

thedragon
trainer
a handbook for beginners

brianlloyd

First published I 983 by:
Sunshine Books
(An imprint of Scot Press Ltd.)
12-13 Little Newport Street,
London WC2R 3LD

Copyright © Brian Lloyd

ISBN 0 946408 09 2

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording and/or otherwise,

wit hour the prior wrillen permission of the Publishers.

Cover design by Graphic Design Ltd.
Illustration by Richard Dunn.
Typeset and printed in England by Commercial Colour Press, London E7.

This book is dedicated to my father for all his help,

patience and encouragement

CONTENTS

Page
Introduction 7

I Getting started 9

2 Time to get working II

3 PRINTing words or letters 13

4 Line numbers 15

5 Variables 18

6 String variables 20

7 INPUT 21

8 LIST 23

9 RUN, NEW and CLS 24

10 IF ... THEN ... ELSE 25

II FOR ... NEXT loops 29

12 GOTO,GOSUBandRETURN 32

13 Storing your programs on tape 34

14 EDITing your programs 37

15 RND 40

16 PRINT@ 41

17 INKEY$ 43

18 CHR$ 45

19 PRINT TAB and STRING$ 49

20 DELeting 50

21 RENUMbering 51

22 SOUND 52

23 DIM and ARRAY variables 54

24 REM, END and STOP 59

25 CONT, TRON and TROFF 60

26 ON ... GOTO and ON ... GOSUB 61

27 String handling 63

5

The Dragon Trainer

Page
28 DEF FN 66
29 READ, DATA and RESTORE 67

30 Graphics 70

31 PEEK and POKE 78
32 Using joysticks 82
33 PLAY 84

34 CLEAR 87
35 High resolution graphics 89

36 PRINT USING 103

37 Storing information on tape 105
38 Using a printer 108
39 Trigonometric functions 109
40 Numeric functions 111

Appendices
A A list of commands 117
B Graphics information 127
C Programs 129

Hangman 129
3-DPlot 134
Meteors 135
Artist 139
Alarm Clock 141
Valley of Death 145
Code Breaker 162
Revision Aid 166

D Jargon Guide 171

Index 175

6

Introduction

In compiling this book we assumed that the reader had little or no knowl­
edge of computer programming. Each section has been tested by complete
novices and re-written if proved to be too complicated. My thanks to the
most ardent tester, Ray Hunt-Terry, who has read through the book word
for word and tested each section from cover to cover.

The book is designed to be read from the first page right through to the
last, without skipping any pages. Even skipping a single line could leave
you totally confused and wondering how something works, so don't be in
too much of a hurry to do things.

The book works through the commands in the order in which you need
to know them so that you can get down to writing simple programs as soon
as possible. As you read each section your understanding of the computer's
commands and functions will grow, enabling you to write more compli­
cated programs as you learn each new command.

BASIC is the main language of the Dragon 32 computer and you may be
assured to know that BASIC stands for BEGINNER'S All-purpose
Symbolic Instruction Code. The fact that the language is designed for
beginners doesn't stop it from being a very powerful language giving you
immense control over the computer.

If you read each section thoroughly and make sure you understand what
you have read, the technique of computer programming will come to you
quite quickly. It is best to make sure that you understand each section, even
if you have to go through it several times. It saves a lot of time and frus­
tration in the long run. Finally, never be afraid to experiment with any
command, for experimenting is the best way to learn (you may even
discover something that no-one else knows about).

7

1

Getting started

If you haven't used a computer before then you will probably be won.
dering what to do with this plastic box with keys on top. Well the first thing
to do is to connect up your computer.

Plug the TV lead that came with the Dragon into your TV aerial socket
and the other end into the socket marked TV on your computer.

Next the transformer. Plug the lead with a white wire and grey plug on
the end into the socket marked TRANS SUPPLY at the rear of the
computer. Plug in the power lead and switch on the computer by pressing
the button marked ON/OFF which is also on the rear of the computer.

Switch on your television and tune it to approximately channel 36 until
you see the message DRAGON DATA Ltd displayed clearly on the screen.

Now that you have your Dragon set up and working you will see a flash­
ing dark green/black square. This square is the cursor. Its job is to show
you where the next character that you type into the keyboard will appear on
the screen.

If you try lyping on the keyboard, lhe characters you type will appear on
the screen with the cursor moving along in front of them.

Some of the keys have two characters on them. To obtain the top cha­
racters you will have to hold down one of the SHIFT keys while typing a
key ie pressing SHIFT and 5 will result in the% sign appearing on the TV
screen. Pressing SHIFT and 8 will produce the closed bracket etc.

If you now press the0 key (the0 key is a zero, not to be confused with the
letter 0) while holding down the SHIFT key and then typing on the key­
board (after releasing the SHIFT and 0 keys) the characters will change to
green on black.

The green on black characters are known as INVERSE CHARACTERS
and if you connect a printer to your Dragon these will appear as lower-case
letters - abcd etc.

To return to upper-case characters you will have to press 0 and SHIFT
again. All commands must be entered in upper-case. Try typing in some
text using upper-case and lower-case characters, ie:

Hello, how are you Jill?

There are four keys with arrows pointing in different directions:
Pressing the arrow key pointing to the left makes the cursor move

9

The Dragon Trainer

backwards, deleting the characters to its left as it goes. This key is used for
correcting any mistakes you make while entering text. Try typing in some
characters and then using the left-arrow key to delete them. As you will see
it is much easier than writing on paper as mistakes can easily be corrected.
Later we will demonstrate how to correct mistakes that you have made
within a program without re-typing the whole line.

If you press SHIFT and the left-arrow at the same time the whole line will
be deleted (but only one line, a maximum of 32 characters).

The up-arrow key produces an arrow pointing upwards when pressed.
This key is used in calculations and its full use will be explained later.

Pressing the right-arrow key on its own produces nothing, but SHIFT
right-arrow produces a closed square bracket.

The down-arrow key and SHIFT produces an open square bracket.
Pressing SHIFT and up-arrow produces an arrow pointing to the left.
The long bar at the bottom of the keyboard is the space bar, and as its

name suggests, inserts a space each time it is pressed.
Try typing the above key combinations and see what effects they pro­

duce.
Another key on the keyboard is the CLEAR key. If you press this key the

screen will clear and all the characters on it will be lost (unless they are part
of a program). The cursor is also moved to the top left-hand corner of the
screen ready for more text to be typed in.

Next to the CLEAR key is a key with the word ENTER printed on it. The
use of this key will be explained later, as will the use of the key in the top
right-hand corner the BREAK key, so do not worry too much about them
at the moment as no harm can be done by pressing them accidentally.

10

2

Time to get working

If you have practised the last chapter you should have a good idea how the
keyboard works, so now it's time to make your Dragon work for you. Let's
see what it can do.

One of the things a computer can do is calculate, so let's try some calcu­
lations. To do calculations on the Dragon you will need to use one of the
most common commands used in BASIC and that is PRINT.

There are several ways of using the PRINT command, but for the
moment we will use just one. Remember to use the left-arrow key if you
make any mistakes:

PRINT5+19

You will need to hold the SHIFT key down to get the + sign, as you will
with all the upper characters on the keys.

Now what has happened? Not much! This is because the Dragon will not
carry out any command until the ENTER key is pressed. This tells the
computer that you have finished entering your instructions and that you
want them carried out. So let's press ENTER and see what has happened.
If you have entered everything correctly then you should have the answer
24 on your screen.

If ?SN ERROR is on the screen instead you have made a mistake. Press
CLEAR to give you a clean screen and try again.

What you have told your Dragon to do is PRINT (or display) on your
screen the sum of 5 + 19. Now try the following:
PRINT 10+4
PRINT6*4
PRINT 12-2
PRINT 24/6

Try some more calculations of your own, but just one thing before you
do. To divide you must use the / sign and to multiply the* sign. This is
common to all computers. The minus sign is situated beside the BREAK
key.

If you have done some multiple calculations you may not have got the
answer you expected. Try the following:
PRINT 6+9/3 (followed by ENTER)

II

The Dragon Trainer

The answer the computer should give is 9 and not 5 as you may have
expected. This is because the Dragon as with most computers, carries out
the division part of the calculation first. Now if you type:

PRINT (6 + 9)/3 (followed by ENTER)

The answer you will get this time will be 5, because putting brackets
around part of the calculation tells the computer to work out that part first.
The order in which the computer carries out calculations is: multiplication
or division followed by addition or subtraction.

We can now go on to find out what the up-arrow is for. Try typing:

PRINT 2f3 (again followed by ENTER)

You should have 8 printed up on your screen, because the up-arrow
means 'to the power of'. The Dragon works out 'to the power of', or
exponentiation as it is called, before multiplication or division.

If you want to calculate negative numbers all you have to do is put a
minus sign in front of the number eg PRINT-5 + 3.

12

3

PRINTing words or letters

The PRINT command is not only used to display the answers to
calculations but can also be used to display words and messages. Try
typing:

PRINT"HELLO, I AM YOUR DRAGON"

and then press ENTER.
Your Dragon will display the words enclosed in quotation marks (") on

the screen. The quotation marks tell the computer that what is enclosed
within them is not a calculation and that is exactly what you want on the
screen.

Try some text for yourself, but remember if you do not put quotation
marks around the text you will receive an error message.

Anything enclosed in quotation marks be they letters, numbers or
symbols will be PRINTed on the screen just as you entered them.

As we progress through this book we will be using the PRINT command
to a greater extent. You will be amazed at what calculations together with
PRINT can do.

To re-cap what we have learnt so far in this chapter, the PRINT
command can be used to display and carry out calculations on your TV/
monitor screen.

It can also be used to display words etc, as long as they are enclosed in
quotation marks.

You have to press ENTER before the computer will carry out an
instruction.

As it is a lot better to have a clear screen to work with, remember the
CLEAR key clears the screen and puts the cursor to the top left-hand
corner of the screen. So if ihe screen starts to look a bit untidy or hard to
follow CLEAR the screen before you start the next exercise.

Remember that if you press the CLEAR key all that is on the screen will
be lost.

Now for a few tips before we leave this chapter. To save a lot of typing,
instead of typing the word PRINT each time you can use the? sign. For
example ? 2 + 2 will give the same results as PRINT 2 + 2. As we use the
PRINT command more and more this will save a lot of time, so it is worth
remembering.

13

The Dragon Trainer

Try practising some of the things we have learnt in this chapter before
moving on. It will save time later.

The only way to learn is to practise and experiment, so do try your own
experiments as we go along and keep reading back over the chapter if you
do not understand anything.

14

4

Line numbers

Until now your Dragon has carried out your instructions as soon as you
have pressed the ENTER key. Obviously this is of no use whatsoever if you
are writing a program as the computer forgets what you have told it to do as
soon as it has carried out the instructions. So when we are writing programs
we need to use line numbers.

Line numbers are used to make the computer remember what you are
telling it to do. They also allow you to control the sequence in which the
instructions are carried out.

Instructions which are entered using line numbers are not carried out
immediately, but are saved in the computer's memory until you want them
carried out.

Line numbers are usually in increments of ten, allowing you to insert lines
in between ones chat you have already entered. Try typing in this example
program. You should type each line as it is printed below. After each line
press ENTER:

JO CLS
20 PRINT"HELLO, I'M YOUR DRAGON 32"
30 PRINT"COMPUTER!"
40 PRINT"AND THIS IS A PROGRAM!! !"

When you have finished typing in this program check each line and if
you see any mistakes you should retype the line that the mistake occurs in.

You will notice that nothing happened after you pressed ENTER at the
end of each line except the cursor jumped down to the next line ready for
you to enter another line or command. However, if you type RUN (and of
course, press the ENTER key) the instructions will be carried out.

The screen should clear (the CLS command does the same as pressing the
CLEAR key) and the words enclosed in quotation marks should appear on
the screen.

If you get an error message then you will have made a typing mistake. In
this case you should type LIST and then press the ENTER key. The pro­
gram will re-appear on the screen.

The LIST command works at any time, not just if there is an error in the
program. Any time you want to look at your program just type LIST.

15

The Dragon Trainer

Lel's have a closer look at the program. The first thing that you will
nolice is lhe line numbers and lhe fact that they are in steps of ten.

Line 10 (the first line of the program) clears the screen in the same way as
the CLEAR key. Lines 20, 30 and 40 PRINT the message on the screen.
You will notice that each time a new PRINT command is used the text
starts on a new line. If you now type the following you will see how to
continue PRINTing text on the same line using two PRINT commands:

50 PRINT"9*9= ";
60 PRINT 9*9

When you have finished typing in these two lines type LIST and you will
see that your Dragon has added two lines to the end of the program. If you
now type RUN the program will be executed, complete with the two new
lines you have entered.

Line 50 PRINTs the characters •9•9 = ' and line 60 PRINTs the answer
to the calculation.

You will notice that the sum and the answer are PRINTed on the same
line. This is due to the semi-colon (;) at the end of line 50. A semi-colon in a
PRINT command tells the computer not to start the next lot of PRINTing
on a new line but to carry on where it left off.

Try typing the following and then type LIST:

15 PRINT"A PROGRAM!! !"

You will see that the line you have just typed has been inserted between
lines 10 and 20.

The Dragon automatically puts the lines in their numeric order, allowing
you to insert lines anywhere in the program.

One thing about line numbers, however, is that you must not use the
same line number twice. This is because if the same line number is used the
Dragon will delete the first line with that number and replace it with the
new one. To illustrate this type in:

15 PRINT"THIS LINE HAS CHANGED!"

and type LIST. As you can see the old line 15 has been replaced by the
new one.

If you want to delete a line from a program you should just type its line
number and press ENTER, eg if you type: 15 then line 15 will be deleted
from the program. Type LIST to make sure that the line has been deleted.

The next stage up from this simple program is a program using multi­

statement lines.
Multi-statement lines are the same as the program lines that we have

been using up till now except that more than one instruction is on each line.

16

Chapter 4 Line numbers

Try retyping line I 0, replacing it with this line:

10 CLS:PRINT"THIS JS A MULTI-STATEMENT LINE!"

As you can see we have two instructions on this line, the CLS command
and the PRINT command, separated by a colon.

You can have as many commands on one line as you like (as long as the
line is not over 255 characters long). The only thing you have to remember
is to put a colon between each command.

To finish off this section let's type in the following program (don't worry
about the lines not being in order, this is the whole idea of the program).
But first type NEW to clear the computer's memory:

Line Sort

10 CLS
40 PRINT" ALREADY I HA VE SORTED THE LINES OF THIS PRO­
GRAM INTO N UMERIC ORDER."
60 PRINT"CLEVER LITTLE THING AREN 'T I?";
50 PRINT"! CAN ALSO TELL YOU THAT";:
PRJNT"876*564 = ";876*564
30 PRINT"COMPUTER AND I'M GOING TO
SHOW":PRINT"YOU WHAT I CAN DO."
20 PRINT''************ A *PROGRAM***********'' ;:PRINT''HI
THERE! I'M YOUR DRAGON 32"

When you have entered the program type LIST and you will see that the
Dragon has put the lines in their right order. Type RUN and the program
will be carried out.

Try experimenting with this program and see what it does and how it
works. You could even try writing your own program (remembering to
type NEW first though).

17

5

Variables

So far in our programs we have had no need to use a value which may need
to be changed, but very often we have to beableto change a value every few
lines. For this reason we use variables.

A variable is a value which can be changed. Letters are used to represent
these values, for instance, we can tell the computer to store the value 13 in
the letter A. Try typing:

10 CLS:A -13
20 PRINT A

If you type RUN then your Dragon will PRINT the number 13 on the
screen. You can make A represent any number of course.

Now add the following lines to your program:

30 B - 99
40 PRINTB
50 PRINT"l3+99 -";A+B

Now RUN the program and you will see that the computer has also
remembered that B = 99.

Line 50 PRINTs a calculation and its answer, replacing the numbers 13
and 99 with A and B respectively. Now add the next two lines to the
program:

60 C - A+B
70 PRINT C

When you RUN the program this time you will see the computer has
stored the value of A+ B in C.

This is how the last part of the program works:

(I) LOOK TO SEE WHAT NUMBER 'A' REPRESENTS
(2) LOOK TO SEE WHAT NUMBER 'B' REPRESENTS
(3) ADD TOGETHER THE CONTENTS OF 'A' AND 'B' (112)
(4) REMEMBER THAT VARIABLE 'C' NOW HAS THE VALUE OF
'A'+'B' (1 1 2)
(5) PRINT THE NUMBER THAT IS STORED IN 'C' ONTO THE
SCREEN

18

Chapter 5 Variables

A variable can be any letter from A to Z, or almost any combination of
letters and numbers ie A, HELLO, ZH, AZ, A3, 2100 can all be used as
variables.

IF, OR, PRINTER and TOP cannot be used as variables because they
are either instructions or the first few letters of the variable are
instructions.

Variables can be of any length but only the first two letters are
recognised ie if the word HELLO is used as a variable only the letters HE
are recognised and used as variables.

All variables have a value of zero before you use them, as it is perfectly
alright to refer to a variable which has not yet been given a value (eg saying
'A= B' will set the variable 'A' to 0 ifthe variable 'B' has not been assigned
a value).

One last thing. In this chapter we have been assigning values to variables
simply by saying ' A= I' . It is possible to say 'LET A = l' but this takes up
more program space, so if you ever see a program with a command 'LET
A = 1' then you can just read it as 'A = l ' .

19

6

String variables

You may also need to use a variable to represent a letter or letters (string).
In this case we use normal letters and add$ symbol to the end ie A$ can be
used as a variable to represent a string of letters.

Type NEW to clear the Dragon's memory of the old program and type
the following in:

10 CLS
20 AS = "HELLO"
30 NAME$= "FRED"
40 PRINT A$;" ";N AME$

RUN this program and you will see that the Dragon has remembered
that the variable A$ represents the word 'HELLO' and that the variable
NAME$ represents the word 'FRED' in the same way as normal numeric
variables.

Although these string variables, as they are known, can contain
numbers, normal numeric variables cannot contain letters.

Here is an example of what you can't do with variables:

A= "HELLO"
OR= 3
OR$ = "HELLO"
B=AS
B= A$+90

It would be a good idea if you experimented some more with variables to
make sure you understand how they are used.

In the next chapter, which is about the INPUT commands, we will use
variables again and write a program to illustrate how to use both types of
variables.

20

7
INPUT

Using the INPUT command it is possible to assign a value to a variable
while a program is being executed.

When the INPUT command is used during a program the computer will
stop the program, display a question mark and wait for you to enter a
number or letters before carrying on with the program. When you answer
the prompt what you actually do is assign a value to a variable.

If you are using the INPUT command to ask for a number and a word or
series of letters are entered then the computer will display this message:

?REDO

and wait for you to enter a proper reply, in other words a number. The
same thing applies if you answer with a numeric expression (eg 2+ 2).

If nothing is entered in reply to an INPUT command (ie if the ENTER
key is pressed without first entering a reply) then the variable used will be
set to zero (if a numeric variable) or emptied (if a string variable).

Input Demonstration

10 CLS
20 PRINT"PLEASE TYPE IN ANY NUMBER"
30 INPUT A
40 CLS
SO PRINT"YOU TYPED IN THE NUMBER";A

If you RUN this program the message PLEASE TYPE IN ANY
NUMBER will be displayed on the screen and a question mark will appear
with the cursor in front of it. Nothing further will happen until you type in
a number. After pressing ENTER the screen will clear and the computer
will tell you what number you have entered.

Make the following alterations to the program:

20 PRINT "WHAT IS YOUR NAME";
30 INPUT A$
SO PRINT"HELLO ";A$

21

The Dragon Trainer

When RUN, the program will this time wait for you to enter your name
and then give you a nice friendly greeting.

Instead of using the PRINT command to ask a question before the
INPUT command, it is possible to incorporate the message in the actual
INPUT, eg INPUT"WHAT IS YOUR NAME";A$ asks you what your
name is and then assigns your name to A$.

Next is a program illustrating all that we have so far learnt about BASIC
programming, including the INPUT command (remember to type NEW
before you enter the program).

Questionnaire

10 CLS
20 PRINT•**********(KIESTIONAI RE**********• ;
30 INPUT.WHAT IS YOUR NAME• INAME$
40 INPUP HOW OLD ARE you• ; AGE
50 INPUPARE YOU INTERESTED JN COMPUTERS• ;

COMPUTERS$
60 INPUPDO YOU L I KE WORK/SCHOOL• ; WS$
70 INPUP CAREE R • ; CAREER$
80 INPUT •WHAT YEAR IS I P ; YEAR
90 CLS

100 PRINT• NAHE : • ;NAHEt,
1 1 0 PRINPAGE : • 1AGE
120 PRINT• J NTERESTED J N COMPUTERS?• ; COMPUTERS$
130 PRINT·HARD WORKING?• ;WS$
1 40 PR I NP JN THE YEAR 2000 YOU WILL BE• ; 2000-YEAR+

AGE

When you RUN the program you will be asked a series of questions
which you must answer. When you have answered all the questions the
screen will clear and you will be presented with a run down of what you are
like. The program also tells you how old you will be in the year 2000.

If you list the program you will find that the program will not all fit on
the screen at one time. If you want to see the first half of the program you
should type LIST-80. When you have finished with the first half just type
LIST to see the rest of the program.

As you can see from the program the computer INPUTs several ques­
tions and assigns the answers to different variables.

Line 80 then clears the screen before the following lines PRINT the
answers to your questions.

Line 150 then calculates how old you will be in the year 2000.
Try adding to the program so that it asks more questions and PRINTs

the answers at the end. You could even try writing your own program (in
this case remember to type NEW first to clear the memory).

22

8
LIST

We have already used the LIST command to display our program on the
screen, but there is a lot more to the LIST command than we have seen so
far. The program in the last chapter was too long to fit onto the screen at

one time so we used the command LIST - 80. This means 'display all the
current program as far as line 80 on the screen'. It is also possible to LIST
all the program after line 80 by using LIST 80 - . If you want to see a part of

the middle of a program then you can use the command LIST 80- 100

which tells the computer to display lines 80- 100 on the screen (the line
numbers we are using here are just examples and can of course be replaced
with the lines that you want to see). The maximum number of lines on the

screen at one time is 14. Here is a list of variations of the LIST command:

LIST 50-90
(display lines 50 to 90 on the screen).

LIST -50
(display all the program as far as line 50 on the screen).

LIST 120-
(display all the program after line 120 on the screen).

LIST
(display all the program on the screen, scrolling all but the last 14 lines).

If a program will not all fit on the screen at the same time then the

computer 'scrolls' the screen, or moves everything on it up one line. To
stop this scrolling at any point while LISTing you should press SHIFT and
the @ key together. To continue with the LISTing press any other key

(except BREAK).

23

9

RUN, NEW and CLS

RUN

As you know, the RUN command is used to tell the computer to carry out
the program which is currently in memory, going through the lines in
numeric order unless instructed to do otherwise. The RUN command
usually starts executing the program from the first line, but it is possible to
tell the computer to start the program from a different point eg RUN 50
tells the Dragon to start executing the program from line 50. The RUN
command also clears all the variables before starting the program, so if you
don't want the variable cleared, type GOTO and then the line of the
program that you want to start at.

NEW
We have already used the NEW command so you should know that its
purpose is to clear the Dragon's memory of anything that is in it. The NEW
command will delete any program from memory, and once that has
happened you can't get the program back, so make sure that you don't
want the old program before NEWing it.

CLS
So far we have used the CLS command to clear the screen before we display
any text on it, but the command can be used to clear the screen to any one of
9 colours. For example, use CLS 2 to clear the screen to yellow. The
numbers for the different colours are:

0-Black
4-Red
8-0range

24

1-Green
5-Buff

2-Yellow
6-Cyan

3-Blue
7-Magenta

10

IF . . . THEN . . . ELSE

One of the most important aspects of a computer is its ability to compare
one thing with another. For instance, it will search through a list of names
until it finds the one it is looking for, simply by comparing each name in the
list with the one it is looking for to see if they are the same.

The IF. . THEN . . . ELSE structure is used to see if a condition is ful­
filled and IF so goes on to carry out a further instruction. Here is an exam­
ple to illustrate this:

IF A = I THEN B = l

This simple line checks t o see i f A represents the number I and i f so it goes
on to assign the number 1 to the variable B.

Adding the ELSE command to the structure tells the computer that IF a
condition is fulfilled THEN to carry out the next command(s), ELSE if the
condition is not fulfilled then carry out a different set of commands.

Here are a few examples of how the IF . . . THEN . . . ELSE structure can
be used:

IF A = 5 THEN Z= 10 ELSE Z = 0

(IF the value o f A is 5 THEN assign the number 10 t o Z otherwise (ELSE)
assign the number 0 to Z).

IF Z< > THEN RUN

(IF the value of Z is anything apart from I THEN restart the program).

IF DD< S THEN DD= 5

(IF the value o f DD i s less than 5 THEN assign the number 5 t o DD).

IF Y> 7 THEN CLS

(IF the value of Y is bigger than 7 THEN clear the screen).

IF S< = 90THEN T=I0

25

The Dragon Trainer

(IF the value of S is less than or equal to 90 THEN assign the number I O to
T).

IF ST> =19 THEN GT = !

(IF the value of ST is bigger than or equal to l 9 THEN assign the number I
to GT).

Here is a program demonstrating the IF . . . THEN . . . ELSE structure
(remember to type NEW before you start the program).

Intelligence Test

10 CLS
20 I NPUT .TYPE IN ANY NUMBER LESS THAN 10• ; N
30 IF N < 1 0 THEN PRINY - WELL DONE � • ELSE PRINT

IDIOT ! •
40 INPUY- TYPE I N YOUR NAME• ; NAME$
50 IF NAHE:$:: • JOHN• THEN PRINT . HELLO JOHN � • ELSE

PRINT " I DON ' T KNOW YOU ! •
b0 I F N < 1 0 THEN PRINY- YOU' RE QUITE CLEVER • ; NAME$

ELSE PR I NT• YOU ARE PRETTY STUPID AREN ' T YOU
NAMES

70 INPUT. TYPE IN THE ANSWER TO 1 2 * 1 2 • ; T
80 IF T=144 THEN PRINT . WELL DONE• ELSE PRINT

· TW I T ! •
90 IF T=144 AND N<> 1 0THEN PRINT. YOU' RE A GENIUS

; NAME$
100 IF T=144 AND N>9 THEN PRINT- YOU' RE IMPROVING � •
1 10 IF T < > 1 44 ANO N<10 THEN PRINT- YOU' RE GETTING

WORSE ! •
120 IF T < > 1 44 ANO N>9 THEN PRINT- YOU ' LL HAVE TO

IMPROVE YOU KNOW � •
130 IF NAME$.,.• JOHN• OR T=144 THEN PRINT- GLAD TO

HAVE MET YOU • ; NAME$

Here is an explanation of how Intelligence Test works:

IO CLEAR SCREEN
20 DISPLAY THE MESSAGE "TYPE IN A NUMBER LESS THAN

10", WAIT FOR A NUMBER AND THEN ASSIGN THAT
NUMBER TO THE VARIABLE N

30 IF THE VALUE OF N IS LESS THAN IO DISPLAY THE MESS­
AGE "WELL DONE!", OTHERWISE DISPLAY THE MESSAGE
"IDIOT"

40 DISPLAY THE MESSAGE "TYPE IN YOUR NAME", WAIT
FOR A NAME AND THEN ASSIGN THAT NAME TO THE
VARIABLE NAME$

26

Chapter JO IF. . THEN . . . ELSE

50 IF THE VARIABLE NAME$ REPRESENTS THE WORD
"JOHN" THEN DISPLAY THE MESSAGE "HELLO JOHN!",
OTHERWISE DISPLAY THE MESSAGE "I DON'T KNOW
YOU!"

60 IF THE VALUE OF N IS LESS THAN 10 THEN DISPLAY THE
MESSAGE "YOU'RE QUITE CLEVER" FOLLOWED BY THE
STRING OF LETTERS REPRESENTED BY THE VARIABLE
NAME$, OTHERWISE DISPLAY THE MESSAGE "YOU'RE
PRETTY STUPID AREN'T YOU" FOLLOWED BY THE
STRING OF LETTERS REPRESENTED BY NAME$

70 DISPLAY THE MESSAGE "TYPE IN THE ANSWER TO i2' 12",
WAIT FOR A NUMBER AND ASSIGN THAT NUMBER TO THE
VARIABLE T

80 IF THE VALUE OF T IS 144 THEN DISPLAY THE MESSAGE
"WELL DONE!", OTHERWISE DISPLAY THE MESSAGE
"TWIT!"

90 IF THE VALUE OF T IS 144 AND THE VALUE OF N IS LESS
THAN 10 THEN DISPLAY THE MESSAGE "YOU ARE A
GENIUS" FOLLOWED BY THE STRING OF LETTERS REPRE­
SENTED BY THE VARIABLE NAME$

100 IF THE VALUE OF T IS 144 AND THE VALUE OF N IS
GREATER THAN 9 THEN DISPLAY THE MESSAGE "YOU
ARE IMPROVING!"

1 1 0 IF THE VALUE OF T IS ANYTHING OTHER THAN 144 AND
THE VALUE OF N IS LESS THAN 10 THEN DISPLAY THE
MESSAGE "YOU'RE GETTING WORSE!"

120 IF THE VALUE OF T IS ANYTHING OTHER THAN 144 AND
THE VALUEOF N IS GREATER THAN 9 THEN DISPLAY THE
MESSAGE "YOU'LL HAVE TO IMPROVE YOU KNOW!"

130 IF THE VARIABLE NAME$ REPRESENTS THE WORD
"JOHN" OR THE VALUE OF T IS 144 THEN DISPLAY THE
MESSAGE "GLAD TO HA VE MET YOU" FOLLOWED BY THE
STRING OF LETTERS REPRESENTED BY THE VARfABLE
NAME$

You may have noticed that all the commands we have so far covered
have been used in this program. You may also have noticed two new
symbols creeping in: these are < which means 'less than' and > which
means 'bigger than'. When these two symbols are put together they mean
'not equal to'.

The instructions AND and OR were also used in the IF.
THEN . . . ELSE constructions. AND is used with IF to say that IF a
first condition is fulfilled and a second condition is fulfilled THEN go on

27

The Dragon Trainer

and carry out the following command(s). OR is used to say that IF either a
first condition OR a second condition is fulfilled THEN go on and carry
out the following command(s).

Brackets can be used in an IF . . . THEN . . . ELSE statement to allow a
series of conditions to be treated as one, eg this line:

100 IF (A=I AND B = I) OR (A=2 AND 8 = 2) THEN PRINT
"HELLO"

tells the computer that IF either the value of A is I AND the value of B is
I, OR the value of A is 2 AND the value of B is 2 THEN display the word
'HELLO'.

28

11

FOR . . . NEXT Loops

Look at this program which PRINTs out the multiples of 12 up to 12*12:

10 CLS
20 PRINT 1*12
30 PRINT 2*12
40 PRINT 3*12
50 PRINT 4*12
60 PRINT 5*12
70 PRINT 6*12
80 PRINT 7*12
90 PRINT 8*12

100 PRINT 9*12
110 PRINT 10*12
120 PRINT 11 *12
130 PRINT 12*12

Very often you need the computer to carry out a series of instructions
several times, so instead of typing out the instructions over and over again,
as in the above program, we use FOR . . . NEXT loops.

A FOR . . . NEXT loop instructs the computer to carry out all the
instructions between the FOR command and the NEXT command a set
number of times.

Here is an example program which will PRINT all the multiples of 12 up
to 12*12 using a FOR . . . NEXT loop:

10 FOR N = 1 TO 12
20 PRINT N;"*l2 = ";N*l2
30 NEXTN

Much shorter than the previous program, isn't it? Here's how it works:
Line 10 tells the computer to start repeating all the instructions between

the FOR and NEXT command 12 times.
Each time the computer goes through the loop it adds I to the value ofN.
Line 20 uses this fact to multiple the current value of N by 12.

29

The Dragon Trainer

Line 30 finishes off the loop (the variable N does not have to be added at
the end, but it is a good practice to do so).

Trying changing line 10 to:

10 FOR N = 12 to 24

Then RUN the program. You will see the multiples of 12 from 1 2* 1 2 to
12*24 because the value of N starts off at 12 and increases by one until it
reaches 24.

Now change lines 10 and 20 to:

10 FOR N = 0 TO 144 STEP 12
20 PRINT N

When you RUN the program this time you will see the multiples of 12
PRINTed on the screen again, but this time the value of N is increasing in
STEPs of 12.

The STEP section of the FOR . . . NEXT loop tells the computer to add
more than one to the value of the variable being used (in this case the varia­
ble is N, although it could be any variable).

The STEP can be as much as you like and the size of the STEP is defined
after the STEP command (STEP 12 in the above program). You can also
have negative steps. For instance this program PRINTs the multiples of 12
in reverse order:

10 FOR N = 144 TO O STEP - 12
20 PRINT N
30 NEXTN

Here is a program illustrating the use of the FOR . . . NEXT loop for a
different purpose, as a delay:

Multiplication Tables

10 CLS 3
20 INPUT•WHICH MULT I PL I CATION TAP.LE WOULD YOU

LIKE• ; N
30 FOR M,.. 1 1 0 1 2
4 0 PRINT N ; • *• ; M ; • = • ;N*M
50 NEXT H
60 FOR Z:::11.1 TO 4000 : NEXT Z
70 RUN

When you RUN this program you will be asked which multiplication
table you want and then all the multiples up to 12 of the number that you
entered will be displayed on the screen.

30

Chapter 11 FOR . . . NEXT Loops

To give you time to read the multiplication table line 60 goes through a
FOR. . NEXT loop 4000 times without doing anything.

The purpose of this is to cause a delay of almost 4 seconds before line 70
re-starts the program.

If you try changing the 4000 in line 60 you can increase and decrease the
length of the delay as much as you like.

You could also take line 60 out to see the difference it makes. The
computer clears the screen as soon as it has finished PRINTing the table, so
fast that you won't even have time to see it.

This delay FOR . . . NEXT loop is used very often in programs to slow
down the speed at which the program RUNs.

As you will notice this program keeps returning to line 10 after it has
printed up a table. This is because line 70 keeps RUNning the program for
you.

The only way to stop the program is either to switch off the computer or
press the BREAK key (which is the correct way).

Pressing the BREAK key will stop any program or command that the
computer is carrying out except a second routine.

The program is not lost by pressing BREAK as you will see if you type
LIST.

Here's one last program using the FOR . . . NEXT loop. It illustrates
delay loops and negative steps, as well as the different coloured screens
which are possible on the Dragon:

10 FOR N = 0 TO 8
20 CLS N
30 FOR M = 0 TO 500:NEXT M
40 N EXT N
50 FOR N = 8 TO 0 STEP -I
60 CLS N
70 FOR M = 0 TO 500:NEXT M
80 NEXT N
90 RUN

Line 10 starts off the first FOR . . . NEXT loop which decides the screen
colour. Line 20 then clears the screen to the colour which has the code
which is the same as the number currently in N. Line 30 uses a
FOR . . . NEXT loop for a delay, before line 40 finishes off the first loop.
Lines 50-80 are the same as lines 10-40 except that the first
FOR . . . NEXT loop works downwards from 8 to 0. Line 90 re-starts the
program.

31

12

GOTO, GOSUB and RETURN

In the short section on the RUN command we said that a program is
worked through in the numerical order of the line numbers unless the
computer is told to do otherwise.

The GOTO instruction tells the computer to continue the program at a
different line instead of carrying on as normal. Here is a short example
program:

10 PRINT"*";
20 GOTO 10

When you RUN the program the computer will PRINT a star and then
find that line 20 is telling it to go back to line 10 and carry on from there.

For this reason the computer will carry on PRINTing stars until you stop
it by pressing the BREAK key.

The GOSUB command tells the computer to GO to the SUBroutine
starting at a given line number.

A subroutine is a program within a program which is used several times
during the main program.

The idea of having subroutines is to save you having to retype the routine
each time you need it.

The computer will carry on working through the program from the spe­
cified line until a RETURN command is reached.

When a RETURN command is reached at the end of a subroutine the
computer returns to the command directly after the last GOSUB command
and continues with the program from that point.

Type this program in:

10 PRINT"*";
20 GOSUB 40
30 GOTO 10
40 PRINT"@";
50 RETURN

Here is a simple explanation of how the program works:

10 DISPLAY A STAR
20 GO TO THE SUBROUTINE STARTING AT LINE 40

32

Chapter 12 GOTO, GOSUB and RETURN

30 GO BACK TO LINE 10 AND CARRY ON WITH THE PROGRAM
FROM THERE

40 DISPLAY A @ SYMBOL
50 GO BACK TO THE NEXT COMMAND AFTER THE LAST

GOSUB COMMAND (IN THIS CASE LINE 30)

Two things to remember with the GOTO and GOSUB command are:

(1) The line number after the command cannot be replaced with a varia­
ble.

(2) Any commands after a GOTO command on the same line will not be
carried out.

The above program is just a simple demonstration and is not of any real
use but by following the program explanation you could try writing a simi­
lar short program to perhaps display two separate messages by incorporat­
ing the CLS command.

The GOTO and GOSUB commands can, of course, be used with the
IF . . . THEN . . . ELSE statement and this structure is one of the most
important uses of the IF . . . THEN . . . ELSE statement.

33

13

Storing your programs on tape

By now our programs are beginning to get quite long, and they will get
much longer before the end of this book. It would obviously be very boring
and time-consuming to type in a program every time we needed it, and for
this reason your Dragon has the ability to store your programs on normal
cassette tapes.

You should set up the cassette recorder as explained in the Additional
Information leaflet included with your Dragon.

Set the volume on the cassette recorder at roughly half volume and insert
a tape (any tape can be used as long as it is a normal bias tape). Now type in
the following program (don't worry about how it works, it will be fully
explained later):

10 OPEN "0", * - 1, "FILE"
20 FOR N - O TO 2000
JO PRINT* -1,65;
40 NEXT
50 CLOSE * - !

Press the PLAY and RECORD buttons on the tape recorder. Don't
worry about the tape not starting, it's not supposed to. (If you don't have a
remote control socket on your tape recorder the tape will start).

Type RUN and the tape will start, allowing the computer to store 2001
number 65s on the tape. When the program stops rewind the tape, type
NEW and type this in:

10 OPEN "I", * - 1, "FILE"
20 FOR N = O T0 2000
JO INPUT * - !, A
40 PRINT CHR$(A);
50 NEXT
60 CLOSE * - !

Press the PLAY button on the cassette recorder and type RUN.

34

Chap/er 13 Storing your programs on tape

You should see a long string of A's appearing on the screen. If nothing
happens turn up the volume. If you get an 1/0 error rewind the tape and
reRUN the program.

Once you have the volume level right type NEW and enter this program:

10 CLS
20 PRINT "A PROGRAM"
30 PRINT "SAVED ON TAPE"
40 PRINT " AND LOADED BACK AGAIN!"
50 FOR N = 0 TO 3000:NEXT
60 GOTO 10

Erase everything on the tape and then rewind it. Press the PLAY and
RECORD buttons and then type:

CSAVE "PROGRAM"

The tape will start and after a short pause will stop again.
Rewind the tape, type NEW and then press the PLAY button. When you

have done this type in:

CLOAD "PROGRAM"

The tape will again start and the screen will clear. A letter S should
appear in the top left-hand corner of the screen, after a short pause,
followed by an inverse letter F and the word PROGRAM.

When the OK prompt returns stop the tape and rewind it. Type LIST and
you will see that your program is back again.

If the program is not there or you receive an 1/0 error rewind the tape
and try the LOADing process again (make sure that you haven't recorded
the program over the leader at the start of the tape}.

The CSA VE "program name" command tells the computer to store a
copy of the program currently in memory on tape.

The CLOAD "program name" command tells the computer to look for
the program whose name you have specified on the tape and then transfer it
into the memory.

In case you were wondering what a program recorded on tape sounds
like try rewinding the tape and taking out the earphone plug.

When you play the tape you will hear a long, dull note followed by a
series of high and low pitched squeaks. Nonsense to you, but easily inter­
preted by your Dragon.

If you do not know where a program ends on a tape and need to record
another program after it you can use the SKIPF "program name"
command to stop the tape at the end of the program.

35

The Dragon Trainer

Try rewinding the tape with PROGRAM saved on it and press the play
button. Now type:

SKIPF "PROGRAM"

The tape will start, the screen will clear and all the messages you usually
receive when loading programs will appear in the top left-hand corner of
the screen.

When the computer finds the end of the program it will stop the tape.
The SKIPF command, however, does not load a program into memory.

It just finds where the program ends on the tape.
It is possible to reroute the sound from the tape recorder through the

television's speaker.
Type AUDIO ON, rewind the tape and then type MOTOR ON.
You will hear the program noise being played over the television.
Type MOTOR OFF and the tape will stop.
The AUDIO ON command tells the computer to reroute the sound from

the tape through the television, and the AUDIO OFF command turns it
off.

The MOTOR ON command tells the Dragon to start the tape recorder
motor, and the MOTOR OFF command turns if off again.

If you have more than one program on the tape then you will have to
carry out the SKIPF command for each program.

36

14

EDITing your programs

Until now you have had to retype a program line if you have made a mis­
take in it. Fortunately, your Dragon is equipped with an EDITOR to help
you correct lines without retyping them.

Type the following program line exactly as it is:

10 PRRNT "THEIR AR A LOTT OF MISSTAKES INN THISS
LINEE!"

You can easily spot all the mistakes in the line and if you had made any of
these mistakes before now you would have had to retype the whole line.

To use the EDITOR to correct the line you must first type in:

EDIT 10

The Dragon will print the number 10 on the screen followed by a space.
Press the space bar twice and you will see the letters P and R appear with the
cursor moving along in front.

The first correction to make is to change the R to I so press the C key (for
Change) and then press I. The letter I will appear after the R with cursor in
front.

Carry on pressing the space bar until the E in THEIR appears. Now type
C followed by R, then C followed by E. The word THERE has now been
corrected.

The next stage is to add an E after the AR, so carry on pressing space
until the R of AR appears. Now type I (for Insert) followed by E.

Hold the SHIFT key down and press the up-arrow key to leave the Insert
mode.

Type 6 followed by the space bar and the next six characters will appear.
We now need to get rid of the extra T so press D (for Delete) and one of the
Ts will be erased.

Type 6 followed by the space bar again and you will be ready to delete the
extra S, again by pressing the D key.

See if you can delete the extra letters in INN, THI SS and LI NEE on your
own using the method shown here.

37

The Dragon Trainer When you have made all the corrections, or if you want to see how you are getting on with the corrections type L. The whole line will be displayed with the line number underneath ready for you to make any more correc. tions. When you have finished with the line press the ENTER key and the corrected line will be displayed before the computer goes back to normal command mode. Here is a full list of the EDITOR commands together with what they do: SPACE Move cursor along the line C character Change the next character for the one specified nCcharacter Change the next n characters (where n is any number) for the ones specified Insert all the following characters after the last character D Delete the next character n D Delete the next n characters H Hack (or cut) off the rest of the line and then enter Insert mode X Go to the end of the line and enter Insert mode S character Search for the specified character and move cursor to that position nS character Search for the nth occurrence of the specified character and move the cursor to that position K Delete all the lines from the cursor position n K Delete the next n characters after the cursor
L Display line and return to EDIT mode Move cursor backwards along the line n - Move the cursor back n spaces SHIFT t Leave Insert or Change mode ENTER Leave EDITOR mode We will finish this chapter with a Maths Test program which will ask you multiplication sums. The program is followed by a list of alterations that you can make to change it to an addition test. You can use the EDITOR to make these alterations (by the way, don't worry about the commands on lines 30 and 40, they will be explained in the next chapter). Maths Test
10 CLS

20 PRJNT•***********MATHS TEST***********•

30 A=RND <20>

4111 B-=RND(20)

50 PRJNT•WHAT Js• 1A1 ••• ; B ;

60 lNPUT C

38

Chapter 14 ED/Ting your programs

70 IF A*1l=C THEN PRINT • WELL DONE ! ! • 1 R I GHT=RIGHT+1
80 IF A*B < > C THEN PRINT .WRONG! THE ANSWER 1s• ; A•P.:

WRONG•WRONG+ 1
90 INPUT•ANOTHER SUM• ;AS

100 IF At,c: • y • THEN GOTO 1 0
1 1 0 IF AS< > • w THEN GOTO 90
120 PRINT· vou GOP I R I GHT ; · ouT OF· ; RI GHT+WRONG ; " � •

Here is a list of alterations to make the program into an addition test:

50 PRINT "WHAT IS";A;" + ";B;
70 IF A+B= C THEN PRINT "WELL DONE!!":RIGHT= RIGHT
+ I

8 0 I F A+ B < > C THEN PRINT "WRON G! THE ANSWER
IS";A + B:WRONG = WRON G+ 1

By the time you have made the above alterations to the program you
should be quite efficient at EDITing your programs.

If there is something that you don't understand then try rereading this
section and experimenting with that particular EDITing command.

39

15

RND

In the program at the end of the last chapter we used a new command,
RNO.

RND is a function, that is it takes one or more numbers and uses them to give you back a result. Jn this case we give RND a number and it will give us back a random number between 1 and the number that we gave
it. Try typing this in:
10 FOR N - 0 TO S0
20 PRINT RND(20)
30 N EXT This short program will PRINT 5 1 random numbers between I and 20. The number in brackets after the RND function tells the computer that we want the random number to be less than 20. Try changing the number to 50 (using your newly acquired knowledge of the EDIT command) and reRUN the program. You will now see random numbers between 1 and 50 being PRINTed on the screen. It is possible to store the random number in a variable, as in the Maths Test program. For example, A = RND(l0) will store a random number between I and 10 in the variable A. If you want a random number between 0 and I then you should put the number 0 in the brackets after the RND command. Try altering the pro­gram to do this. The RND function is used in almost every program for one thing or another. It can be used to make the computer carry out a command randomly. For example, if you wanted a 50:50 chance that a monster appears in a game you might have this line:
100 IF RND(2)= I THEN PRINT "LOOK OUT! A MONSTER!"

40

16
PRINT @

In the first chapter we said that there are many variations of the PRINT
command and this is one of them. The PRINT @ command does exactly
the same thing as the normal PRINT command except that you can decide
where you want the characters to be displayed.

Imagine that the picture on the screen is divided up into 512 squares and
that each one has a number like the numbers of a house. The first square,
which is in the top left-hand corner of the screen, has the number 0 and the
last square, in the bottom right-hand corner of the screen, has the number 5 1 1 .

You can tell the computer to start PRINTing in any of these squares. For
example PRINT@IO, "HELLO" tells the computer to PRINT the word
HELLO with the letter H in the 10th square, the letter E in the 11 th square
and so on.

On pages 28 and 140 of the Dragon manual are PRINT@ grids which
show how the screen is numbered.

Here is a short program using the PRINT@ command:

Random Blocks

10 CLS0
20 FOR N=-:0 TO 600

30 A=RND C 5 1 2) - 1

4 0 PRINTaA, N

50 NEXT

This program clears the screen to a black background and then PRINTs
green blocks all over it. Line 30 chooses a random number between 1 and
512 and then subtracts one (this is because the screen locations go from Oto
511). Line 40 then PRINTS a space at the Ath square on the screen.

It is possible to display the value of variables using the PRINT@
command, not only strings contained in quotation marks. For example, if
we wanted to display the value of the variable D in the centre of the screen
we would use a command like this:

PRINT@239,D

41

The Dragon Trainer

Maybe we would like to PRINT the title of our program in the centre of
the screen. In this case we might use a line similar to this:

120 PRINT@235, "INVADERS"
130 PRINT@266, "FROM SPACE"

This would PRINT the word INVADERS in the centre of the screen with
the words FROM SPACE directly underneath.

A useful formula to remember is X + Y*32. Using this formula you can
control the position of a moving object on the screen by storing its position
in two variables (in this case X and Y). The variable X (or whichever one
you are using) should contain the object's horizontal position, and Y
should contain the object's vertical position. You can then PRINT the
object using PRINT@ X + Y*32.

Any text or graphics characters can be PRINTed on any part of the
screen in this way, allowing you to produce quite good visual effects.

Try PRINTing a title and then by altering the PRINT@ positions move
it around the screen to get the best effect.

The PRINT@ command has many uses, especially in games. The pro­
gram on the previous page for example could be used to display a maze.

42

17

INKEY$

In many programs we need to be able to check to see if a key is being pressed
or not. Obviously, the INPUT command would not be of much use as we
have to press the ENTER key every time, so we use the INKEY$ command
instead. The following part of a program demonstrates how we would use
the INKEY$ command instead of INPUT:

100 PRINT "DO YOU WANT TO PLAY AGAIN?"
110 A$- INKEY$
120 IF A$ - "Y" THEN RUN
130 IF A$ - "N" THEN END
140 GOTO ll0

INKEY$ 'scans' the keyboard to see if you are pressing a key. The
INKEY$ command does not stop the program or require you to press the
ENTER key, unlike the INPUT command.

There are many uses for the INKEY$ command. You could use it to test
the keyboard and move a bat left or right, for instance if the L key is being
pressed the bat would move left and if the R key is being pressed then the
bat would move right. Another use would be to scan the keyboard to see
whether or not you are pressing the F key, firing a rocket if you are. Any
key may be used in this way, including the SHIFTed characters.

The following program shows how the INKEY$ command can be used
to scan the keyboard:

10 FOR N - 0 TO 500
20 A$ - INKEY$
30 PRINT A$
40 FOR M -0 TO 20:NEXT M
50 NEXT N

The only thing that will happen when you RUN the program on the pre­
vious page is the screen will slowly scroll. However, if you press any key
(except for BREAK and CLEAR) you will see the character on that key
appear on the screen.

43

The Dragon Trainer

What is happening? Line 20 stores the character of the key which is cur­
rently being pressed in the variable A$. If none of the keys are being pressed
then A$ stays empty.

Line 30 then PRINTs the character in A$ before line 40 causes a delay.
INKEY$ is a function which takes a value from the keyboard and uses it

to tell you which key, if any, is being pressed.
A very common use for INKEY$ is as a delay line. For example, if you

are displaying the instructions for a program you could use INKEY$ to
wait for you to press a key before continuing with the instructions in this
way:

100 PRINT "PRESS ANY KEY TO CONTINUE"
IH D INKEY$= " " THEN IH
120 CLS

In the next chapter we will use INKEY$, along with all the other
commands we have so far used, in a short game. Meanwhile, experiment
with the INKEY$ command to make sure you know how to use it properly.

44

18

CHR$

Every character on the Dragon keyboard has its own code number. The
letter A for example has the code 65. It is possible to display these cha­
racters on the screen by using their code numbers.

To do this we use the CHR$ command followed by a number in
brackets. This tells the computer that we want it to display the character
with the code number that we have specified.

Like RND and INKEY$, CHR$ is a function and so we have to tell it
which character we want displayed. Try typing in:

PRINT CHR$(65)

This line tells the computer to display the character which has the code 65
(the letter A) on the screen.

It is also possible to display special coloured blocks called graphics
symbols by using the CHR$ command. For example if you type:

PRINT CHR$(175)

a blue square will be displayed.
Here is a short program which displays every character that the Dragon

is capable of displaying on the screen and then displays the characters one
by one with their codes:

Character Set

10 CLS
20 FOR N=32 TO 255
30 PRINT CHRS C N) ;
40 NEXT
50 FOR N::32 TO 255
60 PRINT8333, CHRS < N) ; • :o: • ; N
70 FOR M=0 T O 300 E NEXT M
80 NEXT N

Let's first look at lines 1 0 to40and see how they work. We already know
that the CLS command clears the screen and how the FOR . . . NEXT loop
works so you can see that line 20 starts off the loop with the value of N set at
32.

45

The Dragon Trainer

Line 30 then PRINTs the character with the code number N. Line 40
sends the computer back to line 20 which adds one to the value of the varia�
ble N. The program continues round and round the loop until the value of
N equals 255.

The second part of the program is very similar to the first part, except
that the characters are PRINTed one by one together with their codes.

Line 60 handles the PRINTing of the characters, using the PRINT@
command explained earlier. Line 70 causes the delay.

A full list of the codes for the graphics symbols is on page 138 of the
Dragon manual.

Here is that program I promised you at the end of the last chapter:

Invader

10 CLS
20 P,ASE=431
30 SHIP=RND (32) +64
40 l.IFE=3
50 PRINT9BASE, " • ; CHR$ (1 59 > ; • " ;
b0 PRINT9BASE+31 , • • ; CHR$ < 159) l CHR$ (1 59) ;

CHR$ < 1 59) ; • " ;
70 PRINTQSH I P , " Y " ;
80 IF L IFE=0 THEN PRINT.9233, " YOU' RE DEAD � � · :END
90 At= I NKEYS

100 IF AS=CHR$ (9) THEN BASE=BASE+ t
1 1 0 IF A$=CHR$ (8) THEN BASE=BASE- 1
1 2 0 IF BASE>445 THEN BASE=445
130 IF BASE<4 1 6 THEN BASE=4 1 6
1 4 0 IF AS= " F " AND MISSILE=0 THEN MISSILE=! :MM=

BASE+1
150 IF MISS I LE= l THEN MM:::>tMM-32
160 IF MM>0 THEN PRI NTQMM, "t • ; : PRINT9MM+32, • • ;
170 I F MM=SHI P THEN FOR N= 1 43 TO 1 55 STEP 1 6 :

PRINTQMM, CHRS C N > ; : FOR N=0 T O 30:NEXT M:NEXT N :
HI TS=HI TS+t : SH I P=RND< 32) +64

180 IF MM<96 AND MM>0 THEN PRINTQMM, • • ; : MM=0:
MISS I LE;0

190 G=G+t r I F G < 1 0 THEN GOTO 240
200 6=0
210 PRINTQSH I P , • • ;
220 Z=RND (2) : I F Za::::1 THEN SHI P=SH I P+l
230 IF Z=2 THEN SHI P=SH I P- 1
240 IF SHI P<63 THEN SHI P::63
250 IF SHIP:>94 THEN SHI P=93
260 IF RND (5) =1 AND BOMB=0 THEN BOMB=SHI P
270 I F BOMP, >0 THEN BOMB::z:BOMB+32
280 IF BOMP.,)-0 THEN PRINT9BOMB, " * " ; : PRI NT8BOMB-32,

290 IF BOMB=BASE+1 OR BOHB=BASE+32 OR BOMB=BASE+32

46

Chapter /8 CHR$

THEN FOR N=0 TO 7 1 CLS< N > : FOR Mz0 TO 50:NEXT M :
NEXT N : L JFE=LIFE-1 : CLS

300 IF BOMB)-479 THEN PRJNT8BOMB, • • ; : BOMB=0
310 PRINTa0, · scoRE : · ; H I TS ; • L I VEs : • ; L I FE
320 GOTO 50

This program is a kind of simple Space Invaders with only one invader.
You move your base left and right with the left and right arrow keys. To
fire press the F key.

You have three lives and an infinite number of aliens.
If you read through the program you should be able to understand how

all the lines work, but you probably won't be able to understand how each
line contributes to the program. For this reason we have split the program
up into routines on the next pages to show you what each section does:

Lines 20-40 set up the variables. The variable BASE determines where
your base is on the screen. SHIP determines where the Invader is and LIFE
keeps a record of how many lives you have left.

Lines 50-60 display your base. The spaces left on either side of the yellow
blocks (CHR$(159) is a yellow block) make sure that no trails are left
behind the base when it moves.

Line 70 displays the Invader.

Line 80 checks to see if you are dead yet (the END command stops the
program).

Lines 90-1 10 check to see if you are pressing a key and take appropriate
action. CHR$(9) is the code for the right-arrow key and CHR$(8) is the
code for the left-arrow key. Adding one to the variable BASE or subtrac­
ting one has the effect of moving the base right and left one square
respectively.

Lines 120-130 make sure that your base hasn't gone off either edge of the
screen.

Line 140 checks to see if you are pressing the F key and if you are (and there
isn't a missile on the screen already) assigns the number I to the variable
MISSILE. This is so we can check to see if there is a missile on the screen
and assign the value of the variable BASE plus one to the variable MM.
This variable determines the position of your missile.

Line 150 - if there is a missile on the screen then move it up one line.

47

The Dragon Trainer Line 160 PRINTs the missile on the screen and rubs out the missile behind it. Line 170 checks to see if you have hit the Invader. If you have every dif­ferent coloured block is PRINTed over the Invader in an explosion effect. Line 180checks to see if your missile has gone off the screen, deleting it if it has. Lines 190-230 - once in every eleven times round the program the Invader moves. This routine moves it left or right randomly. Lines 240-250 makes sure that the Invader doesn't go off the screen. Lines 260-300 - this section controls the Invader's bombs using the same sort of routine as the one controlling your missiles, except that they come down instead of going up. Line 310 displays your score and how many lives you have left. Line 320 - this line goes back to line 50 to carry on with the program. It would be advisable to save this program on tape as we will be coming back to it from time to time to add more commands.

48

19
PRINT TAB and STRING$

The PRINT TAB command is used to tell the computer which column you
want it to start PRINTing in. This is useful for displaying tables. Try the
following program:

10 CLS
20 INPUT "WHICH COLUMN (0-31)";COLUMN
30 PRINT TAB(COLUMN);"X"
40 FOR N = 0 TO 1000:NEXT N
50 GOTO 10

This program will ask you which column you want to start PRINTing in
and then display an X in that column before pausing and starting again. If
you look at line 30 you will see that we have to enclose the column number
in brackets after the TAB command and then put a semi-colon before
whatever we want to PRINT, in this case a letter X. One thing to remem­
ber, though. If you PRINT TAB something, and then try to PRINT TAB
something behind the original piece of PRINTing, the second piece of
PRINTing will appear on the next line down.

STRING$

The STRING$ command is used to display a line of characters. For exam­
ple, if we wanted to display a line of 20 orange squares we would use this
command:

PRINT STRING$(20,255)

As you can see there are two numbers in brackets after the STRING$
command. The first one (20) tells the computer how many characters you
want it to print. The second one (255) is the CHR$ code of the character.
The following program displays a whole line of each of the different
coloured squares which are available:

0 CLS
20 FOR N = 143 TO 255 STEP 16
30 PRINT STRING$(32,N);
40 NEXTN

49

20

DELeting

If you have been experimenting with writing your own programs as we have
progressed through the book, you have possibly had to delete some of your
program lines. Up until now we have been deleting program lines by typing
in the line number and pressing ENTER. That's fine for the odd line or two
but what about ten or maybe twenty lines? Well the Dragon provides a way
of deleting whole blocks of lines in one command -DEL. The command
DEL is not used in a program but is used while writing a program. When
you use the DEL command, check to make sure that the line numbers you
have stated are the ones you want deleted because once you press the
ENTER key they will be lost for good.

There are several ways to use the DEL command ie if you type in DEL
20-80 followed by ENTER lines 20 to 80 inclusive will be deleted. You can
DELete the whole program by typing DEL - . Before pressing the ENTER
key double check that you have the right line numbers entered. If you have
ffiade a mistake you can cancel the command by pressing the BREAK key
and start again. Below are a list of DEL commands and what they do:

DEL 10 Will delete line 10 only
DEL -50 Will delete all lines from the start of the program up to

and including line 50
DEL60- Will delete all lines from 60 to the end of the program

including line 60
DEL 40-100 Will delete all lines between line 40 and 100 including lines

40 and 100
DEL - Will delete the whole program

The line numbers we have given are of course just examples. Any line
numbers can be used as long as they are in the program. Although this is a
useful command it does not pay to be careless so do recheck before you
press the ENTER key.

50

21

RENUMbering

RENUM is another useful command that can be used when writing a pro­
gram. Remember in an earlier chapter we said the idea of numbering lines
in increments of 10 was to allow you to enter lines in between those already
entered. Well what happens if you have no more room between those lines
set at increments of ten? This is where RENUM comes in - you just
RENUMber the lines.

To carry out the RENUM command you must tell the computer what
you want renumbering and in what increments. If you just type RENUM
followed by ENTER the whole programm will be renumbered starting
from the first line, in increments of I 0.

'Nhen the program is renumbered the Dragon also renumbers all the
GOTOs and GOSUBs so that the program flow is not altered. You may
RENUMber a program as many times as you wish.

Set out below is the way you can use the RENUM command:

RENUM
RENUM 100,20,5

RENUM50,,2

RENUM,,30

Will renumber the whole program in increments of 10
Will renumber the program from the old line 20
replacing it with 100 and increasing by increments of 5
ie 100, 105, 100 etc
Will renumber the whole program, the first line num­
bered 50 and then increasing by increments of 2
Will renumber the whole program, the first line start­
ing with the number 30 and the rest by increments of 30
ie 30, 60, 90 etc

5 1

22
SOUND

We have had two chapters on useful commands when writing a program,
now we can return to a useful command to use in your program.

Any good program can be improved with the careful addition of some
SOUND.

The Dragon provides two ways of entering sound to your program, but
at this stage we will look at one and that is the command SOUND.

There are two instructions you must give when entering a SOUND
command, the pitch and the duration. Try typing in:

SOUND 10,3 followed by ENTER.

With the pitch instruction the numbers range from I, the lowest note to
255, the highest note, 89 being middle C on a piano. The duration also
ranges from 1, the shortest duration, to 255 for the longest.

For the full range of tones type in the following little program: FOR N - 1 TO 255:SOUND N,1:NEXT
This gives the whole range of sounds available with the SOUND command.
To try the different combinations of pitch and duration type in the next
program:

Sound Demonstration

10 CLS
20 INPUT•sELECT PITCH (1 TO 255) • ; p
30 INPUT•SELECT DURAT ION C 1 TO 255) • ; D
4 0 SOUND P, D

50 GOTO 10

This little program, when RUN, will ask you to select the pitch, before
storing that number in the variable P. It will then ask you for the duration
and store the number entered in D.

Line 40, uses the variables P,D to play the note for the duration asked for.

52

Chapter 22 SOUND

Line 50 then returns you to the start of the program so that you may try
some more combinations.

If you have saved the program we used in the section on CHR$ you can
reload it to add some SOUND commands. If not perhaps you would like to
retype it in and this time save it on tape as we will be coming back to it from
time to time to add to it.

Now that we have learn about the SOUND command we can add some
sound to your INVADER program.

You should change the following lines (you can use the EDITOR to
make these changes):

140 IF A$= • r - ANO MISSILE=0 THEN HISSILE= l :
MN=BASE+ l : SOUND 100, 1

160 IF HM>0 THEN PRI NTQMH, •t • ; : PRI NTOHH+32, • • ; :
SOUND 200, 1

170 IF HM=SHI P THEN FOR N=143 TO 255 STEP 1 6 :
PRI NTaliHM, CHR$ C N) ; : SOUND N , 1 : FOR M=0 T O 30:
NEXT M : NEXT N : H I TS=HITS+1 : SHJ P:m:RND (32) +64

280 IF BOHB>0 THEN PRI NT8BOMB, • • • ; : PR I NTQBOMB--32,
• • ; : SOUND 255 , 1

29.iJ IF BOMB=BASE+t OR BOMB=BASE+32 OR BOMf,=BASE+32
THEN FOR N=0 TO 7 : CLS (N J : SOUND N+ 1 1 1 : FOR H=0 TC>
501 NEXT Mi NEXT N : L I FE:cLJFE- 1 : CLS

The SOUND commands which we have added to the above lines makes
the following changes to the program:

Line 140 produces the sound when you fire your missiles.

Line 160 makes the noise as the missile goes up.

Line 170 produces the sound effects when the Invader is hit.

Line 280 makes the noise for the Invaders bomb.

Line 290 makes the noises when you get blown up.

When you have made these adjustments please reSA VE the program as
we will be coming back to it again later on and this will save you having to
type it in again.

The SOUND command can liven up your programs and make them a lot
more interesting to use.

However, you shouldn't use too much sound as it slows the program
down, as you can see from the Invader program.

53

23

DIM and ARRAY variables

By now you should have mastered variables and fully understand how to
use them. At least you should understand how to use simple variables. So
far we have only used simple variables, but there is another type of variable
that we haven't met yet, the array variable.

An array variable is exactly the same as a simple variable apart from the
fact that the variable is always followed by a number in brackets.

For example, A, B, HELLO and ZZ are all simple variables, but A(I),

8(18), HELLO(S4) and ZZ(3) are all array variables.
The number in brackets after the array variable is the index number and

tells the computer which part of the variable you want to use.
For example, the variable B(18) is referring to the 18th number in the

variable B, and the variable 8(12) is referring to the 12th number in the
variable B. You may store as many numbers as you like in a single array
variable.

Unfortunately, array variables take up a lot more of your Dragon's
memory than simple variables so you have to tell the computer to save
some extra memory space to store them in.

To do this we must DIM (for DIMension) the array variable before we
use it and tell the computer how many numbers you will be storing in it. For
example, if you wanted to store 12 numbers in an array called BB then you
would use a line like this:

10 DIM BB(ll)

This command tells the computer to save enough memory to store 12
numbers in the array variable BB. You may think that we have made a
printing mistake here by using an 11 instead of a 12, but the first index
number that we can use with an array variable is 0. We are telling the
computer that the index numbers will range from Oto 11, a total of 12 index
numbers.

Type in the following lines in addition to line to:

20 FOR N = 0 TO 11

30 INPUT "TYPE IN ANY NUMBER";BB(N)
40 NEXT N

54

Chapter 23 DIM and ARRA Y variables

50 CLS
60 FOR N - 0 TO 11
70 PRINT BB(N)
80 NEXTN

When you RUN this program you will be asked to type in 12 num­
bers, one by one.

When you have done this the screen will clear and the 12 numbers
which you typed in will be displayed. The program works in this way:

lO RESERVE ENOUGH MEMORY SPACE TO STORE 12 NUM­
BERS IN THE ARRAY VARIABLE '88'

20 ST ART REPEATING ALL COMMANDS BETWEEN THIS
LINE AND THE 'NEXT' COMMAND ON LINE 40 TWELVE
TIMES

30 DISPLAY THE MESSAGE "TYPE IN ANY NUMBER", WAIT
FOR A NUMBER TO BE ENTERED AND THEN STORE THAT
NUMBER IN THE Nth PART OF THE ARRAY VARIABLE
'BB'

40 MARKS THE END OF THE 'FOR . . . NEXT' LOOP
50 CLEAR THE SCREEN
60 START REPEATING ALL COMMANDS BETWEEN THIS

LINE AND THE 'NEXT' COMMAND ON LINE 40 TWELVE
TIMES

70 DISPLAY THE Nth VALUE OF THE ARRAY VARIABLE 'BB'
80 MARKS THE END OF THE 'FOR . . . NEXT' LOOP

This program uses one-dimensional array variables to store a list of
numbers and use any one of those numbers whenever you want to.

As you can see, you can use one dimensional array variables to store a
list of numbers and use any one of those numbers whenever you want
to.

However, imagine you wanted to store a whole table of numbers in a
variable. In this case you would use a two-dimensional array variable.

This kind of variable has two index numbers,the first one is the row
index and the second one is the column index. So, imagine you had a
table of how many goals a number of football teams scored in each of
four games. The table might look like this:

Team Match 1 Match2 Match3 Match4
LIVERPOOL 1 3 0
IPSWICH 2
ARSENAL 0
SPURS 2 2 2

NORWICH 0 2

55

The Dragon Trainer

If, for example, you wanted to find out how many goals Ipswich scored
in their third game you would first find Ipswich, which is in the second row,
and then look across to Match 3 which is in the third row, to discover that
they scored 2 goals in this particular game.

Now let's put this into a program:

10 CLS
20 DIM SCORE < 4 , 3}
30 SCOR E (0 , 0) =2 : SCORE < 0, 1)=1 : SCORE (01 2 > =3:

SCORE (0 1 3) =0
40 SCORE (1 , 0) = 1 :SCORE (1 , 1 > =2: SCORE< 1 1 2> =2:

SCORE C 1 , 3) = 1
50 SCOR E < 2 , 0 > = 0 : SCORE (21 1 > = J : SCORE < 2 , 2) = 1 :

SCORE (2 , 3) = 1
60 SCORE C 3 , 0 > =2 : SCORE (31 1) =2: SCORE < 3, 2) = 1 :

SCORE < J , 3 > =2
70 SCORE (4 , 0) = 1 :SCORE (4 1 1) =0 : S CORE < 4 , 2) =2 :

SCORE C 4 1 3) =2
80 INPUT•NAME OF TEAM" ; TEAMS
90 IF TEAMS= · L I VERPOOL" THEN N=0: GOTO 150

100 IF TEAMS=· I PSWI CH" THEN N=t : GOTO 150
1 1 0 IF TEAM$=• ARSENAL� THEN N=2: GOTO 150
120 IF TEAMS=· SPVRs• THEN N=J: GOTO 150
130 IF TEAM$= •NORW I CH" THEN N=4 : GOTO 1 50
140 PRINP I DON ' T KNOW THAT TEAM• : PRINP PLEASE TRY

AGAIN• : GOTO 70
150 INPVPWHICH MATCH• ; MATCH
160 MATCH=MATCH-1
170 IF MATCH>3 OR HATCH<0 THEN PRINPTRY AGAI N" :

GOTO 1 40
180 PRINT" THE SCORE WAS • ; : PRINT SCORE (N , MATCH)

This program, when RUN, will clear the screen and ask you for the name
of the team. It will then ask you which match you want the score of and
then tell you how many goals that team scored in that match. The program
works like this:

10 CLEAR THE SCREEN
20 RESERVE ENOUGH MEMORY FOR THE TWO DIMEN­

SIONAL ARRAY 'SCORE' FOR 5 ROWS AND 4 COLUMNS
30 STORE THE NUMBER 2 IN THE 1st ROW AND THE 1st

COLUMN OF THE VARIABLE 'SCORE' etc.
40 STORE THE NUMBER 1 IN THE 2nd ROW AND THE 1st

COLUMN OF THE VARIABLE 'SCORE' etc.
50 STORE THE NUMBER O IN THE 3rd ROW AND THE 1st

COLUMN OF THE VARIABLE 'SCORE' etc.
60 STORE THE NUMBER 2 IN THE 4th ROW AND THE 1st

COLUMN OF THE VARIABLE 'SCORE' etc.
70 STORE THE NUMBER 1 IN THE 5th ROW AND THE Ist

COLUMN OF THE VARIABLE 'SCORE' etc.

56

Chapter 23 DIM and ARRA Y variables

80 DISPLAY THE MESSAGE "NAME OF TEAM" AND THEN
WAIT FOR AN ANSWER BEFORE STORING THAT ANSWER
IN THE VARIABLE 'TEAM$'

90 IF THE VARIABLE 'TEAM$' REPRESENTS THE WORD "LIV­
ERPOOL" THEN STORE THE NUMBER O IN THE VARIABLE
'N' AND THEN GO TO LINE 150

100 IF THE VARIABLE 'TEAM$' REPRESENTS THE WORD
"IPSWICH" THEN STORE THE NUMBER I IN THE VARIA­
BLE 'N' AND THEN GO TO LINE 150

110 IF THE VARIABLE 'TEAM$' REPRESENTS THE WORD
"ARSENAL" THEN STORE THE NUMBER 2 IN THE VARIA­
BLE 'N' AND THEN GO TO LINE 150

120 IF THE VARIABLE 'TEAM$' REPRESENTS THE WORD
"SPURS" THEN STORE THE NUMBER 3 IN THE VARIABLE
'N' AND THEN GO TO LINE 150

130 IF THE VARIABLE 'TEAM$' REPRESENTS THE WORD
"NORWICH" THEN STORE THE NUMBER 4 IN THE VARIA­
BLE 'N' AND THEN GO TO LINE 150

140 DISPLAY THE MESSAGES "I DON'T KNOW THAT TEAM"
AND "PLEASE TRY AGAIN" BEFORE GOING TO LINE 80
AND CARR YING ON FROM THERE

150 DISPLAY THE MESSAGE "MATCH" AND THEN WAIT FOR A
NUMBER TO BE ENTERED

160 SUBTRACT ONE FROM THE VALUE OF THE VARIABLE
'MATCH'

170 IF THE VARIABLE 'MATCH' CONTAINS A NUMBER
GREATER THAN 4 OR LESS THAN O THEN DISPLAY THE
MESSAGE "PLEASE TRY AGAIN" BEFORE GOING TO LINE
150 AND CARRYING ON FROM THERE

180 DISPLAY THE MESSAGE "THE SCORE WAS" AND THEN
DISPLAY THE NUMBER IN THE Nth ROW AND THE
'MATCH'th COLUMN OF THE VARIABLE 'SCORE'

It is possible to have one dimensional and twowdimensional string arrays
by just putting the index numbers in brackets after the string variable ie
A$(1,3) is a twowdimensional string array.

These string arrays are used in exactly the same way as numeric arrays
except, of course, you can store letters and other characters in them as with
simple string variables.

Try the following example:

Race Positions

1111 CLS
2111 DJH A$ (3 , 3)
30 AS< 1 , 1 > = " JOHN" : A$ (1 , 2) .= " PETEW : A$ (1 , 3) = " PAUL •

57

The Dragon Trainer

40 A$ (2 , 1) = " PETER• : At < 2 , 2) : " PAUL" : A$ (2 , 3) = • JOHW
50 A$ (3 , 1) = " PAUL • : A$ (:3 , 2) = • JOHN" : At < 3 , 3) =• PETER"
60 I NPlJT •WH I CH RACE · ; R
70 I F R>3 O R R < I THEN P R I NT " PLEASE TRY AGA I N " :

GOTO 60
80 INPUT" WH I CH POS I T ION " ; P

90 IF P>3 OR P < l THEN PRINP Pl.EASE TRY AGAI N" :
GOTO 80

100 PRINT A$(R , P >
I 1 0 GOTO 60

This program sets up a two-dimensional string array and then stores the names of the people who came first, second and third in each of the three races in the variable A$. The array, if written out on a piece of paper, would look like this:
lst RACE 2nd RACE lrd RACE

1st PLACE John Peter Paul
2nd PLACE Peter Paul
John

JrdPLACE Paul
John Peter From this table we can work out that the first index number used with the variable A$ refers to the race and the second number refers to the position. Therefore if we want to find out who came second in the first race then we would look in the variable A$(1 ,2) and find the name Peter stored there. If you need to DIMension more than one array variable in a pro­gram then you need not use a new DIM statement for each variable. Instead you may simply use one DIM statement and separate each variable with a comma eg

10 DIM A$(20),B(12,14) It is possible to have arrays in up to five dimensions on the Dragon (ie A(l ,4,3,5,2) is a five dimensional array). However, arrays with more than three dimensions are not often used, partly because they use a lot of memory, and partly because there are not many uses for four or five dimensional tables. One last thing about array variables. If you only want to store 10 (or less) numbers or letters in an array then you do not need to DIMension the varia­ble. You do, however, need to DIMension the variable if you are going to store more than 10 numbers or letters in it.

58

24
REM, END and STOP

Quite often when writing a long program you forget what part of your program does and then have to spend ages scratching your head and won­dering what it's supposed to do. Fortunately your Dragon has a command to help you remember what a routine does, the REM command. Here is an example of how the REM command is used in a program: 270 REM FIRING ROUTINE This line will be totally ignored by the computer when the program is RUN and its only purpose is to remind you what that particular routine does. You may type anything you like after the REM command. There is an abbreviated form of the REM command and this is the apostrophe ('). For example the line means exactly the same as the above line: 270 ' FIRING ROUTINE Remember back in the INV ADER program we used the END command to stop the program when you have been killed? Well, the END command tells the computer that it has come to the end of the program and that it must stop here, even if the END command is not on the last line of the program. The STOP command is very similar to the END command except that you are told which line the program stopped at. There is also one more difference which will be explained on the next page, about the CONT command.

59

25

CONT, TRON and TROFF

The CONT (short for CONTinue) command tells the computer to restart
the program after a STOP command has been carried out. Type in this
example:

10 PRINT "TYPE CONT TO CARRY ON WITH THIS PROGRAM"
20 STOP
30 PRINT "THIS PROGRAM HAS RE-STARTED!! ! !"

When you RUN this program line 10 will be carried out and then line 20
will stop the program. If you type CONT line 30 will be carried out. The
CONT command can also be used to restart a program after you have stop­
ped the program by pressing the BREAK key.

When you have a mistake in a program which does not cause an error but
nevertheless stops the program from operating properly it is usually very
difficult to find the error. To help you with this error trapping the Dragon
has a TRACE which constantly displays the line which it is currently
working on. To turn the trace on you should use the TRON command, and
to turn it off you should use the TROFF command. To see how the trace
works type TRON and then RUN the program shown above. You will see
this displayed:

[!OJ PRESS CONT TO CARRY ON WITH THIS PROGRAM
[20]
BREAK IN 20

If you now type CONT this will appear:

[30] THIS PROGRAM HAS RESTARTED! ! ! !

60

26

ON . . . GOTO . . . and ON . . . GOSUB

The ON . . . GOTO and ON . . . GOSUB commands are really combi­
nations of the IF . . . THEN and GOTO or GOSUB commands. To explain
what these commands are it is useful if you first know what they look like.
Here is an example of the ON . . . GOTO command:
230 ON X GOTO 100,150,200,250,300

This line first looks to see what number the variable X represents.
If X is I (or a number between 1 and 2) then the computer goes to line 100

and carries on with the program from there.
If X is 2 (or a number between 2 and 3) then the computer goes to line 150

and carries on from there, and so on.
However if the value of X is 6 or more, or the value of X is less than I then

an error occurs.
The ON . . . GOSUB command works in exactly the same way as the

ON . . . GOTO command but goes to a subroutine which it can RETURN
from (as with the normal GOSUB command).

Here is an example of how the ON . . . GOSUB command can be used:
10 CLS
20 N = RND(6)
30 ON N GOSUB 60,70,80,90,100,110
40 IF RND(I0) = I THEN FOR N = 0 TO 2000:NEXT
SO FOR M = 0 TO 50:NEXT:GOTO 10
60 PRINT:PRINT"*":RETURN
70 PRINT"*":PRINT:PRINT" *":RETURN
80 PRINT"*":PRINT" *":PRINT" *":RETURN
90 PRINT''* *":PRINT:PRINT''* *":RETURN
100 PRINT"* *":PRINT" *":PRINT"* *":RETURN
110 PRINT''* *'':PRINT''* *'' :PRINT''* *'':RETURN

When you RUN this program you will see a dice rolling in the top left­
hand corner of the screen. Every now and then the dice stops.

Here is a simple explanation of how the program works:
10 CLEAR THE SCREEN
20 SELECT A RANDOM NUMBER BETWEEN I AND 6 AND

STORE THAT NUMBER IN THE VARIABLE N

61

The Dragon Trainer

30 IF THE VALUE OF N IS I THEN GO TO THE SUBROUTINE
STARTING AT LINE 60, IF THE VALUE OF N IS 2 THEN GO
TO THE SUBROUTINE STARTING AT LINE 70 ETC

40 SELECT A RANDOM NUMBER BETWEEN I AND IO AND
IF THAT NUMBER IS I THEN PAUSE FOR A FEW
SECONDS

50 PAUSE FOR A SHORT WHILE THEN GOTO LINE IO AND
CARRY ON WITH THE PROGRAM FROM THERE

60 MOVE THE CURSOR DOWN ONE LINE AND THEN
DISPLAY A SPACE FOLLOWED BY A STAR BEFORE
RETURNING TO THE NEXT COMMAND AFTER THE
GOSUB COMMAND (LINE 40)

70- 1 10 SAME AS LINE 60 EXCEPT DIFFERENT VARIATIONS OF
STARS AND SPACES

The ON . . . GOTO and ON . . . GOSUB commands are very useful
commands and save a lot of typing and memory. Imagine having to have
separate lines each using an IF . . . THEN command to tell the computer
which line to go to!

You must, however, remember to make sure that the variable you are
using is not bigger than the number of line numbers that you have after the
ON . . . GOTO or ON . . . GOSUB command otherwise you will receive an
error.

62

27

String handling

You probably understand by now how to use string variables properly, but
there are a lot of ways in which you can manipulate strings that we haven't
yet met. These are explained on this and the following pages.

LEFT$
In our programs so far we have sometimes had lines similar to these:

160 INPUT"ANOTHER GAME";A$
170 IF A$ = "Y" THEN RUN
180 END

As you can see, in this particular routine we have to type Y if we want
another go. Some people like to type YES if they want another go so we
could replace line 170 with this line:

170 IF LEFT$(A$,l)= "Y" THEN RUN

This line introduces a new command, LEFT$. In this particular example
we are telling the computer to look at the first character in the string varia­
ble A$ and if it is the letter Y then to restart the program. The number in the
brackets following the LEFT$ command tells the computer that you want
the first character, and the A$ is the variable that you are using.

The LEFT$ command has a wide range of uses. For example you could
use it to allow only people with FR as the first two letters of their name to
play a game. This kind of routine could be used in this case:

JO INPUT"WHAT IS YOUR NAME";NAME$
20 IF LEFT$(NAME$,2)< > "FR" THEN END

RIGHT$
RIGHT$ is very similar to LEFT$ except that it is used to find the LAST
instead of the first characters of a string variable. Here is an example:

10 INPUT"TYPE IN SOME CHARACTERS";A$
20 PRINT"THE LAST 3 CHARACTERS THAT YOU TYPED IN
WERE'';RIGHT$(A$,3)

63

The Dragon Trainer

The RIGHT$ command at the end of line 20 displays the last 3 characters
of the string variable 'A$'.

MID$

We now know how to find the first and last characters of a string. How do
we find the middle characters of a string. We could, of course, use a routine
like this:

100 AS= "SUPERCALIFRAGILISTICEXPIALIDOTIOUS"
110 BS= RIGHTS(AS,9)
120 C$ = LEFTS(BS,5)
130 PRINT C$

This routine stores the last nine characters of the string A$ in the string
B$, and then stores the first five characters of the string B$ in the string C$.
This has the effect of finding the 26th character in the string A$ and the
next four characters after it. Luckily, we do not have to use this complica­
ted routine to find characters somewhere in the middle of a string. Instead
we use MID$. We can replace lines 1 10 and 120 with this single line using
the MID$ command:

110 CS= MIDS(AS,26,5)

This line finds five characters in the middle of A$ starting with the 26th
character and stores them in the variable C$.

The MID$ command is followed by a string variable and two numbers,
all in brackets. The string variable refers to the variable that you are using,
and the first number tells the computer where in the string you want to
start. The second number then tells the computer how many characters you
want. Here is an example of the MID$ command:

70 ZS = MIDS(D$,3,5)

This means that we want the third character and the four characters
following it of the string variable D$. When the computer has found these
characters it stores them in the variable 2$.

We can also change part of a string variable using the MID$ command,
eg the command:

MIDS(AS,4,5) = "HELLO"

will change the fourth to eighth characters of the variable A$ to HELLO.

64

Chapter 27 String handling

LEN The LEN command is not really a string handling function, but it is a very useful command to use when manipulating strings. This command is used to find out how many characters a string variable contains and is used in this way: 10 INPUT"TYPE IN SOME CHARACTERS";AS 20 PRINT"YOU TYPED IN";LEN(AS);"CHARACTERS!" The LEN command in line 20 is followed by the string variable in brackets to tell the Dragon which string you are referring to . The LEN command can be used to find the length of ANY string variable, just as long as you specify which variable you want to use. By now you should understand how to find the middle, left and right parts of strings properly, as well as find out how many characters are in the string. If you don't understand these properly then you should go back and reread this section.

65

28

DEF FN

The DEF FN command is used to define your own functions, in other
words you can make up your own function and use it whenever you like in
your programs. For example, you might need to work out the areas of cir­
cles several times during your program. Instead of typing out the calcu­
lation to work out the area each time you need it you could define your own
function to do this:

10 DEF FNA(R) - 3. 1415926*Rf2

This line tells the computer to define a function so that whenever you
refer to the variable FNA(R) it will take the value of the variable R, mul­
tiply that number by 3.1415926 and then store the result in the variable
FNA.

The R in brackets is the argument of the function, that is R is the number
on which the calculations in the function are carried out on. When you call
the function R may be replaced by any number, eg if you typed in PRINT
FNA(2) you would receive the answer 12.5663704, which is 2 squared mul­
tiplied by 3.1415926.

The A in FNA is the variable part of the function, so you may define as
many functions as you like, simply by replacing the A with any other varia­
ble. Meanwhile, let's add to line 10 to make a small program:

20 CLS
30 INPUT"WHAT IS THE RADIUS OF THE CIRCLE";R
40 PRINT"THE AREA OF THE CIRCLE IS";FNA(R)

When you RUN the program the screen will clear and you will be asked
for the radius of the circle. Line40 then displays the area of the circle, using
the function which was defined in line 10.

66

29

READ, DATA and RESTORE

In many programs you will need to use a long list of numbers and letters, or
DATA, as it is known. You could, of course, use variables to store all these
numbers and letters, but this takes up a lot of memory space (and a lot of
time). Instead we store all the data in DATA statements. Here is an exam­
ple of a DAT A statement:

230 DATA 1,43,52,7,17,9,10,3985

As you can see the DATA statement is followed by a long list of numbers
each one separated by a comma. Letters can be stored in a similar way:

230 DATA "HELLO", "GOODBYE", "FRED", "DOG", "CAT"

Each word is enclosed in quotation marks and, like the numbers, is sepa­
rated from the next by a comma.

Now we know how to store a list of numbers and letters, but how do we
use them? Well, when we want to use any number or series of letters we
READ them into a variable. Type in this short routine:

10 CLS
20 DIM A(\2)
30 FOR N = 0 TO \2
40 READ A(N)
50 PRINT A(N)
60 NEXT
70 END

100 DATA I, 1,3,5,8,13,21,34,55,89,144,233,377

This routine READs in all the 13 numbers in the DATA statement and
stores them in the variables A(0} to A{l2}. You should notice that the
DATA statement is after the end of the program. If you trace the flow of
the program (using the TRON command) you will see that the computer
never actually goes to line 100. It just knows where all the data is stored and
goes straight to the DATA statement rather than the line number.

If you now change line 70 to:

67

The Dragon Trainer

70 GOTO 30

and RUN the program again you will see the 1 3 numbers PRINTed on the
screen again, but when the computer tries to start READing more numbers
the second time round it finds that it has run out of data and gives you an
?OD error (out of data error). To cure this we need to put in an extra line:

65 RESTORE

This line tells the computer to go back to the start of the data and carry
on READing in numbers (or letters) from the start of the list.

So far our program doesn't do anything in particular except PRINT a
list of numbers. To make the program do something we can delete lines 65
and 70 and add the following lines:

45 T = T + A(N)

70 PRINT "THE A VERA GE OF THESE NUMBERS IS";T /13
80 GOTO SO

The program now READs in all the numbers and adds them up as it goes,
storing the total in the variable T. When all the numbers have been read in
line 70 works out the average. Line 80 forms an endless loop to stop the
screen from scrolling up when the program ends. If you delete this line then
the top nUJ;nber will disappear when the program ends.

On the next page is a program using the READ, DATA and RESTORE
statements.

Address Book

10 REM ' NUMP,ER' MUST EQUAL THE NUMP,ER OF NAMES IN
THE L I ST

20 NVMBER=2
30 CLS
40 INPUT- PLEASE ENTER PERSON ' S NAME• ; NAME$
50 FOR N=t TO NUMBER
60 READ A$
70 IF LEFTS < Af. , LEN< NAMEf.)) =NAMEf. THEN PRINT Af. :

PR I N T : Q= t
80 NEXT N
90 IF Q=0 THEN PRJNPSORRY, J CAN' T F I ND THAT

NAME "
100 Q=0
1 1 0 PR INT•ANY MORE (Y/N) " ;
120 A$= INKEY$
130 IF AS= " Y " THEN RESTORE: GOT(I 30
1 40 IF Af.= " N " THEN END
150 GOTO 120
160 REM ENTER PERSON ' S NAME ANO DETAILS HERE
170 DATA•JOHN SMITH, 12 THE ROAD, TOWNSVILLE"
180 DATA• JACK JONES, TEL: 123456"

68

Chapter 29 READ, DATA and RESTORE

This program allows you to store the names and addresses of all your
friends as DATA statements at the end of the program. The names may be
added from line 160 onwards, and the variable NUMBER at the start of the
program must be set to the number of names in the list.

The main part of the program is the FOR . . . NEXT loop from lines
50-80. This READs in each name in turn and checks to see if the first few
letters correspond to the name which you are trying to find. If a name is
found then it is PRINTed on the screen and the variable 'Q' is set to I so
that the computer knows that it has found a name.

When the FOR . . . NEXT loop is completed line 90 checks to see if any
names were found, telling you that it doesn't know the name that you wish
to find.

69

30

Graphics

Until now our programs have not been as interesting as they might be
partly because of a lack of colour, and partly because the only characters
we have been able to use are the normal keyboard characters and the
graphics characters.

However, your Dragon can produce quite good effects using what is
known as low resolution graphics.

The word graphics is just another word for drawing, and low resolution
refers to the thickness of the lines that we can draw. Low resolution
drawings use thick lines, and high resolution drawings use thin lines. In the
next few pages we will be using low resolution graphics and learning the
special commands which we use to make our drawings.

SET

We already know that the screen is split up into squares, each one with its
own number. Normally there are 32 squares across the screen and 16 down,
but when we use low resolution graphics the screen size increases to 64
squares across and 32 down.

It is possible to light up any of these squares in any of 8 different colours,
and to do this we use the SET command. For a simple example of this type
in the program below:

Stardust

10 CLS 0
20 FOR I =0 TO 2000
30 N=RND (64 > - 1 : M=RND (3 2) - 1
4 0 C=RND (B)
5 0 SET < N, M , C)

60 NEXT I

This demonstration program works in this way:

10 CLEAR THE SCREEN TO A BLACK BACKGROUND
20 START REPEATING EVERYTHING BETWEEN THIS LINE

AND THE 'NEXT' COMMAND ON LINE 60, 2001 TIMES
30 CHOOSE A RANDOM NUMBER BETWEEN I AND 64,

70

Chapter 30 Graphics

SUBTRACT ONE AND STORE THIS NUMBER IN THE VARI­
ABLE 'N'. CHOOSE A RANDOM NUMBER BETWEEN I AND
32, SUBTRACT ONE AND STORE THIS NUMBER IN THE
VARIABLE 'M'

40 CHOOSE A RANDOM NUMBER BETWEEN I AND 8 AND
STORE THIS NUMBER IN THE VARIABLE 'C'

50 LIGHT UP THE POINT 'N' SQUARES ACROSS AND 'M'
SQUARES DOWN FROM THE TOP LEFT-HAND CORNER OF
THE SCREEN IN THE COLOUR 'C'

60 FINISH OFF THE 'FOR . . . NEXT' LOOP

You should be able to see from this program that the SET command
needs three numbers to work. The first number is the number of squares
across from the left of the screen the point should be, and the second
number is how many squares down from the top of the screen the square
should be. The third number tells the computer what colour you want the
square to be.

Unfortunately you can't always have two squares side by side in dif ­
ferent colours. For instance, you can have a red square at the point three
squares across with a yellow square to the right of it, but you cannot have a
red square at the point four squares across with a yellow square to the right
of it.

The reason for this is that the low resolution graphics being used are
really different graphics symbols being displayed on the screen.

If you look at page 138 in the Dragon manual you will see the different
graphics symbols. Each graphics symbol is really a space split up into four
sections, each of which may be lit up.

However, no graphics character can be more than one colour. For this
reason you can only have two different coloured blocks side by side in low
resolution graphics if they are in different character squares.

RESET

We now know how to light up different low resolution squares, but how do
we delete them? Well, the answer is we RESET the square.

The RESET command resets a square back to the background colour of
the screen. A RESET command is followed by two numbers in brackets.
These numbers are the position of the squares to be RESET, just like the
numbers in the SET command.

However, we do not tell the computer which colour we want the square
RESET to because it works out for itself what the background colour is.

Add the following lines to the program from the previous section
(Stardust):

70 FOR l = 0 TO 2000

7 1

The Dragon Trainer

80 N = RND(64) - 1:M = RND(32) - 1
90 RESET (N,M)

100 NEXT I

When you RUN the program this time you will see the screen fill up with
different colour blocks as before, but then the computer starts to RESET
the blocks back to the background colour {in this case black).

Line 80 chooses the coordinates of the square to be RESET. In the same
way line 30 chooses the one to be SET, and line 90 RESETs the block.

On the next page is a program using the SET and RESET commands to
make a ball bounce about on the screen:

Bouncing Ball

1 0 CLS 0
20 BX=3 1 : BY= 15 : C= 1
30 X=l : Y=l
40 FOR N=0 TO 63
50 SET (N, 0 , 4) : SET <N, 3 1 , 4)
60 NEXT N
70 FOR N=0 TO 3 1
80 SET (0 , N , 4 } : SET (63 , N, 4)
90 NEXT N

100 RESET' < BX , BY)
1 1 0 BX=BX+X : BY=BY+Y
120 IF I\X=61 OR BX=2 THEN X=-X
130 IF BY=29 OR 1\¥=2 THEN Y=-Y
140 C=C+ l t I F C=9 THEN C=1
150 SET < BX, BY, C)
160 FOR N=0 TQ 30<NEXT
170 GOTO 100

Lines 20 and 30 set up the variables that control where the ball is, the
direction it is moving in and what colour it is.

The variables BX and BY are the position of the ball, the variables X and Y
control its direction and C is the colour.

Lines 40-90 draw the border in red around the screen.

Line 100 RESETs the ball (this stops it from leaving a trail behind it).

Line l l0changes the position of the ball by adding X and Y to the variables
BX and BY.

If X has the value 1 then the ball moves right, ifit has the value - I then the
ball moves left.

72

Chapter 30 Graphics

IfY has the value 1 then the ball moves down, ifit has the value - 1 then the
ball moves up.

Lines 120 and 130make sure the ball does not go off the screen. If the ball is
likely to go off the screen then the variable X or Y is changed in this way: if
X is 1 then it becomes -1, if X is -1 then it becomes I . The same goes for
the variable Y. This has the effect of reversing the direction of the ball.

Line 140 changes the value of the variable C which controls the colour of
the ball.

Line 150 draws the ball again, and line 160 causes a pause before the whole
ball moving routine starts again.

If you make the following alterations to the program some quite start­
ling effects can be produced:

100 SET(BX,BY,C)
120 IFBX>62 or BX< 1 THEN X = - X
130 IF BY>JOOR BY< THEN Y = - Y

DELETE LINE 150

These alterations allow the ball to leave a trail behind it and also let it
touch the border. This produces a pattern with ever-changing colours.

POINT
Quite often in programs which use graphics we need to see if a square is lit
up or not, and if it is what colour it is. To do this we use the POINT
command. Try entering the following program:

Searcher

10 CLS 0

20 X=RND < 64) - 1
30 Y=RND (32) - 1
4 0 IF X=63 THEN X=62
50 SET < X, Y , 4) : SET (X+1 , Y , 4 >
60 FOR X=0 T O 63
70 FOR Y=0 TO 31
80 IF POINT (X 1 Y) =4 THEN. PRINT�0, " I ' VE FOUND

IT ! " ; : SET < X , Y, 7) : SET (X+ J , Y, 7) : FORN=0TO2000 :
NEXT N : RUN

90 SET (X 1 Y 1 5)
100 NEXT Y : NEXT X

When you RUN this program you will see a red line appear somewhere
on the screen then the screen will gradually turn white. When the white
reaches the red line the message ''I'VE FOUND IT!'' is displayed in the top
left-hand corner of the screen.

73

The Dragon Trainer

There is a short pause and then the program starts again. Try to work out
how this program works.

Most of the commands will be familiar to you, apart from line 80 that is.
The POINT command looks to see what colour the square at X squares

across and Y squares down is.
Line 80 checks to see if the square is red (the number 4 is the code for red)

and if it is the rest of line 80 is carried out.
As with the RESET command, the numbers in brackets are the coord­

inates of the square that you want to check. The colour codes are the same
as for the CLS and SET commands, with O being black.

The code for text is -1, so if you wanted to check to seeif therewas some
text in the top left-hand corner of the screen you would use IF
POINT(0,0) - - I THEN.

We have now reached the stage where we can produce quite a good
game, complete with colour graphics and sound. The following program is
a breakout game.

The idea of the game is to knock down as much of a multi-coloured wall
at the top of the screen as you can by hitting the ball against it. You have a
bat which you must use to hit the ball back up as it falls down.

The bat is moved by the Q and W keys, Q to move left and W to move
right. To stop the bat from moving you should repress the key that corre­
sponds with the direction the bat is moving.

If you want the bat to move faster you can use the left and right arrow
keys instead.

You have only three balls so if you miss the ball and it hits the ground you
lose it. To serve each new ball just press any key.

Breakout

10 P.=3
20 CLS 6
30 IF P.=0 THEN FOR N=255 TO 200 STEP -1 : SOUND N, 1 :

NEXT : SOUND 1 , 1 : END
40 Z=0
50 P.X=3 1 :P.Y=-15
60 Y:.1 : O=RND (2) : JF Q:::1 THEN X=l : ELSE X::-1
70 P.AT=28
80 FOR N=2 TO 62
90 SET C N , 2 , 4) : SET (N , 3 1 1 4)

100 NEXT N

1 1 0 FOR N=2 TO 3 1
1 2 0 SET (2 , N 1 4) : SET C 62, N, 4)
1 30 NEXT N
1 40 FOR N=0 TO 31 : RESET (0, N) : RESET (1 , N) : NEXT N

150 FOR M=6 TO 12 STEP 2
160 IF M=-6 THEN C=3
1 70 IF M=B THEN C=B

74

Chapter 30 Graphics

180 I F M= 1 0 THEN C=2
190 IF M= 1 2 THEN C=7
200 FOR N=4 TO 6 t : SET (N1 M , C) : NEXT N
2 1 0 NEXT M
220 SET C P.X , P.Y, S >
230 I F R=0 THEN A$=CHRS C l 28) +STRING$ (1 1 , 1 75) +

" bret:1ko1.1 t • +sTR I NG$ (1 2 , 1 7 5) : ELSE GOTO 280
240 FOR N=0 TO 32 : PRJNT&0, R I GHTS (A$, N) ;
250 FOR M=0 TO 5 0 : NEXT M
260 NEXT N
270 FOR N=0 TO 2000 : NEXT N: PRJNT00, " " : R= l
280 A$= I NKEY$: I F AS= • • THEN GOTO 280
290 SET (B X , BY, 6 >
300 P.X=P..X+X : P, Y=P.Y+Y
310 IF BX)=-62 OR F,.X<4 THEN X=- X : P.X=BX+X : SOUND 100, 1
320 IF P.Y<4 THEN Y=-Y: SOUND 1 20, 1 : P,Y=BY+ Y : Q=RND (2) :

IF Q=l THEN X=t :ELSE X=-1
330 IF P.Y>=30 THEN P.=B-1 : GOTO 20
340 IF Y=-1 AND PO I NT C P, X , P.Y > <>4 ANO POJ NT C P.X , BY > <>6

THt-:N Y=J
350 I F Y=l AND PO I MT 1 BX , BY) "'3 THEN Y=-1
360 IF POINT (B X , P.Y > =3 THEN SCORE=SCORE+•:,0: SOUND

255 , I
J70 JF P(1JNT (P, X , BY > ,.,,8 THEN SCORE=SC(1RE+;•5 : sOUND

250, t
380 IF POI NT (P, X , P.Y } =2 THEN SCORE=SCOR£+15 : S(1UNO

245, 1
390 IF POJNT < P. X , BY):::7 THEN SCORE=SCORE-H0: S(1VND

240, 1
401;'l IF < BX=P.AT+:;; OR P.Y==BAT + l OR F,X,=BAT+3) AND

I>.Y>=28 THEN X=0: Y=·- 1 : SOUND 1 70, 1
410 IF (P, X=P,Af+4 OR P.X=F,AT+5) ANO P.Y>=28 THEN X=l :

Y=--1 : SOUND 1 70, 1
420 1F (P, X=P,AT OR l', X==P.AT- 1) AND P.Y>=28 THEN X=-1 :

Y==- 1 : SOUND 1 70 , 1
430 SF.T (P, X , BY, 5)
440 FOH N=0 TO 4 : SET (BAl+N , :;�8, 1) : NE X T
45,:1 I F Z <0 THEN SET (.BAT-+6 1 281 6) : SE T C P.AT+B, 28, 6)
460 I F Z>0 THEN SETC BAT-2, 28, 6) : SET (BAT-A , 28, 6)
470 P,$= 1Nl�EY$: J F F,t=• " THE'M GOTO 540
480 IF At=F, t THEN At,., • • : Z=0 : GOTO �'•0
49"1 IF r.s= " W - THEN Z=l
500 I F Bt:.: CHRt < 9) THEN 2=2
510 I F P..S= " G " THEN 7=-1
520 IF r.s,�CHH$ (8 l THEN z:,--2
530 AS=f.$: P.Af=P,AT+Z
540 IF BAT<4 THEN P.AT==P,AT+1 :GOTO 540
550 IF P,AT)56 THEN BAf:::BAT-1 : GOTO 550
560 PRINTff0, CHRS (128) ; " SCORE. : " ; SCORE i : PRINT&20,

" P,ALLS : " ; B ;
570 SET (63, 28, 4 l :SET < 3 , 2 8 , 4 l : RESET< 1 , 2Bl
580 GOTO 290

75

The Dragon Trainer

When you have played Breakout for a while you will probably want to
know how it works. If you look through the program you will find that all
the commands are familiar to you, but you will probably still not know
how the program works.

However, if you read what each section does and then look back at the
program you will probably find that you can work out what everything
does. It would be a good idea if you experimented with the program and
altered it about a bit. You may even find that you can make the program a
lot better!

Here is what each section does:

Line 10 sets up the number of balls you have.

Line 20 clears screen to cyan background.

Line 30 checks to see if you have run out of balls. If you have, a
FOR . . . NEXT loop makes a series of noises and the program stops.

Lines 40-70 set up the rest of the variables to be used in the program (see
next page for what each variable is used for).

Lines 80-130 draw the border in red around the screen.

Line 140 deletes a band of cyan running down the left-hand side of the
screen (neatens up the display).

Lines 150-210 draw the wall. Lines 160-190 determines the colour,
depending on the value of M.

Line 220 draws the ball.

Lines 230-270 makes the word BREAKOUT appear from the left-hand
side of the screen. Notice the way characters are added to the variable A$
using the + sign. This is acceptable when the characters being added are in
quotation marks, or if you use the CHR$ or STRING$ commands.

Line 280 waits for a key to be pressed before starting.

Line 290 rubs out the ball.

Lines 300-320 move the ball and make sure that it doesn't go off the
screen.

76

Chapter 30 Graphics

Lines 330 checks to see if the ball has hit the ground. If it has deduct one
from the number of balls you have left and go to line 10 to start again.

Line 340 makes the ball bounce up off the blue bricks.

Lines 350-390 check to see if the ball has hit a brick and increases the
score if it has. The score is dependent on the colour of the brick.

Lines 400-420 check to see if the ball has hit the bat, bouncing it in the
correct direction if it has.

Line 430 draws the ball.

Line 440 draws the bat.

Lines 450-460 rub out the trail left by the bat.

Lines 470-520 check to see if you are pressing the control keys and alter
the variable Z accordingly.

Line 530 adds the value of Z to the variable BAT. This makes the bat move.

Lines 540-550 make sure that the bat doesn't go off the screen.

Line 560 displays the score.

Line 570- if the bat hits the border it knocks a bit out. This line makes sure
the gap doesn't stay there for long.

Line 580 - go back to line 290 and start the main routine again.

The main variables are:

B - number of balls left

Z - direction the bat is moving in. If Z is I the bat moves
right, if Z is -1 the bat moves left

BX and BY - position of the ball

X and Y - direction of the ball

BAT - position of the bat

N and M - used in FOR . . . NEXT loops

77

31

PEEK and POKE

Before we look at what the PEEK and POKE commands are and what they
do, we need to know how the Dragon's memory is set out.

There are two types of memory, ROM (Read Only Memory) and RAM
(Random Access Memory). To explain exactly what each type of memory
does would be quite complex, but here is a simplified explanation.

Imagine that your Dragon's memory is made up of glass boxes and that
each one has a number on the front of it for identification (memory
addresses). Each glass box also has a number between 0 and 255 inside it
(memory contents).

Some of these glass boxes are sealed (these represent the ROM), while
others have no lids at all (these represent the RAM).

We cannot change the numbers in the sealed boxes as there is no way for
us to get into them, but we can look at the numbers (or PEEK at them).

We can also look into the open boxes and see what numbers they con­
tain, but as they are open we can also change the numbers which are inside
(or POKE new numbers into their locations).

There are different types of ROM memory. Imagine that you want to
talk to a person who doesn't understand your language. You would need
an interpreter. As the Dragon's CPU (Central Processing Unit - the
brains of the computer) does not understand BASIC it also needs an
INTERPRETER to translate your programs into its own special language.
The interpreter is a type of ROM, as is the CPU itself.

The ROM memory is a permanent type of memory whose contents
cannot be changed (like the sealed glass boxes).

The RAM, however, loses its contents when you turn off the computer.
It is also possible to alter the RAM's contents, by entering a program for
example.

Not all the RAM is available for storing programs as some is used by the
computer as work space.

Now that we know how the Dragon's memory is organised we can find
out what the PEEK and POKE commands are.

The PEEK command looks into a memory location (glass box) and sees
what number is stored there (the number in the box). You can PEEK into
any memory location, whether it is in the RAM or the ROM.

The POKE command changes the number in a memory location (the

78

Chapter 31 PEEK and POKE number in the box). You can only POKE into the RAM as the ROM cannot be changed. If you try to POKE into the ROM nothing happens. You may think that there isn't much point being able to look at parts of the memory and change them. However, if you clear the screen and type this in you may think otherwise:
POKE 1024,65 You may not at first notice what happened. A letter A appeared in the top left-hand corner of the screen. Part of the Dragon's RAM is used for storing the contents of the screen, so if you change the contents of this memory different things can be displayed on the screen. The number 1024 is the memory address of the top left-hand corner of the screen. The number 65 is the ASCII (American Standard Code for Information Interchange) code for the letter A. If you change the 1024 to any number between 1024 and 1535 you can make the A appear anywhere on the screen. Pages 136 to 137 of the Dragon manual give a list of the characters available on the Dragon together with their ASCII codes. If you now type:
PRINT PEEK(J024) the number 65 will be displayed (as long as the A is still in the top left-hand corner of the screen. If it isn't a different number will be displayed). What you have told the computer to do in this command is to look into the memory location that has the address 1024 and display its contents. The memory location must be enclosed in brackets after the PEEK command. Try PEEKing to different memory locations between O and 65535 to see what numbers are stored there. Here is a program which allows you to draw pictures on the screen. You can have any colour background and you can draw in any colour. To change the colour that you are drawing in type the number corre-sponding to the colour you want. To change the background colour hold the SHIFT key down and type the number corresponding to the background colour that you want. Both the background colours ;ind the drawing colours correspond to the numbers used with the CLS command. The cursor is moved with the arrow keys. Artist
10 CLS 0
20 C=l59
30 CURSORz 1504

40 PRINTa0, • ORAW COLOURt • ; ettR• < C > ; • CURSOR

COLOUR • • ; CHR$(CR > ;

79

The Dragon Trainer

50 CR=C+ 1 6 : IF CR>�5 THEN CR= l.,,_3
60 IF Cm128 THEN CR=BB
70 POKE CURSOR, CR
80 At=I NKEY•1 IF A•=• • THEN 40
90 IF At•CHRS(9) THEN D-=1

100 IF At•CHRS <B) THEN D""-1
1 1 0 I F At•CHRS< 1 0) THEN 0•32
120 IF A*•CHR• (94 l THEN D•-32
130 IF A•s• t • THEN C•143
140 IF At-=•2• TIEN C•159
150 IF A•-= •3• THEN C= 175
160 IF A*• " 4 " THEN C•191
170 IF A*•" 5" TIEN C=207
180 IF A••• o• THEN C•223
190 IF AS-=•1• TIEN C=239
200 IF A••"B" THEN C•255
210 IF At••e• THEN C=12B
220 IF A•• • ! • THEN CLS 1
230 IF A••CHRS (3/t) THEN CLS 2
240 IF A•-= • • • Tt-£N CLS 3
250 IF At•••• THEN CLS 4
260 IF A•••1..• THEN CLS 5
270 IF A••• &• THEN CLS 6
280 IF A*•"·' " TIEN CLS 7
290 IF A••" (" THEN CLS B
300 IF As- ·) . nEN CLS 0
310 POKE CURSOR, C
320 CURSOR•CURSOR+Dt D•0
330 IF CURSOR>l535 THEN CURSOR•CURSOR-321 GOTO 330
340 IF CURSOR<1056 THEN CURSOR=CURSOR+32 Z GOTO 340
350 GOTO 40 Here is a description of what each section does.
Line 10 clears the screen to a black background.
Lines 20-30 set up variables. C is the colour you are drawing in and CURSOR is the position of the cursor on the screen.
Line 40 displays the cursor and draws colours.
Lines 50-60 work out the cursor colour.
Line 70 POKEs the cursor onto the screen.
Lines 80-120 check to see if you want to move. The variable D, when added to the variable CURSOR will move the cursor about.
Lines 130-210 control the changing of the draw colour.
80

Chapter JI PEEK and POKE

Lines 220-300 control the changing of the background colour.

Line 310 POKEs the trail before the cursor moves.

Line 320 moves the cursor.

Lines 330-340 make sure that the cursor doesn't go off the top or bottom
of the screen.

Line 350 goes back to line 40 to start the whole drawing routine again.

81

32
Using joysticks

This chapter is for those of you who have joysticks fitted to your Dragon.
Your joysticks should be plugged into the sockets marked JSTK L AND

JSTK R on the left-hand side of your Dragon (it doesn't matter which joy­
stick goes in which socket). When you have done this you can get down to
using your joysticks in programs.

The first thing we need to know is how to find the position the joysticks
are in.

Type this short program in and then try moving the joysticks about:

Joystick Test

10 CLS
;:0 PRINTQ0, • R I GHT JOYST ICK•
30 PRINT•LEFT-RIGHP ; JOYST K < 0 >
4 0 PRINT- UP-DOWN• I JOYSTK C 1 >
50 IF PEEK (65280 } = 1 26 OR PEEK C 65280>=254 Tt-EN

PRINT- BUTTON pressed• 1ELSE PRINP BUTTON NOT
PRESSED'

60 PRINT
70 PRINT STRING$ (32, 4 5)
80 PRINT-LEFT JOYST ICK•
90 PRINT·LEFT-RIGl·-tr• ; JOYSTK (2)

100 PRINP UP-DOWN• 1 JOYSTK < 3 >
1 1 0 IF PEEK (65280) o:: t 25 O R PEEK < 65280)=253 THEN

PRINP BUTTON pressed• :ELSE PRINT.BUTTON NOT
PRESSED•

120 IF PEEK < 65280) = 1 24 OR PEEK (65280)=252 THEN
PRINP BOTH BUTTONS PRESSED• :ELSE PRINT

130 GOTO 20

If you look at lines 30, 40, 80 and 90 you will see a new command -
JOYSTK.

This command is used to find the current position of each joystick. The
number in brackets tells the computer which joystick you want and
whether you want the left-right or up-down position.

If you look at lines 30, 40, 90 and 100 you will see which number corre­
sponds with each joystick and its position.

82

Chapter 32 Using joysticks

Lines 50, 1 10 and 1 20 check to see if the joystick buttons are being
pressed. PEEK(65280) returns different numbers according to which but­
tons are being pressed - see program for numbers.

Here are some alterations to make to your Invader program to make it
work on joysticks:

90 IF JOYSTK(0)> 31 AND JOYSTK(l)< 31 THEN BASE =BASE+ I
100 IF JOYSTK(0)< 31 and JOYSTK(l)< 31 THEN BASE=BASE - 1
140 IF (PEEK(65280) = 126 OR PEEK(65280) = 254) AND MISSILE= 0
THEN MISSILE= 1:MM = BASE+ 1:SOUND 100,1 DELETE LINE 110

Your base is now moved using the right joystick. The base only moves if
the joystick is forward as well as left or right. To fire use the red firing
button.

Here is a conversion to use joysticks on your Breakout game:

280 IF PEEK(65280) = 255 OR PEEK(65280) = 127 THEN GOTO 280
470 IF JOYSTK(0)< 31 AND JOYSTK(l)< 31 THEN Z = - 2
480 IF JOYSTK(0)> 31 AND JOYSTK(l)< 31 THEN Z = 2
490 IF JOYSTK(l)>31 THEN Z = 0

DELETE LINES 500, 510, 520 AND 530

The bat is now moved in the same way as the base in the Invader pro­
gram. To serve a new ball you should press the red fire button.

Finally, here is a conversion to allow you to use joysticks on the drawing
program at the end of the last chapter:

90 IF JOYSTK(0) = 63 THEN D = I
100 IF JOYSTK(0) = 0 THEN D = -I
110 IF JOYSTK(l) = 63 THEN D = 32
120 IF JOYSTK(I) = 0 THEN D = -32
130 IF (PEEK(65280) = 126 OR PEEK(65280) = 254) AND C< > 128
THEN C = C + 16:IF C> 255 THEN C = 128:GOTO 220
140 IF (PEEK(65280) = 126 OR PEEK(65280) = 254) AND C = 128
THEN C= 143

DELETE LINES 150-210

You now control the cursor with the joystick and change the draw colour
by holding down the fire button until you get the right colour.

83

33

PLAY

So far the noises that we have been able to make on the Dragon have only
been bleeps of one kind of another. The Dragon is, however, capable of
playing very complex tunes in five octaves, complete with sharp and flat
notes.

Normal music can be directly converted using the PLAY command. All
you have to do is tell the computer what octave you are using, how long
each note should be, the volume and, of course, the notes that you want to
be played.

Type in the following example:

Star Wars

10 CLS
20 PRINP I WILL NOW PLAY THE THEME TUNE•
30 PRINPOF STAR WARS � "
40 FOR N=0 TO 1000 : tEXT
50 PLAY• T3DDDL2GO+DL5 CO-BAO+L2GDLS CO-BAO+L2GDLS CO­

B0+C0-L3A"
60 PRJNT•AREN' T I FANTAST I C? "

If we look a t line 50 we can break the tune down into commands and
notes. T3 means Tempo 3, tempo being the speed that the tune is played at.
The number 3 is the actual speed and can be replaced with any number
between 1 and 155 with 155 being the fastest (if you don't specify the tempo
the Dragon plays the tune at Tempo 2).

The three D's are the musical note D.
L2 is the length of the note, with L l the length of a normal note, L2 being

half a note, L4 a quarter note and so on. The note can be as short as L255
(one 255th of a note), but you will probably never need a note that short.

G is another musical note (all the letters from A to G are musical notes so
we will ignore them for now).

0 + means to play the next notes one octave higher.
0 - means to play the next notes one octave lower (there are five octaves

available on the Dragon).
All the other commands in this tune are the same as the ones explained

here but with different values after them.

84

Chapter 33 PLA Y

There are several other commands which can be included in the PLAY
command. One of these is Pause. Type this in:

PLAY" ABCDEFGPJGFEDCBA"

This line will play all the notes from A to G, pause for a short while and
then play the same notes Backwards.

The number after the P is the length of the pause and corresponds with
the note lengths.

Another useful command in the PLAY command is V for Volume. The
volume is also followed bya number, in this case from Oto 31. If you do not
state the volume the computer takes it as 15.

We said earlier that sharp and flat notes can be obtained using the PLAY
command. We obtain these notes by adding a symbol after the musical
note. For example the note C sharp is indicated by C ff in a play command.
The + sign can also indicate a sharp.

Flats are indicated by a - sign.
Here is a short program which plays every note that the Dragon can pro­

duce:

Notes

10 CLS
20 PLAv ·o1 •
30 FOR N=0 TO 4

40 PLAY• AP.CDEFGAIP.CID#EIF#GI•
50 PLAY• A-B-CD-E-F-G-•
b0 IF N<>4 THEN Pl.AV-O+•

70 NEXT N

Line 20 sets up the octave that the notes will start in and then lines 40 and
50 play the notes. Line 60 increases the octave (as long as the variable N
does not equal 4, if it does then we have already played five octaves and the
computer can't go any higher).

If you are familiar with music then you will know about dotted notes. It
is possible to obtain dotted notes simply by putting a full stop after the note
(a dot makes a note half as long again).

In the previous program we used the command O + , which increased the
octave by one. This plus sign can also be used with the V, L and T
commands. The plus sign could be replaced by:

substracts one from the value (eg O - decreases the octave by one)
> multiplies the value by two (eg V> doubles the current volume)
< divides the value by two (eg L< halves the note length)

As you can probably see from looking at the PLAY command the music
is enclosed in quotation marks. For this reason it is possible to store your

85

The Dragon Trainer

tune in a string variable and play it as often as you like without typing the
tune in again.

Try this example program:

Jingle Bells

10 Asa• 03L-4 CAGFL2CL6CCL-4CAGFL2DL-4B-AGL2EL-40+CCO-B-
GL2A•

20 FOR N•0 TO 2
30 PLAY AS: PLAY•T>•
40 NEXT N

When you RUN this program you will hear Jingle Bells being played
faster and faster.

The whole tune was stored in the variable A$ and then played by line 30.
Line 30 also increased the tempo.

Line 30 is made up of two PLAY commands which can be compressed
into one using the eXecute command. Change line 30 to:

30 PLAY "XA$;T> "

This single command tells the computer to eXecute (or play) the tune
stored in the variable A$ and then double the tempo.

As you can see the variable A$ is followed by a semi-colon and must
ALWAYS be followed by a semi-colon.

It is also possible to use numbers instead of letters to represent the
musical notes in the PLAY command.

Page 1 10 of the Dragon manual gives an illustration of a piano keyboard
and shows each note with its equivalent number. If you do use numbers
instead of letters you must put a semi-colon after each number.

86

34

CLEAR

Those of you who have been experimenting with string variables may have

encountered the OS (Out of String space) error and wondered what causes

this.

This short program may help to explain this:

10 AS - STRING$(201, 175)

20 PRINT AS

If you RUN this program you will get an OS error. However if you

change line 10 to:

10 AS- STRINGS(200,175)

and RUN the program then you will see the 200 blue squares PRINTed out

after being stored in the variable A$. From this we can work out that the

maximum number of characters that we can store in a string is 200.

So what do we do when we need to store more than 200 characters in a

string? The answer is fairly simple. We CLEAR some extra memory so that
we can store more characters in our variables.

To illustrate how the CLEAR command is used type in this short pro­

gram:

10 CLEAR 1000

20 AS= STRINGS(250,175)

30 BS= AS:C$= AS:O$ = AS

50 PRINT A$;BS;CS;DS

When you RUN this program each of the variables AS, BS, CS and DS

will have 250 blue squares stored in them. The contents of these variables

are then PRINTed by line 50.

However, if you add this line:

40 E$=AS

and then RUN the program you will receive an OS error because we are

trying to store more than 1000 characters in our variables (each of the

variables AS, BS, CS and D$ contains 250 characters, 4•250 = HX)() cha­

racters).

87

The Dragon Trainer

We can, however, still store the standard 200characters in E$ (and all the
other variables for that matter).

One thing to remember. We can still only store a maximum of 255 cha­
racters in one string variable, even using the CLEAR command, but these
extra characters still come in handy sometimes.

88

35
High resolution graphics

Low resolution graphics can produce quite good effects and can liven up
your programs quite a lot. These types of graphics, however, are chunky
and leave a lot to be desired. The Dragon can produce much better
graphics, but with the sacrifice of some colour. Low resolution graphics
use a screen size of 64 squares across by 32 squares down, but high
resolution graphics can go up to 256 squares across and 192 down.

This section covers all the high resolution graphics commands, some of
which will be quite similar to the low resolution graphics commands.

PCLEAR

Before we start drawing pictures in high resolution we need to tell the
computer how many different pictures we are going to draw. This is
because on the Dragon it is possible to draw pictures on different 'pages'
and then swap them about quickly (like a flick book).

If you don't need to swap the pictures about then you only need to res­
erve enough memory for one screenful of pages. To reserve memory for
these pages we use the PCLEAR command followed by the number of
pages that we want.

For example, to reserve memory for three pages we use the command:

10 PCLEAR J

If you do not specify how many pages you want to use the Dragon reser­
ves enough memory for four pages.

Reference chart
Listed below are the graphics modes available on the Dragon, the size of
the points in each mode, the number of pages needed and the colour sets
available with each mode. When writing your own graphics program you
can look back at this table to help you work out how many pages you need
to reserve for each mode, and which mode you want to use.

89

The Dragon Trainer

Graphics Modes

PMODE SIZE OF No. OF COLOURS AVAILABLE
POINT PAGES SCREEN 1,0 SCREEN 1 , 1

0 •• 1 0,1 0,5
••

1 •• 2 1,2,3,4 5,6,7,8 ••

2 •• 2 0,1 0,5

3 •• 4 1,2,3,4 5,6,7,8

4 • 4 0,1 0,5

PMODE

Now that we know how to reserve memory for our pictures we need to
know how to choose the graphics mode that we want to work in.

There are five different high resolution graphics modes available on the
Dragon, each one slightly different from the others. We choose the
graphics mode, and also which page we want to start drawing in with the
PMODE command.

For example, if you wanted to work in the highest graphics mode (which
only allows two colours but has a screen size of 255 by 192 squares) and we
wanted to start drawing in the first page we would use a line like this:
30 PMODE 4,I

SCREEN
When you use high resolution graphics you have a choice between two dif ­
ferent colour modes. In some modes you are allowed green and black or
buff and black, and in others you are allowed blue, red, green and yellow or
magenta, orange, buff or cyan.

To swap between these colour modes we use the SCREEN command.
When we use the screen command we have to state whether we are using
text or graphics and which colour set we want (yes you can swap the colour
set for text!).

An example of the SCREEN command is this line:
50 SCREEN 1,0

This example line tells the computer that we want to use graphics and
that we want the first colour set.

90

Chapter 35 High resolution graphics

PCLS, PSET, PRESET and PPOINT
PCLS, PSET, PRESET and PPOINT are the high resolution equivalents
to CLS, SET, RESET and POINT. As we already know how to use them
for low resolution graphics we won't go into their high resolution use in
great detail.

The PCLS command can be followed by a number which tells the
computer which colour you want the background to be.

The background colours which you are allowed vary with each graphic
mode, as you can see if you look in Appendix B.

PSET is used in exactly the same way as the SET command, that is, it is
followed by three numbers in brackets - the coordinates of the point to be
SET and the colour that you want it to be.

Although each graphics mode has 255 squares across and 192 squares
down the size of the point which is SET varies. To demonstrate this try the
following program:

10 MODE0,1
20 SCREEN 1,0
30 PCLS 3
40 PSET(128,96,2):GOTO 40

When you RUN this program you will see a black dot appear in the
middle of the screen.

If you change the O in line 10 the dot will vary in size and colour, but will
always stay in the same place.

If you look at the table on page 90 you will see a table of the different
features which go with each graphics mode.

The size of point column shows you the shape of the points that you
can SET in each mode.

If you look at the no. of pages column you will see that some modes
need more pages than others, so you must always remember to use the
PC LEAR command to reserve enough pages for the mode you want to use.

We haven't reserved any pages in the above program as the Dragon will
automatically reserve 4 pages which is enough for our purposes.

The PRESET command is used in exactly the same way as its low
resolution equivalent, as is the PPOINT command.

The following program fills the PMODE 1 screen with randomly
coloured dots and then deletes all the dots, colour by colour:

10 PHODE 1 , 1

20 SCREEN 1 , 121

J0 PCLS
40 FOR N•0 TO 255 STEP 2

�0 FOR N=-0 TO 1 9 1 STEP 2

60 C=-RND < 't >

91

The Dragon Trainer

70 PSET C N, M , C)
80 NEXT l'I
90 NEXT N

100 FOR C=2 TO 4
1 10 FOR N-=0 TO 255 STEP 2
120 FOR M=0 TO 1 9 1 STEP 2
130 IF PPO I NT C N , H > =C THEN PRESET < N , H)
140 NEXT H
150 NEXT N
160 NEXT C
170 GOTO 170

All of the commands in the program on the previous page will be fami­
liar to you so you should be able to see how the program works.

Lines 40, 50, 110 and 120 may puzzle you because of the STEP 2 at the
end of each line. These commands are added because of the shape of the
points that we are SETting (see page 90).

Try taking the STEP 2 off the end of these lines and see what happens.
The PCLS, PSET, PRESET and PPOINT are only a few of the high

resolution graphics commands available to you. There are many more
commands which are a lot more versatile and useful, but which are also
harder to use. For this reason it would be advisable if you spent some time
experimenting with these high resolution commands to get the hang of
them properly.

LINE
The LINE command, as you may expect, draws a line between any two
points on the screen. Try this short example program:

10 PMODE 3,1
20 SCREEN 1,0
30 PCLS
40 LINE (0,0) -(255,0),PSET
50 GOTO 50

When you RUN this program you will see a red line appear across the top
of the screen. Line 40 tells the computer to draw a line from the square 0
squares across and 0 squares down to the square 255 squares across and 0
down. The PSET command at the end means that we want the line to be
drawn. If we wanted to delete a line we would simply replace the PSET with
PRESET.

The LINE command can also be used to draw rectangles. Try changing
line 40 to:

40 LINE (0,0)-(255,191),PSET,B

92

Chapter 35 High resolution graphics

When you RUN the program this time you will see a line drawn around
the edge of the screen. What we have told the computer to do this time is to
draw a box with one comer in the square O squares across and O squares
down and the opposite comer 255 squares across and 191 squares down.

The LINE command can fill in boxes as well as draw them. Try changing
line 40 to:

40 LINE (0,0)-(255,191),PSET,BF

The program will now fill in a box which covers the whole screen.
To change the colour of the line that we are drawing in we use COLOR

command (yes CO LOR not COLOUR, for some reason the Dragon uses
the American spelling). The COLOR command is followed by the colour
that you want to draw in and the background colour that you want, eg if
you wanted to draw in red with a green background you would use the
command COLOR 3, I .

PAINT

The PAINT command does just what its name suggests - it PAINTs parts
(or all) of the screen in different colours. All we have to do is tell the
computer where we want it to start PAINTing, what colour we want it to
PAINT in and which colour we want it to stop at. This short program gives
an example:

10 PMODE 3,1
20 SCREEN I ,0
30 PCLS
40 COLOR 2
50 LINE(90,90) -(140,90),PSET
60 LINE-(115,60),PSET
70 LINE-(90,90),PSET
80 PAINT(96,86),3,2
90 GOTO 90

Lines 60-70 may confuse you slightly because we have left off the coor­
dinates of the starting square. The Dragon does allow this and if we do
leave off the first coordinates it automatically starts the line from the last
point drawn. We could replace these lines with:

60 LINE(l40,90)-(115,60),PSET
70 LINE(l 15,60)-(90,90),PSET

This version obviously takes up much more memory, so it is best to use
the first version above.

93

The Dragon Trainer

Line 80 contains the PAINT command which fills in the triangle. The
first two numbers in brackets tell the computer where we want to start
PAINTing from (number of squares across and number of squares down).
The third number tells the computer which colour you want to PAINT in.
The final number is the colour which the PAINTing must stop at, in other
words the colour that the shape was drawn in.

One thing that you must always remember is never to leave a gap in the
shape to be PAINTed because otherwise the colour leaks out and fills the
whole screen.

cmCLE
The CIRCLE command is probably the most complicated command that
we have met so far, but don't let that worry you. With a bit of practice you
should be able to draw circles, ellipses and arcs with no trouble at all.

The first thing to learn is how to draw a simple circle using the CIRCLE
command. Try typing in this program:

JO PMODE 3,l

20 SCREEN 1,0
30 PCLS
40 CIRCLE (128,96),20,2
50 GOTO50

If you look at line 40 you will see how the CIRCLE command is used in
its simplest form.

The two numbers in brackets are, as you may expect, the coordinates of
the centre of the circle. The third number (20) is the radius of the circle (the
distance from the centre of the circle to the edge) and is measured in
squares. The final number is the colour of the circle.

Now that we can draw a circle we can find out how to draw ellipses or
'stretched' circles. If you make this alteration to line 40 you will be able to
see what is done:

40 CIRCLE (128,96),20,2,2

This makes the ellipse twice as high as it is wide. Changing line 40 to:

40 CIRCLE (128,96),20,2,.5

makes the circle half as high as it is wide.
Now that we can draw circles and ellipses we can go on to draw arcs. All

we have to do is add the start and end points at the end of the CIRCLE
command. The start point is from O to I (with O being at 3 o'clock) and the
end point is also from O to I (with .5 being 9 o'clock). Try changing line 40
to:

94

Chap/er 35 High resolution graphics

40 CIRCLE (128,96),40,2,1,0,.5

Try varying the O and .5 at the end to see what effects they produce.
The following program illustrates the LINE, CIRCLE and PAINT

commands (with a bit of SOUND here and there as well):

Modern Art

10 PNODE 3, 1
20 SCREEN 1 , 0
30 PCLS
40 FOR N-=0 TO RND (20) +20
50 CsRND (4 >
60 COLOR C, 1
70 X=RND <255) :Y•RND< 1 9 1 >
80 A=X+RND(1 00) : P..,Y+RND < 100)
90 IF A>255 OR B> 191 THEN GOTO 70

100 LINE < X , Y) - (A , B > , PSET,P.F
1 1 0 SOUND RND< 255 > , 1
120 NEXT N
130 FOR N=0 TO RND (20) + 1 0
1 4 0 C .. R N D < 4 >
150 X=RND < 25 5) : Y=RND< 1 9 1) : R-=RNO C 40)
160 CI RCLE < X , Y > , R , C
170 PAINT < X , Y> , RND < 4 > , C
180 SOUND RND<255) , 1
190 NEXT N
200 FOR N= 1 TO 3000
210 NEXT
220 GOTO 1 0

PCOPY

Earlier on in this book we said that it was possible to flick through pages on
the screen to produce a flick.book effect. As you know, each different
graphics mode needs a different number of pages with PM ODE O needing
one page, PMODEs I and 2 needing two pages and PMODEs 3 and 4
needing four pages. It is possible to take any page and put it on top of any
other page, and as we have up to eight pages we can produce simple
animated pictures using this method. When a graphics mode needs more
than one page the screen is divided up in this way:

PMODEs I and 2:

PMODEs 3 and 4:

PAGE ONE
PAGE TWO

PAGE ONE
PAGE TWO
PAGE THREE
PAGE FOUR

95

The Dragon Trainer

If you look at these diagrams of how the pages are placed one above the
other you will be able to see that in PMODEs 1 and 2 page one occupies the
top half of the screen and page two occupies the bottom half of the screen.
PMODEs 3 and 4 are similar except each page occupies a quarter of the
screen.

Putting one page on top of another is very simple. All you have to do is
tell the computer which page you want to put on top of another. To do this
we use the PCOPY command. For example, if we wanted to put page four
on top of page one we would use a line like this:

50 PCOPY 4 TO 1

We can, of course, take a page off the screen or put a page which was off
the screen onto it using the same method (remember we do have eight pages
to work with).

The following program shows how to use the PCOPY command to copy
pages onto and off the screen:

Page Swap

10 PCLEAR 6
20 PHODE 3, 1
30 SCREEN 1 , 0
40 PCLS
50 L JNE (0, 0) - (255 , 47 > , PSET , BF
60 COL.OR 3
70 LJNE (0, 4 8) - (255 , 95 > , PSET, BF
80 COLOR 2
90 L INE (0, 96) - (255, 1 43 > , PSET, BF

100 COLOR 4
1 1 0 L JNE (0, 1 44) - (255, 191 > , PSET , B
120 FOR N:z::0 T O 2000 :NEXT
130 PCOPY 3 TO 5
140 PCOPY 4 TO 6
150 PCOPY 1 TO 4
160 FOR N=0 TO 500: NEXT
170 PCOPY 6 TO 1
180 FOR N=0 TO 500 : NEXT
190 PCOPY 2 TO 3
200 FOR N=0 TO 500:NEXT
210 PCOPY 5 TO 2
220 FOR N=0 TO 500 : NEXT
230 GOTO 1 30

When you R LJ N this program the screen will be filled with three different
coloured bands and a green band with a red line around it (one band to each
page). After a short pause the bands will begin to change their order and
then keep changing their order until you stop the program. The main part

96

Chapter 35 High resolution graphics of the program is lines 130-230 which transfer the pages on and off the screen. You may wonder why we have to copy pages 3 and 4 off the screen. This is because if we don't keep a copy of them off the screen we will eventually end up with only two colours.
DRAW The DRAW command is the most versatile of all the high resolution graphics commands. Like the PLAY command, the DRAW command can be followed either by a string variable containing a series of commands, or a series of commands enclosed in quotation marks. The commands within the quotation marks (or string variable) are very easy to use and remember. For example, if we wanted the computer to draw a line I 0 squares long going straight up we would use a line similar to this: 100 DRA W"UIO"

If you look at this line you will see that U means Up. In the same way R means Right, L means Left and D means Down. After each direction command we tell the computer how many squares we want it to draw in that direction. Try the following short program: 10 PMODE 3,1 20 SCREEN 1,1 30 PCLS 40 DRAW"BM20,180;R215;U100;L215;D100" 1000 GOTO 1000
When you RUN this program you will see a box drawn on the screen. The DRAW command in line 40 draws this box by drawing a line Right 215 squares, Up 100 squares, Left 215 squares and Down 100 squares. The BM20,180 command tells the computer to move to the position 20 squares across and 180 squares down without drawing a line. We can now add to the program to make the box look a bit like a house: 50 DRA W"U100;ES0;RU4;FS0"
This line incorporates two new commands which can be used with DRAW - E and F. E means 'draw a line at 45 degrees' and F means 'draw a line at 135 degrees'. As well as E and F, there are two other diagonal drawing commands -G and H. G means 'draw a line at 225 degrees' and H means 'draw a line at 315 degrees' .

97

The Dragon Trainer

Let's add some windows to our house:

60 DRA W"BM25,85;R40;D30;L40;U30"
70 DRAW"BM230,85;L40;D30;R40;U30"
80 DRA W"BM25,175;R40;U30;L40;D30"
90 DRA W"BM230,175;L40;U30;R40;D30"

The windows look a bit plain don't they? If we wanted to split each
window into four panes with the wood between each pane coloured cyan
we would have to change the draw colour. To do this we use the C for
Colour command:

100 DRAW"C3;BM45,86;D28;U14;L18;R36"
110 DRAW"BM210,86;D28;U14;L18;R36"
120 DRA W"BM45,146;D28;Ul4;L18;R36"
130 DRA W"BM210,146;D28;Ul4;Ll8;R36"

Now that we have windows in our house we need a door so that we can
get in:

140 DRA W"C4;BMII0,180;U40;R36;D40"

And a letter box:

150 DRA W"BMl22,165;R12;D4;Ll2;U4"

Finally we can add a bit of colour:

160 PAINT(150,60),2,4
170 PAINT(22,178),4,4
180 PAINT(ll2,178),3,4

Our house is now finished (unless you want to add a chimney that is) but
there are still a few commands which we haven't learnt yet. The first of
these is the Scale command.

Try typing in this short program:

10 PMODE4,I
20 SCREEN 1,1
30 PCLS
40 DRA W"BMl28,96;U5;DI0;U5;L5;;RI0"
50 GOTO 50

This program draws a small cross in the centre of the screen. If we
wanted to make the cross twice as big without re-drawing it we would add
this line:

35 DRAW "S8"

98

Chap1er 35 High resolu1ion graphics The Scale command enlarges drawings in quarters of their actual size. For example, Scale 8 is eight quarters (which is two) and makes the drawing twice as big. ln Jhe same way Scale 12 (which is twelve quarters or 3) makes a drawing three times as big, and Scale I (or one quarter) makes a drawing a quarter of its actual size. Try putting different numbers between 1 and 62 after the Scale command in line 35. Another thing which the ORA W command can do is rotate a picture. The A command is followed by a number between O and 3 which corre· sponds to the angle that you want the drawing rotated through, as below: 0 = 0 degrees 2 = 180 degrees I = 90 degrees 3 = 270 degrees
Try entering the following program:

Rotating Penant
10 PMODE 4
20 SCREEN 1 , 1
30 PCLS 1
40 COLOR Z
50 DRAW"sa·
60 AS= · BH 1 20, 1 04 ; L 1 2 i E 6 i F 6 1 R 1 2•
70 DRAW AS
80 FOR N=0 TO 500: NEXT
90 PCLS 1

100 ORAW• A t • : DRAW AS
1 1 0 FOR N=0 TO 500:NEXT
120 PCLS 1
130 DRAW•A2" : DRAW AS
140 FOR N=0 TO 500 : NEXT
150 PCLS 1
160 DRAW•AJ• : DRAW AS
1 70 FOR N=0 TO 500:NEXT
180 PCLS 1
190 DRAW.A0" : DRAW AS
200 GOTO 80 When you RUN this program you will see a little penant rotating about the point where the stick ends and the triangle starts. If you look through the program then you will see that we have stored the drawing commands in the string A$, in the same way as we did with the PLAY commands. This saves us having to retype these commands each time we draw the penant. Lines 100-190 rotate the penant and redraw it before pausing, clearing the screen and rotating the shape another 90 degrees.

99

The Dragon Trainer As with the PLAY command it is possible to eXecute a set of commands which are stored in a string variable using the X command. For example, in the last program we could change line 100 to:
100 DRAW"Al;S A$"

The M command which we used with the B command to determine the start point of our drawings can also be used to move to another point. For example, if we wanted to move left five squares and down 10 squares we could use a line like this:
100 DRAW"M-5,10"

To move left or up we put a - in front of the number of squares that we want to move. To move right or down we just specify how many squares we want to move, as in the above example. If you want to move without drawing then you simply add a B before the direction command, eg.
DRAW"BRIO" moves the drawing cursor 10 squares to the right, without drawing. One last thing about the ORA W command. Throughout this chapter we have been putting a semi-colon between each command, but this is not necessary. The only reason we have put these in is they make it easier to read the lines.
GET and PUT In most programs using graphics you need to be able to move something around the screen. You could, of course, move the object by PRESETting it and then draw it again somewhere else, but this takes time, especially with a la:rge drawing. A much faster (and easier) way is to GET the picture from somewhere on the screen and PUT it back where you want it. Try the following program: Bouncing Ball

10 PNOOE -4 , 1
20 SCREEN 1 , 1
30 PCLS
40 DIH SHAPE (1 9 , 19)
50 C IRCLE < 10, 1 0 > , B, 1
b0 GET < 0 , 0) - (20 , 20) , SHAPE, G
70 X=1 : Y= 1
8 0 A::::2 : B•2
90 PUT (X 1 Y) - (X +20, Y+20 > , SHAPE, PSET

100 X::::X+A: Y::::Y+B 100

1 1 0 IF Y)170 OR Y<2 THEN B=-B

120 IF X>234 OR X<2 THEN A=-A

130 GOTO 90

Chapter 35 High resolution graphics

This program makes a ball bounce about the screen.
Line 60 contains the GET command which takes the ball (which

occupies the space from two squares across and two squares down to 18
squares across and 18 squares down - the space around it stops the ball
from leaving a trail) and stores it in the array variable SHAPE. The G at
the end of the line makes sure that the picture is recorded in great detail.
If the G is left off the shape is sometimes not PUT back where you want
it.

Line 40 DIMensions the variable which we store the circle in. In this
case we have used an array variable with 20 rows and 20 columns
because the circle has a radius of eight squares, giving it a diameter of
16 squares. Using a 20 by 20 array allows us to GET two blank squares
all round the circle so that when the circle is moved the blank squares
rub out any trail left behind it.

However, unmentioned (or perhaps unknown) by other manuals is
the fact that it is possible to store your shape in a simple one - dimen­
sional array. This has the advantage that less memory is used in storing
shapes, so more and larger shapes can be stored. Take our circle for
example. All we have to do is to work out the area of screen which the
circle takes up (20 squares by 20 squares, multiply 21 by 21 which gives
441 squares) and divide this number by 8, which gives 55.125, which we
round up to 56. We then divide this number by 5, which gives 11.2,
which we round up to 12. So all we need is a one dimensional array to
contain 12 numbers. Try changing line 40 to:

40 DIM SHAPE(ll)

Here is a table showing what to divide the area of your shape by in
each graphics mode:

PMODE lst DIVISOR 2nd DIVISOR
4 8 5

8
16

1 16
0 32

As you can probably see, this method of using a one - dimensional
array saves a lot of memory (429 bytes of memory in this case), so it is
well worth remembering.

Line 90 PUTs the shape back on the screen. Notice that the PUT
command ends in a PSET command. This can be replaced with the

101

The Dragon Trainer

PRESET command which will delete a shape. AND, OR and NOT can also
take PSET's place.

AND compares each point of the shape with the part of the screen that it
will occupy. If both the point of the shape AND the point on the screen
which it will occupy are SET then that part of the shape will be SET. If
either or both of them are not SET that part of the shape will not be SET.

OR compares the points in the same way as AND but will SET the part if
either or both of the points are SET. This makes it look as if the shape is on
top of whatever is behind it.

NOT is much simpler than AND and OR. This command reverses the
colour of the background when a shape is PUT onto it.

Try replacing the PSET at the end of line 90 with AND, OR and NOT
and see what effects they produce.

We have now covered all the high resolution graphics commands. With
some practice you should be able to produce quite effective displays which
will liven up your programs no end. It would be a good idea if you did
practise with high resolution graphics before you go on to the next chapter
as these commands take a while to get used to.

102

36

PRINT USING

The PRINT USING command is used to neaten up your displays and is
very useful for displaying tables. There are several different ways of using
the PRINT USING command and each one is explained below.

The # symbol is used to round up numbers. For example, if you wanted
to round up the number 123.456 to two decimal places you would use:

PRINT USING" If If If. If lf";123.456

In this command we have enclosed three # symbols, a full stop and
another two # symbols in quotation marks after the PRINT USING
command. This tells the computer that we want the following number
(123.456) displayed with three numbers before the decimal point and two
numbers after.

If we wanted to display a number with a comma to the left of every third
number (eg 1,000,000) we would use this command:

PRINT USING " If If If If If If lf,";1000000

The comma at the end of the # symbols means that we want a comma
after every third number.

The** symbols tells the computer to fill up any spaces before a number
with asterisks. For example, the following command displays the number
235 with three asterisks before it:

PRINT USING"** If If If lf";235

The $ symbol is used to display a dollar sign before a number (to repre­
sent money). All you have to do is put the $ symbol at the start of the
PRINT USING command:

PRINT USING"$ If If If If If. If lf";123.45

If you want the $ symbol directly before the number with no spaces in
between you should use this kind of command:

PRINT USING"**$ If If If # If. If If ";123.45

103

The Dragon Trainer

The + sign tells the computer to display a number together with a plus or
minus sign, depending on whether the number is positive or negative. The
plus or minus sign can either be before or after the number, depending on
where you put the + symbol.

PRINT USING" + !HI lf";I23

(displays the + before the number)

PRINT USING" 1f 1f 1f + "; -123

(displays the - after the number)

If you want to display a number in exponential form (eg l.34E+ 06 is an
exponential number and means 1 .34 times 10 to the power of 6) you should
add four) symbols at the end of the PRINT USING command. To display
9876 in exponential form you would use:

PRINT USING" If If If lf1111";9876

The ! symbol is used to display only the first character of a string, eg to
display the first letter of the string TOT AL you would use:

PRINT USING"!";"TOTAL"

If you wanted to make sure that a string of letter didn't take up more
than a certain amount of space on a table you would use the 0/o symbol with
the PRINT USING command. So to make sure that the string 'TOTAL'
doesn't exceed three characters you would use:

PRINT USING"% %";"TOTAL"

This command will display TOT (first three characters of the string
''TOT AL'') as there is one space between the two 0/o symbols, and each 0/o
symbol counts as a space.

The PRINT USING command can, of course, be used with variables
instead of numbers at the end. The only reason we have used numbers in
our examples is to allow you to try each one and see what effect it has.

104

37
Storing information on tape

As well as recording programs on tape it is also possible to store numbers
and letters on the tape. To do this we PRINT the numbers and letters onto
the tape and then INPUT them back again.

Let's look at the program which we used to check the volume level on the
tape:

10 OPEN"O", jj,-1,"FILE"
20 FOR N = 0 TO 2000
30 PRINTjj,-1,65;
40 NEXT
50 CLOSEjj,-1

Line 1 0 of this program tells the computer to open an Output file (the 'O'
in quotation marks stands for Output) on the tape and give it the name
'FILE' (in the same way as you give a program a name).

Line 30 tells the Dragon to store a number 65 on the tape (the semi-colon
makes sure that the next number or letter is stored directly after the last one
without too much of a gap left in between, the same way as a semi-colon
does when you PRINT onto the screen).

Line 50 tells the computer that you have now finished with the tape and
to close the file.

Reading information back off the tape is just as easy as storing it. If you
look at the program on the next page which reads the numbers back off the
tape you will see how this is done:

10 OPEN"I", jj,-,"FILE"
20 FOR N = 0 TO 2000
30 INPUTjj,-1,A
40 PRINT CHR$(A);
50 NEXT
60 CLOSEjj,-1

Line 10 of the first program is similar to the start of the program
above, except in this case we are telling the computer to open a file
to Input (the 'I' in quotation marks stands for Input) information from

105

The Dragon Trainer

the tape. Line 30 actually INPUTs a number and stores it in the variable A,
before line 40 displays the character with the CHR$ code 'A'.

Line 60 tells the computer that we have now finished with the tape.
Storing and reading back letters is just as simple as storing and reading

back numbers. The letter which you wish to store must be enclosed in quo.
tation marks (in the same way as you do with a normal PRINT command)
and must be read back into a variable.

Variables can also be stored simply by using a command like this (after
opening a file for Output of course):

PRINT!f-1,A

Reading in variables is just the same as reading in a number, as it is only
the contents of the variable which are recorded, not the variable itself.

It is possible to check to see if you have reached the end of the infor·
mation stored on the tape by using the EOF(· l) command. For example, to
tell the computer that you have finished with the tape when it gets to the end
of the information you would use a line like this:

80 IF EOF(-1) THEN CLOSE If-I

It is possible to store a long list of numbers, characters or strings on tape
simply by placing a comma or semi.colon in between each one. A semi·CO·
Ion stores the information close together, therefore saving time and space
on the tape.

If you need to store graphics characters on tape then you need to store
their ASCII codes on tape. Try this program.

Graphics Recorder

10 CLEAR 256
20 FOR N=l28 TO 255 :AS==AS+CHRS <N > : NEXT N
30 PRINT AS
40 OPEN•o• , 1- 1 , •GRAPH I CS•
50 FOR N=l TO LEN < AS >
60 PRJNTl-1 , ASC< r1IDS (AS , N, 1 >) ;
70 NEXT N
80 CLOSEl-1

Put a blank tape in your tape recorder and set it on record. Then RUN the
program. You should see the set of graphics symbols appear on the screen
and then the tape will start.

When it has finished rewind the tape, set it on PLAY and RUN the pro·
gram on the following page:

106

Chapter 37 Storing information on tape

Graphic Loader

10 CLEAR 256
20 OPEN • J • , •-t , •GRAPHICS•
30 lNPUTl-1 , A
40 A••AS+CHR• (A)
5 0 PRINT CHR• <A > ,
60 l F EOF < - 1) Tt-EN CLOSEl-1 : GOTO 60
70 GOTO 20
80 PRJNTtPRINT AS

This program will load back the graphics symbols which were saved with
the first program, displaying them as they are loaded, and then all in one go
when they have all been loaded in.

You will see from these programs that data is recorded and loaded in
blocks. The reason for this is the Dragon pauses every now and then when
loading data to store it in the right memory location.

It is also possible to store music on the tape straight from the Dragon.
Try the following program:

Music Saver

10 CLS
20 MOTOR ON
30 PRINT· PLEASE SET TAPE ON record•
40 PLAY•03L4CAGFL2CL6CCL4CAGFL2Dl.4B-AGL2EL40+CC

O-B-GL2A•
50 PRJNT• PLEASE REWING TAPE ANO SET ON p la!:f•
60 AUD I O ON

As you will see from this program, if you use the PLAY command (or, to
some extent, the SOUND command) while the tape is running on record
the notes being PLAYed will be recorded.

107

38
Using a printer

The Dragon is capable of sending information to a printer as well as the
screen. Any printer should work as long as it works from a parallel Centro­
nics interface, but it is best to ask if a printer is compatible with the Dragon
before buying it.

The printer plugs into the PI/O socket on the left of the computer and
the plug should be connected as shown in the Additional Information lea­
flet included with your Dragon

A program can be output to the printer simply by typing LUST. Printing
text on the printer is just as easy. All you have to do is add #-2 to the
PRINT statement. So to print the word HELLO on the printer you would
use PRINT #-2, "HELLO". Remember that it is possible to print lower­
case letters by including inverse characters in your PRINT statement.

It is also possible to find the position of the print head. This is done with
the POS(-2) command.

The following example prints all the normal text characters on the prin­
ter in columns 32 characters wide:

10 FOR N -32 TO 127
20 PRINTjj,-2,CHRS(N);
30 IF POS(-2) -32THEN PRINT jj,-2)""
4-0 NEXT

All the PRINT USING functions work on the printer, as does the TAB
command (in this case you have many more columns so the number after
the TAB command can be much bigger). PRINT @ does not work on prin­
ters.

108

39

Trigonometric functions

Look at this triangle:

LJC

A B

As you can see it is a right-angled triangle because one of its sides (BC) is
at an angle of90degrees from one of the others (AB). Ifwe know the length
of the line AC, and also what the angle a is, then it is possible to work out
the lengths of the sides AB and BC. To do this we need to use the sines and
cosines.

The sine of an angle is the length of the opposite side divided by the
length of the longest side (hypotenuse). As we are using the angle a the
opposite side is BC. If we say that BC is 30 units long, and the hypotenuse is
50 units long then the sine of the angle a is 0.6.

The cosine of an angle is the length of the adjacent side (in this case AB)
divided by the length of the hypotenuse. In our example the adjacent side is
40 units long. 40 divided by 50 is 0.8.

Now that we know what sines and cosines are we can put them to use.
Look at this second triangle: �c

R B

Again it is a right-angled triangle. but this time one of the angles is
labelled and we are told the length of the hypctenuse. We can use these two
pieces of information, together with your Dragon, to work out the lengths
of the other two sides. Let's take side BC first.

BC is the side which is OPPOSITE to the angle which we know, so we
need to use sine to work out its length. Your Dragon knows the sine of
every angle, so all we have to do is ask for it. Unfortunately the Dragon

109

The Dragon Trainer

asks for angles to be given in RADIANS which are measurements of angles
in circular units. To convert angles to radians we need to divide the number
of degrees by 57 .2957805. Using this information we can find the length of
the opposite side in this way:

PRINT SIN(37/57.2957805)*50

This produces the answer 30.0907507 which is the length of the opposite
side. We multiply the sine of 37 degrees by 50 (the length of the hypotenuse)
to find the length of the opposite side.

Finding the length of the adjacent side is very similar. In this case we use
cosine instead of sine and use the same routine:

PRINT COS(37/57.2957805)*50

This produces the answer 39.9317759 which is the length of the adjacent
side.

The tangent of an angle is the ratio between the length of the opposite
side and the adjacent side. For example, the tangent in our example is
0.753554031 which is 30.0907507 divided by 39.9317759. On the Dragon
we find tangents with the TAN command, so in this case we use:

PRINT TAN(37 /57 .2957805)

remembering to convert from degrees into radians which gives the answer
0. 753554031.

If you already know the ratio between the opposite and adjacent sides of
a triangle you can work out the angle by using ATN, which is the inverse of
TAN. If you type:

PRINT ATN(. 753554031)*57 .2957805

you get the answer 36.9999999, which is as near to 37 as you could possibly
get.

I IO

40

Numeric functions

We have already met some of the Dragon's numeric functions - RND,
POINT, PPOINT, TAN, SIN, COS, PEEK and JOYSTK. There are,
however, some others which we haven't met, and these are explained in
alphabetical order over the next few pages.

ABS
ABS is used to convert a negative number into an ABSolute, or positive
number:

PRINT ABS(-12)

Returns the answer 12. If a number is already positive then it remains the
same. ABS can also be used with variables:

PRINT ABS(A)

returns the positive value of the number stored in the variable A.

EXP

EXP is used to raise e (base of natural logarithms) to the power of any
number:

PRINT EXP(J)

will cube e, giving the answer 20.0855369

FIX
FIX is a little-used function which truncates, or cuts off all of a number
after the decimal point:

PRINT FIX(12.362S;INT(-12.362S)

returns the answers 12 and -12.

I l l

The Dragon Trainer

INT INT is similar to FIX with the difference being that it rounds a number down, rather than just truncating it:
PRINT INT(l2.3625);1NT(12.3625) will return the answers 12 and -13.
LOG LOG is the inverse of EXP and is used to find natural logari.thms:
PRINT LOG (15.5) returns the answer 2. 74084003
MEM Have you ever wondered just how much memory you have left for your programs? Well, the MEM command is for just that purpose. Try typing in: PRINT MEM If you do not have a program in memory then you will receive the answer 24871 , which is just over 24K of memory (divide by 1024 to find total memory in kilobytes). While we are on the subject of memory we might just as well mention why we can only use 24K of the 32K we are supposed to have on the Dragon. 1024 bytes (or lK) of memory are used by the Dragon for remem­bering such things as which line is currently being carried out. Another 512 bytes are used by the screen (that's how you can POKE onto the screen), and another 6K are used for the high resolution graphics pages (up to 12K can be set apart for this use). The other 5 12 bytes are used for various con­trol lines, and also for variable storage. Although it is not possible to use any of the text screen memory, or any of the other memory essential to the Dragon when it is working, we can use the high resolution graphics pages. To do this we type PCLEAR I, which gives us another 4.5K. We can access the other 1 .5K by typing in:
POKE 25,6:POKE27,6:POKE29,6:POKE31,6 We now have 31015 bytes (or just over 30K) left for programs, although we can not now use high resolution graphics.
1 12

Chapter 40 Numeric functions

POS
The POS command can be used to tell the POSition of the printer head. If
you type:

PRINT POS(-2)

You will be told how far across the printer head is (if, of course, you have
a printer connected).

SGN
SON is used to find out if a number is positive or negative. If the number is
positive then you will receive the answer 1. If it is negative you will receive
the answer -1. If the number is O you will receive the answer 0:

PRINT SGN(l0);SGN(-l0);SGN(0)

SQR
SQR is used to find the square root of a number:

PRINT SQR(25)

will give you the answer 5.

1 13

Appendices

1 1 5

The Dragon Trainer

1 16

Appendix A

APPENDIX A

A list of commands

This chapter gives a brief run-down of every command which is available on the Dragon. Some of them, such as the mathematical functions, have not been covered in the rest of this book so it is worth reading through this section:
ABS(n) - this function converts the number n (n can be any number) to its positive value: eg PRINT ABS(-12) will display the number 12.
AND - this function has three uses: (i) In the IF . . . THEN . . . ELSE statement AND can be used in this way:
IF A= I AND B= I THEN C = I(If the value of the variable A is 1 AND the value of the variable B is I then store the number 1 in the variable C)
(ii) AND can be used with the PUT command to compare each point of a shape with the part of the screen that it will occupy. If both are SET before the shape is PUT onto the screen the shape will be visible, otherwise it will be invisible. (iii) AND is also a LOGICAL OPERA TOR. It can be used to compare two numbers in a way similar to the way AND is used with the PUT command. If both the numbers are TRUE (1) then the result will be true. If either of the numbers are false (0) the answer will be false. PRINT 1 and 1 returns the number 1 but PRINT 1 AND O returns the number 0.
ASC("c") - this function returns the ASCII (American Standard Code for Information Interchange) code of any character, eg PRINT ASC(' 'A'') returns 65. The character must be enclosed in quotation marks and brackets.
ATN(n) - returns the arctangent of the number n (n can be any number).
AUDIO ON - re-routes the sound from the cassette recorder through the television speaker.
AUDIO OFF - cancels AUDIO ON.

117

The Dragon Trainer

CHRS(n) - used with the PRINT command to display the character with
the code n (n is any number between 31 and 255).

CIRCLE (x,y),r ,c,hw ,s,e - this command is used to draw circles and ellip­
ses in high resolution graphics. Variable x is the number of squares across
that you want the centre of the circle to be and y is the number of squares
down that you want the centre of the circle to be. The variable r is the radius
of the circle and c is the colour; hw is the height-width ration of the circle, s
is the start point of the circle (or arc) and e is the end point (from O to 1).

CLEAR v ,s - reserves extra memory for string variables. Variable v is the
number of characters that you want and s (optional) sets a limit to the
amount of memory that your programs can take up.

CLOAD"program" - loads a program from the cassette tape into the
Dragon's memory. The 'program' is the name that the program was saved
under.

CLOADM"program" ,o - similar to CLOAD but loads machine code
programs. Typing o allows you to load the program into a specific part of
the RAM memory different to the one that it was originally saved from
(optional).

CLOSE#-1 - closes cassette file.

CLS n - clears the screen to the colour n (n is any number from Oto 8). If n
is left out the screen is cleared to green. Colour codes are:

0 - Black 1 -Green 2 - Yellow 3 -Blue
4 - Red 5 - Buff 6 -Cyan 7 - Magenta
8 - Orange

COLOR b,f - used in high resolution graphics to define the background
and foreground colours. See Appendix B for colours available in each
mode.

CONT - continues a program from where it was stopped. It only works
when the program has been stopped using the BREAK key or a STOP
command in the program. It does not work after more lines have been
entered or an error has occurred.

COS(n) - returns the cosine of n (n can be any number).

1 1 8

Appendix A CSAVE"program" - saves a copy of the program currently in memory onto cassette tape. The program is the name which the program is saved under and can be any string of up to eight characters starting with a letter. CSAVE"program" ,A - saves a program in ASCII format, allowing it to be read into a program like a normal data file. CSAVEM"program" ,start,end,entry - similar to CSA VE but saves machine code programs. The start is the starting point in memory that the program is stored in and end is the end point. The entry is the memory address that the program is carried out in. DATA a,b,c,d . . . - stores a list of numbers or characters. Each number or string of characters should be separated by a comma. Characters must be enclosed in quotation marks. DEF FNa(d) = formula - defines a function with the name FNa(d); a can be any variable, d is a dummy variable and formula is the calculation that you want carried out. DEF USRn = address - defines the starting address of a machine code routine which is called by the USR function. Variable n is any number bet­ween O and 9. The address is the memory address of the start of the routine and must be from O to 65535. DEL start-end - deletes several lines of a program: start is the line to be deleted and end is the last line. All lines between start and end are deleted. DIM variable(nl,n2) - reserves memory for an array with the name varia­ble with n I rows and n2 columns. The n2 may be left out to reserve memory for an array with the name variable to store nl numbers. ORA W "sub-commands" - used for drawing in high resolution graphics. The 'sub-commands' can either be a series of sub-commands enclosed in quotation marks or stored in a string variable. See pages 73-76 for an explanation of sub-commands. EDIT line number - enters EDITOR and allows alterations to be made to program lines. See page 37 for a list of ways to alter lines.
EOF(-1) -checks to see if there is any more information left in a tape file. EXEC address - executes machine code routine starting at memory loca­tion address.

119

The Dragon Trainer

EXP(x) - raises natural logarithms to the power of x.

FIX(x) - cuts all numbers after the decimal point off.

FOR v = nl to n2 - start repeating all commands between here and the
NEXT command n2 - nl times (eg if nl is 2 and n2 is 13 then the
commands are carried out 1 3-2 = 11 times). The variable v is used as a
counter.

GET (xl,yl)-(x2,y2),array name,G- high resolution graphics command.
Stores rectangles of screen from the point xl squares across and y l
squares down to the point x2 squares across and y2 squares down in the
two dimensional array name. The G makes sure that every detail of the
rectangle is recorded.

GOSUB line number- goes to the start of a subroutine and carries on with
the program from there.

GOTO line number- similar to GOSUB but goes to any line, not necessa­
rily the start of a subroutine.

HEXS(n) - converts n to its hexadecimal (or base 16) equivalent. The
anSY1er is returned in string form and can be stored in a string variable.

IF condition THEN action 1 ELSE action 2 - compares two or more
variables or numbers. If a certain condition concerning the numbers of
variables is fulfilled then action I carried out, otherwise action 2 is carried
out.

JNKEYS - scans the keyboard. It is possible to record which key is being
pressed in a string variable (eg A$= JNKEY$)

INPUT''message'';variable - displays the message enclosed in quotation
marks (optional) before waiting for a reply which is then stored in the
variable 'variable'.

JNSTR(n,s$,t$) - searches through the string variable s$ for the string of
characters t$, starting at the nth character of the string s$. This function
will return the position of the first character of the string t$ in the string s$.
If t$ is not in s$ the number O will be returned.

INT(n) - rounds the number n down to the nearest whole number.

120

Appendix A

JOYSTK(n) - returns the current position of the joysticks. Where n is a
number between O and 3:
0 - current left-right position of right joystick
I - current up-down position of right joystick
2 - current left-right position of left joystick
3 - current up-down position of left joystick

LEFT$(a$,n) - returns the first n characters of the string variable a$.

LEN(a$) - returns the length of the string variable a$.

LINE(xl,yl)-(x2,y2),command,BF - draws a line from the point x l
squares across and y l squares down t o the point x2 squares across and y2
squares down. The command may either be PSET (draws the line) or
PRESET (erases the line). Variables B and F are optional: B draws a rec­
tangle with the points (xl ,yl) to (x2,y2) as opposite corners, BF fills in the
rectangle.

LINE INPUT"message";variable - similar to INPUT but allows
commas and up to 255 characters to be entered.

LIST start-end - displays the program on the screen. The screen automa­
tically scrolls if the program does not all fit. The start and end may be any
line number, and either or both may be left out. See page 13.

LOG(n) - returns the natural logarithm n.

MEM - returns the amount of memory free for programs.

MID$(a$,n,c) - finds the first c characters.after the nth character of the
string a$.

MOTOR OFF - turns off the cassette motor.

MOTOR ON - turns on the cassette motor.

N EW - deletes the program currently in memory.

NEXT - marks the end of a FOR . . . NEXT loop.

NOT- used with the PUT function to PUT a shape onto the screen in its
negative colour.

121

The Dragon Trainer ON n GOSUB line numbers - goes to rhe line number which marks the start of the nth subroutine in the list line numbers. Each line number in the list should be separated by a comma. ON n GOTO line numbers - similar to ON GOSUB but goes to any line number, not to the start of a subroutine. OPEN "c", lf-1, "filename" - opens a file with the name 'filename' on the tape. The c can either be Oto output data to the tape or I to read data in. OR - can be used in three ways: (i) It can be used in the IF . . . THEN statement. If either or both of two conditions are fulfilled then the action is carried out. (ii) It can be used with PUT to give an impression of one object being on top of another. Compares each point of the shape with the part of the screen that it will occupy. If either or both are SET then that point of the shape will be SET. (iii) It can be used as a LOGICAL OPERATOR. Compares two numbers and if either or both are true (l) then the result will be true. If both are fals.e (0) then the result will be false. PAINT(x,y),c,b - fills in a shape starting at the point x squares across and y squares down. Variable c is the colour that the shape should be coloured and b is the border colour of the shape. PCLEAR n - reserves n pages for use in high resolution graphics. PCLS n - similar to CLS but is used in high resolution graphics. PCOPY pl TO p2 - copies the picture on page pl onto page p2 PEEK (address) - looks into a memory address and returns the number stored there. PLAY "music" - plays the contents of 'music', a list of notes and sub­commands which are either stored in a string variable or enclosed in quo­tation marks. PM ODE mode, page - defines the graphics mode that we want to work in. Where mode is the number of the graphics mode (see Appendix B) and page is the page which we wish to start drawing in. POINT(x,y) - tests the point at x squares across and y squares down to see whether it is SET or not. If the point is SET its colour will be returned.
122

Appendix A

POKE address,value - stores the number value in the memory address,
'address'. Only works in RAM.

POS(n) - returns the current print position. If n is O the current cursor
position is returned. If n is -2 the current position of the printer head is
returned.

PPOINT(x,y) - same as POINT but is used in high resolution graphics.

PRESET(x,y) - deletes point which is x squares across and y squares
down in high resolution graphics.

PRINT- used to display characters on the screen.

PRINT @position,characters - displays the characters stated at the posi­
tion stated.

PRINT ffadevice number ,characters - if device number is -1 then the
stated characters are stored on the tape. If device number is -2 then the
stated characters are printed on the printer.

PRINT USING"format symbols";number - displays the number or
variable number in the format stated by the format symbols. See pages
!03-104 for format symbols.

PSET(x,y,c) - high resolution graphics command. Lights up the point
which is x squares across and y squares down in the colour c. Colours
available vary from mode to mode (see Appendix B).

PUT(x1,y1(-(x2,y2),sbape,command - copies the shape stored in the
variable shape onto the area of screen from xl squares across and y l
squares down to x 2 squares across and y 2 squares down. The shape must
have previously been stored in the· variable shape by a GET command. The
command may either be PSET, PRESET, OR, NOT or AND.

READ variable - reads a number or string of letters from a DATA
statement. The number or string is stored in the variable 'variable'.

REM comments - allows you to add comments into your program (to
remind you what a section does, for example). REM statements are
ignored by the computer when the program is executed.

123

The Dragon Trainer

RENUM new ,old,increment- renumbers a program's line numbers start­
ing at line old replacing it with the line new and renumbering in steps of
increment.

RESET(x,y) - similar to PRESET but only works in low resolution
graphics.

RESTORE - sets the data pointer to the first piece of data in the first
DAT A statement.

RETURN - marks the end of a subroutine. Program goes back to the next
command after the GOSUB command which sent the computer to that
subroutine.

RIGHT$(v$,n) - returns the last n characters of the string variable v$.

RND(n) - returns a random number. If n is O then the random number is
between O and 1. If n is more than 1 then the random number is between I
and n.

RUN line number- starts executing a program starting at the line number
stated. If the number is left out the program is executed starting at the first
line of the program.

SCREEN screen type,colour set - used to define which colour set you
want. The screen type is either O or I, 0 for text and I for high resolution
graphics. See Appendix B for colour sets available with each graphics
mode.

SET(x,y ,c) - similar to PSET but only works in low resolution graphics.

SGN(n) - used to find whether a number is positive or negative. If number
n is negative -1 will be returned, if n is positive 1 will be returned and if n is 0
then O will be returned.

SIN(n) - returns the sine of the number n.

SKIPF"program name" - searches for the end of the program with the
name program name on the tape.

SOUND p,d - plays a note with pitch p for duration d. Variables p and d
can be any number betwen I and 255.

SQR(n) - returns the square root of the number n.

124

Appendix A STEP n - used in a FOR . . . NEXT loop to increment the counter in steps of n. STOP - stops execution of program. Allows program to be continued using the CONT command. STRS(n) - stores the number n in a string variable. (eg A$= STR$(12) stores the number 12 in the variable A$). STRINGS(n,c) - returns a string of n characters with the code c. TAB(n) - used with the PRINT command to specify the column which you want to start PRINTing in. TAN(n) - returns the tangent of the number n. TIMER - returns current value of built-in timer. Timer may be reset by the command TIMER= 0. TROFF - turns off trace. TRON - turns on trace. Constantly displays which program line is being carried out. USR(n) - carries out the machine code routine which has the number n (previously set by DEF USR). V AL(sS) -converts the first character of the string variables$ to a number as long as the first character is a number. (eg PRINT VAL('' 1 '') displays the number 1). V ARPTR(v) - returns the memory address which the variable v is stored in.

125

APPENDIX B

Graphics information

Listed below are the graphics modes available on the Dragon, the size of
the points in each mode, the number of pages needed and the colour sets
available with each mode. There is also a list of the colour codes.

PMODE

0

1

2

3

4

(0) BLACK
(4) RED
(8) ORANGE

Graphics Modes

SIZE OF No. OF COLOURS AVAILABLE
POINT PAGES SCREEN 1 ,0 SCREEN I, 1

•• 1 0,1 0,5
••

•• 2 1,2,3,4 5,6,7,8
••

•• 2 0,1 0,5

•• 4 1,2,3,4 5,6,7,8

• 4 0,1 0,5

Colour Codes
(1) GREEN
(5) BUFF

(2) YELLOW
(6) CYAN

(3) BLUE
(7) MAGENTA

127

APPENDIX C

This section contains several programs which put to use all of the
commands which you have learned throughout this book. The programs
are designed to show off all the best points of your Dragon - the graphics
and sound capabilities, as well as its powerful BASIC language.

The programs are a mixture of games, such as Hangman and Gallery,
and useful programs, such as Revision Aid and Clock. There is also a
selection of graphics programs such as Artist which allows you to draw pic­
tures in any of the graphics modes, and 3-D Plot which draws a three­
dimensional picture.

Each program comes with a description of what the program does and
how to use it, as well as an explanation of how it works.

The description of the program will tell you what happens in each stage
of the program and also tells you how to operate it. This section will also
help you to make adaptions (where possible) to the program.

Following each program is a full explanation of how the program works,
section by section. If you read this section thoroughly you should be able to
fully understand how the program works.

Each program is a direct listing of the running program and should be
typed in exactly as it is printed, no matter how strange it looks (especially
with the Clock program).

Hangman
This game is a version of the old favourite, Hangman. The idea of the game
is to work out what word the Dragon has picked. You do this by choosing a
letter which you think may be in the word and then typing it in. If the letter
which you choose is in the word then the computer will display that letter at
the bottom of the screen where·it should go. If the letter appears more than
once in the word then it will be displayed in every place that it occurs.

If you get a letter wrong then the computer starts to draw a gallows on
the screen. Each time you make a mistake another part of the gallows is
added, and eventually a man is drawn, piece by piece, waiting to be hung. If
you do not guess the word by the time the picture is complete the man is
hung and you lose the game.

If you think you know the word then you may type it in and see if it is
right. If you are correct then the screen clears and the man is displayed
(without the gallows). The tune Born Free is then played to finish off the
game.

129

The Dragon Trainer

To help you remember which letters you have tried, every time you enter
a letter it is displayed at the top of the screen. The word which you are
trying to guess is displayed at the bottom of the screen, with any letters
which you haven't yet guessed being replaced by dots.

This program makes use of the low resolution capabilities of the
Dragon, as well as the sound. You may extend the computer's vocabulary
of words by adding more between lines 650 and 1000 using the DATA
statement. Words should be entered in the same way as those in lines 590 to
650 and the number 27 in the RND statement in line 50 should be changed
to the number of words which you have in the list.

10 REM HANGMAN
15 GOT0 1 080
20 CLS0
25 RESTORE
26 CLEAR
30 PRINTci0, " LETTERS USED : • ;
40 P=l
50 FORN=0 TO RND (27)
60 READ AS
70 NEXT
80 PRINTQ4 1 6 , STRINGS <LEN CA$) 1 46) ;
90 Q=0: PRI NTQ448, • • : PRI NTci448, · wHAT IS YOUR GUEss· ;
100 INPUT GUESS$
1 1 0 IF GUESSS=AS THEN 1000
120 PRINTIHRIES+321 6UESSS;
130 P=I NSTR < P , AS , GUESS S)
1 4 0 IF G = 1 THEN 1 60
150 IF LEFTS (A$, 1) =GUESS$ THEN PRI NTci4 1 6 , GUESSS ; : Q= 1 :

P=2 : GOT0130
160 IF P>l THEN PRI NT@415+P1 GUESS$; : P=P+l :Q=l : GOT0130
170 IF G>0 THEN P= 1 : GOT090
180 TRI ES=TRIES+ 1
190 ON TRIES GOSUB 2 1 0 , 230, 250 1 2701 2901 3101 340, 360,

380 , 400, 420,460
200 P=t : GOT090
210 FORN=4 TO 26: SET < N , 20, 3 J :NEXT
220 RETURN
230 FORN=6 TO 20:SET (6 , N , 3) :NEXT
240 RETURN
250 M= t 2 :FOR N=6 TO 1 2 : SET (M , N, 3 } : M=M-1 : NEXT
260 RETURN
270 FORN=6 TO 20:SET < N , 6 , 3) :NEXT
280 RETURN
290 FORN=6 TO s : sET (20 , N , 3) :NEXT
300 RETURN
310 FORN= 1 9 TO 21 : SET (N , 8 , 5 } : SET<N, 1 0 , 5) :NEXT
320 FORN=B TO 1 0 : SET (1 9 , N , 5) : SET < 21 , N1 5) :NEXT
330 RETURN
340 SET (201 1 1 , 5)
350 RETURN

130

AppendixC

360 FORN=1 7T020 : SET (N1 1 2, 6) :NEXT
370 RETURN
380 FORN=20T023: SET < N , 1 21 6 > : NEXT
390 RETURN
400 FORN= 1 2T0 1 5 :SET (20 , N , 6) :NEXT
410 RETURN
420 M= 1 7 :FORN=19T01 6STEP-1 :SET (N, N, 4) : M=M+l :NEXT
430 RETURN
440 M=20 :FORN=1 6T019 :SET< M, N, 4) : M=M+l : NEXT
450 RETURN
460 FORN=16T026: RESET < N , 20) :NEXT
470 FORN=20T026: SET < 26, N , 3 > :NEXT
480 FORN= 1 7TOt 9 : RESET < N , 1 2) :NEXT
490 FORN=21 T023: RESET (N , 1 2) : NEXT
500 FORN= 1 31015 : SET C 18, N, 6 > : SET< 22, N , 6 J : NEXT
5 1 0 SET (1 9, 1 21 6 J :SET C 2 1 , 1 2 , 6)
520 M= 1 7 : FORN= 1 9T01 6STEP- 1 : RESET < M , N > : M=M+1 : NEXT
530 M=20 : FORN= 1 6T01 9 : RESl!T C N , N > ! N=N+l :NEXT
540 FORN=16T020: SET (19, N , 4 > : SET C 21 , N , 4 > :NEXT
550 PLAY · o 1 V31 T2L4GGL8GGL4B-AAGGF+G·
560 PR I NT94 1 61 A S ;
5 7 0 PRINTal64 , " ANOTHER G O C Y /N) " ; : INPUT ANSWERS
575 IF ANSWERS=" Y" THEN20
576 IF ANSWERS= "N" THEN END
577 GOT0570
580 GOT0580
590 DATA" OOCTOR" 1 • P,ALL • , • ATHLETE" , " HELi COPTER"
600 DATA" COMPUTER" , M PSYCH I c• , " ELEPHANT" , • PERSON"
6 1 0 DATA" GI RAFFE " , • AXE " , • COMPET I T I ON" , "LANGUAGE"
620 DATA"F IENO" , • P I ZZA• , • DRAGON" , • PREVI OUS•
630 DATA"SCREEN• , " GALLOWS" , "HANGMAN" 1 • PRACT I CE "
640 DATA"STAR" , " M I STAt<E " 1 " NUMBER" 1 " READING•
650 DATA" CHARACTEW , "SELECT" , " t<EYBOARD" , • P I ANO"
1000 CLS0
1 0 1 0 PRINT" YOU' RE F REE ! •
1020 FORZ=l TO 1 2
1030 O N Z GOSUP, 3 1 0 , 340, 360, 380, 4001 420 , 440
1040 NEXT
1050 Pl.AY"04V31 T2L2CO-GL4GAL6GFL2EC"
1060 PLAY"L4GAL6GFL2BL4GEFFL6FEL4DL2C"
l 070 GOT OS 70
1080 CLS
1090 PRINTal 1 2 , • t.angm�n•
1 1 00 PRINT"THE IDEA OF HANGMAN IS TO GUESS"
1 1 1 0 PRINT " A WORD WHICH THE COMPUTER HAS"
1 1 20 PRINT " CHOSEN. "
1 1 30 PRINT" AT THE BOTTOM OF THE SCREEN WILL " ;
1 1 40 PRINT " BE D I SPLAYED A NUMBER OF DOTS, "
1 1 50 PRINT. EACH ONE REPRESENTING A LETTER. •
1 1 60 PRINT" YOU MUST GUESS THE WORD BY"
1 1 70 PRINT"ENTE R I NG A LETTER WHICH YOU·
1 1 80 PRINT"THINK MAY BE IN THE WORD. IF THE • ;
1 1 90 PRINT"LETTER WHICH YOU P I CKED I S IN"
1200 PRJNT" THE WORD I T WILL Jl,E DISPLAYED IN" ;

131

The Dragon Trainer

1 2 1 0 PRINT " I T ' S CORRECT PLACE . •
1229 PRINT: PRINT" PRESS ANY KEY TO CONT I NUE • ;
1230 I F INKEY$= " " THEN 1230
1240 CLS
1250 PRINT" IF YOU THINH YOU KNOW THE WORD"
1260 PRINT " YOU MAY TYPE IT IN AND SEE IP
1270 PRINT " YCIU ARE RIGHT. "
1280 PRINT . AS AN I NCENTIVE FOR YOU TO GET"
1290 PRINT " THE WORD RIGHT, EVERY T I ME YOU"
1300 PR I NT " P I CK A WRONG LETTER ANOTHER PART " ;
1 3 1 0 PRINT " OF A GALLOWS AND A MAN WA I T I NG"
1320 PR INT" TO BE HUNG WILL BE DRAWN ON THE"
1330 PRINT" SCREEN. WHEN THE PI CTURE IS"
1340 PRINT" COMPLETED THE MAN WILL BE HUNG"
1350 PRINT " AND THE GAME ENDS. "
1360 PRINT" IF YOU GUESS THE WORD CORRECTLY"
1370 PRINT" THEN THE MAN GOES FREE . "
1380 PRINT ; PRINT" PRESS ANY KEY TO START"
1390 IF INKEY$=" " THEN 1 390
1400 GOT020

Commentary

Line 15 sends the program to line I 080 to display the instructions when the
program is first RUN. Line 20 clears the screen to a black background and
line 25 tells the computer to start READing in DATA from the first piece of
DATA in the program. Line 26 then resets all the variables.

Line 30 displays the message 'LETTERS USED:' in the top left-hand
corner of the screen. Line 40 sets the variable p to I and lines 50-70 READ
a random word from the DATA stored in lines 590-650. This is done by
choosing a random number between I and 27 and READing in each word
in the list up to and including the one which has been chosen by the random
number. As each word is stored in the same variable only the last one is
remembered.

Line 80 PRINTs as many dots as there are letters in the word which has
been chosen (and is now stored in the variable A$). The LEN(A$) section
of this line works out how many characters are in the word and then the
STRING$ command PRINTs that many full stops (the full stop has the
code 46).

Line 90 resets the variable Q and then erases all the characters on the 14th
line before displaying the message 'WHAT IS YOUR GUESS' on the 14th
line. Line 100 then waits for your guess and stores it in the variable
GUESS$ (to make it easy to remember).

132

Appendix C

Line 1 1 0 checks to see if you have entered the word correctly, jumping to
line 1000 if you have (notice that the GOTO command has been left off. It
is possible to leave out GOTO commands in an IF statement after the
THEN or ELSE commands). Line 120 displays the letter which you have
tried on the second line, using the variable 'TRIES' to work out where it
should go.

Line 130 uses the INSTR function to work out the position of the letter
which you have chosen in the word which you are trying to guess. The
letter's position is stored in the variable P if it is in the word. If your letter is
not in the word then the number O is stored in the variable P.

Line 140jumps to line 160 if the variableQ has the value l. Line 150 checks
to see if your guess is the first letter in the word, displaying it in its right
place if it is and setting the variable Q to I and the variable P to 2 before
going back to line 130.

Line 160 checks to see if the variable P contains a number greater than one,
increasing the value of the variable P and setting the variable Q to l before
jumping to line 130 if it does.

The reason why lines 150 and 160 send the program back to line 130 is to
make sure that your letter does not occur more than once in the word. The
variable P keeps a record of the letter's last position in the word and so the
search for the letter is continued from that point when line 130 is carried
out again. For example, if the word that you were trying to guess was
DOCTOR and you typed in the letter O then the variable P would first of
all contain the number 2, as the first O in the word DOCTOR is the second
letter in the word. When line 130 was carried out again the computer would
start searching for another O after the second letter, finding that the fifth
character in the word was an 0. This process is repeated until the computer
has checked the whole word.

Line I SO increases the value of the variable TRIES by one, and tb,en line 190
works out what the TRIESth line number in the list is and then jumps to
that subroutine. Line 200 then sets the variable P back to 1 and goes to line
90.

Lines 210-300 draw the different parts of the gallows and lines 310-450
draw the man. Lines 460-540 RESET the part of the gallows underneath
the man and replace it with an open trap door. The man's arms and legs are
then RESET and re-drawn in different positions. Line 550 then plays the
Death March to finish off the game.

133

The Dragon Trainer

Line 560 displays the word that you have been trying to guess on the 14th
line before line 570 asks you if you want another game. If you do then line
575 sends the program back to line 20 to re-start the game (without the
instructions this time). If not line 576 ENOs the program. Line 577 sends
the program back to line 570 if you did not reply either Y or N.

Lines 590-650 contain the list of words which the computer can choose
from, all stored in DATA statements.

Lines I000-1070 are the routine which is carried out if you guess the word
correctly. Line 1000 clears the screen to a black background before line
1010 displays the message "YOU'RE FREE!". Lines 1020-1040 draw the
man (without the gallows) and lines 1050-1060 play the tune Born Free.
Line I 070 then sends the program to line 570 to see if you want another go.

Lines 1090-1400 are the instructions.

3-D Plot

This program makes use of the Dragon's highest resolution mode to draw a
three-dimensional picture of a jelly-like object. The program uses the
mathematical functions such as SIN and SQR to work out where each
point should be.

The computer takes a long time to draw the picture (about 10 minutes) as
it has to work out the position of each individual point, even though the
computer does work at twice its normal speed.

Normally the CPU (Central Processing Unit) in your Dragon works at a
speed of 0.9MHz (you don't need to know what this means), but some Dra­
gons are capable of working at a speed of l .8Mhz, twice as fast as normal.
Not all Dragons can work at this speed, however, so to see if yours does or
not type in:

POKE &HFFD7 ,0

If you can see no noticeable difference except that the cursor is blinking
faster than usual then your Dragon is capable of (and is) working at
l .8Mhz. If you find that the computer has crashed (in other words it stops
working) then its maximum speed is 0.9Mhz, arid you will have to turn
your computer off and then on again. Don't do this too quickly - turning
any computer on and off quickly can seriously damage it. If your Dragon
can't work at 1.8MHz then you must take out any POKE &HFFD7,0and
POKE &HFFD6,0 commands in programs.

134

Appendix C

Although the program is called 3-D PLOT it does not actually draw a
true 3-D picture, just one that looks three-dimensional.

10 POKE &HFFD7, 0
2 0 PMODE4
30 SCREEN 1 , 1
40 PCLS
50 A=128: B=A*A: C=96 : D=96
60 FOR X-=0 TO A
70 S•X•X
80 P-=SQR < B-S)
90 I=-P

100 ff::::SQR<S+l * l) /A
1 10 Q= (R-1 >•SI N (24*R>
120 Y=l /3+G*D
130 IF I=-P THEN M=Y :GOT0160
140 IF Y>M THEN McY:GOT0170
150 IF Y>=N THEN GOTO 200
160 N=Y
170 Y=C+Y
180 PSE T < A+X , Y , 1 >
190 PSET <A-X, Y , 1)
200 J:c::1+4
210 IF I <P THEN 100
220 NEXT X
230 POKE &HFFD6, 0
240 GOTO240

Commentary

Line 10 tells the Dragon to start working at twice its normal speed. Lines
20-40 sets up the mode 4 screen in inverse mode.

Lines 70-170 works out the position of each dot before lines 180 and 190
draws it up on the screen, one each side of the centre line.

Line 230 sets the working speed back to normal. This is important as you
cannot save or load programs while the computer is working at 1.8MHz.

Meteors

This program requires a lot of skill (and luck) if you are to survive the
onslaught of meteors racing up the screen at you. The program uses normal
text mode (with a few graphics symbols thrown in here and there) and quite
a bit of sound.

The idea of Meteors is to dodge the two types of meteors which come
racing up the screen towards you, and also to destroy as many of them as
possible with your missiles. You move left and right by using the left and
right arrow keys. Firing is by the space bar. You may only have one missile

135

The Dragon Trainer

on the screen at one time, so make sure that you aren't going to run into
another meteor when you've fired.

Your ship is represented by an inverse V and is positioned on the second
line down. Your missiles are represented by 'symbols'.

There are two types of meteor. The first, an 0, is worth 10 points and the
second, a •, is worth 5. If either of the two types of meteor hits you, a life is
lost (you have 3 lives).

To make the game harder you move randomly from left to right, making
it hard to dodge the meteors. There are three skill levels, each one with the
meteors coming at different speeds and you drift more. often as they get
harder. The number of meteors also depends on the skill level.

Sometimes if two meteors come up the screen one below the other then
you can destroy both with one missile. However you only get the points for
the first meteor, not both.

10 REH METEORS
20 GOT0590
30 CLS
40 INPUPSKILL LEVEL (1 -3) M ;St\lLL
50 IF SKILL < l OR SKILL>3 THEN 40
60 CLS
70 SHIP= 1 1 04 : L I VES=3
80 MISSILE=0: SCORE=0
90 POKESH I P , 22
100 FOR N=0 TO RN0 (5-SKILL.l
1 1 0 PRI NTti480+RN0 (30) , • o • ;
120 PRI NTti480+RND C 30 > , • • • ;
130 NEXT
140 POKE SHIP, 1 4 3
1 5 0 FOR N:0 T O SK ILL• t 0 : NEXT N
160 IF MISSILE>0 THEN POKE MISSILE, 143
170 IF MISSILE>0 THEN MISS ILE=MISSILE+32
180 IF MISSILE > 1 505 THEN HISSILE=0
190 IF PEEK (MISSILE > = 106 THEN GOSUP, 430
200 IF PEEK CMISSILE)aa79 THEN GOSUB 430
210 IF PEEt< CMISSILE+32) = 1 06 THEN GOSUB 430
220 IF PEEK <MISSILE+32)=79 THEN GOSUB 430
230 PRINT
240 X=RND < SK I LL•3 > : IF X=2 THEN SHIP=SH I P+ l
250 IF X = 3 THEN SHI P=SH IP-1
260 IF PEEK (SH I P > = 1 06 OR PEEK (SH I P >=79 THEN GOSUB 370
270 AS= I Nt(EYS: IF AS=• • THEN 340
280 POKE SHIP, 1 43
290 IF AS=CHRS < 9 > THEN SHIP=SH I P + l
300 IF AS=CHRS (8) THEN SHI P=SH I P- 1
310 IF A t = • • AND MISSI LE=0 THENMISSI LE=SH I P
320 IF SHIP) 1 1 1 9 THEN SHIP= 1 1 1 9
330 I F SHI P < H IB8 THEN SHIP=1 088
340 IF MISSILE>0 THEN POKE MISSILE, 103
350 PRINTti0, · L I VES: • ; L I VES ; TAB (20) ; ·SCORE : • i SCORE

136

360 GOT090
370 POKESH I P , 1 9 1
380 SOUND 1 0 0 , 2
390 FOR N=0 TO 1000:NEXT
400 L I VES=LIVES-1
410 IF L J VES=0 THEN 5 1 0
420 RETURN

Appendix C

430 IF PEEK (M I SSILE > = 1 06 THEN SCORE=SCORE+5 : SOUND250, 1
440 IF PEEK C M I SSJLE+32) = 106 THEN SCORE=SCORE+S : SOUND

250, 1
450 IF PEEK C M I SSILE > =79 THEN SCORE:SCORE+10: SOUND250 , 2
460 IF PEE K C M I SSILE+32)=79 THEN SCORE:::SCORE+10: SOUND

250, 2
470 POKE M I SSILE, 1 75
480 POKE MISSILE, 1 43
490 POKE M I SSI LE+32, 143
500 MISSILE=0: RETURN
5 1 0 CLS: PLAY •o1 V31 T2L4GGL8GGL4B-AAGGF+G•
520 PRJ NTcH 92, · vou· RE DEAD � ·
530 PRINT . BUT YOU D I D SCORE" ; SCORE ; " POINTS � "
540 PRINT" ANOTHER GO C Y /N) ? •
550 A$= I NKEYS
560 IF AS=• y• THEN 30
570 IF A$= " N " THEN END
580 GOT() 550
590 CLS
600 PRJNT9 1 2 , •meteors•
610 PRINT" THE IDEA OF THIS GAME IS ro·
620 PRINT" DODGE THE METEORS WHICH ARE"
630 PRINT" COMING UP THE SCREEN TOWARDS YOU " ;
640 PRINT"AND TO DESTROY AS MANY OF THEM "
650 PRINT"AS POSSIBLE . "
660 PRINT" YOU HOVE USING THE LEFT AND"
670 PRINT-R IGHT ARROW KEYS AND F I RE USING"
680 PRI NT " THE SPACE P,AR. "
690 PR I NT• THE SYMBOLS USED ARE: "
700 PRJ NT " O - METEOR - 10 POINTS"
710 PRINT " * - METEOR - 5 POINTS"
720 PRINT"v - YOUR SH I P "
730 PRINT" ' - YOUR MISSILE "
740 PRINT" PRESS ANY t<EY TO START"
750 IF I Nl<EYS= • " THEN750
760 GOT030

Commentary

Line 20 sends the program to line 590 to display the instructions. Line 30
clears the screen and then line 40 asks you for the skill level that you want.
Line 50 makes sure that you have made a legal choice before line 60 clears
the screen again.

137

The Dragon Trainer

Lines 70 and 80 set up the variables that are going to be used, with SHIP
being the position of your spaceshift and LIVES being the number of lives
that you have left. MISSILE is the position of your missile on the screen.
As you haven't fired yet this is set to 0.

Line 90 POKEs your ship onto the screen and then lines 100-130 PRINT a
random number of O's and *'s on the bottom line of the screen. Line 140
then deletes your ship by POKEing a green square on top of it. Line 150
pauses for a short while {the amount of time depending on the skill level).

Line 160 checks to see if your missile is on the screen, deleting it ifit is. Line
170 moves your missile down the s'creen one line (if it is on the screen), and
line 180 makes sure that the missile doesn't go off the bottom of the screen.
Lines 190-220 checks to see if your missile has hit a meteor, jumping to
line 430 if it has.

Line 230 scrolls the screen by PRINTing nothing on the bottom line of the
screen. Lines 240-250 controls the random movement of your ship, and
line 260 checks to see if you have been hit by a meteor.

Line 270 scans the keyboard, jumping to line 340 if nothing is being
pressed. Line 280 deletes your ship before lines 290 and 300 checks to see if
you are pressing the arrow keys. Line 290 checks to see if you are pressing
the right arrow key, moving you right one space if you are. Line 300 checks
to see if you are pressing the left arrow key, moving you left one space if
you are. Line 310 checks to see if you are pressing the space bar and that
you haven't already got a missile on the screen, setting the variable missile
to your position if both conditions are fulfilled.

Lines 320-330 make sure that your ship doesn't go off the left or right of
the screen. Line 340 puts the missile on the screen {if it's supposed to be
there) and line 350 displays the number of lives you have left and your
score. Line 360 then sends the program back to line 90.

Line 370 POKEs a red square on top of your ship and line 380 makes a
bleep. Line 390 pauses before line 400 subtracts one from the variable
LIVES. Line 410 checks to see if you have run out of lives, jumping to line
5 10 if you have. Line 420 then RETURNs the program back to the
command immediately after the GOSUB command which sent the pro·
gram to this routine.

138

Appendix C

Lines 430-460 work out which type of meteor you have hit and increase
the score accordingly. Line 470 POKEs your missile onto the screen and
then lines 480-490 delete the missile and the next square underneath.
Line 500 resets the variable MISSILE and then RETURNs to the main
program.

Line 510 clears the screen and plays the Death March. Lines 520-530
tell you that you are dead (as if you hadn't guessed that from the tune)
and then line 540 asks you if you want another go. Lines 550-580 then
check your reply and take the appropriate action.

Lines 590-760 are the instructions.

Artist
Artist allows you to draw in any of the graphics modes and in any
colour mode. As the program stands it is designed for use with the right
joystick, but it can easily be converted for use with the keyboard.

When you RUN the program you will be asked which graphics mode
you want to draw in and then the colour mode. The screen then clears to
the mode that you require. Drawing colours are selected from the key­
board using the keys from I to 4 with the key corresponding to the
colour's code. The colour which you are drawing in is constantly
displayed in a bo.x at the top of the screen.

You can change the screen colour simply by pressing one of the keys
from 5 to 8. The colours produced by these keys are:

5 - GREEN 6 - YELLOW 7 - BLUE 8 - RED

The screen clears immediately on pressing any of these keys and
anything on the screen is lost.

You may change the colour mode at any time simply by typing N.
This does not clear the screen and so your drawings remain on the screen.

The program normally draws slowly. Pressing the fire button on the
joystick, however, speeds up the drawing.

If you do not have a joystick on your Dragon then you can make these
alterations to the program:

110 GOTO 130
135 B$ - INKEY$
140 IF B$ - CHR$(9) THEN X - X + I
ISO IF B$- CHR$(8) THEN X - X - I
160 IF B$- CHR$(10) THEN Y - Y + I
170 IF B$- '"' THEN Y - Y - 1

139

The Dragon Trainer

These alterations allow you to draw using the arrow keys. The program
works at full speed when using the keys.

10 CLS
20 INPUT•WH I CH MODE (0-4) • ;MODE
30 IF MODE<0 OR MODE>4 THEN 20
40 INPUT .WH I CH COLOUR MODE (0/ t) • ; cM
50 IF CN<0 OR CM> 1 THEN 40
b0 PHODE MODE, 1
70 SCREEN 1 , CM
80 PCLS
90 X=1 : Y=6
100 COLOUR= 1 r COL OR COLOUR
1 10 IF PEE K (5280 >=254 OR PEEK (65280) = 126 THEN 1 30
120 FOR N=0 TO 500:NEXT
130 PSET < X , Y , COLOUR)
140 IF JOYSTK (0) }40 THEN X=X+ l
150 IF JOYSTK (0) <22 THEN X=X-1
160 IF JOYSTK< 1) >40 THEN Y=Y+1
170 IF JOYSTK< 1 > <22 THEN Y=Y-1
180 IF X>255 THEN X=255
190 IF X<0 THEN X=0
200 IF Y > 1 9 1 THEN Ya 1 9 1
210 IF Y < b THEN Y""-6
220 PSET (X, Y, COLOUR+ 1 >
230 AS= I NKEYS
240 IF At= • • THEN 370
250 IF At:::• 1 • THEN COLOUR= 1
260 IF At= • z • THEN COLOUR=2
270 IF At= • 3 • THEN COLOUR=3
280' IF At:• 4 • THEN COLOUR=4
290 IF AS= • s • THEN PCLS1
300 IF A$=• 6 • THEN PCLS2
310 IF At=• r THEN PCLS3
320 IF At=•e• THEN PCLS4
330 IF At= • N • AND CM=1 THEN CM=0 : SCREENt , 0 : GOT0350
340 IF AS= · N · THEN CM::=:- 1 : scREEN 1 , 1
350 COLOR COLOUR
360 L1NE < 0 , 0 > - < 254 , 4) , PSET , BF
370 GOTOl 1 0

Commentary

Line 10 clears the screen and line 20 asks you which graphic mode you
want, storing your answer in the variable MODE. Line 30 makes sure that
you have made a legal choice, jumping to line 20 if you haven't. Line 40
asks you which colour mode you require before line 50 ensures that you
have made a legal choice.

Lines 60-80set up the screen and the line 90sets up the variables which will
control the position of the cursor. Line 100 sets the variable COLOUR to I
(green) and then sets up the colour (the command COLOR COLOUR tells

140

Appendix C

the computer to set the colour to the one with the code number which is
stored in the variable COLOUR).

Line 110 tests to see if the right joystick button is being pressed, jumping to
line 130 if it is. Line 120 causes a short pause before line 130 plots the
cursor's trail.

Lines 140-170 test the position of the right joystick and alter the values of
the variables X and Y (X being the horizontal position and Y being the
vertical position). Lines 180-210 make sure that the cursor doesn't go off
the screen (or into the box showing the draw colour). Line 220 then plots
the cursor.

Line 230 scans the keyboard and stores which key is being pressed in the
variable A$. Line 240 jumps to line 370 if nothing is being pressed. Lines
250-280 control the colour changing, and lines 290-320 control the
changing of the screen colour. Lines 330-340 control the inverting of the
screen and line 350 changes the draw colour. Line 360 draws the box at the
top of the screen and line 370 sends the program back to line 1 l0to test the
joystick button again.

Alarm Clock
Alarm Clock is, as you may have guessed, a clock program with a built-in
alarm. The program also keeps a record of the data and whether it is am or
pm. The date is not updated, mainly because you are not likely to leave
your Dragon on overnight.

When the program is RUN you are first of all asked for the day (ie
Monday, Tuesday etc). You are then required to enter the date in this
format:

DAY eg 12 (12th day)
MONTH eg 03 (March)
YEAR eg 83 (1983)

The next piece of information to be entered is whether it is am or pm Gust
type in am or pm).

Once you have entered this information you are asked when you want
the alarm to go off. This information should be entered in this way:

HOURS eg 01 (1 o'clock)
MINUTES eg 10 (10 minutes past)
SECONDS eg 05 (5 seconds)

You are then asked whether you want the alarm to go off in the morning
or afternoon (am or pm).

141

The Dragon Trainer

As you may have noticed, each entry must be entered as a two-digit
number. This means that if, for instance, it is two minutes past the hour
you must enter the minutes as 02. The same applies to the date (eg 03 for
March).

The next information is the actual time. This should be entered in the
same way as the alarm time. When you come to enter the seconds you
should add a few seconds to the actual time. You should then press the
ENTER key at exactly the same time as your watch gets to the time which
you have entered. This ensures that the clock is exactly right (at least by
your watch!)

If you find that the clock does not stay accurate then you will have to

make some alterations to the program. These are:

(I) Add spaces anywhere between lines 230 and 390 (fine tuning).
(2) Add spaces in the FOR . . . NEXT loop on line 360 (coarse tuning).
(3) Increasethe683 in the FOR . . . NEXT loop on line 360(drastictuning).

Now that you have your clock running accurately you will want to know
what it can do. If you press the I key then the day will be displayed in the
space previously occupied by the am/pm. Pressing the 2 key will result in
the am/pm being displayed again.

If you now press the 3 key you will see the date displayed in place of the
time. When you want the time back again you should simply press the 4
key.

Pressing the 5 key results in the alarm time being displayed in place of the
time. To return to the normal display just press the 6 key.

If you do not like the tune which is played when the alarm goes off then
you should simply alter lines 530 and 540. If you like the tune already in the
program, but would prefer it at a different speed, then you should simply
alter the T3 at the start of the tune in line 520.

10 CLS
20 I NPUT .WH I CH DAY IS I T " i D$
30 DS=LEFTS < OS, 2)
40 DAYS=CHRS (ASC(LEFTS (DS, 1 J) +32)
50 DAYS=DAY$+CHR$ (AS C (R I GHTS < OS, 1 >) +32 >
60 PRINT· PLEASE ENTER DATE • : INPUT-DAY" ; 0$
70 INPUT• MONTH" ; MONTHS : I NPUT" YEAR• i YEAR$
80 INPUT"AM OR PW ; AP$: IF AP$="AM· THEN AM= 1 : ELSE PM=1
90 PRINT " PLEASE ENTER ALARM T I ME •
100 INPUT " HOURS• ;AHS : INPUT - M I NUTES" ; AM$
1 1 0 INPUT" SECONDS• ;ASS
120 INPUT-AM/PM" i ATS
130 PRINT- PLEASE ENTER T I ME " : INPUT" HOURS" ; HOURS$
140 INPUT " M I NUTES" ; MI NUTES$: INPUT- SECONDS" ; SECONDS$
150 CLS0
160 FORX=23T040 : SET < X , 1 3 , 7 J !NEXT

142

Appendix C

170 FORY= l 3TOt 6 : SET < 23, Y , 7) : SET (40, Y , 7 } :NEXT
180 FORX=23T029 : SET < X, 1 6 , 7 } : NEXT :FORX=34T040: SET < X 1 1 6 ,

7) : NEXT
190 FORY=16T01 8 : SET C 29, Y , 7) : SET C 34 , Y , 7) : NEXT
200 FORX=29T034 : SET < X , 1 8 , 7) : NEXT
210 IF AM=t THEN PRINT@27 1 , " am• ; :ELSE PRI NT827 1 , • pm" ;
220 IF AT=0 THEN PRI NT@236, HOURSS; • : • ; M I NUTES$; • : • ;

SECONDS$;
230 SECOND$=STRS < VAL (SECONDS$) + 1)
240 IF LENC SECONDS$)=2 THEN SECONDS$= " 0 " + R I GHT$(

SECONDS$, 1 >
250 IF LEN(SECONDS$) =3 THEN SECONDS$=RI GHT$ < SECOND$, 2 l
260 IF SECONDS$="60" THENSECONDS$="00" : M I NUTE$=STR$ (VAL

(M I NUTES$) + 1) :ELSE IF J=0 THEN 350
270 J=0
280 IF LEN (M I NUTES$ }=2 THEN H INUTESS= " 0 " + R I GHT$(

MI NUTES$, 1)
290 IF LEN C N INUTES$) =3 THEN MI NUTES$=RI GHT$ (N I NUTE$ 1 2)
300 I F M I NUTESt=•60• THEN M J NUTESt: •00" : HOURS$=STR S < VAL

<HOURS$ > + 1) : ELSE GOTO 350
310 IF L.EN< HOURS$)=2 THEN HOURS$== " 0 " + R I GHT$C HOURS$, 1 >
320 IF LENC HOURS$ }=3 THEN HOURS$= R I GHT$ (HOURS$, 2 >
330 I F HOURS$=" 1 2 " THEN HOURS$= " 00" : MINUTESS= " 00" :

SECONDS$= • 00" : IF AM==t THEN AM=0 : PM= l :ELSE PM=0 :AM=1
340 IF AM= t THEN PRI NT@271 , " am" ; : ELSE PRINTl:»27 1 , " pm " ;
350 FOR N==0 TO 683 : NEXT
360 IF HOURS$==AH$ AND MINUTES$=AM$ AND SECONOSS=ASS

AND ATS:::AP$ THEN 5 1 0
370 SOUND 25"5 , 1
380 A$= JNt\EYS
390 IF AS::: " 1 " THEN PRJNTa)27 1 , DAYS ;
400 IF AS= " 2 " AND AH=l THEN PR INTa)27 1 , • am" j
4 1 0 IF AS= " 2" AND PM= 1 THEN PR INTa)27 1 , " pm" ;
420 IF A$=" 3" THEN PRI NTa)236, Ds; • : • ; MONTHS ; " : " ; YEARS ; :

0:1
430 IF AS= " 4 " THEN D=0 : GOT0220
440 IF AS= " 5 " THEN PRI NTal236, AHS ; " : " ; AM$; " : " ; ASS ; : IF

INf\EYS < > " 6 " THEN AT=1
450 IF AT=t AND ATS=·AM" THEN PRI NTa27 1 , " am " ;
460 IF AT=l AND AT$="PM" THEN PRINTC:V27 l , • pm " ;
470 IF A$= " 6" THEN AT=0 : J F PN= l THEN PRINTa27 1 , " pm " ;
480 IF AS= " 6" AND AM=1 THEN P R I NTa27 1 , " am" ;
490 IF D=I THEN 230
500 GOTO 220
5 1 0 T I MER:::0
520 PLAY " T303L4GG ; L2GOL4B:P.; L2P.GL4GB; 04L2DDL3C03:P. i "
530 PLAY " L t AL4AB; 04L2CC03L4F,A ; L2BGL4GB; L.2ADL4FI A ; L 1

G ; "
540 SECONDSS=STR$ (VAL (SECONDS$) + J NT (T I MER/60 > + 4 >
550 IF VAL (SECONDS$) >60 THEN M INUTESS=STRS (VAL<

MI NUTESS) + 1) : J ::: 1
560 IF VAL (SECONDS$ »60 THEN SECONDSS=STRS(VAL (

SECONDSS) -60)
570 GOTO 240

143

The Dragon Trainer

Commentary

Line 10 clears the screen and line 20 asks you what the day is, storing the
answer in the variable D$. Line 30 then takes the first two letters of the
string D$ and then stores them in the variable D$ replacing its original
contents. Lines 40 and 50 then convert the contents of the variable D$ to
lower case before storing them in the variable DAY$.

Lines 60 and 70 then ask you for the date before line 80 asks you whether it
is morning or afternoon, setting either the variable am or pm to I accordin­
gly.

Lines 90-120 ask you for the time that you want the alarm to go off. You
are then asked for the actual time by lines 1 30-140.

Line 150 clears the screen to a black background. The border around the
clock is then drawn by lines 160-210. Line 220 then displays whether it is
am or pm at the bottom of the clock before line 230 displays the time.

Line 240 increases the time by one second and lines 250-260 get rid of the
space added to the start of the variable SECONDS$ by the STR$ function
in line 240.

Lines 270-300 are similar to lines 240-260 except that they update the
miqutes. Lines 310-340 update the hours, with line 340 also updating the
variables am and pm if it is afternoon or morning. Line 350 then displays
whether it is am or pm.

Line 360 causes a delay to keep the clock accurate. Line 370 checks to see if
it is time for the alarm to go off yet, jumping to line 520 if it is. Line 380
then makes the tick.

Line 390 scans the keyboard, storing the result in the variable A$. If you are
pressing the 1 key then line 400 displays the day in place of the am/pm. If
you are pressing the 2 key then lines 410-420 display whether it is am or
pm. Line 430 displays the month in place of the time if you are pressing the
3 key. If you press the 4 key then line 440 allows the time to be displayed.
Lines 450-470 display the alarm time if you press the 5 key, and lines
480-490 allow you to see the time/date again.

Lines 520-580 make up the alarm tune routine. Line 520 resets the built-in
timer so that a record can be kept of how long it takes to play the tune.
Lines 530-540actually PLAY the tune and then line 550 updates the time.
Lines 560 and 570 update the minutes and seconds before line 580 sends the
program back to line 250.

144

Appendix C

Valley of Death
Valley of Death is a program for the adventurous ones amongst you, in
more ways than one! The program takes up most of the Dragon's 32K of
memory and will-probably take you quite a long time to type in, as you will
see if you look at the program. However, the length of the program should
not put you off, you can easily enter the program bit by bit and record each
section as you go if you do not feel like entering it all in one go. In fact it is a
good idea to save your program every now and then as you enter it. This
will make sure that you don't lose several hours of work when someone
jolts the power-pack plug. When you have finally entered the program and
de-bugged the program your efforts will be rewarded with a very good
(even if I do say so myself) adventure program.

Before we get on to how to play this game, a word or two about entering
the program. If you look at lines 230-260 you will see a symbol which is
not on your keyboard, the\ symbol. To get this symbol we have to confuse
the computer into thinking that it has an extra key by pressing three keys at
once. Sounds complicated? Well not really, all you have to do is hold down
the SHIFT key, press the CLEAR key (while holding down the SHIFT key)
and then press the @ key (while still holding down the other two keys).
Then release the @ key before you let go of the others. You will then see the
\ symbol appear on the screen. At first you will probably find this compli­
cated, but with a bit of practice you will be able to do this quite quickly.

To help you to enter the program we have used the # symbol to represent
a space, if more than one is needed in any part of the program. This means
that you can count the number of spaces that you need more easily.

Now to the game. Playing V alley of Death is quite complex, but is also
very rewarding. You will be amazed at the pleasure you get from hitting a
dragon over the head with your sword, and realising that you have saved
the life of your King.

The idea of Valley of Death is to find a key which is laying around
somewhere in the Dark Dungeons of Darganyon and to take this back to
the Palace. This key will then enable you to open a magical chest which
contains a potion which will save the life of your dying King. However, to
find the key you must first find a magical wand which is in one of the many
caves scattered about the valley. This wand also allows you to cast spells.

Nothing to it, you think. However, there are some slight hazards. If you
stray off the safe path running through the valley you get attacked by
vicious monsters. When you first start off in the game you have only a
sword to defend yourself with, but once you find the Wand you may also
use spells (but only a few). There is also a magical sword in the Dark
Dungeons of Darganyon which does much more harm to the monsters.

Now that you know roughly what you have to do in the game we can go
through the whole thing step by step. The best place to start is probably at
the beginning of the game, so that's where we'll begin.

145

The Dragon Trainer

When you RUN Valley of Death you will be confronted with the ques­
tion 'LOAD CHARACTER OR RESTART?'. Al first you should reply R
and press ENTER. You will then be presented with a list of the characters
that you can be. These are:

WARRIOR
CLERIC
WIZARD
BARBARIAN

Each type of character has its good and bad points, but we'll leave you to
work these out for yourself (nasty aren't we?). You will be asked which
type you want to be and then for your name.

The screen will then clear and a map will be drawn on the screen. This
map will be composed of a zig-zagging line going across the screen with an
inverse P and K at either end. The zig-zagging line represents the safe path
which keeps you safe from the monsters, as do the Palace (the P) and the
Keep (the K). Scattered about the screen will be some Os which represent
the caves, and also an inverse minus sign (a swamp) and two up-arrows (a
forest).There is also an inverse D which represents the Dark Dungeon of
Darganyon. After a short pause an inverse dollar symbol will appear on the
Palace - this is you.

Below the map will be all the information that you need to know about
your character - his STrength, his IQ, his ENergy, his TReasure and his
EXperience (the letters in capitals are what appear on the screen). Your
strength, IQ and energy can go up to a maximum of 400 points, but your
treasure and experience can go as high as you like (or rather as high as you
can survive which is not necessarily the same). If your energy goes down to
0 you die, but none of the other scores are really a matter of life and death.

Once the inverse dollar symbol which represents you appears on the
Palace the message 'SAFE IN PALACE' will appear just under the map.
You may then proceed to move around in search of adventure. To move
you should use the keys:

R T Y
F G H
C V B

R moves you upwards and left, H moves you right, B moves you
downwards and right. G allows you to rest, which increases your energy to
a certain extent.

Now that you can move around you need to know how to fight the mon­
sters which you are sure to meet when you wander off the path. When you
meet a monster an ominous noise will come from your television's speaker
and the message YOU HA VE MET A followed by the type of monster you

146

Appendix C

have met will appear just below the map. You will then see the message
STRIKE NOW appear at the bottom appear at the bottom of the screen.
You should then press the H key as quickly as you can (H stands for Hit). If
you do not press the key in time then the message TOO SLOW will appear
in place of STRIKE NOW and the monster will hit you. You should
remember that you do not always hit the monster, and the monster also
misses you sometimes.

While all this fighting is going on the monster's energy is displayed on
the bottom line of the screen. If this goes down to O (the energy is knocked
off by you hitting the monster) then the monster dies. Your experience is
then increased according to how powerful the monster was.

You now know how to move, fight (and hopefully kill) the monsters, so
you are just about ready to start looking for The Key. Your first stop
should either be one of the caves, the swamp or the forest (entering the
Dark Dungeons of Darganyon before you have The Wand is committing
suicide). We'll take the caves first.

When you enter any of the caves the map will be replaced with a picture
of the cave, a pretty dark place with several objects scattered about the
floor (represented by coloured blocks). You may move freely around the
caves without being bothered by monsters. If you want to pick up one of
the objects all you have to do is move on top of one of them. You will then
be told what the object is. Each object may either be:

The Wand
The Medallion of Life
The Shield of Protection
A gem
A worthless object
A potion
A monster

We'll take each of these objects one by one and explain each one.
The Wand allows you to cast magical spells. At first you have three

spells, each of which may be used up to six times. The success of the spell
depends on your IQ, the higher your IQ is the more likely it is that your
spell will work. Once your experience reaches 2000 you are allowed to use
three more spells. The spells are:

(I) SLEEP
(2) BLINDING LIGHT
(3) MAGIC SHIELD
(4) WEB
(5) DARKNESS
(6) JELL YFIER

147

The Dragon Trainer

Each spell allows you to escape from a monster in one way or another.
The spells may only be used when fighting a monster and are used simply

by typing S in reply to the prompt 'STRIKE NOW'. You will then be asked
which spell you require (from 1-3 or 1-6 depending on your experience).
If at any time you want to know how many spells you have left you should
simply type S, but only when you are not fighting.

The Medallion of Life will probably save you in many sticky situations.
This object will keep you alive for 16 moves if you are killed. If you manage
to reach either the Palace or the Keep before these 16 moves are up then you
are reincarnated, otherwise you die.

The Shield of Protection is another magical item and cuts down the
damage which the monsters can do to you. The Shield comes into use when
you are attacked by monsters.

The gems are, as you may have guessed, precious jewels. These increase
your treasure, but not a lot else.

The worthless object is, surprise surprise, an object which is totally
worthless.

If you find a potion it is automatically put in your backpack. You may
take a potion at any time (apart from when you are fighting) simply by
typing P and then the number of the potion which you want to take. The
effects of the potions are numerous and you don't know what a potion
might do until you try it.

You can guess what happens if the object is a monster!
Both the swamp and forest contains castles surrounded by red moats

which you must swim across to reach the castle. Once you enter the castle
you will see a map of it drawn on the screen with several stars scattered
about. These stars are objects, either worthless stones, gems or the Amulet
of the Gods (which is what you came in for). Monsters rove around in the
castle as they please, so you can run into one at any time.

The door to the castle closes for a set amount of time once you enter, so
you have to stay in for a short while at least. If you manage to find the
Amulet of the Gods your strength, IQ and energy will be increased and
you will be allowed to use each spell IOO times (if you have The Wand, that
is).

Once you have found all the various objects in the caves, forest and
swamp you can venture into the Dark Dungeons of Dargan yon. When you
enter the Dungeons the screen will clear and you will see a map similar to
that of the castle except that there are a set of stairs in the top right hand
corner (represented by a cyan block). Again there are stars scattered about
and again there are monsters all over the place (there are many more mon­
sters in the Dungeons). The stars in the Dungeon represent either gems,
worthless objects, The Key (the finding of which is what the whole game is
about) and a magic sword which does a lot more damage to the monsters
than your ordinary sword.

148

Appendix C

When (or, more likely, if) you reach the stairs you will be asked whether
you want to go up or down, to which you should reply U or D. Obviously if
you are at the top you can't go up, and you can't go down if you're at the
bottom.

Once you have the key you should try and get back to the Palace as
quickly as possible so that you can open the chest. You· will then be
rewarded with a very nice picture of the chest, and another of the chest
opened.

A few little extras to help you along are available by pressing these keys:
I - list of everything you have
E - your rating (this is based on your experience.

If your journey into the depths of a monster-infested swamp or your
battle with a ferocious Wight is rudely interrupted by someone telling you
that your dinner is ready then it is possible to record your character on tape.
This is done by pressing the @ key. You will then be asked whether the tape
is ready to which you should reply Y when it is. Your character will then be
recorded.

When you wish to continue your game you should first load and RUN
Valley of Death and reply L to the question 'LOAD CHARACTER OR
RESTART'. You will then be asked for the character's name and told to
press the PLAY button on your tape recorder. Your character will be
loaded and the game will continue.

You now know all the vital things about The V alley of Death, but there
are quite a few details which are left for you to find out (after all, what's the
point of an adventure when you know exactly what to do?). This program
should have you glued to your chair and you will probably find it hard to
pull yourself away from the game until your rating has progressed to at
least Apprentice Fool!

As the Valley of Death is such a long program there is no explanation
following it. An explanation for this program would probably take up a
whole book on its own and you will probably still not be any wiser.

Enough of these explanations. The program is sitting here waiting for
you to enter and play it, so good luck, and good adventuring!

10 D I MF (2m�n : fORN"" 1 T020l'J : E < N) ��N*500 :NEXT: G.:: 1 : Z= 1 6 : PL=1
20 DIMA$ (L1 > , POT JON(20) , SPELL(6) :FORN=l T06: SPELL < N > ""'·6
:m NEXT : CLS : MAN= 1 0'.)6 : I ::: 1
40 INPUT"LOAD CHARACTER OR RESTART" ;A$
50 IFA$c:< " L " THEN3690
60 IFA$<)· " R " THEN40
70 ST4{ND (9) +RND < 9) +RND (9) : J (J!,=RND (9) +RND (9) +RND < 9 >
80 EN=RND (9) +RND (9) +RND (9) : ST=ST*5: I Q= I C-!•5 : EN=EN*6
90 PRINP 1 > WARRIOR" : PRINP 2) CLER I C" : PRINT" 3)

P-ARP.AR JAN"
100 PR I NT" 4) Wl ZARD" : INPUT"WHICH ONE < 1 -4) . ; A

149

The Dragon Trainer

1 1 0 IFA<00RA)40RCL$=-. N • THENCL$=• FOOL • : IG!== IQ-RND< 1 0)
1 2 0 IFA= 1 THENCL$= "WARR IOR" : ST=ST+RND < ST > : JG!= IQ+RND< 10 >
130 IFA:=2THENCL$= • CLER I C " : JQ=IQ+RND< 1 0) *2
140 IFA=3THENCL$=" BARF.ARIAN" : IQ= I G!-RND (5) : ST=ST+RNO

<ST >
150 IF A=3THENEN=EN+RND (S T >
1 6 0 IFA=4THENCLS= " W I ZARD• : JQ=I Q+RND C 1 5 l *2 : EN=EN+RND (5)
170 INPUP NAME• ;NAMES
180 IFNAM£$::: • • THENNAME$=·MR. ' X ' •
190 CL.S
200 PRINTSTRJNG$ (32, 175) i : FORN=0T07 : PRINTCHRS (1 75) i
2 1 0 PRINTSTRJNGS C 30, 32) i CHR$ (1 75) ; : NEXT
220 PRI NTSTRINGS C 32 1 1 7 5)
230 AS < 1 > =CHR$ C 175) + • ########.Ut##tttt•Ut.tt###/\######11 • +

CHA$(1 7 5)
240 A$ < 2) =CHR$ (1 75) + " l / \ / \ltUUtllll/\/ \11/11\ /\#tl##I" +

CHR$(1 7 5)
250 A$ (3)=CHR$ C 175 > + • pl##l\#11#/\/####\ /1#####\/\/k • +

CHR$(1 7 5)
260 AS < 4 l = CHRS < 1 75) +• #####tl\ / \ / - +STRING$ C 20, 32) +CHRS

(1 7 5)
270 J=RNO(5) *32 : PRI NTcU , A$ < 1 J ; : PRINT A S C 2 > ; : PRINT A S (3) ;
280 PRI NTA$ (4) i
290 N=RNO< 288) + 1024 : IF PEEK (N > =96ANDPEEK CN+I > =96THEN

POI\EN, 91• : POKEN+ 1 1 94 : ELSEGOT0290
300 N=:RNDC 2BB) + 1 024 : IF PEEK (N) =96THENPOKEN, 4 : ELSE300
310 PRI NTa480, STRI NGS C 301 32 l ;
320 FORN=0TORND C 6 >
330 R=RNDC 288) + 1 024 : IF PEEK (R) =96THENPOKER, 7 9 : ELSE330
340 NEXT
350 N=RNDC 286 > + 1 024 : IF PEEK (NJ =96THENPOKEN, 45 : ELSE350
360 PRI NTa352 1 NAMES i " THE " ; CLASS$
:r70 PRJ NT9384, " ST : • ;ST; TAB(1 0) ; • JQ : " ; J C� ; TAI H 20) i ·EN: • ;
380 PRJ NTEN; : PRJ NTa41 6 , • TR : " i T R ; TAP. (20) ; ·Ex : • ; E X ;
390 IFO= 1 THENRETURN
400 U=t
4 1 0 MAN=MAN+J+33
420 GOSUP, 1 490
430 GOT(l720
440 POI\EHAN, 36
450 IFEX>E C 6 > THENG=6+1 : EN=EN+RNDC 5 > *5 : I(�.:J Q+RND (5) *5 :

ST=ST+RND < S)*5
460 I F I C�>400THENI Q=400
4 70 I FEN>400THENEN=400
480 I FST)400THENST=400
490 GOSUB360
500 IFRND C 4 > =2ANDDEAD:.=0ANDCASTL.E=0ANDPATH=0ANDPL=0THEN

G(ISUB2770
5 1 0 IFDEADC·0THENDEAD=DEAD+ l : JFDEAD=1 8ANDCASTLE< > 1 AND

PL < > 1 THEN3770
520 IFDEAD>0ANO (CASTLE=! ORPL= 1) THENPRINT&J20, • YOU' RE

ALI VE AGAIN � • ; : FORN=0T02000 : NEXT : PRINT9320, • #11##1#
#ltl#l#tl#tllttl• ; :EN= (RND C 50 >) *3 : DEAD=0: GOSUP,360

530 GOSUB2300

150

Appendix C

540 E=E+1 : I FE:c:: 10THENEN=EN-1 :E=0
550 IFPEEI\ (MAN+D >=4THENG=MAN : W= Z : GOT0 1 5 I 0
560 IFPEEt<< MAN+D)= 1 1 1 ORPEEt« MAN+O) =92THENMAN=MAN+D:

POKEMAN-D, Z : PATH= 1 : Z=PEEK (MAN) : GOT0660
570 IF PEEK C MAN+D > = 1 1 THENMAN=MAN+l): POKEMAN-0, Z : CASTLE=

I : Z=PEEt«MAN) : GOT0660
580 IF PEEi((MAN+D) = 16 THEN MAN=MAN+D : POKEMAN-D, Z : PL= 1 :

Z=PEEK (MAN) : GOT0660
590 If PEEi((MAN+D)=45THENMAN=MAN+D : POKEMAN-D, Z : Z=

PEEK (MAN) : G!=MAN : W= Z : Z= 1 4 3 : GOSUB800 : GOT0660
600 IFF=0AND PEEK< MAN+O) =94 THENMAN=MAN+D : POKEMAN-D, Z :

Z=PEEK(MAN) : G=MAN: W=Z : Z = 1 43 : GOSUB880 : GOT0660
610 IF PEEK (MAN+D)=79THENMAN=MAN+O: Q=MAN :W=79 : GOSUB2520
620 IF PEEi« MAN+D) = 1 75ANO < SWAMP= 1 OR F= 1 > THENGOSUP, 1 500:

MAN=Q: Z=W: SWAMPe::0 : F=0: GOT0660
630 IFPEEt< (MAN > = 175THENMAN=MAN+32
640 IFZ=175THENZ=96
650 JFPEEI((MAN+D> <> 1 75THENMAN=MAN+D : POKEMAN-D, Z : Z=PEEK

<MAN)
660 I F Z < > t 1 THENCASTLE=0
670 I F Z < > 1 6THENPL=0
680 JFZ 092ANDZ 0 1 1 1 THENPATH=0
690 IFZ=207THENQ=MAN : W= Z : GOT0970
700 PRI NT03201 • •
7 1 0 IFPATH=1 THENPR J NT83201 • sAFE ON PATH
720 J FCASTLE=l THENPRJNT0320, ·SAFE IN KEEP•
730 I FSWAMP=1 THENPRJNT03201 • IN THE SWAMP•
740 IFF=1 THENPRI NT83201 • JN THE FOREST•
750 IFPL=J THENPRJNT8320, •SAFE IN THE PALACE-
760 IFZ=159THEN970
770 0=0

780 IFPL=l ANDKEY=t THEN3370
790 GOT0440
800 FORN=32T0256STEP32 : PRI NTalN, CHRS < 1 75 l ;STRINGS

(30 , 32) ; CHRS C 1 75) ; : NEXT
810 FORN=0T070: X=RND (255) +1 056
820 IFPEEK (X >=96THENPOKEX , 109
830 NEXT
840 PRI NTal320, • IN THE SWAMP • ;
850 GOSUB1 470
860 PATH=0 : SWAHP=1 : MAN=1296
870 RETURN
880 FORN=32T0256STEP32: PRI NTalN, CHR$ < 1 75) ;STRING$

(30 , 32) ; CHRS< 1 75 > ; : NEXT
890 FORN=0T070: X=RND(255 > + 1 056
900 JFPEEl« X >=96THENPOKEX , 94
910 NEXT
920 F= l
930 PRINTal320, • JN THE FOREST•
940 GOSUf.1 470
950 PATH=0 : F= 1 : MAN=J 296
960 RETURN
970 FORN=0T02BBSTEP32: PRINT SN, STRINGS< 32, 32) ; :NEXT
980 PRJ NTal320, • IN THE CASTLE- ;

15 1

The Dragon Trainer

990 TI MER=0
1000 PRINT618, STRING$ < 1 6 , 1 9 1 > : PRINT6140, CHRS (1 9 1 > ;
101 0 PRINTSTRING$ (1 4 , 32) ; CHR$ (191) : PRINT 6172, CHR$ (191) ;
1020 PRINT " II" j : FORN=0T04 : PR I NTCHR$(191) ; : NE X T : PRINT

... .. ;
1030 PRINTCHR$(1 9 1) ; CHR$ (1 91) ; " • ; CHR$ (191) ; " " ; CHR$

(1 9 1 >
1040 PRINT0104, CHR$(191 > ; • • ; CHR$ (191) ; CHR$ (1 91) ; "
1050 PRINTCHR$(191) ; • " ; CHR$ (1 9 1) ; " " ; CHR$ (1 91) ;

"11+111" ; CHR$ (1 9 1)
1060 PRINT@136, CHR$ (1 9 1 > ; " ##" ; CHR$ (191) ; " ####11" ;

CHR$ (1 9 1) ;
1070 PRINT0136, CHR$ (1 9 1) ; " ##" ; CHRS (191) ; " 1111##" i

CHR S < 1 9 1 > ;
1080 PRINT" II##" j CHR$ (1 9 1) : PR INT6l168, CHR$ (191) ; " ##" ;

CHR$C 1 9 1) ;
1090 PRINTCHR$(191) ; • " ; CHR$ (191) ; CHR$ (191) ; CHR$ (1 9 1) ;
1 1 00 PRINT" " ; CHR$ (191) ; • " ; CHR$ (191) ; CHR$ (1 91) ;
1 1 1 0 PRINT CHR$ (191) : PRINT0200, CHR$ (191) ; " ######" ;

CHR$(1 9 1) ;
1 1 20 PRINTCHR$(1 9 1) ; " ######" ; CHR$(1 9 1)
1 1 30 PRINT61232, CHA$ (191) ; • " ; STRING$ (4 , 1 9 1) ;
1 1 40 PRINT" ll:IUt " i : FORN=0T05 : PR I NTCHR$(191) ; : NEXT
1 1 50 PRINT 61264 , CHR$(1 9 1 >; • " ; CHR$ (191 >; " ####" ; CHR$

(1 9 1) i
1 1 60 PRINT CHR$ (191 > ; " 1#:lut" ; CHR$(1 9 1 > ; CHRS (1 9 1) ;

CHR$ (1 9 1 >
1 1 70 PR INT61296, CHR$ (1 9 1 > i CHR$ (207) ; STR I NG$ C 14, 191)
1 1 80 FORN=0TORND (4) +2
1 1 90 X=RND (9) *32 : X=-= X+RND C 1 4) + 1 032
1200 I FPEEI\ (X) =96THENPOl'\E X , 106 : ELSEGOTO l 190
1210 NEXT
1220 MAN= 1 321 : Z=-=207
1230 POI\EMAN, 36
1240 I F IG!>400THENI G=400
1250 IFEN>400THENEN=-=400
1260 IFST)400THENST=400
1270 IFRND (4) =2ANDDEAD=0THENGOSUP.2770
1280 IFDEAD<.HHHENDEAD=DEAD+l : IFDEAD=1 8ANDCASTLE< > 1 AND

PL. < > 1 THEN3770
1290 GOSUP.360
1 300 GOSUP.2300
1 3 1 0 E=E+l : IFE=10THENEN=EN-·1 : E=0
1320 IF PEEi\ (MAN+D) :::96THENMAN=MAN+D: POl<EMAN-D, Z : Z=PEEK

<MAN> : GOT0 1 4 1 0
1330 I F PEEK (MAN+D >== 106THENMAN=MAN+D : POKEMAN-D 1 Z : 2=96:

EL.SE1 400
131f0 R=RNO (5)
1350 I FR=4ANDAMUL.ET=0THENPR INT@480, " YOU' VE FOUND THE

AMULET � " i
1360 I FR==4ANDAMULET=0THENFORN=0T02000 : NE X T : PRI NT61480,

STR ING$ (24 1 32> ; : EN=EN+RND (1 0) * 1 0

1370 IFR=4ANDAMULET=0THENl(-!=IQ+RND (1 0) * 1 0 : ST=ST+RND
< 1 0) * 1 0 :FORN=1 T06: SPELL (N) = 100 : NEXT : AMULET= !

152

Appendix C

1380 IFR=5THENPRI NT@480, " YOU' VE FOUND A PRECI OUS
STONE ! " ; : TR=TR+RND (5) * 100

1390 IFR=5THENFORN=0T02000 : NE X T : PR INT@480, STRI NG$
(3 1 , 32) ;

1400 I FR<4THENPR INT1il480, • voU'VE FOUND A WORTHLESS
STONE � " ; :FORN=0T02000 : NEX T : PRI NT@480, STRI NG$
(3 1 , 32) ;

1 4 1 0 D=0
1420 I FT IMER> 1000THENPOKE 1 321 , 96
1430 I FMAN= 1321 THENZ= 1 43 : FORN=32T0256STEP32 : PRI NT@N,

STR I NG$ (32, 32) i :NE X T : P R INT@0, STRING$(32, 1 7 5 }
1 4 4 0 IFMAN=l 3 2 1 THENPRI NT@2881 STRI NG$ < 321 175) : IFF=t THEN

GOSUP,880 : MAN=t 1 64 : GOT0430 : ELSEGOSUB800 : MAN= 1 1 64 :
6010430

1450 GOT01230
1460 END
1470 POl<E 1 097, 191 : POl'\E 1098, 191 : POKE1099, 191 : POKE

1 128, 1 9 1 : POl<El 1 3 1 1 191 : POKEt 1321 1 9 1 :FORN=1 160TO
1 1 63: POKEN1 191 : NEXT

1480 POKE 1 193, 191 : POKE 1 130, 1 59 : POKE 1 1291 96: RETURN
1490 D I MA(320 } : FORN=0T0320 : A (N) =PEEK (N+ 1 024) :NEXT:

RETURN
1500 FORN=0T0320 : POl<E 1024+N, A C N) : NEX T : RETURN
1 5 1 0 FORN=0T0288STEP32: PRINT@N, STR I NG$ < 32, 32) j :NEXT
1520 PRINTci8, STRING$ (1 6 , 191) : PR I NT@40, CHR$ (191) ;

•1111• ; CHR$ (191) ; " " i CHR$(191 } ; •tttt#I##" ; CHRf.(223) ;
CHR$ (1 9 1)

1530 PR INT@721 CHRf. (1 91) ; " • ; CHR$ (1 91) ; •ttll# " ; CHR$
(1 9 1) ; • • ; CHRS (191) i CHRS C 1 9 1) ; CHRS (191) ; •111• ; CHRS
(1 9 1)

1540 PRINT@104 , CHRS (1 9 1 } ; • • ; : FORN=0T03 : PRINTCHR$
(1 9 1) ; : NEXT: PRINT" • ; CHR$ C 191 > ; • 111• ; CHR$ (1 91) ;
• • ; CHR$(1 9 1) ;

1550 PRINTCHR$ (191) ; CHRS C 1 9 1)
1560 PRINT@1361 CHRS (1 9 1) ; " " ; CHR$(19 1 > ; " " ; CHR$

(1 9 1) ; " II " ; CHR$ (1 9 1) ; CHR$(1 91) ; "##" ; CHRS (191) ;
"1##" ; CHRS< 191 >

1570 P R I NT@168 1 CHR$ (1 9 1) ; " ##I" ; CHRS < 191) ; • ##1" ; CHR$
< 1 9 1 > ; • " ; CHRS (191) ; CHR$ (1 91) ; " • ; CHR$(1 91) ; • • ;
CHR$ (1 9 1 >

1580 PRI NTQ200, CHR$ (191 > ; • • ; CHR$(191 } ; • • ; CHRS
(19 1) f CHR$(191 > ; CHRS (1 91) ; • • ; CHR$(1 9 1) ; CHR$ (1 9 1) ;

1590 PRJNTCHR$ (191 > ; •tttt• ; CHA$(1 91) ; • " ; CHA$(1 9 1 >
1600 PRJNTQ232 , CHR$ (1 9 1) • • ; CHR$ (1 9 1 > ; • • ; CHR$(1 9 1 } ;

• • ; CHRt: (1 91) ; • • ; CHR$ (1 9 1) ; •#ttl• ; CHR$(1 9 1 > ; CHR$
(1 9 1 > ; • • ;

1 6 1 0 P R INTCHRS < 1 91) : PRI NTc'.�2641 CHRS (1 9 1) ; • • ; CHRS
(1 9 1 > ; • 1••• ; CHRS(1 91 } ; " #i#" ;STRIN6$ (3, 1 9 1 > ; " II" ;
CHR$ (1 9 1 l

1620 PRINTa296, CHA$ (1 9 1 } ; CHR$ (207) ; STRING$(1 41 1 9 1)
1630 MAN=l 321
1640 FORN=0TORND(4) +2
1650 I FO=l THENPOKEMAN, 36
1660 X=RNDC 9)*32+RND(14) + 1 032: I F PEEK < X) =96THENPOKEX 1

153

The Dragon Trainer

J0b : ELSEGOT01660
1670 NEX T : IF0=0THENMAN= 1321 : Z=207
1680 I FLEVEL=0THENT I ME R=0
1690 TW=l
1700 PRINT9320, • IN THE dungeonllll## ;
1 7 1 0 I FDEAD< >0THENOEAD=DEAD+ 1 : IFDEAD= 18ANDCASTLE < > 1 ANO

PL < > 1 THEN3770
1720 POKEMAN, 36
1730 I F I G>400THENI Gz::400
1740 IFEN>400THENEN•400
1750 JFST>400THENST=400
17 60 GOSUB2300
1770 GOSUB360
1780 E=E+l : IFE=1 0THENEN=EN- 1 :E=0
1790 I FRND (4)=2ANDDEAD=0THENGOSUB2770
1800 IFLEVEL=0ANDT I MER> 1 000THENPOt<E132 1 1 96
1 8 1 0 IF PEEK (MAN+D >=223THENMAN=MAN+D : 2=223 : GOSUB2460:

GOT01930
1820 IFPEEK < MAN+D > =96THENHAN=MAN+D: POKEHAN-D, Z : 2=96:

GOT01840
1B30 IFPEEK (MAN+0) = 106THENMAN=MAN+O: POKEMAN-D1 Z: Z=96:

GEM=J
1840 IFMAN= 1321 THENPRI NT9320, STRINGS(1 7 , 32 > ; : GOSUB

1500:MAN=G : Z=W : TW=0: GOT0440
1850 IFGEH= 1 THENR=RND (6)
1860 I FR=4ANDRND (5) =2ANDWAND= 1 ANDKEY=0THENPR I NT 9480 ,

•YOU ' VE FOUND the• ; CHRS (1 28) ; • ke!:::I � • ; : FORN=0T02000:
NEXT : PR INTli4801 STRI NG$ (30, 32 } ; : KEY=l : GEM=0

1870 I FGEM= 1ANDR=2ANDS0=0THENPRINTC.480, ·vou · vE FOUND
THE MAGI C SWORD ! • ; : FORN=0T02000 : NEXT : PR I NTal480,
STR I NG$ (3 1 , 32> ; :SD:::1 : GEM=0

1B80 IFGEM=1ANDR=2THENPRI NT9480, •vou· vE FOUND A
PRECIOUS STONE ! 11 ; : FORN=0T02000 : NEXT : PR I NTal480,
STR I NG$ (3 1 , 32> ; : TR=TR+RND (5 > * 1 00: GEM=0

1890 IFGEM=1 THENPRI NTQ480, · vou · vE FOUND A WORTHLESS
STONE ! • ; :FORN=0T02000: NEXT: PRI NTal480, STRI NG$
(3 1 , 32) ; : GEM=0

1900 0=0
1 9 1 0 GOT01720
1920 END
1930 I FLEVEL=0THENO= 1 : GOT0 1 5 1 0 : ELSEIFLEVEL>0ANDLEVEL<6

THENON LEVEL GOT019701 20501 2 1 20 1 2 1 801 2240
1940 I FLEVEL <0THENLEVEL=0 : GOTO 1 930
1950 I FLEVEL >STHENLEVEL=S : GOTO 1 930
1960 0=1 : GOT01640
1970 PRINTQ4 1 , • ; CHR$ (191) ; • ; CHR$

(223) ; CHR$ (191 > : PR I NTal73, 11 " ;STRING$ (8 , 1 91) ; •
CHR$(1 9 1 > i • • ; CHR$(191)

1980 PRINT61105 1 w • ; CHR$ (1 9 1 > ; 11 -t1 .. • ; CHR$(19 1) ; ;
CHRS(1 9 1) ; • • ; CHRS< 191) : PR I NTal137, • • i CHRS< 191) i
• • ; CHR$ < 1 9 1 > ; CHR$ < 1 9 1) ; • • ; CHR$ (191) ; • ... • ;

1990 PRINTCHR$(191) ; • • ; CHR$ (1 9 1) ; • • ; CHRS< 1 9 1)
2000 PRINTQl169 1 • • ; CHR$ (1 9 1 > ; • • ; CHRS< 191 > i ; CHRS

(1 9 1) ; CHRS < 191 > ; • • ; CHR$ (1 9 1 } ; CHA$(1 9 1 } i i CHRS

154

Appendix C

C 1 9 1) : PRINTal20 1 , • " ; CHR$C 1 9 1) i " ll#ltt• i CHR$(1 9 1) i
20 1 0 PRINT" • ; CHR$(1 9 1) ; • tt 1 • ; CHR$(1 9 1) ; • " ; CHR$(191)
2020 PRINT 9233, " • ; STRINGS (3 1 1 9 1) ; " II " ; STRING$ (4, 1 9 1 > ;

" " i CHRS C 1 9 1) ; CHR$ (1 9 1) ; " • ; CHR$< 1 9 1) : PRINTQ
265 , CHRS C223) ; " ##1:tt:ttll" ; CHRS·(1 9 1) ; " l#M" ; CHR$(1 9 1) ;

2030 PRINT" " i CHR$ (1 9 1) : PR I NTal296 , STRINGS C 1 6 , 1 9 1 > ;
2040 GOTOl 960
2050 PR INT@4 1 , STRINGS(1 3 , 32) i CHRS (223) ; CHR$ (1 9 1) :

PRI NTal73, • 11 1 • ; ST R I NG$ (81 1 91) ; " " ; CHR$(1 9 1 > i • " ;
CHRS(1 9 1)

2060 PRINTal105 1 " " i CHRS C 1 9 1) ; " " i CHR$(1 9 1) ; CHRSC 1 9 1) i
"##tlll#MIM" ; CHR$C 1 9 1) : PRINTal137, " " i CHR$ (1 91) ;
"MM" ; CHR$(1 9 1) i " IMltlM" i CHR$ (1 91) ; " " ; CHR$(1 9 1) i

2070 PRINT " " i CHR$ (1 9 1)
2080 PRINT&l 1 69, " " ; CHR$ (1 9 1) i " tll" ; CHR$ (1 9 1) ; " " i

STRING$ (7, 1 91 > i " " i CHR$ (1 9 1) : PR I NT&l201 , " " ; CHRS
(1 9 1 > ; " tltll:ttMM#IMI" ; CHR$ < 1 9 1) i " " ; CHRS(1 9 1)

2090 PR INTal233 , " • ; CHRS (1 9 1) i CHRS < 1 9 1 > ; CHR$(1 9 1 > i
" " ; ST R INGS < 5 , 1 9 1) ; • " ; CHR$ C 1 9 1 > ; CHRSC 1 9 1) i " " i

CHRS C 1 9 1) : PRINT&l265, CHRS C 223) i " ffMM#MMI" i CHRS C 1 9 1) i
2100 PRINT" IIIMI" ; CHRSC 1 9 1)
2 1 1 0 GOTOl 960
2120 PRINT5141 1 • ##M" i CHRS < 1 9 1 > ; • #MM" ; STRINGS C 4 1 1 91) ;

" I I " i CHRS (223) i CHRS (1 91) : PRINT5173, " 11###" i CHRS
C 1 9 1) i " MIIM##" i CHRSC 1 9 1) i " " ; CHRS (1 9 1)

2130 PRINTal 1 0s , · " ; ST RINGS (9 , 1 9 1) j " " i CHRS (19 1) i CHRS
C 1 9 1) ; " " i CHRS C 1 9 1) : PRINT51137, STRINGS(1 4 , 32) i CHRS
C 1 9 1 > : PRINT 9169, STRINGS C S , 1 91) ; " " ; CHRS < 1 9 1) ; " " i

2 1 40 PRINTCHRSC 1 9 1 > ; CHRS < 1 9 1 > ; " " ; CHRSC 1 9 1) ; CHRSC 1 91) ;
" " ; CHR$ C 1 9 1 >

2 1 5 0 PRINT 820 1 , CHRS (1 9 1) ; • 1t1• i CHRS < 1 9 1) ; " ## " i CHRS
(1 9 1) i " " i CHRS< 1 9 1) i " ##M" ; CHRSC 1 9 1) i • " i CHRS C 1 9 1) :
PAI NTal233, " +Nf#MM" ; CHRSC 1 9 1) ; CHRS < 1 9 1) ; " " ;

2160 PRINTSTRINGS (3 , 1 9 1) i " " ; CHR$ (1 9 1) ; • " i CHRS C 1 91)

2170 PRINT@265 , CHR$ < 223) ; " #M" ; STRINGS.< 4 1 1 9 1) i " ## " ; CHRS
< 1 9 1) ; " 1111 " ; CHRS C 1 9 1) : GOT01 960

2180 PRINT 514 1 , "#l#M#Mffl" ; CHAS< 1 9 1 > ; • " i CHRS< 1 9 1) i " ## " ;
CHR$ < 223) ; CHA$ (1 9 1) : PR I NT@73 1 " " i STRINGS C 4 1 1 9 1 > i
" " i ST R I NGS (3 , 1 91) ; " " ; CHRS < 1 9 1) ; CHRSC 1 9 1) ; " ## " i

2 1 90 PRINT CHRS C 1 9 1 > : PAINHH05, STRINGS< 1 1 1 32) ; CHRS

< 1 9 1 > i " Ml" ; CHRS C 1 9 1) : PRINTal137, " " ; STRINGS C 9, 1 9 1) ;
" " ; CHAS (1 9 1 > i CHR$(1 91) ; " " i CHRS(1 9 1)

2200 PRINT8 1 69 , � " ; CHAS C 1 9 1) i " " ; CHRS (1 9 1) ; STR ING$
C 10, 32) i CHRS. (1 9 1) : PR I NTal20 1 , CHR$(1 9 1 > ; CHRSC 1 91) ;

" " i CHR$ C l 9 1) i " " ; CHAS (1 9 1) ; " " ; STRINGS (4 , 1 9 1 > ;
22 1 0 PRINT " M# " ; CHRS (1 9 1) ; CHRS(1 9 1)

2220 PRINT512JJ, " #11*1" ; CHR$(1 9 1) i " M**I" ; CHRS(1 9 1 > ; CHA$
< 1 9 1 > ; " • ; CHA$ (1 9 1) i CHRS C 1 9 1) : PR I NTci265 , CHRS (223) ;
CHRS. (1 9 1 > ; • " ; STRING$ (6 , 1 9 1) i • tttt#MM" i CHRS(1 9 1)

2230 GOTO 1960

2240 P R I NT@4 1 , " Ill#" ; CHAS(1 91) ; " " ; CHAS(191 > i " ##11##" ;
CHR $ (223) i CHRS (1 9 1) : P R I NTal73, " " ; STR INGS (4 1 1 9 1) i

"#MM " ; CHRSC 1 9 1) i • • i CHRSC 1.91 > ; " • ; STRING$ C 3 , 1 9 1 >
2250 PRINT8105, "I#" ; CHRS(1 9 1) ; " IIM" i CHRS(1 9 1) i "

155

The Dragon Trainer

STR I NG$ < 3, 1 9 1) ; " • ; STRING$< 3, 1 9 1 l : PRINT9137, "
; CHR$ (1 91) ; • " ; CHR$ (1 9 1) ; ; STR JNG$ (3 , 1 9 1)

2260 PRINTal 169, STRING$ (3 , 1 9 1) ; " • ; STRING$ (7 , 1 91) ;
...... ; CHR$(191 > : PR I NTal20 1 , ; CHR$(1 91) ; " t1#•"
;STRING$(3 , 1 9 1 J ; • " ; CHR$ (1 9 1)

2270 PRINT8233, "tttt• ;STRING$ (3 , 1 91) ; " " ; CHR$ (1 91) ; • " ;
CHR$ (19 1) ; " " ; CHR$(1 9 1) ; • " ; CHRS (1 9 1 > ; " " ; CHRS
. • ;

2280 PRINT8265, CHRS < 223) ; • " ; CHRS< 1 9 1 > i •ttttl " ; CHRS
< 1 9 1 > ; ; CHR$ (1 9 1 > :GOT01960

2290 RETURN
2300 A$=1NKEY$: IFAS=" " THEN2300
231 0 IFAS= " R" THEND=-33
2320 IFAS= " T " THEND==-32
2330 IFA$= " Y " THEND=-31
2340 IFAS= " F " THEND=-1
2350 IFAS="W THEND=l
2360 IFAS= " C" THEND=31
2370 IFA$= " V" THEND=32
2380 IFAS= " B" THEND=-33
2390 IFAS= " P" THENGOSUB3130
2400 IF A$=" I " THENGOSUB3460
24 1 0 JFA$= " Q" THEN3590
2420 IFAS= " S " AND WAND=l THEN 4200
2430 IFAS= " G" AND EN<EX OR EN< 1 00 THEN EN=EN+RND< 1 0) *2
2440 IFA$= " E " THENGOSUB4290
2450 RETURN
2460 PPRINTQ320, " UP OR DOWN ? " i
2470 AS=INKEvs: IFA$ " THEN2470
2480 IFA$="D .. THENLEVEL=LEVEL+1 : GOT025 1 0
2490 I FAS= " U " THENLEVEL=LEVEL-1 : GOT025 1 0
2500 GOT024 70

25 1 0 PRINTQ320, ; : RETURN
2520 FORN=33T0288STEP32 : PRI NTalN, STRING$ (301 1 28) ; CHR$

(1 75) ; : NEXT
2530 FORN=0TORND (20 >
2540 M=RND < 3 1 9) +102 4 : I F PEEK (M J = 1 28THENPOKEM, 1 4 3+RND

(7 > * 1 6 : ELSEGOT02540
2550 IF PEEK < M l = 1 75THENPOKEM, 1 43+RND < 7 >* t 6 : GOT02550
2560 NEXT
2570 PRINTal320, .. IN A CAVE"
2580 MAN=l 296
2590 POKEMAN, 36
2600 GOSUB360
26 1 0 GOSUB2300
2620 IFST>400THENST::,::400
2630 IF IG>400THENIQ:::400
2640 I FEN>400THENEN=400
2650 IFD=0THEN261 0
2660 I F PEEK < MAN+D) = 1 2BTHEN2750
2670 IFPEEK (MAN+DJ < > 1 75ANDRND < 8 >=SANDMEDALL ION<> 1 THEN

PRJ NT8480, " YOU' VE FOUND THE MEDALL I ON ! " ; : FORN=0TO
2000 :NEX T : PR I NT84801 STRI NG$ (3 1 , 32) ; : MEDALL ION=l :
GOT02750

156

Appendix C

2680 IFPEEK C MAN+D) = 1 75THEN2760
2690 M=RND C 1 0) ; IFM=2THENPRINT@480, " YOU' VE FOUND A

GEM ! • ; : FORN=0T02000 : NE X T : PRI NT@480, STR I NG$ C 19, 32) ; :
TR=TR+RND C 300) : GOT02750

2700 IFM=4ANDWAND< > 1 THENPRI NTl7480, " YOU"VE FOUND THE
MAGI C WAND ! " ; : FQRN=0T02000 : NEXT : PR I NTal480 , STRING$
(28, 32) ; : WAND=1 : GOT02750

27 1 0 IFM=6ANDSH I ELD<>1 THENPRINT@480, " YOU'VE FOUND THE
MAG I C SHIELD ! " ; : FORN=0T02000 : NEXT : PR I NT@480,
STRING$ C 3 1 , 32> ; : SH I ELD=! : GOT02750

2720 I FH=BTHENPRINTal480, " YOU'VE FOUND A MAG I C POT I ON � "
; : F ORN=0T02000 : NEXT : PRI NT@480, STRING$(3 1 , 32 > ; :
P=P+ 1 : POT I ON C P) =RND C 4) : 60T02750

2730 IFM=10THENGOSUB2770: GOT02750
2740 PRINTii480, "NOTHING OF VALUE " ; : FORN=0T02000 : NE X T :

PRI NTd480, STRING$(3 1 1 32) ;
2750 MAN=MAN+D : POKEMAN-D, 1 28 : D=0 : GOT02590
2760 PRINTt:i:320, " ####,##4t## " ; : MAN=Q : Z=W: GOSUB1 500 : GOTO

720
2770 SOUND 1 0 , 5 : SOUND 100, 6 : RESTORE !'IFEX<2000ANDTW=0THEN

FORN=0TORNDC 19 > : READMONSTERS : READHITS:NEXT
2780 M=0
2790 I FEX>=20000RTW= 1 THENFORN=0TORND C 1 9) +20: READ

MONSTER$: READHI TS : NEXT
2800 I FSWORD=l THENHITS=HI TS+RND C ST >
2810 FORN= l TOLEN(MONSTERS) : MI D$ (MONSTERS , N, 1 >=CHR$(ASC

C M I D$ C MONSTER$, N, 1)) +32) : IFMJD$C MONSTERS, N, 1) = " al "
THENMIDS (MONSTERS, N, 1)=CHRS(1 28) : NE X T : ELSENEXT

2820 PRINTt:i:320, "YOU HAVE MET A " ; MONSTERS;
2830 I F CLASSS=" CLERI C" AND (MONSTERS=" vampi re"OR

MONSTERS= " w i gh t " ORMONSTERS= " mummy • ORMONSTERS=
"wra i t h " ORMONSTERS= • spectreN) ANDRND< 3 >=2THENYZ=l

2840 IFYZ=l THENFORN=0T02000 : NE X T : PR I NTt:i:320, " BUT YOU
TURN I T AWAY ! " : FORN=0T02000 : NE X T : PRINTt:i:320, • • : EX=
EX+H: RETURN : YZ=0

2850 H I TS=HITS+RND(INT (H I TS/2)) : IFHITS< INT (EN/2 > THEN
GOT02850

2860 H=HITS
2870 FORN=0T01000 :NEXT
2880 PR I NTal448, " st r i ke " ; CHRS (128) i • now•
2890 SOUND50, 2
2900 A$= I M\EYS
291 0 PRINTd480, " ###tttl#tl######l#tl##tl###tl#tltltl# " ;
2920 PRINTt:i:480, " THE MONSTER HAS" ;H ITS; " ENERGY ,
2930 FORN=0T0300 : A$= I NKEY$! IFAS<> N • THEN2940 : ELSENEX T !

P R I NT8448, " too" ; CHRS (1 28) ; • slow• : FORN=0T02000: NEXT
: PR I NTci)448 1 " " : GOT02990

2940 IFA$="S" ANDWAND= 1 THENSPELL (S) =SPELL(S) - 1 : GOSUB
325 0 : IFV=l THENEX=EX+H: EN=EN+ INT (RND (H/2 >) : YZ=t : V=0

2950 IFYZ= 1 THENFOHN=0T02000 : NEXT : PRI NT@3201 • • : PRINT al
448, " • : PRINT@480, STR I NG$ (3 1 1 32) ; : YZ=0: RETURN

2960 IFAS= " H · ANDRND < 2 > =2THENG=RND < EN > +RND(ST) *SD:
PRI NTQ448, " you N ; CHR$ c 1 28 > ; " ti i t" :FORN=0T02000 : NEX T :
PRI NT8448, G ; • DAMAGE ! • ; : FORN=0T03000 : NEXT : Y Z = I

157

The Dragon Trainer

2970 IFYZ = 1 THENYZ=0 : PR I NT9448 , " • : H I TS=HI TS-G : G=0 : ELSE
IFA$= " H " THENPR I NTa448, " you" ; CHR$(1 28) ; " m i ssed " :
FORN=0T02000 :NEXT : PRINTa448, STRING$ (30, 32 _I ; : YZ=0

2980 I FG>0THENSOUND 150, 2: EL.SESOUND200, 2
2990 PRI NTal480, " THE MONSTER HAS" ; H I TS ; " ENERGY • ;
3000 IFHI TS<=0THEN31 1 0
3010 SOUND200, 2: PRINTal448, • ttte• j CHR$ < 128) ; •monster" ;

CHR$ < 128) ; • st r i kes" : FORN=0T02000 : NEXT: PRINTal448, •
3020 IFRND C 2) = 1 THENM=RND< H I TS) : PRINTal448, " and" ; CHR$

< 1 28) ; " tt i t s " ; : SOUND 1 0 , 2 : FORN=0T02000 :NEXT :ELSE
PRINTQ448, " and" ; CHR$(1 28) ; " m i sses" ; : SOUND50, 2: YZ= 1

3030 IFYZ= 1 THENFORN=0T02000: NEXT: PRI NTal448, " " : YZ=0
3040 EN=EN-M: IFSHIELD=l THENEN=EN+ INT (RND (M/2))
3050 IFM>0THENPR INTal448, • DOING• ; M ; " DAMAGE ! " ; : FORN=0TO

2000 :NEXT : PR JNTal448, " •
3060 GOSUB360
3070 M=0
3080 IFEN<=0ANDMEDALL I ON<> 1 THENGOT03770: ELSEIFEN<=0

THENPRINTal320, " YOU ' VE GOT 16 MOVES TO GET HOME ! " ; :
FORN=0T02000 :NEXT : Y Z = l

3090 J F Y Z = 1 THENPRINTal320, STRING$ C 3 1 , 32) ; : PRI NT<i448,
• " : PRINTa480, STRI NG$ (3 1 , 32) ; : DEAD= 1 : YZ=0: RETURN

3100 H I TS=HITS-1 :EN=EN-1 : GOT02880
3 1 1 0 PRINTal448, " " : PRI NTal480, STRI NG$ (3 1 , 32) ; : PRINT al

320 , " YOU' VE KI LLED I T ! " : FORN=225T0250: SOUNDN, 1 :
NEXT :EX=EX+H: EN=EN+RND (INT (H/2))

3120 FORN=0T02000: NEX T : PRI NT@320, " " : IFEN>400THENEN=
EN-RND < I NT (H/2)) : RETURN: ELSERETURN

3130 PRINTal448, " POTION NUMP,ER" i : JNPUTV: IFPOT ION (V) = 1
THENP R I NT@448, " I T ' S POISONOUS ! " : FORN=0T02000 : NEXT:
PRI NTal448, " •

3140 I F POT ION (V) =1 THENEN=EN-RND < 50 > : IFEN<=0THEN3080 :
ELSE POT ION (V)=0: RETURN

3150 IFPOT I ON (V) =2THENPRINTal448, " YOUR NOSE TURNS A
FUNNY COLOUR ' " : POTJON (V) =0 : FORNc:0T02000 :NEX T :
P R I NTal448, " " : RETURN

3160 IFPOT I ON (V) =3THENPRINTal448, " IT DOES NOTHING ! " ; :
FORN=0T02000 :NE:XT : PRI NTal44B, • " : POTION(V)=0: RETURN

3170 IFPOTION(V) =4THENPRI NTal448, " YOU' RE iq INCREASES !
" ; = FORN=0T02000 : NEXT : PRINTal448, " " : IQ= I G!+RNO
(5) *10 : POT ION(V) =0 : RETURN

3180 IFPOT I ON (V) =0THENPRINTal44B, " THERE ' S NOTHING I N
IT ! " :fORN=0T02000: NEX T : P R INTal448, " " : POTION (V) =0 :
RETURN

3190 PRI NTi.448, " YOU GA IN" ; :L=RND(10 > *2: PR INTL ; " POINTS
OF ENERGY ! " ; :EN=EN+L : POTJON (V) =0 : FORN=0T02000:
NEXT : PR I NT�448 , " " : RETURN

3200 DATA• BANDI T " , 20, " BERSERKER" , 20, " BUGBEAR" , 60,
• CARRION CRAWLER " , 60, " COCt\ATRI cE• , 100, " DWARF " , 20,
" DOPPLEGANGER" , 80, " ELF " , 20, " F I RE BEETLE" , 20

321 0 DATA• GARGOYLE" , 80, " GEL.A TI NOUS CUBE" , 80, " G I ANT
ANT " , 40 , " G I ANT CENT I PEDE" , 5 , " GIANT RAT " , 10, " GNOLL"
, 40, " GNOME " , 10, " GOBL I N " , 10, " GREY OOZE " , 60

3220 DATA" HI PPOGRI FF" , 65, " HOBGOBL IN" , 1 5 , " BLACK

158

Appendix C

PUDD ING" 1 200, " CH I MERA" , 180, " DJ I NN I • , 145, " DRAGON" ,
220, " G I ANT" , 200 1 • GRI FFON" 1 1 40 , " HYDRA" , 1 60

3230 DATA" WEREBEAR " , 1 20 , " MANTICORE " , 125, " M I NOTAUR " ,
120, " MUMMY " , 105, "OGRE" 1 1 20 , " OWL BEAR" , 1 1 01

• PURPLE 'WORM" , 300
3240 DATA" SPECTRE" 1 1 20, " T ROLL " , 1 30 , " VAMP I RE " , 180,

" W I GHT " , 60, "WRA I TH" , 80, " HELL HOUND" , 140
3250 PR INTa11448, " SPELL NUMBER " ; : I NPUTS
3260 IFS}3ANDEX <2000THEN3350
3270 IFS=l ANDRND C 400) < IQ ANDSP < 1 »0THENPRINTa11448, " THE

MONSTER FALLS ASLEEP ! " ; : FORN=0T02000 : V=1 : IQ=I G!+RND
C 5) *5: RETURN

3280 IFS=2ANDRNDC 400) < I Q ANDSP < 2 > >0THENPR I NTall448, "THE
MONSTER IS BLI NDED AND RUNS OFF ! " ; : FORN=0T02000 :
NEX T : PRI NTall448, " " : PRI NTa1480 , STRING$< 31 , 3 2 > ; : V=t

3290 I FV=l THEN I G!=lQ+RND < 5 > *5 : RETURN
3300 1 FS=3ANDSP < 3 > >0ANDRND C 400 > < I G! THENPR INTall448, " THE

MAG I C SHIELD HOLDS ! • ; : FORN=0T02000 :NEX T : PR I NTall448,
" " : V=l : JQ= I G!+RND C 5) *5 : RETURN

331 0 I FS=4ANDSP< 4 »0ANDRND (400) } I G! THENPRINTall448, "THE
WEB FALLS ON THE MONSTER ! " ; : FORN=0T02000 :NEXT :
PRI NTall448, " • : V= t : I G!= I G!+RND< 5) *5 : RETURN

3320 IFS=5ANDSP C 5 > >0ANDRND (400) } 1 Q THENPRINTall4481 "THE
MONSTER IS ENVELOPED IN###iUtDARKNESS ! " ; : FORN=0TO
2000 :NEX T : V=l

3330 IFV= 1 THENPRINTa11448, " " : PRI NTal480, STRING$ (31 , 32) ; :
IQ= IQ+RND< 5) *5 : RETURN

3340 IFS=6ANDSP (6) >0ANDRND C 400 > > IQ THENPRINT&l448, " THE
MONSTER TURNS INTO JELLY ! " i :FORN=0T02000:NE X T :
P R I NTall448, " • : I G!=I Q+RND< 5) *5 : V= 1 : RETURN

3350 IFSP (S) < 1 THENPRINTa11448, " YOU HAVEN' T GOT THAT
SPELL � " ; :FORN=0T02000 : NEX T : PR I NTall4481 " " : RETURN

3360 PRINTall4481 " THE SPELL FAILED ! • ; : FORN=0T02000 :NEXT:
PRI NT&l448, • • : RETURN

3370 CLS : PR I NT · WELL DONE ! YOU ' VE SUCCEEDED � " ; : PRINT
" THE K I NG IS SAVED ! ! ! " : PRINT"AND YOU MANAGED TO
RETURN WITH : -• : PRINT" the" ; CHR$ (1 28) ; • l:ey"

3380 PRJNT" THE MAG I C WAND " : IFMEDAL L I ON=1 THENPRINT" THE
MEDALL ION OF L I FE"

3390 IFSHIELD=1 THENPR I NT " THE MAG I C SHIELD"
3400 IFAMULET= 1 THENPRI NT" THE AMULET OF THE GODS"
34 1 0 I FSD= 1 THENPR I NT " THE MAG I C SWORD•
3420 FORN= 1 T020: IFPOTION (N) }0THEN3440
3430 NEX T : GOT03450
3440 PRINT " AND SOME POT I ONS ! •
3450 PMODE3 , 1 : PR INT: PCLS: GOSUB3790: PMODE3 , 1 :SCREEN1 , 0 :

FORN=0T02000 :NEXT : GOT04 190
3460 FORN=320T0448STEP32: PRI NTiiN, " " : NEXT: PRINT&l480,

STR I NG$ (30 , 3 2) ; : PR I NTii320, • • i
3470 IFWAND= 1 THENPRINT" WAND"
3480 IFSD=1 THENPRINT " SWORD"
3490 I FMEDALL ION=l THENPR I NT " MEDALL I ON"
3500 IFAMULET=1 THENPRINT" AMULET"
35 1 0 IFSHIELD=1 THENPRINT" SHIELD"

159

The Dragon Trainer

3520 IFKEY=l THENPR INT• the• ; CHR$ (1 28) ; • k ey• ;
3530 FORN=0T020: JFPOTION(N > >0THEN3550
3540 NEXT: GOT03570
3550 FORN=0T03000 : NEXT: FORN=320T0448STEP32 : PR INT9N,

• • :NEXT : PRINTa1480, STRING$ (30, 32 > ; : M=0: FORN=0T020:
IFPOTION CN > > 1 THENM=M+t : NEXT : ELSENEXT

3560 PRINT9320, M ; • POTIONS• : M=0
35 70 IF AMULET=0ANOSWOR0=0ANDKEY=0ANOMEDALL I ON=0AND

SHI ELD:::0ANDWAN0:::0THENPR INT •NOTHING � •
3580 FORN=0T03000 :NEXT : FORN=320T0448STEP32: PRINTaN,

• • :NEXT : PR I NT9480, STRING$ (30, 32) ; : GOSUB360 : RETURN
3590 CLS: PRINT• IS TAPE READY ? •
3600 A$=INKEY$: IFA11 <) • y • THEN3600
3610 PRINT. PRESS p l ay AND record ON TAPE" :FORN=0TO

3000 :NEXT
3620 PR I NT• SAVI NG • ; NAME$; • THE " ; CLASS$
3630 OPEN• o• , - 1 , NAME$
3640 PRINT#-1 , CLASS$; ST ; IQ ;EN; ST ; E x ; ME; so; WA; SH; AM;t<E;
3650 FORN=0TOP : PRINTl-1 1 POTION< P) ; : NEXT
3660 CLOSE#- 1
3670 PRINTNAME$; • THE " ; CLASSs ; • SAVED•
3680 END
3690 CLS: INPUT• CHARACTER ' S NAME• ; NAMES
3700 PRINT" PRESS p l ay ON TAPE • :FORN::::0T03000 : NEXT
37 1 0 OPEN• I • , - t , NAMES
3720 INPUTl-1 , CLASS$, ST I IG, EN, ST , EX I ME, SD, WA, SH, AM, KE :

FORN=0T020
3730 I FEO:F (- 1 > THEN3760
3740 INPUHl-1 , POT I ON < N > : NEXT
3750 CLOSE#- 1
3760 60101 90
3770 PRINT8320, • vou· RE DEAD � • : I FK::::1 THEN3770
3780 PLAV- 0 1V31 T2L4GGL8GGL4B-AAGGF+G• : K::::1 : GOT03770
3790 DRAW• BM10, 180; C4 ; R1 90U90L 1 90D90R190:Z .. SU90G4·S•
3800 I F Z Z=0THENCI RCLE (38, 80) , 30, 4, 1 . 48, • 46, • 8
3810 IFZ Z=0THENCI RCLE (226, 80) , 30, 4 1 1 . 48, • 461 • 85
3820 IFZ Z::::0THENL I NE (401 38) - (2301 38) , PSET
3830 L I NE < 92, 90 l - (1 20, 1 10 > , PSET , P,
3840 PAINT (94 1 92) , 21 4
3850 COLOR3
3860 L I NE < 104, 92) - (108, 1 08) , PSET I BF: CIRCLE (106, 98) , 7
3870 PAINT (20, 1 70) , 2, 4 : PAINT (220, 80) , 2, 4 : IFZ Z=0THEN

PAI NT < 2 1 0 , 70) 1 2, 4 : PAINT< 40, 80 > 1 2, 4
3880 COLOR4
3890 N=30
3900 FORM= 160T01 76STEP4 : L I NE <N, M > - (210-N, M > , PSET :

N=N-4: NEXT
39 1 0 M::::20
3920 FORN= 1 4T030STEP4 : L INE< N, M+95 > - < N, 195-M) , PSET :

M=M+4 : NEXT
3930 N=30: FORM= 130T01 HtSTEP-4 : L I NE (N, Ml - (210-N, M > ,

PSET : N=N-4 : NEXT
3940 M::::20:FORN=196T01 80STEP-4 : L INE < N , M+95 > - < N , 195-M) ,

PSET : M=M+4:NEXT
3950 L I NE (1 41 92 >- < 36, 1 1 2) , PSET, BF: COLORJ: LINE (40, 9 2) -

160

Appendix C

(60, 1 1 2) , PSET, P.F : COL OR 1 : L I NE (64 , 92} - < 84 , 1 1 2) , PSET,
BF

3960 L I NE (1 28, 92) - (1 48 , 1 1 2) , PSET, P.F : COLOR3: L I NE
< 1 5 2 , 92) - (1 72, 1 1 2) , PSET, P,F : COLOR4 : L I NE < 1 76 , 92) ­
(196, 1 1 2) , PSET , BF

3970 PAINT < 34 , 1 34) , 3, 4 : PA I NT C 28, 1 36) 1 4 1 4 : PA I NT
(24 , 1 36) , 1 , 4 : PA J NT < 16, 1 36) , 4, 4

3980 IF 2 2 == 1 THEN 4030
3990 FORN=38T0220STEP9 : CJ RCLE (N, 80) ,·30, 4 , 1 . 48, • 46, • 8:

NEXT
4000 FORN=40T021 BSTEP36: PAINT (N, 75) , 4, 4 : NEXT
40 1 0 FORN=20T01 80STEP36 : PAINT (N, 75) , 3, 4 :NEXT
4020 FORN=34T0180STEP36: PA INT< N1 75) , 1 , 4 :NEXT
4030 COLOR2 :L I NE < 12, 9 1)- (1 98, 91) , PSET
4040 COLOR4 : L I NE (92, 90) - (1 20, 1 1 0) , PSET , B
4050 IFZ Z=0THENCOLOR 1 : L I NE (381 37) - <230, 37 > , PSET : L I NE

< 38, 36 > - (230, 36) , PSET
4060 DRA�I" BH208, 158; C4 ; E27U64G27064 " : PAINT (220, 1 30) ,

3, 4
4070 I F Z Z=0THENZZ=-=1 : RETURN
4080 COL.OR4
4090 DRAW- BM1 0 , 90; C4 ;E45 R 1 90L1 90D44"
4 1 00 DRAW" BH1 0 , 90; C4; E85G40R1 90E 10G10"
4 1 1 0 DRAW"P,H1 0 , 90 ; C4 ; E85R1 90"
4 1 20 DRAW" P,M200, 90; C4 i E45R2D1 R4D1 R2U1 R2U1 R2"
4 1 30 PAINT < 25, 80) , 2, 4 : PA I NT < 60, B0) , 2, 4 : PA I NT (90, 20) , 2,

4 : PAINT (246, 44) , 2, 4
4 1 40 C I RCLE C 1 25 , 1 25) 1 500 1 3
4 1 5 0 C I RCLE (150, 90) , 1 5 1 4 1 1 1 • 5, 0 : PA INT< 152, 85) , 3, '• :

CI RCLE(150, 90) , 1 5 , 3, 1 , . 5 , 0
4 1 60 COLOR3: L I NE (1 46 1 8 5) -- < 1 5 4 , 7 0 J , PSET , P.F: COLORt : L I NE

(1 46, 69 > - < 1 54 , 64 J , PSET , BF
4 1 70 PMODEJ, t : SCREEN 1 , 0
4 180 GOT04 1 80
4 1 90 CLS0 : PR I NT@227, " THE CHEST WILL :BE OPENED IN A• ; :

PR I NT@269, " MOMENT" ; : PCLS: GOT03790
4200 FORN=320T0448STEP32: PRINT<WN, " • : NEXT
42 1 0 P R I NT<W480, STRING$ (30, 32 > ;
4220 FORN= 1 T06
4230 PRINT@320+ ((N-1) -lf32) , " SPELL" ; N ; • = • ; SPELL < N) ;
4240 NEXT
4250 FORN=0T02000: NEXT
4260 FORN=320T0448STEP32: PRINT@N, " " :NEXT
4270 PRINTal480, STRI NG$ (30, 32) ;
4280 RETURN
4290 FORN=320T0448STEP32: PRINT.iN, " " :NEXT
4300 PRI NTal4801 STR I NG$ (30, 32) ;
43 1 0 PRI NTa1320, " • ;
4320 IFEX<S00THENPR INT " F I SH FOOD" : GOT04580
4330 IFEX < 1 000THENPRINT " SWORD PRACT I CE DUMMY" : GOT04580
4340 I FEX <2000THENPRINT" APPRENT 1 CE FOOL • : GOT04580
4350 IFEX<3000THENPRJ NT " SNA I L SLAYER" :GOT04580
4360 I FE X <4000THENPR I NT " DRAGON' S TOY" : GOT04580
4370 I FEX<5000THENPR J NT " APPRENT I CE SWORDSMAN• : GOT04580

161

The Dragon Trainer

4380 I FEX <6000THENPR I NT" WOLF MASTER " : GOT04580
4390 I FEX<7000THENPRINT" SWORDSMAN" : GOT04580
4400 IFEX <8000THENPRJNT " L I ON TAMER" : GOT04580
4 4 1 0 I FEX <9000THENPRJNT"3RD RATE HERO" : GOT04580
4420 IFEX < 1 1 000THENPR INT" MASTER OF THE SWORD" : GOT04580
4430 JFEX<1 2000THENPRINT" 2ND RATE HERO" : GOT04580
4440 IFE X < 1 3000THENPRINT" LORD OF THE PATH" : GOT04580
4450 IFEX<1 4000THENPRJNT" LORD OF THE l<EEP" : GOT04580
4460 IFEX < 1 6000THENPRINT"GOP,L I N SLAYER" : GOT04580
4470 IFEX < 1 8000THENPRINT" CHAMPI ON" : GOT04580
4480 JFEX<22000THENPRINT"HERO - 1ST CLASS" : GOT04581?1
4490 I FE X <26000THENPR I NT• DRAGON SLAYER • : GOT04580
4500 I FE X <30000THENPR I NT" WARLORD" : GOT04580
45 1 0 JFEX<35000THENPRINT " LORD OF THE HEROS" : GOT04580
4520 IFEX<40000THENPRINT"LORD OF THE PALACE" : GOT04580
4530 JFEX <45000THENPR I NT " DEATH DEFYER" : GOT04580
4540 IFEX<50000THENPRINT" MONSTER TAMER" : GOT04580
4550 JFEX<60000THENPRINT" PRI NCE OF L I GHT" : GOT04580
4560 I FEX<70000THENPRINT" RULER OF THE VALLEY" : GOT04580
4570 P R I NT " MASTER OF ETERN ITY"
11580 FORN=0T02000 : NEXT
4590 PRINTal320 , " •
4600 U:::: 1 : GOSUB360 : RETURN

Code Breaker

Code Breaker is a version of the popular board game Mastermind. The
idea of the game is to guess a code number which the computer has chosen,
helped along by clues given by the computer.

When you RUN the program you will be asked how many digits you
want in the code and then for the highest number that you want in the code.
If you want the highest number to be 7 then all the numbers in the code will
be between I and 7. Finally you will be asked how many guesses you want

before being presented with the instructions for the game.
Once you have finished reading the instructions the screen will clear and

you will be asked for your first guess. The computer will then tell you how

many blacks and whites you got.
A black represents a digit which is in the code and is also in the right

place. A white represents a digit which is in the code but not in the right
place. For example:

The code which you are trying to guess is 81632

Your guess is 82945
You have one black (the 8 is in the right place)
You have one white (the 2 is in the computer's code but in the wrong place).

162

Appendix C

This process continues until you either guess the code correctly or run
out of guesses. If you manage to guess the code correctly the screen will
flash several colours accompanied by random noises. The first bar of Con­
gratulations will then be played and you will be told how good you are at
the game. You will then be asked whether or not you want another go.

If you run out of guesses you will be told the computer's code and asked
if you want another go.

10 CLS
20 PRINT" HOW MANY D I G ITS DO YOU WANT IN THE CODE" ;
30 INPUTD I G I T
4 0 PRINT" WHAT D O YOU WANT THE HI GHEST"
50 PRINP NUMP,ER IN THE CODE TO BE (1 - 1 0) " ;
60 INPUTHI GHEST
70 INPUT" HOW MANY GUESSES DO YOU WANT" ; NUMBER
80 DIMGUESS$ (NUMBER) , HI GHEST C D I G I T J , DC D I G I T >
90 DIMP.LACK (NVMBER > , WH I TE (NUMBER)
100 GOSVB7 1 0
1 1 0 GOSVB220: GOSUB240
120 PRINT" GUESS NUMBER" ;GUESS;
130 INPUT A$
140 IF LEFT$ (A$, 1 > = " Cx" THEN 370
l 50 GOSUP,480
160 GOSUB5 70
170 P,LACKC GUESS) =BLACK : WHI TE C GUESS) =WHITE
180 I F BLACI\C GUESS) = D I G I T THEN 1000

190 GUESS$ (GUESS> =A$
200 GUESS=GUESS+ 1 : IF GUESS>NVMP,ER THEN 1 1 40
210 GOT0300
220 GUESS= 1 : Dt.=" •
230 RETURN
240 FOR H=l TO D I G I T

250 S=RND C H I GHEST >
260 0$=D$+MJ D$ (STR$ C S > , 2, 1)
:270 NEXT
280 PRINT" I ' VE CHOSEN MY SECRET CODE � •
290 RETURN
300 CLS
3 1 0 PRINT" NO. GUESS BLACK WHITE"
320 FOR H= 1 TO GUESS- I
330 PRINTH; TAF, (7 J ; GUESS$ C H J ; TAB(1 5) ; BLACK (H) ;
340 PRI NTTAB C 23 J ; WHI TE C H J
350 NEX T : PR I NT

360 GOTO 1 20
370 CLS: FOR N=50T02STEP-·2: SOUNDN, 1 : NEXT

380 SOUND25 5, 2
390 PRI NT" YOU' RE NOT GOOD ENOUGH ! "
400 PR I NT " M Y SECRET CODE WAS
4 1 0 FOR H=l TO 6
420 PRINT" • ,

430 SOUND H*40, 1

163

The Dragon Trainer

440 FOR L= 1 TO 900: NEXT
450 NEXT
460 PR I NTO$: PRINT
470 GOT01090
480 IF LEN < A$) < >D I G I T THEN 540
490 FOR H=t TO D I G I T
500 S=VAL < M I DS (AS , H1 1))
5 1 0 IF S < 1 OR S>HI GHEST THEN 540
520 NEXT
530 RETURN
540 PRINT. THAT ' S NOT A LEGAL GUESS ! •
550 PRINT. PLEASE TRY AGA I N •
560 GOT0120
570 :BLACK=0 : WHI TE=0
580 FOR H=I TO DIGI T
590 GUESS C H) =VAL < MJ DS (AS , H , 1 >)
600 D (H) =VAL < M I DS (D$, H , 1))
610 IF GUESS < H) = D (H) THEN :BLACK=BLACK+t : GUESS (H) =0:

D (H > =0
620 NEXT
630 FOR H=1 TO D I G I T : IF D (H)=0 THEN 690
640 I=0 : FOR L=1 TO D I G I T
650 IF D (H) =0 THEN 680
660 IF O C H) <>GUESS C L) THEN 680
670 J=t :GUESS C L l =0 : D C H >=0
680 NEXT L : WHI TE=WH ITE+I
690 NEXT H
700 RETURN
7 1 0 CLS

720 PR I NT· **********code*breaker********** •
730 PR T NP I WILL PI Ct(A• ; D I G I T i • D I G I T CODE•
740 PRINT·wnH THE NUMBERS IN THE CODE·
750 PRINT· RANGI NG FROM 1 ro• ; H I GHEST ; • . •
760 PRI NP YOU MUST TRY AND GUESS TH IS CODE•
770 PRINT · T o f-lELP YOU I W I LL TELL YOU How·
780 PRINT. MANY NUMBERS YOU GOT RIGHT, AND"
790 PRINT•HOW MANY NUMBERS YOU GOT RIGHP
800 PRINT. BUT JN THE WRONG PLACE. HOWEVER , " i
810 PRINP I WON ' T TELL YOU WHI CH NUMBERS•
820 PRI NP < IF ANY > YOU GOT R I GHT ! "
830 PRI NT : PRINT· PRESS ANY KEY TO CONTINUE • ;
840 I F I NKEYt=• • THEN 840
850 CLS
860 PRINP I WILL TELL YOU HOW MANY NUMBERS• i
A70 PRINP YOU GOT RIGHT IN THI S WAY : •
880 PRINT
890 PRINP b l ack IS THE NUMF,ER OF CORRECT"
900 PR INT" NUMF,ERS I N THE CORRECT PLACES"
910 PRINT
920 PRINT . wh i te IS THE NUMBER OF CORRECT"
930 PRINP NUMBERS I N THE WRONG PLACE•
940 PRINT
950 PR I NP PRESS ANY HEY TO ST ART• i
960 IF INKEYS=" " THEN960

164

Appendix C

970 CLS
980 RETURN
990 END
1000 FORN:::230T0255 : SOUNDN, 1 : CLS RND < B > : NEXT
10 10 PLAY " T l I L I GAB03L l . C02L1 G "
1020 CLS : PR JNT· vou GOT I T JW ; GUESS; " GUESSES . "
1030 IF GUESS<S THEN RATING$=" FANTAST I C � "
1040 IF GUESS=�S OR GUESS=6 THEN RATING!>=" REASONl'\BLE ! "
1050 IF GUESS=7 THEN RATJNG$::" AVERAGE ! "
1060 IF GUESS:,::8 THEN RATINGS="GOOO FOR A BEGINNER � "
1070 IF GUCSS>B THEN RAT ING$="TERR I BLE � "
1080 PRINT" • • • • THAT ' S " ; RATINGS
1090 JNPUT" WANT TO TRY AGAI N (Y/N) " ; A$
1 100 IF LEFT$ (A$, 1) = " Y " THEN 1 00
1 1 1 0 IF LEFT$ (A$ 1 1 > < > " N " THEN 1090
1 120 PRINT" COWARD � "
1 130 END
1 1 40 PRINT
1 150 PRINT " YOU' VE RUN OUT OF GUESSES � "
1 160 GOT0390

Commentary

Line 10 clears the screen before lines 20-70 ask you how many digits you
want in the code, the highest number that you want in the code and how
many guesses you want. Lines 80 and 90 then DIMension the variables
which will be used in the program, using your answers to the previous ques­
tions as guidelines.

Line 100 sends the program to the subroutine starting at line 710 (the
instructions). Line 1 1 0 then sends the computer to two subroutines which
set up the computer's secret code.

The main routine lies from lines 120-210. Line 120 tells you which guess
you are on and then line 130 asks you for your guess. Line 140 checks to see
if you want to quit, jumping to line 370 if you do. Lines 150-160 send the
computer to two subroutines which check that your guess is a legal one and
work out how many blacks and whites you got. Line 170 then keeps a
record of how many blacks and whites you got in that go for future
reference. Line 180 checks to see if you correctly guessed the code, sending
the computer to line I 000 if you have. Line 190 keeps a record of your guess
(again for future reference). Line 200 makes sure that you haven't used up
all your guesses yet before line 210 sends the program to line 300 to display
the record of your attempts at guessing the code.

Line 220 resets two of the variables and lines 240-270 set up the
computer's secret code, with line 280 telling you when the code is worked

165

The Dragon Trainer

out. The record of your guesses is displayed by lines 300-350.

Lines 370-460 make up the losing routine. Line 370 clears the screen and
makes a series of noises. Line 380 then makes a final bleep. You are told by
line 390 that you are not good enough and then lines 410-450 slowly
PRINT a series of dots on the screen accompanied by increasingly higher
notes. Line 460 tells you what the secret code was and then line 470 sends
the program to line 1090 to ask whether or not you want another go.

Line 480 makes sure that your guess has the right number of digits in it,
jumping to line 540 if it hasn't. Lines 490-520then check each digit in your
guess to make sure that none of them are too high. If any are then the
computer jumps to line 540.

Lines 540-550 tell you that you have made an illegal guess and then line
560 sends the computer back to the main program. Lines 570-690 work
out how many blacks and whites you got.

Lines 710-970 display the instructions. Line 1000 flashes the screen dif ­
ferent colours while making random noises before line 1010 plays the first
bar of Congratulations. You are then told how good you are at the game by
lines !020-!080.

Lines 1090-1120 asks you whether or not you want another game,
jumping to line 100 if you do and PRINTing 'COWARD!' if you don't.
Lines 1140-1150 tells you that you have run out of guesses.

Revision Aid
Revision Aid is for all those among you who are learning, or have someone
in the family who is learning, another language. The program allows you to
enter a set of words and their meanings and then tests you on the words,
choosing one at random and asking you for its meaning. The words may
also be stored on tape for future use.

When you RUN the program you will be asked whether you want to load
a set of words or set up some new ones. At first you won't have any words
on tape so you will reply S , but if you do have some stored on tape you
should press L.

If you want to set up a new set of words then you will be asked how many
words you want to learn. You will then be asked to enter the words, one by
one. Each word should be entered like this:

A VOIR:TO HA VE

166

Appendix C

It doesn't matter whether the foreign word or the English translation
comes first, as long as each is separated by a colon and only a colon. No
spaces should be added in between the words and the colon.

Once you have entered all the words you will be asked whether or not you
want to save them. Assuming that you don't, the screen will then clear and
the computer will start testing you on the words. You will be randomly
tested from English into the other language, and from the language that
you are learning into English. You can have up to five attempts at each
word,x and if you don't know the word you may type H (for Help). The
computer will then tell you what the word is.

After each word you will be asked whether you want to be tested on
another. If you do then the program will continue, otherwise you will be
told how well you have done and the program will end.

If you decide to save your list of words then the screen will clear and you
will be asked to prepare the tape. When you have done this you will be
asked if the tape is set on record or not, before being asked for the name
that you want the words to be saved under. Your list of words will then be
recorded and the program will continue as normal.

If you load a set of words then you will be asked to go through a similar
routine to that carried out when saving the list. You will be asked to set the
tape on play before being asked for the file name. Your list will then be
loaded and the program will continue.

If you want more (or less) than five attempts at guessing a word then you
should alter the 5 in lines 260 and 340 to the number of guesses that you
want.

You may make the computer test you on 10 words without asking you if
you want another test by altering these lines:

390 IF RIGHT + WRONG = 10 THEN 430
400 GOTO 140

DELETE LINES 410-420

10 CL S : PRI NHH0, • rev i s i on " ; CHR$ C 1 28) ; " c\ i d"
20 INPUP L.Ot\D WORDS OR SET UP NEW ONES CL/S) • ; A$
30 IFA$= · L " THEN720
40 IFA$<) " S " THE:N20
50 PRINP HOW MANY WORDS DO YOU WANT TO LEARN"
60 INPUT NUMBER
"70 PRINP PL.EASE ENTER WORDS AND THE I R MEAN ING"
A0 DIM WORD$1 NUMBE R l
9 0 FOR N = 1 T O NUMl�ER
100 L I NE I NPUT" 7 " i WOR0$ (N) : NEXT
1 1 0 INPUT"DO YOU WISH TO SAVE THESE WORDS (Y/N) " ; A$
120 IFAS= " Y· THEN540
130 IFA$ <) " W THEN 1 1 0

167

The Dragon Trainer

140 CLS: X=RND C NVMBE R)
1 5 121 Z = 1 :S=0
160 IF MIO$<WOR0$ (X) , Z , 1) = " : " THEN 190
170 Z=Z+l
180 GOTO 160
190 IFRND (2) =2THEN290
200 PR I NT" PLEASE TRANSLATE
210 PRINT R I GHT$ (WORD$(X) , LEN(WORD$ (X)) - Z)
220 INPUTANSWER$
230 IFANSWER$= · W THENS20
240 IFANSWER$=LEFT$ (WORD$ (X) , Z - 1 > THEN380
250 PR I NT"WRONG 1 " : PR I NT " TRY AGA IN" : WRONG=WRONG+ I
260 S=S+ 1 : I FS=S THENPR I NT• THE ANSWER I 5 " i : GOT0360
270 GOT0200
280 END
290 PRINT" PLEASE TRANSLATE " ; LEFT$ (WORD$ (X) , Z·- 1)
300 INPUT ANSWER$
310 IF ANSWER$=•W THEN 360
320 IF ANS�JER$=R I GHT$ (WORD$ C X) , LEN C WORD$ (X)) - z) THEN380
330 PRINT" WRONG ! " : P R J NT " TRY AGA I N " : WRONG=WRONG+l
340 S=S+ I : IF S=S THEN PR I NP THE ANSWER IS " ; : GOT0360
350 GOT0290
360 PRINTRI GHT$ (WORD$(X) , LEN< WORD$< X >) -Z)
370 WRONG=WRONG+I : GOT0390
380 PRINT " R IGHT ! • : R I GHT=RIGHT+I
390 PRINT- ANOTHER C Y/ N) ? • ;
400 A$= I NKEY$
410 IF A$::: " y• THEN 140
420 IF A$0· "N" THEN 400
430 CLS : PR I NTal256, · vou Gor· ; R IGHT ; · R I GHT OUT oF· i
440 PR I NTR I GHT +WRONG
450 IF R J GHT>WRONG THEN 490
460 IF WRONG-RIGHT<5 THEN PRINT" PRETTY BAD � " :END
470 IF WRONG-RIGHT< 10 THEN PRINT" TERRIBLE � • :END
480 PRINP R J D I CULOUS � " : END
490 IF RJGHT-WRONG>S THEN PRINPQVJTE GOOD � • : END
500 IF R IGHT-WRONG> 10 THEN PRINT-EXCELLENT ! " :END
510 PRINP AVERAGE ! • : END
520 PR I NTL EFT$ C WORD$ C X > , Z-1 > : WRONG=WRONG+ 1
530 GOT0390
540 CLS: PRINT" PLEASE PREPARE TAPE AND THEW
550 PR I NT N PRESS ' R ' "
560 I F I Nt<EY$< > " R · THEN560
�,70 PRINT - I S TAPE SET ON RECORD C Y/N) ? •
580 AS= INKEY$
590 IFA$= · r THEN620
600 IFAS<> N W THEN580
610 GOT05 1 0
620 INPUP F ILE NAME" ; NAMES
630 PRINT" SAVING " ; NAME$; " Now·
640 OPEN• o • , t- 1 , NAME$
650 PR I NT#-1 , NUMiER
660 FORN= 1 TONI.JMBER
670 PRI NTl- 1 , WORD$ C N) ;

168

680 NEXT
690 PRI NTNAME$: " SA'.'CD�
700 CLOSE#-1
710 GOTOl-40
720 CLS : PR I NT" PLEASE SET TAPE ON PLAY•
730 PRINT. PRESS ' R ' WHEN READY •
7-40 If INKEYS < > " R • THEN7-40
750 PRINT" PLEASE ENTER F I LE NAME • i
760 INPUT NAME$
770 PRJ NT" LOADING " ; NAME$
780 OPEN· I " , #- I , NAMES
790 INPUT#-1 1 NUMBER
800 DJ MWORDS < NUMBE R >
8 1 0 FORN=t TONUMBER
820 INPUHJ·-1 1 WORD$ (N)
830 NEX T
840 PRI NTNAMES ; • LOADED"
850 CLOSE#-I
860 X=NUHBER
870 FORN=0T01000:NEXT
880 GOT0140

Commentary

Appendix C

Line 10 clears the screen and displays the title of the program. You are then
asked whether you want to load a set of words or set up some more by line
20. Lines 30-40 check that your response is a legal one and react accordin­
gly.

Lines 50-60 ask you how many words you want to learn before lines
70-100 INPUT the words. You may notice that we have used the LINE
INPUT command rather than INPUT. This allows us to enter the colon in
between the words and their meanings, something which the INPUT
command doesn't allow.

You are asked by line 10 whether or not you want to save your set of words,
and lines 120-1 30 react accordingly to your response. Line 140 clears the
screen and picks a random word. Lines 150-180 find where the colon is
positioned in the word and then line 190 decides whether to ask you to
translate from or into English.

Lines 200-210 tell you the word which you are expected to translate,
before you are asked for an answer by line 220. Line 230 makes sure that
you're not asking for Help, and then Line 240 checks to see if you have got
the word right. You are told that you have got the word wrong by Line 250
and Line 260 makes sure that you haven't run out of guesses, telling you the
answer if you have.

169

The Dragon Trainer

Lines 290-350 are similar to lines 200-260 except that they ask you to
translate the word in the other way.

Lines 360-370 tell you what the word which you are translating is, and
line 380 tells you that you are right, increasing the value of the variable
RIGHT as it does so. Lines 390-420 ask you whether or not you want
another go and act on your response.

Lines 430-440 tell you how many you got right before lines 450-510 tell
you how well you done. Lines 520-530 tell you the word which you are
trying to translate.

Lines 540-610 make sure that you have the tape recorder set up correctly
for saving the list of words. Line 570 asks you for the file name and then
your list of words is saved on tape by lines 640-690.

Lines 720-740 make sure that you have the tape recorder correctly set up
for loading in a set of words. Lines 750-760 ask you for the name that the
words were saved under before lines 780-850 load in the list of words
which you require. Line 870 then pauses before the computer is sent back
to the main program by line 880.

170

APPENDIX D

Jargon Guide

If there's one thing that the computer world is full of it's jargon, and here is
a guide to help you through this foreign language:

Acoustic coupler-device connected to a computer into which a telephone
hand set fits. Allows computers to communicate over the telephone.
Address - an index number to memory locations, usually in binary or
hexadecimal (base 16).
Assembly language - a programming language in which processes are
carried out by altering memory addresses using symbolic instructions.
BASIC - Beginner's All Purpose Symbolic Instruction Code. The lan­
guage which most micro-computers use, and the one which this manual
teaches you.
Bit - a single binary number, either one or zero.
Bug- an error in a program, either causing it to work incorrectly or not at
all.
Byte- a binary number made up of eight bits (usually). A byte can repre·
sent any number from O to 255 as there are 256 combinations of eight ones
and zeros.
Cartridge- a unit composed of either ROM or RAM (or both) which can
be plugged into a computer providing a program or extra memory.
Character set- the set of letters, numbers and symbols which are available
from the computer.
CP/M - Control Program for Microcomputers. A standard disc operat·
ing system which is available on many 280 based computers. As it is a
standard language software can be easily transferred from one CP /M
system to another.
CPU - Central Processing Unit. The chip at the heart of a computer
which controls everything.
Cursor . character which indicates where the next piece of information
will appear on the screen.
Data - information.
Debug - to remove errors from a program.
Disk - a magnetic device for the storage of programs and data. Allows
very fast access to a large amount of information. (Most disk units can
access information in seconds).

171

The Dragon Trainer

DOS - Disk Operating System. A program either dumped into RAM or
held on ROM which controls the operation of disk.
EEPROM - Electrically Erasable Read Only Memory. Similar to a ROM
but can be erased by electrical impulses.
EPROM - Erasable Programmable Read Only Memory. A memory
device similar to ROM which can be erased by exposure to ultra-violet
light.
Floppy disk - a magnetic-coated disk on which programs and infor­
mation can be stored.
Hard copy - a printout of a program or other information on paper.
Hard disk - similar to a floppy disk but is fixed permanently inside the
disk drive. Capable of storing much more information than a floppy disk.
Hardware - all the actual physical components of a computer system eg
the keyboard.
Hex or Hexadecimal - base 16. A means of counting in 16s opposed to 10s
using the numbers 0-9 and then the letters A-F (A = 10, B = 11 etc).
High Resolution - refers to the size of any single point which can be lit up.
The smaller the point the higher the resolution.
Instruction - a set of bits which give the CPU a command to carry out.
Interface - a unit which allows the computer to be connected to another
unit eg a printer.
1/0 - Input/Output. A series of ports which allow the computer to inter­
face with a device and lets the device send information back to the
computer.
Kilobyte (K) - 1024 bytes of memory.
language - a series of commands which combine to make up a program.
Machine language or machine code - the language in which the CPU
works is made up of a series of hexadecimal numbers.
Memory map - table showing how the computer's memory is divided up.
Modulator - device inside the computer which turns the computer's
output signal into a form which can be displayed on the television.
Modem - unit which allows computers to communicate over a normal
telephone line. Must be used with an RS232 interface and British
Telecom's permission must be obtained before using one.
Monitor - either a program which allows you to alter the contents of the
RAM using machine code, or a TV-type unit which does the same job as the
television but produces a much higher quality picture.
Parallel/Serial - the means by which a computer outputs information. A
parallel interface sends information out along a series of wires, whereas a
serial device uses fewer wires and sends the data out one bit at a time.
Pascal - very powerful high level language used on some computers.
Peripheral - device which connects to a computer such as a printer or disc
unit.
Pixel - single dot which is displayed on the screen. Pixels are lit up in
groups to form characters and pictures.

172

AppendixD

Port - a kind of window to the outside world through which information
can be output and input.
Printout - same as hard copy.
Program - set of instructions which combine to make the computer carry
out a useful (?) task.
PROM - Programmable Read Only Memory. A special form of ROM
which can be programmed.
QWERTY - the standard typewriter style keyboard layout.
RAM - Random Access Memory. Form of memory which can have its
contents altered by programming and can also have its contents read.
Anything stored in RAM is lost when the power to it is stopped.
Register - a memory location in the CPU which has a specific purpose in
the controlling of the computer.
ROM - Read Only Memory. Form of memory which can have its contents
read but not altered.
Routine- a program, or part of the program, designed to perform a single
task.
RS232 - a form of interface used for serial input and output.
Software - a program of one kind or another. Software is always stored
on some kind of hardware, such as a tape, ROM or RAM.
Source code - a program which has been written in a high level language,
such as BASIC, and needs to be converted into machine code.
String - a series of characters.
Stringy floppy- half way between a floppy disk and a tape. A continuous
loop of tape which can be read and written to much faster than a normal
tape. Must be used with a proper stringy floppy drive.
Subroutine - a program within a program. A small part of the program
which has one specific task to fulfil.
Syntax - the form in which a programmable language must be.
Too/kit - a program which adds to a computer's set of commands.
Utility - a useful command, or set of commands.
Variable- a symbol or combination of symbols which is used to represent
a number.
VDU - Visual Display Unit. Either a TV or monitor on which infor­
mation from the computer can be displayed.
Z80- very popular CPU which is used in many computers, such as the ZX
Spectrum, TRS-80 and Aquarius.
6502 - another popular CPU, used in such computers as the Atom, Pet
and Orie computers.
6809 - the CPU inside your Dragon.

173

Index

Operators Page
+ in calculations I I

with PLAY command 84
with PRINT USING command 104
in calculations I I

with PLAY command 84
in calculations I I

in calculations I I

with PRINT USING command 103
as exponentiation 12
with ED IT command 37
with PRINT USING command 104
abbreviation 13
abbreviation 59

separator 17
with PRINT USING command 104

0/o with PRINT USING command 104
for deleting 10
with ED IT command 38
with PRINT command 1 6
with IF . . THEN statement 25

< with IF . . . THEN statement 25
< with PLAY command 85
> with IF . . . THEN statement 25
> with PLAY command 85
< > with IF. . . THEN statement 25
< = with IF. . . THEN statement 25
> = with IF. . . THEN statement 26
with PLAY command 85

with PLAY command 85
with PRINT USING command 103
with PRINT USING command 103
with string variables 20

175

The Dragon Trainer

A

A with ORA W command 99
ABS command 1 1 1 , 1 1 7
Alarm Clock program 141
AND command 27,102, 1 17
ARRAYS 54-58
Artist program (using POKE) 79
Artist program (using PSET) 139
ASCcommand 1 1 7ASCII code 1 17
ATNcommand 1 10, 1 17 AUDIO OFF command 36, 1 17 AUDIO ON command 36, I 17
B

B with DRAW command 97
with LINE command 92

BF with LINE command 93
Bouncing Ball program 72
BR with ORA W command I()() BREAK key 3 1
Breakout program 74-75
C

C with EDIT command 38
withDRAW command 97

Calculations II
CHR$ command 45, 1 18 CIRCLE command 94, 118 CLEAR command 87, 1 1 8 CLEAR key 10 CLOADcommand 35, 1 1 8 CLOADM command 1 1 8
CLOSE command 105, I 1 8
CLScommand 24, 1 1 8
Code Breaker program 162 CO LOR command 93, 1 1 8
Colour codes 127
Colours available 127
CONT command 60, I 1 8
COS command 1 10, 1 1 8 CPU 78 CSA VE command 35, 1 19 CSAVE,A 1 19 CSA YEM command 1 19
Cursor 9 176

D

D with ED IT command
withDRAW command

DATA command
DEF FN command
DEFUSR command
DEL command
Deleting program lines
Deleting lines of text
Dice program
DIM command
DRAW command

E
E with DRAW command
ED IT command
END command
ENTER key

with ED IT command
EOFcommand
EXEC command
EXP command
Exponentiation

F
F with DRAW command
FIX command
FOR . . . NEXTloops

G
G with DRAW command
GET array, calculating
GET command
GOSUB command
GOTO command

H
H with ED IT command

with DRAW command
Hangman program
HEX$ command

Index

38
97

67, 1 19
66,119

119
50, 119

16
10
61

54, 1 19
97-100, 1 19

97
37-39

59
1 1
38

106, 119
119

1 1 1 , 120
12

97
120

29

97
101

101,120
32, 120
32, 120

38
97

129
120

177

The Dragon Trainer

I with ED IT command 38
IF . . . THEN . . . ELSE statement 25, 120
INKEY$ command 43,120
INPUT command 21, 120
INPUT$ command 106
INSTR command 120
INT command 1 1 2, 120
Interpreter 78
Invader program 46-47
Inverse characters

J
Joysticks (putting in programs) 83
Joystick buttons (testing) 83
JOYSTKcommand 82,121

K
K with ED IT command 38

L
L with ORA W command 97
L with EDIT command 38
L w.ith PLAY command 84
LEFT$ command 63, 121
LEN command 65, 1 21
LINE command 92, 121
LINE INPUT command 121
Line numbers 15
LIST command 23, 121
LOG command 112, 121
Lower case 9

M
M with ORA W command 97
Maths Test program 38
MEMcommand 1 1 2, 121
Meteors program 135
MID$ command 64, 121
Modern Art program 95
MOTOR OFF command 36, 121
MOTOR ON command 36, 121
Multiplication tables program 30
Multi-statement lines 16

178

Index

N Negative numbers 12 NEW command 24, 121 NEXT command 29, 12 1 No. of pages used 127 NOT command 102, 12 1
0 0 with PLAY command 84 ON GOTO command 32, 122 ON GOSUB command 32, 122 OPEN command 105, 122 OR with PUT command 102, 122
p Page swapping program 96 PAINT command 93, 122 Parenthesis 12 PCLEAR command 89,122 PCLScommand 91 , 122 PCOPY command 95, 122 PEEK command 79,122 PLAY command 84-86, 1223-D Plot program 134 PMODEcommand 90, 122POINT command 73, 122 POKE command 79, 123 POScommand 108, 123PPOlNTcommand 91 , 123PRESET command 9 1 , 123 PRINT command 1 1 -14, 123 PRINT@ command 41 , 123 PRINT lf command 105, 123 PRINT USING command 103-104, 123PSET command 9 1 , 123PUT command IOI, 123
Q Questionnaire program 22 Quotation marks 13

179

The Dragon Trainer

R
R with DRAW command 97
RAM 79
READ command 67, 123
REM command 59, 123
RENUMcommand 5 1 , 124
RESET command 7 1 , 124 RESTORE command 68, 124
RETURN command 32, 124
Revision Aid program 166 Rl GHT$ command 63, 124
RND command 40, 124
ROM 78
Rotating penant program 99
RUN command 24, 124
s

S with ORA W command 98
Score program 56 SCREEN command 90, 124
Screen start address 79
SET command 70, 124
SON command 1 13, 124 SHIFT key 9
SIN command 1 10, 124
Size of points 124
SKIPF command 36, 124
SOUND command 52, 124 SPACE bar 10

with ED IT command 38 SQR command 1 13 , 124
STEP command 30,125
STOP command 59, 125
STR$ command 125 STR1NG$command 49, 125
T
T with PLAY command 84
TAB command 49,125
TAN command 1 10, 125
TIMER command 125
TROFF command 60, 125
TRON command 60, 125
180

Index

u

U with DRAW command 97
USRcommand 125

V

VAL command 125
Valley of Death program 145
Variables 18-19
V ARPTR command 125
Vo! ume setting programs 34

X

X with DRAW command 100
with PLAY command 86

181

Other titles from Sunshine

THE WORKING SPECTRUM

David Lawrence

0 946408 00 9 £5.95

THE WORKING DRAGON 32

David Lawrence

0 946408 01 7 £5.95

THE WORKING COMMODORE 64

David Lawrence

0 946408 02 5 £5.95

DRAGON 32 GAMES MASTER

Keith Brain/Steven Brain

0 946408 03 03 £5. 95

FUNCTIONAL FORTH

for the BBC Computer

Boris Allan

0 946408 04 £5. 95

COMMODORE 64

machine code master

David Lawrence

0 946408 05 X £6.95

183

Sunshine also publishes

POPULAR COMPUTING WEEKLY
The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-minute
details of the latest games. Other features in the magazine include regular
hardware and software reviews, programming hints, computer swap,
adventure corner and pages of listings for the Spectrum, Dragon, BBC,
VIC 20 and 64, ZX 81 and other popular micros. Only 35p a week, a year's
subscription costs £19.95 (£9.98 for six months) in the UK and £37.40
(£18.70 for six months) overseas.

DRAGON USER
The monthly magazine for all users of Dragon microcomputers. Each issue
contains reviews of software and peripherals, programming advice for
beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year's subscription
(12 issues) costs £8.00 in the UK and £14.00 overseas.

For further information contact:
Sunshine
12-13 Little Newport Street
London WC2R 3LD
01-734 3454

184

	1
	lc-p001
	lc-p002
	lc-p003
	lc-p005
	lc-p006
	lc-p007
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p152
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	lc-p159
	lc-p160
	lc-p161
	lc-p162
	lc-p163
	lc-p164
	lc-p165
	lc-p166
	lc-p167
	lc-p168
	lc-p169
	lc-p170
	lc-p171
	lc-p172
	lc-p173
	lc-p175
	lc-p176
	lc-p177
	lc-p178
	lc-p179
	lc-p180
	lc-p181
	lc-p183
	lc-p184
	z

