. If you are reading a book and the telephone rings you would
have no difficulty in marking your place in the book, answering the phone arid
then, after the call is complete, returning to the marked place in the book as if
nothing had happened. Contained in this description are the essential
elements of all interrupt handling. First there is a signal from the outside world
- the interrupt. As a result of this interrupt the current preoccupation is
suspended but enough information is stored to enable the task to be restarted
after the interrupt has been dealt with. The interrupt is dealt with and then the
original occupation is restored.

The 6809 can respond to three different types of interrupt - the NMI
(Non-Maskable Interrupt), IRQ (Interrupt ReQuest) and FIRQ (Fast Interrupt
ReOuestl. Each of these types of interrupt corresponds to a physical
connection to the 6809 chip inside the Dragon. A signal on one of these
connections indicates a request to interrupt the 6809 from whatever it is
currently doing. Exactly what happens following an interrupt depends on
which source caused the interrupt.

IRQ Following a signal on the IRQ line the 6809 completes the instruction
that it is carrying out, then it stacks all of the registers and jumps to the
location whose address is stored in $FFF8 and $FFF9. In other words, after

181

Language of the Dragon

stacking all the registers, the6809 executes a JMP {$FFF8) . In the Dragon the
address $FFF8 is shifted t,y hardware down into the BASIC ROM at $BFF8
which contains the address $01 0C. This means that an IRQ interrupt transfers
control to $010C. Details of what the Dragon uses the IRQ interrupt for will be
given later.

NMI Following a signal on the NMI line the 6809 completes the instruction
that it is carrying out then it stacks all of the registers and jumps to the location
whose address is stored in $FFFC and $FFFD. In the Dragon the address
$FFFC is shifted by hardware down into the BASIC ROM at $BFFC which
contains the address $0109.

FIRQ Following a signal on the FIRQ line the 6809 completes the
instruction that it is carrying out and then stacks the PC register and the CC
register and then jumps to the location whose address is stored in $FFF6 and
$FFF7. Notice that in this case not all of the registers are stacked following a
FIRO interrupt. It is this that makes it a fast interrupt. In the Dragon the
address $FFF6 is shifted by hardware down into the BASIC ROM at $BFF6
which contains $010C. The FIRO is only used in the Dragon to detect the
presence of a ROM program cartridge.

3 In general, the6809's interrupts can be used in a wide variety of ways but
the Dragon's hardware has been designed to put interrupts to good use and
so they are dedicated to a single purpose. In practice, the only interrupt that is
of any interest to the Dragon assembly language programmer is the IRQ
interrupt that is used to provide the BASIC TIMER function. A practical
example of how this interrupt can be used is given at the end of this chapter
but for now some of the 6809 instructions concerned with interrupts in
general will be described.

The RTI instruction

The three types of interrupt have one thing in common they all save some
of or all of the registers on the system stack and then do an indirect jump
through a fixed location. The destination of the jump is a program usually
referred to as an 'interrupt handler'. What exactly the interrupt handler does
depends very much on what caused the interrupt. For example, in the case of
the Dragon the \RO handler adds one to the current value of memory
locations used for the timer. Once the interrupt handler has finished control

182

,_

Chapter 10 The Stack Pointers and Interrupts

has to be returned to the program that was interrupted. This is done by using
the RTI (Re Turn from Interrupt) instruction which is to an interrupt what the
RT$ instruction is to a subroutine. The RTI not only returns control to the
program that was interrupted, it also restores to their original registers any
values that were pushed onto the stack by the interrupt. If all of the registers
were pushed onto the stack then following an RTI the 6809 is back to its
original condition before the interrupt even if the interrupt handler used some
of the registers. However, if the interrupt only saved some of the registers,
then the interrupt handler has to be careful not to alter any of the registers that
are not going to be restored by the RTI instruction.

Condition codes and interrupts

The condition code register was introduced in Chapter Seven in
connection with the branch instructions. However, there are a number of
condition code bits that are concerned with interrupts and the way that the
system stack is used. The full format of the CC register is -

b7 b6 b5 b4 b3 b2 bl bO
E F H I N Z V C

The H, N, Zand C bits have already been described in Chapter Seven. The Eor
Entire bit is used by the RTI instruction to discover how many registers were
pushed onto the stack by the interrupt and so how many registers should be
pulled off the stack before returning control to the program that was
interrupted. If the E bit is 1 then all (i.e. the entire set) of the registers were
pushed and so the RTI results in

PULS CC,A,B,DP,X,Y,U,PC

If the E bit is O then only the CC and PC register are pulled from the stack -

PULS CC,PC

There is a subtle point here. As the RTI instruction pulls the CC register off the
stack, which value of the E bit does it take notice of? The answer is that it first
restores the CC register by pulling it off the stack and then it examines the E bit
to discover how much more has to be pulled off the stack. This means that an
interrupt handler can change the CC bits as much as it likes and the RTI

183

Language of the Dragon

instruction will get it right. You can in fact manipulate the E bit stored on the
system stack to change the action of an RTI instruction for special purposes
but take great care that you pull the right things of the stack. For example,
suppose an IRQ handler didn't use any of the registers that the main program
was using. then you could save the unnecessary 'unstacking' of the entire
register set by -

PULS A
ANDA jl$7F
LDS7,S
PSHSA
RTI

The first instruction pulls the value that would be returned to the CC register
following an RTI and places it in A. The E bit is then set to O (by AN Ding with
$7F), the stack pointer is adjusted to get rid of the unnecessary register values
that were stored and then the new value for the CC is PSHed into the correct
position on the stack. The following RTI will now only restore the CC and PC
registers because the E bit is O. This sort of trick iS only worth using when your
are desperate to make a program run faster and it can lead to programs that
are very difficult to debug.

The I and F bits are both concerned with stopping interrupts having any
effect. The6809 will only take any notice of IRQ signals if the I bit isO. Thus the
I bit can be used to mask the effects of interrupts, Setting and clearing it can
be used to control when an interrupt is allowed. The instruction

ANDCC jl$EF

clears the I bit and

ORCC jl $1 0

sets i t t o 1 . The F bit will similarly disable FIRQ interrupts. I f the F bit is O then
the 6809 will take notice of signals on the FIRQ line but it will ignore them is F is
1. The instruction

ANDCC jl$BF

will clear the F bit and

184

-

Chapter 10 The Stack Pointers and Interrupts

ORCC jj,$40

sets it to 1 .

Apart from enabling the programmer t o decide when interrupts should be
allowed to happen, the I and F bits are also.used by the interrupts themselves
to stop the difficulty of an interrupt occurring during the operation of an
interrupt handler! The exact action of the IRQ interrupt on the CC register is:

1) The E bit is set to 1 and the CC register is pushed on the system
stack

2) The I bit is set to 1 to mask out any further IRQ interrupts

This means that following an IRQ interrupt the interrupt handler will not be
interrupted by IRQ again but it will be interrupted by an FIRQor a NMI. In this
sense both FIRQ and NMI have a higher priority than IRQ.

The exact action of a FIRQ interrupt on the CC register is:

1) The E bits is set to O and the CC register is pushed onto the
system stack

21 The F and bits are bah set to 1 to mask any further FIRQ or IRQ
interrupts

Thus a FIRQ interrupt handler will not be interrupted by another FIRO or a
subsequent IRQ unless the CC register is altered. This once again establishes
FIRQ as having a higher priority than IRQ. The NMI interrupt behaves like the
IRQ interrupt except that it sets both the F and I bits so masking any other
interrupts apart from another NMI. A NMI cannot be masked hence its name
and in this sense it is a higher priority interrupt than FlRQ and IRQ.

In general there are two ways of stopping an IRQ or FIRQ interrupt. You
can stop it at source by altering the device that produces it, or you can set the
CC register so as to mask the interrupt. The device that causes the interrupt
usually has to be reset in some way or another before it can cause another
interrupt. Resetting, and any other operations that the external ·device
requires, are all the responsibility of the interrupt handler. Indeed it is possible
that more than one external device can cause an interrupt and in this case the

1 85

Language of the Dragon

first job that the interrupt handler has to tackle is to find out what caused the
interrupt. As you can imagine, in general use interrupts can become very
complicated.

The instructions CWAI and SYNC

The normal use of an interrupt sigrial is to stop the 6809 from what it is
doing and transfer its processing powers to a different and perhaps more
urgent task. However, there are occasions when the 6809 has nothing bener
to do than wait for an interrupt to occur. The two instructions CWAI (Clear
and WAit for Interrupt) and SYNC (SYNChronise) are both concerned with
making the 6809 suspend its operation until something causes an interrupt.
The CWAI #$XX instruction ANDs the CC register with the immediate byte,
stacks all of the registers on the system stack and then waits for an enabled
interrupt. The immediate byte can be used to �elect which interrupt signal will
be enabled. Notice that the CWAI instruction will cause even the FIRO
interrupt handler to be �ntered with all the registers stored on the stack. The
CWAI instruction can save time in handling interrupts because when the
interrupt occurs the registers are already stacked.

The second 'wait for an interrupt' type of instruction is SYNC. A SYNC
instruction causes the 6809 to halt processing and wait for an interrupt to
occur. If a non-masked interrupt occurs then the usual sequence of register
stacking appropriate to the interrupt is completed and the interrupt handler is
entered. In this case the SYNC instruction causes the 6809 to wait for an
interrupt which is then processed as normal. However, if a masked interrupt
occurs then instead of being ignored it removes the 6809 from its 'sync' state
and allows it to carry on processing instructions. In this way masked
interrupts can be used to synchronise the 6809 to external events. An
example of the use of the SYNC instruction is given as a micro project at the
end of the chapter.

Software interrupts - SWI, SWl2, SWl3

It may seem strange but the idea of an interrupt is so useful that the 6809
has three instructions that will force the 6809 to behave as if it had received an
external interrupt signal! SWI (SoftWare Interrupt), stacks all the registers,
sets the I and F bits to mask external interrupts and then cause an indirect

186

Chapter 10 The Stack Pointers and Interrupts

jump to $FFFA. In the Dragon this address is moved using hardware down to
$BFFA. The SWI2 and SWl3 also stack all ofthe registers but they don't mask
external interrupts. SWl2 causes an indirect jump through $FFF4 which the
Dragon's hardware has moved down to $BFF4 and the SWl3 instruction
causes an indirect jump through $FFF2 which the Dragon's hardware has
moved down to $BFF2.

The SWI instructions are generally used to implement advanced or special
features such as calls to operating systems, machine code debuggers (see
Chapter Eleven) and so on.

Adding stack operations to the BASIC assembler

The instructions RTI, CWAIT, SYNC, SWI, SWl2 and SWl3 can all be
added to the BASIC assembler simply by including the appropriate DATA
statements. However, to accomodate PSH and PUL the handling of the
address field has to be extended once again. Both PSH and PUL use the byte
following their machine code to store the list of registers to be pushed or
pulled according to the following table:

PC
128

S/U
64

y
32

X
16

DP
8

B
4

A
2

cc
1

The value stored in the following byte is the sum of the codes corresponding
to each register to be pushed or pulled. So, for example, the machine code
for-

PSHS PC,X,A

is

$34 $92

where $34 is the machine code for PSHS and $92 = 128 + 1 6 + 2 is derived
from the above table.

187

Language of the Dragon

1 REM BASIC ASSEMBLER Vl 0.1

100 DATA PULS,&H35:-1 ,-1 ,-1 ,-1
101 DATA PULU,&H37,-1 ,-1 ,-1 ,-1
1 02 DATA PSHS,&H34,-1 ,-1 ,-1 ,-1
103 DATA PSHU,&H36,-1,-1 ,-1 ,-1
1 04 DATA RTl,-1 ,-1 ,-1 ,-1,&H3B
105 DATA CWAIT,&H3C,-1 ,-1,-1 ,-1
106 DATA SYNC,-1 ,-1 ,-1 ,-1 ,&H13
107 DATA SWl,-1 ,-1,-1,-1,&H3F
108 DATA SWl2,-1 ,-1,-1,-1,&H103F
1 09 DATA SWl3,-1 ,-1,-1,-1 ,&H11 3 F

5000 IF M $ = "EXG" OR M$= "TRF" THEN GOSUB 5100
5005 IF LEFT$(M$,3)= "PUL" OR LEFT$(M$,3)= "PSH" THEN
GOSUB 5300 ELSE5500
5300 A = O
5310 FOR K = J TO LEN(A$(1))
5320 L$ = MIDIA(1),K,2)
5330 IF L$= "PC" THEN A = A +1 28: K = K + 1
5340 IF L$ = "DP" THEN A = A +8:K= K + 1
5350 IF L$ = "CC" THEN A = A + 1 : K = K + 1
5360 L$= MID$(A$11),K,1)
5370 IF L$ = "A"THEN A = A + 2
5380 IF L$="B"THEN A = A +4
5390 IF L$= "X" THEN A = A +1 6
5400 IF L$= "Y" THEN A = A + 32
5410 IF L$ = "S" OR L$="U" THEN A = A +64
5420 NEXT K
5430 AF$ = STR$(A)
5440 TYPE = 1
5450 RETURN

The new subroutine 5300 processes the address field following a PSH or a
PUL and makes up the value to be stored in the memory byte following the
machine code for the instruction according to the previous table.

188

Chapter 10 The Stock Pointers and Interrupts

The Dragon's use of interrupts

We already know that the Dragon's hardware moves all of the memory
locations used by the interrupts down into the BASIC ROM but what hasn't
yet been mentioned is that you can change the destination of an interrupt.
Each of the 6809's interrupts causes an indirect jump through memory
locations in ROM down to a series of memory locations in RAM. These RAM
memory locations, for those interrupts that are used, contain JMP
instructions that finally transfer control to the interrupt handlers. The
important point is that as the JM P instructions are stored in RAM they can be
changed and so, interrupts can be intercepted on their way to their interrupt
handlers. This situation is best summarised by the following table:

Interrupt in directs indirects contents
through to

SWl3 $8FF2 $10 0 0
SWl2 $8FF4 $103 0
FIRQ $8FF6 $10 F JMP $8469
IRQ $8FF8 $1 0 C JMP $9D3D
SWI $8FFA $1 0 6 JMP $D521
NMI $8FFC $1 09 0
Reset $8FFE $8384

The meaning of this table should be clear but, to take an example, an IRQ
interrupt indirects though $BFF8 which contains the address $01 0 C. Thus,
following an IRQ, control passes to $010 C which contains the instructions
JMP $9 03 0 which finally transfers control to the interrupt handler. Notice
that the table contains an entry for 'Reset' which indicates where the 6809
transfers control to when the reset button is pressed. Some of the 6809's
interrupts are not used on the Dragon and this is indicated by the memory
locations in the table containing zeros, These unused interrupts could be put
to use by applications programs but there is always the possibility that future
Dragon systems programs will use one of them with resulting conflict.

The only two interrupts that the standard Dragon uses are FIRO and IRQ.
The FIRO interrupt is used by a cartridge ROM to gain control from BASIC
and start its own program running. The IRQ interrupt is used to produce the
1 150th of a second clock. The way that this works is that the TV frame sync
pulse is connected to one of the PIAs which causes an IRQ interrupt every
1 150 th of a second. (For more information see "The Anatomy of the
Dragon".)

189

Language of the Dragon

By intercepting the IRQ interrupt, an assembly language program can carry
out a fixed action every 1150th of a second orso. For example, an auto repeat
facility can be added to the Dragon's keyboard by setting memory locations
$150 to $159 to $FF. While a key is held down each setting of the memory
locations cause a single repeat. If the IRQ interrupt is intercepted by an
assembly language program that sets the memory locations to $FF and then
passes control to the original interrupt handler, then everything will function
normally but the keyboard will auto-repeat every 1150th of a second.

@IRQ
@AUTO

@REP

@LOOP

@TIM

EQU
ORCC
LOX
STX
LOX
STX
ANOCC
RTS

LOA
LOX
STA
CMPX
BNE
LOX
JMP
FOB

$100
jj,$10
@IRQ
@TIM
lf@REP
@IRQ

lf$EF

lf$FF
jj,$0150
O,X+
lf$15A
@LOOP
@TIM
o,x
0

The first part of the program @AUTO first disables the IRQ interrupts and
then changes the JMP $9030 to JMP @REP. The @REP subroutine simply
sets the memory locations to $FF and then jumps to the original interrupt
handler. The address of the original interrupt handler is stored in @TIM and
the JMP O,X instruction transfers control to the the address stored in X. To
use this program simple EXEC it once after assembling it and, every 1 /50th of
a second, it sets the memory locations to $FF and produces an auto repeat.
You may find that 1 150th of a second is a little fast for an auto repeat and so
the final version of the program produces a repeat every 1 /2 of a second by
counting the number of interrupts between each setting of the memory
locations. The following section needs to be added to the @AUTO part of the
previous program:

1 90

Chapter 10 The Stack Pointers and Interrupts

@REP LOX @TIM
DEC @COUNT
BEO @SET
JMP o,x

@SET LOA lf$FF
LOX jj,$0150

@LOOP STA O,X +
CMPX lf$15A
BNE @LOOP
LOA jj,25
STA @COUNT
LOX @TIM
JMP o,x

@TIM FOB 0
@COUNT FCB 25

Even with this improvement the auto-repeat program needs some work to be
useful. Ideally a key should not auto repeat until it has been held down for
some minimum time and then it should repeat at quite a fast rate.

Summary

1) The 6809 has two stacks - the system stack using the S register
as the stack pointer and the User stack using the U register as the
stack pointer.

2) The system stack is use automatically to save the return address
following a BSR or JSR instruction and during interrupts to save the
values in the registers.

3) Of the three 6809 interrupts only the IRQ interrupt that is used to
produce the system clock is likely to be useful to the assembly
language programmer working with an unmodified Dragon.

191

Language of the Dragon

Micro project

1) Use the SYNC instruction to ensure that the squash program given in
Chapter Eight only changes the display once every 1 150th of a second. Hint
you only need to modify the @DELAY subroutine.

192

Chapter Eleven

Assembly Language Style and Practice

Once you have mastered the details Of 6809 assembler the only way to extend
your skill is to write programs. As with nearly all aspects of computing,
practice is essential. Assembler is a powerful language and if a program using
a good method doesn't work fast enough in assembler then there is nothing
you can do but get a better computer! Although assembler is powerful you
still have to know how to solve the problem that you are interested in and in
some ways this can be more difficult in assembler than in a high level
language. If you have no idea of how to go about solving a problem using
BASIC then you have little chance of getting any further with assembler.
Despite the fact that there is no way of becoming a proficient assembly
language programmer without practice, there are a few guidelines and
suggestions that are worth knowing about.

Subroutines

It is well known that the best way to write a large program is to break it
down into a collection of smaller programs. It is almost impossible to think of
a large program without dividing it down into sections that perform specific
tasks and it makes sense to write such a program in a way that reflects these
divisions. ln BASIC and in assembler the subroutine is the standard way of
writing the small 'modules' that fit together to produce a finished program.
The use of subroutines in assembler is all the more important because of the
very limited operations that the language offers you. In principle whenever
you write an assembly language program your objective should be to build up
a collection of subroutines that carry out more complex operations. This
collection of subroutines can not only be use to implement the current
program they form a programmer's 'inheritance' to be used in future

193

Language of the Dragon

programs. For example, if you are writing a program that needs to carry out
any amount of arithmetic then you need to write some subroutines to carry
out arithmetic. Perhaps less obviously, if you are writing a games program or
a graphics program you should first write subroutines to plot a single point in a
given colour and then build up subroutines that plot the shapes that you are
using. In this example, notice that the shape drawing subroutine would use
the dot plotting subroutine to produce the shape. This is typical of the way
that assembly language subroutines that do complicated things usually rely
on simpler assembly language programs to do the 'dirty work' for them.
Another advantage of using subroutines as the building blocks of larger
programs is that, in principle, any errors in the program should be isolated
within a subroutine and so any changes that are necessary to put the error
right should be isolated to a small area of the program. However, this neat
theory of isolated errors will only work if you follow a strict method of writing
subroutines so that they don't interact in ways that you never intended.

Surprisingly the same problem of unwanted subroutine interaction occurs
in BASIC. For example, if a subroutine uses a variable with the same name as
a variable used by another subroutine then the using either of the subroutines
is likely to alter what the other one does. In the same way it is important that
assembly language subroutines don't alter values in memory and in registers
that other subroutines are relying on to stay the same. This can be achieved
by all subroutines using memory locations to store any input values to the
subroutine, any output values that are produced, and any temporary or
permanent variables created in the process. This is the technique used in the
squash program in Chapter Eight. The use of RAM storage for all data allows
any subroutine to use all of the registers for its internal calculations. However,
there is an alternative approach which involves requiring all subroutines to
not change values stored in any register. This sounds like an impossible
requirement. How can a subroutine work without changing any of the
registers? The answer is that the first instruction of the subroutine pushes all
of the registers onto the system stack and the last instruction pulls them all off
again. In this way every subroutine saves the register values on entry and
restores them after use. For example, a delay subroutine using the first
method could be written as follows:

@DELAY LDX @TIME
@DLOOP LEAX -1,X

BNE @DLOOP
RTS

@TIME FDB 0

194

Chapter 11 Assembly Language Style and Practice

where the memory location @TIME is used to specify the desired delay before
calling the subroutine. Notice that the X register is freely used by this
subroutine and there is no attempt to restore its original value at the end of the
subroutine. The second method of writing the subroutine would give:

@DELAY PSHS CC,X
LDX @TIME

@DLOOP LEAX -1,X
BNE @DLOOP
PULS CC,X
RTS

@TIME FDB 0

The only difference is that the CC and X register are pushed onto the system
stack and restored at the end of the subroutine. As the X and the CC register
are the only two registers used by the subroutine we can guarantee that the
subroutine produces its effect, i.e. a delay, without changing the values
stored in any register.

Whichever method you use to isolate undesirable side effects of one
subroutine on another it is important that you stick to it because mixing the
two approaches is certain to cause more confusion than no method at all!

Once you have successfully isolated subroutines there remains the
problem of how to pass data to and from subroutines. The simplest method is
the one that has been used in all the previous examples i.e. the use of memory
locations following the subroutine. However this does have a number of
drawbacks when it comes to more advanced applications where machine
code subroutines are being used by assembly language programs. In this case
it may be difficult to discover the address of the memory location used to
store the data. One solution is to use the system stack to pass information in a
way that doesn't involve knowing a address. For example, the delay
subroutine could pull the value of the X register from the system stack instead
of using a fixed memory location. However, you have to be careful to
remember that the return address is stored on the system stack after a JSR or
BSR instruction.

1 95

Language of the Dragon

@DELAY
@DLOOP

LDX
LEAX
BNE
RTS

-2,S
-1,X
@DLOOP

The @DELAY subroutine now requires the delay value to be pushed onto the
stack before it is called

LDY fl,$1000
PSHS Y
BSR @DELAY
LEAS -2,S

Notice that after pushing the value $1000 on the stack the BSR instruction
automatically pushes the return address in front of the value. This ls the
reason that the @DELA Y subroutine has to take its data from .2, S rather than
0,S. Also notice that after using the subroutine the stack has to be cleaned up
either by pulling a two byte value off the stack or, as shown above, simply by
subtracting 2 from the S register. The topic of using the stack for temporary
storage in conjunction with subroutines is too large a subject to be pursued
any further here. (For further information see "The6809 CompanionN by Mike
James, published by Babani, 1982.1

The role of BASIC in assembler

The previous section concerning the use of subroutines completely ignores
one of the most important sources of machine code subroutines � the BASIC
ROM. The BASIC ROM contains subroutines that are used to implement
everything that you can do in BASIC. In other words, it contains subroutines
to make sounds, read the joystick inputs, plot lines do arithmetic and so on.
The only problem is that there isn't a complete list describing what
subroutines are to be found where, and, perhaps worse, there is no guarantee
that any of the subroutines will remain in the same place in future versions of
the Dragon's ROM. The details of some of the subroutines that are officially
given by Dragon Data can be found in Appendix IV. It is fairly safe to use these
subroutines but any others may carry the risk that your software won't work
on future Dragons. To find out about other subroutines there is no alternative
but to use a disassembler (see later) and fathom out the way that the BASIC
ROM works for yourself.

196

Chapter 1 1 Assembly Language Style and Practice

BASIC can also be useful to the assembly language program in another
way. It is often worth writing a program or at least part of a program in BASIC
to check that your ideas work before converting it to assembler. You will find
many examples of BASIC programs doing jobs that are better suited to
assembly language in "The Anatomy of the Dragon".

As well as being useful for checking that a programming idea works before
committing yourself to assembly language, there is no avoiding the fact that
BASIC is better than assembler for some tasks. In Chapter Nine the one of the
sound producing programs was written to be used in combination with a
BASIC program that provided it with data by prompting the user in a way that
would have been very tedious to write in assembler. Where speed isn't
required then BASIC is generally to be preferred. For this reason the ideal way
to write a program is to use a mixture BASIC and assembler.

As well as the method of using BASIC with assembler illustrated in Chapter
Nine (involving the CLOADM and EXEC instructions) there is also the USR
function method. The Dragon's machine code USR function is best reserved
for occasions when an assembly language program needs to be used as part
of a calculation - and this is not as often as you might expect. For example, in
the unlikely event that you had invented a faster way of working out a square
root you might write an assembly language program to do just this. In this
case the correct way to use it from BASIC would be via the USR function. A
machine code USR function must first be defined by -

DEFUSRn =XXXX

where n is a number in the range O to 9 used to identify 1 of 1 0 possible
machine code functions and XXXX is the address of the start of the machine
code in question. Once a USR function has been defined it can be called in the
same way that any other function can - simply by using its name. If the
improved square root machine code program started at $7000 then
following-

DEFUSR0 = &H7000

you could use the function thus -

197

Language of the Dragon

A = USR00l41

(Notice that the DEFUSRO identifies the function using only a single digit but
the function itself uses two digits, i.e. USROO rather than USRO.) This
function would find the square root of four and place the result in the BASIC
variable A. You can use a machine code function in exactly the same way that
you use an ordinary function. For example,

A =2*USR00(X*4 +21 +4

is perfectly valid. This adequately describes how a machine code USR
function can be called from BASIC but it says nothing about hdwthe machine
code function itself gets its input value or what it should do with its result to
ensure that it is stored in the variable A.

When BASIC transfers control to a machine code USR function it sets the
X register to point to an area of memory known as the 'floating point
accumulator' or 'FAC'. This holds the result of evaluating the expression
contained within the brackets when the function was called. The only trouble
is that this value is stored in a representation that would take too long to
explain in any detail here called 'floating point binary'. The essence of this
representation is that a number is stored in five bytes, the first of which (the
one that the X register points at) being the binary exponent+ 128. The next
four bytes i.e. X + 1, X + 2, X +3 and X + 4 contain the mantissa in normalised
form. In the FAC a sixth byte is also stored at X + 5 which isa copy of the most
significant byte of the mantissa but with b7 set to 1 if the number is negative
and b7 set to O if the number is positive. For a machine code function to do
anything useful with this floating point number would be rather complicated
so it is usual to convert itto a 16-bit integer using the machine code subroutine
stored at $8B2D which returns the value of the FAC in the D register. To
convert a value in the D register back into floating point form use the
subroutine at $8C37 which will leave the value in the FAC. As the result that is
returned by the USR function is the value that is stored in the FAC before the
final RTS returns control to BASIC, subroutine $8C37 can be used to store
the correct floating point value when the USR function has finished its
calculations.

As an example, consider how a simple subroutine to multiply a 16-bit
number by two could be implemented as a USR function -

198

@FACINT
@INTFAC
@TWO

EQU
EQU
JSR
ASLB
ROLA
JSR
RTS

Chapter 11 Assembly Language Style and Practice

$8B2D
$8C37
@FACINT

@INTFAC

(This subroutine multiplies by 2, by doing a single left shift on the A and B
registers.) Once you have assembled this subroutine you can test it by typing
in ·

1 DEFUSR0 = &H7000
2 INPUTA
3 PRINT USR00(AI
4 GOTO2

You could try using the function in even more complicated expressions just to
check that everything works as predicted.

If you want to access any variables, strings or arrays using a machine code
USA function then it is worth knowing that the VARPTR function will leave
the address of any variable in the FAC. For example, USR01 (VARPTR(" A$))
leaves the address of the first byte of the string description in the FAC (see
"The Anatomy of the Dragon").

Assemblers and other packages

Now that you have worked your way though this brief introductory look at
Dragon assembler you must tackle some assembly language projects to
develop your skills yet further. Before you can do this, however, it is worth
investing in a good quality assembler. Two commercial assemblers are
described in Appendix II and now that you have experience of how an
assembler works via the BASIC assembler you should be in a position to
evaluate such software for yourself! However, if buying a ready made
assembler seems like the easy way out then you might like instead to tackle
the large project of writing your own assembler lin assembler!) taking the
BASIC assembler as your model. In case you choose this course, and for
general interest, it is worth pointing out some of the features that have been

199

Language of the Dragon

left out of the BASIC assembler that are commonly found in commercial
assemblers.

The idea of a label to represent an address is usually taken one stage further
to include 'address' or 'label expressions'. For example, if @TABLE is a label
that marks the start of a sequence of memory locations that are being used to
store data, then it is often the case that a particular instruction always needs
to make reference to say the second location in the table. Using a label
expression this would be written as @TABLE+ 1, in other words, the
memory location whose address is given by adding one to the address value
that corresponds to @TABLE. Notice that this expression, i.e. @TABLE+ 1 ,
i s evaluated b y the assembler and used a s the address i n a n instruction. In
contrast the seemingly similar

LDX #@TABLE
LEAX 1 ,X

causes the 6809 to work out the same address only when the machine code
program is finally run. It is this potential for confusion that makes it wise to
leave address expressions alone until you are completely happy with the
simpler aspects of addressing.

Commercial assemblers also offer a wider range of constants than just the
hex and decimal numbers that the BASIC assembler will handle. Most will
allow you to specify numbers in binary and will automatically convert
characters to their corresponding ASCl1 codes automatically. For example, in
the DASM assembler -

LDA #!A

will load the A register with the ASCII code for " A" into the A register. Also all
commercial assemblers will automatically convert negative numbers used in
address expressions into the correct two's complement form. For example,

LDA #-1

will load the A register with the two's complement representation of -1 i.e.
$FF. This facility is not available not in the BASIC assembler as it stands.

200

Chapter 11 Assembly Language Style and Practice

All of these features and more could be added to the BASIC assembler but
it would still not be up to the job of assembling large programs because of the
time it takes to assemble each line.

As well as a good efficient assembler you also need some way of debugging
a machine code program. The most usual way is to use a machine code
monitor program such as DEMON from Compusense or DREAMBUG which
is contained on the ALLDREAM cartridge from Dragon Data. A monitor is a
program that allows you to examine areas of memory, discover the contents
of registers and trace the execution of a program instruction by instruction.
Whenever a machine code program fails to work, it is either a matter of some
very obvious mistake needing to be put right or the machine goes quiet and
you are left to ponder what might have gone wrong! In this second situation a
machine code monitor is the only way that you can check the misbehaving
program instruction by instruction to test that it does what you expect it to.

Another very useful program for any assembly language programmer is a
disassembler. This is in essence an assembler working backwards! It takes
the codes stored in memory and translates them back to the assembly
language mnemonics that represent them. In principle, using a disassembler
on a chunk of machine code will produce an assembly language program that
can be understood. In practice, trying to understand any assembly language
program that you didn't write is very difficult and the output from a
dissasembler doesn't include any friendly address labels indicating what the
code is used for or what any data locations hold. However, disassembling
your machine's BASIC ROM is one very good way of obtaining examples of
assembly language programming to study. Many an education in assembly
language has come about because of the need to disassemble BASIC ROM!

201

Appendix I

I nstruction Codes

Instruction Addressing Modes 5 3 2 1 0
Forms Imm Dir Ind Ext lnh H N z V C

ABX 3A - - - - -

ADCA 89 99 A9 89 a a a a a
ADCB C9 D9 E9 F9 a a a a a

ADDA 88 98 AB BB a a a a a
ADDB CB DB EB FB a a a a a
ADDO C3 D3 E3 F3 _ a a a a

ANDA 84 94 A4 B4 _ a a 0
ANDB C4 D4 E4 F4 a a 0
ANDCC l C

ASLA 48 u a a a a
ASLB 58 u a a a a
ASL 08 68 78 u a a a a

ASRA 47 u a a
ASRB 57 a a
ASR 07 67 77 a a _ a

202

__

*

Appendix/

SITA 85 95 A5 85 _ a a 0
81TB C5 D5 E5 F5 _ a a 0

CLRA 4F 0 0 0
CLRB 5F _ o 0 0
CLR OF 6F 7F _ o 0 0

CMPA 81 91 A1 81 u a a a a
CMPB C1 D1 E1 F1 u a a a
CMPD 1 083 1093 1 0A3 1 083 _ a a a
CMPS 1 1 8C 119C 11AC 1 1 BC _ a a a a
CMPU 1 1 83 1193 11A3 1 1 83 _ a a a a
CMPX BC 9C AC BC _ a a a a
CMPY 108C 109C 1 0AC 10BC a a a a

COMA 43 _ a a 0
COMB 53 _ a a 0
COM 03 63 73 _ a a 0

CWAI 3C

DAA 1 9 _ a a 0 a
DECA 4A _ a a
DECB 5A _ a a
DEC 0A 6A 7A _ a a a

EORA 88 98 A8 88 _ a a 0
EORB CB D8 E8 F8 _ a a 0
EXG 1E - - - - -

INCA 4C _ a a a
INCB 5C _ a a a
INC oc 6C 7C _ a a a

JMP OE 6E 7E - - - - -

JSR 9D AD 8 D - - - - -

LDA 86 96 A6 86 _ a a 0 -

203

__

__
__

1
1
1

_ _

_ _

_ _
_ _

_ _

*

_ _

_ _
_ _
_ _

a
a

a

1
1
1

a

Language of the Dragon

LDB C6 D6 E6 F6 _ a a 0
LDD cc DC EC FC _ a a 0
LDS l 0CE l 0DE l 0EE l 0FE _ a a 0
LDU CE DE EE FE _ a a 0
LDX 8E 9E AE BE _ a a 0
LDY 108E 1 09E l0AE l0BE a a 0

LEAS 32 - - - - -

LEAU 33 - - - - -

LEAX 30 _ _ a
LEAY 31 _ _ a

LSLA 48 a a a a
LSLB 58 a a a a
LSL 08 68 78 a a a a

LSRA 44 _ o a
LSRB 54 _ o a
LSR 04 64 74 _ o a

MUL 3D _ _ a _ s

NEGA 40 u a a a a
NGB 50 u a a a a
NEG 00 60 70 u a a a a

NOP 12 - - - - -

ORA 8A 9A AA BA _ a a 0
ORB CA DA EA FA _ a a 0 -

ORCC 1A

PSHS 34 - - - - -

PSHU 36 - - - - -

PULS 35 - - - - -

PULU 37 - - - - -

ROLA 49 _ a a a a
ROLB 59 _ a a a a

204

a
a
a

_
_
_

_ _
_ _

_
_
_

_

*

_ _
_
_
_
_
_

Appendix !

ROL 09 69 79 _ a a a a
RORA 46 _ a a a
RORB 56 _ a a _ a

ROR 06 66 76 _ a a

RTI 3 B

RTS 39 - - - - -

SBCA 82 92 A2 B2 u a a a a
SBCB C2 D2 E2 F2 u a a a a

SEX 1 D _ a a 0

STA 97 A7 B7 a a 0
STB D7 E7 F7 a a 0
STD DD ED FD _ a a 0
STS 10DF 10EF 10FF _ a a 0
STU DF EF FF _ a a 0
STX 9F AF B F _ a a 0
STY 109F 10AF 10BF _ a a 0

SUBA 80 90 AO BO u a a a
SUBB co DO E0 F0 u a a a
SUBD 83 93 A3 B3 _ a a a a

SWI 3F - - - - -

SWl2 103F - - - - -
SWl3 113F - - - - -

SYNC 13 - - - - -

TFR 1 F - - - - -

TSTA 4 D a a 0
TSTB 5D _ a a 0
TST OD 6D 7D _ a a 0

205

_

_

_
_
_
_
_
_
_

_

*

_

_

_
_
_

_

a
a

a

_

Language of the Dragon

Key tq Condition Codes
_ not affected

a affected - test and set if true, clear otherwise
u value of half carry flag is undefined
s special case - carry set if b7 is set
* condition codes set as a direct result of the instruction

Branch Instructions

Form Rei Long

BCC 24 LBCC
BCS 25 LBCS
BEQ 27 LBEQ
BGE 2C LBGE
BGT 2E LBGT
BHI 22 LBHI
BHS 24 LBHS
BLE 2F LBLE
BLO 25 LBLO
BLS 23 LBLS
BLT 2D LBLT
BMI 28 LBMI
BNE 26 LBNE
BPL 2A LBPL
BRA 20 LBRA
BRN 21 LBRN
BSR 8D LBSR
BVC 28 LBVC
BVS 29 LBVS

206

Rei

1 024
1 025
1027
102C
102E
1 022
1024
102F
1025
1 023
102D
1028
1026
102A
1 6
1021
1 7
1028
1029

Appendix I

Indexed Addressing Modes

Type

Constant Off-
set

Accumulator Offet

Auto Increment/
Auto Decrement

PC Relative

Type

Constant Offset

Non-Indirect

Forms

Zero offset
5-bit offset
8-bia offset
1 6-bit offset

A register offset
B register offset
D register offset

Increment by 1
Increment by 2
Decrement by 1
Decrement by 2

8-bit offset
1 6-bit offset

Indirect

Forms

Zero offest
5-bit offset

8-bit offset
1 6-bit offset

207

Assembler
Form

, R
n,R
n,R
n,R

A,R
B,R
D,R

, R +
, R + +
,-R
,--R

n,PCR
n,PCR

Assembler
Form

(,Rl
defaults to
8-bit
(n,R)
ln,RI

Post Byte
OP Code

1 RR00100
0RRnnnnn
1 RR01000
1 RR01001

1 RR0011 0
1 RR00101
1 RR01011

1 RR00000
1 RR00001
1 RR0001 0
1 RR00011

1 XX01100
1 XX01 101

Post Byte
OP Code

1 RR10100

1 RRl 1000
l RRl 1001

Language of the Dragon

Accumulator Offet

Auto Increment/
Auto Decrement

PC Relatiue

Extended
Indirect

Key
R = register
code
X= don't
care

A register offset
B register offset
D register offset

Increment by 1
Increment by 2
Decrement by 1
Decrement by 2
8-bit offset
16-bit offset

16-bit address

Register Code X = 00 Y = 01 U =10 5=11

208

IA,RI 1RR10110
IB,RI 1RR10101
(D,RI 1RR11011

not allowed
I , R + + I 1 RR10001
not allowed
I ,--RI 1RR10011
ln,PCR) 1XX11100
(n,PCR) 1XX11101

In) 1 0011111

Appendix I I

Two Commercial Assemblers

DASM

The DASM assembler from Compusense has a number of features that
make it particularly suitable for the beginning assembly language
programmer. Available as a program cartridge it will assemble lines of 6809
assembly language embedded in a Dragon BASIC program. The machine
code so produced can be stored anywhere in memory but it is usual for DASM
to store it just above the memory used by BASIC (as with the BASIC
assembler). Since the text of the assembly language program is entered
exactly as if it formed part of a BASIC program, editing the text is carried out,
by the familiar but limited, EDIT command. DASM supports all of the 6809's
features including indirect addressing, Program Counter relative etc. It also
supports full address expressions, a range of constant types and the usual
pseudo ops. All labels in DASM must start with @ and so it is possible to
assembly and run any of the programs in this book without modification.

If you want to use a machine code monitor program to debug your
programs assembled with DASM, then Compusense have produced a simple
monitor called DEMON, available as a separate cartridge or together with
DASM on a single cartridge. This is a fairly limited but easy-to-use debugging
aid. It includes a memory dump, a register examine facility and break points
but not a disassembler.

In conclusion, DASM is easy to use an especially suited for situations in
which a little assembly language has to be mixed with BASIC.

DREAM

Dragon Data's own assembler is well described by its name. For the
serious assembly language programmer it is indeed a dream come true! The

209

Language of the Dragon

only problem is that it takes over the entire machine and substitutes its own
editor in place of BASICs crude but familiar editing commands. If you are
prepared to learn to use the DREAM editor then you will very quickly find it so
useful that you will be using it for other editing tasks! DREAM is available
either as a cassette or a cartridge and there is also a cartridge version called
ALLDREAM. This last package is by far the best investment if you are
planning to do much assembly language programming as it frees the largest
amount of RAM for use and also includes gives direct acess to the
DREAM BUG monitor program. This monitor is very sophisticated and as well
as the standard features such as memory and register examine, break points
etc it also contains a trace facility and a disassembler.

The DREAM assembler supports all the 6809's instructions and addressing
modes. It also supports the full range of address expressions and constants. It
also uses the most economical representation for constant offset indexed
mode even if this means making more than two passes through the program.
Only one label in any program to be assembled by DREAM can start with @
which is used as an optional marker for the start of the program. In other
words, to use DREAM to assemble the programs in this book REMOVE THE
@ SYMBOL FROM EVERY LABEL. Apart from this slight change you should
have no trouble using the DREAM assembler.

In conclusion, the DREAM assembler and the DREAM BUG monitor form
an ideal pair for anyone planning to do assembly language programming on a
regular basis.

210

Appendix I l l

Complete Listing of Assembler

1 REM BASICASSEMBLERV10.1

5 CLEAR2000,&H6FFF

10 DATA LDA,&H86,&H96,&HA6,&HB6,-1
11 DATA LDB,&HC6,&HD6,&HE6,&HF6,-1
12 DATASTA,-1,&H97,&HA7,&HB7,-1
73 DATASTB,-1,&HD7,&HE7,&HF7,-1
14 DATAADDA,&H8B,&H9B,&HAB,&HBB,-1
15 DATAADDB,&HCB,&HDB,&HEB,&HFB,-1
16 DATA RTS,-1,-1,-1,-1,&H39
17 DATAJMP,-1,&H0E,&H6E,&H7E,-1
18 DATAJSR,-1,&H9D,&HAD,&HBD,-1
19 DATAANDA,&H84,&H94,&HA4,&HBB,-1
20 DATAANDB,&HC4,&HD4,&HE4,&HF4 ,-1
21 DATAORA,&H8A,&H9A,&HAA,&HBA,-1
22 DATAORB,&HCA,&HDA,&HEA,&HFA,-1
23 DATA EORA,&H88,&H98,&HA8,&HB8 ,-1
24 DATAEORB,&HC8,&HD8,&HE8,&HF8,-1
25 DATACOMA,-1,-1,-1,-1,&H43
26 DATA COMB,-1,-1,-1,-1,&H53
27 DATA COM,-1,&H03,&H63,&H73,-1
28 DATA LSLA,-1,-1,-1,-1,&H48
29 DATA LSLB,-1,-1,-1,-1,&H58
30 DATA LSL,-1,&H08,&H68,&H78,-1
31 DATA LSRA,-1,-1,-1,-1,&H44
32 DATA LSRB,-1,-1,-1,-1,&H54

211

language of the Dragon

33 DATA LSR,-1,&H04,&H64,&H74 ,-1
34 DATA ROLA,-1,-1,-1,-1,&H49
35 DATA ROLB,-1,-1,-1,-1,&H59
36 DATAROL,-1,&H09,HH69,&H79,-1
37 DATA RORA,-1,-1,-1,-1,&H46
38 DATA RORB,-1,-1,-1,-1,&H56
39 DATA ROR,-1,&H06,&H66,&H76,-1
40 DATAADDD,&HC3,&HD3,&HE3,&HF3,-1
41 DATASUBA,&H80,&H90,&HA0,&HB0,-1
42 DATASUBB,&HC0,&HD0,&HE0,&HF0,-1
43 DATASUBD,&H83,&H93,&HA3,&HB3,-1
44 DATACLRA,-1,-1,-1,-1,&H4F
45 DATACLRB,-1,-1,-1,-1,&H5F
46 DATACLR,-1,&H0F,&H6F,&H7F,-1
47 DATA INCA,-1,-1,-1,-1,&H4C
48 DATA INCB,-1,-1,-1,-1,&H5C
49 DATA INC,-1,&H0C,&H6C,&H7C,-1
50 DATA DECA,-1,-1,-1,-1,&H4A
51 DATA DECB,-1,-1,-1,-1,&H5A
52 DATA DEC,-1,&H0A,&H6A,&H7 A,-1
53 DATA NEGA,-1,-1,-1,-1,&H40
54 DATA NEGB,-1,-1,-1,-1,&H50
55 DATA NEG,-1,&H00,&H60,&H70,-1
56 DATASTD,-1,&HDD,&HED,&HFD,-1
57 DATA LDD,&HCC,&HDC,&HEC,&HFC,-1
58 DATASEX,-1,-1,-1,-1,&H l D
5 9 DATAASRA,-1,-1,-1,-1,&H47
60 DATAASRB,-1,-1,-1,-1,&H57
61 DATAASR,-1,&H07,&H67,&H77,-1
62 DATAASLA,-1,-1,-1,-1,&H48
63 DATAASLB,-1,-1,-1,-1,&H58
64 DATAASL,-1,&H08,&H68,&H78,-1
65 DATAMUL,-1,-1,-1,-1,&H3D
66 DATA DAA,-1,-1,-1,-1,&H19
67 DATA CMPA,&H81,&H91,&HA 1,&HB1 ,-1
68 DATACMPB,&HC1 ,&HD1,&HE1 ,&HF1 ,-1
69 DATACMPD,&H1083,&H1093,&H10A3,&H1083,-1
70 DATA BITA,&H85,&H95,&HA5,&HB5,-1
71 DATA BITB,&HC5,&HD5,&HE5,&HF5,-1
72 DATAANDCC,&Hl C,-1,-1,-1,-1
73 DATAORCC,&HlA,-1,-1,-1,-1

212

74 DATATSTA,-1 ,-1 ,-1,-1,&H4D
75 DATATSTB,-1 ,-1,-1,-1,&H5D
76 DATATST,-1 ,&H0D,&H6D,&H7D,-1
77 DATAADCA,&H89,&H99,&HA9,&HB9,-1
78 DATAADCB,&HC9,&HD9,&HE9,&HF9,-1
79 DATASBCA,&H82,&H92,&HA2,&HB2,-1
80 DATASBCB,&HC2,&HD2,&HE2,&HF2,-1
81 DATALDX,&H8E,&H9E,&HAE,&HBE,-1
82 DATALDY,&Hl 08E,&H109E,&H10AE,&H10BE,-1
83 DATALDS,&H10CE,&H10DE,&H1 0EE,&Hl0FE,-1
84 DATALDU,&HCE,&HDE,&HEE,&HFE,-1
85 DATASTS,-1 ,&H10DF,&H10EF,&H10FF,-1
86 DATASTU,-1,&HDF,&HEF,&HFF,-1
87 DATASTX,-1 ,&H9F,&HAF,&HBF,-1
88 DATASTY,-1 ,&H109F,&H10AF,&H10BF,-1
89 DATACMPS,&H1 18C,&H1 19C,&H11 AC,&H11 BC,-1
90 DATACMPU,&H1183,&H1 1 93,&H1 1 A3,&H11 B3,-1
91 DATACMPX,&H8C,&H9C,&HAC,&HBC,-1
92 DATACMPY,&H108C,&H109C,&H1 0AC,&Hl 0BC,-1
93 DATALEAS,-1,-1,&H32,-1,-1
94 ATALEAU,-1,-1,&H33,-1,-1
95 DATALEAX,-1,-1,&H30,-1 ,-1
96 DATALEAY,-1,-1 ,&H31 ,-1 ,-1
97 DATAABX,-1,-1,-1 ,-1 ,&H3A
98 DATAEXG,&Hl E,-1,-1,-1,-1
99 DATATFR,&Hl F,-1 ,-1 ,-1 ,-1

100 DATAPULS,&H35,-1,-1,-1,-1
101 DATAPULU,&H37,-1 ,-1 ,-1 ,-1
102 DATAPSHS,&H34,-1 ,-1 ,-1 ,-1
103 DATAPSHU,&H36,-1 ,-1 ,-1 ,-1
104 DATARTl,-1 ,-1 ,-1 ,-1 ,&H3B
105 DATACWAIT,&H3C,-1 ,-1 ,-1 ,-1
106 DATASYNC,-1 ,-1 ,-1 ,-1 ,&H13
107 DATASWl,-1 ,-1 ,-1 ,-1,&H3F
1 08 DATASWI2,-1,-1,-1,-1 ,&H103F
109 DATASWl3,-1,-1 ,-1 ,-1 ,&H1 13F
199 DATA=,-1 ,-1 ,-1 ,-1 ,-1

400 DATABRA,&H20,&H16
401 DATABCC,&H24,&H1 024
402 DATABCS,&H25,&H1025

213

Appendix Ill

language of the Dragon

403 DATABEO,&H27,&H1027
404 DATABGE,&H2C,&H102C
405 DATABGT,&H2E,&H102E
406 DATABHl,&H22,ffH1022
407 DATABHS,&H24,&H1024
408 DATABLE,&H2F,&H102F
409 DATABLO,&H25,&H1025
410 DATABLS,&H23,&H1023
411 DATABLT,&H2D,&H102D
412 DATABMl,&H2B,&H102B
413 DATABNE,&H26,&H1026
414 DATABPL,&H2A,&H102A
415 DATABSR,&H8D,&H17
416 DATABVC,&H28,&H1028
417 DATABVS,&H29,&H1029
499 DATAZZZ,-1,-1

500 GOSUB1000
510 GOSUB2000
515 FORPASS= 1TO2
518 I =1:P = &H7000
520 GOSUB3000
530 GOSUB4000
540 GOSUB5000
550 IFPS =0THENGOSUB6000
555 IFPS> 0THENGOSUB6500
560 I = I + 1 :PS = 0
570 IFI< =TTHENGOTO520
575 PRINT
580 NEXTPASS
590 l = T:GOSUB1980
600 LC =0:GOTO515

1000 DIMA$(150),C(5),T$(50),T(50)
1010 1 = 0
1020 P = &H7000
1030 LC = 0
1040 RETURN

214

1980 PRINT "PRESS ANY KEY TO CONTINUE";
1990 IF INKEY$ = '"THEN GOTO1 990
2000 CLS
2010 PRINT@66,"B A S I C A S S E M B L ER"
2020 PRINT
2030 PRINTTABl10I; "SELECT ONE OF"
2040 PRINT
2050 PRINTTABIB); "INPUT/EDIT 1"
2060 PRINTTAB(8I; "ASSEMBLE 2"
2070 PRINTTABI8I; "SAVEONTAPE 3"
2080 PRINTTABl8I; "LOAD FROMTAPE . .4"
2090 PRINTTABl8I; "EXECPROGRAM 5"
2100 INPUT ACTION
2110 I FACTION< 1 OR ACTION> 5THEN GOTO2000
2120 ON ACTION GOTO2200,2800,2850,2920,2990

2200 CLS
2210 PRINT@76, "ED IT"
2220 PRINT
2230 PRINTTAB(10);"SELECTONEOF"
2240 PRINT
2250 PRINTTABIB);"LISTPROGRAM 1 "
2260 PRINTTABl8I;"LISTTOPRINTER.2"
2270 PRINTTABl8);"ADDTO PROGRAM .. 3"
2280 PRINTTABIB);"DELETE LINES4"
2290 INPUTED
2300 IFED< 1 ORED>4THEN GOTO2000
2310 ONED GOTO2400,2400,2500,2700

2400 CLS
2405 IF l= 0THEN GOTO1 980
2410 FOR K=1 TOI
2420 IF ED= 1 THEN PRINT K;":";TABl4I;A$(K) ELSE
PRINT jl -2,K;" :" ;TAB(4);A$(K)
2430 NEXTK
2440 GOTO 1980

2500 I F l=0THEN GOTO2620

Appendix Ill

2505 INPUT" ADD LINES FOLLOWING LINE NUMBER"; LN
2510 IF LN> = I THEN LN = l:GOTO2620
2520 INPUT "NUMBER OF LINES TO INSERT";IN

215

Language of the Dragon

2530 IF I + IN> 1 50 THEN PRINT"TOO MANY":GOTO2000
2540 FOR K = I TO LN + 1 STEP-1
2550 A$(K + IN)= A$(KI
2560 NEXT K
2570 FOR K = LN + 1 TO LN + IN
2580 PRINTK;":";TAB(41;
2590 LINE INPUT A$(KI
2600 NEXT K
2605 l = l + IN
2610 GOTO 1980
2620 PRINT'TYPE END TO FINISH"
2630 K = l + 1
2640 PRINT K;":";TABl4);
2650 LINEINPUTL$
2660 IF LEFT$(L$,3) = "END" THEN GOTO 1 980
2670 I= K:A$(1) = L$
2680 GOTO 2630

2700 INPUT"FIRSTLINETODELETE";FL
2710 INPUT"LASTLINETODELETE";LL
2720 IFLL< FLTHENPRINT'NOTDELETED":GOTO1 980
2730 FOR K = LL + 1 TOJ
2740 A$(FL+ K-LL-1) = A$1K)
2750 NEXTK
2760 I= 1-I LL-FL+ 1):PRINT"DELETED"
2770 GOTOl 980
2800 INPUT"SCREEN(0)ORPRINTER(1)";PRT
2810 T = I
2820 PRT = PRT*2
2830 RETURN

2850 INPUT'FILENAME";F$
2860 PRINT'PRESSPLAYANDRECORD"
2870 PRINT"PRESSANYKEYWHENREADY"
2880 IFINKEY$ = ""THENGOTO2880
2890 OPEN"O", lf-1 ,F$
2900 FOR K = 1 TOl :PRINTlf-1 ,A$(K):NEXTK
2910 CLOSE lf-1 :GOTO1 980

216

2920 INPUT"FILENAME";F$
2930 PRINT"PRESSPLA Y"
2940 OPEN"l" , jl-1,F$
2950 1 = 0
2960 IFEOF(-1)THENCLOSEJl-1 :GOTO1980
2970 I= I+ 1 :INPUTJl-1,A$11)
2980 GOTO 2960

2990 CLS:EXEC&H7000
2995 GOTO 1 980

3000 J = l
301 0 IFMID$(A$11),j, 1) = ""THENJ = J + 1 :GOTO301 0
3020 M$= MID$IA$11) ,J, 1)
3030 J =J + l

Appendix Ill

3040 IF J< = LENIA$(I)) THEN IF MID$(A$(1),J, 1)< > " " THEN
M$ = M$ + MIDIA(1),J, 1) :J = J + 1 :GOTO3040
3050 J = J + l
3060 IFLEFT$(M$, 1) = "@"THENGOTO3500
3070 RETURN
3500 S$ = M$
351 0 GOSUB7000
3520 IFF>0ANDPASS = l THENERR =2:GOT09000
3525 IFF> 0ANDPASS = 2THENGOTO301 0
3530 LC= LC + l
3540 T$(LC) = M $
3550 TI LC) = P
3560 GOTO3010

4000 RESTORE
4001 IFM$ = "EOU"THENPS = 1 :RETURN
4002 IFM$ = "RMB"THENPS = 2:RETURN
4003 IFM$ = "FCB"THENPS = 3:RETURN
4004 IFM$ = "FDB"THENPS =4:RETURN
4009 IF(LEFTIM, 1) = "B"ANDLEFTIM,3)< > "BIT")OR
LEFT$(M$,2) = "LB"THENGOTD4500
401 0READC$
401 5 FORK= 1 TO5:READC(K):NEXTK
4020 IFC$ = "ZZZ"THENI = I + 1 :ER = 1 :GOTO9000
4030 FC$= M$THENRETURN
4040 GDTD401 0

217

Language of the Dragon

4500 READC$
4510 FOR K = 1 T05:READC(K):NEXTK
45i0 IFC$< > "ZZZ"THENGOT04500
4530 IF LEFT$(M$, 1) = "L" THEN M$ = RIGHT$(M$,3): BR = 2 ELSE
BR = 14535TYPE = BR
4540 READC$
4550 FORK = 1 T02:READCIKl:NEXTK
4560 IFC$= "ZZZ"THENI = I + 1 :ER = 1 :GOT09000
4570 IFC$ = M$THENRETURN
4580 GOT04540

5000 IFM$= "EXG"DRM$ = "TFR"THENGDSUB5100
5005 IF LEFT$(M$,3) = "PUL" DR LEFT$(M$,3) = "PSH" THEN
GOSUB5300ELSEGOSUB5500
5010 IFAF$ = ""THENTYPE = 5:RETURN
5020 A = VALIAF$)
5024 IFBR> OTHENGOT05700
5025 IFTYPE= l THENRETURN
5030 IFTYPE=2THENRETURN
5035 IFTYPE=3THENRETURN
5040 TYPE=4
5050 RETURN

5100 FOR K = JTOLENIA$IllI
511 0 IFMIDIA11),K, 11 = ","THENGOT05130
5120 NEXTK
5130 L$= MID$IA$11),K-2,2)
5140 GOSUB5200
5150 AF$=L$
5160 L$ = MIDIAIII,K + 1 ,2)
5165 IF RIGHT$(L$,1) = " " OR LEN(L$) = 1 THEN L$ = "
" + LEFT$1L$, 1)
5170 GOSUB5200
5180 AF$ = "&H" + AF$ + L$
5185 TYPE = l
190 RETURN

5200 IFL$ = "D"THENL$ = "O"
5210 IFL$= "X"THENL$ = "1 "
5220 IFL$ = "Y"THENL$ = "2"

218

5230 IFL$ = "U"THENL$ = "3"
5240 IFL$= "S"THENL$ = "4"
5250 IFL$ = "PC"THENL$ = "5"
5260 IFL$= "A"THENL$ = "8"
5270 IFL$ = "B"THENL$= "9"
5280 IFL$ = "CC"THENL$ = "A"
5290 IF L$ = "DP" THEN L$ = "B"

5295 RETURN
5300 A=0
5310 FORK=JTOLEN(A$11l)
5320 L$ = MIDIA11),K,2)
5330 IFL$ ="PC"THENA = A + 1 28 :K= K + 1
5340 IFL$ = "DP"THENA =A+8:K= K + 1
5350 IFL$ ="CC"THENA=A+ 1 :K= K + 1
5360 L$ = MID$(A$11l,K, 1)
5370 IFL$= "A"THENA = A + 2
5380 IFL$ = "B"THENA =A+4
5390 IFL$= "X"THENA = A + 1 6
5400 IFL$ = "Y"THENA = A +32
5410 IFL$ ="S"ORL$ = "U"THENA= A + 64
5420 NEXTK
5430 AF$ = STR$(AI
5440 TYPE= 1
5450 RETURN

5500 AF$ = ""
5510 FORK= JTOLENIA$11))
5520 L$ = MID$(A$11l,K, 1 l
5521 IFL$ = "> "THENAF$= "":TYPE=2:GOTO5540
5522 IFL$ = " jf"THENTYPE = 1 :AF$ = "":GOTO5540
5250 IFL$ = "$"THENL$ = "&H"
5526 IFL$= ", "THENGOTO5800
5530IFL$< > ""THENAF$ = AF$ + L$
5540 NEXTK
5550 IF LEFTIAF, 1 1< > "@"THEN RETURN
5560 S$ = AF$
5570 GOSUB7000
5580 IFF =0ANDPASS = 2THENERR = 3 :GOTO9000
5590 AF$ = STR$ITI F))
5600 RETURN

219

Appendix /JI

Language of the Dragon

5700 IFPASS= l THENA=0:RETURN
5705 OF= A-BR-1-P
571 0 IF BR = l AND (OF< -128 OR OF> 1 27 } THEN
ER=4:I = I + 1 :GOTO9000
5720 IFOF> =0THENA= OF:RETURN
5730 IFBR =2THENGOTO5760
5740 A =256 +OF
5750 RETURN
5760 A= 65536 + OF
5770 RETURN

5800 TYPE= 3
5810 L$= MID$(A$(1},K-1 , 1 }
5820 OF=0
5830 IFL$= "A"THENOF= &H86
5840 IFL$ = "B"THENOF = &H85
5850 lFL$ = "D"THENOF = &H8B
5860 L$ = MIDIA(1},K + 1 , 1)
5870 IFL$= "-"THENL$ = MID$(A$(1 } ,K+2, 1 }:OF = &H82
5880 IFL$= "-"THENL$ = MID$(A$(1},K + 3, 1 } :OF= &H83
5890 RF=0
5900 IFL$ = "Y"THENRF = 1
5901 IFL$= "U"THENRF = 2
5902 IFL$= "S"THENRF = 3
5910 IFMID$(A$(1},K +2,1} = " + "THENOF= &H80
5920 IFMID$(A$(1},K+ 2,2} = " + + "THENOF= &H81
5930 IFOF< > 0THENAF$= STR$(RF + OF}:RETURN
5950 O F = &H89 +RF
5955 AF$ = "" + AF$
5960 A =VAL(AF$}
5970 IA = 1
5980 IFA> =0THENRETURN
5990 AF$ = STR$(65536 + A}
5995 RETURN

6000 IFC(TYPE} =-l THENERR =5:GOTO9000
6010 IFPASS = 1THENGOTO6200
6020 PRINT #-PRT,RIGHT$("" + HEX$(P},4};TABI5};
6030 PRINT #·PRT,HEX$(CITYPE}};TABl8};
6035 IFIA= 1 T HENPRINT #-PRT,HEX$(OF};

220

6040 IFTYPE< > 5THENPRINTlf-PRT,HEX$(A);
6050 PRINTlf-PRT,TAB(15);A$(I)
6200 IFC(TYPE)< 256THENPOKEP,C(TYPEI

Appendix. JI/

6210 IF CITYPEI>255 THEN POKE P,INT(C(TYPEl/2561: POKE
P+ 1 ,C(TYPE)-INT(C(TYPE)/256)*256:P = P + 1
6220 P= P+ 1
6230 IFBR=2THENTYPE=4
6240 IFTYPE= 1 ANDRIGHT$(M$, 1) = "D"THENTYPE =4
6241 IFTYPE= 1 ANDRIGHT$(M$, 1) = "X"THENTYPE = 4
6242 IFTYPE= 1ANDRIGHT$(M$, 1) = "Y"THENTYPE = 4
6243 IFTYPE= 1 A NDRIGHT$(M$, 1) = "U"THENTYPE=4
6244 IFTYPE = 1 ANDRIGHT$(M$, 1 1 = "S"THENTYPE =4
6250 IFTYPE = 5THENTYPE = 0:RETURN
6255 IFIA= 1 THENPOKEP,OF:P= P+ 1 :TYPE=4
6260 IFTYPE =20RTYPE = 1 ORTYPE =3THENPOKEP,A
6270 IF TYPE=4 THEN POKE P,INT(A/256I :P= P+ 1 : POKE
P,A-INT(A/256I*256
6280 TYPE=O
6290 BR =O
6300 P = P + 1
6305 IA =O
6310 RETURN

6500 IFPS< > 1 THENGOT06540
6510 IFPASS = 1THENT(LCl = A
6520 IF PASS =2THENPRINT lf-PRT,TAB(15);A$(1)
6530 RETURN
6540 IFPS< > 2THENGOT06570
6545 IF PASS = 2THENPRINT lf-PRT,HEX$(P);
6550 P = P + A
6560 IFPASS =2THENGOT06520
6570 IFPS< > 3THENGOT06650
6580 A= A-INT(A/256)*256
6590 IFPASS = 1 THENGOT06620
6600 PRINT lf-PRT,HEX$(P);TAB(5);HEX$(A);
6610 PRINT lf-PRT,TAB(15);A$(1)
6620 POKEP ,A
6630 P = P + 1
6640 RETURN
6650 IFPS< > 4THENRETURN
6660 IFPASS = 1 THENGOT06710

221

Language of the Dragon

6670 LB= A-INT(A/2561*256
6680 HB = INTIA/2561
6690 PRINTjl-PRT,HEX$1Pl;TABl51;HEX$IHBl;TAB(8);HEX$ILBI;
6700 PRINT jl-PRT,TABl1 5);A$III
6705 POKEP,HB:POKEP + 1 ,LB
6710 P= P + 2
6720 RETURN

7000 K = l
7010 IFK> LCTHENF=0 :RETURN
7020 IFT$1KI = S$THENF = K:RETURN
7030 K = K + l
7040 GOTO 7010

9000 PRINT jl-PRT,"ERROR--";ER;"****INLINE";l-1
901 0 RETURN

222

Address

JSR $801 5

JSR $8018

JSR ($A008)

JSR $8021

JSR ($A006)

JSR $8006

JSR $801 2

JSR $800C

JSR $800F

Appendix IV

ROM Subroutines

Description

Turn on cassette relay

Turn off cassette relay

Write block of data to cassette - $7C = Block type 0 is
fileheader
1 is data
FF is end of file
$7D = Number of bytes to be written $7E/F =
Address of start of data to be written

Prepares cassette for data input

Reads in data from cassette (used following JSR
$8021)-
$7E/ F = Addressoflocationwheredatawillbestored
$81 Error code, clear if no error

Reads keyboard, returns ASCII code of key pressed in
A register. If no key is pressed A = 0

Updates the four joystick reading stored in $15A to
$15D

Writes the character whose ASCII code is in the A
registertothescreen-
&88/89 contain the address of the next screen location
the $800C will use

As for $800C but character is sent to printer

223

Answers to Micro Projects

Chapter Two

1 1

address data
28672 146
28673 200
28674 1 53
28675 201

LDA 200

ADDA201

2) After running the program, memory location 200 still contains 56 and
memory location 201 still contains 4. The result of the addition, that is 60, is
stored in the A register.

Chapter Three

1) Each pair of hex characters takes single memory location so it takes 4
memory locations to store $F3095E6 F.

21

al $01 oo
bi $1000
c) $7FFF
d) $7FFF

0000
0001
01 1 1
1 1 1 1

0001
0000
1 1 1 1
1 1 1 1

0000
0000
1 1 1 1
1111

0000
0000
1 1 1 1
1 1 1 1

$FFFF is the highest address that you can use on the Dragon and $7 FFF is the
highest address occupied by RAM.

224

=
=
=
=

Answers to Micro Projects

3a) Trying to store something using immediate addressing doesn't make any
sense.

b) $7FFF is too large to be loaded into the A register as the result of
immediate addressing.

41

7000
7002
7005
7008

86
88
87
39

10
7FFF
7FFF

The program adds $10 to the contents of memory location $7FFF and then
stores the result back in $7FFF.

Chapter Four
1 1

585 GOSU8 6900
6900 PRINT
6910 FOR K = 1 TO LC
6920 PRINT T$(KI;" = ";T(kl
6930 NEXT K

21

6940 RETURN

@INPUT EQU
@PRINT EQU
@LOOP JSR

JSR
JMP

Chapter Five
11

LDA
ORA
ANDA
STA

$8006
$800C
@INPUT
@INPUT
@LOOP

@DATA
*$80
*$F1
@DATA

225

Language of the Dragon

21

31

@LOOP COM
JMP

LSLA
ROLB
LSLA
ROLB
LSLA
ROLB
LSLA
ROLB

@FLIPPER
@LOOP

This program is based on the fact that LSLA followed by ROLB will move b7 in
the A register into b1 in the B register using the C bit as a temporary store.

41

@START LDA @DATA1
ANDA @DATA2
STA @DATA3
RTS

@DATA1 FCB 23
@DATA2 FCB 44
@DATA3 FCB 0

Notice that the values following the FCB's constitute whatever data you
actually wanted to AND �ogether.

Chapter Six

LDA
ADDA
STA
RTS

@DATA1
@DATA2
@ANS

This program would be capable of adding together 200 and 50 giving the
answer 250 in memory location @ANS.

226

Answers to Micro Projects

2) No modifications would be necessary. A two's complement addition
program is different only in that you have to interpret the bit patterns that
represent the number differently. The program would be capable of adding
105 and - 15 leaving the answer 90 in memory location @ANS.

31

LDA
ASLA
ASLA
ASLA
ADDA
STA

@NUM

@NUM
@ANS

This program will multiply the two's complement number in @NUM by nine
by first performing three arithmetic shift lefts and then adding the original
number to the result. As each shift left is equivalent to multiplication by 2, the
final result stored in @ANS is 8 times the contents of @NUM plus the
contents of @NUM or, in other words, 9 times the contents of @NUM as
required.

41

LDB
SEX
SUBD

@LITTLE

@BIG

The eight-bit value is loaded into the B register and then sign extended into
the A register to give a correct two's complement 16-bit number in the D
register. The SUBD instruction is then used to subtract the 1 6-bit value giving
the result, which is also 16 bits, and so takes two memory locations to store.

Chapter Seven

1 1

@ORCC $04
ANDCC $FE

227

Language of the Dragon

2)

LDB 10
@LOOP

instructions within the loop

DECB
CMPB 1
BGE @LOOP

3)

LDA @DATA1
ADDA @DATA2
BCS @ERJMP
JSR @RESULT

rest of program

@ERJMP JSR @ERROR

rest of program

Following a simple binary addition the carry bit is set if the result is out of
range.

4) The only change that is necessary is to change the BCS @ERJMP to BVS
@ERJMP. For two's complement addition the V bit is set following an
overflow.

Chapter Nine

1)

@DELAY LDX
@DLOOP LEAX

BNE
RTS

@TIME
-1
@DLOOP

228

..............

..............

..............

..............

..............

..............

..............

21

10 CLEAR 1000,&H6FFF
20 POKE &H7EFF,255
30 FOR 1 = 1 TO 255
40 POKE &H7F00 + I - 1 ,RND(64I - 1
5 0 NEXT I
60 POKE &H7EFE,RND(255I
70 POKE &H7EFD,RND(255I
80 EXEC &H7000
90 STOP

Answers to Micro Projects

where all of the values of the sound generator program are set randomly.

Chapter Ten

1)

@DELAY SYNC
RTS

229

Index

A BHI 107

ABX 1 57 BHS 107

Accumulator 8 Binary coded decimal 86

Accumulator Offset 1 52 BITA, BITB 1 1 2

ADC 125 Bit manipulation 58

ADDA, ADDB 19 Bitwise operations 54

ADDD 74 BLE 105

Address 21 BLS 108

Addressing 21 BLT 105

Addressing mode 22 BLU 108

Addressing register BMI 103

(see pointer register) BNE 103

ANDA, ANDB 53 BPL 103

ANDCC 101 BRA 92

Apple 2 Branch Instructions 91

A register 8 B register 8

Arithmetic 71 BSR 1 1 2

ASR, ASRA, ASRB 85 BVC 104

'Auto' indexing 1 54 BVS 1 04
Byte 22

B
BASIC 1 C
BCC 104 Carry bit 100
BCS 1 04 CLR, CLRA, CLRB 78
BEQ 103 CMP 109
BGE 105 CMPS 148
BGT 105 CMPU 148

230

Index

CMPX 148 H
CMPY 148 Hexadecimal 24
COM, COMA, COMB 56 HEX$ 24
Complement, see COM H lhalf)bit 99
Conditional branch 98
Condition code 98
Constant offset indexing 149
CWAI 186 1 bit 184

1mmediateaddressing 34
D INC, INCA, INCS 78
DAA 87 Indexed addressing 146
DEC, DECA, DECB 78 Index register 148
Delay loop 136 Indirection 158
Direct addressing 22,163 IRQ 181
DP (Direct Pagel 147, 163 Interrupt 177
DRegister 74 Interrupt handler 182

E
Editor 117

JMP 3 E (Entire) bit 184
Effective address 156 JSR 47

EORA,EORB 55
EQU 49 L
Exclusive - or, see EOR Label 34
EXG 150 LBA 95
Extended addressing 26 LBPL 102
Extended precision 80 LBSR 112

LDA 10
F LDB 10
FAC 198 LDD 79
F bit 184 LOS 148
FCB 66 LDU 148
FDB 66 LOX 147
FIRQ 182 LDY 148
Floating point 72 LEA, LEAX, LEAU, LEAY 156
Floating point binary 198 LIFO 178
Forward jump 43 Load 10

Logical operations 53
LS L, LS LA, LS LB 62

GOTO 37 LSR, LSRA, LSRB 62

231

1

J

G

Language of the Dragon

M ROL, ROLA, ROLB 64
Machine code 3 RTI 182
Mask 60 RTS 47
Mnemonic 4
Multiple precision 1 25 s

Multiplication 83 SEX 82
SBC 125

N Shift instructions 61
NEG, NEGA, NEGB 76 Signed conditional branches 1 06
NMI 185 Simple indexing
N (negative) bit 99 (see constant offset)

Software Interrupt 186

0 Sound 168
Sregister 1 78

ORA, ORB 54 STA 10
ORCC 1 01 Stack 1 77
Overflow 76 STB 1 0
Overflow bit 100 STD 82

Store 10
p STS 148
Page three 109 STU 148
Page two 1 09 STX 148
Pointer register 147 STY 148
Position independent code 94 SUBA, SUBB, SUBD 74
Post byte 162 Subroutines 47, 181
Program Counter (PC) 1 4 SWI, SWI2, SWl3 1 86
Program counter relative 157 SYNC 186
Pseudo operation 48 System stack 1 78
PSH 1 77
PSHS 178 T
PSHU 179 TFR 150
PUL 1 77 Truth table 53
PULS 179 TST, TSTA, TSTB 1 1 1
PULU 179 T wo�pass assembly 44

Two's complement 72
R

RAM 8 u

Register 7 Unconditional branching 92
Relative addressing 92 Unsigned conditional branches 106
RMB 66 U register 1 78

232

Index

User stack 178
USR 197 X register 147

V

V (oVerflowl bit 100 Y register 147

w

White noise 173 Z (zerol bit 99

233

X

Y

Z

	0
	lc-n001
	lc-n002
	lc-n003
	lc-n004
	lc-n005
	lc-n006
	lc-n007
	lc-n008
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p152
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	lc-p159
	lc-p160
	lc-p161
	lc-p162
	lc-p163
	lc-p164
	lc-p165
	lc-p166
	lc-p167
	lc-p168
	lc-p169
	lc-p170
	lc-p171
	lc-p172
	lc-p173
	lc-p174
	lc-p175
	lc-p176
	lc-p177
	lc-p178
	lc-p179
	lc-p180
	lc-p181
	lc-p182
	lc-p183
	lc-p184
	lc-p185
	lc-p186
	lc-p187
	lc-p188
	lc-p189
	lc-p190
	lc-p191
	lc-p192
	lc-p193
	lc-p194
	lc-p195
	lc-p196
	lc-p197
	lc-p198
	lc-p199
	lc-p200
	lc-p201
	lc-p202
	lc-p203
	lc-p204
	lc-p205
	lc-p206
	lc-p207
	lc-p208
	lc-p209
	lc-p210
	lc-p211
	lc-p212
	lc-p213
	lc-p214
	lc-p215
	lc-p216
	lc-p217
	lc-p218
	lc-p219
	lc-p220
	lc-p221
	lc-p222
	lc-p223
	lc-p224
	lc-p225
	lc-p226
	lc-p227
	lc-p228
	lc-p229
	lc-p230
	lc-p231
	lc-p232
	lc-p233
	z

