thedragon
trainer

ahandbook for beginners

brian lloyd

the dragon
trainer

ahandbook for beginners

brian lloyd

First published 1983 by:
Sunshine Books

(An imprint of Scot Press Ltd.)
12—13 Little Newport Street,
London WC2R 3LD

Copyright © Brian Lloyd

ISBN 0 946408 09 2

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording and/or otherwise,
without the prior written permission of the Publishers.

Cover design by Graphic Design Ltd.
Illustration by Richard Dunn.
Typeset and printed in England by Commercial Colour Press, London E7.

This book is dedicated to my father for all his help,
patience and encouragement

CONTENTS

Introduction

Getting started

Timeto get working
PRINTing words or letters
Line numbers

Variables

String variables

INPUT

LIST

RUN, NEW and CLS
IF...THEN...ELSE
FOR...NEXT loops

GOTO, GOSUBand RETURN
Storing your programs on tape
EDITing your programs

RND

PRINT @

INKEY$

CHRS$

PRINT TAB and STRINGS
DELeting

RENUMbering

SOUND

DIM and ARRAY variables
REM, END and STOP
CONT, TRON and TROFF
ON...GOTOandON...GOSUB
String handling

The Dragon Trainer

DEFFN

READ, DATA and RESTORE
Graphics

PEEK and POKE

Using joysticks

PLAY

CLEAR

Highresolution graphics
PRINT USING

Storing information on tape
Using a printer
Trigonometric functions
Numeric functions

Appendices

A
B
C

D

Alist of commands
Graphicsinformation
Programs
Hangman

3-DPlot

Meteors

Artist

Alarm Clock
Valley of Death
Code Breaker
Revision Aid
Jargon Guide

Index

117
127
129
129
134
135
139
141
145
162
166
171

175

Introduction

In compiling this book we assumed that the reader had little or no knowl-
edge of computer programming. Each section has been tested by complete
novices and re-written if proved to be too complicated. My thanks to the
most ardent tester, Ray Hunt-Terry, who has read through the book word
for word and tested each section from cover to cover.

The book is designed to be read from the first page right through to the
last, without skipping any pages. Even skipping a single line could leave
you totally confused and wondering how something works, so don’t be in
too much of a hurry to do things.

The book works through the commands in the order in which you need
to know them so that you can get down to writing simple programs as soon
as possible. As you read each section your understanding of the computer’s
commands and functions will grow, enabling you to write more compli-
cated programs as you learn each new command.

BASIC is the main language of the Dragon 32 computer and you may be
assured to know that BASIC stands for BEGINNER’S All-purpose
Symbolic Instruction Code. The fact that the language is designed for
beginners doesn’t stop it from being a very powerful language giving you
immense control over the computer.

If you read each section thoroughly and make sure you understand what
you have read, the technique of computer programming will come to you
quite quickly. Itis best to make sure that you understand each section, even
if you have to go through it several times. It saves a lot of time and frus-
tration in the long run. Finally, never be afraid to experiment with any
command, for experimenting is the best way to learn (you may even
discover something that no-one else knows about).

1
Getting started

If you haven’t used a computer before then you will probably be won-
dering what to do with this plastic box with keys on top. Well the first thing
to do is to connect up your computer.

Plug the TV lead that came with the Dragon into your TV aerial socket
and the other end into the socket marked TV on your computer.

Next the transformer. Plug the lead with a white wire and grey plug on
the end into the socket marked TRANS SUPPLY at the rear of the
computer. Plug in the power lead and switch on the computer by pressing
the button marked ON/OFF which is also on the rear of the computer.

Switch on your television and tune it to approximately channel 36 until
you see the message DRAGON DATA Ltd displayed clearly on the screen.

Now that you have your Dragon set up and working you will see a flash-
ing dark green/black square. This square is the cursor. Its job is to show
you where the next character that you type into the keyboard will appear on
the screen.

If you try typing on the keyboard, the characters you type will appear on
the screen with the cursor moving along in front of them.

Some of the keys have two characters on them. To obtain the top cha-
racters you will have to hold down one of the SHIFT keys while typing a
key ie pressing SHIFT and 5 will result in the % sign appearing on the TV
screen. Pressing SHIFT and 8 will produce the closed bracket etc.

If you now press the 0 key (the 0 key is a zero, not to be confused with the
letter O) while holding down the SHIFT key and then typing on the key-
board (after releasing the SHIFT and 0 keys) the characters will change to
green on black.

The green on black characters are known as INVERSE CHARACTERS
and if you connect a printer to your Dragon these will appear as lower-case
letters — abcd etc.

To return to upper-case characters you will have to press 0 and SHIFT
again. All commands must be entered in upper-case. Try typing in some
text using upper-case and lower-case characters, ie:

Hello, how are you Jill?

There are four keys with arrows pointing in different directions:
Pressing the arrow key pointing to the left makes the cursor move

The Dragon Trainer

backwards, deleting the characters to its left as it goes. This key is used for
correcting any mistakes you make while entering text. Try typing in some
characters and then using the left-arrow key to delete them. As you will see
it is much easier than writing on paper as mistakes can easily be corrected.
Later we will demonstrate how to correct mistakes that you have made
within a program without re-typing the whole line.

If you press SHIFT and the left-arrow at the same time the wholeline will
be deleted (but only one line, a maximum of 32 characters).

The up-arrow key produces an arrow pointing upwards when pressed.
This key is used in calculations and its full use will be explained later.

Pressing the right-arrow key on its own produces nothing, but SHIFT
right-arrow produces a closed square bracket.

The down-arrow key and SHIFT produces an open square bracket.

Pressing SHIFT and up-arrow produces an arrow pointing to the left.

The long bar at the bottom of the keyboard is the space bar, and as its
name suggests, inserts a space each time it is pressed.

Try typing the above key combinations and see what effects they pro-
duce.

Another key onthe keyboard is the CLEAR key. If you press this key the
screen will clear and all the characters on it will be lost (unless they are part
of a program). The cursor is also moved to the top left-hand corner of the
screen ready for more text to be typed in.

Next to the CLEAR key is a key withthe word ENTER printed onit. The
use of this key will be explained later, as will the use of the key in the top
right-hand corner the BREAK key, so do not worry too much about them
at the moment as no harm can be done by pressing them accidentally.

2
Time to get working

If you have practised thelast chapter you should have a good idea how the
keyboard works, so now it’s time to make your Dragon work for you. Let’s
see what it can do.

One of the things a computer can do is calculate, so let’s try some calcu-
lations. To do calculations on the Dragon you will need to use one of the
most common commands used in BASIC and that is PRINT.

There are several ways of using the PRINT command, but for the
moment we will use just one. Remember to use the left-arrow key if you
make any mistakes:

PRINT 5+19

You will need to hold the SHIFT key down to get the + sign, as you will
with all the upper characters on the keys.

Now what has happened? Not much! This is because the Dragon will not
carry out any command until the ENTER key is pressed. This tells the
computer that you have finished entering your instructions and that you
want them carried out. So let’s press ENTER and see what has happened.
If you have entered everything correctly then you should have the answer
24 on your screen.

If 2SN ERROR is on the screen instead you have made a mistake. Press
CLEAR to give you a clean screen and try again.

‘What you have told your Dragon to do is PRINT (or display) on your
screen the sum of 5+ 19. Now try the following:

PRINT 10+4
PRINT 6*4
PRINT 12-2
PRINT 24/6

Try some more calculations of your own, but just one thing before you
do. To divide you must use the / sign and to multiply the * sign. This is
common to all computers. The minus sign is situated beside the BREAK
key.

If you have done some multiple calculations you may not have got the
answer you expected. Try the following:

PRINT 6 +9/3 (followed by ENTER)

The Dragon Trainer

The answer the computer should give is 9 and not 5 as you may have
expected. This is because the Dragon as with most computers, carries out
the division part of the calculation first. Now if you type:

PRINT (6 +9)/3 (followed by ENTER)

The answer you will get this time will be 5, because putting brackets
around part of the calculation tells the computer to work out that part first.
The order in which the computer carries out calculations is: multiplication
or division followed by addition or subtraction.

‘We can now go on to find out what the up-arrow is for. Try typing:

PRINT 213 (again followed by ENTER)

You should have 8 printed up on your screen, because the up-arrow
means ‘to the power of’. The Dragon works out ‘to the power of’, or
exponentiation as it is called, before multiplication or division.

If you want to calculate negative numbers all you have to do is put a
minus sign in front of the number eg PRINT — 5 + 3.

3
PRINTing words or letters

The PRINT command is not only used to display the answers to
calculations but can also be used to display words and messages. Try
typing:

PRINT“HELLO, 1 AM YOUR DRAGON"’

and then press ENTER.

Your Dragon will display the words enclosed in quotation marks (‘) on
the screen. The quotation marks tell the computer that what is enclosed
within them is not a calculation and that is exactly what you want on the
screen.

Try some text for yourself, but remember if you do not put quotation
marks around the text you will receive an error message.

Anything enclosed in quotation marks be they letters, numbers or
symbols will be PRINTed on the screen just as you entered them.

As we progress through this book we will be using the PRINT command
to a greater extent. You will be amazed at what calculations together with
PRINT can do.

To re-cap what we have learnt so far in this chapter, the PRINT
command can be used to display and carry out calculations on your TV/
monitor screen.

It can also be used to display words etc, as long as they are enclosed in
quotation marks.

You have to press ENTER before the computer will carry out an
instruction.

As it is a lot better to have a clear screen to work with, remember the
CLEAR key clears the screen and puts the cursor to the top left-hand
corner of the screen. So if the screen starts to look a bit untidy or hard to
follow CLEAR the screen before you start the next exercise.

Remember that if you press the CLEAR key all that is on the screen will
be lost.

Now for a few tips before we leave this chapter. To save a lot of typing,
instead of typing the word PRINT each time you can use the ? sign. For
example ? 2+ 2 will give the same results as PRINT 2 +2. As we use the
PRINT command more and more this will save alot of time, so it is worth
remembering.

13

The Dragon Trainer

Try practising some of the things we have learnt in this chapter before
moving on. It will save time later.

The only way to learn is to practise and experiment, so do try your own
experiments as we go along and keep reading back over the chapter if you
do not understand anything.

4
Line numbers

Until now your Dragon has carried out your instructions as soon as you
have pressed the ENTER key. Obviously this is of no use whatsoever if you
are writing a program as the computer forgets what you have told it to doas
soonasit has carried out the instructions. So when we are writing programs
we need to use /ine numbers.

Line numbers are used to make the computer remember what you are
telling it to do. They also allow you to control the sequence in which the
instructions are carried out.

Instructions which are entered using line numbers are not carried out
immediately, but are saved in the computer’s memory until you want them
carried out.

Line numbers are usually in increments of ten, allowing you to insert lines
in between ones that you have already entered. Try typing in this example
program. You should type each line as it is printed below. After each line
press ENTER:

10 CLS

20 PRINT“HELLO, I'M YOUR DRAGON 32
30 PRINT“COMPUTER!”

40 PRINT“AND THIS IS A PROGRAM!!!”

‘When you have finished typing in this program check each line and if
you see any mistakes you should retype the line that the mistake occurs in.

You will notice that nothing happened after you pressed ENTER at the
end of each line except the cursor jumped down to the next line ready for
you to enter another line or command. However, if you type RUN (and of
course, press the ENTER key) the instructions will be carried out.

Thescreen should clear (the CLS command does the same as pressing the
CLEAR key) and the words enclosed in quotation marks should appear on
the screen.

If you get an error message then you will have made a typing mistake. In
this case you should type LIST and then press the ENTER key. The pro-
gram will re-appear on the screen.

The LIST command works at any time, not just if there is an error in the
program. Any time you want to look at your program just type LIST.

15

The Dragon Trainer

Let’s have a closer look at the program. The first thing that you will
notice is the line numbers and the fact that they are in steps of ten.

Line 10 (the first line of the program) clears the screen inthe same way as
the CLEAR key. Lines 20,30 and 40 PRINT the message on the screen.
You will notice that each time a new PRINT command is used the text
starts on a new line. If you now type the following you will see how to
continue PRINTing text on the same line using two PRINT commands:

50 PRINT9*9="";
60 PRINT 9*9

‘When you have finished typing in these two lines type LIST and you will
see that your Dragon has added two lines to the end of the program. If you
now type RUN the program will be executed, complete with the two new
lines you have entered.

Line 50 PRINTS the characters ‘9*9 =" and line 60 PRINTS the answer
to the calculation.

You will notice that the sum and the answer are PRINTed on the same
line. Thisis due to the semi-colon (;) at theend of line 50. A semi-colonina
PRINT command tells the computer not to start the next lot of PRINTing
on a new line but to carry on where it left off.

Try typing the following and then type LIST:

15 PRINT‘‘A PROGRAM!!!”

You will see that the line you have just typed has been inserted between
lines 10 and 20.

The Dragon automatically puts the lines in their numeric order, allowing
you to insert lines anywhere in the program.

One thing about line numbers, however, is that you must not use the
same line number twice. This is because if the same line number is used the
Dragon will delete the first line with that number and replace it with the
new one. To illustrate this type in:

15 PRINT“THIS LINE HAS CHANGED!"

and type LIST. As you can see the old line 15 has been replaced by the
new one.

If you want to delete a line from a program you should just type its line
number and press ENTER, eg if you type: 15 then line 15 will be deleted
from the program. Type LIST to make sure that the line has been deleted.

The next stage up from this simple program is a program using rmulti-
statement lines.

Multi-statement lines are the same as the program lines that we have
been using up till now except that morethan one instructionisoneachline.

16

Chapter 4 Line numbers

Try retyping line 10, replacing it with this line:
10 CLS:PRINT*‘THIS IS A MULTI-STATEMENT LINE!”’

As you can see we have two instructions on this line, the CLS command
and the PRINT command, separated by a colon.

You can have as many commands on one line as you like (as long as the
line is not over 255 characters long). The only thing you have to remember
is to put a colon between each command.

To finish off thissectionlet’s type in the followingprogram(don’t worry
about the lines not being in order, this is the whole idea of the program).
But first type NEW to clear the computer’s memory:

Line Sort

10 CLS

40 PRINT“ALREADY I HAVE SORTED THE LINES OF THIS PRO-
GRAM INTO NUMERIC ORDER."”

60 PRINT“CLEVER LITTLE THING AREN'T I?”*;

50 PRINT“ICANALSOTELL YOU THAT"';:

PRINT*‘876*564 = **;876*564

30 PRINT““COMPUTER AND I'M GOING TO
SHOW”:PRINT*YOU WHAT I CAN DO.”

20 PRINTN************A*PROGRAM***********H;:PRINTHHI
THERE! I'M YOUR DRAGON 32"

When you haveentered the program type LIST and you will see that the
Dragon has put the lines in their right order. Type RUN and the program
will be carried out.

Try experimenting with this program and see what it does and how it
works. You could even try writing your own program (remembering to
type NEW first though).

5
Variables

So far in our programs we have had no need to use a value which may need
to be changed, but very often we have tobeableto change a value every few
lines. For this reason we use variables.

A variable is a value which can be changed. Letters are used to represent
these values, for instance, we can tell the computer to store the value 13 in
the letter A. Try typing:

10 CLS:A=13
20 PRINT A

If you type RUN then your Dragon will PRINT the number 13 on the
screen. You can make A represent any number of course.
Now add the following lines to your program:

30 B=99
40 PRINT B
50 PRINT13+99="";A+B

Now RUN the program and you will see that the computer has also
remembered that B=99.

Line 50 PRINTS a calculation and its answer, replacing the numbers 13
and 99 with A and B respectively. Now add the next two lines to the
program:

60 C=A+B
70 PRINT C

When you RUN the program this time you will see the computer has
stored the value of A+Bin C.
This is how the last part of the program works:

(I) LOOK TO SEE WHAT NUMBER ‘A’ REPRESENTS

(2) LOOK TO SEE WHAT NUMBER ‘B’ REPRESENTS

(3) ADD TOGETHER THE CONTENTS OF ‘A’ AND ‘B’ (112)

(4) REMEMBER THAT VARIABLE ‘C’ NOW HAS THE VALUE OF
‘A’+B’ (112)

(5) PRINT THE NUMBER THAT IS STORED IN ‘C’ ONTO THE
SCREEN

18

Chapter 5 Variables

A variable can be any letter from A to Z, or almost any combination of
letters and numbers ie A, HELLO, ZH, AZ, A3, Z100 can all be used as
variables.

IF, OR, PRINTER and TOP cannot be used as variables because they
are either instructions or the first few letters of the variable are
instructions.

Variables can be of any length but only the first two letters are
recognised ie if the word HELLO is used as a variable only the letters HE
are recognised and used as variables.

All variables have a value of zero before you use them, as it is perfectly
alright to refer to a variable which has not yet been given a value (eg saying
‘A= B’ will setthe variable ‘A’ to 0 ifthe variable ‘B’ has not been assigned
avalue).

One last thing. In this chapter we have been assigning values to variables
simply by saying ‘A= I'. It is possible to say ‘LET A = I’ but this takes up
more program space, so if you ever see a program with a command ‘LET
A =1 then you can just read it as ‘A=1".

6
String variables

You may also need to use a variable to represent a letter or letters (string).
In this case we use normal letters and add $ symbol to the end ie A$ can be
used as a variable to represent a string of letters.

Type NEW to clear the Dragon’s memory of the old program and type
the following in:

10 CLS

20 A$=‘“‘HELLO”

30 NAMES$=“FRED”

40 PRINT AS$;* "’;NAMES$

RUN this program and you will see that the Dragon has remembered
that the variable A$ represents the word ‘HELLO’ and that the variable
NAMES represents the word ‘FRED’ in the same way as normal numeric
variables.

Although these string variables, as they are known, can contain
numbers, normal numeric variables cannot contain letters.

Here is an example of what you can’t do with variables:

A=“HELLO”
OR=3

OR$ =““HELLO”’
B=A$%
B=A$+90

It would be a good idea if you experimented some more with variables to
make sure you understand how they are used.

In the next chapter, which is about the INPUT commands, we will use
variables again and write a program to illustrate how to use both types of
variables.

20

INPUT

Using the INPUT command it is possible to assign a value to a variable
while a program is being executed.

‘When the INPUT command is used during a program the computer will
stop the program, display a question mark and wait for you to enter a
number or letters before carrying on with the program. When you answer
the prompt what you actually do is assign a value to a variable.

If you are using the INPUT command to ask for a number and a word or
series of letters are entered then the computer will display this message:

?REDO

and wait for you to enter a proper reply, in other words a number. The
same thing applies if you answer with a numeric expression (eg 2+ 2).

If nothing is entered in reply to an INPUT command (ie if the ENTER
key is pressed without first entering a reply) then the variable used will be
set to zero (if a numeric variable) or emptied (if a string variable).

Input Demonstration

10 CLS

20 PRINT“PLEASE TYPE IN ANY NUMBER”
30 INPUT A

40 CLS

50 PRINT“YOU TYPED IN THENUMBER";A

If you RUN this program the message PLEASE TYPE IN ANY
NUMBER will bedisplayed on the screen and a question mark will appear
with the cursor in front of it. Nothing further will happen until you type in
anumber. After pressing ENTER the screen will clear and the computer
will tell you what number you have entered.

Make the following alterations to the program:

20 PRINT “WHATIS YOUR NAME*;
30 INPUT AS
50 PRINT“HELLO "’;A$

21

The Dragon Trainer

‘When RUN, the program will this time wait for you to enter your name
and then give you a nice friendly greeting.

Instead of using the PRINT command to ask a question before the
INPUT command, it is possible to incorporate the message in the actual
INPUT, eg INPUT*““WHAT IS YOUR NAME’*;A$ asks you what your
name is and then assigns your name to A$.

Nextis a programillustrating all that we have so far learnt about BASIC
programming, including the INPUT command (remember to type NEW
before you enter the program).

Questionnaire

10 CLS

20 PRINT®###%%%%%##QUESTIONATRE®#%% %% % %" 5
30 INPUT"WHAT IS YOUR NAME® {NAMES$

4@ INPUT*HOW OLD ARE YOU* ;AGE

50 INPUT*ARE YOU INTERESTED IN COMPUTERS*;

COMPUTERS$

6@ INPUT*DCO YOU LIKE WORK/SCHOOL® ;WS$

7@ INPUT"CAREER"®;CAREER$

B0 INPUT"WHAT YEAR IS IT";YEAR

9@ CLS
100 PRINT"NAME: “;NAMES$
110 PRINT"AGE :" {AGE
12@ PRINT®* INTERESTED IN COMPUTERS?*; COMPUTERS$
130 PRINT"HARD WORKING?7";WS$
140 PRINT®"IN THE YEAR 2000 YOU WILL BE";Z000-YEAR+

AGE

‘When you RUN the program you will be asked a series of questions
which you must answer. When you have answered all the questions the
screen will clear and you will be presented with a run down of what you are
like. The program also tells you how old you will be in the year 2000.

If you list the program you will find that the program will not all fit on
the screen at one time. If you want to see the first half of the program you
should type LIST-80. When you have finished with the first half just type
LIST to see the rest of the program.

As you can see from the program the computer INPUTs several ques-
tions and assigns the answers to different variables.

Line 80 then clears the screen before the following lines PRINT the
answers to your questions.

Line 150 then calculates how old you will be in the year 2000.

Try adding to the program so that it asks more questions and PRINTs
the answers at the end. You could even try writing your own program (in
this case remember to type NEW first to clear the memory).

22

LIST

We have already used the LIST command to display our program on the
screen, but there is a lot more to the LIST command than we have seen so
far. The programin the last chapter was too long to fit onto the screen at
one time so we used the command LIST —80. This means ‘display all the
current program as far as line 80 on the screen’. It is also possible to LIST
alltheprogram afterline80 by using LIST 80 — . If you want toseea part of
the middle of a program then youcan usethe command L1ST 80~ 100
which tells the computer to display lines 80—100 on the screen (the line
numbers we are using hereare just examples and can of course be replaced
with the lines that you want to see). The maximum number of lines on the
screen at one time is 14. Here is a list of variations of the LIST command:

LIST 50-90

(display lines 50 to 90 on the screen).

LIST -50

(display all the program as far as line 50 on the screen).

LIST 120-

(display all the program after line 120 on the screen).

LIST

(display all the program on the screen, scrolling all but the last 14 lines).

1f a program will not all fit on the screen at the same time then the
computer ‘scrolls’ the screen, or moves everything on it up one line. To
stop this scrolling at any point while LISTing you should press SHIFT and
the @ key together. To continue with the LISTing press any other key
(except BREAK).

23

9
RUN, NEW and CLS

RUN

As you know, the RUN command is used to tell the computer to carry out
the program which is currently in memory, going through the lines in
numeric order unless instructed to do otherwise. The RUN command
usually starts executing the program from the first line, but it is possible to
tell the computer to start the program from a different point eg RUN 50
tells the Dragon to start executing the program from line 50. The RUN
command alsoclears all the variablesbeforestarting the program, soif you
don’t want the variable cleared, type GOTO and then the line of the
program that you want to start at.

NEW

We have already used the NEW command so you should know that its
purposeis to clear the Dragon’s memory of anythingthat is in it. The NEW
command will delete any program from memory, and once that has
happened you can’t get the program back, so make sure that you don’t
want the old programbefore NEWingit.

CLS

So far we have used the CLS command to clear the screen before we display
any textonit, but the command can be used to clear the screen to any one of
9 colours. For example, use CLS 2 to clear the screen to yellow. The
numbers for the different colours are:

0-Black 1—-Green 2—Yellow 3—-Blue
4—Red 5—Buff 6—Cyan 7—-Magenta
8—Orange

24

10
IF...THEN...ELSE

One of the most important aspects of a computer is its ability to compare
one thing with another. For instance, it will search through a list of names
untilit finds the one itislooking for, simply by comparing each name in the
list with the one it is looking for to see if they are the same.

The IF. .THEN...ELSE structure is used to see if a condition is ful-
filled and IF so goes on to carry out a further instruction. Here is an exam-
ple to illustrate this:

IFA=1THENB=1

This simple line checkst oseei f A represents the number 1 andi fso it goes
on to assign the number 1 to the variable B.

Adding the ELSE command to the structure tells the computer that IF a
condition is fulfilled THEN to carry out the next command(s), ELSEif the
condition is not fulfilled then carry out a different set of commands.

Here are a few examples of how the IF.. .THEN. . .ELSE structure can
be used:

IFA=5THEN Z=10ELSEZ=0

(IF the valueo f A is 5 THEN assign the number 10t o Z otherwise (ELSE)
assign the number 0 to Z).

IF Z<> THEN RUN

(IF the value of Z is anything apart from 1 THEN restart the program).
IF DD<5 THEN DD=5

(IF the value o f DD isless than 5§ THEN assign the number 5 to DD).
IF Y>7 THEN CLS

(IF the value of Y is bigger than 7 THEN clear the screen).
IF S< =90 THENT =10

25

The Dragon Trainer

(IF the value of Sis less than or equal to 90 THEN assign the number 10 to
.

IF ST> =19 THEN GT=1

(IF the value of ST is bigger than or equal to 19 THEN assign the number 1
to GT).

Here is a program demonstrating the 1F... THEN...ELSE structure
(remember to type NEW before you start the program).

Intelligence Test

18 CLS

20 INPUT*TYPE IN ANY NUMBER LESS THAN 10" ;N

30 IF N<1@ THEN PRINT"WELL DONE'*" ELSE PRINT
IDIOT!*

4@ INPUT"TYPE IN YOUR NAME" iNAMES$

50 IF NAME$="JOHN* THEN PRINT"HELLO JOHN'* ELSE
PRINT "I DON’T KNOW YOU!*

60 IF N<1@ THEN PRINT"YOU’RE QUITE CLEVER *iNAME$
ELSE PRINT"YOU ARE PRETTY STUPID AREN’T YOU =3
NAME$

70 INPUT*TYPE IN THE ANSWER TO 12#12"3T

80 IF T=144 THEN PRINT*WELL DONE" ELSE PRINT

"TWIT!*
9@ IF T=144 AND N<>1@THEN PRINT"YOU’RE A GENIUS *
iNAMES
100 IF 44 AND N>9 THEN PRINT"YOU’ RE IMPROVING!*®

110 IF T<>144 AND N<1@ THEN PRINT"YOU’RE GETTING
WORSE '*

120 IF T<>144 AND N>9 THEN PRINT*YQU'LL HAVE TO
IMPROVE YOU KNOW!'*

130 IF NAME$="JOHN* OR T=144 THEN PRINT"GLAD TO
HAVE MET YOU " §NAME$

Here is an explanation of how Intelligence Test works:

10 CLEAR SCREEN

20 DISPLAY THE MESSAGE “TYPE IN A NUMBER LESS THAN
10", WAIT FOR A NUMBER AND THEN ASSIGN THAT
NUMBER TO THE VARIABLE N

30 IF THE VALUE OF N IS LESS THAN 10 DISPLAY THE MESS-
AGE “WELLDONE!’, OTHERWISEDISPLAY THEMESSAGE
“IDIOT”

40 DISPLAY THE MESSAGE “TYPE IN YOUR NAME”, WAIT
FOR A NAME AND THEN ASSIGN THAT NAME TO THE
VARIABLE NAME$

26

Chapter 10 IF. .THEN.. ELSE

50 IF THE VARIABLE NAME$ REPRESENTS THE WORD
*JOHN” THEN DISPLAY THE MESSAGE ‘“HELLO JOHN!",
OTHERWISE DISPLAY THE MESSAGE *“I DON’'T KNOW
you!”

60 IF THE VALUE OF N IS LESS THAN 10 THEN DISPLAY THE
MESSAGE “YOU’RE QUITE CLEVER” FOLLOWED BY THE
STRING OF LETTERS REPRESENTED BY THE VARIABLE
NAMES, OTHERWISE DISPLAY THE MESSAGE ‘“YOU’RE
PRETTY STUPID AREN'T YOU” FOLLOWED BY THE
STRING OF LETTERS REPRESENTED BY NAME$

70 DISPLAY THEMESSAGE “TYPEINTHEANSWERTO i2*12”,
WAIT FOR ANUMBER AND ASSIGN THATNUMBERTO THE
VARIABLE T

80 IF THE VALUE OF T IS 144 THEN DISPLAY THE MESSAGE
“WELL DONE!”’, OTHERWISE DISPLAY THE MESSAGE
“TWIT!”

90 IF THE VALUE OF T IS 144 AND THE VALUE OF N IS LESS
THAN 10 THEN DISPLAY THE MESSAGE “YOU ARE A
GENIUS” FOLLOWED BY THE STRING OF LETTERS REPRE-
SENTED BY THE VARIABLE NAME$

100 IF THE VALUE OF T IS 144 AND THE VALUE OF N IS
GREATER THAN 9 THEN DISPLAY THE MESSAGE “YOU
ARE IMPROVING!”

110 IF THE VALUE OF T IS ANYTHING OTHER THAN 144 AND
THE VALUE OF N IS LESS THAN 10 THEN DISPLAY THE
MESSAGE *““YOU’RE GETTING WORSE!”’

120 IF THE VALUE OF T IS ANYTHING OTHER THAN 144 AND
THE VALUEOF N IS GREATER THAN 9 THEN DISPLAY THE
MESSAGE “YOU’LL HAVE TO IMPROVE YOU KNOW!”’

130 IF THE VARIABLE NAME$ REPRESENTS THE WORD
“JOHN” OR THE VALUE OF T IS 144 THEN DISPLAY THE
MESSAGE “GLADTOHAVE METYOU” FOLLOWED BY THE
STRING OF LETTERS REPRESENTED BY THE VARIABLE
NAME$

You may have noticed that all the commands we have so far covered
have been used in this program. You may also have noticed two new
symbols creeping in: these are < which means ‘less than’ and > which
means ‘bigger than’. When these two symbols are put together they mean
‘not equal to’.

The instructions AND and OR were also used in the IF.
THEN. . .ELSE constructions. AND is used with IF to say that IF a
first condition is fulfilled and a second condition is fulfilled THEN go on

27

The Dragon Trainer

and carry out the following command(s). OR is used to say that IF either a
first condition OR a second condition is fulfilled THEN go on and carry
out the following command(s).

Brackets can be used in an IF. . . THEN. . .ELSE statement to allow a
series of conditions to be treated as one, eg this line:

100 IF (A=1 AND B=1) OR (A=2 AND B=2) THEN PRINT
“HELLO”

tells the computer that IF either the value of A is | AND the value of B is
1, OR the value of A is 2 AND the value of B is 2 THEN display the word
‘HELLO’.

28

11
FOR...NEXT Loops

Lookat this program which PRINTS out the multiples of 12 up to 12*12:

10 CLS

20 PRINT 1*12
30 PRINT 2*12
40 PRINT 3*12
50 PRINT 4*12
60 PRINT 5*12
70 PRINT 6*12
80 PRINT 7*12
90 PRINT 8*12
100 PRINT 9*12
110 PRINT 10*12
120 PRINT 11*12
130 PRINT 12*12

Veryoften you need the computer to carry out a series of instructions
several times, so instead of typing out the instructions over and over again,
as in the above program, we use FOR. . .NEXT loops.

A FOR...NEXT loop instructs the computer to carry out all the
instructions between the FOR command and the NEXT command a set
number of times.

Here is an example program which will PRINT all the multiples of 12 up
to 12*12 using a FOR. . .NEXT loop:

10 FORN=1TO 12
20 PRINT N;**12="";N*12
30 NEXTN

Much shorter than the previous program, isn’t it? Here’s how it works:

Line 10 tells the computer to start repeating all the instructions between
the FOR and NEXT command 12 times.

Each time the computer goes through theloop it adds I to the value of N.

Line 20 usesthisfact to multiple the current value of N by 12.

29

The Dragon Trainer

Line 30 finishes off the loop (the variable N does not have to be added at
the end, but it is a good practice to do so).
Trying changing line 10 to:

10 FORN=12to 24

Then RUN the program. You will see the multiples of 12 from 12*12 to
12*24 because the value of N starts off at 12 and increases by one until it
reaches 24.

Now change lines 10 and 20 to:

10 FORN=0TO 144 STEP 12
20 PRINTN

‘When you RUN the program this time you will see the multiples of 12
PRINTed on the screen again, but this time the value of N is increasing in
STEPs of 12.

The STEP section of the FOR. . .NEXT looptellsthe computer to add
morethanonetothevalueofthe variablebeing used (inthiscase the varia-
ble is N, although it could be any variable).

The STEP can be as much as you like and the size of the STEP is defined
after the STEP command (STEP 12 in the above program). You can also
have negative steps. For instance this program PRINTS the multiples of 12
in reverse order:

10 FORN =144 TO 0 STEP —12
20 PRINT N
30 NEXTN

Here is a program illustrating the use of the FOR.. .NEXT loop for a
different purpose, as a delay:

Multiplication Tables

10 CLS 3

20 INPUT"WHICH MULTIPLICATION TARLE WOULD YOU
LIKE" 3N

30 FOR M=1T012

4@ PRINT Ni*#" iM3"="3iN*M

50 NEXT M

6@ FOR Z=1 TO 4000:NEXT Z

70 RUN

‘When you RUN this program you will be asked which multiplication
table you want and then all the multiples up to 12 of the number that you
entered will be displayed on the screen.

30

Chapter 1] FOR...NEXT Loops

To give you time to read the multiplication table line 60 goes through a
FOR. .NEXT loop 4000 times without doing anything.

The purpose of this is to cause a delay of almost 4 seconds before line 70
re-starts the program.

If you try changing the 4000 in line 60 you can increase and decrease the
length of the delay as much as you like.

You could also take line 60 out to see the difference it makes. The
computerclearsthescreenassoon asit has finished PRINTingthetable, so
fast that you won’t even have time to see it.

This delay FOR. . .NEXT loop is used very often in programs to slow
down the speed at which the program RUNs.

As you will notice this program keeps returning to line 10 after it has
printed up atable. This is because line 70 keeps RUNning the program for
you.

The only way to stop the program is either to switch off the computer or
press the BREAK key (which is the correct way).

Pressing the BREAK key will stop any program or command that the
computer is carrying out except a second routine.

The program is not lost by pressing BREAK as you will see if you type
LIST.

Here’s one last program using the FOR...NEXT loop. It illustrates
delay loops and negative steps, as well as the different coloured screens
which are possible on the Dragon:

10 FORN=0TO 8

20 CLSN

30 FORM =0 TO S00:NEXTM
40 NEXTN

50 FORN=8TO 0 STEP -1
60 CLSN

70 FORM =0TO S00:NEXTM
80 NEXTN

90 RUN

Line 10starts off the first FOR...NEXT loop which decides the screen
colour. Line 20 then clears the screen to the colour which has the code
which is the same as the number currently in N. Line 30 uses a
FOR...NEXT loop for a delay, before line 40 finishes off the first loop.
Lines 50—80 are the same as lines 10—40 except that the first
FOR...NEXT loop works downwards from 8 to 0. Line 90 re-starts the
program.

31

12
GOTO, GOSUB and RETURN

In the short section on the RUN command we said that a program is
worked through in the numerical order of the line numbers unless the
computer is told to do otherwise.

The GOTO instruction tells the computer to continue the program at a
different line instead of carrying on as normal. Here is a short example
program:

10 PRINT ¢+’
20 GOTO 10

‘When you RUN the program the computer will PRINT a star and then
find that line 2 Ois telling it to go back to line 10 and carry on from there.

For thisreasonthe computer will carry on PRINTingstars until youstop
it by pressingthe BREAK key.

The GOSUB command tells the computer to GO to the SUBroutine
starting at a given line number.

A subroutine is a program within a program which is used several times
during the main program.

Theidea of havingsubroutinesis tosave youhavingtoretypetheroutine
each time you need it.

The computer will carry on working through the program from the spe-
cified line untila RETURN command is reached.

When a RETURN command is reached at the end of a subroutine the
computer returns to the command directly after the last GOSUB command
and continues with the program from that point.

Type this program in:

10 PRINT ““**%;
20 GOSUB 40
30 GOTO 10

40 PRINT“@"’;
50 RETURN

Here is a simple explanation of how the program works:

10 DISPLAY A STAR
20 GO TO THE SUBROUTINE STARTING AT LINE 40

32

Chapter 12 GOTO, GOSUB and RETURN

30 GO BACK TO LINE 10 AND CARRY ON WITH THE PROGRAM
FROM THERE

40 DISPLAY A @ SYMBOL

50 GO BACK TO THE NEXT COMMAND AFTER THE LAST
GOSUB COMMAND (IN THIS CASE LINE 30)

Two things to remember with the GOTO and GOSUB command are:

(1) The line number after the command cannot be replaced with a varia-
ble.

(2) Any commands after a GOTO command on the same line will not be
carried out.

The above program is just a simple demonstration and is not of any real
use but by following the program explanation you could try writing a simi-
lar short program to perhaps display two separate messages by incorporat-
ing the CLS command.

The GOTO and GOSUB commands can, of course, be used with the
IF.. . THEN...ELSE statement and this structure is one of the most
important uses of the IF. .. THEN. . .ELSE statement.

33

13
Storing your programs on tape

By now our programs are beginning to get quite long, and they will get
much longer before the end of this book. It would obviously be very boring
and time-consuming to type in a program every time we needed it, and for
thisreason your Dragon has the ability to store your programs on normal
cassette tapes.

You should set up the cassette recorder as explained in the Additional
Informationleaflet included with your Dragon.

Set the volume on the cassette recorder at roughly half volume and insert
atape (any tapecan be used as long as it is a normal bias tape). Now type in
the following program (don’t worry about how it works, it will be fully
explained later):

10 OPEN “0”, 4 —1, “FILE”
20 FOR N=0TO 2000

30 PRINT —1,65;

4 NEXT

50 CLOSE 4 —1

Press the PLAY and RECORD buttons on the tape recorder. Don’t
worryabout the tape not starting, it’s not supposed to. (If youdon’t have a
remote control socket on your tape recorder the tape will start).

Type RUN and the tape will start, allowing the computer to store 2001
number 65s on the tape. When the program stops rewind the tape, type
NEW and type this in:

10 OPEN “I”, — 1, “FILE”
20 FOR N =0TO 2000

30 INPUT 4 -1, A

40 PRINT CHRS(A);

50 NEXT

60 CLOSE ¥ — 1

Press the PLAY button on the cassette recorder and type RUN.

34

Chapter 13 Storing your programs on tape

You should see a long string of A’s appearing on the screen. If nothing
happens turn up the volume. If you get an 1/0 error rewind the tape and
reRUN the program.

Once you have the volume level right type NEW and enter this program:

10 CLS

20 PRINT ‘“A PROGRAM”’

30 PRINT “SAVED ON TAPE”

40 PRINT ‘“AND LOADED BACK AGAIN!"’
50 FOR N=0 TO 3000:NEXT

60 GOTO 10

Erase everything on the tape and then rewind it. Press the PLAY and
RECORD buttons and then type:

CSAVE “PROGRAM”’

The tape will start and after a short pause will stop again.
Rewind thetape, type NEW and then press the PLAY button. When you
have done this type in:

CLOAD “PROGRAM™”’

The tape will again start and the screen will clear. A letter S should
appear in the top left-hand corner of the screen, after a short pause,
followed by an inverse letter F and the word PROGRAM.

‘When the OK promptreturnsstop the tape and rewindit. Type LIST and
you will see that your program is back again.

If the program is not there or you receive an [/O error rewind the tape
and try the LOADing process again (make sure that you haven’t recorded
the program over the leader at the start of the tape).

The CSAVE “‘program name’’ command tells the computer to store a
copy of the program currently in memory on tape.

The CLOAD “‘program name’’ command tells the computer to look for
the program whose name you have specified on the tape and then transfer it
into the memory.

In case you were wondering what a program recorded on tape sounds
like try rewinding the tape and taking out the earphone plug.

When you play the tape you will hear a long, dull note followed by a
series of high and low pitched squeaks. Nonsense to you, but easily inter-
preted by your Dragon.

If you do not know where a program ends on a tape and need to record
another program after it you can use the SKIPF ‘‘program name’”
command to stop the tape at the end of the program.

35

The Dragon Trainer

Try rewinding the tape with PROGRAM saved on it and press the play
button. Now type:

SKIPF “PROGRAM”

The tape will start, the screen will clear and all the messages you usually
receive when loading programs will appear in the top left-hand corner of
the screen.

When the computer finds the end of the program it will stop the tape.

The SKIPF command, however, does not load a program into memory.
It just finds where the program ends on the tape.

It is possible to reroute the sound from the tape recorder through the
television’s speaker.

Type AUDIO ON, rewind the tape and then type MOTOR ON.

You will hear the program noise being played over the television.

Type MOTOR OFF and the tape will stop.

The AUDIO ON commandtells the computer to reroutethe sound from
the tape through the television, and the AUDIO OFF command turns it
off.

The MOTOR ON command tells the Dragon to start the tape recorder
motor, and the MOTOR OFF command turns if off again.

If you have more than one program on the tape then you will have to
carry out the SKIPF command for each program.

36

14
EDITing your programs

Until now you have had to retype a program line if you have made a mis-
take in it. Fortunately, your Dragon is equipped with an EDITOR to help
you correct lines without retyping them.

Type the following program line exactly as it is:

10 PRRNT “THEIR AR A LOTT OF MISSTAKES INN THISS
LINEE!”

Youcan easily spot all the mistakesin thelineand if youhad made anyof
these mistakes before now you would have had to retype the whole line.
To use the EDITOR to correct the line you must first type in:

EDIT 10

The Dragon will print the number 10 on the screen followed by a space.
Pressthespacebar twice and you will see theletters P and R appear with the
cursor moving along in front.

The first correctionto makeisto change the R to I so pressthe C key(for
Change) and then press 1. Theletter I will appear after the R withcursorin
front.

Carry on pressing the space bar until the E in THEIR appears. Now type
C followed by R, then C followed by E. The word THERE has now been
corrected.

The next stage is to add an E after the AR, so carry on pressing space
until the R of AR appears. Now type I (for Insert) followed by E.

HoldtheSHIFTkeydownand press the up-arrow keytoleavethe Insert
mode.

Type 6 followed by the space bar and the next six characters will appear.
‘We now need to get rid of the extra T so press D (for Delete) and one of the
Ts will be erased.

Type 6 followed by the space bar again and you will beready to deletethe
extra S, again by pressing the D key.

Seeif you candeletetheextraletters in INN, THISS and LINEE on your
own using the method shown here.

37

The Dragon Trainer

When you have made all the corrections, or if you want to see how you
are getting on with the corrections type L. The whole line will be displayed
with the line number underneath ready for you to make any more correc-
tions.

When you have finished with the line press the ENTER key and the
corrected line will be displayed before the computer goes back to normal
command mode.

Hereis a full list of the EDITOR commands together with what they do:

SPACE Move cursor along the line

C character Change the next character for the one specified

nCcharacter ~ Change the next n characters (where n is any number) for
the ones specified

I Insert all the following characters after the last character

D Delete the next character

nD Delete the next n characters

H Hack (or cut) of f the rest of the line and then enter Insert
mode

X Go to the end of the line and enter Insert mode

S character Search for the specified character and move cursor to that
position

nS character Search for the nth occurrence of the specified character
and move the cursor to that position

K Delete all the lines from the cursor position
nK Delete the next n characters after the cursor
L Display line and return to EDIT mode

— Move cursor backwards along the line

n< Move the cursor back n spaces

SHIFT 1 Leave Insert or Change mode

ENTER Leave EDITOR mode

We will finish this chapter with a Maths Test program which will ask
you multiplication sums. The program is followed by a list of alterations
that you can make to changeit to an addition test.

You can use the EDITOR to make these alterations (by the way, don’t
worry about the commands on lines 30 and 40, they will be explainedin the
next chapter).

Maths Test

10 CLs

20 PRINT" MATHS TEST o
30 A=RND(20@)

4@ B=RND(20)

50 PRINT*WHAT IS*iAj"*";
60 INPUT C

38

Chapter 14 EDITing your programs

70 IF A%R=C THEN PRINT"WELL DONE!'!"1RIGHT=RIGHT+1

8@ IF A*B<>C THEN PRINT"WRONG! THE ANSWER IS";A#R:
WRONG=WRONG+1

70 INPUT*ANOTHER SUM";A$

100 IF A$="Y" THEN GOTO 10

110 IF A$<{>"N" THEN GOTO 90

120 PRINT*YOU GOT®" jRIGHT;"OUT OF" ;RIGHT+WRONG;*" ' "

Here is a list of alterations to make the program into an addition test:

50 PRINT “WHAT IS ;A5 +";B;

70 IF A+B=C THEN PRINT “WELL DONE!!”:RIGHT=RIGHT
+1

80IF A+B<>C THEN PRINT ‘“WRONG! THE ANSWER
I1S”’;A+ B:WRONG = WRONG +1

By the time you have made the above alterations to the program you
should be quite efficient at EDITing your programs.

If there is something that you don’t understand then try rereading this
section and experimenting with that particular EDITing command.

39

15
RND

In the program at the end of the last chapter we used a new command,
RND.

RND is a function, that is it takes one or more numbers and uses
them to give you back a result. In this case we give RND a number and it
will give us back a random number between 1 and the number that we gave
it. Try typing this in:

10 FOR N=0TO 50
20 PRINT RND(20)
30 NEXT

This short program will PRINT 51 random numbers between 1 and 20.
The number in brackets after the RND function tells the computer that we
want the random number to be less than 20.

Try changing thenumberto 50 (using yournewlyacquired knowledge of
the EDIT command) and reRUN the program. You will now see random
numbers between 1 and 50 being PRINTed on the screen.

It is possible to store the random number in a variable, as in the Maths
Test program. For example, A =RND(10) will store a random number
between 1 and 10 in the variable A.

If youwantarandomnumber between 0 and 1 then youshouldput the
number 0 in the brackets after the RND command. Try altering the pro-
gram to do this.

The RND function is used in almost every program for one thing or
another. It can be used to make the computer carry out a command
randomly. For example, if you wanted a 50:50 chance that a monster
appearsin a game you might have this line:

100 IF RND(2)=1 THEN PRINT ‘“LOOK OUT! A MONSTER!”

40

16
PRINT@

In the first chapter we said that there are many variations of the PRINT
command and this is one of them. The PRINT @ command does exactly
the same thing as the normal PRINT command except that you can decide
where you want the characters to be displayed.

Imagine that the picture on the screen is divided up into 512 squares and
that each one has a number like the numbers of a house. The first square,
which isin the top left-hand corner of the screen, has the number 0 and the
last square, in the bottom right-hand corner of the screen, has the number
511,

Youcantell the computer tostart PRINTing inany of these squares. For
example PRINT@I0,“HELLO” tells the computer to PRINT the word
HELLO with the letter H in the 10th square, the letter E in the 11th square
and so on.

On pages 28 and 140 of the Dragon manual are PRINT@ grids which
show how the screen is numbered.

Here is a short program using the PRINT@ command:

Random Blocks

10 CLse

20 FOR N=0 70 &00
30 A=RND(512)~-1
40 PRINTBA; " "}
5@ NEXT

This program clears the screen to a black background and then PRINTSs
green blocks all over it. Line 30 chooses a random number between 1 and
512 and then subtracts one (this is because the screen locations go from 0to
511). Line 40 then PRINTS a space atthe Ath square on the screen.

It is possible to display the value of variables using the PRINT@
command, not only strings contained in quotation marks. For example, if
we wanted to display the value of the variable D in the centre of the screen
we would use a command like this:

PRINT@239,D

41

The Dragon Trainer

Maybe we would like to PRINT the title of our program in the centre of
the screen. In this case we might use a line similar to this:

120 PRINT@235, “INVADERS”’
130 PRINT@266, ‘‘FROM SPACE”

Thiswould PRINT the word INVADERS in the centre of the screen with
the words FROM SPACE directly underneath.

A useful formula to remember is X + Y*32. Using this formula you can
control the position of a moving object on the screen by storing its position
in two variables (in this case X and Y). The variable X (or whichever one
you are using) should contain the object’s horizontal position, and Y
should contain the object’s vertical position. You can then PRINT the
object using PRINT@ X + Y*32.

Any text or graphics characters can be PRINTed on any part of the
screen in thisway, allowing you to produce quite good visual ef fects.

Try PRINTing a title and then by altering the PRINT@ positions move
it around the screen to get the best effect.

The PRINT@ command has many uses, especially in games. The pro-
gram on the previous page for example could be used to display a maze.

42

17
INKEY$S

Inmany programs weneedto beable tocheck toseeif a key is being pressed
or not. Obviously, the INPUT command would not be of much use as we
haveto press the ENTER key every time, so we use the INKEY$ command
instead. The following part of a program demonstrates how we would use
the INKEY$ command instead of INPUT:

100 PRINT “DO YOU WANT TO PLAY AGAIN?"
110 A$=INKEY$

120 IF A$=“Y”” THEN RUN

130 IF A$ =N’ THEN END

140 GOTO 110

INKEYS ‘scans’ the keyboard to see if you are pressing a key. The
INKEY$command does not stop the program or require you to press the
ENTER key, unlikethe INPUT command.

There are many uses for the INKEY$ command. You could use it to test
the keyboard and move a bat left or right, for instance if the L key is being
pressed the bat would move left and if the R key is being pressed then the
bat would move right. Another use would be to scan the keyboard to see
whether or not you are pressing the F key, firing a rocket if you are. Any
key may be used in this way, including the SHIFTed characters.

The following program shows how the INKEY$ command can be used
to scan the keyboard:

10 FORN=0TO 500

20 A$=INKEY$

30 PRINT AS

40 FORM =0 TO 20:NEXT M
50 NEXTN

The only thing that will happen when you RUN the program on the pre-
vious page is the screen will slowly scroll. However, if you press any key
(except for BREAK and CLEAR) you will see the character on that key
appear on the screen.

43

The Dragon Trainer

What is happening? Line 20 stores the character of the key which is cur-
rently being pressed in the variable AS$. If none of the keys are being pressed
then AS stays empty.

Line 30 then PRINTS the character in A$ before line 40 causes a delay.

INKEYS$ is a function which takes a value from the keyboard and uses it
to tell you which key, if any, is being pressed.

A very common use for INKEYS is as a delay line. For example, if you
are displaying the instructions for a program you could use INKEYS$ to
wait for you to press a key before continuing with the instructions in this
way:

100 PRINT “PRESS ANY KEY TO CONTINUE”

110 IF INKEY$ ="’ THEN 110
120 CLS

In the next chapter we will use INKEYS$, along with all the other

commands we have so far used, in a short game. Meanwhile, experiment
with the INKEY$ command to make sure you know how to use it properly.

44

18
CHRS$

Every character on the Dragon keyboard has its own code number. The
letter A for example has the code 65. It is possible to display these cha-
racters on thescreen by using their code numbers.

To do this we use the CHR$ command followed by a number in
brackets. This tells the computer that we want it to display the character
with the code number that we have specified.

Like RND and INKEYS$, CHRS is a function and so we have to tell it
which character we want displayed. Try typing in:

PRINT CHR$(65)

This line tells the computer todisplay the character which has the code 65
(the letter A) on the screen.

It is also possible to display special coloured blocks called graphics
symbols by using the CHR$ command. For example if you type:

PRINT CHR$(175)

a blue square will be displayed.

Here is a short program which displays every character that the Dragon
is capable of displaying on the screen and then displays the characters one
by one with their codes:

Character Set

10 CLS

20 FOR N=32 T0 255

30 PRINT CHR$(N)j

40 NEXT

5@ FOR N=32 TO0 255

6@ PRINT8333,CHR$(N) ;" ="3N
70 FOR M=0 TO 3@0:NEXT M
80 NEXT N

Let’s first look at lines 10to 4 0and see how they work. We already know
that the CLScommand clears the screenand how the FOR. . .NEXT loop
worksso youcanseethatline20startsoff theloop withthe value of Nset at
32.

45

The Dragon Trainer

Line 30 then PRINTS the character with the code number N. Line 40
sends the computer back to line 20 which adds one to the value of the varia-
ble N. The program continues round and round the loop until the value of

N equals 255.

The second part of the program is very similar to the first part, except
that the characters are PRINTed one by one together with their codes.
Line 60 handles the PRINTing of the characters, using the PRINT@

command explained earlier. Line 70 causes the delay.

A full list of the codes for the graphics symbols is on page 138 of the

Dragon manual.
Here is that program [promised you at the end of the last chapter:

Tnvader

18 CLS
2@ PASE=431
30 SHIP=RND(3Z2)+64
40 LIFE=3
50 PRINTBBASE," "3jCHR$(159)3" "3
60 PRINTSRASE+31,* *5CHR$(159) ;CHR$(159)3
CHR$ (159)35" "3
70 PRINT@SHIP,"Y*}
80 IF LIFE=@ THEN PRINT@233,“YOU’RE DEAD''*:END
90 A$=INKEY$
100 IF A$=CHR$(9) THEN BASE=RASE+1
110 IF A$=CHR$(8) THEN BASE=PASE-1
12@ IF BASE>445 THEN BASE=445
130 IF RASE<416 THEN BASE=416
40 IF A$="F* AND MISSILE=0 THEN MISSILE=1:MM=
RASE+1
150 IF MISSILE=1 THEN MM=MM-32
160 IF MM>@ THEN PRINT8MM, "t * 5 :PRINTAMM+32,* *j
170 1F MM=SHIP THEN FOR N=143 TO 155 STEP 16t
PRINT@MM, CHR$(N) 3 :FOR N=@ TO 3@:NEXT MINEXT N:
HITS=HITS+1 tSHIP=RND(32)+64
180 IF MM<96 AND MM>@ THEN PRINTEMM,* *;:MM=0:
MISSILE=0
190 G=G+1:1F G<1@ THEN GOTO 240
700 G=0
210 PRINTESHIP,* *j
220 7=RND(2):IF Z=1 THEN SHIP=SHIP+}
230 IF Z=2 THEN SHIP=SHIP-1
240 IF SHIP<63 THEN SHIP=63
250 IF SHIP>94 THEN SHIP=93
260 IF RND(5)=1 AND BOMB=0@ THEN BOMB=SHIP
270 1F BPOMR>® THEN BOMB=RBOMB+32
280 IF BOMP>@ THEN PRINT@BOME, “*" 3 :PRINTABOMB-3Z

5
29@ IF BOMB=BASE+1 OR BOMB=RPASE+32 OR BOMB=RASE+32

46

Chapter 18 CHRS

THEN FOR N=@ TO 7:CLS(N):FOR M=0 TO S@:NEXT M:
NEXT N:LIFE=LIFE-1:CLS
300 IF BROMR:479 THEN PRINTAROME,* *
310 PRINT30, “SCORE:* {HITS;" LIVES
328 GOTO 50

This program s a kind of simple Space Invaders with only one invader.
You move your base left and right with the left and right arrow keys. To
fire press the F key.

You have three lives and an infinite number of aliens.

If you read through the program you should be able to understand how
all the lines work, but you probably won’t be able tounderstand how each
line contributes to the program. For this reason we have split the program
up into routines on the next pages to show you what each section does:

Lines 20—40 set up the variables. The variable BASE determines where
your base ison the screen. SHIP determines where the Invader is and LIFE
keeps a record of how many lives you have left.

Lines 50-60 display your base. The spaces left on either side of the yellow
blocks (CHR$(159) is a yellow block) make sure that no trails are left
behind the base when it moves.

Line 70 displays the Invader.

Line 80 checks to see if you are dead yet (the END command stops the
program).

Lines 90—110 check to see if you are pressing a key and take appropriate
action. CHR$(9) is the code for the right-arrow key and CHR$(8) is the
code for the left-arrow key. Adding one to the variable BASE or subtrac-
ting one has the effect of moving the base right and left one square
respectively.

Lines 120—130 make sure that your base hasn’t gone off either edge of the
screen.

Line 140 checks to seeif you are pressing the F key and if you are (and there
isn’t a missile on the screen already) assigns the number I to the variable
MISSILE. This is so we can check to see if there is a missile on the screen
and assign the value of the variable BASE plus one to the variable MM.
This variable determines the position of your missile.

Line 150 — if there is a missile on the screen then move it up one line.

47

The Dragon Trainer

Line 160 PRINTS the missile on the screen and rubs out the missile behind
it.

Line 170 checks to see if you have hit the Invader. If you have every dif
ferent coloured block is PRINTed over the Invader inan explosion effect.

Line 180 checkstoseeif your missile has gone of f the screen, deletingitifit
has.

Lines 190—-230 — once in every eleven times round the program the
Invader moves. This routine moves it left or right randomly.

Lines 240—250 makes sure that the Invader doesn’t go off the screen.
Lines 260—300 — this section controls the Invader’s bombs using the same
sort of routine as the one controlling your missiles, except that they come
down instead of going up.

Line 310displays your score and how many lives you have left.

Line 320 — this line goes back to line 50 to carry on with the program.

It would be advisable to save this program on tape as we will be coming
back to it from time to time to add more commands.

48

19
PRINT TAB and STRING$

The PRINT TAB command isused totellthe computer which column you
want it to start PRINTing in. This is useful for displaying tables. Try the
following program:

10 CLS

20 INPUT ‘“WHICH COLUMN (0-31)”’; COLUMN
30 PRINT TAB(COLUMN);*‘ X"’

40 FORN=0 TO 1000:NEXT N

50 GOTO 10

This program will ask you which column you want to start PRINTing in
and then display an X in that column before pausing and starting again. If
you look at line 30 you will see that we have to enclose the column number
in brackets after the TAB command and then put a semi-colon before
whatever we want to PRINT, in this case a letter X. One thing to remem-
ber, though. If you PRINT TAB something, and thentry to PRINT TAB
something behind the original piece of PRINTing, the second piece of
PRINTing will appear on the next line down.

STRINGS

The STRINGS command is used to display aline of characters. For exam-
ple, if we wanted to display a line of 20 orange squares we would use this
command:

PRINT STRING$(20,255)

As you can see there are two numbers in brackets after the STRING$
command. The first one (20) tells the computer how many characters you
want it to print. The second one (255) is the CHR$ code of the character.
The following program displays a whole line of each of the different
coloured squares which are available:

0 CLS

20 FOR N =143 TO 255 STEP 16
30 PRINT STRING$(32,N);

40 NEXTN

49

20
DELeting

If you have been experimenting with writing your own programs as we have
progressed through the book, you have possibly had to delete some of your
programlines. Up untilnow we have been deleting program lines by typing
intheline number and pressing ENTER. That’s fine for the odd line or two
but what about ten or maybe twenty lines? Well the Dragon provides a way
of deleting whole blocks of lines in one command — DEL. The command
DEL is not used in a program but is used while writing a program. When
you use the DEL command, check to make sure that the line numbers you
have stated are the ones you want deleted because once you press the
ENTER key they will be lost for good.

There are several ways to use the DEL command ie if you type in DEL
20-80 followed by ENTER lines 20 to 80 inclusive will be deleted. Youcan
DELetethe whole program by typing DEL — . Before pressing the ENTER
key double check that you have the right line numbers entered. If you have
made a mistake you can cancel the command by pressing the BREAK key
and start again. Below are a list of DEL commands and what they do:

DEL 10 Will delete line 10 only

DEL - 50 Will delete all lines from the start of the program up to
and including line 50

DEL60— Will delete all lines from 60 to the end of the program

including line 60

DEL40-100 Willdeletealllinesbetweenline40and 100 includinglines
40 and 100

DEL ~ Will delete the whole program

The line numbers we have given are of course just examples. Any line
numbers can be used as long as they are in the program. Although this is a
useful command it does not pay to be careless so do recheck before you
press the ENTER key.

50

21
RENUMbering

RENUM is another useful command that can be used when writing a pro-
gram. Remember in an earlier chapter we said the idea of numbering lines
in increments of 10 was to allow you to enter lines in between those already
entered. Well what happens if you have no more room between those lines
set at increments of ten? This is where RENUM comes in — you just
RENUMBber the lines.

To carry out the RENUM command you must tell the computer what
you want renumbering and in what increments. If you just type RENUM
followed by ENTER the whole programm will be renumbered starting
from the first line, in increments of 10.

When the program is renumbered the Dragon also renumbers all the
GOTOs and GOSUBs so that the program flow is not altered. You may
RENUMber a program as many times as you wish.

Set out below is the way you can use the RENUM command:

RENUM Will renumber the whole program in increments of 10

RENUM 100,20,5 Will renumber the program from the old line 20
replacing it with 100 and increasing by increments of 5
ie 100, 105, 100 etc

RENUMS0,,2 Will renumber the whole program, the first line num-
bered 50 and then increasing by increments of 2

RENUM,,30 Will renumber the whole program, the first line start-
ing with the number 30 and the rest by increments of 30
ie 30, 60, 90 etc

51

22
SOUND

We have had two chapters on useful commands when writing a program,
now we can return to a useful command to use in your program.

Any good program can be improved with the careful addition of some
SOUND.

The Dragon provides two ways of entering sound to your program, but
at this stage we will look at one and that is the command SOUND.

There are two instructions you must give when entering a SOUND
command, the pitch and the duration. Try typing in:

SOUND 10,3 followed by ENTER.

With the pitch instruction the numbers range from 1, the lowest note to
255, the highest note, 89 being middle C on a piano. The duration also
ranges from 1, the shortest duration, to 255 for the longest.

For the full range of tones type in the following little program:

FOR N =1TO 255:SOUND N,I:NEXT

This gives the whole range of sounds available with the SOUND command.
To try the different combinations of pitch and duration type in the next
program:

Sound Demonstration

10 CLS

20 INPUT"SELECT PITCH (1 TO 255)"iP
30 INPUT"SELECT DURATION (1 TG 255)"3D
40 SOUND P, D

50 GOTC 10

This little program, when RUN, will ask you to select the pitch, before
storing that number in the variable P. It will then ask you for the duration
and store the number entered in D.

Line 40, uses the variables P,D to play the note for thedurationasked for.

52

Chapter 22 SOUND

Line 50 then returns you to the start of the program so that you may try
some more combinations.

If you have saved the program we used in the section on CHR$ you can
reloadit toadd some SOUND commands. If not perhaps you would liketo
retypeit in and this time save it on tape as we will be coming back to it from
time to time to add to it.

Now that we have learn about the SOUND command we can add some
sound to your INVADER program.

You should change the following lines (you can use the EDITOR to
make these changes):

140 IF A$="F" AND MISSILE=0 THEN MISSILE=1:
MM=BASE+1 :SOUND 100, 1

16@ IF MM>@ THEN PRINTAMM, *t*;:PRINTOMM+32," *j:
SOUND 200, 1

170 IF MM=SHIP THEN FOR N=143 TO 255 STEP 16:
PRINT3MM, CHR$ (N) ; :SOUND N, 1:FCOR M=0 TO 30:
NEXT M:NEXT N:HITS=HITS+1:SHIP=RND(32)+64

280 IF POMB>@ THEN PRINT3ROME, "#"3; :PRINTIROME--32,
® "3:SOUND 255,1

298 IF POMBR=PASE+1 OR ROMB=PASE+32 OR POME=PASE+3Z2
THEN FOR N=@ TO 7:CLS (N):SOUND N+131:FOR M=0 TO
S5@:sNEXT M:NEXT N:LIFE=LIFE~1:CLS

The SOUND commands which we have added to the above lines makes
the following changes to the program:

Line 140 produces the sound when you fire your missiles.
Line 160 makes the noise as the missile goes up.

Line 170 produces the sound effects when the Invader is hit.
Line 280 makes the noise for the Invaders bomb.

Line 290 makes the noises when you get blown up.

‘When you have made these ad justments please reSA VE the program as
we will becoming back to it again later on and this will save you having to
type it in again.

The SOUND command can liven up your programs and make them a lot
more interesting to use.

However, you shouldn’t use too much sound as it slows the program
down, as you can see from the Invader program.

53

23
DIM and ARRAY variables

By now you should have mastered variables and fully understand how to
use them. At least you should understand how to use simple variables. So
far we have only used simple variables, but there is another type of variable
that we haven’t met yet, the array variable.

An array variable is exactly the same as a simple variable apart from the
fact that the variable is always followed by a number in brackets.

For example, A, B, HELLO and ZZ are all simple variables, but A(1),
B(18), HELLO(54) and ZZ(3) are all array variables.

The number in brackets after the array variable is the index number and
tells the computer which part of the variable you want to use.

For example, the variable B(18) is referring to the 18th number in the
variable B, and the variable B(12) is referring to the 12th number in the
variable B. You may store as many numbers as you like in a single array
variable.

Unfortunately, array variables take up a lot more of your Dragon’s
memory than simple variables so you have to tell the computer to save
someextramemory space to store them in.

To do this we must DIM (for DIMension) the array variable before we
use it and tell the computer how many numbers you will be storing init. For
example, if you wanted to store 12 numbers in an array called BB then you
would use a line like this:

10 DIM BB(11)

This command tells the computer to save enough memory to store 12
numbers in the array variable BB. Youmay think that we have made a
printing mistake here by using an 11 instead of a 12, but the first index
number that we can use with an array variable is 0. We are telling the
computer that the index numbers will range fromOto 11, atotal of 12index
numbers.

Type in the following lines in addition to line 10:

20 FORN=0TO 11
30 INPUT “TYPE IN ANY NUMBER"’;BB(N)
40 NEXTN

54

Chapter23 DIM and ARRAY variables

50 CLS

60 FORN=0TO 11
70 PRINT BB(N)
80 NEXTN

‘When you RUN this program you will be asked to type in 12 num-
bers, one by one.

When you have done this the screen will clear and the 12 numbers
which you typed in will be displayed. The program works in this way:

10 RESERVE ENOUGH MEMORY SPACE TO STORE 12 NUM-
BERS IN THE ARRAY VARIABLE ‘BB’

20 START REPEATING ALL COMMANDS BETWEEN THIS
LINE AND THE ‘NEXT” COMMAND ON LINE 40 TWELVE
TIMES

30 DISPLAY THE MESSAGE “TYPE IN ANY NUMBER", WAIT
FOR A NUMBER TO BE ENTERED AND THEN STORE THAT
NUMBER IN THE Nth PART OF THE ARRAY VARIABLE
‘BB’

40 MARKS THE END OF THE ‘FOR. . .NEXT’ LOOP

50 CLEAR THE SCREEN

60 START REPEATING ALL COMMANDS BETWEEN THIS
LINE AND THE ‘NEXT" COMMAND ON LINE 40 TWELVE
TIMES

70 DISPLAY THE Nth VALUE OF THE ARRAY VARIABLE ‘BB’

80 MARKS THE END OF THE ‘FOR...NEXT' LOOP

This program uses onedimensional array variables to store a list of
numbers and use any one of those numbers whenever you want to.

As you can see, you can use one dimensional array variables to store a
list of numbers and use any one of those numbers whenever you want
to.

However, imagine you wanted to store a whole table of numbers in a
variable. In this case you would use a two-dimensional array variable.

This kind of variable has two index numbers,the first one is the row
index and the second one is the column index. So, imagine you had a
table of how many goals a number of football teams scored in each of
four games. The table might look like this:

Team Match1 Match2 Match3 Matchd
LIVERPOOL z 1 3 0
IPSWICH 1 2 2 1
ARSENAL 0 3 1 |
SPURS 2 2 1 2
NORWICH 1 0 2 2

55

The Dragon Trainer

If, for example, you wanted to find out how many goals Ipswich scored
in their third game you would first find Ipswich, which is in the second row,
and then look across to Match 3 which s in the third row, to discover that
they scored 2 goals in this particular game.

Now let’s put this into a program:

10 CLS

20 DIM SCORE(4,3)

3@ SCORE(@,0)=2:SCORE(Q,1)=1:SCORE(Q,2)=3:
SCORE (@, 3)=0

4@ SCORE(1,0
SCORE (1, 3)

50 SCORE(Z,0)=0:SCORE(Z,1)=3:SCORE(Z,2)=1*

$SCORE(1,1)=2:SCORE(1,2

$SCORE(3,1)=2:SCORE(3,2)=1:

7@ SCORE(4,0 :SCORE(4,1)=0:SCORE(4,2)=2:
SCORE(4,3)=2

80 INPUT"NAME OF TEAM';TEAMS$

9@ IF TEAM$="LIVERPOOL" THEN N=0:GOTO 150

100 IF TEAM$="I1PSWICH" 0TO 150

110 IF TEAM$="ARSENAL" :GOTO 150

120 IF TEAM$="SPURS" THEN N=3:G0OTC 150

130 IF TEAM$="NORWICH" THEN N=4:GOT0O 150

140 PRINT"I DON’T KNOW THAT TEAM":PRINT"PLEASE TRY
AGAIN" : GOTO 70

150 INPUT*WHICH MATCH" §MATCH

160 MATCH=MATCH-1

170 IF MATCH>3 OR MATCH<® THEN PRINT"TRY AGAIN":
GOTO 140

180 PRINT"THE SCORE WAS";:PRINT SCORE(N,MATCH)

This program, when RUN, willclearthe screen and ask you for thename
of the team. It will then ask you which match you want the score of and
thentell you how many goals that teamscored in that match. The program
works like this:

10 CLEAR THE SCREEN

20 RESERVE ENOUGH MEMORY FOR THE TWO DIMEN-
SIONAL ARRAY ‘SCORE’ FOR 5 ROWS AND 4 COLUMNS

30 STORE THE NUMBER 2 IN THE Ist ROW AND THE Ist
COLUMN OF THE VARIABLE ‘SCORE’ etc.

40 STORE THE NUMBER 1 IN THE 2nd ROW AND THE Ist
COLUMN OF THE VARIABLE ‘SCORE’ etc.

50 STORE THE NUMBER 0 IN THE 3rd ROW AND THE Ist
COLUMN OF THE VARIABLE ‘SCORE’ etc.

60 STORE THE NUMBER 2 IN THE 4th ROW AND THE Ist
COLUMN OF THE VARIABLE ‘SCORE’ etc.

70 STORE THE NUMBER 1 IN THE 5th ROW AND THE Ist
COLUMN OF THE VARIABLE ‘SCORE’ etc.

56

Chapter 23 DIM and ARRAY variables

80 DISPLAY THE MESSAGE “NAME OF TEAM” AND THEN
WAIT FOR AN ANSWER BEFORE STORING THAT ANSWER
IN THE VARIABLE ‘TEAMS’

90 IF THE VARIABLE ‘TEAM$’REPRESENTS THE WORD “‘LIV-
ERPOOL’’ THEN STORE THE NUMBER 0 IN THE VARIABLE
‘N’ AND THEN GO TO LINE 150

100 IF THE VARIABLE ‘TEAM$ REPRESENTS THE WORD
“IPSWICH”” THEN STORE THE NUMBER I IN THE VARIA-
BLE ‘N’ AND THEN GO TO LINE 150

110 IF THE VARIABLE ‘TEAM$ REPRESENTS THE WORD
‘““ARSENAL” THEN STORE THE NUMBER 2 IN THE VARIA-
BLE ‘N’ AND THEN GO TO LINE 150

120 IF THE VARIABLE ‘TEAM$ REPRESENTS THE WORD
“SPURS” THEN STORE THE NUMBER 3 IN THE VARIABLE
‘N’ AND THEN GO TO LINE 150

130 IF THE VARIABLE ‘TEAMY$’ REPRESENTS THE WORD
“NORWICH” THEN STORE THE NUMBER 4 IN THE VARIA-
BLE ‘N’ AND THEN GO TO LINE 150

140 DISPLAY THE MESSAGES “I DON’T KNOW THAT TEAM”
AND “PLEASE TRY AGAIN” BEFORE GOING TO LINE 80
AND CARRYING ON FROM THERE

150 DISPLAY THEMESSAGE““MATCH”” AND THENWAITFOR A
NUMBER TO BE ENTERED

160 SUBTRACT ONE FROM THE VALUE OF THE VARIABLE
‘MATCH’

170 IF THE VARIABLE ‘MATCH’ CONTAINS A NUMBER
GREATER THAN 4 OR LESS THAN 0 THEN DISPLAY THE
MESSAGE ‘“PLEASE TRY AGAIN”” BEFORE GOING TO LINE
150 AND CARRYING ON FROM THERE

180 DISPLAY THE MESSAGE “THE SCORE WAS” AND THEN
DISPLAY THE NUMBER IN THE Nth ROW AND THE
‘MATCH’th COLUMN OF THE VARIABLE ‘SCORE’

It is possible to have one dimensional and two-dimensional string arrays
by just putting the index numbers in brackets after the string variable ie
A$(1,3) is a two-dimensional string array.

These string arrays are used in exactly the same way as numeric arrays
except, of course, you can store letters and other characters in them as with
simple string variables.

Try the following example:

Race Positions

10 CLs

2@ DIM A$(3,3)

30 A$(1,1)="JOHN"1A$(1, 2)="PETER" :A$(1,3)="PAUL"

57

The Dragon Trainer

40 A$(2,1)="PETER" :A$(2,2)="PAUL" :A$(2,3)="JOHN"

50 A$(3,1)="PAUL":A$(3,2)="JOHN":A$(3,3)="PETER"

60 INPUT"WHICH RACE";R

70 1IF R>*3 OR R<1 THEN PRINT"PLEASE TRY AGAIN":
GOTO 60

B0 INPUT"WHICH POSITION";P

9@ IF P>3 OR P<1 THEN PRINT"PLEASE TRY AGAIN":
GOTO 80

10@ PRINT A$(R,P)

110 GOTO 60

This program setsup a two-dimensional stringarray andthen stores the
names of the people who came first, second and third ineach of the three
races in the variable A$. The array, if written out on a piece of paper,
would look like this:

Ist PLACE 2nd PLACE 3rd PLACE

Ist RACE John Peter Paul
2nd RACE Peter Paul John
3rd RACE Paul John Peter

From this table wecan work out that the first index number used with the
variable A$ refersto the race and the second number refersto the position.
Therefore if we want to find out who came second in the first race then we
would look in the variable A$(1,2) and find the name Peter stored there.

If you need to DIMension more than one array variable in a pro-
gram then you need not use a new DIM statement for each variable.
Instead you may simply use one DIM statement and separate each variable
with a comma eg

10 DIM A$(20),B(12,14)

It is possible to havearraysin up to five dimensions on the Dragon (ie
A(1,4,3,5,2) is a five dimensional array). However, arrays with more than
three dimensions are not often used, partly because they use a lot of
memory, and partly because there are not many uses for four or five
dimensional tables.

Onelast thing about array variables. If you only want to store 10 (or less)
numbers or letters in an array then you do not need to DIMension the varia-
ble. You do, however, need to DIMension the variable if you are going to
store more than 10 numbers or letters in it.

58

24
REM, END and STOP

Quite often when writing a long program you forget what part of your
program does and then have to spend ages scratching your head and won-
dering what it’s supposed to do.

Fortunately your Dragon has a command to help youremember whata
routine does, the REM command. Here is an example of how the REM
command is used in a program:

270 REM FIRING ROUTINE

This line will be totally ignored by the computer when the program is
RUN and its only purpose is to remind you what that particular routine
does. You may type anything you like after the REM command.

There is an abbreviated form of the REM command and this is the
apostrophe (‘). For example the line means exactly the same as the above
line:

270 ’ FIRING ROUTINE

Remember backinthe INVADER program we used the END command to
stop the program when you have been killed? Well, the END command
tells the computer that it has come to the end of the program and that it
must stop here, even if the END command is not on the last line of the
program. The STOP command is very similar to the END command except
that you are told which line the program stopped at. There is also one more
difference which will be explained on the next page, about the CONT
command.

59

25
CONT, TRON and TROFF

The CONT (short for CONTinue) command tells the computer to restart
the program after a STOP command has been carried out. Type in this
example:

10 PRINT “TYPE CONT TO CARRY ON WITH THIS PROGRAM”’
20 STOP
30 PRINT ‘“THIS PROGRAM HAS RE-STARTED!!!!”

‘When you RUN this program line 10 will be carried out and then line 20
will stop the program. If you type CONT line 30 will be carried out. The
CONT command can also be used to restart a program after you have stop-
ped the program by pressing the BREAK key.

‘When you have a mistake in a program which does not cause an error but
nevertheless stops the program from operating properly it is usually very
difficult to find the error. To help you with this error trapping the Dragon
has a TRACE which constantly displays the line which it is currently
working on. To turn the trace on you should use the TRON command, and
to turn it of f you should use the TROFF command. To see how the trace
works type TRON and then RUN the program shown above. You will see
this displayed:

(10] PRESS CONT TO CARRY ON WITH THIS PROGRAM
{20]
BREAK IN 20

If you now type CONT this will appear:
[30] THIS PROGRAM HAS RESTARTED!!

60

26
ON...GOTO.. .and ON...GOSUB

The ON...GOTO and ON...GOSUB commands are really combi-
nations of the IF. . . THEN and GOTO or GOSUB commands. To explain
what these commands are it is useful if you first know what they look like.
Here is an example of the ON. .. GOTO command:

230 ON X GOTO 100,150,200,250,300

This line first looks to see what number the variable X represents.

If Xis I (or anumber between 1 and 2) then the computer goes to line 100
and carries on with the program fromthere.

If Xis 2 (or anumber between 2 and 3) then the computer goes toline 150
and carries on from there, and so on.

However if the value of X is 6 or more, or the value of Xislessthan I then
an error occurs.

The ON...GOSUB command works in exactly the same way as the
ON...GOTO command but goes to a subroutine which it can RETURN
from (as with the normal GOSUB command).

Here is an example of how the ON...GOSUB command can be used:

10 CLS

20 N=RND(6)

30 ON N GOSUB 60,70,80,90,100,110

40 IF RND(10)=1THEN FOR N=0 TO 2000:NEXT
50 FORM =0 TO 50:NEXT:GOTO 10

60 PRINT:PRINT*‘*":RETURN

70 PRINT*‘*””:PRINT:PRINT ¢ *”:RETURN

80 PRINT*‘**”:PRINT* *"":PRINT*‘ *’":RETURN

90 PRINT*‘* **:PRINT:PRINT*‘* **:RETURN

100 PRINT*“* **:PRINT ¢ *"":PRINT*‘* **:RETURN
110 PRINT*‘* **:PRINT*‘* **:PRINT‘‘* **":RETURN

‘When you RUN this program you will see a dice rolling in the top left-
hand corner of the screen. Every now and then the dice stops.
Here is a simple explanation of how the program works:
10 CLEAR THE SCREEN
20 SELECT A RANDOM NUMBER BETWEEN I AND 6 AND
STORE THAT NUMBER IN THE VARIABLE N

61

The Dragon Trainer

30

40

50

60

70~110

IF THE VALUE OF NIS 1 THEN GO TO THE SUBROUTINE
STARTINGATLINE 60, IFTHEVALUEOFNIS2 THENGO
TO THE SUBROUTINESTARTING AT LINE 70 ETC
SELECT A RANDOM NUMBER BETWEEN 1 AND 10 AND
IF THAT NUMBER IS 1 THEN PAUSE FOR A FEW
SECONDS

PAUSE FOR A SHORT WHILE THEN GOTO LINE 10 AND
CARRY ON WITH THE PROGRAM FROM THERE

MOVE THE CURSOR DOWN ONE LINE AND THEN
DISPLAY A SPACE FOLLOWED BY A STAR BEFORE
RETURNING TO THE NEXT COMMAND AFTER THE
GOSUB COMMAND (LINE 40)

SAME AS LINE 60 EXCEPT DIFFERENT VARIATIONS OF
STARS AND SPACES

The ON...GOTO and ON...GOSUB commands are very useful
commands and save a lot of typing and memory. Imagine having to have
separate lines each using an IF.. . THEN command to tell the computer
which line to go to!

You must, however, remember to make sure that the variable you are
using is not bigger than the number of line numbers that you have after the
ON...GOTO or ON...GOSUB command otherwise you will receive an

error.

62

27
String handling

You probably understand by now how to use string variables properly, but
thereare a lot of ways in which you can manipulate strings that we haven’t
yet met. These are explained on this and the following pages.

LEFT$

In our programs so far we have sometimes had lines similar to these:

160 INPUT‘ANOTHER GAME‘;A$
170 IF A$ =Y’ THEN RUN
180 END

As you can see, in this particular routine we have to type Y if we want
another go. Some people like to type YES if they want another go so we
couldreplace line 170 with this line:

170 IF LEFT$(A$,1)="‘Y”” THEN RUN

This lineintroduces a new command, LEFTS. In this particularexample
we aretelling the computer to look at the first character in the string varia-
ble A$ and if itis theletter Y then to restart the program. The number inthe
brackets following the LEFT$ command tells the computer that you want
the first character, and the A$ is the variable that you are using.

The LEFT$ command has a wide range of uses. For example you could
use it to allow only people with FR as the first two letters of their name to
play a game. This kind of routine could be used in this case:

10 INPUT“WHAT IS YOUR NAME’;NAME$
20 IF LEFTS(NAMES$,2)< > “FR”” THEN END

RIGHTS$
RIGHTS is very similar to LEFTS$ except that it is used to find the LAST
instead of the first characters of a string variable. Here is an example:

10 INPUT“TYPE IN SOME CHARACTERS’’;A$
20 PRINT“THE LAST 3 CHARACTERS THAT YOU TYPED IN
WERE”;RIGHT$(A$,3)

63

The Dragon Trainer

The RIGHTS command at the end of line 20 displays the last 3 characters
of the string variable ‘A$’.

MIDS$
‘We now know how to find the first and last characters of a string. How do
we find the middle characters of astring. We could, of course, use a routine
like this:

100 AS= “SUPERCALIFRAGILISTICEXPIALIDOTIOUS”
110 B$S=RIGHTS$(AS,9)

120 C$=LEFTS$(BS,5)

130 PRINT C$

This routine stores the last nine characters of the string A$ in the string
B$, and thensstores the first five characters of the string B$ inthe string C$.
This has the effect of finding the 26th character in the string A$ and the
next four characters after it. Luckily, we do not have to use this complica-
ted routine to find characters somewhere in the middle of a string. Instead
we use MID$. We can replace lines 110 and 12 0 with this single line using
the MID$ command:

110 C$=MID$(A$,26,5)

This line finds five characters in the middle of A$ starting with the 26th
character and stores them in the variable C$.

The MID$ command is followed by a string variable and two numbers,
allin brackets. The string variable refers tothe variable that you are using,
and the first number tells the computer where in the string you want to
start. The second number then tells the computer how many characters you
want. Here is an example of the MID$ command:

70 Z$=MIDS(DS$,3,5)

This means that we want the third character and the four characters
following it of the string variable D$. When the computer has found these
characters it stores them in the variable Z$.

We can also change part of a string variable using the MID$ command,
eg the command:

MID$(A$,4,5) = ““HELLO”
will change the fourth to eighth characters of the variable A$ to HELLO.

64

Chapter 27 String handling

LEN

The LEN command is not really a string handling function, but it is a very
useful command to use when manipulating strings. This command is used
to find out how many characters a string variable contains and is used in
this way:

10 INPUTTYPE IN SOME CHARACTERS’;A$
20 PRINT“YOU TYPED IN"’;LEN(A$);‘CHARACTERS!"’

The LEN command in line 20 is followed by the string variable in
brackets to tell the Dragon which string you are referring to. The LEN
command can be used to find the length of ANY string variable, just as
long as you specify which variable you want to use.

By now you should understand how to find the middle, left and right
partsof strings properly, as well as find out how many characters arein the
string. If you don’t understand these properly then you should go back and
reread this section.

65

28
DEF FN

The DEF FN command is used to define your own functions, in other
words you can make up your own function and use it whenever you like in
your programs. For example, you might need to work out the areas of cir-
cles several times during your program. Instead of typing out the calcu-
lation to work out the area each time you need it you could define your own
function to do this:

10 DEF FNA(R) =3.1415926*R{2

This line tells the computer to define a function so that whenever you
refer to the variable FNA(R) it will take the value of the variable R, mul-
tiply that number by 3.1415926 and then store the result in the variable
FNA.

The R in brackets is the argument of the function, that is R is the number
on which the calculations in the function are carried out on. When you call
the function R may be replaced by any number, eg if you typed in PRINT
FNA(2)you would receive the answer 12.5663704, which is 2 squared mul-
tiplied by 3.1415926.

The A in FNA is the variable part of the function, so you may define as
many functionsas youlike, simply byreplacing the A with any other varia-
ble. Meanwhile, let’s add to line 10to make a small program:

20 CLS

30 INPUT“WHAT IS THE RADIUS OF THE CIRCLE’’;R
40 PRINT““THE AREA OF THE CIRCLE IS’’;FNA(R)

When you RUN the program the screen will clear and you will be asked

for the radius of thecircle. Line40then displays the area of the circle, using
the function which was defined in line 10.

66

29
READ, DATA and RESTORE

Inmany programs youwill need to use alonglist of numbersand letters, or
DATA, asit is known. You could, of course, use variablestostore all these
numbers and letters, but this takes up a lot of memory space (and a lot of
time). Instead we store all the data in DATA statements. Here is an exam-
ple of a DATA statement:

230 DATA 1,43,52,7,17,9,10,3985

As you can see the DATA statement is followed by along list of numbers
each one separated by a comma. Letters can be stored in a similar way:

230 DATA “HELLO”, “GOODBYE”, “FRED”, “DOG”, ‘““‘CAT”

Each word isenclosed in quotation marks and, like the numbers, is sepa-
rated from the next by a comma.

Now we know how to store a list of numbers and letters, but how do we
use them? Well, when we want to use any number or series of letters we
READ them into a variable. Type in this short routine:

10 CLS

20 DIM A(12)

30 FORN=0TO 12

40 READ A(N)

50 PRINT A(N)

60 NEXT

70 END
100 DATA 1,1,3,5,8,13,21,34,55,89,144,233,377

This routine READs in all the 13 numbers in the DATA statement and
stores them in the variables A(0) to A(12). You should notice that the
DATA statement is after the end of the program. If you trace the flow of
the program (using the TRON command) you will see that the computer
neveractually goes to line 100. It just knows where all the data is stored and
goes straight to the DATA statement rather than the line number.

If you now change line 70to:

67

T he Dragon Trainer

70 GOTO 30

and RUN the program again you will see the 13 numbers PRINTed on the
screen again, but whenthe computertriestostart READing more numbers
the second time round it finds that it has run out of data and gives you an
20D error (out of data error). To cure this we need to put in an extra line:

65 REST ORE

This line tells the computer to go back to the start of the data and carry
on READing in numbers (or letters) from the start of the list.

So far our program doesn’t do anything in particular except PRINT a
list of numbers. To make the program do something we can delete lines 65
and 70 and add the following lines:

45 T=T+A(N)
70 PRINT “T HE AVERAGE OF THESE NUMBERS IS";T/13
80 GOTO 80

The program now READs in all the numbers and adds them up asit goes,
storing the total in the variable T. When all the numbers have been read in
line 70 works out the average. Line 80 forms an endless loop to stop the
screen fromscrolling up when the programends. If you deletethislinethen
the top number will disappear when the program ends.

On the next page is a program using the READ, DATA and RESTORE
statements.

Address Book

1@ REM ’NUMBER’ MUST EQUAL THE NUMBER OF NAMES IN
THE LIST

20 NUMBER=2

30 CLS

40 INPUT"PLEASE ENTER PERSON’S NAME" {NAME$

50 FOR N=1 TO NUMBRER

60 READ A$

70 IF LEFT$(A$,LEN(NAME$))=NAME$ THEN PRINT A$:
PRINT:@=1

8@ NEXT N

90 IF =@ THEN PRINT"SORRY, I CAN’T FIND THAT
NAME *

100 @=0

110 PRINT"ANY MORE (Y/N)"j

120 A$=INKEY$

130 IF Ag$="Y" THEN RESTORE:GOTO 30

140 IF A$="N" THEN END

150 GOTO 120

16@ REM ENTER PERSON’S NAME AND DETAILS HERE

17@ DATA*JOHN SMITH, 12 THE ROAD, TOWNSVILLE"

180 DATA"JACK JONES, TEL:123456"

68

Chapter 29 READ, DATA and RESTORE

This program allows you to store the names and addresses of all your
friends as DATA statements at the end of the program. The names may be
added fromline 160onwards, and the variable NUMBER at thestartof the
program must be set to the number of names in the list.

The main part of the program is the FOR...NEXT loop from lines
50—80. This READs in each name in turn and checks to see if the first few
letters correspond to the name which you are trying to find. If a name is
foundthenit is PRINTed on the screen and the variable ‘Q’ is set to I so
that the computer knows that it has found a name.

‘When the FOR. . .NEXT loop is completed line 90 checks to see if any
names were found, telling you that it doesn’t know the name that you wish
to find.

69

30
Graphics

Until now our programs have not been as interesting as they might be
partly because of a lack of colour, and partly because the only characters
we have been able to use are the normal keyboard characters and the
graphics characters.

However, your Dragon can produce quite good effects using what is
known as low resolution graphics.

The word graphics is just another word for drawing, and low resolution
refers to the thickness of the lines that we can draw. Low resolution
drawings use thick lines, and high resolution drawings use thinlines. In the
next few pages we will be using low resolution graphics and learning the
special commands which we use to make our drawings.

SET

We already know that the screen is split up into squares, each one with its
ownnumber. Normally there are 32 squares across the screenand 16 down,
but when we use low resolution graphics the screen size increases to 64
squares across and 32 down.

Itispossibletolight up any of these squares in any of 8 different colours,
and to do this we use the SET command. For a simple example of thistype
in the program below:

Stardust

10 CLS @

20 FOR 1=0 TO 2000

30 N=RND(64)-1:M=RND(32)-1
4@ C=RND(8)

5@ SET(N.M, C)

6@ NEXT I

This demonstration program works in this way:

10 CLEARTHE SCREEN TO A BLACK BACKGROUND

20 START REPEATING EVERYTHING BETWEEN THIS LINE
AND THE ‘NEXT’ COMMAND ON LINE 60, 2001 TIMES

30 CHOOSE A RANDOM NUMBER BETWEEN 1 AND 64,

70

Chapter 30 Graphics

SUBTRACT ONE AND STORE THIS NUMBER IN THE VARI-
ABLE ‘N’. CHOOSE A RANDOM NUMBER BETWEEN I AND
32, SUBTRACT ONE AND STORE THIS NUMBER IN THE
VARIABLE ‘M’

40 CHOOSE A RANDOM NUMBER BETWEEN 1 AND 8 AND
STORETHIS NUMBERIN THE VARIABLE ‘C’

50 LIGHT UP THE POINT ‘N’ SQUARES ACROSS AND ‘M’
SQUARES DOWN FROM THE TOP LEFT-HAND CORNER OF
THE SCREEN IN THE COLOUR ‘C’

60 FINISHOFFTHE ‘FOR.. .NEXT’'LOOP

You should be able to see from this program that the SET command
needs three numbers to work. The first number is the number of squares
across from the left of the screen the point should be, and the second
number is how many squares down from the top of the screen the square
should be. The third number tells the computer what colour you want the
square to be.

Unfortunately you can’t always have two squares side by side in dif
ferent colours. For instance, youcan have a red square at the point three
squares across with ayellowsquareto theright of it, but you cannot have a
red square at the point four squares across with a yellow square to the right
of it.

The reason for this is that the low resolution graphics being used are
really different graphics symbols being displayed on the screen.

If you look at page 138 in the Dragon manual you will see the different
graphics symbols. Each graphics symbol is really a space split up into four
sections, each of which may be lit up.

However, no graphics character can be more than one colour. For this
reason you can only have two different coloured blocks side by side in low
resolution graphics if they are in different character squares.

RESET

‘Wenow know how to light up different low resolutionsquares, but how do
we delete them? Well, the answer is we RESET the square.

The RESET command resets a square back to the background colour of
the screen. A RESET command is followed by two numbers in brackets.
These numbers are the position of the squares to be RESET, just like the
numbers in the SET command.

However, we do not tell the computer which colour we want the square
RESET to because it works out for itself what the background colour is.

Add the following lines to the program from the previous section
(Stardust):

70 FOR 1=0TO 2000

71

The Dragon Trainer

80 N =RND(64)— 1:M =RND(32) - 1
90 RESET (N,M)
100 NEXT I

‘When you RUN the program this time you will see the screen fill up with
different colour blocks as before, but then the computer starts to RESET
the blocks back to the background colour (in this case black).

Line 80 chooses the coordinates of the square to be RESET. Inthe same
way line 30 chooses the one to be SET, and line 90 RESETs the block.

On the next page is a program using the SET and RESET commands to
make a ball bounce about on the screen:

Bouncing Ball

10 CLS @

20 BX=31:RY=15:C=1

30 x=1:v=1

4@ FOR N=@ TO 63

50 SET (N;@44):SET (Ny31,4)
60 NEXT N

70 FOR N=@ TO 31

80 SET (@yN,4):SET (634Ny4)
9@ NEXT N

180 RESET (BX,RY)

110 BX=BX+X:RY=RY+Y

120 IF BX=61 OR BX=2 THEN X=-X
130 IF RY=29 OR BY=2 THEN Y=-Y
14Q C=C+1:1F C=9 THEN C=1

150 SET (BX, BY,C)

160 FOR N=@ TQ 30@:NEXT

170 GOTO 100

Lines 20 and 30 set up the variables that control where the ball is, the
direction it is moving in and what colour it is.

The variables BX and BY are the position of the ball, the variables X and Y
control its direction and C is the colour.

Lines 40—90 draw the border in red around the screen.
Line 100 RESETs the ball (this stops it from leaving a trail behind it).

Line 110changes the position of the ballby adding X and Y to the variables
BX and BY.

If X has thevalue 1 thentheball movesright, ifit has thevalue — I thenthe
ball moves left.

72

Chapter 30 Graphics

IfY has the value 1 then the ballmoves down, ifit has the value ~ 1thenthe
ballmovesup.

Lines 120and 130make sure the balldoesnotgo offthescreen. If theballis
likelyto go off'the screen then the variable X or Y ischangedin this way: if
Xis 1 then it becomes — 1, if X is — 1 then it becomes 1. The same goes for
the variable Y. This has the effect of reversing the direction of the ball.

Line 140 changes the value of the variable C which controls the colour of
the ball.

Line 150 drawsthe ball again, and line 160 causes a pause beforethe whole
ball moving routine starts again.

If you make the following alterations to the program some quite start-
ling effects can be produced:

100 SET(BX,BY,C)

120 IFBX>62 or BX< 1 THEN X = — X

130 IF BY>300RBY< THEN Y = - Y
DELETE LINE 150

These alterations allow the ball to leave a trail behind it and also let it
touch the border. This produces a pattern with ever-changing colours.

POINT

Quite often in programs which use graphics we need to see if a square is lit
up or not, and if it is what colour it is. To do this we use the POINT
command. Try entering the following program:

Searcher

16 Cts @

20 X=RND(64)-1

3@ Y=RND(32)-1

4@ IF X=63 THEN X=62

50 SET (X, Y,4):SET(X+1,Y,4)

6@ FOR X=0 TO 63

7@ FOR Y=0 TO 31

8@ IF POINT(X,Y)=4 THEN PRINT&@," I’VE FOUND
IT!"5:SET(X,Y,7):SET(X+1,Y,7) :FORN=0T0Z000:
NEXT N:RUN

9@ SET (X,Y,5)

100 NEXT Y:NEXT X

‘When you RUN this program you will see a red line appear somewhere
on the screen then the screen will gradually turn white. When the white
reaches the red line the message “I’VEFOUND IT!” is displayed in the top
left-hand corner of the screen.

73

The Dragon Trainer

There is a short pause and then the program starts again. Try to work out
how this program works.

Most of the commands will be familiar to you, apart fromline 80 thatis.

The POINT command looks to see what colour the square at X squares
across and Y squares down is.

Line 80checkstosee ifthesquareis red (thenumber 4 isthe code for red)
and if it is the rest of line 8 0 is carried out.

As with the RESET command, the numbers in brackets are the coord-
inates of the square that you want to check. The colour codes are the same
as for the CLS and SET commands, with 0 being black.

Thecode for textis — 1, soif you wantedto check to seeif therewassome
text in the top left-hand corner of the screen you would use IF
POINT(0,0)= — 1 THEN....

We have now reached the stage where we can produce quite a good
game, complete with colour graphics and sound. The following program is
a breakout game.

Theidea of the game is to knock down as much of a multi-coloured wall
at the top of the screen as you can by hitting the ball againstit. Youhavea
bat which you must use to hit the ball back up as it falls down.

The bat is moved by the Q and W keys, Q to move left and W to move
right. To stop the bat from moving you should repress the key that corre-
sponds with the direction the bat is moving.

If you want the bat to move faster you can use the left and right arrow
keys instead.

Youhave onlythree balls so if you miss the ball and it hits the ground you
lose it. To serve each new ball just press any key.

Breakout

10 B=3

20 CLS &

30 IF B=@ THEN FOR N=255 TO 200 STEP -1:SOUND N, 1:
NEXT:SOUND 1,1:END

40

50

60

70

80 FOR N=2 TO 62

90 SET(N;2,4):SET(N,31,4)

100 NEXT N

110 FOR N=2 TO 31

120 SET(24Ns4) :SET(62,Ns4)

130 NEXT N

140 FOR N=Q@ TO 31:RESET(Q,N):RESET(1,N):NEXT N

150 FOR M=6 TO 12 STEP 2

160 IF M=6 THEN C=3

170 1F M=8 THEN C=8

):IF @=1 THEN X=1:ELSE X=-1

74

Chapter 30 Graphics

180 IF M=10@ THEN

190 IF M=12 THEN

200 FOR N=4 TO 61:SET(N,M,C):NEXT N

210 NEXT M

22@ SET(RX,RY,5)

230 IF R=0 THEN A$=CHR$ (128)+STRING$(11,175)+
"breakout"+STRING$ (12, 175) :ELSE GOTO 280

24@ FOR N=0@ TO 32:PRINT80, RIGHT$ (A$,N);

250 FOR M=0 TO S5@:NEXT M

260 NEXT N

270 FOR N=@ TO Z@OO:NEXT N:PRINT30,"":R=1

280 A$=INKEY$: IF A$="" THEN GOTO 280

29@ SET(PX, RY, &)

300 PX=PX+X:RY=BY+Y

310 IF BX»=62 OR BX<{4 THEN X=—X:BX=BX+X:SOUND 1001

320 IF PY<4 THEN Y:SOUND 120, 1:RBY=PY+Y:@=RND(Z):
IF @=1 THEN X=1:ELSE X=-1

330 IF PY>=30 THEN P=R-1:G0OTO 20

340 IF 1 AND POINT(BX,RY)<>4 AND POINT(RBX,RY)<>6

THE

35@ IF Y=1 AND POINT(BX,PY)=3 THEN Y=-1

36@ IF POINT(RX,PY)=3 THEN SCORE=SCORE+90:SOUND
25%,1

7@ IF POINT(RX,RY)=8 THEN SCORE=SCORE+IS:S0OUND
250, 1

380 IF POINT(RX,RBY)=2 THEN SCORE=SCORE+15:SOUND
245,1

39@ IF POINT(RX,RY)=7 THEN SCORE=SCORE+10:SOUND
240,1

4060 IF (BX=EAT+Z OR BY=RAT+1 OR BX=RAT+3) AND
BY:>=28 THEN x=0@:Y=-1:SOUND 370, 1

410 IF (BPX=PAT+4 OR RX=PAT+%) AND RY

1:SGUND 170, 1

2@ 1F (BX=PAT OR BX=RAT-1) AND RY>=28 THEN X=-1:

=) UND 17@,1

43@ SET(BX,RY,57

440 FOR N=@ TO 4:SET (PAT+N, 28, 1) :iNEXT

450 IF Z<@ THEN SET(BAT+6,28,6):SET(PAT+8,28,6)

46@ IF 7>Q THEN SET(RAT-2,28,6):SET(PAT-4,28,6)

470 B$=INKEY$:IF R$=""THEMN GOTO 540

480 IF

490 IF

500 IF

s51@ IF THEN 7=-1

520 IF THEN Z=-2

530 A$=P$:PAT=F.AT+I

54@ IF PAT<4 THEN RAT=RAT+1:GOTO 540

55@ IF PAT>56 THEN RA AT-1:60TO 550

56@ PRINT®0, CHR$(128) § "SCORE : * §SCORE ; :PRINTS20,
"PALLS:" B3

57@ SET(63,28,4):SET(3,28,4):RESET(1,28

580 GOTO 290

28 THEN X=1:

75

T he Dragon Trainer

When you have played Breakout for a while you will probably want to
know how it works. If you look through the program you will find that all
the commands are familiar to you, but you will probably still not know
how the program works.

However, if you read what each section does and then look back at the
program you will probably find that you can work out what everything
does. It would be a good idea if you experimented with the program and
altered it about a bit. You may even find that you can make the program a
lot better!

Here is what each section does:

Line 10 sets up the number of balls you have.
Line 20 clears screen to cyan background.

Line 30 checks to see if you have run out of balls. If you have, a
FOR...NEXT loop makes a series of noises and the program stops.

Lines 40—70 set up the rest of the variables to be used in the program (see
next page for what each variable is used for).

Lines 80— 130 draw the border in red around the screen.

Line 140 deletes a band of cyan running down the left-hand side of the
screen (neatens up the display).

Lines 150—210 draw the wall. Lines 160—190 determines the colour,
depending on the value of M.

Line 220 draws the ball.

Lines 230—270 makes the word BREAKOUT appear from the left-hand
side of the screen. Notice the way characters are added to the variable A$
using the + sign. This is acceptable when the characters being added are in
quotation marks, or if you use the CHR$ or STRING$ commands.

Line 280 waits for a key to be pressed before starting.

Line 290 rubs out the ball.

Lines 300—320 move the ball and make sure that it doesn’t go off the
screen.

76

Chapter 30 Graphics

Lines 330 checks to see if the ball has hit the ground. If it has deduct one
from the number of balls you have left and go to line 10 to start again.

Line 340 makes the ball bounce up off the blue bricks.

Lines 350—390 check to see if the ball has hit a brick and increases the
score if it has. The score is dependent on the colour of the brick.

Lines 400—420 check to see if the ball has hit the bat, bouncing it in the
correct directionif it has.

Line 430 draws the ball.
Line 440 draws the bat.
Lines 450—460 rub out the trail left by the bat.

Lines 470 — 520 check to see if you are pressing the control keys and alter
the variable Z accordingly.

Line 530 addsthe value of Zto the variable BAT. This makes the bat move.
Lines 540— 550 make sure that the bat doesn’t go off the screen.
Line 560 displays the score.

Line 570— if the bat hits the border it knocks a bit out. Thisline makes sure
the gap doesn’t stay there for long.

Line 580 — go back to line 290 and start the main routine again.

The main variables are:
B — number of balls left

z — direction the bat is moving in. If Z is 1 the bat moves
right, if Z is — I the bat moves left

BX and BY — position of the ball

XandY — direction of the ball

BAT — position of the bat

NandM — used in FOR. . .NEXT loops

77

31
PEEK and POKE

Before we look at what the PEEK and POKE commands are and what they
do, we need to know how the Dragon’s memory is set out.

There are two types of memory, ROM (Read Only Memory) and RAM
(Random Access Memory). To explain exactly what each type of memory
does would be quite complex, but here is a simplified explanation.

Imagine that your Dragon’s memory is made up of glass boxes and that
each one has a number on the front of it for identification (memory
addresses). Each glass box also has a number between 0 and 255 inside it
{memory contents).

Some of these glass boxes are sealed (these represent the ROM), while
others have no lids at all (these represent the RAM).

‘We cannot change the numbers in the sealed boxes as there is no way for
us to get into them, but we can look at the numbers (or PEEK at them).

We can also look into the open boxes and see what numbers they con-
tain, but as they are open we can also change the numbers which are inside
(or POKE new numbers into their locations).

There are different types of ROM memory. Imagine that you want to
talk to a person whodoesn’t understand your language. You wouldneed
an interpreter. As the Dragon’s CPU (Central Processing Unit — the
brains of the computer) does not understand BASIC it also needs an
INTERPRETER to translate your programs into its own special language.
The interpreter is a type of ROM, as is the CPU itself.

The ROM memory is a permanent type of memory whose contents
cannot be changed (like the sealed glass boxes).

The RAM, however, loses its contents when you turn off the computer.
It is also possible to alter the RAM’s contents, by entering a program for
example.

Not all the RAM is available for storing programs as some is used by the
computer as work space.

Now that we know how the Dragon’s memory is organised we can find
out what the PEEK and POKE commands are.

The PEEK command looks into a memory location (glass box) and sees
what number is stored there (the number in the box). You can PEEK into
any memory location, whether it is in the RAM or the ROM.

The POKE command changes the number in a memory location (the

78

Chapter 31 PEEK and POKE

number in the box). You can only POKE into the RAM as the ROM cannot
be changed. If you try to POKE into the ROM nothing happens.

Youmay think that there isn’t much point being able to look at parts of
the memory and change them. However, if you clear the screen and type
this in you may think otherwise:

POKE 1024,65

You may not at first notice what happened. A letter A appearedin the
top left-hand corner of the screen.

Part of the Dragon’s RAM is used for storing the contents of the screen,
so if you change the contents of this memory different things can be
displayed on the screen. The number 1024 is thememoryaddress of the top
left-hand corner of the screen. The number 65 is the ASCII (American
Standard Code for Information Interchange) code for the letter A.

If you change the 1024 to any number between 1024 and 1535 you can
make the A appear anywhere on the screen.

Pages 136 to 137 of the Dragon manual give a list of the characters
available on the Dragon together with their ASCII codes.

If you now type:

PRINT PEEK(1024)

the number 65 will be displayed (as long as the A issstill in the top left-hand
corner of the screen. If it isn’t a different number will be displayed).
What you have told the computer to do in this command is to look into
thememorylocation that hasthe address 1024 and display its contents. The
memory location must be enclosed in brackets after the PEEK command.
Try PEEKing to different memory locations between 0 and 65535 to see
what numbers are stored there.
Here is a program which allows you to draw pictures on the screen.
You can have any colour background and you can draw in any colour.
To change the colour that you are drawing in type the number corre-
sponding to the colour you want.
To change the background colour hold the SHIFT key down and type
the number corresponding to the background colour that you want.
Both the background colours and the drawing colours correspond to the
numbers used with the CLS command. The cursor is moved with thearrow
keys.

Artist

10 CLs @

20 C=159

30 CURSOR=1504

40 PRINT30, "DRAW COLOUR:" ;CHR$(C)3* CURSOR
COLOUR: " ;CHR$(CR) 3§

79

The Dragon Trainer

5@ CR=C+16:IF CR>255 THEN CR=143
60 IF C=128 THEN CR=88

70 POKE CURSORy CR

80 A$=INKEY$:IF A¢=""THEN 40

90 IF A$=CHR$(9) THEN D={

100 IF A$=CHR$(8) THEN D=-1

110 IF A$=CHR$(10) THEN D=32

120 IF A$=CHR$(94) THEN D=-32

130 IF A$="1" THEN C=143

140 IF A$="2" THEN C=159

150 IF A$="3" THEN C=175

160 IF A$="4" THEN C=191

170 IF A®$="5" THEN C=207

180 IF As$="6" THEN C=223

190 IF A$#="7" THEN C=239

200 IF A$="8" THEN C=255

210 IF A$="0" THEN C=128

220 IF A$="'" THEN CLS 1

230 IF A$=CHR$(34) THEN CLS 2

240 IF As="#" THEN CLS

250 IF A$="¢" THEN CLS
260 IF A$="Z" THEN CLS
270 IF A$="&" THEN CLS
280 IF A$=">" THEN CLS
290 IF As="(" THEN CLS
300 IF As=")" THEN CLS
310 POKE CURSOR,C

320 CURSOR=CURSOR+D:D=0
330 IF CURSOR>$535 THEN CURSOR=CURSOR-32:GOTO 330
340 IF CURSORK1056 THEN CURSOR=CURSOR+32:GOTO 340
3508 GOTO 40

BONCUIL

Here is a description of what each section does.
Line 10 clears the screen to a black background.

Lines 20-30 set up variables. C is the colour you are drawing in and
CURSOR is the position of the cursor on the screen.

Line 40 displays the cursor and draws colours.
Lines 50—60 work out the cursor colour.
Line 70 POKEs the cursor onto the screen.

Lines 80-120 check to see if you want to move. The variable D, when
added to the variable CURSOR will move the cursor about.

Lines 130—210 control the changing of the draw colour.

80

Chapter 31 PEEK and POKE
Lines 220—300 control the changing of the background colour.
Line 310 POKE:s the trail before the cursor moves.
Line 320 moves the cursor.

Lines 330—340 make sure that the cursor doesn’t go off the top or bottom
of the screen.

Line 350 goes back to line 4 0 to start the whole drawing routine again.

81

32
Using joysticks

This chapter is for those of you who have joysticks fitted to your Dragon.

Your joysticks should be plugged into the sockets marked JSTK L AND
JSTK R on the left-hand side of your Dragon (it doesn’t matter which joy-
stick goes in which socket). When you have done this you can get down to
using your joysticks in programs.

The first thing we need to know is how to find the position the joysticks
arein.

Type this short program in and then try moving the joysticks about:

Joystick Test

10 CLS

20 PRINT@@, "RIGHT JOYSTICK"

30 PRINT*"LEFT-RIGHT® §JOYSTK(Q)

40 PRINT"UP-DOWN" §JOYSTK (1)

50 IF PEEK(65280)=126 OR PEEK(6528@)=254 THEN
PRINT*"RUTTON pressed® 3ELSE PRINT*RUTTON NOT
PRESSED"

60 PRINT

7@ PRINT STRING$(32,45)

80 PRINT"LEFT JOYSTICK"

9@ PRINT®LEFT-RIGHT";JOYSTK(2)

10@ PRINT®*UP-DOWN" §JOYSTK(3)

110 IF PEEK(65280)=125 OR PEEK(45280)=253 THEN
PRINT*RBRUTTON pressed” :ELSE PRINT®"BUTTON NOT
PRESSED"

120 IF PEEK(65280)=124 OR PEEK(65280)=252 THEN
PRINT*ROTH RUTTONS PRESSED" :ELSE PRINT

130 GOTO 20

If you look at lines 30, 40, 80 and 90 you will see a new command —
JOYSTK.

This command is used to find the current position of each joystick. The
number in brackets tells the computer which joystick you want and
whether you want the left-right or up-down position.

If you look at lines 30, 40, 90 and 100 you will see which number corre-
sponds with each joystick and its position.

82

Chapter 32 Using joysticks

Lines 50, 110 and 120 check to see if the joystick buttons are being
pressed. PEEK(65280) returns different numbers according to which but-
tons are being pressed — see program for numbers.

Here are some alterations to make to your Invader program to make it
work on joysticks:

90 IF JOYSTK(0)> 31 AND JOYSTK(1)< 31 THENBASE=BASE+1
100 IF JOYSTK(0)< 31 and JOYSTK(1)<31 THEN BASE=BASE -1
140 IF (PEEK(65280) =126 OR PEEK(65280) =254) AND MISSILE=0
THEN MISSILE= 1:MM = BASE + 1:SOUND 100,1 DELETE LINE 110

Your base is now moved using the right joystick. The base only moves if
the joystick is forward as well as left or right. To fireuse the red firing
button.

Here is a conversion to use joysticks on your Breakout game:

280 IF PEEK(65280) =255 OR PEEK(65280) = 127 THEN GOTO 280
470 IF JOYSTK(0)< 31 AND JOYSTK(1)<31 THENZ= -2
480 IF JOYSTK(0)> 31 AND JOYSTK(1)< 31 THEN Z=2
490 IF JOYSTK(1)>31 THEN Z=0
DELETE LINES 500, 510, 520 AND 530

The bat is now moved in the same way as the base in the Invader pro-
gram. To serve a new ball you should press the red fire button.

Finally, hereis a conversion to allow you to use joysticks on the drawing
program at the end of the last chapter:

90 IF JOYSTK(0)=63THEN D=1
100 IF JOYSTK(0)=0 THEND= -1
110 IF JOYSTK(1) =63 THEN D = 32
120 IF JOYSTK(1)=0 THEN D = -32
130 IF (PEEK(65280)=126 OR PEEK(65280)=254) AND C<>128
THEN C=C +16:IF C> 255 THEN C=128:GOTO 220
140 IF (PEEK(65280)=126 OR PEEK(65280)=254) AND C=128
THEN C=143

DELETE LINES 150210

Younowcontrolthecursor withthe joystick and changethedraw colour
by holding down the fire button until you get the right colour.

83

33
PLAY

So farthe noises that we have been able to make on the Dragon have only
been bleeps of one kind of another. The Dragon is, however, capable of
playing verycomplex tunes in five octaves, complete withsharp and flat
notes.

Normal music can be directly converted using the PLAY command. All
you have to do is tell the computer what octave you are using, how long
eachnoteshould be, the volume and, of course, the notesthat you wantto
be played.

Type in the following example:

Star Wars

10 CLS

20 PRINT"I WILL NOW PLAY THE THEME TUNE*

30 PRINT"OF STAR WARS!"

4@ FOR N=0 TO 1000:NEXT

50 PLAY"T3DDDL2GO+DLSCO-BAO+L2GDLSCO-RAQ+L2GDLS5CO~
RO+CO-L3A"

6@ PRINT"AREN’T I FANTASTIC?"

If we look at line 50 we can break the tune down into commands and
notes. T3 means Tempo 3, tempo being the speed that the tune is played at.
The number 3 is the actual speed and can be replaced with any number
between 1 and 155 with 155 being the fastest (if you don’t specify the tempo
the Dragon plays the tune at Tempo 2).

The three D’s are the musical note D.

L2isthelength of the note, with L1the length of a normal note, L2 being
half a note, L4 a quarter note and so on. The note can be as short as L.255
(one 255th of a note), but you will probably never need a note that short.

Gisanothermusical note (all the letters from A to G aremusicalnotes so
we will ignore them for now).

O + means to play the next notes one octave higher.

O - meansto play the next notes one octavelower (there are five octaves
available on the Dragon).

All the other commands in this tune are the same as the ones explained
here but with different values after them.

84

Chapter 33 PLAY

There are several other commands which can be included in the PLAY
command. One of these is Pause. Type this in:

PLAY‘““ABCDEFGP1IGFEDCBA”’

This line will play all the notes from A to G, pause for a short while and
then play the same notes Backwards.

The number after the P is the length of the pause and corresponds with
the note lengths.

Another useful command in the PLAY command is V for Volume. The
volume is also followed bya number, in this case from Oto 31. If youdonot
state the volume the computer takes it as 15.

Wesaid earlier that sharp and flatnotes can be obtained using the PLAY
command. We obtain these notes by adding a symbol after the musical
note. For example the note C sharp is indicated by C # in a play command.
The + sign can also indicate a sharp.

Flats are indicated by a — sign.

Here is a short program which plays every note that the Dragon can pro-
duce:

Notes

10 CLS

20 PLAY"O1"

30 FOR N=0 YO 4

40 PLAY" ABCDEFGASRCHDHENF#GH"
50 PLAY*A-B-CD-E-F-G-*

60 IF N<>4 THEN PLAY"O+"

70 NEXT N

Line 20sets up the octave that the notes will start in and then lines 40 and
50 play the notes. Line 6 0 increases the octave (as long as the variable N
does not equal 4, if it does then we have already played five octaves and the
computer can’t go any higher).

If you are familiar with music then you will know about dotted notes. It
is possible to obtain dotted notes simply by putting a fullstopafterthenote
(a dot makes a note half aslong again).

In the previous program we used the command O + , which increased the
octave by one. This plus sign can also be used with the V, L and T
commands. The plus sign could be replaced by:

— substracts one from the value (eg O — decreases the octave by one)
> multiplies the value by two (eg V> doubles the current volume)
< divides the value by two (eg L< halves the note length)

As you can probably see from looking at the PLAY command the music
is enclosed in quotation marks. For this reason it is possible to store your

85

The Dragon Trainer

tune in a string variable and play it as often as you like without typing the
tune in again.
Try this example program:

Jingle Bells

10 A$="03L4CAGFL2CL&CCLACAGFL2DLAB-AGLZELA0+CCO-R-
GLzA"

28 FOR N=@ TO 2

30 PLAY A$:PLAY"T>"

4@ NEXT N

‘When you RUN this program you will hear Jingle Bells being played
faster and faster.

The whole tune was stored in the variable A$ and then played by line 30.
Line 30 also increased the tempo.

Line 3 0is made up of two PLAY commands which can be compressed
into one using the eXecute command. Change line 30 to:

30 PLAY “XA$;T>"

This single command tells the computer to eXecute (or play) the tune
stored in the variable A$ and then double the tempo.

As you can see the variable A$ is followed by a semi-colon and must
ALWAYS be followed by a semi-colon.

It is also possible to use numbers instead of letters to represent the
musical notes in the PLAY command.

Page 110 of the Dragon manual gives anillustration of a piano keyboard
and shows each note with its equivalent number. If you do use numbers
instead of letters you must put a semi-colon after each number.

86

34
CLEAR

Those of you who have been experimenting with string variables may have
encountered the OS (Out of Stringspace) error and wondered what causes
this.

This short program may help to explain this:

10 A$ =STRING$(201,175)
20 PRINT A$

If you RUN this program you will get an OS error. However if you
change line 10to:

10 A$=STRING$(200,175)

and RUN the program then you will see the 200 blue squares PRINTed out
after being stored in the variable A$. From this we can work out that the
maximum number of characters that we can store in a string is 200.

So what do we do when we need to store more than 200 characters in a
string? The answer is fairly simple. We CLEAR someextramemory so that
we can store more characters in our variables.

Toillustrate how the CLEAR command is used type in this short pro-
gram:

10 CLEAR 1000

20 AS$= STRING$(250,175)
30 B$=AS$:C$=A$:DS=AS$
50 PRINT AS$;B$;C$;D$S

When you RUN this program each of thevariables A$, B$, C$ and D$
will have 250 blue squares stored in them. The contents of these variables
are then PRINTed by line 50.

However, if you add this line:

40 E$=A$

and then RUNthe program you will receive an OS error because we are
trying to store more than 1000 characters in our variables (each of the
variables A$, B$, C$ and D$ contains 250 characters, 4*250 = 1000 cha-
racters).

87

The Dragon Trainer

‘We can, however, still store the standard 200 characters in E$ (and all the
other variables for that matter).

One thing to remember. We can still only store a maximum of 255 cha-
racters in one string variable, even using the CLEAR command, but these
extra characters still come in handy sometimes.

88

35
High resolution graphics

Low resolution graphics can produce quite good effects and can liven up
your programs quite a lot. These types of graphics, however, are chunky
and leave a lot to be desired. The Dragon can produce much better
graphics, but with the sacrifice of some colour. Low resolution graphics
use a screen size of 64 squares across by 32 squares down, but high
resolution graphics can go up to 256 squares across and 192 down.

This section covers all the high resolution graphics commands, some of
which will be quite similar to the low resolution graphics commands.

PCLEAR

Before we start drawing pictures in high resolution we need to tell the
computer how many different pictures we are going to draw. This is
because on the Dragon it is possible to draw pictures on different ‘pages’
and then swap them about quickly (like a flick book).

If you don’t need to swap the pictures about then you only need to res-
erve enough memory for one screenful of pages. To reserve memory for
these pages we use the PCLEAR command followed by the number of
pages that we want.

For example, to reserve memory for three pages we use the command:

10 PCLEAR 3

If youdo not specify how many pages you want to use the Dragon reser-
ves enough memory for four pages.

Reference chart

Listed below are the graphics modes available on the Dragon, the size of
the points in each mode, the number of pages needed and the colour sets
available with each mode. When writing your own graphics program you
can look back at this table to help you work out how many pages you need
to reserve for each mode, and which mode you want to use.

89

The Dragon Trainer

Graphics Modes
PMODE SIZE OF No.OF |COLOURS AVAILABLE
POINT PAGES [SCREEN 1,0 SCREEN 1,1
[]
0 H 1 0,1 0,5
as
1 = 2 1,2,3,4 5,6,7.8
2 as 2 0,1 0,5
3 L L] 4 1,2,3,4 5,6,7,8
4 = 4 0,1 0,5
PMODE

Now that we know how to reserve memory for our pictures we need to
know how to choose the graphics mode that we want to work in.

There are five different high resolution graphics modes available on the
Dragon, each one slightly different from the others. We choose the
graphics mode, and also which page we want to start drawing in with the
PMODE command.

For example, if you wanted to work in the highest graphics mode (which
only allows two colours but has a screen size of 255 by 192 squares) and we
wanted to start drawing in the first page we would use a line like this:

30 PMODE 4,1
SCREEN

When you use high resolution graphics you have a choice between two dif
ferent colour modes. In some modes youare allowed green and black or
buffand black, and in others you are allowed blue, red, green and yellow or
magenta, orange, buff or cyan.

To swap between these colour modes we use the SCREEN command.
‘When we use the screen command we have to state whether we are using
text or graphics and which colour set we want (yes you can swap the colour
set for text!).

An example of the SCREEN command is thisline:

50 SCREEN 1,0

This example line tells the computer that we want to use graphics and
that we want the first colour set.

90

Chapter 35 High resolution graphics

PCLS, PSET, PRESET and PPOINT

PCLS, PSET, PRESET and PPOINT are the high resolution equivalents
to CLS, SET, RESET and POINT. As we already know how to use them
for low resolution graphics we won’t go into their high resolution use in
great detail.

The PCLS command can be followed by a number which tells the
computer which colour you want the background to be.

The background colours which you are allowed vary with each graphic
mode, as you can see if you look in Appendix B.

PSET is used in exactly the same way as the SET command, that is, it is
followed by three numbers in brackets — the coordinates of thepointto be
SET and the colour that you want it to be.

Although each graphics mode has 255 squares across and 192 squares
down the size of the point which is SET varies. To demonstrate this try the
following program:

10 MODEO,1
20 SCREEN 1,0

30 PCLS 3

40 PSET(128,96,2)::GOTO 40

‘When you RUN this program you will see a black dot appear in the
middle of the screen.

If you change the O in line 10 the dot will vary in size and colour, but will
always stay in the same place.

If you look at the table on page 90 you will see a table of the different
features which go with each graphics mode.

The size of point column shows you the shape of the points that you
can SET in each mode.

If you look at the no. of pages column you will see that some modes
need more pages than others, so you must always remember to use the
PCLEAR command toreserve enough pages for the mode you want to use.

We haven’t reserved any pages in the above program as the Dragon will
automatically reserve 4 pages which is enough for our purposes.

The PRESET command is used in exactly the same way as its low
resolution equivalent, as is the PPOINT command.

The following program fills the PMODE 1 screen with randomly
coloured dots and then deletes all the dots, colour by colour:

10 PMODE 1,1

20 SCREEN 1,0

30 PCLS

40 FOR N=0@ TO 255 STEP 2
30 FOR M=@ TO 191 STEP 2
6@ C=RND(4)

91

T he Dragon Trainer

7@ PSET(N,M,C)

80 NEXT ™

90 NEXT N

100 FOR C=2 TO 4

110 FOR N=@ TO 255 STEP 2
120 FOR M=0@ TO 191 STEP 2
130 IF PPOINT(N,M)=C THEN PRESET (N,M)
140 NEXT M

150 NEXT N

160 NEXT C

170 GoTO 170

Allofthecommands inthe program onthe previous page will be fami-
liar to you so you should be able to see how the program works.

Lines 40,50, 110 and 120 may puzzle you because of the STEP 2 at the
end of each line. These commands are added because of the shape of the
points that we are SETting (see page 90).

Try taking the STEP 2 off the end of these lines and see what happens.

The PCLS, PSET, PRESET and PPOINT are only a few of the high
resolution graphics commands available to you. There are many more
commands which are a lot more versatile and useful, but which are also
harder to use. For this reason it would be advisable if you spent some time
experimenting with these high resolution commands to get the hang of
them properly.

LINE

The LINE command, as you may expect, draws a line between any two
points on the screen. Try this short example program:

10 PMODE 3,1

20 SCREEN 1,0

30 PCLS

40 LINE (0,0) - (255,0),PSET
50 GOTO 50

When you RUN this program you will see a red line appear across the top
of the screen. Line 40 tells the computer to draw a line from the square 0
squares across and 0 squares down to the square 255 squares across and 0
down. The PSET command at the end means that we want the line to be
drawn. If we wanted to delete a line we wouldsimply replacethe PSET with
PRESET.

The LINE command can also be used to draw rectangles. Try changing
line40to:

40 LINE(0,0)—(255,191),PSET,B

92

Chapter35 High resolution graphics

‘When you RUN the program this time you will see a line drawn around
the edge of the screen. What we have told the computer to do this time is to
draw a box with one corner in the square 0 squares across and 0 squares
down and the opposite corner 255 squares across and 191 squares down.

The LINE command can fill in boxes as well asdraw them. Trychanging
line 40 to:

40 LINE (0,0) — (255,191),PSET,BF

The program will now fill in a box which covers the whole screen.

To change the colour of the line that we are drawing in we use COLOR
command (yes COLOR not COLOUR, for some reason the Dragon uses
the American spelling). The COLOR command is followed by the colour
that you want to draw in and the background colour that you want, eg if
you wanted to draw in red with a green background you would use the
command COLOR 3,1.

PAINT

The PAINT command does just what its name suggests — it PAINTs parts
(or all) of the screen in different colours. All we have to do is tell the
computer where we want it to start PAINTing, what colour we want it to
PAINTinand which colour we wantitto stop at. This short program gives
an example:

10 PMODE 3,1
20 SCREEN 1,0

30 PCLS

40 COLOR2

50 LINE(90,90)— (140,90),PSET
60 LINE — (115,60),PSET

70 LINE - (90,90),PSET

80 PAINT(96,86),3,2

90 GOTO %

Lines 60—70 may confuse you slightly because we have left off the coor-
dinates of the starting square. The Dragon does allow this and if we do
leave off the first coordinates it automatically starts the line from the last
point drawn. We could replace these lines with:

60 LINE(140,90) — (115,60),PSET
70 LINE(115,60)— (90,90),PSET

This version obviously takes up much more memory, so it is best to use
the first version above.

93

The Dragon Trainer

Line 80 contains the PAINT command which fills in the triangle. The
first two numbers in brackets tell the computer where we want to start
PAINTiIng from (number of squares across and number of squares down).
The third number tells the computer which colour you want to PAINT in.
The final number is the colour which the PAINTing must stop at, in other
words the colour that the shape was drawn in.

One thing that you must always remember is never to leave a gap in the
shape to be PAINTed because otherwise the colour leaks out and fills the
whole screen.

CIRCLE

The CIRCLE command is probably the most complicated command that
we have met so far, but don’t let that worry you. With a bit of practice you
should be able to draw circles, ellipses and arcs with no trouble at all.

The first thing to learn is how to draw a simple circle using the CIRCLE
command. Try typing in this program:

10 PMODE 3.1

20 SCREEN 1,0

30 PCLS

40 CIRCLE (128,96),20,2
50 GOTOS50

If you look at line 40 you will see how the CIRCLE command is used in
its simplest form.

The two numbers in brackets are, as you may expect, the coordinates of
the centre of the circle. The third number (2 0)is the radius of the circle (the
distance from the centre of the circle to the edge) and is measured in
squares. The final number is the colour of the circle.

Now that we can draw a circle we can find out how to draw ellipses or
‘stretched’ circles. If you make this alteration to line4 0you will be able to
see whatis done:

40 CIRCLE (128,96),20,2,2

This makes the ellipse twice as high as it is wide. Changing line 40 to:
40 CIRCLE (128,96),20,2,.5

makes the circle half as high as it is wide.

Now that we can draw circles and ellipses we can go on to draw arcs. All
we have to do is add the start and end points at the end of the CIRCLE
command. The start point is from 0 to I (with 0 being at 3 o’clock) and the
end pointisalso from 0 to | (with .5 being 9 o’clock). Trychanging line 40
to:

94

Chapter 35 High resolution graphics

40 CIRCLE (128,96),40,2,1,0,.5

Try varying the 0 and .5 at the end to see what effects they produce.
The following program illustrates the LINE, CIRCLE and PAINT
commands (with a bit of SOUND here and there as well):

Modern Art

10 PMODE 3,1

20 SCREEN 1,0

30 PCLS

40 FOR N=@ TO RND(Z0)+20

5@ C=RND(4)

6@ COLOR C,1

70 X=RND(255):Y=RND(191)

80 A=X+RND(10@@) :R=Y+RND(100)
9@ IF A>255 OR B>191 THEN GOTO 7@
100 LINE(X,Y)=(A,R),PSET,BF
11@ SOUND RND(255),1

120 NEXT N
130 FOR N=@ TO RND(Z0)+10
140@ C=RND(4)

158 X=RND(255) :Y=RND(191) :R=RND (4@)
160 CIRCLE(X,Y)»R,C

17@ PAINT(X,Y),RND(4),C
18@ SOUND RND(Z55),1

190 NEXT N
200 FOR N=1 TO 3000
210 NEXT
220 GOTO 10

PCOPY

Earlier onin this book we said that it was possible to flick through pages on
the screen to produce a flick-book effect. As you know, each different
graphics mode needs a different number of pages with PMODE 0 needing
one page, PMODE:s 1 and 2 needing two pages and PMODEs 3 and 4
needing four pages. It is possible to take any page and put it on top of any
other page, and as we have up to eight pages we can produce simple
animated pictures using this method. When a graphics mode needs more
than one page the screen is divided up in this way:

PMODEs 1 and 2: PAGE ONE
PAGETWO

PMODE:s 3 and 4: PAGE ONE
PAGETWO
PAGE THREE
PAGE FOUR

95

T he Dragon Trainer

If you look at these diagrams of how the pages are placed one above the
other you will be able to seethatin PMODEs 1 and 2 page oneoccupies the
top half of the screen and page two occupies the bottom half of the screen.
PMODE: 3 and 4 are similar except each page occupies a quarter of the
screen.

Putting one page on top of another is very simple. All you have to do is
tell the computer which page you want to put on top of another. To do this
we usethe PCOPY command. For example, if we wanted to put page four
on top of page one we would use a line like this:

50 PCOPY4TO1

Wecan, of course, take a page off the screen or put a page which was off
thescreen ontoitusing the same method (remember we do have eight pages
to work with).

The following program shows how to use the PCOPY command to copy
pages onto and off the screen:

Page Swap

10 PCLEAR 6

20 PMODE 3,1

3@ SCREEN 1,0

40 PCLS

50 LINE(@,0)~(255,47),PSET,BF
60 COl.OR 3

70 LINE(OQ,48)-(255,95),PSET, BF
80 COLOR 2

9@ LINE(Q,96)-(255,143),PSET, BF
100 COLOR 4

110 LINE(Q, 144)-(255,191),PSET,R
120 FOR N=@ TO 2000:NEXT

130 PCOPY 3 TO 5

140 PCOPY 4 TO &6

150 PCOPY 1 TO 4

160 FOR N=0@ TO 500:NEXT

170 PCOPY 6 TO 1

180 FOR N=@ TO 500:NEXT

19@ PCOPY 2 TO 3

200 FOR N=0@ TO S5@@:NEXT

210 PCOPY 5 TO 2

220 FOR N=@ TO 500:NEXT
230 GOTO 130

‘When you RUN this program the screen will be filled with threedifferent
colouredbands and a green band withared linearound it (one band toeach
page). After a short pause the bands will begin to change their order and
then keep changing their order until you stop the program. The main part

96

Chapter 35 High resolution graphics

of the program is lines 130—230 which transfer the pages on and off the
screen. You may wonder why we have to copy pages 3 and 4 off the
screen. This is because if we don’t keep a copy of them off the screen we
will eventually end up with only two colours.

DRAW

The DRAW command is the most versatile of all the high resolution
graphics commands. Like the PLAY command, the DRAW command
can be followed either by a string variable containing a series of
commands, or a series of commands enclosed in quotation marks.

The commands within the quotation marks (or string variable) are very
easy to use and remember. For example, if we wanted the computer to
draw a line 10 squares long going straight up we would use a line similar
to this:

100 DRAW‘U10”

If youlookatthislineyou will see that U means Up. Inthe samewayR
means Right, L means Left and D means Down.

After eachdirection command we tell the computer how many squares
we want it to draw in that direction.

Try the following short program:

10 PMODE 3,1

20 SCREEN 1,1

30 PCLS

40 DRAW‘BM20,180;R215;U100;L.215;D100""
1000 GOTO 1000

When you RUN this program you will see a box drawn on the screen.
The DRAW command in line 40 draws this box by drawing a line Right
215 squares, Up 100 squares, Left 215 squares and Down 100 squares.

The BM20,180 command tells the computer to move to the position 20
squares across and 180 squares down without drawing a line.

We can now add to the program to make the box look a bit like a
house:

50 DRAW*“U100;E50;R114;F50""

This line incorporates two new commands which can be used with
DRAW — E and F. E means ‘draw a line at 45 degrees’ and F means
‘draw a line at 135 degrees’.

As well asEandF, therearetwo other diagonal drawing commands —
G and H. Gmeans ‘draw a line at 225 degrees’ and H means ‘draw a line
at 315 degrees’.

97

The Dragon Trainer

Let’s add some windows to our house:

60 DRAW‘‘BM25,85;R40;D30;L40;U30""

70 DRAW*‘BM230,85;L.40;D30;R40;U30""
80 DRAW‘‘BM25,175;R40;U30;L40;D30""
90 DRAW‘BM230,175;L40;U30;R40;D30""

The windows look a bit plain don’t they? If we wanted to split each
window into four panes with the wood between each pane coloured cyan
we would have to change the draw colour. To do this we use the C for
Colour command:

100 DRAW*‘C3;BM45,86;D28;U14;L18;R36"
110 DRAW*“BM210,86;D28;U14;L18;R36"’
120 DRAW*BM45,146;D28;U14;L18;R36"
130 DRAW*BM210,146;D28;U14;L18;R36"

Now that we havewindows in our house weneed a door so that we can
getin:

140 DRAW*‘C4;BM110,180;U40;R36;D40"’
And aletter box:
150 DRAW“BM122,165;R12;D4;L12;U4”

Finally we can add a bit of colour:

160 PAINT(150,60),2,4
170 PAINT(22,178),4,4
180 PAINT(112,178),3,4

Our house is now finished (unless you want to add achimneythat is) but
there are still a few commands which we haven’t learnt yet. The first of
these is the Scale command.

Try typing in this short program:

10 PMODE4,1
20 SCREEN 1,1

30 PCLS

40 DRAW“BM128,96;U5;D10;U5;L5;R10"
50 GOTO 50

This program draws a small cross in the centre of the screen. If we
wanted to make the cross twice as big without re-drawing it we would add
this line:

35 DRAW “s8”

98

Chapter 35 High resolution graphics

The Scale command enlarges drawings in quarters of their actual size.
Forexample, Scale8iseightquarters(whichistwo) and makesthe drawing
twice as big. In the same way Scale 12 (which is twelve quarters or 3) makes
adrawingthree timesas big, and Scale 1 (or one quarter) makes adrawinga
quarter of itsactual size.

Try putting different numbers between 1 and 62 after the Scale
command in line 35.

Another thing which the DR AW command can do is rotate a picture.
The A command is followed by a number between 0 and 3 which corre-
sponds to the angle that you want the drawing rotated through, as below:

0 = 0 degrees 1 = 90 degrees
2 = 180 degrees 3 = 270 degrees

Try entering the following program:

Rotating Penant

10 PMODE 4

2@ SCREEN 1,1

30 PCLS 1

40 COLOR 2

50 DRAW"S8*

60 A$="BM120,104;L125E6F6§R12"
70 DRAW A%

8@ FOR N=@ TO 500:NEXT
9@ PCLS 1

100 DRAW"A1" :DRAW A%
110 FOR N=@ TO S@O:NEXT
120 PCLS 1

130 DRAW"AZ":DRAW A%
14@ FOR N=@ TO S5S@@:NEXT
150 PCLS §

160 DRAW"A3" :DRAW A%
170 FOR N=@ TO SO@@:NEXT
180 PCLS 1

190 DRAW"A@" :DRAW A%
200 GOTO 8@

When you RUN this program you will see a little penant rotating about
the point where the stick ends and the triangle starts.

If you look through the program then you will see that wehave stored the
drawing commands in the string A$, in the same way as we did with the
PLAY commands. This saves us having to retype these commands each
time we draw the penant.

Lines 100—190 rotate the penant and redraw it before pausing, clearing
the screen and rotating the shape another 90 degrees.

99

The Dragon Trainer

As with the PLAY command it is possible to eXecute a set of commands
which are stored ina string variable using the X command. For example, in
the last program we could change line 100 to:

100 DRAW“AL;S AS”

The M command which we used with the B command to determine the
start point of ourdrawings can also be used to move to another point. For
example, if we wanted to move left five squares and down 10 squares we
could use a line like this:

100 DRAW*“M ~5,10”

Tomoveleftor up weputa — in front of thenumber of squaresthatwe
want tomove. Tomoveright or down we just specify howmanysquares we
want to move, as in the above example.

If you want to move without drawing then you simply add a B before the
direction command, eg.

DRAW*BR10"

moves the drawing cursor 10 squares to the right, without drawing.

One last thing about the DRAW command. Throughout this chapter we
have been putting a semi-colon between each command, but this is not
necessary. The only reason we have put these in is they make it easier to
read the lines.

GET and PUT

In most programs using graphics you need to be able to move something
around the screen. You could, of course, move the object by PRESETting
it and then draw it again somewhere else, but this takes time, especially
with alarge drawing. A much faster (and easier) way is to GET the picture
from somewhere on the screen and PUT it back where you want it.

Try the following program:

Bouncing Ball

10 PMODE 4,1

20 SCREEN 1,1

30 PCLS

4@ DIM SHAPE(19,19)

50 CIRCLE (10,10),8,1

60 GET(0,0)-(20,20),SHAPE, G

70 X=1:1v=1

BO A=2:B=2

90 PUT (X, Y)~(X+20,Y+20), SHAPE, PSET
100 X=X+A:Y=Y+R

Chapter35 High resolution graphics

110 IF Y>170@ OR Y<2 THEN B=-R
120 IF X>234 OR X<2 THEN A=-A
130 GOTO 90

This program makes a ball bounce about the screen.

Line 60 contains the GET command which takes the ball (which
occupies the space from two squares across and two squares down to 18
squares across and 18 squares down — the space around it stops the ball
from leaving a trail) and stores it in the array variable SHAPE. The G at
the end of the line makes sure that the picture is recorded in great detail.
If the G is left off the shape is sometimes not PUT back where you want
it.

Line 40 DIMensions the variable which we store the circle in. In this
case we have used an array variable with 20 rows and 20 columns
because the circle has a radius of eight squares, giving it a diameter of
16 squares. Using a 20 by 20 array allows us to GET two blank squares
all round the circle so that when the circle is moved the blank squares
rub out any trail left behind it.

However, unmentioned (or perhaps unknown) by other manuals is
the fact that it is possible to store your shape in a simple one — dimen-
sional array. This has the advantage that less memory is used in storing
shapes, so more and larger shapes can be stored. Take our circle for
example. All we have to do is to work out the area of screen which the
circle takes up (20 squares by 2 0 squares, multiply 21 by 21 which gives
441squares) and divide this number by 8, which gives 55.125, which we
round up to 56. We then divide this number by 5, which gives 11.2,
which we round up to 12. So all we need is a one dimensional array to
contain 12 numbers. Try changing line 40 to:

40 DIM SHAPE(11)

Here is a table showing what to divide the area of your shape by in
each graphics mode:

PMODE 1st DIVISOR 2nd DIVISOR
4 8 5
3 8 5
2 16 5
1 16 §
0 32 5

As you can probably see, this method of using a one — dimensional
array saves a lot of memory (429 bytes of memory in this case), so it is
well worth remembering.

Line 90 PUTs the shape back on the screen. Notice that the PUT
command ends in a PSET command. This can be replaced with the

101

The Dragon Trainer

PRESET command which will delete ashape. AND, OR and NOT can also
take PSET’s place.

AND compares each point of the shape with the part of the screen that it
will occupy. If both the point of the shape AND the point on the screen
which it will occupy are SET then that part of the shape will be SET. If
either or both of them are not SET that part of the shape will not be SET.

OR compares the pointsin the same way as AND but will SET the part if
either or both of the points are SET. This makes it look as if the shape is on
top of whatever is behind it.

NOT is much simpler than AND and OR. This command reverses the
colour of the background when a shape is PUT onto it.

Try replacing the PSET at the end of line90with AND, OR and NOT
and see what effects they produce.

‘We have now covered all the high resolution graphics commands. With
some practice you should be able to produce quite effective displays which
will liven up your programs no end. It would be a good idea if you did
practise with high resolution graphics before you go on to the next chapter
as these commands take a while to get used to.

102

36
PRINT USING

The PRINT USING command is used to neaten up your displays and is
veryuseful for displaying tables. Thereare several different ways of using
the PRINT USING command and each one is explained below.

The # symbolis used to round upnumbers. For example, if you wanted
to round up the number 123.456 to two decimal places you would use:

PRINT USING** # 4 #. % #;123.456

In this command we have enclosed three # symbols, a full stop and
another two # symbols in quotation marks after the PRINT USING
command. This tells the computer that we want the following number
(123.456) displayed with three numbers before the decimal point and two
numbers after.

If we wanted to display a number with a comma to the left of every third
number (eg 1,000,000) we would use this command:

PRINT USING ““ § 4 # # # # #,7°;1000000

The comma at the end of the # symbols means that we want a comma
after every third number.

The ** symbols tells the computer to fill up any spaces before a number
with asterisks. For example, the following command displays the number
235 with three asterisks before it:

PRINT USING‘“** # 4 # #°;235

The $ symbol is used to display a dollar sign before a number (to repre-
sent money). All you have to do is put the § symbol at the start of the
PRINT USING command:

PRINT USING*S 4 # # #. # #73123.45

If you want the $ symbol directly before the number with no spaces in
between you should use this kind of command:

PRINT USING***$ 4 # 4 # #. # 4123.45

103

The Dragon Trainer

The + signtells the computer to display anumber together witha plus or
minussign, depending on whether the number is positive or negative. The
plus or minus sign can either be before or after the number, depending on
where you put the + symbol.

PRINT USING* + ## #;123
(displays the + before the number)

PRINT USING*“ # # # +; — 123
(displays the — after the number)

If youwant to display a number inexponential form (eg 1.34E+ 06 is an
exponential number and means 1.34 times 10 to the power of 6) you should
add four{ symbols at the end of the PRINT USING command. Todisplay
9876 in exponential form you would use:

PRINT USING* # # # #1111°;9876

The ! symbol is used to display only the first character of astring, eg to
display the first letter of the string TOTAL you would use:

PRINT USING““!”’;“TOTAL”

If you wanted to make sure that a string of letter didn’t take up more
thana certainamount of space on atable you would use the %o symbol with
the PRINT USING command. So to make sure that the string ‘TOTAL’
doesn’t exceed three characters you would use:

PRINT USING“% %’;*TOTAL”

This command will display TOT (first three characters of the string
“TOTAL”) as there is one space between the two %o symbols, and each %
symbol counts as a space.

The PRINT USING command can, of course, be used with variables
instead of numbers at the end. The only reason we have used numbers in
our examples is to allow you to try each one and see what effect it has.

37
Storing information on tape

As well as recording programs on tape it is also possible to store numbers
and letterson the tape. To do this we PRINT the numbers and letters onto
the tape and then INPUT them back again.

Let’s look at the program which we used to check the volume level onthe
tape:

10 OPEN“Q”, #-1,“FILE”
20 FOR N=0TO 2000

30 PRINT#-1,65;

40 NEXT

50 CLOSE#-1

Line 10 of this program tells the computer to open an Output file (the ‘O’
in quotation marks stands for Output) on the tape and give it the name
‘FILE’ (in the same way as you give a program a name).

Line 30tells the Dragon to store a number 65 onthe tape (the semi-colon
makes sure that the next number or letteris stored directly after the last one
without too much of a gap left in between, the same way as a semi-colon
does when you PRINT onto the screen).

Line 50 tells the computer that you have now finished with the tape and
to close the file.

Reading information back off the tape is just as easy as storing it. If you
look at the program on the next page whichreads the numbers back of fthe
tape you will see how this is done:

10 OPEN“I”, #-,“FILE”
20 FORN=0TO 2000

30 INPUT#-1,A

40 PRINT CHRS$(A);

50 NEXT

60 CLOSE4#-1

Line 10 of the first program is similar to the start of the program
above, except in this case we are telling the computer to open a file
to Input (the ‘I’ in quotation marks stands for Input) information from

105

The Dragon Trainer

the tape. Line30actually INPUTs a number and stores it in the variable A,
before line 40 displays the character with the CHRS code ‘A’.

Line 60 tells the computer that we have now finished with the tape.

Storing and reading back letters s just as simple as storing and reading
back numbers. The letter which you wish to store must be enclosed in quo-
tationmarks (in the same way as you do with a normal PRINT command)
and must be read back into a variable.

Variables can also be stored simply by using a command like this (after
opening a file for Output of course):

PRINT #-1,A

Reading in variables s just the same as reading in a number, as it is only
the contents of the variable which are recorded, not the variable itself.

It is possible to check to see if you have reached the end of the infor-
mation stored on the tape by using the EOF(-1) command. For example, to
tell the computer that you have finished with the tape when it gets to theend
of the information you would use a line like this:

80 IF EOF(-1) THEN CLOSE %-1

Itispossibleto store a long list of numbers, characters or strings on tape
simply by placing a comma or semi-colon in between each one. A semi-co-
lon stores the information close together, therefore saving time and space
on the tape.

If you need to store graphics characters on tape then you need to store
their ASCII codes on tape. Try this program.

Graphics Recorder

18 CLEAR 256

20 FOR N=128 TO 255:A$=A$+CHRS(N) :NEXT N
30 PRINT As

40 OPEN"0",#-1, "GRAPHICS"

50 FOR N=1 TO LEN(AS)

60 PRINT#-1,ASC(MID$(A$,N, 1))3;

7@ NEXT N

80 CLOSE#-1

Put a blank tape in your tape recorder and set it on record. Then RUN the
program. You should see the set of graphics symbols appear on the screen
and then the tape will start.

When it has finished rewind the tape, set it on PLAY and RUN the pro-
gram on the following page:

106

Chapter 37

Graphic Loader

10
20
30
40
50
60
70
80

CLEAR 256

OPEN"I*,#~1, "GRAPHICS"
INPUT#-1,A

AS=AS+CHRS (A)

PRINT CHR$(A);

IF EOF(—1) THEN CLOSE#-1:G0OTO 60
GOTO 20

PRINT:PRINT As

Storing information on tape

This program will load back the graphics symbols which were saved with
the first program, displaying them as they are loaded, and then all in one go
when they have all been loaded in.

You will see from these programs that data is recorded and loaded in
blocks. Thereasonfor this is the Dragonpauses every now and then when
loading data to store it in the right memory location.

It is also possible to store music on the tape straight from the Dragon.
Try the following program:

Music Saver

10
20
30

CcLs
MOTOR ON
PRINT*PLEASE SET TAPE ON record®

40 PLAY"Q3L4CAGFL2CL6CCLACAGFL2DI.4R~AGL2EL40+CC

O-R-GL2A"

5@ PRINT"PLEASE REWING TAPE AND SET ON play®
60 AUDIO ON

As you will see from this program, if you use the PLAY command (or, to
some extent, the SOUND command) while the tape is running on record
the notes being PLAYed will be recorded.

107

38
Using a printer

The Dragon is capable of sending information to a printer as well as the
screen. Any printer should work aslong as it works from a parallel Centro-
nicsinterface, but itis bestto askif a printer is compatible with the Dragon
before buying it.

The printer plugs into the P1/0 socket on the left of the computer and
the plug should be connected as shown in the Additional Information lea-
flet included with your Dragon

A programcan be output to the printersimply by typing LLIST. Printing
text on the printer is just as easy. All you have to do is add #-2 to the
PRINT statement. So to print the word HELLO on the printer you would
use PRINT #-2,““HELLO”’. Remember that it is possible to print lower-
case letters by including inverse characters in your PRINT statement.

Itisalsopossible to find the position of the print head. This is done with
the POS(-2) command.

The following example prints all the normal text characters on the prin-
ter in columns 32 characters wide:

10 FORN=32TO 127

20 PRINT #-2,CHR$(N);

30 IF POS(-2) =32 THEN PRINT #-2)*”’
40 NEXT

All the PRINT USING functions work on the printer, as does the TAB
command (in this case you have many more columns so the number after
the TABcommandcan be much bigger). PRINT @ does not work on prin-
ters.

108

39
Trigonometric functions

Look at this triangle:

A Ha

As you can seeitis aright-angled triangle because one of its sides (BC) is
atan angle of 90 degrees from one of the others (AB). Ifwe know the length
of the line AC, and also what the angle a is, then it is possible to work out
thelengths of the sides AB and BC. To do this we need to use the sines and
cosines.

The sine of an angle is the length of the opposite side divided by the
length of the longest side (hypotenuse). As we are using the angle a the
oppositesside is BC. If we say that BCis 30 units long, and the hypotenuse is
50 units long then the sine of the angle a is 0.6.

The cosine of an angle is the length of the adjacent side (in this case AB)
divided by the length of the hypotenuse. In our example the adjacent side is
40 units long. 40 divided by 50 is 0.8.

Now that we know what sines and cosines are we can put them to use.
Look at thissecond triangle:

e g

Again it is a right-angled triangle, but this time one of the angles is
labelledand we are told thelengthofthehypotenuse. We can usethesetwo
pieces of information, together withyour Dragon, to work out thelengths
of the other two sides. Let’s take side BC first.

BC is the side which is OPPOSITE to the angle which we know, so we
need to use sine to work out its length. Your Dragon knows the sine of
everyangle, so all we have to do is ask for it. Unfortunately the Dragon

109

The Dragon Trainer

asks for angles to be givenin RADIANS which are measurements of angles
in circular units. To convert angles to radians we need to divide the number
of degrees by 57.2957805. Using this information we can find the length of
the opposite side in this way:

PRINT SIN(37/57.2957805)*50

This produces the answer 30.0907507 which is the length of the opposite
side. We multiply the sine of 37 degrees by 50 (the length of the hypotenuse)
to find the length of the opposite side.

Finding the length of the adjacent side is very similar. In this case we use
cosine instead of sine and use the same routine:

PRINT COS(37/57.2957805)*50

This produces the answer 39.9317759 which is the length of the adjacent
side.

The tangent of an angle is the ratio between the length of the opposite
side and the adjacent side. For example, the tangent in our example is
0.753554031 which is 30.0907507 divided by 39.9317759. On the Dragon
we find tangents with the TAN command, so in this case we use:

PRINT TAN(37/57.2957805)
remembering to convert from degrees into radians which gives the answer
0.753554031.

If you already know the ratio between the opposite and ad jacent sides of

atriangle you can work out the angle by using ATN, whichis the inverse of
TAN. If you type:

PRINT AT N(.753554031)*57.2957805

you get the answer 36.9999999, which is as near to 37 as you could possibly
get.

110

40
Numeric functions

‘We have already met some of the Dragon’s numeric functions — RND,
POINT, PPOINT, TAN, SIN, COS, PEEK and JOYSTK. There are,
however, some others which we haven’t met, and these are explained in
alphabetical order over the next few pages.

ABS

ABS is used to convert a negative number into an ABSolute, or positive
number:

PRINT ABS(-12)

Returns the answer 12. If a number is already positive then it remains the
same. ABS can also be used with variables:

PRINT ABS(A)

returns the positive value of the number stored in the variable A.

EXP

EXP is used to raise e (base of natural logarithms) to the power of any
number:

PRINT EXP(3)

will cube e, giving the answer 20.0855369

FIX

FIX is a little-used function which truncates, or cuts off all of a number
after the decimal point:

PRINT FIX(12.3625;INT(-12.3625)
returns the answers 12 and -12.

11

TheDragon Trainer

INT

INT is similar to FIX with the difference being that it rounds a number
down, rather than just truncating it:

PRINT INT(12.3625);INT(12.3625)

willreturn the answers 12 and -13.

LOG

LOG is theinverse of EXP and is used to find natural logarithms:
PRINT LOG (15.5)

returns the answer 2.74084003

MEM

Have you ever wondered just how much memory you have left for your
programs? Well, the MEM command is for just that purpose. Try typing
in:

PRINT MEM

If you do not have a program in memory then you will receive the answer
24871, which is just over 24K of memory (divide by 1024 to find total
memory in kilobytes).

While we are on the subject of memory we might just as well mention
why we can only use 24K of the 32K we are supposed to have on the
Dragon. 1024 bytes (or 1K) of memory are used by the Dragon for rernem-
bering such things as which line is currently being carried out. Another 512
bytes are used by the screen (that’s how you can POKE onto the screen),
and another 6K are used for the high resolution graphics pages (up to 12K
canbe set apart for thisuse). Theother 512 bytes are used for various con-
trol lines, and also for variable storage.

Although it is not possible to use any of the text screen memory, or any
of the other memory essential to the Dragon when it is working, we can use
the high resolution graphics pages. To do this we type PCLEAR 1, which
gives us another 4.5K. We can access the other 1.5K by typing in:

POKE 25,6:POKE27,6:POKE29,6:POKE31,6

We now have 31015 bytes (or just over 30K) left for programs, although
we can not now use high resolution graphics.

112

Chapter 40 Numeric functions

POS
The POS command can be used to tell the POSition of the printer head. If
you type:

PRINT POS(-2)

Youwill be told how far across the printer head is (if, of course, you have
a printer connected).

SGN

SGN s used to find out if a number is positive or negative. If the number is
positive then you will receive the answer 1. If it is negative you will receive
the answer -1. If the number is 0 you will receive the answer 0:

PRINT SGN(10);SGN(-10$;SGN(0)
SQR

SQR is used to find the squareroot of a number:

PRINT SQR(25)

will give you the answer 5.

113

Appendices

The Dragon Trainer

116

Appendix A

APPENDIX A
A list of commands

This chapter gives a brief run-down of every command which is available
on the Dragon. Some of them, such as the mathematical functions, have
not been covered in the rest of this book so it is worth reading through this
section:

ABS(n) — this function converts the number n (n can be any number) to its
positive value: eg PRINT ABS(-12) will display the number 12.

AND — this function has three uses:
(i) Inthe IF...THEN. . .ELSE statement AND can be used in this way:

IF A= 1AND B=1THENC=1

(If the value of the variable A is | AND the value of the variable B is I then
store the number 1 in the variable C)
(ii) AND can be used with the PUT command to compare each point of a
shapewith the part of the screen thatit will occupy. If both are SET before
the shapeis PUT onto the screen the shape will be visible, otherwise it will
be invisible.
(iii) AND is also a LOGICAL OPERATOR. It can be used to compare
two numbers in a way similar to the way AND is used with the PUT
command. If both the numbers are TRUE (1) then the result will be true. If
either of the numbers are false (0) the answer will be false. PRINT 1 and 1
returns the number 1 but PRINT 1 AND O returns the number 0.

ASC(*‘¢’’) — this function returns the ASCII (American Standard Code
for Information Interchange) code of any character, eg PRINT
ASC(“A”) returns 65. The character must be enclosed in quotation marks
and brackets.

ATN(n) — returns the arctangent of the number n (n can be any number).

AUDIO ON — re-routes the sound from the cassette recorder through the
television speaker.

AUDIO OFF — cancels AUDIO ON.

117

The Dragon Trainer

CHRS$(n) — used with the PRINT command to display the character with
the code n (n is any number between 31 and 255).

CIRCLE(x,y),r,c,hw,s,e — thiscommand is used to draw circles and ellip-
ses in high resolution graphics. Variable x is the number of squares across
that you want the centre of the circle to be and y is the number of squares
down that you want the centre of the circleto be. Thevariabler is the radius
of thecircle and cis the colour; hwis the height-width ration of the circle, s
is the start point of the circle (or arc) and e is the end point (from 0 to 1).

CLEARVv,s — reserves extra memory for string variables. Variablevisthe
number of characters that you want and s (optional) sets a limit to the
amount of memory that your programs can take up.

CLOAD*“‘program’ — loads a program from the cassette tape into the
Dragon’s memory. The ‘program’ is the namethat theprogram was saved
under.

CLOADM‘‘program’’,0 — similar to CLOAD but loads machine code
programs. Typing o allows you to load the program into a specific part of
the RAM memory different to the one that it was originally saved from
(optional).

CLOSE#-1 — closes cassette file.

CLS n — clears the screen to the colour n (nis any number from0to 8). If n
is left out the screen is cleared to green. Colour codes are:

0 — Black 1—Green 2—Yellow 3 —Blue
4 —Red 5— Buff 6 —Cyan 7— Magenta
8 — Orange

COLORD,f — used in high resolution graphics to define the background
and foreground colours. See Appendix B for colours available in each
mode.

CONT — continues a program from where it was stopped. It only works
when the program has been stopped using the BREAK key or a STOP
command in the program. It does not work after more lines have been
entered or an error has occurred.

COS(n) — returns the cosine of n (n can be any number).

118

Appendix A

CSAVE‘‘program’’ — saves a copy of the programcurrently in memory
onto cassette tape. The program is the name which the program is saved
under and can be any string of up to eight characters starting with a letter.

CSAVE*“program’’,A — saves a program in ASCIJ format, allowing it to
be read into a program like a normal data file.

CSAVEM‘‘program’’ start,end,entry — similar to CSAVE but saves
machine code programs. The start is the starting point in memory that the
program is stored in and end is the end point. The entry is the memory
address that the program is carried out in.

DATA a,b,c,d... — stores a list of numbers or characters. Each number
or string of characters should be separated by a comma. Characters must
be enclosed in quotation marks.

DEF FNa(d) = formula — defines a function with thenameFNa(d);acan
be any variable, d is a dummy variable and formula is the calculation that
you want carried out.

DEF USRn=address — defines the starting address of a machine code
routine which s called by the USR function. Variable nisany number bet-
ween 0 and 9. The address is the memory address of the start of the routine
and must be from 0 to 65535.

DEL start-end — deletes several lines of a program: start isthelineto be
deleted andendisthelast line. All lines between start andend are deleted.

DIM variable(nl,n2) — reserves memory for an array with the name varia-
ble withnl rows and n2 columns. The n2 may be left out to reserve memory
for an array with the name variable to store nl numbers.

DRAW ‘‘sub-commands’”’ — used for drawing in high resolution
graphics. The ‘sub-commands’ can either be a series of sub-commands
enclosed in quotation marks or stored in a string variable. See pages
73-76 for an explanation of sub-commands.

EDIT line number — enters EDITOR and allows alterations to be made to
program lines. See page 37 for a list of ways to alter lines.

EOF(-1) —checkstoseeifthereis any moreinformationleftin atape file.

EXEC address — executes machine code routine starting at memory loca-
tion address.

119

The Dragon Trainer
EXP(x) — raises natural logarithms to the power of x.
FIX(x) — cuts all numbers after the decimal point off.

FOR v=nl to n2 — startrepeating all commands between here and the
NEXT command n2 — nl times (eg if nl is 2 and n2 is 13 then the
commands are carried out 13— 2= 11 times). The variable v is used as a
counter.

GET (x1,y1)-(x2,y2),array name,G — high resolution graphics command.
Stores rectangles of screen from the point xI squares across and yl
squares down to the point x2 squares across and y2 squares down in the
two dimensional array name. The G makes sure that every detail of the
rectangle is recorded.

GOSUB line number — goes to the start of a subroutine and carries on with
the program from there.

GOTOline number — similar to GOSUB but goes to any line, not necessa
rily the start of a subroutine.

HEXS$(n) — converts n to its hexadecimal (or base 16) equivalent. The
angwer is returned in string form and can be stored in a string variable.

XF condition THEN action 1 ELSE action 2 — compares two or more
variables or numbers. If a certain condition concerning the numbers of
variables is fulfilled then action I carried out, otherwise action 2 is carried
out.

INKEYS — scans the keyboard. It is possible to record which key is being
pressed in a string variable (eg A$=INKEY$)

INPUT“message” ;variable — displays the message enclosed in quotation
marks (optional) before waiting for a reply which is then stored in the
variable ‘variable’.

INSTR(n,s$,t$) — searches through the string variable s$ for the string of
characters t$, starting at the nth character of the string s$. This function
will return the position of the first character of the string t$ in the string s$.
If t$ is not in s3 the number 0 will be returned.

INT(n) — rounds the number n down to the nearest whole number.

120

Appendix A
JOYSTK(n) — returns the current position of the joysticks. Wheren is a
number between 0 and 3:
0 — current left-right position of right joystick
1 — current up-down position of right joystick
2 — current left-right position of left joystick
3 — current up-down position of left joystick
LEFT$(a$,n) — returns the first n characters of the string variable a$.
LEN(a$) — returns the length of the string variable a$.

LINE(x1,y1)-(x2,y2),command,BF — draws a line from the point x1
squares across and y1 squares downt o the point x2 squares across and y2
squares down. The command may either be PSET (draws the line) or
PRESET (erases the line). Variables B and F are optional: B draws a rec-
tangle with the points (x1,yl) to (x2,y2) as opposite corners, BF fills in the
rectangle.

LINE INPUT‘message’’;variable — similar to INPUT but allows
commas and up to 255 characters to be entered.

LIST start-end — displays the program on the screen. The screen automa-
tically scrolls if the program does not all fit. The start and end may be any
line number, and either or both may be left out. See page 13.

LOG(n) — returns the natural logarithm n.

MEM — returns the amount of memory free for programs.

MIDS$(a$,n,c) — finds the first ¢ characters after the nth character of the
string a$.

MOT OR OFF — turns off the cassette motor.
MOT OR ON — turns on the cassette motor.
NEW — deletes the program currently in memory.
NEXT — marks the end of a FOR...NEXT loop.

NOT — used with the PUT function to PUT a shape onto the screen in its
negativecolour.

121

T he Dragon Trainer

ON n GOSUB line numbers — goes to the line number which marks the
start of the nth subroutinein thelist line numbers. Each line number in the
list should be separated by a comma.

ON n GOTO line numbers — similar to ON GOSUB but goes to any line
number, not to the start of a subroutine.

OPEN “‘c”, #-1,*filename’’ — opens a file with the name ‘filename’ on
thetape. The c caneither be OtooutputdatatothetapeorItoreaddatain.

OR — can be used in three ways:

(i) It can be used in the IF...THEN statement. If either or both of two
conditions are fulfilled then the action is carried out.

(ii) Itcan be used with PUT to give an impression of one object being on
top of another. Compares each point of the shape with the part of the
screen that it will occupy. If either or both are SET then that point of the
shape will be SET.

(iii) It can be used asa LOGICAL OPERATOR. Comparestwo numbers
and if either or both aretrue (1) then the result will be true. If both are false
(0) then the result will be false.

PAINT(x,y),c,b — fillsinashapestarting at the point x squares across and
y squares down. Variable c is the colour that the shapeshould be coloured
and b is the border colour of the shape.

PCLEAR n — reserves n pages for use in high resolution graphics.
PCLS n — similar to CLS but is used in high resolution graphics.

PCOPY p1 TO p2 — copies the picture on page pl onto page p2

PEEK (address) — looks into a memory address and returns the number
stored there.

PLAY “‘music’’ — plays the contents of ‘music’, a list of notes and sub-
commands which are either stored in a string variable or enclosed in quo-
tation marks.

PMODE mode, page — defines the graphics mode that we want to work in.
Where mode is the number of the graphics mode (see Appendix B) and
page is the page which we wish to start drawing in.

POINT(x,y) — teststhepoint at x squares acrossandy squares down to see
whether it is SET or not. If the point is SET its colour will be returned.

122

Appendix A

POKE address,value — stores the number value in the memory address,
‘address’. Only works in RAM.

POS(n) — returns the current print position. If n is 0 the current cursor
position is returned. If n is -2 the current position of the printer head is
returned.

PPOINT(x,y) — same as POINT but is used in high resolution graphics.

PRESET(x,y) — deletes point which is x squares across and y squares
down in high resolution graphics.

PRINT — used to display characters on the screen.

PRINT @position,characters — displays the characters stated at the posi-
tion stated.

PRINT #device number,characters — if device number is -1 then the
stated characters are stored on the tape. If device number is -2 then the
stated characters are printed on the printer.

PRINT USING*‘format symbols’’;number — displays the number or
variable number in the format stated by the format symbols. See pages
103— 104 for format symbols.

PSET(x,y,c) — high resolution graphics command. Lights up the point
which is x squares across and y squares down in the colour c. Colours
available vary from mode to mode (see Appendix B).

PUT(x1,y1(-(x2,y2),sbape,command — copies the shape stored in the
variable shape onto the area of screen from xl squares across and yl
squares down to x 2 squares across and y 2 squares down. The shape must
havepreviouslybeenstored in the variable shape by a GET command. The
command may either be PSET, PRESET, OR, NOT or AND.

READ variable — reads a number or string of letters from a DATA
statement. The number or string is stored in the variable ‘variable’.

REM comments — allows you to add comments into your program (to
remind you what a section does, for example). REM statements are

ignored by the computer when the program is executed.

123

The Dragon Trainer

RENUM new,old,increment — renumbers a program’s line numbers start-
ing at line old replacing it with the line new and renumbering in steps of
increment.

RESET(x,y) — similar to PRESET but only works in low resolution
graphics.

RESTORE — sets the data pointer to the first piece of data in the first
DATA statement.

RETURN — marks the end of a subroutine. Program goes back to the next
command after the GOSUB command which sent the computer to that
subroutine.

RIGHTS(v$,n) — returns the last n characters of the string variable v$.
RND(n) — returns arandom number. If n is 0 then the random number is
betweenOand 1. If nismorethan 1 thenthe random number is between 1
andn.

RUN line number— starts executing aprogramstarting at the line number
stated. If the number is left out the program is executed starting at the first
line of the program.

SCREEN screen type,colour set — used to define which colour set you
want. The screen type is either 0 or 1, O for text and 1 for high resolution
graphics. See Appendix B for colour sets available with each graphics
mode.

SET(x,y,c) — similar to PSET but only works in low resolution graphics.
SGN(n) — used to find whether a number is positive or negative. If number
nis negative -1 will bereturned, if n is positive 1 willbereturned and if nis 0
then 0 will be returned.

SIN(n) — returns the sine of the number n.

SKIPF‘‘program name’’ — searches for the end of the program with the
name program name on the tape.

SOUND p,d — plays a note with pitch p for duration d. Variables p and d
can be any number betwen I and 255.

SQR(n) —returnsthesquareroot of the number n.

124

Appendix A

STEP n — usedina FOR. . .NEXT loop toincrement the counter in steps
of n.

STOP — stops execution of program. Allows program to be continued
using the CONT command.

STR$(n) — stores the number n in a string variable. (eg A$=STR$(12)
stores the number 12 in the variable A$).

STRINGS$(n,c) — returns a string of n characters with the code c.

TAB(n) — used with the PRINT command to specify the column which
you want to start PRINTing in.

TAN(n) — returns the tangent of the number n.

TIMER — returns current value of built-intimer. Timermay be reset by
the command TIMER=0.

TROFF — turns off trace.

TRON — turns on trace. Constantlydisplays which program line is being
carried out.

USR(n) — carries out the machine code routine which has the number n
(previously set by DEF USR).

VAL(s$) — converts the first character of the string variable s§to a number
as long as the firstcharacter is a number. (eg PRINT VAL(“1”) displays
the number 1).

VARPTR(v) — returns the memory address which the variable v is stored
in.

125

APPENDIX B
Graphics information

Listed below are the graphics modes available on the Dragon, the size of
the points in each mode, the number of pages needed and the colour sets
available with each mode. There is also a list of the colour codes.

Graphics Modes
PMODE SIZE OF No.OF | COLOURS AVAILABLE
POINT PAGES |[SCREEN 1,0 SCREEN 1,1
am
0 1 1 0,1 0,5
am
1 H 2 1234 | 5678
2 [1] 2 0,1 0,5
3 am 4 1,2,3,4 5,6,7,8
4] 4 0,1 0,5
Colour Codes
(0) BLACK (1) GREEN (2) YELLOW (3) BLUE
(4) RED (5 BUFF (6) CYAN (7) MAGENTA
(8) ORANGE

127

APPENDIX C

This section contains several programs which put to use all of the
commands which you have learned throughout this book. The programs
are designed to show off all the best points of your Dragon — the graphics
and sound capabilities, as well as its powerful BASIC language.

The programs are a mixture of games, such as Hangman and Gallery,
and useful programs, such as Revision Aid and Clock. There is also a
selection of graphics programs such as Artist which allows youtodraw pic-
tures in any of the graphics modes, and 3-D Plot which draws a three-
dimensional picture.

Each program comes with a description of what the program does and
how to use it, as well as an explanation of how it works.

The description of the program will tell you what happens in each stage
of the program and also tells you how to operate it. This section will also
help you to make adaptions (where possible) to the program.

Followingeach program is a full explanation of how the program works,
section by section. If you read this section thoroughly youshould be able to
fully understand how the program works.

Each program is a direct listing of the running program and should be
typed in exactly as it is printed, no matter how strange it looks (especially
with the Clock program).

Hangman

This game is a version of the old favourite, Hangman. The idea of the game
isto work out what word the Dragon has picked. You do thisby choosing a
letter which you think may be inthe word and then typing it in. If the letter
which you choose is in the word then the computer will display that letter at
the bottom of the screen whereit should go. If the letter appears more than
once in the word then it will be displayed in every place that it occurs.

If you get a letter wrong then the computer starts to draw a gallows on
the screen. Each time you make a mistake another part of the gallows is
added, and eventually a man is drawn, piece by piece, waiting to be hung. If
you do not guess the word by the time the picture is complete the man is
hung and you lose the game.

If you think you know the word then you may type it in and see if it is
right. If you are correct then the screen clears and the man is displayed
(without the gallows). The tune Born Free is then played to finish off the
game.

129

The Dragon Trainer

To help youremember which letters you have tried, every time you enter
a letter it is displayed at the top of the screen. The word which you are
trying to guess is displayed at the bottom of the screen, with any letters
which you haven’t yet guessed being replaced by dots.

This program makes use of the low resolution capabilities of the
Dragon, as well as the sound. You may extend the computer’s vocabulary
of words by adding more between lines 650 and 1000 using the DATA
statement. Words should be entered in the same way as those in lines 590 to
650 and the number 27 in the RND statement in line 50 should be changed
to the number of words which you have in the list.

10 REM HANGMAN

15 GOTO1080

2@ CLS@

25 RESTORE

26 CLEAR

30 PRINT3@, "LETTERS USED:";

4@ P=1

5@ FORN=@ TO RND(27)

6@ READ A$

7@ NEXT

B@ PRINT®416,STRINGS(LEN(AS$), 46) 3

9@ @=0:PRINT3448,"" :PRINT3448, "WHAT IS YOUR GUESS*j

10@ INPUT GUESS$

11@ IF GUESS$=A$ THEN 1000

120 PRINTSTRIES+3Z2,GUESS$;

13@ P=INSTR(P,A$,GUESS$)

140 IF @=1 THEN 160

158 IF LEFT$(A$,1)=GUESS$ THEN PRINT3416,GUESS$;:Q=1:
P: GOT0130

160 IF P*1 THEN PRINT®@415+P,GUESS$;:P=P+1:@=1:G0T0130

170 IF @>@ THEN P=1:G0T09@

180 TRIES=TRIES+1

19@ ON TRIES GOSUR 210,230, 250,270,290, 310, 340, 360,
380, 400, 420,460

200 P=1:G0T090

210 FORN=4 TO 26:SET(N,20,3):NEXT

220 RETURN

230 FORN=6 TO Z@:SET(6,N,3):NEXT

24@ RETURN

250 M=12:FOR N=6 TO 12:SET(M,N,3):M=M—-1:NEXT

260 RETURN

270 FORN=6 TO Z@:SET(N,6,3):NEXT

280 RETURN

290 FORN=6 TO 8:SET(20,N,3) :NEXT

300 RETURN

310 FORN=19 TO 21:SET(N,8,5):SET(N,10,5) :NEXT

320 FORN=8 TO 1@:SET(19,N,5)2:SET(21,N,5) :NEXT

330 RETURN

340 SET(2@,11,5)

350 RETURN

130

AppendixC

360 FORN=17TOZ@:SET(N, 12,6) :NEXT

370 RETURN

380 FORN=2@TOZ3:SET(N,12,6):NEXT

39@ RETURN

400 FORN=12TO015:SET(20,N,6) :NEXT

410 RETURN

420 M=17:FORN=19TO16STEP—1 :SET (M N, 4) : M=M+1 :NEXT
430 RETURN

44@ M=20:FORN=16TO19:SET(M, Ny 4) :M=M+1:NEXT
450 RETURN

460 FORN=16TOZ6:RESET (N, 20) :NEXT

470 FOR @OTOZ6:SET (264N, 3) :NEXT

480 FOR 7TO19:RESET (N, 12) :NEXT

490 FOR 1TOZ3:RESET (N, 12):NEXT

500 FORN=13TO015:SET (18, N,6) :SET(22,N,6) :NEXT
510 SET(19,12,6):5ET(21,12,6)

520 M= FORN=19TO16STEP—1:RESET (M,N) :M=M+1:NEXT
530 M= ORN=16T019 :RESBT(N,M) : M=M+1:NEXT
540 FOR 6TOZ@:SET(19,N,4)2SET(21,N,4) :NEXT

550 PLAY"01V31T2L4GGLBGGL4R-AAGGF+G"

560 PRINT3416,A%;5

570 PRINT@64," ANOTHER GO (Y/N)*"3;:INPUT ANSWERS
575 IF ANSWER$="Y" THENZOQ

576 IF ANSWER$="N" THEN END

577 GOTO57@

580 GOTO580@

59@ DATA"DOCTOR","RALL","ATHLETE", "HELICOPTER"
600 DATA*COMPUTER", "PSYCHIC", *"ELEPHANT", "PERSON"
610 DATA"GIRAFFE", "AXE", "COMPETITION", "LANGUAGE"
620 DATAFIEND", "PIZZA*, "DRAGON", "PREVIQUS"

630 DATA"SCREEN", "GALLOWS", *"HANGMAN" , "PRACTICE"
640 DATA"STAR", "MISTAKE", “NUMBER", “READING"

650 DATA"CHARACTER", "SELECT", "KEYROARD", "PIANO"
1000 CLS@

1010 PRINT"YQU'RE FREE!"

102@ FORZ=1 TO 12

1030 ON Z GOSUR 310, 340, 360,380, 400, 420, 440
1040 NEXT

1050 PLAY"04V31T2L2CO-GLAGALGGFLZEC"

1060 PLAY"L4GAL6GFLZRL4GEFFLOFEL4ADL2C"

1070 GOTO57@

1080 CLS

1090 PRINT®12, “hangman®

1100 PRINT*THE IDEA OF HANGMAN IS TO GUESS*
111@ PRINT"A WORD WHICH THE COMPUTER HAS"

1120 PRINT*CHOSEN. *

1130 PRINT"AT THE RBOTTOM OF THE SCREEN WILL"j
1140 PRINT*BE DISPLAYED A NUMBER OF DOTS,"

1150 PRINT"EACH ONE REPRESENTING A LETTER."
1160 PRINT*YOU MUST GUESS THE WORD RY"

1170 PRINT"ENTERING A LETTER WHICH YOQU*

1180 PRINT"THINK MAY BE IN THE WORD. IF THE";
1190 PRINT"LETTER WHICH YOQU PICKED IS IN"

1200 PRINT"THE WORD 1T WILL BE DISPLAYED IN"j;

131

T heDragon Trainer

121@ PRINT"IT’S CORRECT PLACE."

1229 PRINT:PRINT"PRESS ANY KEY TO CONTINUE";
123@ IF INKEY$="" THEN 1230

1240 CLS

125@ PRINT"IF YOU THINK YOU KNOW THE WORD*
126@ PRINT"YOU MAY TYPE IT IN AND SEE IF*
1270 PRINT"YOU ARE RIGHT."

1280 PRINT"AS AN INCENTIVE FOR YOU TO GET"
129@ PRINT"THE WORD RIGHT, EVERY TIME YOU"
1300 PRINT"PICK A WRONG LETTER ANOTHER PART"j
1318 PRINT"OF A GALLOWS AND A MAN WAITING"
1320 PRINT"TO BE HUNG WILL BE DRAWN ON THE"
1330 PRINT"SCREEN. WHEN THE PICTURE IS*"
1340 PRINT"COMPLETED THE MAN WILL BE HUNG"
135@ PRINT"AND THE GAME ENDS."

1360 PRINT" IF YOU GUESS THE WORD CORRECTLY"
1370 PRINT"THEN THE MAN GOES FREE."

1380 PRINT:PRINT“PRESS ANY KEY TO START®
1390 IF INKEY$=""THEN 1390

1400 GOTOZ0

Commentary

Line 15 sends the program to line 1080 to display the instructions when the
program is first RUN. Line 20 clears the screen to a black background and
line 25 tells the computer to start READing in DATA from the first piece of
DATA in the program. Line 26 then resets all the variables.

Line 30 displays the message ‘LETTERS USED?’ in the top left-hand
corner of the screen. Line 40 sets the variable pto | andlines 50 —70 READ
arandom word from the DATA stored in lines 590 —6 50. This is done by
choosing a random number between 1 and 27 and READing in each word
inthelist upto andincludingthe one which has been chosen by the random
number. As each word is stored in the same variable only the last one is
remembered.

Line 80 PRINTSs as many dots as there are letters in the word which has
been chosen (and is now stored in the variable A$). The LEN(AS) section
of this line works out how many characters are in the word and then the
STRINGS$ command PRINTSs that many full stops (the full stop has the
code 46).

Line 90 resets the variable Q and then erases all the characters on the 14th
line before displaying the message ‘WHAT IS YOUR GUESS’ onthe 14th
line. Line 100 then waits for your guess and stores it in the variable
GUESSS (to make it easy to remember).

132

Appendix C

Line 110 checks to see if you have entered the word correctly, jumping to
line 1000 if you have (notice that the GOTO command has been left off. It
is possible to leave out GOTO commands in an IF statement after the
THEN or ELSE commands). Line 120 displays the letter which you have
tried on the second line, using the variable ‘TRIES’ to work out where it
should go.

Line 130 uses the INSTR function to work out the position of the letter
which you have chosen in the word which you are trying to guess. The
letter’spositionis stored in the variable P if it is in the word. If your letter is
not in the word then the number 0 is stored in the variable P.

Line 140 jumps toline 160 if the variable Q has the value 1. Line 150 checks
to see if your guess is the first letter in the word, displaying it in its right
place if it is and setting the variable Q to 1 and the variable P to 2 before
going back to line 130.

Line 160 checks toseeif the variable P contains a number greater than one,
increasing the value of the variable P and setting the variable Q to | before
jumping to line 130 if it does.

The reason why lines 150 and 160 send the program back to line 130 is to
make sure that your letter does not occur more than once in the word. The
variable P keeps a record of theletter’s last position in the word and so the
search for the letter is continued from that point when line 130 is carried
out again. For example, if the word that you were trying to guess was
DOCTOR and you typed in the letter O then the variable P would first of
all containthe number 2, as the first O inthe word DOCTOR is the second
letter inthe word. Whenline 130 was carried out again the computer would
start searching for another O after the second letter, finding that the fifth
character inthe word was an O. This processis repeateduntil the computer
has checked the whole word.

Line 180increases the value of the variable TRIES by one, andthenline 190
works out what the TRIESth line number in the list is and then jumps to
that subroutine. Line 200 then sets the variable P back to 1 and goes to line
90.

Lines 210—300 draw the different parts of the gallows and lines 310—450
draw the man. Lines 460—540 RESET the part of the gallows underneath
the man and replace it with an open trap door. The man’s arms and legs are
then RESET and re-drawn in different positions. Line 550 then plays the
Death March to finish off the game.

133

T he Dragon Trainer

Line 560 displays the word that you have been trying to guess on the 14th
line before line 570 asks you if you want another game. If you do then line
575 sends the program back to line 20 to re-start the game (without the
instructionsthis time). If not line 576 ENDs the program. Line 577 sends
the program back to line 570 if you did not reply either Y or N.

Lines 5906 50 contain the list of words which the computer can choose
from, all stored in DATA statements.

Lines 1000 — 1070 are the routine which is carried out if you guess the word
correctly. Line 1000 clears the screen to a black background before line
1010displays the message ‘‘YOU’RE FREE!"’. Lines 1020— 1040 draw the
man (without the gallows) and lines 1050 — 1060 play the tune Born Free.
Line 1070 then sends the programto line 570 to see if you want another go.

Lines 1090— 1400 are the instructions.

3-D Plot

This program makes use of the Dragon’s highest resolutionmodetodrawa
three-dimensional picture of a jelly-like object. The program uses the
mathematical functions such as SIN and SQR to work out where each
point should be.

The computer takes along time to draw the picture (about 10 minutes) as
it has to work out the position of each individual point, even though the
computer does work at twice its normal speed.

Normally the CPU (Central Processing Unit) in your Dragon works at a
speed of 0.9MHz (youdon’t need to know what this means), but some Dra-
gons are capable of working at a speed of 1 .8Mhz, twice as fast as normal.
Not all Dragons can work at this speed, however, so to see if yours does or
not type in:

POKE &HFFD7,0

If you can see nonoticeabledifferenceexcept that the cursor is blinking
faster than usual then your Dragon is capable of (and is) working at
1.8Mhz. If you find that the computer has crashed (in other words it stops
working) then its maximum speed is 0.9Mhz, and you will have to turn
your computer off and then on again. Don’t do this too quickly — turning
any computer on and off quickly can seriously damage it. If your Dragon
can’t work at 1.8MHz then you must take out any POKE &HFFD7,0and
POKE &HFFD6,0 commands in programs.

134

Appendix C

Although the program is called 3-D PLOT it does not actually draw a
true 3-D picture, just one that looks three-dimensional.

10 POKE &HFFD7,0

20 PMODE4

3@ SCREEN1, 1

40 PCLS

50 A=128:P=A%A:1C=96:D=96
60 FOR X=0 TO A

70 S=X#X

80 P=SQR(P-S)

90 I=-P

100 R=S@R(S+I*I1)/A

110 @=(R-1)%SIN(24%R)

120 Y=1/3+@%D

130 IF I=-P THEN M=Y:G0T0160
140 IF Y>M THEN M=Y:GO0OT0170
150 IF Y>=N THEN GOTO 200
160 N=Y

170 Y=C+Y

180 PSET(A+X,Y,1)

190 PSET(A~X,Y 1)

200 I=I+4

210 IF I<P THEN 100

220 NEXT X

230 POKE &HFFD6+0

240 GOT0240

Commentary
Line 10 tells the Dragon to start working at twice its normal speed. Lines
20—40 sets up the mode 4 screen in inverse mode.

Lines 70 — 170 works out the position of each dot before lines 180 and 190
draws it up on the screen, one each side of the centre line.

Line 230 sets the working speed back to normal. This is important as you
cannot save or load programs while the computer is working at 1.8MHz.

Meteors

This program requires a lot of skill (and luck) if you are to survive the
onslaught of meteors racing up the screen at you. The program uses normal
text mode (with a few graphics symbols thrown in here and there) and quite
a bit of sound.

The idea of Meteors is to dodge the two types of meteors which come
racing up the screen towards you, and also to destroy as many of them as
possible with your missiles. You move left and right by using the left and
right arrow keys. Firing is by the space bar. You may only have one missile

135

The Dragon Trainer

on the screen at one time, so make sure that you aren’t going to run into
another meteor when you’ve fired.

Your shipisrepresented by an inverse V and is positioned on the second
line down. Your missiles are represented by ‘symbols’.

There are two types of meteor. The first, an O, is worth 10 points and the
second,a*, is worth 5. If either of the two types of meteor hits you, alifeis
lost (you have 3 lives).

To make the game harder you move randomly from left to right, making
it hard to dodge the meteors. There are three skill levels, each one with the
meteors coming at different speeds and you drift more often as they get
harder. The number of meteors also depends on the skill level.

Sometimes if two meteors come up the screen one below the other then
you can destroy both with one missile. However you only get the points for
the first meteor, not both.

18 REM METECRS

20 GOT0590

30 CLS

4@ INPUT*SKILL LEVEL (1-3)";3SKILL

58 IF SKILL<1 OR SKILL>3 THEN 40

4@ CLS

70 SHIP=1104:LI1VES=3

80 MISSILE=0:SCORE=0

9@ POKESHIP,22

180 FOR N=@ TO RND(5~SKILL)

110 PRINT@48@+RND(30@), "0";

120 PRINT3480+RND(3@), "%" 3

130 NEXT

14@ POKE SHIP, 143

150 FOR N=@ TO SKILL#1@:NEXT N

160 IF MISSILE>@ THEN POKE MISSILE, 143

170 IF MISSILE>® THEN MISSILE=MISSILE+32
180 IF MISSILE>1505 THEN MISSILE=0

190 IF PEEK(MISSILE)=106 THEN GOSUE 430
200 IF PEEK(MISSILE)=79 THEN GOSUPR 430

210 1IF PEEK(MISSILE+32)=106 THEN GOSUR 430
220 IF PEEK(MISSILE+32)=79 THEN GOSUP 430
230 PRINT

240 X=RND(SKILL#3):IF X=2 THEN SHIP=SHIP+1
250 IF X=3 THEN SHIP=SHIP-1

260 IF PEEK(SHIP)=106 OR PEEK(SHIP)=79 THEN GOSUPR 370
270 A$=INKEY$:IF A$="" THEN 340

280 POKE SHIP,143

290 IF A$=CHR$(7) THEN SHIP=SHIP+1

308 IF A$=CHR$(8) THEN SHIP=SHIP-1

31@ IF A$=" " AND MISSILE=0 THENMISSILE=SHIP
320 IF SHIP>1119 THEN SHIP=1119

330 IF SHIP<1@88 THEN SHIP=1088

340 IF MISSILE>® THEN POKE MISSILE, 103

35@ PRINT®0,"LIVES:"iLIVES;TAR(20) 3 "SCORE:" ;SCORE

136

Appendix C

360 GOTO90

370 POKESHIP,191

380 SOUND 100,z

390 FOR N=@ TO 1000:NEXT

400 LIVES=LIVES-1

41@ IF LIVES=0 THEN 510

420 RETURN

430 1F PEEK(MISSILE)=106 THEN SCORE=SCORE+5:SOUNDZ50, 1

440 1IF PEEK(MISSILE+32)=106 THEN SCORE=SCORE+5:SOUND
250, 1

450 IF PEEK(MISSILE)=79 THEN SCORE=SCORE+10:SO0UND250,2

460 1IF PEEK(MISSILE+32)=79 THEN SCORE=SCORE+1@:SOUND
250, 2

470 POKE MISSILE,175

480 POKE MISSILE, 143

490 POKE MISSILE+32, 143

500 MISSILE=0:RETURN

510 CLS:PLAY"01V31TZL4GGLBGGLAR-AAGGF+G"

520 PRINT8192,"YOU’RE DEAD'"

53@ PRINT"BUT YOU DID SCORE" §SCORE;"PQINTS!"

54@ PRINT"ANOTHER GO (Y/N)7"

550 A$=INKEY$

560 IF A$="Y" THEN 30

570 IF A$="N" THEN END

580 GOTO 550

590 CLS

600 PRINT31Z, "meteors”

610 PRINT"THE IDEA OF THIS GAME IS 70"

62@ PRINT"DODGE THE METECORS WHICH ARE"

63@ PRINT"COMING UP THE SCREEN TOWARDS YQU" 3§

640 PRINT"AND TO DESTROY AS MANY OF THEM"

650 PRINT"AS POSSIBLE."

660 PRINT"YOU MOVE USING THE LEFT AND"

670 PRINT"RIGHT ARROW KEYS AND FIRE USING"

680 PRINT"THE SPACE PAR."

690 PRINT" THE SYMBOLS USED ARE: "

700 PRINT"O — METECR - 1@ POINTS"

710 PRINT** - METECOR - 5 POQINTS*

72@ PRINT"v - YQUR SHIP"

73@ PRINT"’ - YOUR MISSILE"

740 PRINT"PRESS ANY KEY TO START"

750 IF INKEY$=""THEN750

760 GOTO3@

Commentary

Line 20 sends the program to line 590 to display the instructions. Line 30
clears the screen and then line 40 asks you for the skill level that you want.
Line 50 makes sure that you have made a legal choice before line 60 clears
the screen again.

137

The Dragon Trainer

Lines 70 and 80 set up the variables that are going to be used, with SHIP
being the position of your spaceshift and LIVES being the number of lives
that you have left. MISSILE is the position of your missile on the screen.
As you haven't fired yet this is set to 0.

Line 90 POKEs your shipontothe screen andthenlines 100— 130 PRINT a
random number of O’s and *’s on the bottom line of the screen. Line 140
then deletes your ship by POKEing a green square on top of it. Line 150
pauses for a short while (the amount of time depending on the skill level).

Line 160 checks to see if your missile is on the screen, deleting it ifitis. Line
170 moves your missile down the screen one line (if it is on the screen), and
line 180 makes sure that the missile doesn’t go of fthe bottom of the screen.
Lines 190220 checks to see if your missile has hit a meteor, jumping to
line 430 if it has.

Line230 scrolls thescreenby PRINTing nothing on the bottomline of the
screen. Lines 240—250 controls the random movement of your ship, and
line 260 checks to see if you have been hit by a meteor.

Line 270 scans the keyboard, jumping to line 340 if nothing is being
pressed. Line 280 deletes your ship before lines 290 and 300 checks to seeif
you arepressing the arrow keys. Line 290 checks to see if you are pressing
the right arrow key, moving you right one space if you are. Line 300 checks
to see if you are pressing the left arrow key, moving you left one space if
you are. Line 310 checks to see if you are pressing the space bar and that
you haven'’t already got a missile on the screen, setting the variable missile
to your position if both conditions are fulfilled.

Lines 320—330 make sure that your ship doesn’t go off the left or right of
the screen. Line 340 puts the missile on the screen (if it’s supposed to be
there) and line 350 displays the number of lives you have left and your
score. Line 360 then sends the program back to line 90.

Line 370 POKE:s a red square on top of your ship and line 380 makes a
bleep. Line 390 pauses before line 400 subtracts one from the variable
LIVES. Line 410 checks to see if you have run out of lives, jumping to line
510 if you have. Line 420 then RETURNSs the program back to the
command immediately after the GOSUB command which sent the pro-
gram to this routine.

138

Appendix C

Lines 430—460 work out which type of meteor you have hit and increase
the score accordingly. Line 470 POKEs your missile onto the screen and
then lines 480 —490 delete the missile and the next square underneath.
Line 500 resets the variable MISSILE and then RETURNS to the main
program.

Line 510 clears the screen and plays the Death March. Lines 520-530
tell you that you are dead (as if you hadn’t guessed that from the tune)
and then line 540 asks you if you want another go. Lines 550—580 then
check your reply and take the appropriate action.

Lines 590—760 are the instructions.

Artist

Artist allows you to draw in any of the graphics modes and in any
colour mode. As the program stands it is designed for use with the right
joystick, but it can easily be converted for use with the keyboard.

When you RUN the program you will be asked which graphics mode
you want to draw in and then the colour mode. The screen then clears to
the mode that you require. Drawing colours are selected from the key-
board using the keys from | to 4 with the key corresponding to the
colour’s code. The colour which you are drawing in is constantly
displayed in a box at the top of the screen.

You can change the screen colour simply by pressing one of the keys
from 5 to 8. The colours produced by these keys are:

5 — GREEN 6 —YELLOW 7—BLUE 8 — RED

The screen clears immediately on pressing any of these keys and
anything on the screen is lost.

You may change the colour mode at any time simply by typing N.
This does not clear the screen and so your drawings remain on the screen.

The program normally draws slowly. Pressing the fire button on the
joystick, however, speeds up the drawing.

If you do not have a joystick on your Dragon then you can make these
alterations to the program:

110 GOTO 130

135 B$=INKEY$

140 IF B$ = CHR$(9) THEN X=X +1
150 IF B$=CHRS$(8) THEN X=X -1
160 IF B$=CHRS$(10) THEN Y=Y +1
170 IFB$=“” THENY=Y -1

139

The Dragon Trainer

These alterations allow you to draw using the arrow keys. The program
works at full speed when using the keys.

10 CLS

20 INPUT"WHICH MODE (@-4)*3MODE

3@ IF MODE<@ OR MODE>4 THEN 2@

40 INPUT®WHICH COLOUR MODE (@/1)"3;CM

50 IF CM<@ OR CM>1 THEN 40

6@ PMODE MODE, 1

70 SCREEN1,CM

80 PCLS

90 X=1:Y=6

100 COLOUR=1:COLOR COLOUR

110 IF PEEK(5280@)=254 OR PEEK(65280)=126 THEN 130
120 FOR N=0@ TO S5@@:NEXT

13@ PSET (X, Y COLOUR)

140 IF JOYSTK(@)>4@ THEN X=X+1

150 IF JOYSTK(@)<22 THEN X=X-1

160 IF JOYSTK(1)>40@ THEN Y=Y+1

17@ IF JOYSTK(1)<22 THEN Y=Y-1

180 IF X>255 THEN X=255

190 IF X<@ THEN X=
200 IF Y>191 THEN Y=191
210 IF Y<6 THEN Y=6
220 PSET(X, Ys COLOUR+1)
230 A$=INKEY$

240 1IF =** THEN 370

250 IF THEN COLOUR=1
260 IF THEN COLOUR=2
270 IF THEN COLOUR=3
286 IF THEN COLOUR=4
290 IF THEN PCLS!1
300 IF THEN PCLS2
310 IF THEN PCLS3
320 IF THEN PCLS4

330 IF AND CM=1 THEN CM=0:SCREEN1,0:G0T0350
340 IF A$="N" THEN CM=1:SCREEN1,1

350 COLOR COLOUR

360 LINE(@,0)-(254,4),PSET,BF

370 GOTO110

Commentary

Line 10 clears the screen and line 20 asks you which graphic mode you
want, storing youranswerin the variable MODE. Line 30 makessure that
you have made a legal choice, jumping to line 20 if you haven’t. Line 40
asks you which colour mode you require before line 50 ensures that you
have made a legal choice.

Lines 60— 80set up the screen and the line 90sets up the variables which will
control the position of the cursor. Line 100 sets the variable COLOUR to 1
(green) and then sets up the colour (the command COLOR COLOUR tells

140

Appendix C

the computer to set the colour to the one with the code number which is
stored in the variable COLOUR).

Line 110tests to seeif the right joystick buttonis being pressed, jumping to
line 130 if it is. Line 120 causes a short pause before line 130 plots the
cursor’s trail.

Lines 140—170 test the position of the right joystick and alter the values of
the variables X and Y (X being the horizontal position and Y being the
vertical position). Lines 180—210 make sure that the cursor doesn’t go off
the screen (or into the box showing the draw colour). Line 220 then plots
the cursor.

Line 230 scans the keyboard and stores which key is being pressed in the
variable A$. Line 240 jumps to line 370 if nothing is being pressed. Lines
250-280 control the colour changing, and lines 290-320 control the
changing of the screen colour. Lines 330—340 control the inverting of the
screen and line 350 changes the draw colour. Line 360 draws the box at the
top of the screen and line 370 sends the program back to line 11 0to test the
joystick button again.

Alarm Clock

Alarm Clock is, as you may have guessed, a clock program with a built-in
alarm. The program also keeps a record of the data and whether it isam or
pm. The date is not updated, mainly because you are not likely to leave
your Dragon on overnight.

When the program is RUN you are first of all asked for the day (ie
Monday, Tuesday etc). You are then required to enter the date in this
format:

DAY eg 12 (12th day)
MONTH eg 03 (March)
YEAR eg 83 (1983)

The next piece of information to be entered is whether it isam or pm (just
type in am or pm).

Once you have entered this information you are asked when you want
the alarm to go off. This information should be entered in this way:

HOURS eg 01 (1 o’clock)
MINUTES eg 1 0 (10 minutes past)
SECONDSeg 05 (5 seconds)

Youarethen asked whether you want the alarm to go off in the morning
or afternoon (am or pm).

141

The Dragon Trainer

As you may have noticed, each entry must be entered as a two-digit
number. This means that if, for instance, it is two minutes past the hour
you must enter the minutes as 02. The same applies to the date (eg 03 for
March).

The next information is the actual time. This should be entered in the
same way as the alarm time. When you come to enter the seconds you
should add a few seconds to the actual time. You should then press the
ENTER key at exactly the same time as your watch gets to the time which
you have entered. This ensures that the clock is exactly right (at least by
your watch!)

If you find that the clock does not stay accurate then you will have to
make some alterations to the program. These are:

(1) Add spaces anywhere between lines 230 and 390 (fine tuning).
(2) Add spaces in the FOR...NEXT loop on line 360 (coarse tuning).
(3) Increasethe683inthe FOR. .. NEXTlooponline 360 (drastictuning).

Now that you have your clock runningaccurately you will want to know
what it can do. If you press the 1 key then the day will be displayed in the
spacepreviouslyoccupied by the am/pm. Pressing the 2 key will result in
the am/pm being displayed again.

If you now press the 3 key you will see the date displayed in place of the
time. When you want the time back again you should simply press the 4
key.

Pressing the 5 key results in the alarm time being displayed in place of the
time. To return to the normal display just press the 6 key.

If you do not like the tune which is played when the alarm goes off then
youshouldsimplyalterlines 53 0and 54 0. If you like the tune already inthe
program, but would prefer it at a different speed, then you should simply
alter the T3 at the start of the tune in line 520.

10 CLS

20 INPUT"WHICH DAY IS IT";D$

30 D$=LEFT$(D$;2)

40 DAY$=CHR$ (ASC(LEFT$(D$,1))+32)

50 DAY$=DAY$+CHR$ (ASC(RIGHT$ (D%, 1)) +32)

6@ PRINT*PLEASE ENTER DATE":INPUT*DAY";D$

70 INPUT*MONTH" §MONTH$: INPUT"YEAR" § YEARS

8@ INPUT"AM OR PM";AP$:IF AP$="AM"THEN AM=1:ELSE PM=1
9@ PRINT"PLEASE ENTER ALARM TIME"

100 INPUT"HOURS" ;AH$: INPUT"MINUTES" ; AM$

110 INPUT"SECONDS" ;AS$

120 INPUT*AM/PM";ATS

130 PRINT"PLEASE ENTER TIME":INPUT"HQURS"; HOURS$
140 INPUT"MINUTES" §MINUTES$: INPUT*SECONDS" SECONDS$
150 CLS@

160 FORX=23T040:SET(Xy13,7):NEXT

142

Appendix C

170 FORY=13TO162:SET(23,Y,7):SET (4@, Y,7) :NEXT
180 FORX=23TOZ9:SET (X, 16,7):NEXT:FORX=34TQ40:SET(X,16,
7):NEXT
19@ FORY=16TO1B:SET(29,Y,7) :SET(34,Y,7) tNEXT
200 F(DRX=L‘?T034=SET(X‘18‘7)=NEXT
210 IF AM=1 THEN PRINT3271,"am" ;:ELSE PRINTa3271,"
220 IF AT=0 THEN PRINT8236, H()URSS' *:"SMINUTESS;": "5
SECONDS %3
230 SECOND$=STR$ (VAL (SECONDS$)+1)
240 IF LEN(SECONDS$)=2 THEN SECONDS$="@"+RIGHTS$(
SECONDS$, 1)
250 IF LEN(SECONDS$)=3 THEN SECONDS$=RIGHT$(SECOND$, Z)
260 IF SECONDS$="60"THENSECONDS$="00" :MINUTE$=STR$ (VAL
(MINUTES$)+1):ELSE IF J=0 THEN 350
270 J=0
280 IF LEN(MINUTES$)=2 THEN MINUTES$="Q"+RIGHT$(
MINUTESS, 1)
290 IF LEN(MINUTES$)=3 THEN MINUTES$=RIGHT$(MINUTE$,Z2)
300 IF MINUTES$="60"THEN MINUTES$="00" :HOURS$=STR$ (VAL
(HOURS$)+1) :ELSE GOTO 350
310 IF LEN(HOURS$)=2 THEN HOURS$="0"+RIGHT$(HOURSS$,1)
320 1IF LEN(HOURS$)=3 THEN HOURS$=RIGHT$(HOURS$,2)
330 IF HOURS$="12" THEN HOURS$="00":MINUTES$="00"
SECONDS$="00": IF AM=1 THEN AM=0:PM=1:ELSE PM=0:AM=1
340Q IF AM=1 THEN PRINT®271,"am";:ELSE PRINTAZ71,"pm";
350 FOR N=@ TO 683 :NEXT
360 IF HOURS$=AH$ AND MINUTES$=AM$ AND SECONDS$=AS$
AND AT$:=AP$ THEN 510
370 SOUND 255,1
380 As$= INKEY$
390 IF A$="1" THEN PRINT3Z71,DAY$;
400 IF A$="2" AND AM=1 THEN PRINTQZ71,"am"j
410 IF A$="2" AND PM=1 THEN PRINT3271,"pm"j
420 IF A$="3" THEN PRINT3236,D%;":" ;MONTHS$;":" ;YEARS; :
D=1
430 IF A$="4" THEN D=0:G0T0ZZ
440 IF A$="5" THEN PRINT@2Z36,AH$;":";AME;"t";AS$;2IF
INKEY$<>"6" THEN AT=1
450 IF AT AND AT$="AM" THEN PRINT3271,"am";
460 IF AT=1 AND AT$="PM" THEN PRINT&Z71,"pm";
470 IF A$="6" THEN AT=0:I1F PM=1 THEN PRINTa271,"pm";
480 IF A$="6" AND AM=1 THEN PRINTa@Z71,"am"j
490 IF D=1 THEN 230
500 GOTO 220
510 TIMER=0
520 PLAY "T303L4GG;3L2GDLARP;I.ZRGLAGR;04LZDDL3CO3RS"
530 PLAY "L1AL4AR;Q4LZCCO3LAPASLZRGLAGR;LZADLAF#ASL]L
63"
54@ SECONDS$=STR$ (VAL (SECONDS$)+INT(TIMER/60)+4)
550 IF VAL (SECONDS$)>60 THEN MINUTES$=STR$(VAL(
MINUTES$)+1)tJ=1
560 IF VAL (SECONDS$):>60@ THEN SECONDS$=STR$(VAL(
SECONDS$)-60)
57@ GOTO 240

143

The Dragon Trainer

Commentary

Line 10 clears the screen and line 20 asks you what the day is, storing the
answer in the variable D$. Line 30 then takes the first two letters of the
string D$ and then stores them in the variable D$ replacing its original
contents. Lines 40 and 50 then convert the contents of the variable D$ to
lower case before storing them in the variable DAYS.

Lines 60 and 70 then ask you for the date before line 80 asks you whether it
ismorning or afternoon, setting either the variable am or pmto 1 accordin-
gly.

Lines 90— 120 ask you for the time that you want the alarm to go off. You
are then asked for the actual time by lines 130 —140.

Line 150 clears the screen to a black background. The border around the
clock is then drawn by lines 160 —210. Line 220 then displays whether it is
am or pm at the bottom of the clock before line 230 displays the time.

Line 240increases the time by one second and lines 250—260 get rid of the
space added to the start of the variable SECONDSS by the STR$ function
in line 240.

Lines 270—-300 are similar to lines 240—260 except that they update the
minutes. Lines 310—-340 update the hours, with line 340 also updating the
variables am and pm if it is afternoon or morning. Line 350 then displays
whether it is am or pm.

Line 360 causes a delay to keep the clock accurate. Line 370 checks to seeif
it is time for the alarm to go off yet, jumping to line 520 if it is. Line 380
then makes the tick.

Line 390 scansthe keyboard, storing theresult inthe variable A$. If youare
pressing the 1 key then line 400 displays the day in place of the am/pm. If
you are pressing the 2 key thenlines 410—420 display whether it is am or
pm.Line 430 displaysthemonthin place of thetimeif you are pressing the
3 key. If you press the 4 key then line 440 allows the time to be displayed.
Lines 450 —470 display the alarm time if you press the 5 key, and lines
480—-490 allow you to see the time/date again.

Lines 520 —580make up the alarm tuneroutine. Line 520 resets the built-in
timer so that a record can be kept of how long it takes to play the tune.
Lines 530—540actually PLAY thetune and then line 550 updates the time.
Lines 560 and 570 update the minutes and seconds before line 580 sends the
program back to line 250.

144

Appendix C

Valley of Death

Valley of Death is a program for the adventurous ones amongst you, in
more ways than one! The program takes up most of the Dragon’s 32K of
memory and will. probably take youquitealongtimetotypein, as you will
seeif youlook at the program. However, the length of the program should
not put you off, you can easily enter the program bit by bit and record each
section as you go if you do not feellike entering it allin one go. In factitis a
good idea to save your program every now and then as you enter it. This
will make sure that you don’t lose several hours of work when someone
jolts the power-pack plug. When you have finally entered the program and
de-bugged the program your efforts will be rewarded with a very good
(even if I do say so myself) adventure program.

Before we get on to how to play this game, a word or two about entering
the program. If you look at lines 230—260 you will see a symbol which is
noton your keyboard, the\ symbol. To getthissymbol wehaveto confuse
the computer into thinking that it has an extra key by pressing three keys at
once. Sounds complicated? Well not really, all you have to do is hold down
the SHIFT key, press the CLEAR key (while holding down the SHIFT key)
and then press the @ key (while still holding down the other two keys).
Then release the @ key before you let go of the others. You will then see the
\ symbol appear on the screen. At first you will probably find this compli-
cated, but with a bit of practice you will be able to do this quite quickly.

To help you to enter the program we have used the # symbolto represent
a space, if more than one is needed in any part of the program. This means
that you can count the number of spaces that you need more easily.

Now to the game. Playing Valley of Death is quite complex, but is also
very rewarding. You will be amazed at the pleasure you get from hitting a
dragon over the head with your sword, and realising that you have saved
the life of your King.

The idea of Valley of Death is to find a key which is laying around
somewhere in the Dark Dungeons of Darganyon and to take this back to
the Palace. This key will then enable you to open a magical chest which
contains a potion which will save the life of your dyingKing. However, to
find the key you must first find a magical wand which is in one of the many
caves scattered about the valley. This wand also allows you to cast spells.

Nothing toit, you think. However, there are some slight hazards. If you
stray off the safe path running through the valley you get attacked by
vicious monsters. When you first start off in the game you have only a
sword to defend yourself with, but once you find the Wand you may also
use spells (but only a few). There is also a magical sword in the Dark
Dungeons of Darganyon which does much more harm to the monsters.

Now that you know roughly what you have to do in the game we can go
through the whole thing step by step. The best place to start is probably at
the beginning of the game, so that’s where we’ll begin.

145

T he Dragon Trainer

‘When you RUN Valley of Death you will be confronted with the ques-
tion ‘LOADCHARACTEROR RESTART?’. At first you should reply R
and press ENTER. You will then be presented with a list of the characters
that you can be. These are:

WARRIOR
CLERIC
WIZARD
BARBARIAN

Eachtype of character has its good and bad points, but we’ll leave youto
work these out for yourself (nasty aren’t we?). You will be asked which
type you want to be and then for your name.

The screen will then clear and a map will be drawn on the screen. This
map will be composed of a zig-zagging line going across the screen with an
inverse P and K at either end. The zig-zagging line representsthe safe path
which keeps you safe from the monsters, as do the Palace (the P) and the
Keep (the K). Scattered about the screen will be some Os which represent
the caves, and also an inverse minus sign (a swamp) and two up-arrows (a
forest).There is also an inverse D which represents the Dark Dungeon of
Darganyon. After ashortpause aninversedollarsymbol willappear on the
Palace — this is you.

Below the map will be all the information that you need to know about
your character — his STrength, his IQ, his ENergy, his TReasure and his
EXperience (the letters in capitals are what appear on the screen). Your
strength, IQ and energy can go up to a maximum of 400 points, but your
treasure and experience can go as high as you like (or rather as high as you
cansurvive which is not necessarily the same). If your energy goes downto
0 you die, but none oftheother scoresarereally a matter of lifeand death.

Once the inverse dollar symbol which represents you appears on the
Palace the message ‘SAFE IN PALACE’ will appear just under the map.
You may then proceed to move around in search of adventure. To move
you should use the keys:

(o RN/
WIT <

T
G
v

R moves you upwards and left, H moves you right, B moves you
downwards and right. G allows you torest, which increases your energy to
acertain extent.

Now that you can move around you need to know how to fight the mon-
sters which you are sure to meet when you wander off the path. When you
meet amonster an ominousnoise willcome from your television’s speaker
and the message YOU HAVE MET A followed by the type of monster you

146

Appendix C

have met will appear just below the map. You will then see the message
STRIKE NOW appear at the bottom appear at the bottom of the screen.
Youshould then press the H key as quickly as you can (H stands for Hit). If
you do not press the key in time then the message TOO SLOW will appear
in place of STRIKE NOW and the monster will hit you. You should
remember that you do not always hit the monster, and the monster also
misses you sometimes.

While all this fighting is going on the monster’s energy is displayed on
the bottom line of the screen. If thisgoesdown to 0 (the energy is knocked
off by you hitting the monster) then the monster dies. Your experience is
then increased according to how powerful the monster was.

You now know how to move, fight (and hopefully kill) the monsters, so
you are just about ready to start looking for The Key. Your first stop
should either be one of the caves, the swamp or the forest (entering the
Dark Dungeons of Darganyon before you have The Wand is committing
suicide). We’ll take the caves first.

‘When you enter any of the caves the map will be replaced with a picture
of the cave, a pretty dark place with several objects scattered about the
floor (represented by coloured blocks). You may move freely around the
caves without being bothered by monsters. If you want to pick up one of
the objects all you have to do is move on top of one of them. You will then
be told what the object is. Each object may either be:

The Wand

The Medallion of Life
The Shield of Protection
A gem

A worthless object

A potion

A monster

We’ll take each of these objects one by one and explain each one.

The Wand allows you to cast magical spells. At first you have three
spells, each of which may be used up to six times. The success of the spell
depends on your IQ, the higher your IQ is the more likely it is that your
spell will work. Once your experience reaches 2000 you are allowed to use
three more spells. The spells are:

(1) SLEEP
(2) BLINDING LIGHT
(3) MAGIC SHIELD
(4) WEB

(5) DARKNESS

(6) JELLYFIER

147

The Dragon Trainer

Each spell allows you to escape from a monster in one way or another.

The spells may only be used when fighting a monster and are used simply
by typing S in reply to the prompt ‘STRIKE NOW’. You will then be asked
which spell you require (from 1-3 or 1 — 6depending on your experience).
If at any time you want to know how many spells you have left you should
simply type S, but only when you are not fighting.

The Medallion of Life will probably save you in many sticky situations.
Thisobject will keep you alive for 16 moves if you are killed. If youmanage
toreacheither the Palace or the Keep before these 16 moves are up then you
are reincarnated, otherwise you die.

The Shield of Protection is another magical item and cuts down the
damage which themonsters can do to you. The Shield comes into use when
you are attacked by monsters.

The gems are, as you may have guessed, precious jewels. These increase
your treasure, but not a lot else.

The worthless object is, surprise surprise, an object which is totally
worthless.

If you find a potion it is automatically put in your backpack. You may
take a potion at any time (apart from when you are fighting) simply by
typing P and then the number of the potion which you want to take. The
effects of the potions are numerous and you don’t know what a potion
might do until you try it.

You can guess what happens if the object is a monster!

Both the swamp and forest contains castles surrounded by red moats
which you must swim across to reach the castle. Once you enter the castle
you will see a map of it drawn on the screen with several stars scattered
about. These stars are objects, either worthless stones, gems or the Amulet
of the Gods (which is what you came in for). Monsters rove around in the
castle as they please, so you can run into one at any time.

The door to the castle closes for a set amount of time once you enter, so
you have to stay in for a short while at least. If you manage to find the
Amulet of the Gods your strength, IQ and energy will be increased and
you will be allowed to use each spell 100 times (if you have The Wand, that
is).

Once you have found all the various objects in the caves, forest and
swamp you can venture into the Dark Dungeons of Darganyon. When you
enter the Dungeons the screen will clear and you will see a map similar to
that of the castle except that there are a set of stairs in the top right hand
corner (represented by a cyan block). Again there are stars scattered about
and again there are monsters all over the place (there are many more mon-
sters in the Dungeons). The stars in the Dungeon represent either gems,
worthlessobjects, The Key (the finding of which is what the whole game is
about) and a magic sword which does a lot more damage to the monsters
than your ordinary sword.

148

Appendix C

When (or, more likely, if) you reach the stairs you will be asked whether
you want to go up or down, to which you should reply U or D. Obviously if
you are at the top you can’t go up, and you can’t go down if you’re at the
bottom.

Once you have the key you should try and get back to the Palace as
quickly as possible so that you can open the chest. You will then be
rewarded with a very nice picture of the chest, and another of the chest
opened.

A few little extras to help you along are available by pressing these keys:
1 — list of everything you have
E — your rating (this is based on your experience.

If your journey into the depths of a monster-infested swamp or your
battle with a ferocious Wight is rudely interrupted by someone telling you
that your dinner is ready then it is possibleto record your character ontape.
Thisis done by pressing the @ key. You will then be asked whether thetape
isready to which you should reply Y whenit is. Your character will then be
recorded.

When you wish to continue your game you should first load and RUN
Valley of Death and reply L to the question ‘LOAD CHARACTER OR
RESTART’. You will then be asked for the character’s name and told to
press the PLAY button on your tape recorder. Your character will be
loaded and the game will continue.

You now know all the vital things about The Valley of Death, but there
are quite a few details which are left for youto find out (after all, what’s the
point of an adventure when you know exactly what to do?). This program
should have you glued to your chair and you will probably find it hard to
pull yourself away from the game until your rating has progressed to at
least Apprentice Fool!

As the Valley of Death is such a long program there is no explanation
following it. An explanation for this program would probably take up a
whole book on its own and you will probably still not be any wiser.

Enough of these explanations. The program is sitting here waiting for
you to enter and play it, so good luck, and good adventuring!

10 DIME(200) :FORN==31TOZOA:E(N)=N*500:NEXT: 12=16:PL=1

20 DIMA$(4), POTION(20) ,SPELL{ &)Y tFORN=1TOLISPELL (N) =&

30 MEXT:CLS:MAN=10'56:1:=1

4@ INPUT"LOAD CHARACTER OR RESTART" jA$

50 IFA$:="L"THEN3690

4@ IFA$-:"R" THEN4Q

7@ ST=RND(9)+RND(?)+RND (%) : I&==RND (%) +RND (F) +RND (9)

8@ EN=RND(9)+RND(F)+RND{(?) :ST=8T*5: 10=1@%5 :EN=EN*&

9@ PRINT"1) WARRIOR":PRINT"2) CLERIC":PRINT"3)
PARPARJAN"

100 PRINT"#4) WIZARD" : INPUT"WHICH ONE (i-4)"3A

149

The Dragon Trainer

110 IFA<@ORA>40ORCL$=""THENCL FOOL" & I9=1Q-RND(10)

120 IFA=1THENCL$="WARRIOR":S T+RND(ST) : IQ=1Q+RND(10)

130 IFA=2THENCL$="CLERIC" : IQ=IQ+RND(10)*2

140 IFA=3THENCI.$="PARPARIAN" : I@=1@-RND(5) : ST=ST+RND
(ST)

150 IFA=3THENEN=EN+RND (ST)

160 IFA=4THENCL$="WIZARD": IQ=IQ+RND(15)*#2Z:EN=EN+RND(5)

17@ INPUT"NAME" ;NAME$

180 IFNAME$:=""THENNAME$="MR.’ X" "

190 CLS

200 PRINTSTRING$(32,175); :FORN=0TO7:PRINTCHR$(175) }

210 PRINTSTRING$(30,32)3CHR$(175)5:

220 PRINTSTRING$(32,175)

230 A$(1)=CHR$(175)+" N\ "+
CHR$(175)

240 A$(Z2)=CHRS (17S5)+"#/\/\H#HHHHAH/\/\HH/ R\ /\HHBHH" +
CHR$(175)

250 A$(3)=CHRS$ (175)+* pHEHI\HEHH/\/HHHH\ /HHHHHHE\/\/Kk"+
CHR$(175)

260 A$(4)=CHR$ (175)+"#####H#\/\/"+STRINGS (20, 32) +CHRS
175)

270 J=RND(5) *32Z:PRINT3J,A$(1); :PRINTA$(2) :PRINTA$(3);

280 PRINTA$(4);

290 N=RND(288)+1024: IF PEEK (N)=95ANDPEEK (N+1)=96THEN
POKEN, 94 : POKEN+1,94:ELSEGOT0O290

300 N=RND(238) +1024: IFPEEK (N) =26THENPOKEN, 4 :ELSE300

310 PRINT2480, STRINGS (30,32) 3

320 FORN=OTORND(&)

330 R=RND(288)+1024: IF PEEK (R)=96THENPOKER, 7 9: ELSE330

340 NEXT

350 N=RND(286)+1024: IFPEEK (N)=96THENPOKEN, 45 : ELSE350

360 PRINTa352,NAME$;" THE ";ClLASS$

170 PRINTQ3B4, "ST:"3ST; TAR(10) 3" 1Q: " IQ;TAR(20) § "EN: "3

380 PRINTEN; :PRINT3416,"TR:";TR;TAR(2@) § "EX : "FEX;

390 IFU=1THENRETURN

400 U=1

410 MAN=MAN+J+33

420 GOSUPR1490

430 GOTO720

440 POKEMAN, 36

450 IFEX>E(G)THENG=G+1 :EN=EN+RND(5) %5 : IQ:=IQ+RND(5) ¥5:
ST=ST+RND (5)*5

460 IFI1G>400THENI Q=400

470 IFEN>400THENEN=400

480 IFST>400THENST=400

490 GOSUR360

500 IFRND (4)=2ANDDEAD:*@ANDCASTLE=0ANDPATH=0ANDPL=0THEN
GOSURZ770

510 IFDEAD<>@THENDEAD=DEAD+1:IFDEAD=18BANDCASTLE<>1AND
PL<>1THEN3770

520 IFDEAD>OAND(CASTLE=10RPL=1) THENPRINT&320, " YOU’RE
ALIVE AGAIN!'"; :FORN=0TOZO@D:NEXT :PRINTI3Z0, "#HH#H#H#HHH
HHAHHHRARARA" 5 :EN=(RND (50)) ¥3: DEAD=0: GOSUPR.360

530 GOSURZ300

150

Appendix C

540 E=E+1:IFE=10THENEN=EN-1:E=0

550 IFPEEK (MAN+D)=4THENQ=MAN:W=7:G0T01510

560 IFPEEK(MAN+D)=1110RPEEK(MAN+D)=92THENMAN=MAN+D:
POKEMAN~-D, Z :PATH=1: Z=PEEK(MAN) : GOT0660

570 IFPEEK(MAN+D)=11THENMAN=MAN+D: POKEMAN-D, Z : CASTLE=
1:Z=PEEK(MAN) : GOT0L60

580 IF PEEN(MAN+D) =16 THEN MAN=MAN+D:POKEMAN-D, Z:PL=1:
Z=PEEK(MAN) :GOT0660

590@ IFPEEK(MAN+D)=45THENMAN=MAN+D:POKEMAN-D,Z:Z=
PEEK(MAN) : @=MAN:W=2:7=143:GOSURBOQ :GOTO660

600 IFF=QAND PEEK(MAN+D)=94THENMAN=MAN+D : POKEMAN~-D, Z *
Z=PEEK(MAN) :@=MAN:W=Z17=143:G0SURBB0O:GOT0660

610 IFPEEK (MAN+D)=79THENMAN=MAN+D: @=MAN:W=79 : GOSURZ520

75AND(SWAMP=1 OR F=1) THENGOSUER1500:

=0t F=0: GOT0660

630 IFPEEK(MAN)=175THENMAN=MAN+32

640 IFZ=175THENZ=96

650 IFPEEK(MAN+D) <>175STHENMAN=MAN+D : POKEMAN-D, Z : Z=PEEK
(MAN)

660 IFZ<*11THENCASTLE=0

670 IFZ<>16THENPL=0

680 IFZ<>92ZANDZ<>111THENPATH=0

690 IFZ=207THENG=MAN:W=Z:GOT0970

700 PRINT3320," *

710 IFPATH=1THENPRINT&320, "SAFE ON PATH *

720 IFCASTLE=1THENPRINT3320, *SAFE IN KEEP"

730 IFSWAMP=1THENPRINT@320@, "IN THE SWAMP"

740@ IFF=1THENPRINT3320, "IN THE FOREST"

750 IFPL=1THENPRINT3320, "SAFE IN THE PALACE"

760 IFZ=159THEN970

77@ D=0

780 IFPL=1ANDKEY=1THEN3370

790 GOT0440

800 FORN=32T0256STEP32:PRINTAN, CHR$(175) ;STRINGS
(30,32) 5CHR$(175) 5 : NEXT

810 FORN=QT070@:X=RND(255) +1056

820 IFPEEK(X)=96THENPOKEX, 109

830 NEXT

840 PRINT@320, " IN THE SWAMP®;

850 GOSUR1470

860 PATH=0:SWAMP=1:MAN=1296

870 RETURN

880 FORN=32T0256STEP32:PRINTaN, CHR$(175) ;STRINGS
(30,32) 5CHR$(175) 5 :NEXT

B89@ FORN=QTO070:X=RND(255)+1056

900 IFPEEK(X)=96THENPOKEX, 94

910 NEXT

920 F=1

930 PRINT3320, "IN THE FOREST"

940 GOSUR1470

950 PATH=0:F=1:MAN=1296

960 RETURN

970 FORN=@T0288STEP32:PRINTAN, STRING$(32, 32) 5 :NEXT

980 PRINT&320, "IN THE CASTLE";

151

T he Dragon Trainer

990 TIMER=0

1000 PRINT&8, STRING$(16,191):PRINT840, CHR$(191) 3

101@ PRINTSTRING$(14,32)3CHR$(191) :PRINT@72,CHR$(191) 3§

1020 PRINT"#4"j :FORN=0OTO04:PRINTCHR$(191) § :NEXT:PRINT
e

1030 PRINTCHR$(191)3CHR$(191)3" ";CHR$(191)3" ";CHR$
(191)

1040 PRINT3104, CHR$(191)3" ";CHR$(191);CHR$(191)35" "3

1050 PRINTCHR$(191)3" "3;CHR$(191)3" "3jCHR$(191)3
"HHHHHR" SCHRS(191)

1060 PRINT®136, CHR$(191);"##" 5CHRS (191) i "HHHHHH" 3
CHR$(191) 3

1070 PRINT3136,CHR$(191) ;" ##" CHRE(191) ; "HHHHHH" §
CHR$(191) 3

1080 PRINT"####" jCHR$(191) :PRINT®168, CHR$(191) ;" ##" 3
CHR$¢(191) 3

109@ PRINTCHR$(191)3" " 3jCHR$(191)3;CHR$(191) CHR$(191)3

110@ PRINT" "3;CHR$(191)3i" "jCHR$(191) 5CHR$(191);

111@ PRINTCHR$(191) :PRINTIZ00, CHR$ (191) ;" ######"
CHR$(191) 3

1120 PRINTCHRS$(191) s " #####4" 5CHR$(191)

1130 PRINT@232, CHR$(191)3;" "3;STRING$(4,191)3

1140 PRINT"###4" ; : FORN=QTOS5 :PRINTCHR$(191) §:NEXT

1150 PRINT@264,CHR$(191)5" ";CHR$ (191)5 "###4#" ; CHRS
(191)3

1160 PRINTCHRS (191) ;" ####" ;CHR$(191) ;CHR$(191) 3
CHR$(191)

1170 PRINT3296, CHR$(191) ; CHR$ (207) ;STRINGS (14, 191)

1180 FORN=@OTORND (4)+2

1190 X=RND(9)#*3Z:X=X+RND (14)+1032

1200 IFPEEK(X)=96THENPOKEX, 106 :ELSEGOTO1190

1210 NEXT

1220 MAN=1321:7=207

1230 POKEMAN, 36

1240 IF1Q>400THENIQR=400

125@ IFEN3>4Q0THENEN:=400

260 IFST>400THENST=400

127@ IFRND (4)=2ANDDEAD=@THENGQOSUR.2770

1280 IFDEAD<:@THENDEAD=DEAD+1: IFDEAD=18ANDCASTLE<>1AND
PL<>1THEN3770

129@ GOSUR360

1300 GOSURZ300

1310 E=E+1: IFE=10THENEN=EN-1:E=0

1320 1F PEEK (MAN+D):=96THENMAN=MAN+D: POIKEMAN--D, 2 : 2=PEEK
(MAN) : GOTO1410

1330 1F PEEK (MAN+D):= 1@6THENMAN=MAN+D : POKEMAN-D, Z: Z=96!
ELSE1400

134@ R=RND(5)

1350 IFR=4ANDAMULET=0THENPRINT3480@, " YOU’VE FOUND THE
AMULET! "3

1360 IFR=4ANDAMULET=0THENFORN=0TOZ00@:NEXT:PRINT2480,
STRING$ (244, 32) ; :tEN=EN+RND (10)*10

1370 IFR=4ANDAMULET=@OTHENI®@=I®+RND(1@) *#1@:ST=ST+RND
(10)*#10:FORN=1TO6:SPELL. (N)=100:NEXT : AMULET=1

152

Appendix C

1380 IFR=5THENPRINT®480,"YOU’VE FOUND A PRECIQUS
STONE!" § : TR=TR+RND(5)* 100

1390 IFR=5THENFORN=QTOZO0@:NEXT:PRINT3480, STRINGS
(31,32) 5

1400 IFR<4THENPRINT&48@, " YOU’VE FOUND A WORTHLESS
STONE ! " 5 :FORN=QTOZ000:NEXT:PRINT2480, STRING$
(31,32)3

1410 D=0

1420 IFTIMER:>1000THENPOKE1321,96

1430 IFMAN=1321THENZ=143:FORN=32T02Z56STEP32Z:PRINTAN,
STRING$ (32, 32) § tNEXT:PRINT®0, STRING$(32, 175)

1440 IFMAN=132Z1THENPRINT32B8, STRING$ (32, 175): IFF=1THEN
GOSUPBBO :MAN=1164:G0T0430:ELSEGOSURBAD :MAN=1164
GOT0430

1450 GOT01230

146@ END

147@ POKE10@97, 191 : POKE1098, 191 : POKE1099, 191 : POKE
1128,191:POKE1131, 191 : POKEL 132, 191 :FORN=1160T0
1163:POKEN, 191 :NEXT

1480 POKE1193, 191:POKE1130, 159 :POKE 1129, 96: RETURN

1490 DIMA(320) :FORN=QTO320:A(N)=PEEK(N+1024) :NEXT:
RETURN

1500 FORN=QTO320:POKE1024+N, A(N) :NEXT:RETURN

1510 FORN=@TOZBBSTEP32:PRINTAN, STRING$(32,32); :NEXT

1520 PRINT&®8,STRING$(16,191) : PRINT240,CHR$(191) 3
"HHBH" SCHRE(191) 35" "5CHRS(191) s "HAHNHH";CHRS(Z23) 5
CHR$(191)

1530 PRINT372,CHR$(191)35" "3jCHR$(191);"###4#" ;CHRS
(191)3" "5CHR$(191)3;CHR$(191)5CHRS(191);"###" ;CHRS
(191)

1540 PRINT®1@4,CHR$(191)3" "5 :FORN=0@TO3:PRINTCHRS
(191)5 :NEXT:PRINT" "3CHR$(191);"###" ;CHR$ (191)3
" "j3;CHR$(191)3

1550 PRINTCHR$(191) ;CHR$(191)

1560 PRINT@136,CHR$(191)3" "3;CHR$(191)3" ";CHR$
(191)5"##" 5CHR$(191) 5CHR$(191) § "##" ;CHR$(191) 3§
"HHH#" 5 CHRS$(191)

1570 PRINT3168,CHR$(191) ;" ###" CHR$(191) ;" ###" ;CHRS
(191)5" "35CHR$(191)5CHR$(191)3" "5CHR$(191)3" *3
CHR$(191)

1580 PRINT3200,CHR$(191)3;" ";CHR$(191)3" “;CHR$
(191)§CHR$(191) 5CHR$(191) 35" "5CHR$(191)3CHR$(191)3

1590 PRINTCHR$ (191) ;"##";CHR$(191)35" ";CHR$(191)

1600 PRINT@Z3Z,CHR$(191)" *";CHR$(191)5" *;CHR$(191)3
* "3CHR$(191)3" “jCHR$(191);"###";CHR$(191);CHRS
(1915 3

161@ PRINTCHR$(¢131) :PRINT3264, CHR$(191) 35" *;CHR$
(191) 5" #H##" 5CHRS(191) 5 "#H#" STRINGS(3,191) 5°##" 3
CHR$(191)

1620 PRINT3296, CHR$(191);CHR$(207) ;STRING$(14,191)

1630 MAN=1321

164@ FORN=QTORND(4)+2

1650 I1F0=1THENPOKEMAN, 36

1660 X=RND{F)#32+RND(14)+1032: IFPEEK(X)=96THENPOKEX ,

153

The Dragon Trainer

106:ELSEGOT01660

167@ NEXT: IFO=@THENMAN=1321:2=207

1680 IFLEVEL=0THENTIMER=0

1690 TW=1

1700 PRINT8320, "IN THE dungeon##i#fiiss" ;

1710 IFDEAD<>@THENDEAD=DEAD+1 : IFDEAD=18ANDCASTLE <>1AND
PL<>1THEN3770

1720 POKEMAN,36

1730 IF1@>400THENIG@=400

1740 IFEN>400THENEN=400

1750 IFST>400THENST=400

1760 GOSUB2300

1770 GOSUR3460

1780 E=E+1:1FE=10THENEN=EN-1:E=0

179@ IFRND(4)=2ANDDEAD=OTHENGOSUB2770

1800 IFLEVEL=0OANDTIMER>1000THENPOKE1321,96

1810 IF PEEK (MAN+D)=223THENMAN=MAN+D : Z=223 : GOSUP2460:

GOT01930

1820 IF PEEK(MAN+D)=96THENMAN=MAN+D:POKEMAN~D, Z:7=96%
GOT01840

1830 IFPEEK (MAN+D)=106THENMAN=MAN+D: POKEMAN-D, Z: Z=96%
GEM=1

1840 IFMAN=1321THENPRINT8320, STRING$(17,32) 3 :GOSUR
1500:MAN=G : Z=W: TW=0:G0T0440

1850 IFGEM=1THENR=RND(6)

186@ IFR=4ANDRND(5)=2ANDWAND=1ANDKEY=OTHENPRINT3480,
"YOU’VE FOUND the";CHR$(128)3"key!'" ORN=0T02000:
NEXT : PRINT8480@, STRINGS (30, 32) ; :KEY=1:GEM=0

1870 I1FGEM=1ANDR=ZANDSD=OTHENPRINT8480, "YOU’VE FOUND
THE MAGIC SWORD!*" 5 :FORN=0TO2000:NEXT:PRINT3480,
STRING$ (31, 32) § :SD=1 : GEM=0

1880 IFGEM=1ANDR=2THENPRINT8480, "YOU’VE FOUND A
PRECIOUS STONE!*3:FORN=0T02000:NEXT:PRINT3480,
STRING$(31,32) 5 : TR=TR+RND(5) %100: GEM=0

1890 IFGEM=1THENPRINT3480, "YOU’VE FOUND A WORTHLESS
STONE! " 5 :tFORN=0T02000: NEXT: PRINT2480, STRINGS
(31,32) 5 :GEM=0

1500 D=0

1910 GOTO01720

192@ END

1930 IFLEVEL=OTHENO=1:G0T01510:ELSEIFLEVEL>@ANDLEVEL <6
THENON LEVEL G0T0197@,2050,2120,2180,2240

1940 IFLEVEL<@THENLEVEL=0:G0T01930

1950 IFLEVEL >STHENLEVEL=5:G0T01930

1960 0=1:G0T01640

1970 PRINT341, "#####" CHRS (191) 5 "######4" ; CHRS
(223)5CHR$(191) :PRINTS73, "###" 5STRINGS(8,191) 3" *§
CHR$(191)3" *5CHR$(191)

1980 PRINT&105," "3CHR$(191);5"##" CHRS(191) 5" #a#NHAN" 5
CHR$(191)3" "35CHR$(191):PRINT®137," ";CHR$(191)3
" "3CHR$(191)35CHR$(191) 3" ##" 5CHRS(191) 3" 44" 3

1990 PRINTCHR$(191) 35" “3jCHR$(191)35" " 5CHR$(191)

2000 PRINT&@169," "3CHR$(191)35" "3CHR$(191);"#4" ;CHRS
(191)5CHR$(191) 3" "3CHR$(191)5CHR$(191) 35 "##4" CHRS

154

Appendix C

(191):PRINT3201," "35CHR$(191) j"#####" ;CHR$(191) 3
201@ PRINT" "5CHR$(191)3;"##"5CHR$(191)3" "3CHR$(191)
2020 PRINT&233," "3;STRING$(3,191);"##" ;STRING$ (4, 191) 3

" "35CHR$(191) 5CHR$(191)3" "3CHR$(191) :PRINT&

265, CHR$ (223) 3 " #HH#¥##R" 5CHRS(191) 5 " ###" ;CHR$(191) 3
203@ PRINT" "3CHR$(191):PRINT3296,STRING$(16,191)3
2040 GOT01960
2050 PRINT®41,STRING$(13,32)3CHRS$ (223)5CHR$ (191):

PRINTQ73, " ##4" 5STRING$(8,191)35" "3CHR$(191)35" "3

CHR$(191)

2060 PRINT21@5," "3CHR$(191)3" "3jCHR$(191);3CHR$(191)3
CHEHAHBABH" SCHRS(191) :PRINTII37," "3;CHR$(191)3
HH"SCHR$(191) ; "HHH#H" CHRS$ (191) 5" "5CHR$(191)3

207Q@ PRINT" *3;CHR$(191)

2080 PRINT@169," "3CHR$(191)5i"##"5CHR$(191)35" "3
STRING$(7,191)3" "35CHR$(191):PRINT32@1," "j;CHR$
(191) 5" HHABHHRRAN" 5CHRE(191) 5" " 3CHRS(191)

209@ PRINT®233," "3CHR$(191)35CHR$(191) 5CHR$(191)3
" "3STRING$(5,191) 3" "3CHR$(191)3CHR$(191)35" "3
CHR$(191):PRINTR265, CHR$ (223) ; "HHHHH#B" ;CHRS (191) 5

2100 PRINT"##4#4" ;CHR$(191)

2110 GOT01960

2120 PRINT341, "###" ;CHR$(191) 5 "###" STRINGS (4,191) 3
"##" 5CHR$(223) §CHR$ (191) :PRINTA73, "#####" ; CHRS
(191) 5" #8844 ; CHR$(191) 5" "35CHR$(191)

2130 PRINT®105," "3STRING$(9,191)3" "3jCHR$(191);CHRS
(191)5" "35CHR$(191) :PRINT@137,STRING$(14,32) ;CHR$
(191):PRINT3169, STRING$(5,191)3" "3CHR$(191)3" "3

214@ PRINTCHR$(191)35CHR$(191)3" "3CHR$(191);3CHR$(191)3
* "3CHR$(191)

2150 PRINT3201, CHR$(191) 5 "##" CHR$ (191) 5" ##" ; CHR$
(191)5" "3CHR$(191) ;"###" 5CHR$(191)35" "3CHR$ (191)
PRINTRZ33, " #####" ; CHR$(191) 5CHR$(191) 5" ™3

216@ PRINTSTRING$(3,191)35" "3CHR$(191)35" ";CHR$(191)

2170 PRINT®265, CHR$ (223)5"##" ;STRINGS(4,191) ;" ##" i CHRS
(191);"#444" 5CHR$ (191) : GOTO1960

2180 PRINT&41, "#H###H#H84" CHR$(191)3" " CHR$(191) ;" ##" ;5
CHR$(223) 5CHR$ (191) tPRINTA73,"* *3jSTRING$(4,191)3
* "$STRING$(3,191)3" "5CHR$(191)35CHRS(171) ;5 "##" 3

219@ PRINTCHR$(191) :PRINT®105, STRING$(11,32) 5 CHR$
(191) 5 "#4#" 5CHR$ (191) :PRINT3137," "3STRING$(9,191)3
* "3CHR$(191)3CHR$(191)3" " 3jCHR$(191)

2200 PRINT3146%9,* "3jCHR$(191)3" “3CHR$(191);3STRINGS
(1@, 32) 5CHR$(191) :PRINT320@1, CHR$(191) CHR$(191) j
" "3CHR$(191)3" "3CHR$(191)3" "3;STRING$(4,191)3

221@ PRINT"##"3CHR$(191)35CHR$(191)

2220 PRINTZ33, "##4#4" 5CHR$(191) ;" ##4##" CHR$(191) ;CHRS
(191)3" “3CHR$(191) 5CHR$(191) :PRINT3265, CHR$(223)3;
CHR$(191)3" "35STRING$(6,191) ;" #####" ;CHR$(191)

2230 GOT01960

2240 PRINT®41, "###4#" 5CHR$(191) 35" " 3CHRS(191) s "HHHHAH";
CHR$(2Z23) §CHR$(191) :PRINT73: " "3STRING$(4,191)3
"H##"5CHRS$(191) 5" "3CHR$(191)3" ";3STRING$(3,191)

2250 PRINT3105, "##" 5CHR$(191) 5 "###" ; CHR$(191) 35" *j

155

The Dragon Trainer

STRINGS (3,191)3" *;STRINGS(3,191) tPRINTR137, " ####"
SCHRS(191) 3% " 3CHRS(191) 5 "#####" ;STRINGS (3,191)

2260 PRINT8169,STRINGS$(3,191) 3" *;STRINGS(7,191)
HEHCHRS(191) tPRINTOZD L, " #ARHAH" s CHRS(191) 3" kH 4"
$STRING$(3,191) 3" *{CHR$(191)

2270 PRINTSZ33, "##" 5STRINGS (3,191)3" "iCHRS(191)3" "3
CHR$ (191)3" *;CHR$(191)5" *3CHR$(191)3" *; CHRS
© ey

2280 PRINTAZ65, CHRS(ZZ3) 5" *5 CHRS(191) s “AANAN " CHRS
€191)5 “HAAAH* 5CHRS (191) :60T01960

2290 RETURN

2300 A$=INKEY$: IFA$="" THENZ300

2310 IFAS$="R"THEN

2320 IFA$="T" THEND=-32

2330 K ass VIR ENDS i

2340

2350

2360

2370

2380 R* THEND=33

2390 P* THENGOSUR3130

2400 I"THENGOSUR3460

2410 3" THEN3590

2420 S"AND WAND=1 THEN 4200

2430 G"AND ENCEX OR EN<10@ THEN EN=EN+RND(10@)#*Z2

2440 IFA$="E"THENGOSUR4290

2458 RETURN

2460 PPRINT@320@,"UP OR DOWN?"j

2470 A$=INKEY$: IFA$=""THENZ470

2480 IFA D* THENLEVEL=LEVEL+1:G0T02510

2490 1FA$="U"THENLEVEL=LEVEL~-1:G0T02510

2500 GOT0247@

2510 PRINTI3Z0, "######H#H#4#H" 5 : RETURN

2520 FORN=33T02Z88STEP32:PRINTAN, STRING$ (30, 128) ;CHR$

2530 FORN=@TORND(20)

2540 M=RND(319)+1024: IFPEEK(M)=128THENPOKEM, 14 3+RND
(7)#16:ELSEGOT02540

2550 IFPEEK(M)=175THENPOKEM, 143+RND(7)#16:G0T02550

2560 NEXT

2570 PRINT3320,"IN A CAVE"

2580 MAN=1296

2590 POKEMAN, 36

2600 GOSUR360

2610 GOSURZ300

2620 IFST>4@@THENST=400

2630 IF1Q>400THENIG=400

2640 IFEN>400THENEN=400

2650 IFD=QTHEN2610

2660 IFPEEK(MAN+D)=128THENZ2750

2670 IFPEEK(MAN+D)<>175ANDRND(8)=5ANDMEDALL ION<>1THEN
PRINT3480, " YOU’VE FOUND THE MEDALLION!'"j tFORN=0TO
2000:NEXT:PRINT3480,STRING$(31,32) ; =MEDALLION—
GOTOZ750

156

Appendix C

2680 IFPEEK(MAN+D)=175THEN2760

269@ M=RND(1@) : IFM=2THENPRINT3480, "YOU’VE FOUND A
GEM ! " :FORN=0TOZ0@@:NEXT:PRINT23480, STRING$(19,32);:
TR=TR+RND(300) : GOT02750

2700 IFM=4ANDWAND<>1THENPRINT3480, " YOU’VE FOUND THE
MAGIC WAND!'" ORN=0T0Z00@:NEXT:PRINT2480,STRINGS
(28,32) 5 :WAND=1: GOT0Z2750

2710 IFM=6ANDSHIELD<>1THENPRINT848@, "YOU’VE FOUND THE
MAGIC SHIELD!"; :FORN=OTOZ@0@:NEXT:PRINT3480,
STRING$(31,32) § :SHIELD=1:G0T02750

2720 IFM=8THENPRINT8480, " YOU’VE FOUND A MAGIC POTION!'"
5 :FORN=0TO2@@0:NEXT : PRINT3480, STRING$(31,32) §
P=P+1:POTION(P)=RND(4) : GOT02750

2730 IFM=10THENGOSURZ770:G0T0Z2750

2740 PRINT3480, "NOTHING OF VALUE";:FORN=0TOZ0@@:NEXT:
PRINT348@,STRING$(31,32) 3

2750 MAN=MAN+D :POKEMAN-D, 128

2760 PRINTR320, "########4" 5 :MAN=Q
720

277@ SOUND1@,5 :SOUND1@@, 6 : RESTORE ' IFEX<Z00QANDTW=BTHEN
FORN=@TORND(19) : READMONSTER® : READHITS:NEXT

2780 M=0

2790 IFEX>=2@0@0RTW=1THENFORN=OTORND(19)+2@: READ
MONSTER$:READHITS: NEXT

2800 IFSWORD=1THENHITS=HITS+RND(ST)

2810 FORN=1TOLEN(MONSTER$) :MID$ (MONSTER$,N, 1)=CHR$(ASC
(MID$(MONSTER$,N,1))+32): IFMID$(MONSTER$, N, 1)="3"
THENMID$ (MONSTER$, N, 1)=CHR$(128) : NEXT:ELSENEXT

2820 PRINTA320, "YOU HAVE MET A " iMONSTER$;

2830 IFCLASS$="CLERIC"AND(MONSTER$="vampire"OR
MONSTER$="wight"ORMONSTER$="mummy " ORMONSTER$=
"wraith" ORMONSTER$="spectre”)ANDRND(3)=2THENYZ=1

2840 IFYZ=1THENFORN=0TO0Z@@@:NEXT:PRINT3320, "RPUT YOU
TURN IT AWAY!":FORN=0BT0Z@@@:NEXT:PRINT332@," ":EX=
EX+H:RETURN:YZ=0

2850 HITS=HITS+RND(INT(HITS/2)) : IFHITS<CINT (EN/2) THEN
GOT0Z850

2860 H=HITS

2870 FORN=0TO01000:NEXT

2880 PRINT@448,"strike" jCHR$(128) ;" nouw”

2890 SOUND5S@, 2

2900 A$=INKEY$

2910 PRINT@480, " "3

292@ PRINT3480, " THE MONSTER HAS" 3 HITS;"ENERGY "3

2930 FORN=0TO300:A$=INKEY$: IFA$<>" " THENZ940:EI.SENEXT:
PRINT8448, " too" ;CHR$(128) § "slow" :FORN=0T02000: NEXT
tPRINT&448," ":G0T0O2990

2940 IFA$="S"ANDWAND=1THENSPELL (S)=SPELL(S)-1:GOSUR

2502 IFV=1THENEX=EX+H:EN=EN+INT (RND(H/2)) :YZ=1:V=0

2950 IFYZ=1THENFORN=OTOZ@0@:NEXT:PRINTa320," ":PRINTa
448," ":PRINT3480, STRING$(31,32)3:YZ=0: RETURN

296@ IFA$="H"ANDRND(2)=2THENG=RND(EN)+RND(ST) *SD*
PRINT®448, "you" §CHR$(128) §"hit" :FORN=0TOZ000:NEXT:
PRINT8448,Gj3"DAMAGE ! " § :FORN=0TO300@:NEXT:YZ=1

0T02590
:Z=W:GOSUR1500: GOTO

157

T he Dragon Trainer

2970 IFYZ=1THENYZ=0:PRINT®448," ":HITS=HITS-G:G=0:ELSE
IFAS "THENPRINT3448, "you" CHR$(128) i "missed":
FORN=0T(OZ000:NEXT:PRINT3448,STRING$(30,32);:YZ=0

2980 IFG>@THENSOUND15@, 2: EL.SESOUNDZ0@, 2

2990 PRINT3480, " THE MONSTER HAS" jHITS;"ENERGY "3

3000 IFHITS<=@THEN3110

3010 SOUNDZ@@, 2: PRINT3448, "the” ;CHR$(128); "monster";
CHR$(128) §"strikes" :FORN=0TOZ000:NEXT: PRINT8448," *

3020 IFRND(Z)=1THENM=RND(HITS):PRINT3448,"and" ; CHR$
(128)3"hits" :S0OUND1@, 2:FORN=0TOZ@00 :NEXT:ELSE
PRINT®448, "and" §CHR$(128) § "misses" § :SOUND50, 2: YZ=1

3030 IFYZ=1THENFORN=QTOZ@0@0:NEXT:PRINT3448," ":YZ=0

3040 EN=EN-M: IFSHIELD=1THENEN=EN+INT(RND(M/2))

3050 IFM:>@THENPRINT®448, "DOING" ;M;" DAMAGE ! " ; :FORN=0QTO
2000:NEXT:PRINT3448," "

3060 GOSUR360

3070 M=0

3080 IFEN<=@ANDMEDALLION<>1THENGOT03770:ELSEIFENC
THENPRINT®320, " YOU’VE GOT 16 MOVES TO GET HOME!"j:
FORN=0TOZ@0O:NEXT:YZ=1

3090 IFYZ=1THENPRINT@320@,STRING$(31,32) ; :PRINT3448,

""" :PRINT3480, STRING$(31,32); :DEAD=1: YZ=0: RETURN

3100 HITS=HITS~1:EN=EN-1:G0T(2880

3110 PRINT3448," ":PRINT3480,STRING$(31,32) ;:PRINTS
320, "YOU’VE KILLED IT!":FORN=2Z2Z5T0Z50:SOUNDN, 1:
NEXT:EX=EX+H:EN=EN+RND (INT (H/2))

2@ FORN=QTOZO@0:NEXT:PRINTA320," ":IFEN>400THENEN=
EN-RND ¢ INT (H/2)) :RETURN:ELSERETURN

3130 PRINT®448, "POTION NUMBER" §: INPUTV: IFPOTION(V)=1
THENPRINT®448, "1T’S POISONQUS! " :FORN=0TOZ000:NEXT:
PRINT®448," *

3140 IFPOTION(V)=1 THENEN=EN-RND (50) : IFEN<=OTHEN3080:
ELSEPQOTION (V)=0:RETURN

3150 IFPOTION(V)=2THENPRINT®448,"YOUR NOSE TURNS A
FUNNY COLOUR POTION(V)=0:FORN:=0TOZ000 :NEXT:
PRINT®448, " ETURN

3160 IFPOTION(V)=3THENPRINT3448," 1T DOES NOTHING'";:
FORN=0TOZ000 :NEXT:PRINT3448," ":POTION(V)=0:RETURN

3170 IFPOTION(V)=4THENPRINT3448, "YOU’RE ia INCREASES!'
" §:FORN=0TOZ000:NEXT:PRINT®448," ":1@=I1Q+RND
(5) *10: POTION(V)=0:RETURN

3180 IFPOTION(V)=0THENPRINT3448, "THERE’S NOTHING IN
IT!":FORN=0TOZO0@:NEXT:PRINT3448, "" :POTION(V)=02
RETURN

3190 PRINTa448,"YOU GAIN"; :L=RND(1@) *Z: PRINTL §"POINTS
OF ENERGY!" § :EN=EN+L :POTION(V)=0:FORN=0T(02000:
NEXT:PRINT8448," ":RETURN

3200 DATA"BANDIT", 20, "BERSERKER" , 20, "RUGREAR", 60,
"CARRION CRAWLER", 6@, " COCKKATRICE", 100, "DWARF ", 2@,
"DOPPLEGANGER", 80, "ELF",2@,"FIRE BEETLE",20

3210 DATA"GARGOYLE", 80, "GELATINOUS CURE",80, "GIANT
ANT ", 40, "GIANT CENTIPEDE",5,"GIANT RAT", 1@, "GNOLL"
2 4@, "GNOME ", 10, "GOBLIN", 10, "GREY QOQZE",60

3220 DATA"HIPPOGRIFF", 65, "HOBRGORLIN", 15, "BLACK

158

Appendix C

PUDDING" s 200, "CHIMERA", 18@, "DJINNI", 145, "DRAGON" ,
220, "GIANT", 200, "GRIFFON", 140, "HYDRA", 160

3230 DATA"WEREREAR", 120, "MANTICORE", 125, "MINOTAUR",
120, "MUMMY", 185, "OGRE", 120, "OWL REAR", 110,
"PURPLE WORM", 300

3240 DATA"SPECTRE",12@,"TROLL",130@,"VAMPIRE", 180,
"WIGHT", 60, "WRAITH", 80, "HELL HOUND", 140

3250 PRINT3448, "SPELL NUMBER";: INPUTS

3260 IFS>3ANDEX<2Q@@THEN3350

3270 IFS=1ANDRND (400) <1@ ANDSP(1)>@THENPRINT3448, " THE
MONSTER FALLS ASLEEP!" 5:FORN=0T02000:V=1:1@=I@+RND
(5)%5: RETURN

3280 IFS=2ANDRND(400)<1@ ANDSP(2):>@THENPRINT3448, "THE
MONSTER IS BPLINDED AND RUNS OFF !";:FORN=0T0OZ000:
NEXT:PRINT@448," ":PRINT3480,STRING$(31,32);:V=1

3290 IFV=1THENIG=1@®+RND(5)*5:RETURN

3300 1FS=3ANDSP (3) >@ANDRND(400)<1&@ THENPRINT®&448, " THE
MAGIC SHIELD HOLDS!";:FORN=0QTO2000:NEXT:PRINT3448,
" ":V=1:10=1Q+RND(5)*5:RETURN

3310 IFS=4ANDSP(4)>@ANDRND(400)>1&@ THENPRINT&448, "THE
WER FALLS ON THE MONSTER!" ; :FORN=QTO2000:NEXT:
PRINT@448, " ":V=1:1G=1Q@+RND(5)*5:RETURN

3320 IFS=5ANDSP(5)>@ANDRND (400)>1®@ THENPRINT&448, *"THE
MONSTER 1S ENVELOPED IN#####DARKNESS! " ; :FORN=0TO
2000:NEXT:V=1

3330 IFV=1THENPRINT&448," ":PRINT3480,STRING$(31,32);:
I@=1Q+RND(5) #5: RETURN

3340 1IFS=6ANDSP (&) *@ANDRND (400) > 1@ THENPRINT3448, " THE
MONSTER TURNS INTO JELLY!";:FORN=0QTOZO0Q:NEXT:
PRINT3448," ":1Q@=IQ@+RND(5)#*5:V=1:RETURN

3350 IFSP(S)<1THENPRINT&448, "YOU HAVEN’T GOT THAT
SPELL!" 5 :FORN=0TOZ00Q:NEXT:PRINT3448," ":RETURN

3360 PRINT&448,"THE SPELL FAILED!" §:FORN=0TOZO0Q:NEXT:
PRINT3448," ":RETURN

3370 CLS:PRINT"WELL DONE! YOU’VE SUCCEEDED!*"3;:PRINT
"THE KING IS SAVED!!!'" :PRINT"AND YOU MANAGED TO
RETURN WITH:-":PRINT"the" ;CHR$(128); "ley"

3380 PRINT"THE MAGIC WAND":IFMEDALLION=1THENPRINT" THE
MEDALLION OF LIFE"

3390 IFSHIELD=1THENPRINT"THE MAGIC SHIELD"

3400 IFAMULET=1THENPRINT"THE AMULET OF THE GODS"

3410 IFSD=1THENPRINT"THE MAGIC SWORD"

3420 FOR TO20: IFPOTION(N) *@THEN3440

3430 NEXT:GOT03450

344@ PRINT"AND SOME POTIONS!"

3450 PMODE3,1:PRINT:PCLS:GOSUR3790@: PMODE3, 1 :SCREEN1, 0:
FORN=0TOZO0@:NEXT:G0T04190

3460 FORN=320T0448STEP32: PRINTAN," ":NEXT:PRINT3480,
STRING$(30@,32); :PRINT3320, "";

3470 IFWAND=1THENPRINT"WAND"

3480 IFSD=1THENPRINT*SWORD"

3490 IFMEDALLION=1THENPRINT"MEDALLION"

3500 IFAMULET=1THENPRINT"AMULET"

3510 IFSHIELD=1THENPRINT"SHIELD"

159

The Dragon Trainer

3520 IFKEY=1THENPRINT"the" ;CHR$(128);"key";

3530 FORN=QTOZ@: IFPOTION(N) >@THEN3550

3540 NEXT:GOT03570

3550 FORN=QT03000:NEXT:FORN=320T0448STEP3Z:PRINTAN,
" ":INEXT:PRINT®480, STRING$(30,32); :M=0:FORN=0T020:
IFPOTION(N) >1THENM=M+ EXT : ELSENEXT

3560 PRINTa32@,M;"POTIONS" :M=0

3570 IFAMULET=BANDSWORD=0ANDKEY=0BANDMEDALL I ON=0@AND
SHI ELD=@ANDWAND=@THENPRINT"NOTHING' "

3580 FORN=0TO3000 :NEXT:FORN=320T0448STEP32:PRINTAN,
" ":NEXT:PRINT2480, STRINGS (30, 32) ; :GOSUR360: RETURN

3590 CLS:PRINT"IS TAPE READY 7"

3600 A$=INKEY$: IFA$<>"Y" THEN3500

3610 PRINT®"PRESS play AND record ON TAPE" :FORN=0TO
3000 :NEXT

3620 PRINT"SAVING " jNAME$;" THE ";CLASS$

3630 OPEN"0O",-1,NAME$

3640 PRINT#-1,CLASS$;ST; IQ;EN;ST;SEX;ME; SD; WA; SH; AMIE;

3650 FORN=@TOP:PRINT#-1,POTION(P) ; :NEXT

3660 CLOSE#-1

3670 PRINTNAMES$;" THE ";CLASS$;" SAVED"

3680 END

369@ CLS: INPUT* CHARACTER>S NAME" ;NAME$

3700 PRINT*PRESS play ON TAPE" :FORN=0T03000:NEXT

371@ OPEN"I",-1,NAME$

3720 INPUT#-1, CLASS$, ST, I, EN, ST, EXsME, SD, WA, SH, AM, KE ¢
FORN=0T020

3730 IFEOF (-1)THEN3760

3740 INPUTH#-1,POTION(N) :NEXT

3750 CLOSE#-1

3760 GOT0190

377@ PRINT3320, "YOU’RE DEAD!'*:IFK=1THEN3770

3780 PLAY"01V31TZL4GGLBGGLAR-AAGGF+G" tK=1:G0T03770

3790 DRAW"BM10, 1803 C4;R190UF0L 190DFORISZE45UFBG45"

3800 IFZZ=@THENCIRCLE (38,8@),30, 4y 1. 48,.46,.8

3810 IFZ THENCIRCLE (226, 8@) 3@, 44 1.48,. 46, .85

3820 I1FZZ=OTHENLINE (40, 38)-(230,38),PSET

3830 LINE(92,90)~(120,110@),PSET,P

3840 PAINT(94,92),2,4

3850 COLOR3

3860 LINE(104,92)-(108,108),PSET, PF: CIRCLE (106, 98),7

3870 PAINT(20,170),2,4 :PAINT(220,80),2,4:IFZZ=0THEN
PAINT(210,70),2,4:PAINT(40,80), 2, 4

3880 COLOR4

3890 N=30

3900 FORM=160T0176STEP4:LINE(N,M)-(210-N,M),PSET:
N=N-4:NEXT

3910 M=20

3920 FORN=14TO30STEP4 :LINE(N,M+95) (N, 195-M), PSET:
M=M+4:NEXT

3930 N=30:FORM=130TO114STEP-4:LINE (N, M) ~(2Z10-N,M),

N-4:NEXT

ORN=196T018@STEP-4:L INE (N, M+95) (N, 195-M),
PSET:M=M+4:NEXT

3950 LINE(14,92)-(36,112),PSET,RF:COLOR3:LINE(40,92)—

160

Appendix C
(60,112),PSET,PF:COLOR] :LINE(64,92)-(B4,112),PSET,
BF

3960 LINE(128,92)-(148,112),PSET, BF: COLOR3:LINE
(152,92)-(172,112), PSET, PF:COLOR4:LINE(176,92)~
(196,112),PSET, BF

3970 PAINT(34,134),3,4:PAINT(28,136),4,4:PAINT
(2445136),1,4:PAINT(16,136),4,4

3980 IF ZZ=1 THEN 4030

3990 FORN=38TOZZ@STEPF:CIRCLE(N,80),30,4,1., 48, .46, .88
NEXT

4000 FORN=4@TOZ18STEP346:PAINT (N, 75), 4, 4 :NEXT

4@10 FORN=ZOTO018@STEP36: PAINT (N, 75) 43, EXT

4020 FORN=34TO1BOSTEP3&:PAINT(N, 75), 1, 4 :NEXT

4030 COLORZ:LINE(12,91)-(198,91),PSET

4040 COLOR4:LINE(92,90)~(120,110), PSET,R

4050 IFZZ=OTHENCOLOR1:LINE (38,37)-(230,37),PSET:LINE
(38, 36) (230, 36),PSET

4@6@ DRALNBMZ08, 1585 C43E2Z7U64G27D64" tPAINT (220, 130),
34

4070 IFZZ=@THENZ2Z=

4080 COL.OR4

4090 DRAW" BM10@, 903 C43E45R190L19@D 44"

4100 DRAW"EM10,90@;C4;EB5G4OR190E10G10"

4110 DRAW'EM10,90;C43EB5R1 90"

412@ DRAW"PMZ00,90;C43E45RZDIR4DIRZUIRZUIRZ"

4130 PAINT(25,8@),2,4:PAINT(&0,80),2,4:PAINT(90,20),2,
43PAINT(246,44) 42,4

4140 CIRCLE(125,125),500,3

4150 CIRCLE(150,9@),15,4,1,.5,@:PAINT(152,85),3,4*
CIRCLE(150@,90),15,3,1,.5,0

4160 COLOR3:LINE(146,85)-(154,7@), PSET, BF: COLORL :LINE
(146,69)-(154, 64),PSET, BF

417@ PMODE3, 1:SCREEN1,0

4180 GOT04180

4190 CLS@:PRINT®227,"THE CHEST WILL RE OPENED IN A"j:
PRINT®269, "MOMENT" § :PCLS:GOT03790

4200 FORN=3Z0T0448STEP32:PRINT&N, " * :NEXT

4210 PRINT®480,STRINGS (30,32)3

4220 FORN=1TO06

4230 PRINTA3ZO+((N-1)%32), "SPELL"N;"="3SPELL(N);

4240 NEXT

4250 FORN=0T0Z000@:NEXT

4260 FORN=320T0448STEP32:PRINTAN, " " :NEXT

270 PRINT3480@,STRING$(30@,32) 3

42808 RETURN

4290 FORN=320T0448STEP32:PRINTA&N, " " :tNEXT

4300 PRINT&48@,STRINGS (30, 32) 3

4310 PRINT@320,"";

4320 IFEX<S@@THENPRINT"FISH FOOD" :GOT04580

4330 IFEX<100@THENPRINT"SWORD PRACTICE DUMMY":GOT04580

4340 IFEX<Z@0@THENPRINT"APPRENTICE FOOL" :GOT04580

4350 IFEX<300OTHENPRINT"SNAIL SLAYER" :GOT04580

4360 IFEX<4@0@THENPRINT"DRAGON’S TOY" :GOT04580

4370 IFEX<5@@@THENPRINT"APPRENTICE SWORDSMAN":GOT04580

:RETURN

161

The Dragon Trainer

4380 IFEX<600OTHENPRINT"WOLF MASTER" :GOT(4580

4390 IFEX<7@@@THENPRINT" SWORDSMAN" : GOT(4580

4400 IFEX<BOOATHENPRINT"LION TAMER":GOT(04580

4410 IFEX<9@@@THENPRINT"3RD RATE HERQ":GOT04580

4420 IFEX <11000THENPRINT"MASTER OF THE SWORD":GOT(4580
4430 IFE 2Z@@@THENPRINT"2ZND RATE HERQ":GOT04580

4440 IFE 300@THENPRINT"LLORD OF THE PATH":G0T04580
4450 IFEX<140@@THENPRINT*LORD OF THE KEEP":GOT(04580
4460 IFEX<16000THENPRINT"GOELIN SLAYER" :GOT(458@

447@ IFEX<1B800@THENPRINT" CHAMPION" : GOT04580

4480 IFEX<2ZZ@O@ATHENPRINT"HERQ — 1ST CLASS":GOT04580
4490 IFEX<26@00THENPRINT"DRAGON SLAYER" :GOT(458@

4500 IFEX<30000THENPRINT"WARLORD" :GOT(4580

4510 IFEX<35@@@THENPRINT"LORD OF THE HEROS" :GOT04580
4520 IFEX<4@000THENPRINT"LORD OF THE PALACE":G0OT04580
4530 S@@@THENPRINT"DEATH DEFYER" :GOT(04580

4540 {50000THENPRINT"MONSTER TAMER" : GOT(04580
4550 IFEX<6@@@OTHENPRINT"PRINCE OF LIGHT":GOT(4580@
4560 IFEX<70000THENPRINT"RULER OF THE VALLEY":GOT(04580
457@ PRINT"MASTER OF ETERNITY"

4580 FORN=@TO2000:NEXT

4590 PRINTA320,""

4600 U=1:G0OSUR360:RETURN

Code Breaker

Code Breaker is a version of the popular board game Mastermind. The
idea of the game is to guess a code number which the computer has chosen,
helped along by clues given by the computer.

When you RUN the program you will be asked how many digits you
want in the code and then for the highest number that you wantin the code.
If you want the highest number to be 7 then allthe numbersin the code will
be between 1 and 7. Finally you will be asked how many guesses you want
before being presented with the instructions for the game.

Once you have finished reading the instructions the screen will clear and
you will be asked for your first guess. The computer will then tell you how
many blacks and whites you got.

A black represents a digit which is in the code and is also in the right
place. A white represents a digit which is in the code but not in the right
place. For example:

The code which youare trying to guess is 81632

Your guess is 82945

You have one black (the 8 is in the right place)

You have onewhite (the 2 is in the computer’s code but in the wrong place).

162

Appendix C

This process continues until you either guess the code correctly or run
out of guesses. If you manage to guess the code correctly the screen will
flash several colours accompanied by random noises. The first bar of Con-
gratulations will then be played and you will be told how good you are at
the game. You will then be asked whether or not you want another go.

If you run out of guesses you will be told the computer’s code and asked
if you want another go.

10 CLS

20 PRINT"HOW MANY DIGITS DO YOU WANT IN THE CODE*j
30 INPUTDIGIT

40 PRINT"WHAT DO YOU WANT THE HIGHEST"

50 PRINT"NUMBER IN THE CODE TO BE (1-10)"3
6@ INPUTHIGHEST

70 INPUT"HOW MANY GUESSES DO YOU WANT" NUMBER
80 DIMGUESS$(NUMBER),HIGHEST(DIGIT),D(DIGIT)
9@ DIMELACK (NUMBER),WHITE (NUMRER)

100 GOSUR710

110 GOSURZZ@:GOSURZ40

120 PRINT"GUESS NUMBER" jGUESS;

130 INPUT A$

140 1IF LEFT$(A$,1)="&" THEN 370

150 GOSUPR480

160 GOSUR570Q

170 BPLACK(GUESS)=RLACK:WHITE (GUESS)=WHITE
180 IF BLACK(GUESS)=DIGIT THEN 1000

190 GUESS$(GUESS)=A%

200 GUESS=GUESS+1:IF GUESS:*NUMRER THEN 1140
210 GOT0300

220 GUESS=1:D$=""

230 RETURN

240 FOR H=1 TO DIGIT

250 S=RND{HIGHEST)

260 D$=D$+MID${(STR$(S),2,1)

270 NEXT

280 PRINT" 1'VE CHOSEN MY SECRET CODE!"
290 RETURN

300 CLS

310 PRINT"NO. GUESS BLACK WHITE"

320 FOR H=1 TO GUESS-1

330 PRINTH3;TAR(7)3GUESS$(H) 3 TAR(15) 3BLACK(H) §
340 PRINTTAR(23)SWHITE(H)

350 NEXT:PRINT

360 GOTO 120

370 CLS:FOR N=50TQZSTEP-2:SOUNDN, 1 :NEXT
380 SOUNDZ55,2

390 PRINT"YOU’RE NOT GOOD ENOUGH!'"

400 PRINT"MY SECRET CODE WAS ";

410 FOR H=1 TO 6

420 PRINT" ."3

430 SOUND Hx40, 1

163

The Dragon Trainer

440 FOR L=1 TO 900:NEXT

450 NEXT

460 PRINTD$:PRINT

470 GOTO1090

480 IF LEN(A$)<>DIGIT THEN 540

490 FOR H=1 TO DIGIT

500 S=VAL(MID$(A%$,Hs1))

510 IF S<1 OR S»HIGHEST THEN 540

520 NEXT

530 RETURN

540 PRINT"THAT’S NOT A LEGAL GUESS!'"

550 PRINT"PLEASE TRY AGAIN"

560 GOTO120

570 BLACK=0:WHITE=0

580 FOR H=1 TO DIGIT

590 GUESS(H)=VAL (MID$(A$,H,1))

600 D(H)=VAL(MID$(D$,H,1))

610 IF GUESS(H)=D(H) THEN BLACK=BLACK+1:GUESS(H)=0:
D(H)=0

620 NEXT

630 FOR H=1 TO DIGIT:1IF D(H)=0 THEN 690

640 1=0:FOR L=1 TO DIGIT

650 IF D(H)=@ THEN 680

660 IF D(H)<>GUESS(L) THEN 680

670 1=1:GUESS(L)=0:D(H)=0

680 NEXT L:WHITE=WHITE+I

690 NEXT H

700 RETURN

71@ CLS

720 PRINT" code*breaker .

730 PRINT"I WILL PICK A"3DIGIT;"DIGIT CODE"

740 PRINT"WITH THE NUMBERS IN THE CODE"

750 PRINT"RANGING FROM 1 TO"3jHIGHEST;"."

760 PRINT"YOU MUST TRY AND GUESS THIS CODE"

770 PRINT"TO HELP YOU I WILL TELL YOU HOW"

780 PRINT"MANY NUMBERS YQU GOT RIGHT, AND"

79@ PRINT"HOW MANY NUMBERS YOU GOT RIGHT"

800 PRINT“RBRUT IN THE WRONG PLACE. HOWEVER,"j;

810 PRINT"I WON’T TELL YOU WHICH NUMRERS"

820 PRINT" (IF ANY) YOU GOT RIGHT!'"

830 PRINT:PRINT"PRESS ANY KEY TO CONTINUE"S

840 IF INKEY$=""THEN 840

850 CLS

860 PRINT"I WILL TELL YOU HOW MANY NUMBRERS";

870 PRINT"YOU GOT RIGHT IN THIS WAY:"

880 PRINT

890 PRINT"black IS THE NUMPER OF CORRECT"

900 PRINT"NUMPERS IN THE CORRECT PLACES"

910 PRINT

920 PRINT"white IS THE NUMBER OF CORRECT"

930 PRINT"NUMBERS IN THE WRONG PLACE"

94@ PRINT

950 PRINT"PRESS ANY KEY TO START"j

960 IF INKEY$=""THEN960

164

Appendix C

7@ CLS

98@ RETURN

99@ END

100@ FORN=230T0O255:SOUNDN, 1:CLS RND(8):NEXT

101@ PLAY"T11L1GARO3LL. COZLIG"

1020 CLS:PRINT"YOU GOT IT IN";GUESS;:"GUESSES."

1030 IF GUESS<S THEN RATING$="FANTASTIC'"

104@ OR GUESS=6 THEN RATING$="REASONABLE !"
105@
1060 IF GUESS=8
107@ IF GUESS>8 THEN RATING$="TERRIBLE'"
1080 PRINT"....THAT’S "3jRATINGS

109@ INPUT"WANT TO TRY AGAIN (Y/N)"3A$
11@@ IF LEFT$(A$,1) THEN 100

111@ IF LEFT$(A$,1)<>"N" THEN 1090

1120 PRINT"COWARD ' "

113@ END

1140 PRINT

115@ PRINT"YOU’VE RUN OUT OF GUESSES!"
1160 GOT0390

Commentary

Line 10 clears the screen before lines 20—70 ask you how many digits you
want in the code, the highest number that you want in the code and how
many guesses you want. Lines 80 and 90 then DIMension the variables
which will be used in the program, using your answers to the previous ques-
tions as guidelines.

Line 100 sends the program to the subroutine starting at line 710 (the
instructions). Line 110 then sends the computer to two subroutines which
set up the computer’s secret code.

The main routine lies from lines 120—210. Line 120 tells you which guess
you areon and thenline 130 asks you for your guess. Line 140 checksto see
if you want to quit, jumping toline 370 if you do. Lines 150— 160 send the
computer to two subroutines which check that your guessis a legal oneand
work out how many blacks and whites you got. Line 170 then keeps a
record of how many blacks and whites you got in that go for future
reference. Line 180 checks to see if you correctly guessed the code, sending
the computer toline 1000 if you have. Line 190 keeps a record of your guess
(again for future reference). Line 200 makes sure that you haven’t used up
all your guesses yet before line 210 sends the program toline 300 to display
the record of your attempts at guessing the code.

Line 220 resets two of the variables and lines 240—270 set up the
computer’s secret code, with line 280 telling you when the code is worked

165

The Dragon Trainer

out. The record of your guesses is displayed by lines 300 —350.

Lines 370-460 make up the losingroutine. Line 370 clears the screen and
makes a series of noises. Line 380 then makes a final bleep. You are told by
line 390 that you are not good enough and then lines 410—450 slowly
PRINT a series of dots on the screen accompanied by increasingly higher
notes. Line 460 tells you what the secret code was and then line 470 sends
the program to line 1090 to ask whether or not you want another go.

Line 480 makes sure that your guess has the right number of digits in it,
jumping to line 540ifithasn’t. Lines 490 —520thencheck each digitin your
guess to make sure that none of them are too high. If any are then the
computer jumps to line 540.

Lines 540— 550 tell you that you have made an illegal guess and then line
560 sends the computer back to the main program. Lines 570 —690 work
out how many blacks and whites you got.

Lines 710—970 display the instructions. Line 1000 flashes the screen dif
ferent colours while making random noises before line 1010 plays the first
bar of Congratulations. You are then told how good you are at the game by
lines 1020—1080.

Lines 1090—1120 asks you whether or not you want another game,
jumping to line 100 if you do and PRINTing ‘COWARD!’ if you don’t.
Lines 1140— 1150 tells you that you have run out of guesses.

Revision Aid

Revision Aid is for all those among you who are learning, or have someone
inthe family who is learning, anotherlanguage. The program allows youto
enter a set of words and their meanings and then tests you on the words,
choosing one at random and asking you for its meaning. The words may
also be stored on tape for future use.

‘When you RUN the program you will be asked whether you want to load
a set of words or set up some new ones. At first you won’t have any words
on tape so you will reply S , but if you do have some stored on tape you
should press L.

If you want to set up a new set of words then you will be asked how many
words you want to learn. You will then be asked to enter the words, one by
one. Each word should be entered like this:

AVOIR:TO HAVE

166

Appendix C

It doesn’t matter whether the foreign word or the English translation
comes first, as long as each is separated by a colon and only a colon. No
spaces should be added in between the words and the colon.

Once you have entered all the words you will be asked whether or not you
want to save them. Assuming that you don’t, the screen will then clear and
the computer will start testing you on the words. You will be randomly
tested from English into the other language, and from the language that
you are learning into English. You can have up to five attempts at each
word,x and if you don’t know the word you may type H (for Help). The
computer will then tell you what the word is.

After each word you will be asked whether you want to be tested on
another. If you do then the program will continue, otherwise you will be
told how well you have done and the program will end.

If youdecideto save your list of words then the screen willclear and you
will be asked to prepare the tape. When you have done this you will be
asked if the tape is set on record or not, before being asked for the name
that you want the words to be saved under. Your list of words will then be
recorded and the program will continue as normal.

If you load a set of words then you will be asked to go through a similar
routine to that carried out when saving the list. You will be asked to set the
tape on play before being asked for the file name. Your list will then be
loaded and the program will continue.

If you want more (or less) than five attempts at guessing a word then you
should alter the 5 in lines 260 and 340 to the number of guesses that you
want.

You may make the computer test you on 10 words without asking you if
you want another test by altering these lines:

390 IF RIGHT + WRONG =10 THEN 430
400 GOTO 140
DELETE LINES 410-420

10 CLS:PRINTA10, "revision";CHR$(128)3"aid"

2@ INPUT"LOAD WORDS OR SET UP NEW ONES (L/S)"5A%
3@ IFA$="L"THEN720

4@ IFAS S"THENZO

5@ PRINT"HOW MANY WORDS DO YOU WANT TO LEARN"

6@ INPUT NUMBER

7@ PRINT"PLEASE ENTER WORDS AND THEIR MEANING"
8@ DIM WORD$(NUMBER)

?@ FOR N=t TO NUMBER

10@ LINEINPUT" 7" 5WORD$ (N) :NEXT

110 INPUT"DO YOU WISH TO SAVE THESE WORDS (Y/N)"jA$
120 IFA$="Y"THEN540

130 IFA$<>"N"THEN110

167

The Dragon Trainer

140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670

168

CL
=
IF MID’(NORD’ (X)3Z,1)=":" THEN 190

7=7+1

GOTO 16Q

IFRAND(2) =2THEN290

PRINT" PLEASE TRANSLATE

PRINTRIGHT$ (WORD$(¢X) s LEN(WORD$ (X)) ~27)

INPUTANSWERS

IFANSWER$="H" THENS20

IFANSWER$=I.EFT$ (WORD$ (X), Z-1)THEN380

PRINT"WRONG' " :PRINT"TRY AGAIN" :WRONG=WRONG+1
S=5+1: IFS=5THENPRINT" THE ANSWER 1S ";:GOT0360
GOTOZ00

END

PRINT"PLEASE TRANSLATE "3jLEFT$(WORD$ (X),Z--1)

INPUT ANSWER$

IF ANSWER$="H" THEN 360

IF ANSWER$=RIGHT$(WORD$ (X),LEN(WORD$ (X)) —7) THEN380
PRINT"WRONG!" :PRINT"TRY AGAIN" :WRONG=WRONG+1
S=8+1:IF S=5 THEN PRINT"THE ANSWER IS ";:GOT0360
GOTOZ290

PRINTRIGHT$ (WORD$(X), LENC(WORD$(X))-Z)
WRONG=WRONG+1 :GOTO390

PRINT"RIGHT ' " :RIGHT=RIGHT+1

PRINT"ANOTHER (Y/N)7" 3

AS=INKEY$

-RND(NUMBER)

THEN 140

> THEN 400

CLS:PRINT&256, "YOU GOT"jRIGHT;"RIGHT OUT OF";
PRINTR IGHT +WRONG

IF RIGHT*WRONG THEN 490

IF WRONG~RIGHT<5 THEN PRINT"PRETTY RAD!
IF WRONG-RIGHT<1@ THEN PRINT" TERRIBLE
PRINT"RIDICULOQUS! " :END

IF RIGHT-WRONG>S THEN PRINT"QUITE GOOD!'* :END
IF RIGHT~WRON:! @ THEN PRINT"EXCELLENT!":END
PRINT" AVERAGE END

PRINTLEFT$(WORD$(X),Z-1) :WRONG=WRONG+1
GOTO390

CLS: PRINT"PLLEASE PREPARE TAPE AND THEN"
PRINT" PRESS *R”"

IFINKEY$<>"R" THENS60

PRINT"IS TAPE SET ON RECORD (Y/N)7*"
A$=INKEY$

IFA$="Y"THEN6Z0O

IFA$<>"N® THENSBO

GOTOS510

INPUT"FILE NAME";NAMES$

PRINT"SAVING " jNAME$;" NOW"

OPEN"O", #-1,NAME$

PRINT#-1,NUMRER

FORN=1TON(MBER

PRINT#-1,WORD$(N) 3

Appendix C

68@ NEXT

690 PRINTNAME$:" SAVED®

700 CLOSE#-1

710 GOTO0140

72@ CLS:PRINT"PLEASE SET TAPE ON PLAY"
730 PRINT"PRESS 'R’ WHEN READY"
740 IF INKEY$<:>"R" THEN740

75@ PRINT"PLEASE ENTER FILE NAME™;
76@ INPUT NAMES$

77@ PRINT"LOADING ";3;NAMES$

780 OPEN"I",#-1,NAMES$

79@ INPUT#-1,NUMBER

802 DIMWORD$ (NUMBER)

810 FORN=1TONUMBER

820 INPUT#--1,WORDS (N)

830 NEXT

B840 PRINTNAMES$;" LOADED"

850 CLOSE#-1

86@ X=NUMBER

87@ FORN=@TO10Q0:NEXT

880 GOT0140

Commentary

Line 10clears the screen and displays the title of the program. You are then
asked whether you want to load a set of words or set up some more by line
20. Lines 30—40 check that your response s a legal one and react accordin-
gly.

Lines 50—60 ask you how many words you want to learn before lines
70-100 INPUT the words. You may notice that we have used the LINE
INPUT command rather than INPUT. This allows us to enter the colon in
between the words and their meanings, something which the INPUT
command doesn’t allow.

Youareasked by line 1 Owhether or not you want to save your set of words,
and lines 120—130 react accordingly to your response. Line 140 clears the
screen and picks a random word. Lines 150180 find where the colon is
positioned in the word and then line 190 decides whether to ask you to
translate from or into English.

Lines 200210 tell you the word which you are expected to translate,
before you are asked for an answer by line 220. Line 230 makes sure that
you’re not asking for Help, and then Line 240 checks to seeif you have got
the word right. You are told that you have got the word wrong by Line 250
and Line 260 makes sure that you haven’t run out of guesses, telling you the
answer if you have.

169

The Dragon Trainer

Lines 290—350 are similar to lines 200260 except that they ask you to
translate the word in the other way.

Lines 360—370 tell you what the word which you are translating is, and
line 380 tells you that you are right, increasing the value of the variable
RIGHT as it does so. Lines 390 —420 ask you whether or not you want
another go and act on your response.

Lines 430-440 tell you how many you got right before lines 450—510 tell
you how well you done. Lines 520 —530 tell you the word which you are
trying to translate.

Lines 540 —610 make sure that you have the tape recorder set up correctly
for saving the list of words. Line 570 asks you for the file name and then
your list of words is saved on tape by lines 640 —690.

Lines 720 — 740 make sure that you have the tape recorder correctly set up
for loading in a set of words. Lines 750 —760 ask you for the name that the
words were saved under before lines 780—850 load in the list of words
which you require. Line 870 then pauses before the computer is sent back
to the main program by line 880.

170

APPENDIX D
Jargon Guide

If there’s one thing that the computer world is full of it’s jargon, and here is
a guide to help you through this foreign language:

Acoustic coupler— device connected to a computer into which atelephone
hand set fits. Allows computers to communicate over the telephone.
Address — an index number to memory locations, usually in binary or
hexadecimal (base 16).

Assembly language — a programming language in which processes are
carried out by altering memory addresses using symbolic instructions.
BASIC — Beginner’s All Purpose Symbolic Instruction Code. The lan-
guage which most micro-computers use, and the one which this manual
teaches you.

Bit — asingle binary number, either one or zero.

Bug— an errorin a program, either causing itto work incorrectly or not at
all.

Byte— abinary number made up of eight bits (usually). A byte can repre-
sent any number from 0 to 255 as there are 256 combinations of eight ones
and zeros.

Cartridge— a unit composed of either ROM or RAM (or both) which can
be plugged into a computer providing a program or extra memory.
Character set — the set of letters, numbers and symbols which are available
from the computer.

CP/M — Control Program for Microcomputers. A standard disc operat-
ing system which is available on many Z80 based computers. As it is a
standard language software can be easily transferred from one CP/M
system to another.

CPU — Central Processing Unit. The chip at the heart of a computer
which controls everything.

Cursor - character which indicates where the next piece of information
will appear on the screen.

Data— information.

Debug — to remove errors from a program.

Disk — a magnetic device for the storage of programs and data. Allows
very fast access to a large amount of information. (Most disk units can
access information in seconds).

171

The Dragon Trainer

DOS — Disk Operating System. A program either dumped into RAM or
held on ROM which controls the operation of disk.

EEPROM — Electrically Erasable Read Only Memory. Similar to a ROM
but can be erased by electrical impulses.

EPROM — Erasable Programmable Read Only Memory. A memory
device similar to ROM which can be erased by exposure to ultra-violet
light.

Floppy disk — a magnetic-coated disk on which programs and infor-
mation can be stored.

Hard copy — a printout of a program or other information on paper.
Hard disk — similar to a floppy disk but is fixed permanently inside the
disk drive. Capable of storing much more informationthan a floppy disk.
Hardware — all the actual physical components of a computer system eg
the keyboard.

Hex or Hexadecimal — base 16. A means of counting in 16s opposed to 10s
using the numbers 0—9 and then the letters A-F (A=10, B = 11 etc).
High Resolution — refersto the size of any single point which can be litup.
The smaller the point the higher the resolution.

Instruction — a set of bits which give the CPU a command to carry out.
Interface — a unit which allows the computer to be connected to another
unit eg a printer.

1/0 — Input/Output. A series of ports which allow the computer to inter-
face with a device and lets the device send information back to the
computer.

Kilobyte (K) — 1024 bytes of memory.

Language — a series of commands which combine to make up a program.
Machine language or machine code — the language in which the CPU
works is made up of a series of hexadecimal numbers.

Memory map — table showing how the computer’s memory is divided up.
Modulator — device inside the computer which turns the computer’s
output signal into a form which can be displayed on the television.
Modem — unit which allows computers to communicate over a normal
telephone line. Must be used with an RS232 interface and British
Telecom’s permission must be obtained before using one.

Monitor — either a program which allows you to alter the contents of the
RAM usingmachinecode, or a TV-type unit which does the same job as the
television but produces a much higher quality picture.

Parallel/Serial — the means by which a computer outputs information. A
parallel interface sends information out along a series of wires, whereas a
serial device uses fewer wires and sends the data out one bit at a time.
Pascal — very powerful high level language used on some computers.
Peripheral — device which connects to a computer such as a printer or disc
unit.

Pixel — single dot which is displayed on the screen. Pixels are lit up in
groups to form characters and pictures.

172

AppendixD

Port — akind of window to the outside world through which information
can be output and input.

Printout — same as hard copy.

Program — set of instructions which combine to make the computer carry
out a useful (?) task.

PROM — Programmable Read Only Memory. A special form of ROM
which can be programmed.

QWERTY — the standard typewriter style keyboard layout.

RAM — Random Access Memory. Form of memory which can have its
contents altered by programming and can also have its contents read.
Anything stored in RAM is lost when the power to it is stopped.
Register — a memory location in the CPU which has a specific purpose in
the controlling of the computer.

ROM — Read OnlyMemory. Form of memory which can have its contents
read but not altered.

Routine— a program, or part of the program, designed to perform asingle
task.

RS232 — a form of interface used for serial input and output.

Software — a program of one kind or another. Software is always stored
on some kind of hardware, such as a tape, ROM or RAM.

Source code — a program which has been written in a high level language,
such as BASIC, and needs to be converted into machine code.

String — a series of characters.

Stringy floppy — half way between a floppy disk and a tape. A continuous
loop of tape which can be read and written to much faster than a normal
tape. Must be used with a proper stringy floppy drive.

Subroutine — a program within a program. A small part of the program
which has one specific task to fulfil.

Syntax — the form in which a programmable language must be.

Toolkit — a program which adds to a computer’s set of commands.
Utility — a useful command, or set of commands.

Variable — a symbol or combination of symbols which is used to represent
a number.

VDU — Visual Display Unit. Either a TV or monitor on which infor-
mation from the computer can be displayed.

Z80 — very popular CPU which is used in many computers, such asthe ZX
Spectrum, TRS-80 and Aquarius.

6502 — another popular CPU, used in such computers as the Atom, Pet
and Oric computers.

6809 — the CPU inside your Dragon.

173

Index

Operators

8

%o

e

T4 VAAVVAA™
[

incalculations

with PLAY command

with PRINT USING command
incalculations

withPLAY command
incalculations

incalculations

with PRINT USING command
asexponentiation

withE DIT command

with PRINTUSING command
abbreviation

abbreviation

separator

with PRINT USING command
with PRINT USING command
for deleting

withE DI T command

with PRINTcommand
withIF. .. THENstatement
with IF...THEN statement
with PLAY command

withIF. .. THENstatement
with PLAY command

withIF. .. THEN statement
withIF.. . THENstatement
withIF. .. THENstatement
with PLAY command
withPLAY command

with PRINT USING command
with PRINT USING command
with string variables

Page
11
84

104
11
84
11
11

103
12
37

104
13
59
17

104

104
10
38
16
25
25
85
25
85
25
25
26
85
85

103

103
20

175

The Dragon Trainer

A

A with DRAW command

ABS command

Alarm Clock program

AND command

ARRAYS

Artist program (using POKE)

Artist program (using PSET)

ASC command

ASClIcode

ATNcommand

AUDIO OFF command

AUDIOON command

B

BwithDRAW command
with LINE command

BF with LINE command

Bouncing Ball program

BR with DRAW command

BREAK key

Breakout program

(o}

Cwith EDIT command
withDRAW command

Calculations

CHRS$ command

CIRCLEcommand

CLEAR command

CLEAR key

CLOADcommand

CLOADM command

CLOSE command

CLScommand

Code Breaker program

COLOR command

Colour codes

Coloursavailable

CONTcommand

COS command

CPU

CSAVE command

CSAVE,A

CSAVEM command

Cursor

176

99
111,117
141
27,102,117
54-58

79

139

117

117
110,117
36,117
36,117

97

92

93

72

100

31
74-175

38

97

1
45,118
94,118
87,118
10
35,118
118
105,118
24,118
162
93,118
127
127
60,118
110,118
78
35,119
119
119

9

D
D with EDIT command
withDRAW command
DATA command
DEFFN command
DEFUSR command
DEL command
Deleting program lines
Deleting lines of text
Dice program
DIM command
DRAW command

E
E with DRAW command
EDIT command
END command
ENTER key
with EDIT command
EOF command
EXEC command
EXPcommand
Exponentiation

F
FwithDRAW command

FIX command
FOR...NEXTloops

G

G withDRAW command
GET array, calculating
GETcommand

GOSUB command
GOTO command

H

HwithEDIT command
with DRAW command

Hangman program

HEXS$ command

Index

38

97
67,119
66,119
119
50,119
16

10

61
54,119
97-100, 119

97
37-39
59

11

38
106,119
119
111,120
12

97
120
29

97

101
101,120
32,120
32,120

38

129
120

177

T he Dragon Trainer

1

I with EDIT command
IF...THEN. . .ELSE statement
INKEYS$ command
INPUT command
INPUTS$ command
INSTR command
INT command
Interpreter
Invaderprogram
Inversecharacters

J

Joysticks (putting in programs)
Joystick buttons (testing)
JOYSTKcommand

K
KwithEDIT command

L

L with DRAW command
L with EDITcommand
L withPLAY command
LEFT$ command
LENcommand

LINE command
LINEINPUT command
Linenumbers

LIST command

LOG command
Lowercase

M

Mwith DRAW command
Maths Test program
MEMcommand

Meteors program

MID$ command

Modern Art program
MOTOR OFFcommand
MOTOR ON command
Multiplication tables program
Multi-statement lines

178

38
25,120
43,120
21,120

106
120
112,120

46—47

83
83
82,121

38

97

38

84
63,121
65,121
92,121
121

15
23,121
112,121
9

97

38
112,121
135
64,121
95
36,121
36,121
30

16

N

Negative numbers
NEW command
NEXT command
No.ofpagesused
NOT command

o

OwithPLAY command
ONGOTO command
ONGOSUB command
OPEN command
ORwithPUTcommand

P

Page swapping program
PAINT command
Parenthesis
PCLEAR command
PCLS command
PCOPY command
PEEKcommand
PLAY command
3-D Plot program
PMODEcommand
POINT command
POKEcommand
POScommand
PPOINT command
PRESET command
PRINT command
PRINT@ command
PRINT #command
PRINT USING command
PSET command
PUT command

Q
Questionnaire program
Quotation marks

Index

12
24,121
29,121

127
102,121

84
32,122
32,122

105, 122

102, 122

9%
93,122

12

89,122
91,122
95,122
79,122
84-86, 122
134

90,122
73,122
79,123
108,123
91,123
91,123
11-14,123
41,123
105, 123
103-104, 123
91,123
101, 123

22
13

179

The Dragon Trainer

R

RwithDRAW command
RAM

READ command

REM command
RENUMcommand
RESETcommand
RESTORE command
RETURN command
Revision Aid program
RIGHT$ command
RND command

ROM

Rotating penantprogram
RUNcommand

S

S with DRAW command
Score program
SCREEN command
Screen start address
SETcommand
SGNcommand
SHIFT key

SIN command

Size of points
SKIPFcommand
SOUND command
SPACE bar

withEDIT command

SQRcommand
STEP command
STOP command
STR$command
STRINGS$command

T

TwithPLAY command
TABcommand

TAN command
TIMER command
TROFF command
TRON command

180

97
79
67,123
59,123
51,124
71,124
68,124
32,124
166
63,124
40,124
78

99
24,124

98

56

90, 124
79

70, 124
113, 124
9

110, 124
124

36, 124
52,124
10

38
113,124
30,125
59,125
125
49,125

84
49,125
110,125
125
60,125
60,125

U

U with DRAW command
USRcommand

v

VAL command

Valley of Death program
Variables

VARPTR command
Volume setting programs

X

X with DRAW command
with PLAY command

97
125

125
145
18—-19
125

34

100
86

181

Otbher titles from Sunshine

THE WORKING SPECTRUM
David Lawrence

0 946408 00 9 £5.95

THE WORKING DRAGON 32
David Lawrence

0 946408 01 7 £5.95

THE WORKING COMMODORE 64
David Lawrence
0 946408 02 5 £5.95

DRAGON 32 GAMES MASTER
Keith Brain/Steven Brain

0 946408 03 03 £5.95

FUNCTIONAL FORTH
for the BBC Computer
Boris Allan

0 946408 04 1| £5.95

COMMODORE 64
machine code master
David Lawrence

0 946408 05 X £6.95

183

Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10charts of the best-selling software and books and up-to-the-minute
details of the latest games. Other features in the magazine include regular
hardware and software reviews, programming hints, computer swap,
adventure corner and pages of listings for the Spectrum, Dragon, BBC,
VIC 20 and 64, ZX 81 and other popular micros. Only 35p a week, a year’s
subscription costs £19.95 (£9.98 for six months) in the UK and £37.40
(£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each issue
contains reviews of software and peripherals, programming advice for
beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year’s subscription
(12 issues) costs £8.00 in the UK and £14.00 overseas.

For further information contact:
Sunshine

12—13 Litile Newport Street
London WC2R 3LD

01-734 3454

184

The Dragon Trainer is written as a combined
manual and be?inner’s course on the power of
Dragon BASIC. It is aimed at the complete beginner
and assumes no previous experi of puting

Brian Lloyd starts by explaining how to set the
computer up. He then introd the first principles of
simple computer programming.

Page by page The Dragon Trainer works through
each of the programming features available on the
Dragon, in each case ?Ivmg practical examples of
the ways in which the features can be used in your
own programs.

Once all the basic principles have been mastered
Brian Lloyd shows how you can experiment with more
sophisticated tasks such as programming in high
resolution graphics, vital for your own games and
applications.

To help you on your way to writing your own programs
the book ends with a series of games which you can
type in and play.

Other Dragon books by Sunshine
The Working Dragon, by David Lawrence £5.95. A collection of
practical applications programs and utilities. isenosasss 01

Dragon Gamesmaster, by Keith & Steven Brain £5.95. Learn how fo
write your own top level games. isen 0946408033

Ay

SUNSHINE

1SBN 0946408 092 £5.95 net

JAOTINVIdE

YINIVAL NOOVAA JHL

7T ANIHSNNS

	1
	lc-p001
	lc-p002
	lc-p003
	lc-p005
	lc-p006
	lc-p007
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	lc-p143
	lc-p144
	lc-p145
	lc-p146
	lc-p147
	lc-p148
	lc-p149
	lc-p150
	lc-p151
	lc-p152
	lc-p153
	lc-p154
	lc-p155
	lc-p156
	lc-p157
	lc-p158
	lc-p159
	lc-p160
	lc-p161
	lc-p162
	lc-p163
	lc-p164
	lc-p165
	lc-p166
	lc-p167
	lc-p168
	lc-p169
	lc-p170
	lc-p171
	lc-p172
	lc-p173
	lc-p175
	lc-p176
	lc-p177
	lc-p178
	lc-p179
	lc-p180
	lc-p181
	lc-p183
	lc-p184
	z

