

Programming the

You can't just look at the instruction set to program a power­
ful chip like the 6809; you've got to know more. In this book
you will find all the information you need to get the 6809
working for you.

It covers the 6809-inside and out. You'll learn how signals
are handled within the chip itself and how to get them to
control all essential I/O functions.

Whether you're a first-time or experienced programmer,
this book will make it possible for you to use the 6809 to its
fullest capacity.

ABOUT THE AUTHORS

Rodnay Zaks received his Ph.D. in Computer Science
from the University of California, Berkeley. A pioneer in
the use of microprocessors for industrial applications, Zaks
has authored many best-selling books on microprocessors.

Since 1973, William Lablak has been involved with mini­
and micro-computer applications. He received his Master of
Science degree in Electrical Engineering from the Univer­
sity of Illinois. Labiak is now working on the development of
large computer networks for industrial control and scien­
tific applications for alternative energy sources.

ISBN 0-89588-078-4

'\

PROGRAMMING

THE 6809

'\

PROGRAMMING
THE 6809

RodnayZaks
William Labiak

Berbley • Peria • Diiueldorf

Cover Design by Daniel Le Noury
Technical Illustrations by j. trujillo smith and Jeanne E. Tennant.
Design by Judy Wohlfrom. layout by Ingrid Owen.

Apple ls a trademark of Apple Compute.r, Inc.
Atari Is a registered trademark of Atari, Inc.
Commodore is a trademark of Commodore International.
Modules One is a registered trademark of Adaptive Science Corporation.

Every effort has been made to supply complete and accurate Information. However. Sybex
assumes no responsibility for Its use, nor for any Infringements of patents or other rights of third
parties which would result.

© 1982 SYBEX Inc .. 2344 Sixth Street, Berkeley, CA 94710. World Rights reserved. No part of this
publication may be stored In a retrieval system, transmitted, or reproduced In any way, Including but
not limited to photocopy, photograph, magnetic or other record. without the prior agreement and
written permission or the publisher.

Library of Congress Card Number: 82·50621
ISBN ()...89588-078-4
First Edition 1982
Printed In the United States of America
10 9 8 7 8 5 4 3 2

1

2

3

TABLE OF CONTENTS

Acknowledgements

Introduction

BASIC CONCEPTS

What is Programming? 1
Flowcharting 2
Information Representation 4

Internal Representation of Information 4
External Representation of Information 21

Exercises 26

6809 HARDWARE ORGANIZATION
System Architecture 31
Inside a Microprocessor 33
Internal Organization of the 6809 42
Instruction Formats of the 6809 44
Execution of Instructions in the 6809 47
The 6809 Chip 49
Summary 53
Exercises 53

BASIC PROGRAMMING TECHNIQUES
Arithmetic Programs 55
BCD Arithmetic 66

8-Bit BCD Addition 66
BCD Subtraction 69

Multiplication 72
Binary Division 75
Logical Operations 90
Instruction Summary 91
Subroutines 92

ix
xi

1

31

55

v

vi

4

5

6

7

Summary 99
Exercises 100

THE 6809 INSTRUCTION SET
Classes of Instructions 103
The 6809 Instruction Set 105
Summary 118
Exercises 119
The 6809 Instructions: Individual Descriptions

(ABX-TST) 120

103

ADDRESSING TECHNIQUES 193
P

·
ossible Addressing Modes 193

6809 Addressing Modes 200
Using the 6809 Addressing Modes 207
Summary 213
Exercises 213

INPUT/OUTPUT TECHNIQUES
The 6809 Input/Output Instructions 215
Parallel Word Transfer 221
Bit Serial Transfer 225
Basic I/O Summary 230
Communicating with Input/Output Devices 230
Peripheral Summary 241
Input/Output Scheduling 241
Summary 256
Exercises 256

INPUT/OUTPUT DEVICES
The "Standard" PIO 262
The Internal Control Register 262
Programming a PIO 263

215

261

The Motorola 6821 Programmable Interface Adapter 267
Programming the Motorola PIO 268
The MC6850 ACIA for the 6809 269
Other I/O Chips 269
Summary 269

8

9

APPLICATION EXAMPLES
Clearing a Section of Memory 271
Getting Characters In 272
Testing a Character 273
Bracket Testing 273
Generating Parity 274
Code Conversion: ASCII to BCD 275
Converting HEX to ASCII 275
Finding the Largest Element of a Table 275
Sum of N Elements 276
A Checksum Computation 278
Count the Zeroes 278
Block Transfer 278
Bubble-Sort 279
Summary 284
Exercises 285

DATA STRUCTURES
Part I-Theory 289

Pointers 289
Lists 290
Searching and Sorting 295
Section Summary 296

Part II-Design Examples 296
Data Representation for the List 297
A Simple List 297
Alphabetic List 302
Linked List 313
Summary 321
Exercises 321

1 Q PROGRAM DEVELOPMENT
Programming Choices 323
Software Support 326
The Program Development Sequence 328
Hardware Alternatives 330
The Assembler 334
Summary 342
Conclusion 342

vii

271

289

323

viii

APPENDICES

Appendix A:
Hexadecimal Conversion Table 344

Appendix B:
ASCII Conversion Table 345

Appendix C:
Decimal To BCD Conversion Table 346

Appendix D:
6809 Instruction Set 347

Appendix E:
Address Bus Cycle-By-Cycle Performance 350

Appendix F:
Indexed Addressing Mode Postbytes 353

Bibliography 355
Index 356

ACKNOWLEDGEMENTS

The authors wish to acknowledge the following people who assisted
in the preparation of this book. Wayne Fischer, of Motorola, provided the
authors with timely information on the 6809 processor. He also reviewed
the manuscript and provided helpful suggestions. Samuel Penny,
of Adaptive Science Corporation, provided the authors with a 6809
development system for testing the programs for this book. Mike Strang,
also of Adaptive Science, reviewed the final manuscript and provided
vah.iable input.

A special acknowledgement is due to Chris Williams for his contribu­
tion to the instruction set section in Chapter 4.

The staff of SYBEX have also provided expert help. In particular,
Rudolph Langer, Editor-in-Chief, offered valuable suggestions and
support.; and Salley Oberlin, Sybex editor, provided valuable assistance
in the preparation of the text.

ix

INTRODUCTION

If you want to write assembly language programs for any system based
on the 6809, this is the book for you. In it you will find:

• Everything you need to know about the organization and in­
struction set of this exceptionally interesting microprocessor

• A complete presentation of the elements of assembly language
programming

• All the essential elementary and intermediate programming
techniques that will allow you to begin programming the 6809
on your own.

When you have mastered the material in this book. you will understand
how 6809 systems, when properly designed and programmed. can
deliver near 16-bit performance with 8-bit economy-and you will have
gained the knowledge necessary to make the 6809 do this for you.

Programming the 6809 is organized so that the chapters proceed from
the simple to the complex. As you read, you will gradually encounter all
the concepts and techniques required to build more and more complex
programs, to do more and more advanced tasks.

Chapter 1 introduces you to the basics of programming: what it really
is; how to keep track of what you are doing; and what you have to do.

Chapter 2 gives the first run-down on the 6809 processor: the registers
and the buses; and how instructions are actually executed within the
processor.

Chapter 3 gets you into simple programs and teaches you the kinds of
arithmetic the 6809 is capable of. as well as logical operations, and the
important concept of subroutines.

Chapter 4 is the big one-a complete description of the 6809 instruction
set. After a discussion of the classes of 6809 instructions, we present a
detailed explanation of each instruction. We discuss the instructions in
alphabetical order for easy reference.

Chapter 5 details one of the most important aspects of the 6809, the
addressing modes. We begin this essential treatment with a background
discussion on the different kinds of addressing possible in microproces­
sors. and how they work. We then go on to examine the actual addressing

xi

xii

modes in this context. Finally, we give concrete examples of the applica­
tion of each of the modes, to help you completely understand what they
can do.

Chapter 6 covers essential input/output techniques, 6809 style, in­
cluding: the I/O instruction repertory of the 6809, simple serial and
parallel I/O programs, some concrete implementations of common I/O
tasks, and more advanced techniques.

Chapter 7 considers several I/O chips that are commonly used to
interface the 6809 to the external world.

Chapter 8 gets into more extensive application programs. These
programs do all sorts of things. But each shows how the 6809 can make
simple and fast, what on other 8-bit microprocessors is cumbersome
and slow.

Chapter 9-discusses data structures-another important, though more
advanced, area in which the 6809 shines, including pointers, list searching,
sorting, and more complex programs and techniques.

Chapter 10 concludes the book with a forward look at the world of
program development that is now open to you. We compare and evaluate
hexidecimal 'machine language' coding, assemblers and high-level
language. We also touch on some available, and more or less desirable,
program development environments.

Several useful appendices and an index bring the book to an end.
Most of the programs in this book were tested on a Modulas On�

single-board computer using the AS04 assembler. Those valuable
resources are products of Adaptive Science Corporation of Emeryville,
California, who most graciously made them available to one of the
authors (William Labiak) for the development of this book. We both thank
them for thus assuring the accuracy of the programs used throughout
this book.

Rodnay Zaks
William Labiak

Berkeley, California
Spring 1982

CHAPTER 1

BASIC CONCEPTS

� THIS CHAPTER, we introduce the basic concepts and defini­
tions used in computer programming. If you are already familiar with
these concepts, you may only want to glance quickly at the contents of
this chapter, and then move on to Chapter 2. We suggest, however, that
you read through this chapter, even if you are an experienced programmer,
in order to familiarize yourself with the approach we will be using
throughout this book.

WHAT IS PROGRAMMING?

Given a problem, one normally tries to devise a solution. This solution,
expressed as a step-by-step procedure, is called an algorithm. An algo­
rithm may be expressed in any language or symbolism, and it must
terminate in a finite number of steps. Here is a simple example of an
algorithm:

1. insert key in the keyhole

2. turn key one full turn to the left

3. seize doorknob

4. turn doorknob left and push the door.

At this point, if the algorithm is correct for the type of lock involved, the
door will open.

1

2 PROGRAMMING THE 6809

Once a solution to a problem has been expressed in the form of an algo­
rithm, the algorithm can then be executed by a computer. Unfortunately,
it is now a well-established fact that computers cannot understand or
execute ordinary spoken English or any other human language. The
reason for this lies in the syntactic ambiguities of all common human
languages. Only a well-defined subset of a natural language, called a
programming language, can be "understood" by a computer. Converting
an algorithm into a sequence of instructions in a programming language
is called programming. The actual translation phase of the algorithm
into the programming language is called coding. Programming refers
not just to the coding, but also to the overall design of the programs and
"data structures" that will implement the algorithm.

Effective programming requires not only an understanding of the
possible implementation techniques for standard algorithms, but also
the skillful use of computer hardware resources (such as internal
registers, memory, and peripheral devices), and a creative use of appro­
priate data structures. We cover these techniques in the following chapters.

Programming also requires a strict documentation discipline. Well­
documented programs are understandable to others, as well as to the
author. Documentation must be both internal and external to the program.
Internal program documentation refers to the comments used in the body
of a program to explain its operation. External documentation refers to
the design documents that are separate from the program, including,
written explanations, manuals, and flowcharts.

An intermediate step is almost always taken between the designing of
the algorithm and the program. It is called flowcharting.

FLOWCHARTING

A flowchart is simply a symbolic representation of an algorithm,
expressed as a sequence of rectangles and diamonds. On the flowchart
rectangles are used to represent commands (or executable statements)
and diamonds are used for tests such as: If information X is true, then
take action A, else B. Figure 1.1 shows an example of a flowchart. We
will not present a formal definition of flowcharts at this point; we
discuss flowcharting in more detail in Chapter 3.

Flowcharting is a highly recommended intermediate step between
the specification of the algorithm and the actual coding of the solution.
Remarkably, it has been observed that perhaps 10% of the programming
population can write a program successfully, without having to flowchart.
Unfortunately, it has also been observed that 90% of the population
believes it belongs to this 10%! The result is that, on the average, 80% of

BASIC CONCEPTS 3

these programs will fail the first time they are run on a computer. (These
percentages are naturally not meant to be accurate.) In short, most
novice programmers seldom see the necessity for drawing a flowchart.
This usually results in ''unclean" or erroneous programs and the pro­
grammer must then spend a long time testing and correcting his or her
program. (This is called the debugging phase.) The discipline of
flowcharting is, therefore, highly recommended in all cases. It requires
a small amount of additional time prior to the coding, but it usually
results in a clear program that executes correctly and quickly. Once
flowcharting is well understood, a small percentage of programmers can
perform this step mentally, without using paper. Unfortunately, in such
cases, the programs they write are usually difficult for anyone else to

2

NO

(Room too cold)

4

(Optional delay)

START

READ TEMPERATURE
SITTING'T'ON

THERMOSTAT BOX

READ ACTUAL ROOM
TEMPERATURE "R"

FROM THERMOMETER
OR OTHER SENSOR

YES

(Room too hot)

5

(Optional delay)

'----Figure 1.1: A Flowchart for Keeping Room Temperature Constant

4 PROGRAMMING THE 6809

understand, since the documentation provided by the flowchart is not
available. As a result, it is universally recommended that flowcharting be
used as a strict discipline for any program more than ten or fifteen instruc­
tions long. Many examples of flowcharting are provided throughout
this book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or
characters. We will now examine the external and internal representa­
tions of information on a computer.

Internal Representation of Information

All information is stored in a computer as groups of bits. A bit stands
for a binary digit. Because of the limitations of conventional electronics,
the most practical representation of information uses two-state logic.
The two states of the circuits used in digital electronics are generally
"on" and "off." These states are represented logically by the symbols
"O" and "1." Because these circuits are used to implement logical func­
tions, they are called binary logic circuits. As a result, virtually all
information processing today is performed in binary format. In the case
of microprocessors in general, and of the 6809 in particular, these bits
are structured in groups of eight. A group of eight bits is called a byte.
A group of four bits is called a nibble.

Let us now examine how information is represented internally in this
binary format. Two entities must be represented inside the computer.
The first is the program, which is a sequence of instructions. The second
is the data on which the program operates. The data may include
numbers or alphanumeric text. We will now discuss the representation
of instructions, numbers, and alphanumerics in binary format.

Program Representation
All instructions are represented internally as single or multiple bytes.

A so-called "short instruction" is represented by a single byte. A longer
instruction is represented by two or more bytes. Because the 6809 is an
eight-bit microprocessor, it fetches bytes successively from its memory.
Therefore, a single-byte instruction always has the potential for executing
faster than a two- or three-byte instruction. We will see later on that this
is an important feature of the instruction set of any microprocessor, and
of the 6809 in particular. However, the limitation to 8 bits in length has

BASIC CONCEPTS 5

resulted in important restrictions, which we will outline later on in this
chapter. This limitation is a classic example of a compromise that often
has to be made between speed and flexibility in programming. The binary
code used to represent instructions is dictated by the manufacturer.
The 6809, like any other microprocessor, comes equipped with a fixed
instruction set. The instructions for the 6809 are listed with their codes
in Appendix D. A program is expressed as a sequence of these binary
instructions.

Representing Numeric Data

Representing numbers in binary is not a straightforward task: several
cases must be distinguished. We must be able to represent whole
numbers, then signed numbers, i.e., positive and negative numbers or
integers, and finally, numbers with a decimal point. Let us now address
these requirements and possible solutions.

Integers may be represented using a direct binary representation. The
direct binary representation is simply the representation of the decimal
value of a number in the binary system. In the binary system, the right­
most bit represents 2 to the power 0. The next one to the left represents 2
to the power 1, the next one represents 2 to the power 2, and the left-most
bit represents 2 to the power 7 = 128. For example,

h1bebsb4b3b2b1bo

represents

b127 + b626 + b525 + b424 + b323 + b222 + b121 + b02°

The powers of 2 are:

27 = 128, 26 = 64, 25 = 32, 24 = 16, 23 = 8, 22 = 4. 21 = 2, 2° = 1

The binary representation is analogous to the decimal representation of
numbers, where 123 represents:

1x100 = 100
+2 x 10 = 20
+3 x 1 = 3

= 123

Note that 100 = 102, 10 = 101. 1 = 1D°. In this positional notation, each
digit represents a power of 10. In the binary system, each binary digit or bit

6 PROGRAMMING THE 6809

represents a power of 2, instead of a power of 10 as in the decimal system.
Let's look at an example of binary. 00001001 in binary represents:

lX 1=1 (2°)
OX 2=0 (21)
OX 4=0 (22)
lX 8=8 (23)
ox 16 = 0 (24)
ox 32 = 0 (25)
OX 64 = 0 (26)
0 x 128 = 0 (27)

in decimal: = 9

Let's look at some other examples. 10000001 represents:

lX 1= 1
OX 2= 0
ox 4= 0
ox 8= 0
ox 16 = 0
ox 32 = 0
ox 64= 0
1x128 = 128

in decimal: = 129

Therefore, 10000001 represents the decimal number 129. By examining
the binary representation of numbers, it is easy to understand why bits
are numbered from O to 7, going from right to left. Bit 0 is b0 and corre­
sponds to 2°. Bit 1 is b1 and corresponds to 21, and so on. The binary
equivalents of the numbers from Oto 255 are shown in Figure 1.2.

Decimal to Binary Conversely, we will now compute the binary equiv­
alent of 11 decimal:

11 + 2 = 5 remains 1 - 1 (lowest bit)
5 + 2 = 2 remains 1 1
2 + 2 = 1 remains O O
1 + 2 = 0 remains 1 1 (highest bit)

The binary equivalent is 1011 (read the right-most column from bottom
to top). The binary equivalent of a decimal number may be obtained by
dividing successively by 2, until a quotient of o is obtained.

BASIC CONCEPTS 7

Operating on Binary Data The arithmetic rules for binary numbers are
straightforward. The rules for addition are:

0 + 0 = 0
0 + 1 = 1
1+0 = 1
1 + 1 = (1) 0

where (1) denotes a "carry" of 1 (note that 10 is the binary equivalent of
2 decimal). Binary subtraction can be performed by "adding the com­
plement." We will discuss binary subtraction once we learn how to

Decimal Binary Decimal Binary

.
0 OOOOCXXlO 32 00100000
1 00000001 33 00100001
2 00000010 .
3 0000001 1 •

4 00000100 •

5 00000101 63 0011 1 1 1 1
6 000001 10 64 01000000
7 000001 1 1 65 01000001
8 00001000 •

9 00001001 •

10 00001010 •

1 1 00001011 127 01 1 1 1 1 1 1
12 00001 100 128 10000000
13 00001101 129 10000001
14 00001 1 10
15 00001 1 1 1 .

16 00010000 •

17 00010001 .
.
•

• 254 1 1 1 1 1 1 10
31 0001 11 1 1 255 1 1 1 1 1 1 1 1

--------------- Figure 1.2: Decimal-Binary Table-

8 PROGRAMMING THE 6809

represent negative numbers. Let's consider the following example
involving addition:

(2) 10
+ (1) + 01

= (3) 11

Addition is performed just as in decimal, by adding the columns from
right to left. First you add the right-most column:

10
+ o

(0 + 1 = 1 I. No carry.)

Then the next column:

+:h
11 rt + 0 = 1. No carry.)

Let us now look at other examples of binary addition:

0010
+ 0 0 01

=0011

(2)
(1)

(3)

0011
+ 0 0 01

= 0100

(3)
(1)

(4)

The last example illustrates the role of the carry. Looking at the right-most
bits: 1 + 1 = (1) 0. A carry of 1 is generated, which must be added to the
next bits:

001 - column 0 has just been added
+ OOO-
±___! (carry)

= (1)0 (where (1) indicates a new carry into column 2)

The final result is 0 100.
Let's consider another example:

0111 (7)
+ 0 011 +(3)

1010 =(10)

In this example, a carry is again generated, up to the left-most column.
With eight bits, it is, therefore, possible to directly represent the numbers

00000000to 11111111, i.e., 0 to 255. Two limitations, however, should be
immediately visible. First, we are only representing positive numbers.

BASIC CONCEPTS 9

Second, the magnitude of these numbers is limited to 255, if we use only
eight bits. Let's now address these limitations in turn.

Signed Binary In a signed binary representation, the left-most bit is used
to indicate the sign of the number. Traditionally, 0 is used to denote a
positive number and 1 is used to denote a negative number. For example,
11111111 represents - 1 27, while 01111111 represents +127. We can
now represent positive and negative numbers, but we have reduced the
maximum magnitude of these numbers to 127. As another example,
00000001 represents + 1 (the leading O is"+", followed by 0000001 = 1)
and 10000001 is -1 (the leading 1 is " -").

Let us now address the magnitude problem. In order to represent larger
numbers, it is necessary to use a larger number of bits. For example, if we
use sixteen bits (two bytes) to represent numbers, we will be able to repre­
sent numbers from -32K to + 32K in signed binary. (1K in computer
jargon represents 1,024.) Bit 15 is used for the sign, and the remaining 15
bits (bit 14 through bit 0) are used for the magnitude: 215 = 32K. If this
magnitude is too small, we must use 3 bytes or more.

If we wish to represent large integers, it is necessary to use a larger
number of bytes internally. This is why most simple BASIC interpreters,
and other languages, provide only a limited precision for integers. This
way, they can use a shorter internal format for the numbers they
manipulate. Better versions of BASIC and some other languages provide
a larger number of significant decimal digits at the expense of a large
number of bytes for each number.

Let us now solve another problem: the one of speed efficiency. Let's
perform an addition in the signed binary representation we have just
introduced. We want to add +7 and -5.

+ 7 is represented by
-5 is represented by

the binary sum is:

00000111
10000101

10001100, or -12

This is not the correct result. The correct result is + 2. We have
neglected the fact that in order to use this representation, special ac­
tions must be taken, depending on the sign. This results in increased
complexity and reduced performance. In other words, the binary addi­
tion of signed numbers does not "work correctly." This is annoying.
Clearly, the computer must not only represent information, but it must
also perform arithmetic on it.

The solution to this problem is called the two's complement represen­
tation. We will use the two's complement representation, instead of

10 PROGRAMMING THE 6809

signed binary representation. In order to introduce two's complement
we will first introduce an intermediate step: one's complement.

One's Complement In the one's complement representation, all positive
integers are represented in their correct binary format. For example + 3
is represented as usual by 00000011. However, its complement, -3, is
obtained by complementing every bit in the original representation.
Each O is transformed into a 1 and each 1 is transformed into a O. In our
example, the one's complement representation of -3 is 11111100.

Let's look at another example:

+ 2 is 00000010
- 2 is 11111101

Note that, in this representation, positive numbers start with a 0 on the
left, and negative numbers start with a 1 on the left. As a test, let's add
-4 and +6:

- 4 is 11111011
+ 6 is 00000110

The sum is: (1) 00000001

where (1) indicates a carry. The correct result should be 2 or 00000010.
Let's try again:

- 3 is 11111100
- 2 is 11111101

The sum is: (1) 11111001

or -6, plus a carry. The correct result is -5. The representation of -5 is
11111010. It did not work.

This representation does represent positive and negative numbers,
however, the result of an ordinary addition does not always come out
correctly. We will now use another representation. It is evolved from the
one's complement and is called the two's complement representation.

Two's Complement Representation In the two's complement repre­
sentation, positive numbers are represented, as usual, in signed binary,
just like in one's complement. The difference lies in the representation
of negative numbers. A negative number represented in two's comple­
ment is obtained by first computing the one's complement and then
adding one. Let's examine an example:

Example: +3 is represented in signed binary by 00000011. Its one's

BASIC CONCEPTS 1 1

complement representation is 11111100. The two's complement is
obtained by adding one. It is 11111101.

'Let's try an addition:

(3) 00000011
+ (5) + 00000101

= (8) = 00001000

The result is correct.
Let's try a subtraction:

(3) 00000011
(-5) + 11111011

= 11111110

No�. let's identify the result by computing the two's complement:

(the one's complement of 11111110 is)
(Adding 1)

(therefore, the two's complement is)

00000001
+ 1

00000010 or + 2

The result 11111110 represents - 2. It is correct.
We have now tried addition and subtraction, and the results have been

correct (ignoring the carry). It seems that two's complement works!
We will now add +4 and -3 (the subtraction is performed by adding

the two's complement):

+ 4 is 00000100
- 3 is 11111101

The result is: (1) 00000001

Ifwe ignore the carry, the result is 00000001, i.e., 1 in decimal. This is the
correct result. Without giving the complete mathematical proof, we will
simply state that this representation does work. In two's complement, it
is possible to add or subtract signed numbers, regardless of the sign.
Using the usual rules of binary addition, the result comes out correct,
including the sign. The carry is ignored. This is a very significant advan­
tage. If this were not the case, we would have to correct the result for
sign every time, causing a much slower addition or subtraction time.

For the sake of completeness, let us state that two's complement is
simply the most convenient representation to use for simpler proces­
sors, such as microprocessors. On more complex processors, other
representations may be used. For example, one's complement may be

12 PROGRAMMING THE 6809

used, but if one's complement is used, special circuitry is required to
"correct the result."

From this point on, all signed integers will be implicitly represented
internally in two's complement notation. See Figure 1.3 for a table of
two's complement numbers.

We will now offer examples that demonstrate the rules of two's com­
plement. In particular, C denotes a possible carry (or borrow) condition.
(It is bit 8 of the result.) V denotes a two's complement overflow. i.e .. when
the sign of the result is changed "accidentally," because the numbers
are too large. It is an essentially internal carry from bit 6 to bit 7 (the sign
bit). This will be clarified below.

Let us now demonstrate the role of the carry C and the overflow V.

The Carry£ Here is an example of a carry:

(128) 10000000
+ (129) + 10000001

(257) = (1) 00000001

where (1) indicates a carry. The result requires a ninth bit (bit 8, since the
right-most bit is O). It is the carry bit.

If we assume that the carry is the ninth bit of the result, we recognize
the result as binary 100000001 = 257. However, the carry must be
recognized and handled with care. Inside the microprocessor, the
registers used to hold information are generally only eight-bits wide.
When storing the result, only bits O to 7 will be preserved.

A carry, therefore, always requires special action. It must be detected
by special instructions. then processed. Processsing the carry means
either storing it somewhere (with a special instruction). ignoring it, or
deciding that it is an error (if the largest authorized result is 11111111).

Overflow V Here's an example of overflow:

bit 6
bit 7 ,+

01000000 (64)
+ 01000001 + (65)

= 10000001 =(-127)

An internal carry has been generated from bit 6 into bit 7. This is called
an overflow. The result is now negative, "by accident." This situation
must be detected, so that it can be corrected.

+

+127
+ 126
+ 125

. . .

+ 65
+ 64
+63
. . .

;f- 33
+ 32
+31
. . .

+ 17
+ 16
+ 15
+ 14
+ 13
+ 12
+ 1 1
+ 1 0
+ 9
+ 8
+ 7
+ 6
+ 5
+ 4
+ 3
+ 2
+ 1
+ 0

Two's complement code

0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0
0 1 1 1 1 101

01000001
01 ·000000
00 1 1 1 1 1 1

00100001
00100000
0001 1 1 1 1

00010001
00010000
00001 1 1 1
0000 1 1 1 0
00001 1 0 1
00001 100
000010 1 1
00001010
00001001
00001000
000001 1 1
000001 1 0
0000010 1
00000100
0000001 1
00000010
00000001
00000000

-

- 128
- 127
- 126
- 125

. . .

- 65
- 64
- 63
. . .

- 33
- 32
- 31
. . .

- 17
- 16
- 15
- 14
- 13
- 12
- 1 1
- 10
- 9
- 8
- 7
- 6
- 5
- 4
- 3
- 2
- 1

BASIC CONCEPTS 13

Two's complement code

10000000
10000001
10000010
1000001 1

101 1 1 1 1 1
1 1000000
1 1000001

1 1 0 1 1 1 1 1
1 1 100000
1 1 100001

1 1 1 0 1 1 1 1
1 1 1 10000
11 1 10001
1 1 1 10010
1 1 1 10011
1 1 1 10100
1 1 1 10101
1 1 1101 10
1 1 1 10 1 1 1
1 1 1 1 1000
1 1 1 1 1001
1 1 1 1 1010
1 1 11 101 1
1 1 1 1 1 100
1 1 1 1 1 10 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1

--------------Figure 1.3: Two's Complement Table -

14 PROGRAMMING THE 6809

Let us examine another situation:

11111111
+ 11111111

= (1) 11111110

'
carry

(-1)
+ (-1)

=(-2)

In this case, an internal carry has been generated from bit 6 into bit 7,
and also from bit 7 into C. The rules of two's complement arithmetic
specify that this carry should be ignored. The result is then correct. This
is because the carry from bit 6 to bit 7 did not change the sign bit.

The carry from bit 6 into bit 7 is not an overflow condition. When
operating on negative numbers, the overflow is not simply a carry from
bit 6 into bit 7. Let's examine one more example:

11000000
+ 10111111

= (1) 01111111

'
carry

(-64)
(-65)

(+ 127)

This time, there has been no internal carry from bit 6 into bit 7, but there
has been an external carry. The result is incorrect, as bit 7 has been
changed. An overflow condition should be indicated.

Overflow will occur in four situations, including:

1. the addition of large positive numbers

2. the addition of large negative numbers

3. the subtraction of a large positive number from a large negative
number

4. the subtraction of a large negative number from a large positive
number.

Let us now improve our definition of the overflow.
Technically, the overflow indicator, a special bit reserved for this pur­

pose, and called a condition code, will be set when there is a carry from
bit 6 into bit 7, and there is no external carry. It will also be set when
there is no carry from bit 6 into bit 7, but there is an external carry. This
indicates that bit 7, i.e., the sign of the result, has been accidentally
changed. For the technically-minded reader, the overflow flag is set by
Exclusive ORing the carry-in and carry-out of bit 7 (the sign bit). Prac­
tically every microprocessor is supplied with a special overflow flag to

BASIC CONCEPTS 15

automatically detect this condition-a condition that requires corrective
action.

Overflow indicates that the result of an addition or subtraction requires
more bits than are available in the standard 8-bit register used to contain
the result.

The Carry and the Overflow The carry and the overflow bits are called
condition codes. They are provided in every microprocessor. We will
learn to use them for effective programming in Chapter 2. These two in­
dicators are located in a special register called the flags or "status"
register. This register also contains additional indicators (as described
in Chapter 4).

Examples We will now look at actual examples that illustrate the
op�ration of the carry and the overflow. In each example, the symbol V
denotes the overflow, and C denotes the carry. If there has been no
overflow, V = 0. Iftherehasbeenan overflow, V = 1. (The sameis true
for the carry C.) Remember that the rules of two's complement specify
that the carry be ignored. (The mathematical proof is not supplied here.)
Let's examine the following examples:

Positive-Positive

00000110
+ 00001000

= 00001110
(CORRECT)

(+6)
(+8)

(+14) V:O C:O

Positive-Positive with Overflow

01111111 (+127)
+ 00000001 (+ 1)

= 10000000 (-128) V: 1 C:O
The above is invalid because an overflow has occurred.
(ERROR)

Positive-Negative (result positive)

00000100
+ 11111110

= (1)00000010
(CORRECT)

(+4)

(-2)

(+2) V:O C:l (disregard)

16 PROGRAMMING THE 6809

Positive-Negative (result negative)

00000010
+ 11111100

= 11111110
(CORRECT)

(+2)
(-4)

(-2) V: O C: O

Negative-Negative

11111110

+ 11111100

= (1)11111010
(CqRRECT)

(-2)
(-4)

(-6} V:O C:l (disregard)

Negative-Negative with Overflow

10000001

+ 11000010

= (1)01000011
(ERROR)

(-127)

(-62)

(+67) V:l C:l

In the last example, an "underflow" has occurred, by adding two large
negative numbers. The result is -189, which is too large to reside in
eight bits.

Fixed Format Representation We now know how to represent signed
integers; however, we have not yet resolved the problem of magnitude.
If we want to represent larger integers, we will need several bytes. In
order to perform arithmetic operations efficiently, it is necessary to use
a fixed number of bytes, rather than a variable number. Therefore, once
the number of bytes is chosen, the maximum magnitude of the number
that can be represented is fixed.

The Magnitude Problem When adding numbers we have restricted our­
selves to eight bits, because the processor we are using operates internally
on eight bits at a time. However, this restricts us to the numbers in the
range -128 to + 127. Clearly, this is not sufficient for many applications.

Multiple precision can be used to increase the number of digits that
can be represented. A two-, three-, or N-byte format can then be used.

BASIC CONCEPTS 17

For example, let's examine a 16-bit. "double-precision" format:

00000000
00000000

01111111
11111111
11111111

00000000
00000001

11111111
11111111
11111110

is 0
is 1

is 32767
is -1
is -2

However, this method will result in disadvantages. When adding two
numbers, for example, we will generally have to add them eight bits at a
time, as explained in Chapter 3. This results in slower processing. Also,
this representation uses 16 bits for any number, even if it could be repr&
sented with only eight bits. It is, therefore, common to use the smallest
number of bytes possible.

Let us consider the following important point: the number of bits, n,
chosen for the two's complement representation is usually fixed for that
program. If any result or intermediate computation should generate a
number that requires more than n bits, some bits will be lost. The program
normally retains the n left-most bits (the most significant) and drops the
low-order ones. This is called truncating the result.

Let's look at an example in the decimal system, using a six digit
representation:

123456
x 1.2

246912
123456

= 148147.2

The result requires 7 digits. The 2 after the decimal point will be dropped,
and the final result will be 14814 7. It has been truncated. Usually, as long
as the position of the decimal point is not lost, this method is used to
extend the range of the operations that can be performed, at the expense
of precision. (The details of binary multiplication are given in Chapter 3.)
The problem is the same in binary. This fixed-format representation may
cause a loss of precision, but it may be sufficient for usual computations
or mathematical operations.

Unfortunately, in the case of accounting, no loss of precision is
tolerable. For example, if a customer rings up a large total on a cash
register, it would not be acceptable to have a five figure total that would
be approximated to the dollar. Thus, another representation must be used

18 PROGRAMMING THE 6809

whenever precision in the result is essential. The solution normally used
is BCD, or binary-coded decimal.

BCD Representation The principle used in representing numbers in
BCD is to encode each decimal digit separately and to use as many bits as
necessary to represent the complete number exactly. In order to encode
each of the digits from 0 through 9, four bits are necessary. Three bits
supply only eight combinations, and therefore, cannot encode the ten
digits. Four bits allow sixteen combinations and are, therefore, sufficient
to encode the digits 0 through 9. It can also be noted that six of the possible
codes will not be used in the BCD representation (see Figure 1.4). This
will result later on in a potential problem, when performing additions
and subtractions. Since only four bits are needed to encode a BCD digit,
two BCD digits may be encoded in every byte. This is called packed BCD.
As an example, 00000000 is 00 in BCD. 10011001 is 99.

A BCD code is read as follows:

0010 0001

BCD digit 2 ..,.,. ___ , I
BCD digit 1 ..,.,. _______ _
BCD number 21

As many bytes as necessary will be used to represent all BCD digits.
Typically, one or more nibbles will be used at the beginning of the repre­
sentation to indicate the total number of nibbles, i.e., the total number
of BCD digits used. Another nibble or byte will be used to denote the

CODE BCD SYMBOL CODE BCD SYMBOL

0000 0 1000 8
0001 1 1001 9
0010 2 1010 unused
0011 3 1011 unused
0100 4 1100 unused
0101 5 1 101 unused
0110 6 1 1 10 unused
01 1 1 7 1 1 1 1 unused

-Figure 1.4: BCD Tobie-----------------

BASIC CONCEPTS 19

position of the decimal point. However, conventions may vary. Here is
an example of a representation for multibyte BCD integers:

3 +

number of tigits sitn
(up to 255)

2 2 1 (3 bytes)

number 221

This example represents + 221. (The sign may be represented by 0000
for +, and 0001 for -, for example.)

The BCD representation can easily accommodate decimal numbers.
For example, +2.21 may be represented by:

3 2 +

3 dig�ts "." is ton the !
left of digit 2

2 2

221

1

The advantage of BCD is that it yields absolutely correct results.
Its disadvantage is that it uses a large amount of memory and results in
slow arithmetic operations. This is acceptable only in an accounting
environment, but BCD is normally not used in other cases.

We have now solved the problems associated with the representation
of integers, signed integers, and large integers. We have even presented
one possible method of representing decimal numbers, with BCD repre­
sentation. Let us now examine the problem of representing decimal
numbers in fixed length format.

Floating-Point Representation The basic principle of floating point
representation is that decimal numbers are represented with a fixed
length format. In order not to waste bits, the representation will normalize
all the numbers. For example, 0.000123 wastes three zeroes on the left
before non-zero digits. These zeroes have no meaning except to indicate
the position of the decimal point. Normalizing this number results in
.123 X 10-3, .123 is the normalized mantissa; -3 is the exponent. We
have normalized this number by eliminating all the meaningless zeroes
to the left of the first non-zero digit and by adjusting the exponent. Let's
consider another example.

Example: 22.1 is normalized as .221 X 10Z. The general form of

20 PROGRAMMING THE 6809

floating-point representation is M X 102, where M is the mantissa, and
E is the exponent.

It can be readily seen that a normalized number is characterized by
a mantissa less than 1 and greater than or equal to .1 in all cases where
the number is not zero. In other words, it can be represented mathe­
matically by:

.1 � M < 1 or 10-1 � M < 100

Similarly, in the binary representation:

2-1 < M < 2° (or .5 � M < 1)

where M is the absolute value of the mantissa (disregarding the sign).
For example:

111.01 is normalized as: .11101 X 23•

The mantissa is .11101. The exponent is 3.
Now that we have defined the principle of the representation, let us

examine the actual format. A typical floating-point representation
appears in Figure 1.5.

In the representation in Figure 1.5, four bytes are used for a total of 32
bits. The first byte on the left of the illustration is used to represent the
exponent. Both the exponent and the mantissa will be represented in
two's complement. As a result, the maximum exponent will be -128.
"S" in Figure 1.5 denotes the sign bit.

Three bytes are used to represent the mantissa. Since the first bit in the
two's complement representation indicates the sign, this leaves 23 bits
for the representation of the magnitude of the mantissa.

This is only one example of a floating point representation. It is possible
to use only three bytes, or it is possible to use more. The four-byte
representation proposed above is a common one that represents a
reasonable compromise in terms of accuracy, magnitude of numbers,
storage utilization, and efficiency in arithmetic operation.

We have now explored the problems associated with the representation

31 24 23

EXP Is;

16 15 8 7 0

Figure 1.5: Typical Floating-Point Representation-----------'

BASIC CONCEPTS 21

of numbers and have learned how to represent them in integer form,
with a sign, or in decimal form. Let's now go on to examine how to repre­
sent alphanumeric data internally.

Representing Alphanumeric Data

The representation of alphanumeric data, i.e., characters, is completely
straightforward: all characters are encoded in an eight-bit code. Only
two codes are in general use in the computer world, the ASCII Code and
the EBCDIC Code. ASCII stands for "American Standard Code for
Information Interchange," and is universally used in the world of
microprocessors. EBCDIC is a variation of ASCII used by IBM, and is,
therefore, not used in the microcomputer world unless one interfaces to
an IBM terminal.

Let us briefly examine the ASCII encoding. We encode 26 letters of the
alphabet for both upper and lower case, plus 10 numeric symbols, and
perhaps 2 0 additional special symbols. This can be easily accomplished
with 7 bits, which allow 128 possible codes. (See Figure 1.6.) All
characters are, therefore, encoded in 7 bits. The 8th bit, when it is used,
is the parity bit. Parity is a technique for verifying that the contents of a
byte have not been accidentally changed. The number of l's in the byte
are counted and the 8th bit is set to one if the count was odd, thus making
the total even. This is called even parity. Odd parity, i.e., writing the 8th
bit (the left-most bit) so that the total number of 1 's in the byte is odd, can
also be used.

As an example, let us compute the parity bit for 0010 0 11, by using even
parity. The number of l's is 3. The parity bit must, therefore, be a 1, so
that the total numb.er of bits is 4, i.e., even. The result is 100100 11, where
the leading 1 is the parity bit and 0 0 10011 identifies the character.

The table of 7-bit ASCII codes is shown in Figure 1.6. In practice, it is
used "as is," i.e., without parity, by adding a O in the left-most position,
or else with parity, by adding the appropriate extra bit on the left.

In specialized situations, such as telecommunications, other codings,
such as error-correcting codes, may be used. However, descriptions of
these codings are beyond the scope of this book.

Now that we have examined the usual representations for both pro­
gram and data inside the computer, let us examine the possible external
representations.

External Representation of Information

The external representation of information refers to the way in­
formation is presented to the user, i.e., generally to the programmer.

22 PROGRAMMING THE 6809

Information may be presented externally in essentially three formats:
binary, octal or hexadecimal, and symbolic. Let's examine these formats.

1. Binary We have seen that information is stored internally in bytes,
which are sequences of eight bits (O's or l's). It is sometimes desirable to
display this internal information directly in its binary format-this is
known as binary representation. A simple example is provided by Light
Emitting Diodes (LEDs), which are essentially miniature lights on the
front panel of a microcomputer. In the case of an 8-bit microprocessor, a
front panel will typically be equipped with eight LEDs to display the
contents of any internal register. A lighted LED indicates a 1. An
unlighted LED indicates a 0. Such a binary representation may be used
for the fine debugging of a complex program, especially if it involves
input/output, but is naturally impractical at the human level. This is
because, in most cases, it is easier to look at information in symbolic
form. For example, 9 is much easier to understand and to remember
than 1001. More convenient representations have been devised, that im­
prove the interface between people and machines.

2. Octal and Hexadecimal Octal and hexadecimal encode three and
four binary bits, respectively, into a unique symbol. Octal is a format using
three bits, where each combination of three bits is represented by a symbol
between O and 7. (See Figure 1.7.)

HEX NSD 0 1 2 3 4 5 6 7
LSD BITS OOO 001 010 011 100 101 1 10 1 1 1

0 0000 NUL DLE SPACE 0 @ p - p
1 0001 SOH DCl I 1 A Q a q
2 0010 STX DC2 " 2 B R b r
3 0011 ETX DC3 # 3 c s c s
4 0100 EOT DC4 $ 4 D T d t
5 0101 ENQ NAK % 5 E u e u
6 0110 ACK SYN & 6 F v f v
7 01 1 1 BEL ETB ' 7 G w g w
8 1000 BS CAN (8 H x h x
9 1001 HT EM) 9 I y i y
A 1010 LF SUB • : J z i z
B 1011 VT ESC + ; K [k {
c 1 1 00 FF FS ' < L \ I --
D 1 101 CR GS - = M) m }
E 1 1 10 so RS > N I\ n rv
F 1 1 1 1 SI us I ? 0 - 0 DEL

-Figure 1.6: ASCII Conversion Tobie (See Appendix B for Abbreviations.)

BASIC CONCEPTS 23

For example, 00 100 100 binary is represented by:
' ' '
0 4 4

or 044 in octal.
As another example: 11 111 111 is:

or 377 in octal.

' ' '
3 7 7

Conversely, the octal 211 represents

010 001 001

or 1boo1001 binary.
Octal has traditionally been used on older computers that employ

various numbers of bits, ranging from 8 to, perhaps, 64. More recently,
with the dominance of eight-bit microprocessors, the eight-bit format
has become the standard, and another, more practical, representation is
used-hexadecimal representation.

In the hexadecimal representation, a group of four bits is encoded as
one hexadecimal digit. Hexadecimal digits are represented by the sym­
bols from 0 to 9, and by the letters A. B, C. D, E, F. For example, 0000 is
represented by O; 0001 is represented by 1; and 1111 is represented by
the letter F (see Figure 1.8).

Binary Octal

00'.) 0

001 1

010 2

011 3

100 4

101 5

1 1 0 6

1 1 1 7

L-----------------Figure ::1.7: Octal Symbols

24 PROGRAMMING THE 6809

For example, 1010 0001 in binary is represented by
.........,_, '-..,..J

A 1

in hexadecimal.
Hexadecimal offers the advantage of encoding eight bits into only two

digits. This is easier to visualize or memorize and faster to type into a
computer than its binary equivalent. Therefore, on most new microcom­
puters, hexadecimal is the preferred method of representation for
groups of bits.

Naturally, whenever the information present in the memory has a
meaning, such as representing text or numbers, hexadecimal is not
convenient for representing the meaning of this information for a
human user.

Symbolic Representation Symbolic representation refers to the external
representation of information in actual symbolic form. For example,
decimal numbers are represented as decimal numbers, and not as se­
quences of hexadecimal symbols or bits. Similarly, text is represented as

DECIMAL BINARY HEX OCTAL

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 00 1 1 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 01 1 1 7 7

8 1000 8 10

9 1001 9 1 1

10 1010 A 12

1 1 1011 B 13

12 1 100 c 14

13 1101 D 1 5

1 4 1 1 1 0 E 16

15 1 1 1 1 F 17

- · Figure 1.8. Hexadec1mal Codes

BASIC CONCEPTS 2 5

such. Naturally, symbolic representation is most practical to the user. It
is used whenever an appropriate display device is available, such as a
CRT display or a printer. (A CRT display is a television-type screen used
to display text or graphics.) Unfortunately, in smaller systems, such as
one-board microcomputers, it is uneconomical to provide such
displays, and the user is restricted to hexadecimal communication with
the computer.

Summary of External Representations

Symbolic representation of information is the most desirable, since it
is the most natural for a human user. However, it requires an expensive
interface in the form of an alphanumeric keyboard, plus a printer or a
CRT.display. For this reason, it may not be available on the less expensive
systems. An alternative type of representation is then used, and in such
a case, hexadecimal is the dominant representation. Only in rare cases,
relating to fine debugging at the hardware or software level, is the binary
representation used. Binary directly displays the contents of the
registers or memory in binary format.

Now that we have seen how information is represented internally and
externally, let's go on to examine the actual microprocessor that
manipulates this information.

26 PROGRAMMING THE 6809

EXERCISES

1-1: What is the decimal value of 11111100?

1-2: What is the binary for 257?

1-3: Convert 19 to binary, then back to decimal.

1-4: Compute 5 + 10 in binary. Verify that the result is 15.

1-5: Compute the result of:

1 1 1 1
+·0001

Does the result fit into four bits?

1-6: What is the representation of -5 in signed binary?

1-7: The representation of +6 is 00000110. What is the representation of -6
in one's complement?

1-8: What is the two's complement representation of + 127?

1-9: What is the two's complement representation of - 128?

1-10: What ore the smallest and the largest numbers that con be represented in
two's complement notation, using only one byte?

1-11: Compute the two's complement of 20. Then compute the two's comple­
ment of your result. Do you find 20 again?

1-12: Complete the following additions. Indicate the result, the carry C, the
overjlow V, and whether the result is correct or not:

10111111 (_) 11111010 (_)
+ 11000001 (_) + 11111001 (_)
= V:_ C:_ V:_ C:_

_CORRECT _ERROR _CORRECT _ERROR

BASIC CONCEPTS 2 7

00010000
+ 01000000

=

_CORRECT

(_)
(_)
V:_ C:_

_ERROR

01111110
+ 00101010

_CORRECT

(_)
(_)
V:_ C:_

_ERROR

1-13: Can you show an example of overflow when adding a positive and a
negative number? Why or why not?

1-14: What are the largest and the smallest numbers that can be represented in
two bytes, using two's complement?

1-15: What is the largest negative integer that can be represented in a two's
complement triple-precision format?

1-16: What is the BCD representation for 29? For 91?

1-17: Is 10100000 a valid BCD representation? Why or why not?

1-18: Using the same convention, represent -23123. Show it in BCD format,
as above, then in binary.

1-19: Show the BCD for 222 and 111, then for the result of 222 X 111 (Compute
the result by hand, then show it in the above representation.)

1-20: How many bits are required to encode 9999 in BCD? And in two's com­
plement?

1-21: How many decimal digits can the mantissa represent with the 23 bits?

1-22: Compute the 8-bit representation of the digits 0 through 9, using even
parity. (This code will be used in application examples of Chapter 8.)

1-23: Complete Exercise 1-22 for the letters A through F.

1-24: Using a non-parity ASCII code (where the left-most bit is 0), indicate the
binary codes of the 4 characters below:

A
?
3
b

28 PROGRAMMING THE 6809

1-25: What is the hexadecimal representation of 10101010?

1-26: Conversely, what is the binary equivalent of FA hexadecimal?

1-27: What is the octal representation of 01000001?

1-28: What is the advantage of two's complement over other representations
used to represent signed numbers?

1-29: How would you represent 1024 in direct binary? Signed binary? Two's
complement?

1-30: What is the V-bit? Should the programmer test it after an addition or sub­
traction?

1-31: Compute the two's complement of + 16, + 17, + 18, - 16, - 1 7, -18.

1-32: Show the hexadecimal representation of the following text, which has been
stored internally in ASCII format, with no parity: MESSAGE.

CHAPTER 2

31

6809 HARDWARE
ORGANIZATION

To PROGRAM EFFICIENTLY, you must understand the internal
structure of the processor you are using. We will begin this chapter with
a discussion of the basic architecture of a microcomputer system. We
will then examine the internal organization of the 6809. In particular,

1

we will study the registers of the 6809 and their combined operations.
This study is particularly important, because the 6809 has an unusually
large number and variety of registers.

SYSTEM ARCHITECTURE

Figure 2.1 shows the architecture of a typical microcomputer system.
Appearing on the left of the illustration in Figure 2.1 is the microprocessor
unit (the MPU}-in this case, the 6809-which implements the functions
of the central-processing unit (the CPU) on a single chip. The CPU includes
an arithmetic-logical unit (the ALU), plus its internal registers, and a
control unit (the CU), which decodes and internally sequences instruc­
tions. (We will rliscuss the CPU in detail later in this chapter.)

The MPU has three buses: an 8-bit bidirectional data bus (shown at the
top of the illustration in Figure 2.1), a 1�bit unidirectional address bus,
and a control bus (both shown at the bottom of the illustration). We will
now study the functions of these buses.

32 PROGRAMMING THE 6809

The data bus carries the data that is exchanged by the various
elements of the system. Typically, it carries the data from the memory to
the MPU, from the MPU to the memory, and from the MPU to an input/
output chip. (An input/output chip communicates with an external
device.)

The address bus carries an address, generated by the MPU, which
specifies the source or destination of the data that transits along the data
bus. The control bus carries the various synchronization signals required
by the system. Now that we know the purpose of the buses, let's connect
the additional components required for a complete system.

Every MPU requires a precise timing reference, which is supplied
by a clock and a crystal. In most "older" microprocessors, the clock­
oscillator is external to the MPU and requires an extra chip. In the more
recent ones, the clock-oscillator is usually incorporated within the
MPU. The quartz crystal, however, because of its bulk, is always external
to the system. The crystal and the clock appear on the left of the MPU
box in Figure 2.1.

CRYSTAL

+s

ROM PIO

CONTROL BUS

+sv GND

Port
A

Port
B

-Figure Z.1: A Standard 6809 System---------------

6809 HARDWARE ORGANIZATION 33

We will now examine the other elements of the system. Going from
left to right on the illustration, we see the ROM, the RAM and the PIO.

The ROM or read-only memory stores the program for the system. The
advantage of ROM memory is that its contents are permanent, i.e., they
do not disappear when the system is turned off. The ROM, therefore,
usually contains a bootstrap or monitor program to permit initial system
operation. In a proces�control environment, nearly all programs reside
in ROM. This is because they will probably never be changed and must
be protected against power failures (i.e., they must not be volatile).

RAM (random-access memory) is the read/write memory for the
system. In a hobbyist or program-development environment, most of
the programs reside in RAM, so that they can be easily changed. Such
programs may be kept in RAM, or transferred into ROM, if desired. RAM,
however, is volatile. Its contents are lost when power is turned off. In a
control system, the amount of RAM is typically small (for data only);
however, in a program-development environment, the amount of RAM
is large, as it contains programs, plus development software. All RAM
contents must be loaded, prior to use, from an external device.

Finally, a system also contains one or more interface chips, so that it can
communicate with the external world. The most frequently used inter­
face chip is the PIO or porallel input/output chip (shown in Figure 2.1).
The PIO, like the other chips in the system, connects to all three buses
and provides at least two 16-bit ports for communication with the outside
world. For simplicity, the connections between the control bus and the
various chips do not appear in Figure 2.1.

The functional modules just described need not necessarily reside on
a single LSI chip. In fact, we could use combination chips, which may
include both the PIO and a limited amount of ROM or RAM.

To build an actual system, we need even more components. In partic­
ular, we may need to buffer the buses. Also, we may need decoding logic
for the memory RAM chips, and, finally, we may use drivers to amplify
signals. These auxiliary circuits will not be described here, as they are not
relevant to programming. For more information on specific assembly and
interfacing techniques, see reference C207 in the bibliography, and for
specific information regarding the 6809 system, see Chapter 7.

INSIDE A MICROPROCESSOR

A number of microprocessors on the market today implement the
same internal architecture. Figure 2.2 shows this architecture. Going
from right to left, we will now describe the different modules making up
this architecture.

34 PROGRAMMING THE 6809

The control box on the right of the illustration represents the control
unit that synchronizes the entire system. We will describe the role of the
control unit later in this chapter.

The ALU performs arithmetic and logical operations. Special
registers, called accumulators, are usually connected to the output of the
ALU. The accumulators contain the results of arithmetic operations.
Each accumulator has eight bits.

The ALU also provides shift and rotate facilities. As illustrated in
Figure 2.3, a shift moves the contents of a byte by one or more positions
to the left or right. In this illustration, each bit has been moved to the left
by one position. The shifter may be on the ALU output, as illustrated in
Figure 2.2, or on the accumulator input. We describe shift and rotate
operations in more detail in Chapter 3.

The status or condition code register appears to the left of the ALU.
Its role is to store exceptional conditions within the microprocessor.

DATA BUS (B Bits)

SP PC

H H

ADDRESS BUS (16 Bits)

EXTERNAL
DATA
BUS

A
c R c

E
I G

u

N I
M

D S u
L

E T A X E T R 0
s R

s

c
0
N
T
R
0
L

-Figure Z.Z: Internal Architectu.re of a "Standard" Microprocessor----

6809 HARDWARE ORGANIZATION 35

The contents of the condition code register can be tested by specialized
instructions, or read onto the internal data bus. A conditional instruction
causes the execution of a different part of the program, depending on
the value of one of the bits in the condition code register (as shown later).

Setting Condition Codes

Most of the instructions executed by the microprocessor modify some
or all of the status bits. Refer to the chart provided by the manufacturer
to learn which bits are modified by what instructions. This information
is essential for understanding the way a program is executed. Appendix D
lists this information for the 6809.

Th� Address Registers

Address registers are 16-bit registers used for the storage of addresses.
They are also often called data counters or pointers and are double
registers, i.e., two 8-bit registers. They are connected to the address bus.
The address registers provide the signals for the address bus. At least
two address registers are present within most microprocessors. Three
address registers and an address bus appear in Figure 2.4.

SHIFT LEFT

0

ROTATE LEFT

------------------Figure 2.3: Shift and Rotate-

36 PROGRAMMING THE 6609

The only way to load the contents of these 16-bit registers is via the
data bus (also shown in the illustration). Two transfers are necessary
along the data bus in order to transfer 16 bits. To differentiate between
the lower and higher half of each register, each half is usually labeled as
L (low) or H (high), denoting bits 0 through 7 or 6 through 15, respectively.
Let's examine the three registers shown in the illustration.

The Progrom Counter (PC}

The program counter (or PC} must be present in all processors, as it is
indispensable and fundamental to program execution. It contains the
address of the next instruction to be executed.

Execution of a program is normally sequential. To access the next
instruction, it is necessary to bring it from the memory into the micro­
processor. The contents of the PC are deposited on the address bus, and
transmitted towards the memory. The memory then reads the contents
specified by this address and sends the corresponding word or instruc­
tion back to the MPU. In a few exceptional microprocessors, such as the

DATA BUS

A
c

p c p R c

R O s o I E u

O U T I N G 16-BIT M

G N A N D I ADDRESS u
R T C T E S

REGISTERS L

A E K E X T A

M R R E T
R 0

R
s

ADDRESS BUS (16 Bits)

-Figure 2.4: The 16-Bit Address Registers Create the Address Bus -----

6809 HARDWARE ORGANIZATION 3 7

2-chip Fa, there is no PC on the microprocessor. This does not mean,
however, that there is not a program counter-for reasons of efficiency,
the PC is implemented directly on the memory chip.

The Stack Pointer (SP}

The stack pointer (the SP) is used to implement the stack. The stack is
described in detail in the next section.

In most powerful, general-purpose microprocessors, the stack is
implemented in "software," i.e., within the memory. To keep track of
the top of the stack within the memory, a 16-bit register is dedicated to the
stack pointer. The SP contains the address of the top of the stack within
the memory. The stack is indispensable for interrupts and subroutines.

The Index Register (IX}

Indexing is a memory-addressing facility for accessing blocks of data
in the memory with a single instruction. It is not always provided in
microprocessors. An index register typically contains a displacement,
which will automatically be added to a base (or, it might contain a base,
which will be added to a displacement). In short, indexing is used to
access any word within a block of data

The Stack

A stack, formally called en LIFO (last-in, first-out) structure, is a set of
registers, or memory locations, allocated to the stack data structure. The
essential characteristic of the stack is that it is a chronological structure.
The first element introduced in the stack is always at the bottom of the
stack; the element most recently deposited is on the top. An analogy can
be drawn with a stack of plates on a restaurant counter, if we assume
there is a hole in the counter with a spring at the bottom, and plates are
piled up in the hole. With this organization, it is guaranteed that the plate
that has been put first in the stack is always at the bottom. The one
most recently placed on the stack is the one on top. This example also
illustrates another characteristic of the stack. In normal use, a stack is
only accessible via two instructions: PUSH and POP (or PULL). These
two instructions are illustrated in Figure 2.5. The PUSH operation
deposits one element on top of the stack (possibly more in the case of the
6809); the PULL operation removes elements from the stack. In the case
of a microprocessor, it is the registers that are deposited on top of the
stack. The POP transfers the top element of the stack into the register

38 PROGRAMMING THE 6809

specified in the instruction. Other specialized instructions may transfer
the top of the stack between other specialized registers, such as the
status register. The 6809 is more versatile than most in this respect.

A stack is required for implementing three programming facilities
within the computer system: subroutines, interrupts, and temporary data
storage. At this point, we will simply assume that the stack is a required
facility in every computer system. The stack may be implemented in
two ways:

1. as a hardware stack, where a fixed number of registers may be
provided within the microprocessor itself. A hardware stack has
the advantage of high speed; however, it has the disadvantage of a
limited number of registers.

2. as a software stack. In order not to restrict the stack to a small
number of registers, most general-purpose microprocessors,
including the 6809, choose the software stack. With the software
approach, a dedicated register within the microprocessor, here
register SP, stores the stack pointer, i.e., the address of the top ele­
ment of the stack (or, in some cases, the address of the top element
of the stack, plus one). The stack is then implemented as an area of
memory. The stack pointer, therefore, requires 16 bits to point
anywhere in the memory.

MICROPROCESSOR
REGISTER 7 MEMORY 0 , - - - - - - - -

[_____ J ' 7 0

I
I
I
I
I
I 1s
I
I

DATA

ADDRESS

SP

0

I - - - - - - - - -

PUSH--.

._POP

-Figure 2.5: The Tw�tack Manipulation Instructions---------

6809 HARDWARE ORGANIZATION 39

The Instruction Execution Cycle

Let's now examine Figure 2.6, where we fetch an instruction from the
memory in order to illustrate the role of the program counter. The micrcr
processor unit appears on the left of the illustration, and the memory
appears on the right. The memory stores instructions and data. The
memory chip may be a ROM or a RAM, or any other chip which happens
to contain memory.

We assume that the program counter has valid contents. It now holds
a 16-bit address, which is the address of the next instruction to fetch in
the memory.

Every processor proceeds in three cycles, including:

1. fetching the next instruction

2. decoding the instruction

3. executing the instruction.

We will now follow this sequence.

Fetching

In the first cycle, the contents of the program counter are deposited on
the address bus and gated to the memory (on the address bus). Simulta­
neously, a read signal may be issued on the control bus of the system, if

MPU ROM/RAM

PC: INSTRUCTION

---------Figure 2.6: Fetching on Instruction from the Memory-

40 PROGRAMMING THE 6809

required. The memory receives the address. The address is used to
specify one location within the memory. Upon receiving the read signal,
the memory decodes, through internal decoders, the address it has
received and selects the location specified by the address. A few hundred
nanoseconds later, the memory deposits the 8-bit data corresponding to
the specified address on its data bus. This 8-bit word is the instruction
we want to fetch. In the illustration in Figure 2.7, this instruction is
deposited on the data bus.

Let us briefly summarize the sequence. The contents of the program
counter are output on the address bus. A read signal is generated. The
memory reads, and approximately 300 nanoseconds later, the instruction

MPU

IR

SIGNALS

NIEN()RY

0

2304

1---R_EA_D_--t� ME.MORY
CONTROL

ME.MORY
PROPER

..,_ __ .__ ____ ---i o
t ADDRESS

DECODER
.__ _______ ___, ADDRESSES

- FigureZ.7: Automatic Sequencing---------------

6809 HARDWARE ORGANIZATION 41

at the specified address is deposited on the data bus (assuming a single
byte instruction). The microprocessor then reads the data bus and
deposits its contents into a specialized internal register, the IR or in­
struction register. The IR is eight bits wide and is used to contain the
instruction just fetched from the memory.

The fetch cycle is now completed. The eight bits of the instruction are
now in the special internal register of the MPU, called the instruction
register (the IR). The IR appears on the left of Figure 2.7. It is not accessible
to the programmer.

Decoding and Executing
Once the instruction is in the IR, the control unit of the microprocessor

decodes the contents and generates the correct sequence of internal and
external signals for the execution of the specified instruction. There is,
therefore, a short decoding delay, followed by an execution phase, the
length of which depends on the nature of the instruction specified. Some
instructions execute entirely within the MPU. Others fetch or deposit
data from or into the memory. This is why the instructions of the MPU
require various lengths of time to execute. This duration is expressed as
a number of (clock) cycles. Appendix D lists the number of cycles required
by each instruction. Since various clock rates may be used, speed of
execution is normally expressed in number of cycles, rather than in
number of nanoseconds.

Fetching The Next Instruction

We have described how an instruction can be fetched from the
memory, using the program counter. During the execution of a program,
instructions are fetched, in sequence, from the memory. An automatic
mechanism must, therefore, be provided to fetch instructions in
sequence. This task is performed by a simple incrementer attached to
the program counter, as illustrated in Figure 2.7. Every time the contents
of the program counter are placed on the address bus, the contents are
incremented and written back into the program counter. As an example,
if the program counter contains the value 0, the value 0 is output on the
address bus. The contents of the program counter are then incremented,
and the value 1 is written back into the program counter. In this way, the
next time the program counter is used, it is the instruction at address 1
that is fetched. We have just implemented an automatic mechanism for
sequencing instructions.

It must be stressed that the above descriptions are simplified. In reality,
some instructions may be two or even three bytes long, so that successive

42 PROGRAMMING THE 6809

bytes will be }etched in this manner from the memory. However, the
fetch sequence is identical. The program counter is used to fetch suc­
cessive bytes of an instruction, as well as successive instructions. The
program counter, together with its incrementer, provides an automatic
mechanism for pointing to successive memory locations.

INTERNAL ORGANIZATION OF THE 6809

Now that we understand the internal organization of a microprocessor,
we will examine the 6809 in particular, and describe its capabilities.
Figure 2.8 presents a logical description of the internal workings of the
6809. There may be additional interconnections that are not shown.
Let's examine the diagram from right to left.

On the right side of the illustration, we see the arithmetic-logical unit
(the ALU), recognizable by its characteristic "V" shape. The operation
of the ALU will become clear in the next section, when we describe the
execution of actual instructions.

The condition code register, called the CC in the 6809, appears to the
right of the ALU. The contents of the condition code register are essen­
tially conditioned by the ALU; however, some of its bits may also be
conditioned by other modules or events (see Chapter 4).

The two registers to the left of the ALU are the accumulators, A and B.
The accumulators are 8-bit registers, but for some instructions they can
be used together to form the 1&bit D accumulator. Thus, the D accumu­
lator is formed by using the B accumulator as the low byte, bits �7. and
the A accumulator as the high byte, bits 8-15.

The register shown in the center of the illustration is the direct page
register, labeled DP. The DP register is an 8-bit register used to address
pages of memory. A page is simply a block of 256 words. Thus, memory
locations 0 to 255 are page 0 of the memory. Since the 6809 has a 1&bit
address bus, there are 256 pages. The DP register specifies the page
number or high eight bits of an address. The other eight bits are obtained
from the instruction being executed. The DP register allows faster and
more compact programs to be produced when using blocks of memory
smaller than 256 bytes.

The large group of registers to the left of the DP register, are the address
registers. As in any microprocessor, we find in the group the program
counter (PC) and the stack pointer (S). Recall that the program counter
contains the address of the next instruction to be executed. The stack
pointer points to the top of the stack in the memory. In the case of the 6809,
the stack pointer points to the last actual entry in the stack. (In some
microprocessors, the stack pointer points just above the last entry.) Also,

PC

6809 HARDWARE ORGANIZATION 43

the stack grows "downwards," i.e., towards the lower addresses. This
means that the stack pointer must be decremented any time a new word
is pushed on the stack. Conversely, whenever a word is removed (pulled)
from the stack, the stack pointer must be incremented by one. In the case
of the 6809, PUSH and PULL may involve up to twelve �ords at the
same time, so that the contents of the stack pointer are decremented or
incremented by numbers between 1 and 12, inclusive.

The U register is the user stack pointer. In the case of PUSH and PULL
operations, this register behaves exactly like the S stack pointer. It
allows two stacks to be used by the programmer. Recall that with the S

u

INTERNAL DATA BUS (8 Bits)

s x

DECODER

y D
p

A B

INTCRNAL ADDRESS BUS
(16 Bits)

(outside
the6809)

I
I

ADDRESS B BUS u F
F
E
R

-------------Figure 2.8: Internal Organization of the 6809-

44 PROGRAMMING THE 6809

stack pointer (also called the hardware or system stack pointer), certain
instructions and outside events cause automatic pushes and pulls. For
example, the S register is used in subroutine calls. The U stack pointer is
not used by the hardware of the computer, therefore, the programmer
has complete control over it.

Looking at the remaining two registers of this group of five registers,
we find another type of register: the index register. The two index­
registers are labeled X and Y. A byte brought along the internal data bus
may be added to the contents ofX or Y. When using an indexed instruc­
tion, this byte is called a displacement. Special instructions are provided
that will automatically add this displacement to the contents of X or Y
and generate an address. This is called indexing, as it allows convenient
access to any sequential block of data. This feature is also applicable to
the PC, U, and S address registers.

We will now move to the far left of the illustration where the control
section of the microprocessor is located. From top to bottom, we find the
instruction register (IR), which contains the instruction to be executed.
The instruction is received from the memory via the data bus and
transmitted along the internal data bus to the instruction register. Below
the instruction register appears the decoder, which sends signals to the
controller sequencer and causes the execution of the instruction within,
as well as outside, the microprocessor. The control section generates and
manages the control bus, which appears at the bottom of the illustration.

The three buses managed or generated by the system, i.e., the data bus,
address bus, and control bus, all propagate outside the microprocessor
through its pins. The external connections are shown on the right-most
part of the illustration. As shown in the figure, the buses are isolated
from the outside through buffers.

We have now described all the logical elements of the 6809. Although
it is not essential to understand the detailed operation of the 6809 in
order to start writing programs, it is necessary to choose the correct
registers and techniques in order to write efficient codes. To make a
correct choice, we need to understand how instructions are executed
within the microprocessor. Therefore, we will now examine the ex­
ecution of typical instructions inside the 6809, and demonstrate the role
and use of the internal registers and buses.

INSTRUCTION FORMATS OF THE 6809

Appendix D lists the 6809 instructions. (Note that an instruction
specifies the operation to be performed by the microprocessor.) The 6809
instructions may be formatted in one, two, three, four, or five bytes. From

6809 HARDWARE ORGANIZATION 45

a more simplified standpoint, every instruction may be represented as
an opcode, followed by an optional literal or address field, comprising
one or two words. The opcode field specifies the operation to be carried
out. In strict computer terminology, the opcode represents only those
bits that specify the operation to be performed, exclusive of the register
pointers that might be necessary. In the microprocessor world, it is con­
venient to call the opcode the operation code itself, as well as any register
pointers that it might incorporate. This "generalized opcode" must
reside in an 8-bit word, for reasons of efficiency. This 8-bit opcode is a
limiting factor on the number of instructions available in a microprocessor.

Most microprocessors use instructions that are one, two or three bytes
long. (See Figure 2.9.) However, the 6809 is equipped with additional
indexed instructions, which require one more byte. In the case of the 6809,
opcodes are, in general, one byte long, except for special instructions,
which require a 2-byte opcode.

Many instructions require that one byte of data, or a part of an address,
follow the opcode. In such a case, the instruction will be a 2-byte
instruction-the second byte being data or part of an address (with the
exception of indexing, which adds an extra byte). In other cases, the
instruction might require the specification of an address. An address
requires 16 bits and, therefore, two bytes. Thus, the instruction will be a
3- or 4-byte instruction.

For each byte of the instruction, the control unit must perform a memory
fetch, which requires one clock cycle. Thus, the shorter the instruction,
the faster the execution.

2WORD
I�

7 0 I GENERALIZED OPCOOE

I OPTIONAL DATA OR ADDRESS I

I OPTIONAL DATA OR ADDRESS I

3WORD
INST�

�-----------Figure 2.9: Typical Instruction Formats

46 PROGRAMMING THE 6809

One Word Instruction (8809)

One word instructions require the smallest amount of memory and are,
therefore, favored by the programmer. A typical one word instruction
for the 6809 is an increment, for example:

INCA

which means: "add 1 to the contents of the A accumulator." This is a
typical operation. Every microprocessor is equipped with an instruction
like INCA, which allows the programmer to quickly add a 1 to a register,
which may then be used as a counter or pointer into memory. Instructions
referencing different registers of memory will have different opcodes.

Every instruction must be represented internally in a binary format.
The above. representation, INCA, is mnemonic, or symbolic; it is the
assembly language representation of an instruction. It is a convenient
symbolic representation of the actual binary encoding for that instruc­
tion. The binary code that represents this instruction inside memory is:
01001100 (bits O to 7).

The placement of the bits in the binary representation of an instruction
is not meant for the convenience of the programmer, but for the micropro­
cessor, which must decode and execute the instruction. The assembly
language representation, however, is meant for the convenience of the
programmer.

Another example of a one word instruction is:

CLRB

This instruction clears the contents of the specified accumulator (in this
case, B). This operation may be represented symbolically by B = 0. It can
be verified in Appendix D that the binary representation of this instruc­
tion is: 01011111.

Two Word Instruction (6809)

The two word instruction

ADDA #n

adds the contents of the second byte of the instruction to the accumulator.
The contents of the second word of the instruction are said to be
"literal." They are data and are treated as eight bits without any particular
significance. They could be a character or numerical data-a fact that is
irrelevant to the operation.

6809 HARDWARE ORGANIZATION 4 7

The code for this instruction is:

10001011 followed by the 8-bit byte "n"

The symbol "#" is used to indicate an immediate operation.
"Immediate" in most programming languages, means that the next
word, or words, within the instruction contain a piece of data that
should not be interpreted, i.e., the next one or two words are to be treated
as literals.

The control unit is programmed to "know" how many words each
instruction has. It will, therefore, always fetch and execute the right
number of words for each instruction. However, the longer the instruc­
tion, the more complex it is for the control unit to decode.

Three Word Instruction (6809)

The instruction

LDB nn
requires three words. It �eans: "load the B accumulator frorµ the
memory address specified in the next two bytes of the instruction."
Since addresses are 16-bits long, they require two words. In binary,
this instruction is represented by:

11110110 8 bits for the opcode

High Address 8 bits for the upper part of the address

Low Address 8 bits for the lower part of the address

EXECUTION OF INSTRUCTIONS IN THE 6809

We have seen that all instructions are executed in three phases:
fetch, decode, and execute. The amount of time it takes to execute an
instruction depends on the instruction and the type of memory access
being done. In the 6809, time is measured in clock cycles. It always
takes an integral number of clock cycles to execute an instruction.

Accessing memory requires one clock cycle. Since each instruction
must first be fetched from memory, even the fastest instruction requires
more than one clock cycle. The fetch phase of an instruction presents the
address of the next instruction to the memory. This address is contained

/

48 PROGRAMMING THE 6809

in the program counter. When the contents of memory are available,
they can be transferred within the microprocessor to the instruction
register. The PC is then incremented to point to the next word in the
program.

When an instruction is deposited in the instruction register of the
6809, it is decoded. It takes at least one clock cycle, and possibly more,
to decode and execute an instruction. Appendix D gives the execution
time for each instruction. Appendix E describes the address bus cycle­
by-cycle activity for each instruction, and shows the external activities
of the 6809, while the instruction is being executed. These tables offer
an in-depth understanding of instruction execution.

Execution pf A 1-Byte Instruction (6809)

Recall that the 1-byte instruction

INCA

adds a 1 to the A accumul{ltor. This instruction is fetched during the
first clock cycle and is decoded and executed during the second cycle,
while the next byte of the program is being fetched. The two cycle
execution time of a 1-byte instruction illustrates that all instructions
require at least two clock cycles.

Execution Of A 2-Byte Instruction (6809)

Recall that the instruction

ADDA #n

described in the previous section, adds to the A accumulator the contents
of the byte that immediately follows the instruction. During the first
clock cycle, the instruction is loaded into the IR; and the PC increments.
During the second clock cycle the instruction is decoded, while the next
byte, the data, is fetched. The data from this second fetch is added to the
accumulator before the end of the second cycle. It should be observed
that two activities occurred during the second cycle: the instruction in the
IR was decoded, and the next byte was fetched. Since most instructions
in the 6809 need this second byte, execution is speeded considerably.

Execution Of A 3-Byte Instruction (6809)

The instruction

LDB nn

6809 HARDWARE ORGANIZATION 49

is a 3-byte instruction. Recall that it loads the B accumulator with the
contents of the memory location addressed by nn.

This instruction requires 5 cycles to execute. The first cycle fetches the
opcode. The next decodes the instruction and fetches the high address
byte. The third fetches the low address byte. The fourth forms the address
of the data on the internal address bus (see Figure 2.8). The fifth uses this
address to fetch the data from memory and store it in the accumulator.

The detailed descriptions we have just presented on the execution of
typical instructions should help to clarify the role of the registers and
internal buses. A second reading of the preceding section may be
helpful in gaining a detailed understanding of the internal operation of
the 6809.

THE 6809 CHIP

For completeness, we will now examine the signals of the 6809
microprocessor chip. You do not need to understand the functions of
6809 signals in order to program the 6809. If you do not have an interest
in the details of hardware, you may want to skip this section.

The 6809 comes in two different forms: the MC6809 and the MC6809E.
We will first describe the signals of the MC6809. Then we will describe
those signals on the MC6809E that are different from those on the
MC6809. The instructions for the two processors are identical, only a
few hardware pinouts are different. Figure 2.10 displays the pinout of
theMC6809.

The control signals have been divided into four groups. We will now
describe them, going from the top of the figure to the bottom.

The first two clock pins, XT AL and EXT AL, are for the connection
of an external crystal. The oscillator is contained within the MC6809.
The clock cycle frequency is one-fourth the crystal frequency. The other
two clock signals, E for enable and Q for quadrature, are used to indicate
the times when the data and address bus signals are valid.

The three bus control signals, DMA/BREQ, BS and BA, are used
to disconnect the MC6809 from its buses. They are mainly used for
DMA, but could also be used by another processor in the system. The
DMA/BREQ is the bus request signal issued to the MC6809. In response,
the MC6809 places its address bus, data bus, and some output control
signals (tristate) in the high-impedance state at the end of the current
instruction being executed. The processor status indicators, bus available
(BA) and bus status (BS), are used to acknowledge that the buses have

50 PROGRAMMING THE 6809

been placed in the high-impedance state. There are four possible BA and
BS combinations. They are:

BA BS - -

O 0 Normal (Running)
O 1 Interrupt or Reset Acknowledge
1 0 Sync Acknowledge
1 1 HaltJBus Grant Acknowledge

The last state, when BA and BS are 1, is the state that acknowledges the
DMNBREQ . In this section, we discuss interrupt and reset; we describe
the sync acknowledge in Chapter 6.

The MC6809 can give the bus to DMA devices for only 15 clock cycles
at a time. The processor will then take control of the bus for at least one
cycle, to d<? internal refreshing.

a=[
XTAL
EXT Al

Q
E

OMA/
BUS [BREQ

CONTROL BS
BA

� [NMI
IRQ

CONTROi. �
HALT
RESET

MEMORY MRDY
CONTROL

R/W

39
38
35
34

33

5
6

2
3
4
40
37
36
32

\.GND v
POWER

8 to 20

ond
21 to 23

31 to24

+sv)

AO ADDRESS
BUS

A15

DO DATA
BUS

07

Figure Z.10: MC6809 MPU Pinout-----------------'

6809 HARDWARE ORGANIZATION 51

Six MC6809 control signals are related to its internal status or sequenc­
ing. IRQ, FIRQ, and NMI are the three interrupt signals. IRQ is the usual
interrupt request. A number of input/output devices may be connected
to the IRQ interrupt line. Whenever an interrupt request is present on
this line, and the internal interrupt enable bit is enabled, the 6809 will
accept the interrupt (provided a DMA operation is not in progress). The
BA signal will be set to 0, and the BS signal to 1, to indicate an interrupt
acknowledge. We describe the rest of this sequence in Chapter 6.

FIRQ is the fast interrupt request signal. It is similar to IRQ but executes
faster. NMI is the non-maskable interrupt. It is always accepted by the
6809, assuming no DMA is in progress.

MRDY is a signal used to synchronize the MC6809 with slow memory
or input/output devices. When active, this signal indicates that the
memory on the device is not yet ready for the data transfer. The MC6809
CPU will wait until the MRDY signal becomes inactive. It will then
resume normal sequencing. The MRDY signal may be active for 10
clock cycles at most.

HALT is used to stop the processor. When HALT is active, the processor
completes the present instruction and remains halted indefinitely,
without loss of data. When the processor is halted, the BA and BS signals
are 1, to indicate that the buses are in the high-impedance state and the
processor is in the halt/bus grant state. When the HALT signal becomes
inactive, processing will resume.

RESET is usually the signal that initializes the MPU. It moves the
contents of addresses FFFF and FFFE into the PC. The DP register is set
to O and both fast and normal interrupts are disabled. The BA signal is O
and BS is 1, to acknowledge a reset. RESET is usually used after power is
applied to the computer.

There is one signal for memory control: the read/write (R/W) control
signal. This output indicates whether the next transfer by the processor
on the data bus is a read or write .

MC6809E Control Signals

The major difference between the MC6809 and the MC6809E is that
the E version requires an external clock generator circuit. This approach
allows greater flexibility in the clock circuit capabilities and is useful for
multi-processor systems. The differences between the MC6809 and the
MC6809E pinouts are detailed below. Figure 2.11 displays the MC6809E
pinouts.

Since there is no clock oscillator in the MC6809E, the XT AL and
EXT AL pins are not needed. The Q and E clock pins are now inputs,

52 PROGRAMMING THE 6809

rather than outputs. An external circuit generates Q and E. Otherwise,
the definitions of the Q and E signals are the same.

The bus control signals are different. The DMNBREQ is eliminated
and replaced by TSC, the three-state control line. The TSC signal puts
the data and address buses and the R/W signal into the high-impedance
state in the next clock cycle. The E and Q clocks must then be stopped for
the next cycle. The BS and BA signals are not changed. The BUSY
control indicates that the processor is executing an instruction that
requires more than one clock cycle to stabilize the data in memory.
A TSC should not be done when BUSY is active. This is very important
for multiprocessor systems.

aocx [Q
e

['�
BUS BUSY
CONTROL BS

BA

NMI
iRQ

MPU FIRQ

CONTROL HALT
�
AVMA

LIC

MEMORY
R

JW
CONTROL

35
34

39
33
5
6

2
3
4
40
37
36

38

32

GND

Figure 2.11: MC6809E MPU Pinout

8 to 20 NJ
ADDRESS ond

21 to23 A15 BUS

DO DATA
31 to24 BUS

07

7

+sv

POWER

6809 HARDWARE ORGANIZATION 53

There is only one change in the MPU control signals for the MC6809E:
the MRDY input is replaced by the advanced valid memory access
(A VMA) signal. This signal indicates that the processor is going to do a
valid memory access during the next clock cycle. This indicates to the
clock circuit that, if slow memory or I/O is being accessed, the clock
times should be extended. The processor itself cannot control the clock in
the MC6809E.

There is one new output signal in the MC6809E: the signal that indicates
execution of the last instruction cycle (LIC). This signal becomes active
during the last cycle of every instruction. When it goes low, it indicates
that the first byte of an instruction will be fetched at the end of the present
cycle.

SUMMARY

This chapter has presented a description of the internal organization
of the 6809. The role of each register is important and should be fully
understood before proceeding to the next chapter. Chapter 3 introduces
the instructions available on the 6809 and many basic programming
techniques for the 6809.

EXERCISES

2-1: Write the binary code that will increment accumulator B, INCB. Consult
Appendix D for the code. (Note: this table uses hexadecimal notation.)

2-2: What is the binary code of the instruction that will clear the contents of
accumulator A?

CHAPTER 3

55

BASIC
PROGRAMMING

TECHNIQUES

IN THIS CHAPTER, we examine the basic techniques necessary for
writing a program for the 6809. In particular, we show how to move
information between the memory and the MPU, and how to manipulate
it within the MPU itself. We develop programs of increasing complexity,
so that we can see how various instructions and registers interact.

We will begin by writing simple arithmetic programs. We will then
go on to explain the use of the 6809's excellent 16-bit arithmetic
capabilities. Finally, we will discuss the important multiply and divide
operations.

ARITHMETIC PROGRAMS

The arithmetic programs in this chapter show how to do addition,
subtraction, multiplication, and division. Each uses at least one register.
Figure 3.1 shows a conceptual diagram of the 6809 registers. These
programs perform integer arithmetic on positive binary numbers and
on negative numbers represented as two's complement integers. Let's
begin with an example of 8-bit addition.

56 PROGRAMMING THE 6809

8-Bit Addition

We begin by writing a program that performs 8-bit addition:

<Instructions>

LDA

ADDA

STA

ADRl

ADR2

ADR3

<Comments)

LOAD OPl INTO A

ADD OP2 TO OPl

SA VE RESULT RES AT ADR3

In this program, we add two 8-bit operands, OP1 and OP2, stored at
memory addresses ADR1 and ADR2, respectively. We call the sum RES,
and store it at memory address ADR3 (as shown in Figure 3.2).

Each line of the program, expressed here in symbolic form, is called
an instruction. Each instruction is translated by the assembler program
into from one to five binary bytes. For this example, we will not concern
ourselves with this translation; instead we will examine the symbolic
representation.

The first line of the program specifies: "load the contents of ADR1 into
accumulator A." (Or accumulator B could have been used.). Figure 3.2
shows that the contents of ADR1 are the first operand, OP1. Thus, the
first instruction transfers OP1 from the memory into the accumulator
(see Figure 3.3).

15

X- INDEX REGISTER
Y- INDEX REGISTER
U- USER STACK POINTER
S- HARDWARE STACK POINTER
PC- PROGRAM COUNTER

0

'

ADDRESS l REGISTERS

1----------""T""---------4 � I B ACCUMULATORS A

D

DP-Direct Page Reg.

CC.Condition Codes

Figure 3.1: The 6809 Registers----------------'

ADRI

ADR2

ADR3

ADDRESSES

BASIC PROGRAMMING TECHNIQUES 5 7

MEMORY

OPI (First operond)

OP2 (Second operond)

RES (Result)

�--------Fisure 3.2: 8-Bit Addition RES = OPl + OP2

MEMORY

DATA BUS

A 100

(ADRl)

ADDRESS BUS

�------Figure 3.3: LDA ADRl:OPl is Loaded from Memory

58 PROGRAMMING THE 6809

ADR1 is a symbolic representation of the actual 16-bit address in the
memory. It is defined elsewhere in the program. For this example, let's
assume that it is defined as being equal to the address 100. The LOA
instruction then results in a read operation from address 100 (see Figure
3.3), i.e., the contents of address 100 are transferred along the data
bus and deposited inside accumulator A. Recall from Chapter 2 that
arithmetic and logical operations operate on an accumulator as one of
the source operands. Since we want to add the two values OP1 and OP2,
we must first load OP1 into the accumulator; we can then add OP2 to the
contents of the accumulator.

Referring back to the program, let's now examine the right-most field
of each instruction, called the comment field. Comments are ignored by
the assembler program at translation time; they are useful for program
readability. To understand what the program does, it is important to
document it with good comments. For the first line of our program, the
comment is self-explanatory: the value of OP1, located at address ADR1,
is loaded into accumulator A. Figure 3.3 shows the result of this first
instruction.

The second instruction:

ADDA ADR2

specifies: "add from ADR2 to accumulator A." Referring to Figure 3.2,
we see that the memory location, ADR2, contains the second operand,
OP2. When the second instruction is executed, OP2 is fetched from
memory and added to OP1 (see Figure 3.4). The sum is then deposited in
the accumulator. (Note: remember that, in the case of the 6809, the results
of the arithmetic operation are deposited back into an accumulator.)
With other processors, however, it may be possible to deposit these
results in other registers, or back into the memory.

The sum of OP1 and OP2 is now contained in accumulator A. To
complete this program, we must transfer the contents of A into memory
location ADR3, in order to store the results at the specified location.
This is done by the third instruction:

STA ADR3

This instruction loads the contents of A into the specified address, ADR3.
Figure 3.5 shows the effect of this final instruction.

Before execution of the ADDA operation, the accumulator A contained
OPl (see Figure 3.4). After the addition, a new result was written into
A: OP1 + OP2. Recall that the contents of any register within the micro­
processor, as well as any memory location, remain the same after a read
operation has been performed on that register. In other words, reading

A

BASIC PROGRAMMING TECHNIQUES 59

the contents of a register or memory location does not change its con­
tents. Only a write operation in the register location changes the
contents. In this program, the contents of ADR1 and ADR2 remain
unchanged throughout the program. However, after the ADD instruction,

Mf}N:)RY

ADDRESS BUS

'-------------------Figure 3.4: ADDA ADRZ

- - -,
DATA BUS - - - ,

I I

A Y/////..O RE 5///////,1 I I �/,%i I I

..(}
ADR3 ,_,_,_,_,_,,,,. RE�� .,, ,,,,.

(ADR3) ... "
ADDRESS BUS v'

'------------------Figure 3.5: STA ADR3

60 PROGRAMMING THE 6809

the contents of A are modified, because the output of the ALU is written
into the accumulator. The previous contents of A are then lost.

Actual numerical addresses may be used instead of ADR1, ADR2, and
ADR3. To keep symbolic addresses, it is necessary to use so-called
"pseudo-instructions." Pseudo-instructions specify the value of the
symbolic addresses, so that during translation the assembly program
may substitute the actual physical addresses. Examples of pseudo­
instructions include:

ADR1
ADR2
ADR3

EQU
EQU

EQU

$100
$120

$200

In conclusion, an 8-bit addition only allows the addition of 8-bit
numbers, i.e., numbers between 0 and 255, if absolute binary is used. For
most practical applications, however, it is necessary to add numbers
having 16 bits or more, i.e., to use multiple precision. Therefore, we will
now look at some examples of arithmetic on 16-bit numbers.

16-Bit Addition

For this example, let's assume that the first operand is stored at
memory locations ADR1 and ADR1-1. Since OP1 is a 16-bit number
this time, it requires two 8-bit memory locations. Similarly, OP2 is
stored at ADR2 and ADR2 - 1. The result is to be deposited at memory
addresses ADR3 and ADR3-1. This process is illustrated in Figure 3.6.
Note that H indicates the high half (bits 8 through 15), while L indicates
the low half (bits 0 through 7).

The logic of this program is exactly like the previous one. First, the
lower half of the two operands are added. Any carry generated by this
addition is stored automatically in the internal carry bit (C). Then the
high order half of the two operands are added, along with any carry, and
the result is saved in the memory. Here is the program:

LDA ADR1 LOAD LOW HALF OF OP1
ADDA ADR2 ADD OP1 AND OP2 LOW

STA ADR3 STORE RESULT, LOW

LDA ADR1-1 LOAD HIGH HALF OF OP1
ADCA ADR2-1 (OP1+0P2) HIGH + CARRY
STA ADR3-1 STORE RESULT HIGH

The first three instructions of this program are identical to the ones
used for the 8-bit addition in the previous section. They add the least

BASIC PROGRAMMING TECHNIQUES 61

significant halves (bits 0-7) of OP1 and OP2. The sum, called RES, is
stored at memory location ADR3 (see Figure 3.6).

Automatically, whenever an addition is performed, any resulting
carry (whether 0 or 1) is saved in the carry bit, C, of the condition codes
register (register CC). If the two 8-bit numbers generate a carry, then the
C bit will be equal to 1. (It will be set.) If the two 8-bit numbers do not
generate a carry, then the value of the carry bit will be 0.

The next three instructions of the program are similar to those used in
the previous 8-bit addition program. This time, however, they add the
most significant half(i.e., the high half-bits 8-15) of OP1 and OP2, plus
any carry, and store the result at the address ADR3-1.

After execution of this six-instruction program, the 16-bit result is
stored at memory locations ADR3 and ADR3 -1, as specified. Note,
how.ever, that there is one difference between the second half of this

MEMORY

ADRl -1 (OPl)H

ADRl (OPl)l

ADR2-1 (OP2)H

ADR2 (OP2)l

ADR3- 1 (RES)H

ADR3 (RES)L

L-----------Figure 3.6: 16 Bit-Addition-The Operands

62 PROGRAMMING THE 6809

program and the first. The ADC instruction is not the same instruction
as the one used in the first half. In the first half of the program, we used
the ADD instruction (the 2nd instruction). This instruction adds the two
operands, regardless of the carry. In the second half, we used the ADC
instruction, which adds the two operands, plus any carry that may have
been generated. Here, we must use the ADC instruction to obtain the
correct result, as the addition performed on the low operands may result
in a carry.

At this point you might ask: "but what if the addition of the high half of
the operands also results in a carry?" There are two ways to handle this
situation. First, you can assume that this will not happen, unless an error
has been made, because the program is designed to work for results of
only up to 16 bits-not 17; and that the program will halt when the carry is
set. Or, you can include additional instructions that will handle the extra
bit in another word of memory, thus making a 24-bit word. It is up to you
to decide on the best route for your purpose-the first of many decisions.

(Note: in writing this last program, we have assumed that the high part
of the operand is stored "on top of" the lower part, i.e., at the lower
memory address. This need not always be the case, even though it does
take advantage of the 6809 1&bit instructions. However, the standard
convention is that all addresses and data be kept with the high part on
top, as illustrated in Figure 3.7.)

When operating on multibyte operands, it is important to remember
the following information:

1. the order in which data is stored in memory

2. the location where the data pointers are pointing-to the low or
high byte.

The programmer must decide how to store the 1&bit numbers (i.e.,
low or high part first), and whether address references should point to
the low or high half of these numbers-another decision that must be
made when designing algorithms or data structures.

The programs we have presented so far have been traditional: They
use an 8-bit accumulator. We will now present an alternative program
for 16-bit addition that does not use the simple 8-bit accumulator. Instead,
it uses some of the special instructions for the 16-bit accumulator D on
the 6809. (Remember from Chapter 2 that D is actually A and B, and that
in a limited manner, the 6809 allows accumulators A and B to be used as
the 16-bit D accumulator.) Operands will be stored as indicated in Figure

BASIC PROGRAMMING TECHNIQUES 63

3.7. The program is:

LDD
ADDD
STD

ADR1
ADR2
ADR3

LOAD D ACCUMULATOR WITH OP2
ADD OP2 TO OP1 16 BITS
STORE RES INTO ADR3

Notice how much shorter this program is, when compared to the
previous version.

16-bit numbers can be readily extended to 24, 32, or more bits (always
multiples of 8 bits). Let's now try an interesting exercise. Let's use the
16-bit instructions we just introduced to write an addition program for
32-bit operands, assuming the operands are stored as shown in Figure

Mf.M[)RY
0000

ADRl (OPl)H

ADRl+l {OPl)L

ADR2 {OP2)H

ADR2+1 (OP2)L

ADR3 (RES)H

ADR3+1 (RES)L

FFFF

I

'----------Figure 3.7: Storing 16-Bit Operands in the 6809

64 PROGRAMMING THE 6809

3.8. Here is the program:
LDD ADR1+2 LOAD LOW HALF OP1
ADDO ADR2+2 ADD LOW HALF OP2
STD ADR3+2 STORE LOW HALF RES
LDD ADR1 LOAD HIGH HALF OP1
ADCB #0 ADD 0 AND CARRY TO B
ADCA #0 ADD O AND CARRY TO A
ADDO ADR2 ADD HIGH HALF OP2
STD ADR3 STORE HIGH HALF RES

(Note: There is no instruction that adds a carry to the D accumulator.
The carry is handled by adding a zero and any carry to B, and then to A,
after the ltigh 16-bits have been loaded into D.)

MEMORY
ADRl HIGH

OPRl
LOW

ADR2 HIGH
OPR2
LOW

ADR3 HIGH
RES
LOW

Figure 3.8: A 32-Bit Addition----------------'

BASIC PROGRAMMING TECHNIQUES 65

Now that we have learned to perform a binary addition, let's learn
about subtraction.

Subtracting 16-Bit Numbers

Performing an 8-bit or 16-bit subtraction is actually quite simple, so
let's try a 16-bit subtraction. As usual, our two numbers, OPl and OP2,
are stored at addresses ADRl and ADR2. The memory is assumed to be
that of Figure 3.7. To perform the subtraction, we use the subtract
operation (SUB), instead of the add operation (ADD).

The program appears below. Figure 3.9 shows the data paths.

LDD

SUBD

STD

ADRl

ADR2

ADR3

OPl INTO D

OPl - OP2

RES INTO ADR3

This program is essentially like the one we developed for 16-bit addi tion.
Recall that in two's complement arithmetic, the final value of the

carry indicates a borrow. If a borrow condition has occurred as a result

MEMORY

(OPl}H ADRl

�}
(OPl)l

"'< ,,ly
ADRl +l

I (OPl}H I (OPl)l J
H l

L--------------Fi
gure 3.9: 16-

Bi
t Load: LDD ADR1

66 PROGRAMMING THE 6809

of the subtraction, the carry bit of the condition codes register will be set,
and can be tested.

The examples presented so far in this chapter are simple binary addi­
tions and subtractions. However, we may need to use another type of
arithmetic, BCD arithmetic.

BCD ARITHMETIC

8-Bit BCD Addition

Chapter 1 discussed the concept of BCD arithmetic. Let's recall its
features. It is essentially used for business applications, where it is
imperative that every significant digit in a result be retained.

In the BCD notation, a 4-bit nibble is used to store one decimal digit
(0 through 9). As a result, every 8-bit byte may store two BCD digits. (This
is called a packed BCD.) Let's see how BCD works. Let's add two bytes,
each containing two BCD digits (see Figure 3.10).

So that we can identify any problems that might come up, let's try

rw;MORY

1 1
•

•

w +)
2 2

ADR
- (RESULT) (ADR)

Figure 3.10: Storing BCD Digits ---------------'

BASIC PROGRAMMING TECHNIQUES 67

some numeric examples first. Let's add 01 and 02:

01 is represented by:
02 is represented by:
The result is:

00000001
00000010

00000011

This result is the BCD representation for 03. (If you are not sure of the
BCD equivalent, refer to the conversion table at the end of this book.)
Everything worked very simply in this case. Let's try another example.

08 is represented by:
03 is represented by:

00001000
00000011

If you obtained 00001011 as your result, you have computed the binary
s� of 8 and 3. You have, indeed, obtained 11 in binary. But unfortunately,
1011 is an illegal code in BCD. The BCD representation of 11 is 00010001.

This difference stems from the fact that the BCD representation uses
only the first ten combinations of 4 digits in order to encode the decimal
symbols 0 through 9. Thus, the remaining six possible combinations of
4 digits are unused in BCD notation, and the illegal 1011 is one such
combination. In other words, whenever the sum of two BCD digits is
greater than 9, you must add 6 to the result in order to skip over the 6
unused codes.

Let's try another example. Let's add the binary representation of 6 to
1011:

1011 (illegal binary result)
+ 0110 (+6)

The result is: 00010001

The result is, indeed, 11 in the BCD notation. We now have the correct
answer.

This example illustrates one of the basic difficulties of the BCD mode:
You must compensate for the six missing codes. It is necessary to use a
special decimal addition adjust instruction (DAA) to adjust the result of
the binary addition. (Add 6 if the result is greater than 9.)

We will use this same example to illustrate another difference. In this
example, the carry is generated from the lower BCD digit (the right-most
digit) into the left-most one. This internal carry must be taken into account
and added to the second BCD digit. The addition instruction takes care
of this automatically. However, it is often convenient to detect this
internal carry from bit 3 to bit 4 (the half-carry). The H flag is provided
for this purpose.

68 PROGRAMMING THE 6809

As an example, here is a program to add the BCD numbers 11 and 22:

LOA
ADDA
DAA
STA

#$11
#$22

ADR

LOAD LITERAL BCD 11 INTO A
ADD LITERAL BCD 22
DECIMAL ADJUST RESULT
STORE RESULT

The A accumulator is used in this program because the decimal addi­
tion adjust instruction always uses A. The B accumulator is not affected
by the decimal adjust. However, the D accumulator high byte is affected,
because it is the A accumulator.

In this program, we are using a new symbol, the $. The $ sign within
the operand field of the instruction specifies that the data which follows
is expressed in hexadecimal notation. The hexadecimal and BCD
representations for digits o through 9 are identical.

In this example, we want to add the literals (or constants) 11 and 22.
The # symbol indicates literal operands. The result is stored at the
address ADR.

This program is analogous to the one given for 8 -bit binary addition,
but it uses a new instruction: DAA. Let's look at an example which
illustrates the role of this instruction. We first add 11 and 22 in BCD:

00010001 (11)
+ 00100010 (22)

= QQJ.!QQD (33)
3 3

The result shown is correct, using the rules of binary addition.
Now let's add 22 and 39, using the rules of binary addition:

00100010 (22)
+ 00111001 (39)

= !!W.m!.!
5 ?

1011 is an illegal BCD code. Recall that BCD uses only the first 10 binary
codes, and "skips over" the next 6, in order to obtain the correct result.
We must now do the same, i.e. add 6 to the result:

01011011 (binary result)
+ 0110 (6)

= QUQQQ9.! (61)
6 1

BASIC PROGRAMMING TECHNIQUES 69

We now have the correct BCD result.
Let's look at BCD subtraction.

BCD Subtraction

BCD subtraction is complex in appearance. To perform a BCD sub­
traction, you must add the ten's complement of the number, just
like you add the two's complement of a number to perform a binary
subtraction. An example of this is shown by the equation RES = OP1 +
99 - OP2 + 1. Since 99 is the largest BCD number, OP2 can be subtracted
from 99 without any decimal adjustment. The number obtained can
then be added to OP1, and a DAA can be performed correctly. The
following program illustrates this simple BCD subtraction (note that a
fey; instructions have been added).

LDA #$99 LOAD LITERAL BCD 99

SUBA

ADDA
DAA
INCA
STA

ADR2

ADR1

ADR3

99 - OP2

OP1 + (99 - OP2)
DECIMAL ADJUSTMENT

ADD ONE TO A
STORE RES

(Note: remember, the A accumulator must be used when the DAA
instruction is used.)

16-Bit BCD Addition

16-bit addition is performed with a little more work than in the
binary case, because the 16-bit D accumulator cannot be used. A pro­
gram for such an addition appears below:

LDA ADR1 + 1 LOAD (OP1) LOW INTO A

ADDA ADR2 + 1 (OP1 + OP2) LOW
DAA DECIMAL ADJUSTMENT

STA ADR3 + 1 STORE RESULT LOW

LDA ADR1 LOAD (OP1) HIGH INTO A

ADCA ADR2 (OP1 + OP2) HIGH + CARRY

DAA DECIMAL ADJUSTMENT
STA ADR3 STORE RESULT HIGH

Packed BCD Addition

We have now learned how to perform elementary BCD addition and
subtraction. However, in actual practice, BCD numbers include any

70 PROGRAMMING THE 6809

number of bytes. Let's look at a simplified example of a packed BCD addi­
tion. We will assume that the two numbers located at Nl and N2 include
the same number of BCD bytes and that number is called COUNT. Figure
3.11 shows the register and memory allocation. Here is the program:

BCDPAK LDB #COUNT
LDX #N2
LDY #Nl

AN DCC #0 CLEAR CARRY
PLUS LDA .

x
+ LOAD NZ BYTE AND INC X

ADCA ,Y ADD N1 BYTE
DAA
STA ,Y+ STORE RESULT INC Y
DECH B-1

BNE PLUS LOOP UNTIL B = 0

Nl and N2 represent the addresses where the BCD numbers are stored.
These addresses are loaded in the index registers X and Y:

BCDPAK LDB

LDX

LDY

#COUNT
#N2
#Nl

In anticipation of the first addition, the carry bit must be cleared. We can
clear it in a number of ways. For example, we can use:

ANDCC #0 CLEAR CARRY

The first byte of N2 is loaded into the accumulator, then the first byte of
Nl is added to it. The DAA instruction is used to obtain the correct
BCD value:

PLUS LDA
ADCA
DAA

.x+
,Y

The result is then stored in Nl:

STA ,Y+

LOAD N2 BYTE ANO INC X
ADO Nl BYTE

STORE RESULT INC Y

The forms ,X + and , Y + indicate the use of a powerful capability of the
index registers: the auto-increment mode. The contents of the index
register are first used as the address of the operand. Then, after the

B I
x

y

BASIC PROGRAMMING TECHNIQUES 71

instruction is finished, the index register is incremented by one. In the
case of the instruction that specifies "add with carry to A," the Y register
is used as a simple index register. The counter is decremented and the
addition loop is executed until it reaches the value 0:

DEC

BNE

B
PLUS

B - 1

LOOP UNTIL B = 0

By using the auto-increment mode with the index registers, we can
speed up and simplify the program. In this mode, the instruction first
executes using the contents of the index register as the address of the
operand, and then after the instruction is finished, and before the next

COUNT

N2 N2

Nl j=w
Nl

----------- Figure 3.ll: Packed BCD Add: Nl - N2 + Nl

72 PROGRAMMING THE 6809

instruction starts, the index register is incremented. See Chapter 5 for
more information on addressing modes.

Instruction Types

We have now used two types of microprocessor instructions: LD,
which loads a register from a memory address, and ST, which stores its
contents at the specified address. These are data transfer instructions.
We have also used arithmetic instructions, including ADD, SUB, ADC
and SBC, that perform addition and subtraction operations. Later in this
chapter we will introduce even more ALU instructions.

There are other types of instructions also available within the micro­
processor. For example, there is the "jump" instruction. We can use this
instruction to modify the order in which a program is executed. In fact,
we use it later on in an example showing division. Note that jump instruc­
tions are often called "branch" instructions for conditional situations,
that is, for situations where there is a logical choice in the program. The
"branch" derives its name from the analogy to a tree, and implies a fork
in the representation of the program.

MULTIPLICATION

Let us now examine a more complex arithmetic problem: the
multiplication of binary numbers. We will begin by examining a usual
decimal multiplication. We will multiply 12 by 23:

12 (multiplicand)
X 23 (multiplier)

36 (partial product)
+ 24

= 276 (final result)

The multiplication is performed by first multiplying the right-most digit
of the multiplier by the multiplicand, i.e., 3 X 12 (the partial product is
36); and then by multiplying the next digit of the multiplier, i.e., 2, by 12.
24 is then added to the partial product.

There is, however, one more operation: 24 is offset to the left (or shifted
left) by one position. Equivalently, we could say that the partial product
(36) was shifted right by one position before adding. The two numbers,
correctly shifted, are then added, and the sum is 276. That was easy.
Let's look at an example of binary multiplication; it is performed in

BASIC PROGRAMMING TECHNIQUES 73

exactly the same way. Let's multiply 5 X 3:

(5) 101 (multiplicand)
(3) X 011 (multiplier)

101 (partial product)
101

OOO

(15) 01111 (final result)

The 6809 is one of the few microprocessors with a multiply instruction.
This instruction multiplies the A accumulator by the B accumulator and
stores the result in the D accumulator. The results of an 8-bit by 8-bit
multiplication may require up to 16 bits. This is because 28 X 28 = 216• A

16-bit register must, therefore, be reserved forthe result. The contents of
A and B are, of course, lost whenever a MUL instruction is performed.

Multiplying 16-Bit Numbers

At this point, doing an 6-bit multiply would be too easy. We'll leave it
as an exercise and go on to perform a 16-bit multiply. As usual, our two
numbers, OPl and OP2, are stored at addresses ADRl and ADR2. The
memory layout is assumed to be that of Figure 3. 7, except that ADR3 has
four bytes, instead of two.

The 16-bit multiplication requires four 8-bit multiplications in order
to obtain the correct result. This process is developed by using the rules
of factoring and associativity. Figure 3.12 shows a diagram displaying
16 X 16 multiplication using bytes.

In Figure 3.12, the two low bytes of OP1 and OP2 are first multiplied.
Then the low byte of OP2 and the high byte of OPl are multiplied. This
product is aligned 8-bits left because the operation is really OP1H X 28
X OP2L, and is, in fact, a 24-bit number with all zeroes in the low 8-bits.
The low byte of OP1 is multiplied by the high byte of OP2, and the result
is a 24-bit number with a low byte of zero. OPlH is multiplied by OP2H
and the 16-bit result is aligned 16 bits left of the first partial product. This
is because OPlH X 26 X OP2H X 28 is, in fact, a 32-bit number with the
lowest two bytes zero. Here is the program for this 16 X 16 multiplication:

CLR ADR3

CLR ADR3+1

LDA

LDB

MUL

ADR1 + 1

ADR2+1

CLEAR HIGH 16 BITS

LOWBYTEOPl

LOWBYTE OP2

OPlL X OP2L

7 4 PROGRAMMING THE 6809

STD ADR3 +2

LOA ADRl

LOB ADR2+1

MUL

ADDO ADR3+1

STD ADR3+ 1

LOA ADRl+l

LOB ADR2

MUL

ADDO ADR3+1

STD ADR3+1

BCC NOCARY

.INC ADR3

NOCARY LOA ADR1

LOB ADR2

MUL

ADDO ADR3

STD ADR3

FIRST PARTIAL PRODUCT

HIGH BYTE OPl

LOWBYTE OP2

OPlH X OP2L

SECOND HIGHEST BYTE

LOWBYTEOPl

HIGH BYTE OP2

OPlL X OP2H

LOW 16 BITS DONE

IF NO CARRY SKIP NEXT

ADD CARRY BIT

HIGH BYTE OP1

HIGH BYTE OP2

OP1H X OP2H

HIGHEST BYTE

FINAL VALUE HIGH 16 BITS

This program makes use of the dual role of the accumulators as 8- or
16-bit registers. The MUL instruction puts the results into the 16-bit D
accumulator. If an 8-bit number is added, the B accumulator is used. If
a 16-bit number is added, the D accumulator is used. The only time a
problem may occur is if a carry is created from the 16-bit addition to D.
In this case, the next multiply might destroy this carry, because the
multiply instruction sets the carry bit, if bit 7 of accumulator B is set.
(This is useful for rounding off numbers.)

We must store the carry until it is needed. We will store it in the highest
byte of the result at ADR3, which was initialized to zero at the beginning
of the program. We will store it, using the following instructions:

BCC

INC

NOCARY LOA

NOCARY

ADR3

ADR1

IF NO CARRY SKIP NEXT

STORE A CARRY BIT

HIGH BYTE OF OPl

The BCC instruction branches if there is no carry bit set. This means
execution of the program continues at the label specified in the instruc­
tion (in this case, NOCARY). if the carry bit is clear or 0. If the carry bit is
set, execution continues at the next instruction.

BASIC PROGRAMMING TECHNIQUES 75

BINARY DIVISION

Division is a more complex problem because there is no divide instruc­
tion in the 6809. We need to develop an algorithm for writing a division
program for the 6809. Let's start by examining a simple decimal division.
Let's divide 254 by 12.

21 (quotient)
(divisor) 121254 (dividend)

24

14
12

2 (remainder)

We perform the division by subtracting the largest possible multiple of
the divisor from the left-most digits of the dividend. The new dividend is

OPlH OPll I
15 8 7 0

OP2H OP2L I
15 8 7 0

OPll � OP2L I
15 8 7 0

OPlH � OP2L I
15 8 7 0

OPll � OP2H I
15 8 7 0

OPlH + OP2H I
15 8 7 0

OPl � OP2 I
31 24 23 16 15 8 7 0

Figure 3.12: A 16 X 16 Multiplication Using Bytes

76 PROGRAMMING THE 6809

14. The multiplier of the divisor becomes the second digit of the quotient.
The remainder is the result of the last subtraction.

We make trial subtractions or comparisons in order to find the largest
multiple of the divisor that can be subtracted from the dividend. It should
be noted that in determining the first digit of the quotient, the actual
number is 20, not 2, and the number subtracted from the dividend is 240,
not 24. By leaving the zeroes out, we make notation convenient, but we
must not lose sight of what is actually being done.

Binary division is performed in exactly the same way as is decimal
division. Let's look at an example. We divide 10 by 3:

0011 (quotient)
(divisor) 11lto10 (dividend)

11
100

11

1 (remainder)

To perform the division, we operate exactly as we have done before.
The formal representation of this algorithm appears in Figure 3.13. It is
a flowchart-our first flowchart. Let's examine it.

This flowchart is a symbolic representation of the algorithm we have
just presented. Every rectangle represents an order to be carried out and
will be translated into one or more program instructions. Every diamond­
shaped symbol represents a test being performed, i.e., a branching point
in the program. If the test succeeds, we will branch to a specified loca­
tion. If it does not, we will branch to another location. We will explain
the concept of branching later, in the program itself. You should now
examine the flowchart and ascertain that it does, indeed, represent the
algorithm presented.

Note the arrow coming out of the last diamond at the bottom of the
flowchart and going back to the second rectangle at the top. It represents
the fact that this portion of the flowchart is executed eight times, once
for every bit in the divisor. This type of situation, where execution
restarts at the same point, is called a program loop, for obvious reasons.

8-By-8 Division

We will now translate the flowchart in Figure 3.13 into a program for
the 6809. The complete program appears following the flowchart. Let's
study it in detail. Note that each box in the flowchart is translated into
one or more instructions. (In this program we assume that DVS and
DVD already have a value.)

BASIC PROGRAMMING TECHNIQUES 77

NO

INITIALIZE
QUOTIENT=O
COUNTER=8

SHIFT LEFT
DIVIDEND

(WITH 8 LEADING O's)
AND QUOTIENT

SUBTRACT LEFT
(DIVI DENO)-DIVISOR

QUOTIENT= QUOTIENT+ 1

COUNTER= COUNTER - 1

YES

END

(REMAINDER IN LEFT (DIVIDEND))

YES

�---------Figure 3.13: 8-Bit Binary Division Flowchart

78 PROGRAMMING THE 6809

DIV88 LDA #8
STA COUNAD

LDB DVD AD
CLRA
CLR QUOTAD

DIVD ASL QUOTAD

ASLB

ROLA

CMPA DVSAD

BLO NOSUB

SUBA DVSAD

INC QUOTAD

NOSUB · DEC COUNAD

BNE DIVD

STA REMAD

SHIFT COUNTER IS 8

LOAD DNIDEND IN B
8 LEADING o·s IN DVD
SET QUOTIENT TO O

SHIFT QUOTIENT LEFT
SHIFT DNIDEND INTO A

CHECK DVD< DVS

BRANCH IF DVD < DVS
DIVIDEND-DIVISOR
QUOTIENT=QUOTIENT + 1
COUNT=COUNT - 1

LOOP UNTIL COUNT = 0

STORE REMAINDER

Figure 3.14 shows the registers and memory locations used by the
program.

REGISTERS

A B

c

MEMORY

DVD DVD AD

DVS DVSAD

COUNT COUNAD

QUOTIENT QUOTAD

REMAINDER REMAD

-Figure 3.14: 8-By-8 Division-Registers and Memory--------

BASIC PROGRAMMING TECHNIQUES 79

The two accumulators of the 6809 and five memory locations are used
for this division program. The 8-bit divisor, DVS, is assumed to reside at
memory address DVSAD. The dividend, DVD, is assumed to reside at
memory address DVDAD. The shift count is loaded with the number 8.
The B accumulator is loaded with the dividend, and the A accumulator
and the quotient are cleared.

Accumulators A and B will hold the dividend as it is shifted left, one
bit at a time. The result of an 8-bit by 8-bit division may require an 8-bit
quotient and an 8-bit remainder. As shown in Figure 3.14, two memory
locations are reserved for these results.

The first step is to load the shift counter and accumulator with the
appropriate contents and to clear A and the quotient, as specified by
the flowchart in Figure 3.13. This is accomplished by the following
instructions:

DIV88 LDA

STA

#8

COUNAD

LDB DVD AD

CLRA

CLR QUOTAD

The first three instructions load the shift counter with 8, and the ac­
cumulator B with the dividend. The next two instructions clear the
accumulator A and the quotient.

In this division program, the dividend and quotient are shifted left,
before the dividend and divisor are compared. The dividend, DVD, is
shifted into the A accumulator at each step. Accumulator A must,
therefore, be initialized to the value 0. This is accomplished by the fourth
instruction. Finally, the fifth instruction sets the contents of the quotient
too.

Referring back to the flowchart in Figure 3.13, the next step is to move
the quotient and dividend one bit to the left. After this is done, the divisor
should be checked against the dividend to see if a subtraction takes
place. This is accomplished by the next five instructions:

DIVD ASL

ASLB

ROLA

CMPA

BLO

QUOTAD

DVSAD

NOSUB

A new type of operation, shift, is introduced here in the instruction
ASL. It stands for "arithmetic shift left." This operation is performed in

80 PROGRAMMING THE 6809

the arithmetic and logical unit. A shift left always puts a 0 into bit 0.
(There are different types of shift operations; we describe them in the
next chapter.)

Figure 3.15 illustrates the effect of the ASL QUOT AD with an arrow
that goes from the quotient to the square that designates the carry bit C.
The right-most bit of the quotient is set to 0.

The next two instructions shift the dividend left. The first, ASLB,
operates like the previous instruction, except that the operand is the B
accumulator. As an example, let's assume that the initial contents of B
were 00001001. After the ASL instruction, the contents of B are 00010010
and the content of the carry bit is O.

However, looking back at Figure 3.14, we want to shift the most
significant bit (the MSB) of B directly into A; but, there is no instruction
that will shift a double accumulator in one operation. Once the contents
of B have been shifted, the left-most bit has "fallen into" the carry bit.
We must collect this bit from the carry bit and shift it into the A accumu­
lator. This is accomplished by the ROLA instruction.

ROL is still another type of shift operation. It stands for "rotate left."
In a rotation operation, as opposed to a shift operation, the bit coming into
the register holds the contents of the carry bit C (see Figure 3.16). This is
exactly what we want. The contents of the carry bit C are loaded into the
right-most part of A, and we have effectively transferred the left-most
bit of B.

Figure 3.17 illustrates this sequence of instructions. The bit in the
most significant position of B, marked by an X, is first transferred into
the carry bit, then into the least significant position of A. Effectively, it is
shifted from B into A.

The next instruction, CMPA DVSAD, is a compare operation. It means
"compare the contents of the accumulator" (A) to the contents of DVSAD.
This instruction subtracts the contents of DVSAD, from A. It is actually
subtracting the divisor from the dividend shifted into A from B. It is not,
however, a normal subtraction, because the contents of A are not changed.
Only the condition codes are affected. For example, if A equals DVS, the

���t--B-IT_7--t
....._ ___ QUO_T_IENT ___ __,�l�----o

c

Figure 3.15: Shift Left Quotient----------------'

BASIC PROGRAMMING TECHNIQUES 81

Z.bit in the condition code register is set. The compare operation does an
internal subtraction of two operands, a memory location is subtracted
from a register, and the condition codes are set according to the result of
the subtraction. The operands are not changed. The condition codes are
now ready for use by a branch instruction.

SHIFT LEFT

0

ROTATE LEFT

------------------Figure 3.16: Shi.ft and Rotate-

c

A B
x----' '------4 x

'--------------Figure 3.17: Shifting from B into A

82 PROGRAMMING THE 6809

The instruction, BLO NOSUB, is a branch operation. It means "branch
on lower" (C = 1) to the address Oabel) NOSUB. If the result of a previous
compare operation indicates that the accumulator A is less than the
divisor, then the program branches to the address NOSUB. If the accum­
ulator A is greater than or equal to the divisor, then no branch occurs,
and the next sequential instruction is executed (i.e., the instruction
"SUBA DVSAD" is executed).

The instruction SUBA DVSAD specifies that the contents of DVSAD
are to be subtracted from A. This subtracts the divisor from the dividend.
A 1 is then added to the quotient by the instruction INC QUOT AD.

At this point, referring back to the flowchait in Figure 3.13, we must
check to see if all eight bits of the dividend have been shifted. We can do
this by decrementing the bit counter, contained in the memory at
COUNAD (see the previous program). The register is decremented by
the instruction:

DEC COUNAD

This decrement instruction has the obvious effect.
Finally, we must check to see whether or not the counter has been

decremented to the value zero. We can do this by checking the value of
the Z bit. Recall that the Z (zero) condition code indicates whether or not
the previous arithmetic operation (such as a DEC operation) has pro­
duced a zero result. If the counter is not 0, the operation is not finished,
and we must execute the program loop again. This is accomplished by
the next instruction:

BNE DIVD

This branch instruction specifies that whenever the Z bit is not set (NE
means " not equal to zero"), a branch occurs to location DIVD. This is the
program loop, which is executed repeatedly until the counter is
decremented to the value of 0. Whenever the counter decrements to the
value 0, the Z bit is set, and the BNE DIVD instruction fails. This results
in the execution of the next sequential instruction, namely:

STA REMAD

This instruction merely saves the contents of A, i.e., the remainder, at
the address REMAD, the address specified for the remainder.

Note that, in most cases, the program that we have just developed is a
subroutine and the final instruction in the subroutine is RTS (return
from subroutine). We explain the subroutine mechanism later in this
chapter.

BASIC PROGRAMMING TECHNIQUES 83

Important Self-Test

This program is the first significant program we have encountered so
far. It includes many different types of instructions, including transfer
instructions (LD, ST), arithmetic operations (SUB), logical operations
(ASL, ROL), and branch operations (BLO, BNE). It also implements a
program loop, in which the lower nine instructions, starting at address
DIVD, are executed repeatedly. It is longer and more complex than the
other arithmetic programs we have developed, therefore, you should
study it carefully.

·

To test your understanding of the program, try the following exercise,
and correctly complete it before proceeding. It will be your only real
proof that you have understood the concepts presented so far. If you
obtain a correct result, then you have proven that you understand how
instructions manipulate information in the microprocessor, transfer
this information between the memory and registers, and process it. If
you do not obtain the correct result, or if you do not do this exercise, it is
likely that you will experience difficulties later on when you begin
writing programs yourself. Learning to program requires practice.
Please pause now, take a piece of paper, or use the illustration in Figure
3.18, and complete the following exercise.

A Sample Exercise

Every time a program is written, it should be verified by hand, to
ascertain that the results are correct. The goal of this exercise is to do just
that, by accurately completing the table presented in Figure 3.18.

You may want to write directly on the table, or you may want to make a
copy of it. For this exercise, you must determine the contents of every
relevant register and memory location in the 6809 after the execution of
each instruction in the program. Figure 3.19 shows the registers and
memory locations used by the previous program. From left to right, they
are accumulators A and B, the carry C, and the memory locations for the
quotient and counter. If applicable, you should first complete the label
on the left side of this table and then fill in the instructions being executed;
then, on the right side of the table, you should fill in the contents of each
register after each instruction has been executed. If you do not know the
contents of a register, use dashes.

We will start by filling in the table together. After that you must fill in
the rest of the form by yourself. The first line appears in Figure 3.19. We
will assume that we are dividing 28 (DVD) by 4 (DVS).

84 PROGRAMMING THE 6809

LABEL INSTRUCTION A 8 c QUOTIENT COUNTER
(CARRY)

.

-Figure 3.18: Form for Division Exercise------------

LABEL INSTRUCTION A B c QUOTIENT COUNTER

, -- - -- --

DIV88 LDA #8 00 -- - -- --

-Figure 3.19: Division-After One Instruction-----------

BASIC PROGRAMMING TECHNIQUES 85

The first instruction to be executed is LOA #8. The accumulator A is
loaded with the number 8. This is the number of times the divide loop
needs to be executed. After execution of this instruction, the contents of
A are set to 8. Note that the contents of B, the quotient, and the counter
are still undefined (this is indicated by dashes).

The LO instruction does not condition the carry bit, so the contents of
the carry bit, C, are undefined as indicated by the dash. As shown in
Figure 3.20, the next instruction loads 8 into the counter.

Figure 3.21 shows the situation after the first five instructions of the
program have been executed (just before the DIVO).

The ASLB instruction performs an arithmetic shift left, and the left­
most bit of B falls into the carry bit. Figure 3.22 shows that the contents
of B after the shift is 00111000. The carry bit, C, is now set to O. The other
regfsters are unchanged by this operation. Now that you see how the chart
works, you should complete it.

Figure 3.23 shows a second iteration of the divide loop.

LABEL INSTRUCTION A B c QUOTIENT COUNTER

- - - - -

DIV88 LDA/18 06 - - - -

STACOUNAD 08 - - - 08

---------Figure 3.20: Division-After Two In1tructions -

LABEL INSTRUCTION A B c QUOTIENT COUNTER

- - - - -

DIV88 LDA#S 06 - - - -

STACOUNAD 08 -- - -- 06
LOB DVDAD 08 IC - -- 08

CLRA 00 IC - - 08

CLR QUOTAD 00 IC - 00 08

--------- Figure 3.21: Divi1ion-After Five Inltructiom -

86 PROGRAMMING THE 6609

Programming Alternatives

The program we have just finished could have been written in several
different ways. As a general rule, even the programmer can usually find
ways to modify, and often improve, a program. For example, we have
used an algorithm that uses shifts and subtractions; however, we could
have used a method that uses only repeated subtractions until the
divisor is larger than the dividend. The quotient is incremented by one
for each subtraction done. This method is simpler than the first, because
it is exactly the definition of division.

Improved Division Program

The program just developed is a straightforward translation of the algo­
rithm to code. However, effective programming requires close attention to
detail, and the length or execution time of a program can often be reduced.
We will now study alternatives for improving this basic program.

To improve our division program, note that three different shift opera­
tions are used in the initial program. The quotient is shifted left, and then
the dividend is shifted left in two operations, by first shifting accumulator

LABEL INSTRUCTION A B c QUOTIENT COUNTER

- -- - - -
DIV88 LDA#8 08 -- - - -

STACOUNAD 08 - - - 08
LDBDVDAD 08 IC - - -
aRA 00 IC - - 08
aRQUOTAD 00 IC - 00 08

DIVD ASL QUOTAD 00 IC 0 00 08
ASlB 00 38 0 00 08
ROlA 00 38 0 00 08
CMPADVSAD 00 38 1 00 08
BLO NOSUB 00 38 1 00 08

NOSUB DECCOUNAD 00 38 1 00 07
BNEDIVD 00 38 1 00 07

-Figure a.22: One Poss Through the Loop------------

BASIC PROGRAMMING TECHNIQUES 87

B, then rotating accumulator A to the left. Such shifting is time consuming.
However, there is a standard programming "trick" used in the case of
division that is based on the following observation: every time the dividend
is shifted one bit position, another bit position becomes available in the
dividend register. Each time the dividend shifts left, a bit position becomes
available on the right. Simultaneously, it can be observed that the first
quotient (or result) uses, at most, 1 bit. We can use the bit position just
vacated by the dividend, to store the first bit of the result.

After the next shift of the dividend, the size of the quotient is increased
by one bit again. In other words, the bit positions freed by the dividend
can be used as the quotient. To improve this program, we will make the
A and B accumulators both the dividend and quotient.

LABEL INSTRUCTION A B c QUOTIENT COUNTER

-- -- - -- --

OIV88 LOAIS 08 -- - - -

STACOUNAO 08 - - - 08

LDB OVOAO 08 IC - - -

QRA ()() IC - - 08

QRQUOTAO 00 IC - ()() 08

OIVO ASlQUOTAO ()() IC 0 ()() 08

ASlB ()() 38 0 ()() 08

ROLA ()() 38 0 ()() 08

CMPAOVSAO ()() 38 1 ()() 08

BlO NOSUB ()() 38 1 ()() 08

NOSUB OECCOUNAO ()() 38 1 ()() 07
BNEOIVO ()() 38 1 ()() 07

DIVO ASlQUOTAO ()() 38 0 ()() 07
ASLB ()() 70 0 ()() 07

ROLA ()() 70 0 ()() 07
CMPAOVSAO ()() 70 1 ()() 07
BLONOSUB ()() 70 1 00 07

NOSUB OECCOUNAO 00 70 1 ()() 06
BNEOIVO ()() 70 1 ()() 06

----------Figure 3.23: Second Pass Throush the Loop-

88 PROGRAMMING THE 6809

The changed program appears below. Most of the program remains
unchanged; however, there is a change, in that the quotient is not cleared
during initialization and is in accumulator B at the end.

DIV88 LOA #8

STA COUNAD

LOB DVD AD

CLRA

DIVD ASLB SHIFT LEFT DVD AND QUOTIENT

ROLA

CMPA DVSAD

.BLO NOSUB

SUBA DVSAD

INCB INCREMENT QUOTIENT

NOSUB DEC COUNAD

BNE DIVD

STD RE SAD STORE QUOTIENT AND
REMAINDER

When we compare this program to the previous one, we see that the
length of the division loop (the number of instructions between DIVD
and the branch) has been reduced. This program has fewer instructions,
which usually results in faster execution. This shows the advantage of
selecting the correct registers to contain the information.

A straightforward design generally results in a program that works,
although it does not necessarily result in a program that is optimized. It
is, therefore, important to understand and use the available registers
and instructions in the best possible way. This program illustrates a
rational approach to register and instruction selection for maximum
efficiency.

16-By-16 Bit Division

Our 16-bit division program is very similar to the 8-bit division pro­
gram. The same algorithm is used; however, for the 16-bit program the A
and B registers are treated together, as the D accumulator, whenever
possible. Figure 3.24 shows the layout of memory. Both the quotient and
remainder may be up to 16-bits long. The quotient is formed in the two
memory locations of the dividend, as the dividend is shifted out. Here is

BASIC PROGRAMMING TECHNIQUES 89

our 16-bit division program:

DIV16 LDA 1116

STA COUNAD

CLRA

CLRB

DIVD ASL DVDAD+l

ROL DVDAD

ROLB

ROLA

CMPD DVSAD

BLO NOSUB

SUBD DVSAD

INC DVDAD+ 1

NOSUB DEC COUNAD

BNE DIVD

STD RE MAD

A B

....._______.I _I �

D
c

SHIFT COUNTER IS 16

CLEAR ACCUMULATORS

SHIFT DIVIDEND AND QUOTIENT

SHIFT DIVIDEND INTO B

CHECK DVD > DVS

BRANCH IF DVD< DVS

DIVIDEND - DIVISOR

INCREMENT QUOTIENT LOW
HALF

COUNT = COUNT - 1

LOOP UNTIL COUNT = 0
STORE REMAINDER

DVOH/QUOT H
DVOVQUOT L

DVSH
DVSL

COUNT

REMH
REMl

DVD AD
DVOAD+ l

DVSAD

COUNAD

REMAD

---- Figure 3.24: 16-By-16 Division-Register and Memory Allocation-

90 PROGRAMMING THE 6809

The division programs we have presented so far have two possible
flaws. One is that there is no check for division by zero; division by zero
is undefined, and, therefore, it is an error condition. The divisor should be
checked at the beginning of the program. If it is zero, a branch should
be made to a code that handles the error. The other problem is that all of
the numbers have been assumed to be unsigned numbers. This problem
is usually rectified by determining the sign of the result from the signs of
the dividend and the divisor before the division is done. Then the
dividend and the divisor are converted to positive numbers and the divi­
sion program is executed. The sign of the result is adjusted to the sign
determined before the division was performed.

WGICAL OPERATIONS

The other class of instructions, which can be executed by the ALU in­
side the microprocessor, is the set of logical instructions. These include
AND, OR, and exclusive OR (EOR). In addition, one can also include the
shift and rotate operations, which have already been utilized, and the
comparison instruction, CMP. We will describe the AND, OR, and EOR
instructions in Chapter 4.

We will now develop a brief program that checks whether a memory
location, called LOC, contains the value 0, the value 1, or something else.
This program uses the comparison instruction, and performs a series of
logical tests. Depending on the result of the comparison, some segment
will then be executed.

Let's look at the program:

NONEFOUND

ZERO

ONE

LOA

CMPA

BEQ

CMPA

BEQ

LOC

#$00

ZERO

#$01

ONE

READ CHARACTER IN LOC

COMPARE TO O

IS IT A O?

COMPARETOl

IS IT A 1?

The first instruction, LDA LOC, reads the contents of memory loca­
tion LOC and loads it into accumulator A. The data in LOC is the

BASIC PROGRAMMING TECHNIQUES 91

character we want to test. The instruction

CMPA #$00

compares the contents of A to the hexadecimal value 00 (i.e., the bit pattern
00000000). If this comparison instruction is successful, the Z bit in the
condition code register is set to the value 1. This bit is then tested by the
next branch instruction:

BEQ ZERO

If this comparison is successful, i.e., if the Z bit has been set to one,
then the branch succeeds. The program then jumps to the address
ZERO. If the test fails, the next sequential instructions are executed:

CMPA #$01

BEQ ONE

Similarly, the next branch instruction branches to location ONE, if the
comparison succeeds. If none of the comparisons succeed, then the
instruction at location NONEFOUND is executed:

NONEFOUND

This program demonstrates the value of the comparison instruction
followed by a branch-a combination used in many of the following
programs.

INSTRUCTION SUMMARY

We have now used most of the important instructions of the 6809. We
have transferred values between the memory and registers. We have
performed arithmetic and logical operations on data and introduced the
program loop. We have tested data, and depending on the results of these
tests, we have executed various portions of the program. In particular,
we have made full use of the special 6809 features, such as the 16-bit
accumulator and the multiply instructions. We will introduce other
special instructions, PSH, PUL, and SWI, throughout the remainder of
this book.

We will now examine another important programming structure, the
subroutine.

92 PROGRAMMING THE 6809

SUBROUTINES

In concept, a subroutine is simply a block of instructions named by the
programmer. From a more practical point of view, a subroutine must
start with a label, which identifies it to the assembler. It is terminated by
a special instruction, called a return. We will now illustrate the use of a
subroutine in order to demonstrate its value. We will then examine how
it is actually implemented.

Figure 3.25 illustrates how a subroutine is used. The main program
appears on the left of the illustration and the subroutine appears, sym­
bolically, on the right. Let's examine how the subroutine works. In this
program, the lines of the main program are executed successively until a
new instruction, CALL SUB, is met. This special instruction is the
subroutine oa11 and results in a transfer to the subroutine. Thus, the next
instruction to be executed after the CALL SUB is the first instruction in
the subroutine. This is illustrated by arrow 1 in the illustration.

MAIN PROGRAM

j
CALL SUB

CALL SUB

8

...i ..,..., I
,,..

...... I
........

6 1 2 1

I
I

SUBROUTINE

RETURN

Figure 3.25: Subroutine Qills ------------------'

BASIC PROGRAMMING TECHNIQUES 93

The subprogram within the subroutine executes like any other pro­
gram, as indicated by arrow 2. (We will assume that the subroutine does
not contain any other calls.) The last instruction of this subroutine is a
RETURN. This is a special instruction which causes a return to the
main program. The next instruction to be executed after the RETURN is
the one following the CALL SUB in the main program. This is illustrated
by arrow 3 in the illustration. Program execution continues then, as
illustrated by arrow 4.

Later, a second CALL SUB appears in the body of the main program.
A new transfer occurs, as shown by arrow 5. This means that the body of
the subroutine is again executed, following the CALL SUB instruction.

Whenever a RETURN is encountered within a subroutine, a return
occurs to the instruction that follows the CALL SUB being executed.
This is illustrated by arrow 7. Following the return to the main program,
program execution proceeds normally, as illustrated by arrow 8.

The effect of the two special instructions, CALL SUB and RETURN,
should now be clear. What is the value of the subroutine? The essential
value of the subroutine is that it can be called from any number of points
in the main program, and used repeatedly without having to rewrite it.
An advantage of this approach is that it saves memory space, since the
subroutine doesn't need to be rewritten each time. Another advantage is
that the programmer can design a specific subroutine only once, and
then use it repeatedly. This is a significant simplification in program
design.

The disadvantage of a subroutine should be clear just by examining
the flow of execution between the main program and the subroutine.
A subroutine results in a slower execution, since extra instructions must
be executed (i.e., the CALL SUB and the RETURN).

Implementation of the Subroutine Mechanism

We will now examine how the two special instructions, CALL SUB
and RETURN, are implemented internally within the processor. The
CALL SUB instruction causes the next instruction to be fetched at a new
address. Recall that this address is contained in the program counter
(PC). This means that CALL SUB substitutes new contents into register
PC. In other words, the start address of the subroutine is loaded into the
program counter. Is that really sufficient?

To answer this question, let's consider the other special instruction:
RETURN. This instruction causes a return to the instruction that
follows the CALL SUB. This is possible only if the address of this

94 PROGRAMMING THE 6809

instruction (that is, the value of the program counter at the time the
CALL SUB was executed), has been preserved somewhere.

The next problem is with saving this return address: It must always be
saved in a location where it will not be erased.

We will now, however, consider the situation illustrated in Figure 3.26,
where subroutine 1 contains a call to SUB2. Our mechanism must work in
this case, as well as in other cases, where there may be more than two
subroutines, say n "nested" calls. Whenever a new CALL is encountered,
the mechanism that stores the return address must again store the program
counter. Therefore, we need at least 2n memory locations for this
mechanism. Additionally, we need to return from SUB2 first, and SUB1
next. In other words, we need a structure that can preserve the chrono­
logical order in which addresses were saved. This structure is the stack.

Figure 3.'27 shows the actual contents of the stack during successive
subroutine calls. The memory layout of the program appears in Figure 3.28.
Let's examine the main program first. The first call, CALL SUB1, is en­
countered at address 100. We will assume that, in this microprocessor,
the subroutine call uses 3 bytes. The next sequential address is,
therefore, not 101, but 103. The CALL instruction uses addresses 100,
101, and 102. Because the control unit of the 6809 "knows" that the in­
struction is 3-bytes long, the value of the program counter, when the call
has been completely decoded, is 103. The effect of the call is to load the

MAIN

1 SUBl SUB2

CALL SUBl CALL SUB2

RETURN RETURN

Figure 3.26: Nested Cans--------------------'

BASIC PROGRAMMING TECHNIQUES 95

value 280 in the program counter. 280 is the starting address of SUB 1. In
SUB1, the subroutine SUB2 (at location 900) is called at time 2 from the
memory address 300. This pushes 303, the return address, to SUB1 on
the stack.

We are now ready to demonstrate the effect of the RETURN instruc­
tion and the correct operation of the stack mechanism. Execution proceeds
within SUB2 until the RETURN instruction is encountered at time 3. The

STACK TIME Q) TIME @ TIME @ TIME © I
103 103 103

303

'---------------Figure 3.27: Staclc Versus Time

ADDRESS (MAIN)

100 CALL SUBl
103

300
303
©

(SUBl)

(SUB2)
@ 900 CALLSUB2

RETURN

RETURN

'----------------Figure 3.28: The Subroutine Calls

96 PROGRAMMING THE 6809

RETURN instruction simply pops the top of the stack into the program
counter. In other words, the program counter is restored to the value it
had prior to the entry into the subroutine. In our example, the top of the
stack is 303. Figure 3.27 shows that, at time 3, value 303 is removed from
the stack and put back into the program counter. As a result, instruction
execution proceeds from address 303. At time 4, the RETURN of SUB 1 is
encountered. The value on top of the stack is 103. It is popped and installed
in the program counter. As a result, program execution proceeds from
location 103 in the main program. That is, indeed, the effect that we
wanted. Figure 3.27 shows that at time 4 the stack is again empty. Thus,
the mechanism to store return addresses works.

The subroutine call mechanism works up to the maximum dimension
of the stack. That is why early microprocessors with 4- or 8-register
stacks were essentially limited to 4 or 8 levels of subroutine calls.

Note that for clarity, Figures 3.25 and 3.26 show the subroutines to the
right of the main program. In reality, the subroutines are typed as regular
instructions in the program. When producing the listing of a complete
program, the subroutines may be listed either at the beginning, middle,
or end of the text. For this reason, they must be identified, and are,
therefore, preceded by a label.

6809 Subroutines

We have now discussed the basic concepts of subroutines. We have
seen that a stack is required in order to implement this mechanism. The
6809 is equipped with two 16-bit stack-pointer registers: the hardware
stack, S, and the user stack, U. The subroutine call of the 6809 always
uses the hardware stack. This stack can reside anywhere within memory
and may have up to 64K (lK = 1024) bytes, assuming they are available
for that purpose. In practice, the programmer defines the start address
for the stack, as well as its maximum dimension, before writing the pro­
gram, so that some memory area is then reserved for the stack.

In the case of the 6809, there are two subroutine call instructions: JSR
and BSR. JSR ("jump to subroutine"), like the CALL previously described,
has the address of the subroutine to jump to, contained in the three-byte
instruction. However, BSR ("branch to subroutine"), differs from JSR in
the way the address of the beginning of the subroutine is obtained. In the
case of BSR, a number stored in the one or two bytes following the in­
struction opcode is added to the PC to form the value of the subroutine
starting address. A one byte number can branch only + 127 bytes or
-128 bytes from the program counter. A two byte number allows the

BASIC PROGRAMMING TECHNIQUES 97

program to branch to a subroutine anywhere in memory. This long
branch to a subroutine instruction is called LBSR.

The advantage that BSR and LBSR have over JSR is that if the whole
program is moved in memory, the branch to subroutine instructions will
still branch to the right address. This is because the start address is
calculated relative to the present value of the PC, a technique useful for
implementing programs stored in ROM. However, LBSR executes more
slowly than JSR.

There is only one return instruction which means return from
subroutine: RTS. This return instruction operates as previously described.
Additionally, there is a special type of return instruction available that is
used to terminate interrupt routines. This instruction, RTI, is described
in the sections on the 6809 instructions and interrupts.

Finally, there are three other specialized subroutine call instructions
which are analogous to a subroutine call. However, these instructions
store all the registers, except the hardware stack pointer and the return
address, on the stack. These instructions, called software interrupts
(SWI), jump to an address stored in the highest memory locations. They
are called software interrupts, because their action is the same as an
interrupt, however, this action is initiated by software. The three SWI
instructions are SWI, SWI2, SWI3.

The SWI instruction takes the PC for the beginning of the subroutine
from addresses FFF A:FFFB. The contents of these two memory locations
are then transferred to the PC. The new PC does not come from bytes
following the SWI instruction. SWI2 uses addresses FFF4:FFF5 to contain
the new PC; and SWl3 uses FFF2:FFF3.

Subroutine Examples

Most of the programs developed in this book would normally be written
as subroutines. For example, the division program is likely to be used by
many areas of the program. To facilitate and clarify program develop­
ment, it is, therefore, convenient to define a subroutine with a name (for
example, DIV88). At the end of the subroutine then, we would simply
add the instruction RTS.

Recursion

Recursion indicates that a subroutine is calling itself. Recursive
programs are not encountered very often. Their main application is in
artificial intelligence programming. We will not discuss recursion any
further in this book.

98 PROGRAMMING THE 6809

Subroutine Parameten

When calling a subroutine, it is normally expected that the subroutine
will work on some data. For example, in the case of multiplication, it
is necessary to transmit two numbers, or parameters, to the subroutine
that performs the multiplication. For example, the multiplication sub­
routine expects to find the multiplier and the multiplicand in given
memory locations. Using fixed memory locations illustrates one of
these three methods of passing parameters:

1. through registers

2. through memory

3. through the stack.

Let's now e�amine each method.

Passing Parometers

Registers are often used to pass parameters. This solution is the most
advantageous if registers are available, since a fixed memory location is
not needed; therefore, the subroutine remains memory-independent
The disadvantage of a fixed memory location is that when it is used, other
users of the subroutine must be careful to use the same convention. Also,
other users must make sure that the memory location is indeed
available. That is why, in many cases, a block of m�mory locations is
reserved simply for passing parameters among various subroutines.

Using memory to pass parameters offers greater flexibility, but results
in poorer performance. It also ties the subroutine to a given memory area.

Depositing parameters in the stack offers the same advantage as using
registers: it is memory-independent. The subroutine simply knows that
it is supposed to receive, say, two parameters which are stored on top of
the stack. Naturally, this method also has disadvantages. It clutters the
stack with data and, therefore, reduces the number of possible levels of
subroutine calls. It also significantly complicates the use of the stack,
and may require multiple stacks.

The choice is up to the programmer. Generally, it is advantageous to
remain independent from actual memory locations as long as possible.

If registers are not available, a possible solution is the stack. However,
if a large quantity of information must be passed to a subroutine, this
information may have to reside directly in the memory. An elegant way
around the problem of passing a block of data is simply to transmit a
pointer to the information. Recall that a pointer is the address of the

BASIC PROGRAMMING TECHNIQUES 99

beginning of the block. A pointer can be transmitted in a register, in the
stack (two-stack locations can be used to store a 16-bit address), or in a
given memory location(s).

Finally, if neither of the two solutions is applicable, then an agreement
may be made with the subroutine that the data will be put at some fixed
memory location (the "mail-box").

Subroutine Libra.ry

There are definite advantages to structuring portions of a program into
identifiable subroutines. For example, subroutines can be debugged
independently, and they can have a mnemonic name. Also, provided that
they can be used in other areas of the program, they become shareable. It
becomes advantageous to build a library of useful subroutines. However,
there is no general panacea in computer programming. Using sub­
routines systematically for any group of instructions that can be grouped
by function can result in poor efficiency. The alert programmer will
have to weigh the advantages against the disadvantages.

SUMMARY

In this chapter, we have described how information is manipulated by
instructions inside the 6809. We have introduced increasingly complex
algorithms, and translated them into programs. We have also examined
the main types of instructions and important structures, such as program
loops, stacks and subroutines.

By now you should have acquired a basic understanding of program­
ming, and the major techn�ques used in standard applications. Let's go
on to the next chapter and study the instructions available.

100 PROGRAMMING THE 6809

EXERCISES

3-1: Referring only to the list of instructions at the end of the book, write a pro­
gram that adds two numbers stored at memory locations LOCl and
LOC2, and deposits the results at memory location LOC3.

3-2: Rewrite the addition program in Exercise 3-1, using 16-bit numbers and
the memory layout indicated in Figure 3.6.

3-3: Refer to Figure 3.6. Assume now that ADR1 does not point to the lower
half of OPRl, but, instead, points to the higher port of OPR1, as il­
lustrated in Figure 3.7. Now, write the corresponding program.

3-4: Write an 8-bit subtraction program.

3-5: Rewrite the subtraction program you wrote in Exercise 3-4, for 16-bit
numbers, without using the specialized 16-bit instruction.

3-6: Can we place the DAA instruction in the 16-bit BCD addition program
after the instruction ST A ADR?

3-7: Compare the program in Exercise 3-6 to the one for the 16-bit binary addi­
tion. What is the difference?

3-8: In the packed BCD addition program, can register Y be incremented with
the ADCA instruction, instead of STA?

3-9: Write a subtraction program for a 16-bit BCD number.

3-10: Divide 28 by 4 in binary, using the flowchart, and verify that the result is
7. If the result is not 7, try again. It is only when you obtain the correct
result that you are ready to translate this flowchart into a program.

3-11: Is it really necessary to clear the quotient at the beginning of an 8-bit divi­
sion program?

3-12: Compute the speed of a division operation, using the improved 8-bit divi­
sion program. Assume that a branch wlll occur in 50% of the oases. Look
up the number of cycles required by each instruction in the appendix.
Assume a clock rate of 2 MHz (one cycle = 2.0 microseconds).

3-13: Write an 8 x 8 division program using the algorithm which subtracts the
divisor from the dividend, un til the divisor is larger than the dividend.
The quotient is incremented each time a subtraction is done. Compare it

BASIC PROGRAMMING TECHNIQUES 101

to the 8-bit division program in this chapter, and determine whether this
approach is faster or slower than the preceding one. The speeds of the
6809 instructions are given in the appendix.

3-14: Add a check for divide by zero to the 8 x 8 division program.

3-15: Make the 16 x 16 division program so that it can handle signed numbers.
(Hint: Be careful when complementing a 16-bit number.)

3-18: Refer to the defmition of the LDA LOC instruction in the next chapter.
Examine the effect, if any, of this instruction on the condition codes. Is it
necessary to have the second instruction of the program (CMPA $00)
illustrating logical operations?

3-17: Write a program that reads the contents of the memory location 24, and
branches to an address called ST AR, if there is a • in memory location 24.
The bit pattern for a • in binary notation is assumed to be represented by
00101010.

3-18: If DN88 is used as a subroutine, will it "damage" any internal flags or
registers?

3-tOr fa it legal to let a subroutine oall itself? (In other words, will everything
work even if a subroutine calls itself?) If you are not sure, draw the stock
and fill it with the successive addresses. Then, look at the registers and
memory and determine if a problem exists.

3-20: Look at the execution times of the JSR and RTS instructions in the next
chapter. Why is the return from a subroutine so much faster than the coll?
(Hint: if the answer is not obvious, look again at the stack implementation
of the subroutine mechanism, and analyze the internal operations that
must be performed.)

CHAPTER 4

103

THE 6809
INSTRUCTION SET

IN THIS CHAPTER, we will first analyze the various classes of in­
structions normally available on a general-purpose microcomputer. We
will then examine the variety of instructions that the 6809 offers in each
of these categories, and we will see how each of these instructions affects
the condition codes. We will also see these instructions used in various
addressing modes.

CLASSES OF INSTRUCTIONS

It is possible to classify instructions in a number of different ways;
there is no standard set of classifications. For the purpose of this discus­
sion, we will distinguish six main categories of instructions:

1. data transfers

2. data processing

3. data pointer

4. test and branch

5. input/output

6. control.

104 PROGRAMMING THE 6809

Data Transfers

Data transfer instructions transfer data between registers, between a
register and memory, and between a register and an input/output device.
Some registers even offer specialized transfer instructions that can be
used to organize data (for example, push and pull operations are provided
for efficient stack operation).

Data Processing

Data processing instructions modify data in the computer. These in-
structions fall into four general categories:

1. arithmetic operations (for example, plus, minus)

2. bit manipulation (for example, set, reset)

3. logical operations (for example, AND, OR, exclusive OR)

4. skew and shift operations (for example, shift, rotate).

Data Pointer

The data pointer instructions perform two tasks:

1. They can load 16-bit address registers from other registers.

2. They can add a number to the address register.

They are useful for establishing blocks of data space in a program during
execution.

Test and Branch

Test instructions test the bits in the condition code register for values
of 0 or1, and for combinations of these values. It is, therefore, desirable
to have as many flags as possible in this register.

It is useful to have instructions that will test for:

1. combinations of bits

2. a single bit position in a word

3. the value of a register compared to the value of a memory location
(greater than, less than, or equal to).

THE 6809 INSTRUCTION SET 105

Generally, microprocessor instructions are limited to testing single bits
of the flags register; in comparison to other processors, the 6809 offers
better test facilities than most.

Branch instructions generally fall into three categories:

1. the branch, which is restricted to an 8-bit displacement field

2. the long branch, which specifies a full 1�bit address

3. the branch to a subroutine, which is used for subroutine calls.

It is convenient to have two-or even three-way branches, depending, for
example, on whether one operand of a comparison is equal to, greater
than, or less than the other operand. It is also convenient to have skip
operations, that jump forward or backward by a few instructions. Note
that;i "skip" is equivalent to a "branch."

Input/Output

Input/output instructions are specialized instructions for handling
input/output devices. In practice, most 8-bit microprocessors use
memory-mapped I/O, whereby the input/output devices are connected
to the address bus in the same way that the memory chips are connected,
and they are addressed as such. (That is, they appear to the programmer
as memory locations.)

Memory-type operations (to the address of an I/O device) normally re­
quire 3 bytes and are, therefore, slow. For efficient input/output handling
in such an environment, it is usually desirable to have a short addressing
mechanism. It is possible to use direct page addressing, which requires
only two bytes, if the I/O device addresses are all on the same page of
memory.

C.Ontrol

Control instructions supply synchronization signals. These instruc­
tions can suspend or interrupt a program. They can also function as
breaks or simulated interrupts. (See Chapter 6 for a detailed description
of interrupts.)

THE 6809 INSTRUCTION SET

The 6809 microprocessor was designed as an improved version of the
6800, and, therefore, offers all of the capabilities of the 6800, plus several

106 PROGRAMMING THE 6809

new instructions. In view of the limited number of bits available in an
8-bit opcode, one often wonders how the designers of the 6809 succeeded
in implementing additional instructions. They did so by using a few unused
opcodes, and adding an additional byte for indexed operations and for
those operations that use 16-bit addresses and data. It is for this reason
that some of the 6809 instructions can occupy up to five bytes in memory.

In this section, we will review the various instructions of the 6809, we
will explore their capabilities, and group them into logical categories.
Let's first examine the capabilities provided by the 6809 in terms of the
five classes of instructions just described. Later, we will present an in­
dividual, in-depth description of each instruction.

Data Transfer Instructions on the 6809

We can classify the data transfer instructions on the 6809 into three
categories: 8-bit transfers, 16-bit transfers, and stack operations. Let's
examine each category.

B-Bit Data Transfers

Most 6-bit data transfers use load and store instructions to transfer
6-bit data between memory and the two accumulators. For example, the
instruction

LOA ADDR1

loads accumulator A from memory. Similarly,

STB AODR1

stores accumulator B in memory. To transfer data to and from the DP
and CC registers, we use the transfer register and the exchange register
instructions. The transfer instruction copies the contents of one register
to another. For example, the instruction

TFR A,DP

transfers the contents of A to the DP register. The exchange instruction
actually exchanges the contents of two registers. For example,

EXG A,B

copies the contents of B to A and of A to B.
There are several different addressing modes, immediat.e, direct, in­

dexed, and extended, that we can use to access the memory location used
in a load or store instruction. We discuss them in detail in Chapter 5.

16-Bit Data Transfers

THE 6809 INSTRUCTION SET 107

We can use the same instructions that we used for 8-bit transfers to
accomplish 16-bit data transfers. For example, we can use the load and
store instructions to load five 16-bit registers, D, X, Y, U, and S from
memory, or to store them in memory. We can also use the TFR instruc­
tion to transfer a 16-bit register to any other 16-bit register, including the
PC; and we can use the EXG instruction to exchange any two 16-bit
registers, including the PC. Note that by transferring a new value into
the PC, or by exchanging the PC with another register, we can cause the
program to continue execution at the memory location addressed by the
new value of the PC.

Stqck Operations

Recall from Chapter 3 that the stack operations move data between
the top of the stack and the registers. The 6809 has two stack instruc­
tions: PUSH and PULL. It has two stack pointers: the hardware stack
pointer, S, and the user stack pointer, U.

The registers to be pushed onto the stack are indicated in the byte
immediately following a stack instruction opcode. Each bit in this byte,
called the postbyte, indicates a register. When a bit is set, that register is
used in the stack operation (see Figure 4.1).

The stack pointer that we specify in the instruction opcode cannot be
pushed or pulled. The two instructions for the S stack pointer are PSHS
and PULS. PSHU and PULU are the two instructions for the U stack
pointer.

7 6 5 4 3 2 0

PC
I

u
I

y x
I

DP B
I

A
I

cc

Push Order -
Postbyte for S Stock Operations

7 6 5 4 3 2 0

PC s y
I

x
I

DP B
I

A
I

cc

Push Order-
Postbyte f<>< U Stock Operations

Figure 4.1: Postbytes for Stock Operations

108 PROGRAMMING THE 6809

Whenever an 8-bit register is pushed on a stack, the stack pointer is
decremented by 1. Whenever a 16-bit register is pushed on a stack, the
stack pointer is decremented by 2. The 16-bit push puts the low byte on
the stack first. Pull instructions are the same as push except, of course,
they increment the stack pointer.

Data Processing Operations on the 6809

We can classify data processing operations on the 6809 into four
categories: arithmetic, logical, skew and shift, and bit manipulation.
Let's examine each category.

Arithmetic

As we discussed in Chapter 3, the 6809 provides three main arithmetic
operations: addition, subtraction, and multiplication. Addition has two
types of instructions: with carry, ADC, and without, ADD. Similarly,
subtraction has two types of instructions: with carry, SBC, and without,
SUB. The 6809 also provides three special instructions: DAA, COM, and
NEG. The decimal addition adjust instruction, DAA, is used to implement
BCD operations-usually BCD addition and subtraction. COM and NEG
are two available complementation instructions. COM computes the
one's complement of an accumulator or memory location, and NEG
negates an accumulator or memory location into its complement format
(two's complement}. (Note: All of these instructions operate on 8-bit
data. 16-bit operations are more restricted: only ADD and SUB are
available on the D accumulator.} Finally, there are also increment and
decrement instructions available, which operate on the accumulators
and memory in 8-bit data format. We can increment or decrement the
index registers and stack pointers in 16-bit format, by using an auto­
increment or auto-decrement addressing mode.

In general, all arithmetic operations modify some of the condition
codes (see Appendix D}. It is important to note, however, that the INC
and DEC instructions, which operate on 8-bit accumulators and
memory locations, do not modify the C or carry bit. This means that if
we increment or decrement past the value 255, the C bit in the condition
codes register, CC, will not be changed. If it is necessary to detect a value
changing from positive to negative, or vice versa, we must test the N and
V bits.

Also, it is important to note that the ADD and ADC instructions
always affect all condition codes. This does not mean that all the condi­
tion codes will necessarily be different after their execution; however,
they might be.

Logical

THE 6809 INSTRUCTION SET 109

The 6809 provides three logical operations, AND, OR (inclusive) and
EOR (exclusive), plus a comparison instruction, CMP. The logical
operations operate on 8-bit data, and the CMP instruction operates on
8-or 16-bit data. Let's examine these operations.

AND Each logical operation is characterized by a truth table, which
expresses the logical value of the result as a function of the inputs. Here
is the truth table for AND.

0 AND 0 = 0

o AND 1 = 0

1 AND 0 = 0 or
1 AND 1 = 1

AND

I o
I 1

0 1

0 0

0 1

The AND operation is characterized by the fact that the output is 1, only
if both inputs are 1. In other words, if one of the inputs is 0, the result is
guaranteed to be O. This feature, called masking, is used to zero a bit posi­
tion in a word.

The AND instruction is useful for clearing or "masking out" one or
more bit positions in a word. Assume, for example, that we want to zero
the right-most, four-bit positions in a word. The program is:

LDA

ANDA

WORD WORD CONTAINS 10101010

%11110000 11110000 IS MASK

We assume that WORD is equal to 10101010. The result of this program
is to leave the value 10100000 in the accumulator. % is used to indicate a
binary value.

OH The OR instruction is the inclusive OR operation. It is characterized
by the following truth table:

0 OR O = o
o OR 1 = 1

1 OR O = 1 or
1 OR 1 = 1

OR

I o
I 1

0 1

0 1
1 1

The logical OR is characterized by the fact that if one of the operands
is 1, then the result is always 1. The obvious use of OR, then, is to set any
bit in a word to 1 .

Let's set the right-most, four bits of WORD to the value 1. The program is:

LDA WORD
ORA %00001111

110 PROGRAMMING THE 6809

Let's assume that WORD contains 10101010. The final value of the
accumulator is 10101111.

EOR EOR stands for "exclusive OR." The exclusive OR differs from
the inclusive OR in one respect: the result is 1 only if one, and only one,
of the operands is equal to 1. If both operands are equal to 1, then the
normal OR would give a 1 result The exclusive OR gives a O result. The
truth table is:

O EOR o = o
0 EOR 1 = 1

1 EOR O = 1 or
1 EOR 1 = o

EOR

I o
I 1

0 1

0 1

1 0

We can use the exclusive OR for comparisons. If any bit is different,
then the exclusive OR of two words will be non-zero. In addition, we can
use the exclusive OR to complement a word. We do this by performing
the EOR of a word using all 1s. The program appears below:

LDA WORD

EORA %11111111

Let's assume that WORD contains 10101010. The final value of the
accumulator is 01010101. We can verify that this is the complement of
the original value.

We can use EOR to advantage as a "bit toggle," i.e., the bits in the
accumulator will change or toggle each time an EOR is done, if the other
byte used does not change.

Skew Operations (Shift and Rotate)

It is necessary here to differentiate between the shift and rotate opera­
tions. In a shift operation, the contents of the register are shifted to the
left or right by one bit position. The bit falling out of the register goes into
the carry bit, C, and the bit coming in is zero.

One exception exists, however: arithmetic-shift-right. When we pe�
form operations on negative numbers in the two's complement format,
the left-most bit is the sign bit. In the case of negative numbers, it is 1.
When we divide a negative number by 2, by shifting it to the right, the
sign bit should remain negative, i.e., the left-most bit should remain a 1.
This is performed automatically by the ASR (arithmetic shift right)
instruction. With this instruction, the bit coming in on the left is iden­
tical to the sign bit. It is a 0 if the left-most bit was a 0, and a 1 if the left-most
bit was a 1. Figure 4.2 illustrates this.

THE 6809 INSTRUCTION SET 111

A rotation differs from a shift in that the bit corning into the register is
the one that will fall from the carry bit. The rotation is actually a 9-bit
operation. Figure 4.3 illustrates a 9-bit rotation. For example, in the case
of a right rotation, the 8 bits of the register are shifted right by one bit
position. The bit falling off the right part of the register goes, as usual, into
the carry bit. At this time, the bit coming in on the left end of the register
is the previous value of the carry bit (before it is overwritten with the bit
falling out). In mathematics this is called a 9-bit rotation, since the eight
bits of the register, plus the ninth bit (the carry bit), are rotated right by
one bit position. Conversely, the left rotation accomplishes the same
result in the opposite direction.

Bit Manipulation
.

We have shown previously how we can use the logical operations to
set or reset bits or groups of bits, in accumulators or memory. We can

..

c

L--------------Figure 4.2: Arithmetic Shift Right

7 0 c

RIGIT ri....----------' �°J
7 0 c

I· °l
'----------------- Figure 4.3: �Bit Rotation

112 PROGRAMMING THE 6809

also use two special instructions for operating on the condition codes
register: ANDCC and ORCC. These two instructions perform the logical
operations specified on the condition codes register, using the byte
immediately following the instruction, as the mask. In this way, bits in
CC may be cleared or set. Only the immediate mode of addressing is
available with these instructions.

Finally, the bit test instruction, BIT, sets the condition codes from the
result of ANDing an accumulator and an 8-bit memory location. In the
bit test instruction, neither the accumulator nor the memory location is
changed. The AND operation takes place and changes the condition code
bits, but not the bytes being tested.

Data Pointer Instructions on the 8809

The load effective address (LEA) instruction is the data pointer
instruction on the 6809. This instruction loads four address registers: X,
Y, S, and U. The four forms of this instruction are: LEAX, LEAY, LEAS,
and LEAU. Each address register is loaded from another (or the same)
address register. At the same time, a number specified in the instruction,
or one of the accumulators, A, B, or D, is added to the destination
register. This sets the address register to point to an address. The LEA
instruction actually loads the address, not the data pointed to by the
address register.

We can easily define blocks of data relative to other addresses during
the execution of a program, by using the LEA instruction. We discuss
this instruction further in Chapter 5.

Test and Branch Operations on the 8809

Since testing operations rely heavily on the use of the condition code
register, we will now describe the role of each of the condition code bits.
Figure 4.4 shows the contents of the condition code register.

F°ISW"' 4.4: The Condition Code Regiater------------'

THE 6809 INSTRUCTION SET 113

C is the carry bit, V is overflow, Z is zero, and N is negative. Bits 4, 6,
and 7 are used with interrupts. The code H is used for BCD arithmetic
and cannot be tested directly. The other four codes (C, V, Z, N) can be
tested in conjunction with conditional branch instructions. We will
now describe the role of each condition code bit.

Carry(C)
In the case of nearly all microprocessors, and of the 6809 in particular,

the carry bit assumes a dual role. First, it is used to indicate if an addition
or subtraction operation has resulted in a carry (or borrow}. Second, it is
used as a ninth bit in the case of shift and rotate operations. Using a
single bit to perform both roles facilitates some operations, such as
a division operation. This should be clear from the description of division
operations given in Chapter 3.

When learning to use the carry bit, it is important to remember that all
arithmetic operations either set or reset it, depending on the result of the
instructions. Similarly, all shift and rotate operations use the carry bit
and either set or reset it, depending on the value of the bit coming out of
the word.

In the case of logical instructions, we can use ANDCC and ORCC to
directly reset or set the carry bit. Instructions which affect the carry bit
are: ADD, ADC, SUB, SUBC, ANDCC, ORCC, ASL, ASR, LSL, LSR,
ROL, ROR, CLR, CMP, COM, NEG, DAA, and MUL. Also, some data
transfer instructions and control instructions, including PULS, PULU,
TFR, EXG, RTI, and CWAI, affect the C bit, and all other condition code
bits, because they load the condition code register.

OverjJ.ow (VJ

We described the overflow flag in Chapter 1, when we introduced the
two's complement notation. The overflow flag detects the fact that,
during an addition or subtraction, the sign of the result was "acciden­
tally" changed, due to the overflow of the result into the sign bit. (Recall
that, using an 8-bit representation, the largest positive number and the
smallest negative number in two's complement are +127 and -128,
respectively.}

The V condition code bit is affected by ADC, ADD, ASL, CMP, DEC,
INC, LSL, NEG, ROL, SBC, and SUB. The following instructions always
reset the V bit: AND, OR, BIT, CLR, COM, EOR, LD, SEX, ST, and TST.
The state of the V bit is undefined for the DAA instruction.

114 PROGRAMMING THE 6809

The Half-Carry Bit (HJ

The half-carry flag indicates a possible carry from bit 3 into bit 4 during
an addition operation. In other words, it represents the carry from the
low-order nibble (group of 4 bits) into the high-order nibble. Clearly,
the half-carry flag is primarily used for BCD operations. In particular, it
is used internally by the decimal addition adjust (DAA) instruction, in
order to adjust the result to its correct value.

The half-carry flag is set during an 8-bit addition, when there is a carry
from bit 3 to bit 4; it is reset when there is no carry. A 1&bit addition does
not affect the H bit.

The 8-bit ADD and ADC instructions affect the H bit. The ASL, ASR,
NEG, SBC, and the 8-bit forms of the CMP and SUB instructions leave
the H bit updefined.

Zero (ZJ

The Z condition code bit indicates whether or not the value of a byte
which has been computed or is being transferred, is zero. The Z condition
code bit is often used with comparison instructions to indicate a match.

In the case of an operation resulting in a zero result, or in the case of a
data transfer, the Z bit is set to 1 whenever the byte, or 1&bit word, is
zero. Otherwise, Z is reset to 0.

The following instructions condition the value of the Z bit: ADC,
ADD, AND, OR, ASL, ASR, BIT, CMP, COM, DAA, DEC, EOR, INC,
LO, NEG, ST, TST, LEAX, LEAY, LSL, LSR, MUL, SEX, ROL, ROR,
SBC, and SUB. The CLR instruction always sets the Z bit.

Negative (N}

This condition code bit reflects the value of the most significant bit of
a result, or of a byte (or 1&bit data) being transferred. In two's comple­
ment notation, the most significant bit represents the sign: O indicates a
positive number, and 1 indicates a negative number. As a result, bit 7 (or
bit 15, for 1&bit numbers) is called the negative bit.

In most microprocessors, the sign bit plays an important role when
communicating with input/output devices, because it is usually the most
convenient bit to test. When examining the status of an input/output
device, reading the status register automatically conditions the negative
bit, which is then set to the value of bit 7 of the status register and can be
conveniently tested by the program. This is why the status register of
most input/output chips connected to microprocessor systems have
their most important indicator (usually ready/not ready) in bit position 7.

THE 6809 INSTRUCTION SET 115

The following instructions affect the negative bit: ADC, ADD, AND,
OR, ASL, ASR, BIT, CMP, COM, DAA, DEC, EOR, INC, LD, ST, TST,
LSL, SEX, NEG, ROL, ROR, SBC, and SUB. The CLR and LSR instruc­
tions always clear the N bit.

Summary of the Condition Code Bits

The condition code bits automatically detect special conditions
within the ALU of the microprocessor. We can conveniently test them
by using specialized instructions-so that specific actions can be taken
in response to the condition detected. It is important to understand
the role of the various indicators available, since most decisions made
within the program are determined by the value of these condition
code bits. All branches executed within a program jump to specified
locations, depending on the status of these bits. The only exception
involves the interrupt mechanism (described in Chapter 6), which may
cause jumping to specific locations whenever a hardware signal is
rocoivcd on specialized pins of the 6809.

At this point, it is only necessary to remember the main function of
each bit. When programming, you may want to refer to the description
of each instruction in this chapter to verify its effect on the various
condition code bits. Most bits can be ignored most of the time, and if you
are not yet familiar with them, you should not feel intimidated by their
apparent complexity. Their use will become more clear as you continue
to examine other application programs.

The Branch Instructions on· the 6809

A branch instruction causes a forced branching to a specified program
address. It changes the normal flow of program execution from a
sequential mode into one where a different segment of the program is
suddenly executed. Branches may be conditional or unconditional. An
unconditional branch is one where the branching occurs to a specific
address, regardless of any other condition. A conditional branch is one
where the branching occurs to a specific address only if one or more
conditions are met. This is the type of jump instruction used to make
decisions based upon data or computed results.

To describe conditional branch instructions, it is necessary to under­
stand the role of the condition code register (explained in the preceding
section), since all branching decisions are based upon these condition
bits. We will now examine, in more detail, the branch instructions
provided by the 6809.

116 PROGRAMMING THE 6809

The two main types of branch instructions provided by the 6809 are
branch instructions within the main program (called branches), and the
special branch instructions used to jump to and from a subroutine USR,
BSR, and RTS). As a result of any branch instruction, the program
counter (PC) is reloaded with a new address, and the usual program
execution resumes from that point on. The full power of branch instruc­
tions can be understood only in the context of the various addressing
modes provided by the microprocessor. (We cover this topic in Chapter 5
when we discuss addressing modes.) We will only consider here the
other aspects of these instructions.

Branches may be either unconditional (always branching to a
specified memory address) or conditional. In the case of a conditional
branch, one or more of the four condition code bits, the Z, C, V, and N
bits, may be tested for the value O or 1.

The conesponding abbreviations for the individual bits are:

BCC = carry clear

BCS = carry set

BEQ = equal to zero

BNE = not equal to zero

BMI = minus

BPL = plus

BVC = overflow clear

BVS = overflow set

(C = O)

(C = 1)

(Z = 1)

(Z = 0)

(N= 1)

(N = O)

(V = 0)

(V = 1)

There are several branch instructions which test for combinations of
the condition code bits. These are frequently used after a compare
(CMP) instruction. Here are the abbreviations for these conditional
branch instructions:

BGE = greater than or equal to

BGT = greater than

BHI = higher

BLE = less than or equal to

BLS = lower or same

BL T = less than

There are two branch instructions that have the same opcodes as

THE 6809 INSTRUCTION SET 117

other branch instructions, and are available in the assembler. (This was
done for the convenience of the programmer.J 'fhese two instructions
are:

BHS = higher or same

BLO = lower

duplicates BCC

duplicates BCS

Even though the same opcode is executed, it is sometimes convenient to
give two instruction names to one opcode.

The unconditional branch instruction is BRA (branch always). BRN is
the "branch never" instruction, which never branches. It is really a null
operation.

The availability of conditional branches is a powerful resource in a
computer, although this resource is generally not provided on most 8-bit
microprocessors. This resource does, however, improve the efficiency of
programs by implementing in a single instruction what normally would
require two instructions. There is, however, one drawback to branch in­
structions on most computers: The address specified with the branch
instruction is only one byte in length. This byte is added to the PC to obtain
the new address. This means that a branch may move the PC only 127
bytes forward or 128 bytes backwards from the location of the branch
instruction. Branching farther is not possible. However, the 6809 does
have special long-branch instructions.

The long-branch has a 16-bit address specified with the instructions.
When added to the PC, branching is allowed to any of the 65,536
memory locations on the 6809. This type of branch instruction removes
the need to branch to a jump instruction (JMP). We form the assembly
language mnemonic for a long-branch instruction by adding the letter L
in front of a branch instruction mnemonic. The opcodes for long­
branches are different from their corresponding short-branch instruc­
tions. See Appendix D for a list of opcodes.

Finally, a special return instruction, RTI, is provided in the case of
interrupt routines. Chapter 6 will discuss this instruction in detail.

One more type of specialized branch is available: the software inter­
rupt (SWn instruction. Recall that the SWI instruction is a single instruc­
tion which s(lves all of the registers on the hardware stack S and then
performs a jump by fetching a new PC from one of three addresses at the
high end of memory. The three possible locations for the byte pairs
which form the new PC are: (FFF A):(FFFB), (FFF4):(FFF5), and
(FFF2):(FFF3). SWI is a powerful instruction, because it saves the entire
machine state. It is frequently used to jump to a special program, which
starts and completes other programs in the computer.

118 PROGRAMMING THE 6809

Input/Output Instructions on the 6809

We can address input/output devices in one of two ways: as memory
locations {using any one of the instructions described previously), or by
using specific input/output instructions. Chapter 6 will examine
input/output techniques in detail. The 6809 has no special instructions
devoted to input/output. Usual memory addressing instructions use
three bytes: one for the opcode and two for the address. As a result, these
instructions execute slowly, since they require three memory accesses.
However, if we use the special "direct page" addressing mode, where
the address is formed by the direct page register and a byte in the instruc­
tion, then the instructions to access an input/output device need only be
two bytes in length. This allows faster execution.

Control Instructions on the 6809

Control instructions modify the operating mode of the CPU and
manipulate its internal status information. The 6809 provides three
control instructions: NOP, SYNC, and CWAI.

The NOP instruction is a nCHJperation instruction which does nothing
for two cycles. It is typically used either to introduce a deliberate delay
{2 cycles = 2 microseconds with a 4MHZ crystal) or to fill the gaps created
in a program during the debugging phase. The opcode of the NOP in­
struction is 12 hexadecimal. Executing NOPs does not cause damage
nor stop program execution.

The SYNC instruction is used in conjunction with interrupts. It ac­
tually suspends the operation of the CPU and puts the data and address
buses into a high impedance state. The CPU then resumes operation
whenever an interrupt signal is received. A sync is often placed at the
end of a program during the debugging phase, as there is usually nothing
else to be done by the main program. The program must be explicitly
restarted when a SYNC is used.

Finally, the last control instruction is clear condition code bits and
wait for an interrupt (CW Al). This instruction ANDs an immediate byte
with the condition code register, which may clear any bit, stores all the
registers on the hardware stack, and then waits for an interrupt. When
an interrupt occurs, the machine state need not be saved before servicing
the interrupt. Note that the data and address buses are not put in the high
impedance state, as they were during the SYNC instruction.

SUMMARY

We have now described the six categories of instructions available on
the 6809. Specific details on the individual instructions are presented in

THE 6809 INSTRUCTION SET 119

the following section of this chapter. I t is not necessary to understand
the role of each instruction in order to start programming. At the begin­
ning, it is sufficient to know a few essential instructions of each type;
however, as you begin writing your own programs, you will want to learn
all the instructions on the 6809, so that you can make your programs as
efficient as possible.

We have not yet described one important aspect of programming: the
addressing techniques implemented on the 6809 that facilitate data
retrieval within the memory space. We will cover these addressing
techniques in the next chapter.

EXERCISES

4-1: Write a three-line program that zeroes bits 1 and 6 of WORD.

4-2: What will happen if we use a MASK equaling 11111111 with an AND in­
struction?

4-3: What will happen if we use the instruction ORA %10101111 and A con­
tains 10101111?

4-4: What is the effect of ORing with FF hexadecimal?

4-5: What is the effect of EOR, if we use a register with 00 hexadecimal, instead
of 11111111, to complement a byte?

120 PROGRAMMING THE 6809

THE 6809 INSTRUCTIONS:

INDIVIDUAL DESCRIPTIONS

Abbreviations and Symbols for Instruction Descriptions

Flags

x - Flag changed according to operation or result of instruction
- Flag unchanged (space)

0 - Flag cleared by instruction
1 - Flag set by instruction
? - Flag unpredictably changed by instruction

Notation

A, B, D, X, Y, S, U, PC, DP, CC - registers
ACCX - either A or B
RR - 16-bit register (D, X, Y, U, S)
._ - data transfer
._ - - exchange data
M - byte memory operand of valid type for given instruction
MM - 16-bit memory operand
ADDRM- Address of M or MM
N - 8-bit immediate mode operand
NN - 16-bit immediate mode operand
-high - most significant byte of 16-bit register
-low - least significant byte of 16-bit register
< - direct addressing mode
> - extended addressing mode
/\ - AND function
V - OR function
(XOR) - exclusive OR function

(Note: All of the numbers used in instruction examples are in hexa­
decimal notation.)

THE 6809 INSTRUCTION SET 121

-@)-Add Accumulator B into Index Register X-

Mnemonic: ABX

Function: X - X + B

Description: The unsigned 8-bit contents of accumulator B are
added into index register X.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing
mode: inherent

Example: ABX
before:
X:$8006
B:$CE

after:

X:$80D4
B:$CE

122 PROGRAMMING THE 6809

-@ID-Add with Carry into Accumulator ---

Mnemonics: ADCA M; ADCB M

Function: ACCX - ACCX + M + C

Description: The carry bit and the memory operand are added into
the specified accumulator.

Condition
codes:

Addressing

E F H I N Z V C

I I lxl lxlxlxl xl

modes: immediate

Example:

extended
direct
indexed

ADCA ,X
before:

X:$3C50
A:$14
CC:$0B
$3C50:$22

after:

X:$3C50
A:$37
CC:$00
$3C50:$22

THE 6809 INSTRUCTION SET 123

ADD ea-bit) Add Memory into Accumulator-

Mnemonics: ADDA M; ADDB M

Function: ACCX - ACCX + M

Description: The 8-bit memory operand is added into the
specified accumulator.

Condition
codes:

Addressing

E F H I N Z V C

I I lxl lxlxlxlx l

modes: immediate

Example:

extended
direct
indexed

ADDB >$55FE
before:

B:$F2
CC:$13
$55FE:$39

after:

B:$2B
CC:$11
$55FE:$39

124 PROGRAMMING THE 6809

ADD c1s-bu) Add Memory into Accumulator --

Mnemonic: ADDD MM

Function: D - D + M M

Description: The 16-bit memory operand is added into the D
accumulator.

Condition
codes:

Addressing

E F H I N Z V C

I I I I Ix Ix Ix Ix I

modes: immediate

Example:

extended
direct
indexed

ADDD #$322
before:
D:$OOOF
CC:$00

after:

D:$0331
CC:$00

THE 6809 INSTRUCTION SET 125

�AND Memory into Accumulator ----

Mnemonics: ANDA M; ANDB M

Function: ACCX - ACCX /\ M

Description: The contents of the memory operand and the
specified accumulator are logically ANDed; the result
is stored in the source accumulator.

Condition
codes:

Addressing

E F H I N Z V C

I I I I Ix Ix I o I I

modes: immediate

Example:

extended
direct
indexed

ANDA <EF
before:

A:$8B
DP:$7E
CC:$32
$7EEF:$0F

after:

A:$0B
DP:$7E
CC:$30
$7EEF:$0F

126 PROGRAMMING THE 6809

� AND Immediate Data into Condition Code­� Register

Mnemonic:

Function:

Description:

Condition
codes:

Addressing

ANDCC #N

cc - CCl\N

The condition code register is logically ANDed to
the immediate data byte; the result is stored in the
condition code register. This instruction may be
used to clear a specific bit, e.g., an interrupt mask.

E F H I N Z V C

l ?l?l?l?l?l?l?l?I
(Changed according to operand.)

mode: immediate

Example: ANDCC #$AF
before:
CC:$79

after:

CC:$29

THE 6809 INSTRUCTION SET 127

�Arithmetic Shift Left -------

Mnemonics: ASLA; ASLB; ASL M

Function: operand{A, B, or M)

c- I I I 1 1 I I I l -0

b7 - bo

Description: All of the bits in the operand are shifted left by one
position. Bit 7 is transferred to the carry bit; bit 0
becomes a zero.

Condition
codes:

Addressing
modes:

Example:

E F H I N Z V C

I I l?I lxlxlx Ix I

inherent
extended
direct
indexed

ASLB
before:

B:$A5
CC:$04

t L_ set to bit 7 of original L_ operand.
b7 {xor) b6 (bits of
original operand.)

after:

B:$4A
CC:$03

128 PROGRAMMING THE 6809

�Arithmetic Shift Right------

Mnemonics: ASRA; ASRB; ASR M

Function: '---= operand(A, B, or M)

�1 1 1 1 1 1 1 1 - c

b7 - bo
Descriptidn: All of the bits in the operand are shifted right by one

position. Bit 0 is transferred to the carry bit; bit 7 re­
mains unchanged (this allows the shift to be used on
signed binary numbers).

Condition
codes: E F H I N Z V C

I I I? I Ix Ix I Ix I
l Bit zero of original operand.

Addressing
modes: inherent

extended
direct
indexed

Example: ASR >$1A04
before:
CC:$00
$1A04:$E5

after:

CC:$09
$1A04:$F2

THE 6809 INSTRUCTION SET 129

�Brunch on Carry Clear·------

Mnemonics: BCC N; LBCC NN

Function: IfC=O then: PC - PC + N (or) PC - PC + NN

Description: If the C bit is clear, then a PC relative branch is ex­
ecuted. The short branch can access any instruction in
the range + 129 to -126 bytes, relative to the first byte
of the branch instruction. The long branch can access
any instruction in the 64K memory area.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing
mode: relative

130 PROGRAMMING THE 6809

�Branch on Carry Set-------

Mnemonics: BCS N; LBCS NN

Function:

Description:

Condition
codes:

Addressing

If C = l then: PC - PC + N (or) PC - PC + NN

If the carry bit is set, then a PC relative branch is exe­
cuted. The short branch can access any instruction
in the range + 129 to - 126 bytes, relative to the first
byte of the branch instruction. The long branch can
access any instruction in the 64K memory area.

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

THE 6809 INSTRUCTION SET 131

�Branch on Equal---------

Mnemonics: BEQ N; LBEQ NN

Function: If Z=l then: PC - PC + N (or) PC - PC + NN

Description: If the zero bit is set, then a PC relative branch is ex­
ecuted. This condition is true after a subtract or
compare on any binary values, if the register was the
same as the memory operand. The short branch can
access any instruction in the range + 129 to -126
bytes, relative to the first byte of the branch instruc­
tion. The long branch can access any instruction in
the 64K memory area.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing
mode: relative

132 PROGRAMMING THE 6809

�Bronch on Greater Than or Equal To---

Mnemonics: BGE N; LBGE NN

Function: If(N (XOR)V)=Othen: PC - PC + N(or)
PC - PC + NN

Description: If the N and V bits are either both set or both clear,
then PC relative branch is executed. These conditions
are true after a subtract or compare on two's comple­
ment values if the register was greater than or equal
to the memory operand. The short branch can access
any instruction in the range + 129 to -126 bytes,
relative to the first byte of the branch instruction.
The long branch can access any instruction in the
64K memory area.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing
mode: relative

THE 6809 INSTRUCTION SET 133

--@!)-Branch on Greater Than------

Mnemonics: BGT N; LBGT NN

Function:

Description:

Condition
codes:

Addressing

If Z /\ (N (XOR) V)=O then: PC - PC + N (or)
PC - PC + NN

If the N and V bits are either both set or both clear
and the Z bit is clear, then a PC relative branch is ex­
ecuted. These conditions are true after a subtract or
compare on two's complement values if the register
was strictly greater than the memory operand. The
short branch can access any instruction in the range
+ 129 to - 126 bytes, relative to the first byte of the
branch instruction. The long branch can access any
instruction in the 64K memory area.

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

134 PROGRAMMING THE 6809

�Branch on Higher--------

Mnemonics: BHI N; BHI NN

Function: If (CVZ)=O then: PC - PC + N (or)
PC - PC + NN

Description: If the C and Z bits are both clear, then a PC relative
branch is executed. These conditions are true after a
subtract or compare on unsigned values if the
register was strictly greater than the memory
operand. The short branch can access any instruc­
tion in the range + 129 to -126 bytes, relative to the
first byte of the branch instruction. The long branch
can access any instruction in the 64K memory area.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing
mode: relative

THE 6809 INSTRUCTION SET 135

�Branch on Higher or Same------

Mnemonics: BHS N; BHS NN

Function: If C = O then: PC - PC + N (or) PC - PC + NN

Description: If the C bit is clear, then a PC relative branch is ex­
ecuted. This is a duplicate mnemonic for the BCC
instruction. The short branch can access any in­
struction in the range + 129 to -126 bytes, relative
to the first byte of the branch instruction. The long
branch can access any instruction in the 64K
memory area.

Condition
codes:

Addressing

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

136 PROGRAMMING THE 6809

�Test Bits----------

Mnemonics: BITA M; BITB M

Function: ACCXAM

Description: The specified accumulator and the memory operand
are logically ANDed and the result is discarded. Only
the condition code bits are affected; neither operand
is affected.

Condition
codes: E F H I N Z V C

I I I I Ix Ix I o I
Addressing
modes: immediate

extended
direct
indexed

THE 6809 INSTRUCTION SET 137

�Branch on Less than or Equal to ----

Mnemonic: BLE N; LBLE NN

Function: If Z V (N (XOR) V) = 1 then: PC - PC + N (or)
PC - PC + NN

Description: If either, but not both, of the N and V bits is set, or if
the Z bit is set, then a PC relative branch is executed.
These conditions are true after a subtract or compare
on two's complement values, if the register was less
than or equal to the memory operand. The short
branch can access any instruction in the range + 129
to -126 bytes, relative to the first byte of the branch
instruction. The long branch can access any instruc­
tion in the 64K memory area.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing
mode: relative

138 PROGRAMMING THE 6609

�Branch on Lower --------

Mnemonics: BLO N; LBLO NN

Function: If C = 1 then: PC - PC + N (or) PC - PC + NN

Description: If the carry bit is set, then a PC relative branch is exe­
cuted. This condition is true after a subtract or com­
pare on unsigned values, if the register was strictly
lower than the memory operand. This is a duplicate
mnemonic for the BCS instruction. The short branch
can access any instruction in the range + 129 to
-126 bytes, relative to the first byte of the branch in­
struction. The long branch can access any instruction
in the 64K memory area.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing
mode: relative

THE 6809 INSTRUCTION SET 139

-@)---Branch on Lower or Same------

Mnemonics: BLS N; LBLS NN

Function: If (CVZ)=l then: PC - PC + N (or)
PC - PC + NN

Description: If either or both of the C or Z bits is set, then a PC
relative branch is executed. These conditions are
true after a subtract or compare on unsigned values,
if the register was lower than or the same as the
memory operand. The short branch can access any
instruction in the range + 129 to - 126 bytes, relative
to the first byte of the branch instruction. The long
branch can access any instruction in the 64K
memory area.

Condition
codes:

Addressing

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

140 PROGRAMMING THE 6809

�Branch on Less Than--------

Mnemonics: BLT N; LBLT NN

Function: If (N (XOR) V) = 1 then: PC - PC + N (or)
PC - PC + NN

Description: If either, but not both, of the N and V bits is set, then a
PC relative branch is executed. This condition is true
after a subtract or compare on two's complement
values, if the register was strictly less than the
memory operand. The short branch can access any
instruction in the range + 129 to -126 bytes, relative
to the first byte of the branch instruction. The long
branch can access any instruction in the 64K
memory area.

Condition
codes:

Addressing

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

THE 6809 INSTRUCTION SET 141

�Branch on Minus---------

Mnemonics: BMI N; LBMI NN

Function: If N = 1 then: PC - PC + N (or) PC - PC + NN

Description: If the N bit is set, then a PC relative branch is executed.

Condition

This condition is generally true after an operation, if
the sign bit of the result was set. It is preferable to use
the BL T instruction when testing two's complement
results. The short branch can access any instruction
in the range + 129 to -126 bytes, relative to the first
byte of the branch instruction. The long branch can
access any instruction in the 64K memory area.

codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing
mode: relative

142 PROGRAMMING THE 6809

�Branch on Not Equal-------

Mnemonics: BNE N; LBNE NN

Function:

Description:

Condition
codes:

Addressing

If Z=O then: PC +- PC + N (or) PC - PC + NN

If the Z bit is clear, then a PC relative branch is exe­
cuted. This condition is true after a subtract or
compare on any binary values, if the register was not
equal to the memory operand. The short branch can
access any instruction in the range + 129 to -126
bytes, relative to the first byte of the branch instruc­
tion. The long branch can access any instruction in
the 64K memory area.

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

THE 6809 INSTRUCTION SET 143

�Branch on Plus---------

Mnemonics: BPL N; LBPL NN

Function:

Description:

Condition
codes:

Addressing

If N=O then: PC - PC + N (or) PC - PC + NN

If the N bit is clear, then a PC relative branch is ex­
ecuted. This condition is generally true after an
operation, if the sign bit of the result was clear. It
is preferable to use the BGE instruction on two's
complement results. The short branch can access
any instruction in the range + 129 to -126 bytes,
relative to the first byte of the branch instruction.
The long branch can access any instruction in the
64K memory area.

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

144 PROGRAMMING THE 6809

�Branch Always---------

Mnemonics: BRA N; LBRA NN

Function: PC - PC + N (or) PC - PC + NN

Description: A PC relative branch is unconditionally executed.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing
mode: relative

THE 6809 INSTRUCTION SET 145

�Branch Never----------

Mnemonics: BRN N; LBRN NN

Function: No operation.

Description: No branch is executed. This instruction is, essentially,
a NOP and is included to maintain the symmetry of
the instruction set.

Condition
codes:

Addressing

E F H I N Z V C

, I I I I I I I I I
(no change)

mode: relative

146 PROGRAMMING THE 6809

�Bronch to Subroutine--------

Mnemonics: BSR N; LBSR NN

Function:

Description:

Condition
codes:

Addressing

S - S - 1 ; (S) - PC-low
S - S - 1 ; (S) - PC-high
PC - PC + N (or) PC - PC + NN

The program counter is pushed onto the hardware
stack and a PC relative branch is executed. The RTS
(return from subroutine) instruction reverses this
procedure and returns control to the instruction
following the BSR instruction. The short branch can
access any instruction in the range + 129 to -126
bytes, relative to the first byte of the branch instruc­
tion. The long branch can access any instruction in
the 64K memory area.

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

THE 6809 INSTRUCTION SET 147

�Branch on Overflow Clear ------

Mnemonics: BVC N; LBVC NN

Function:

Description:

Condition
codes:

Addressing

If V=O then: PC - PC + N (or) PC - PC + NN

If the V bit is clear, then a PC relative branch is exe­
cuted. This condition is true after an operation of
two's complement values, if the result was valid, i.e.,
there was no overflow. The short branch can access
any instruction in the range + 129 to -126 bytes,
relative to the first byte of the branch instruction.
The long branch can access any instruction in the
64K memory area.

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

148 PROGRAMMING THE 6809

�Branch on Overflow Set -------

Mnemonics: BVS N; LBVS NN

Function:

Description:

Condition
codes:

Addressing

If V=l then: PC - PC + N (or) PC - PC + NN

If the V bit is set, then a PC relative branch is ex­
ecuted. This condition is true after an operation on
two's complement values, if the result was invalid,
i.e. there was an overflow. The short branch can ac­
cess any instruction in the range + 129 to - 126
bytes, relative to the first byte of the branch instruc­
tion. The long branch can access any instruction in
the 64K memory area.

E F H I N Z V C

I I I I I I I I I
(no change)

mode: relative

THE 6809 INSTRUCTION SET 149

�Clear-------

Mnemonics: CLRA; CLRB; CLR M

Function: ACCX - 0 (or) M - 0

Description: The specified operand is cleared to 0. Note: A
memory operand will be read before being cleared.
This may have significance in non-memory (i.e., UO)
accesses.

Condition
codes: E F H I N Z V C

I I I I lo I 1 I o I o I

Addressing
modes: inherent

Example:

extended
direct
indexed

CLR >$F23
before:

$0F23:$E2

after:

$0F23:$00

150 PROGRAMMING THE 6809

-{ CMP (8-bit) }compare Memory from Accumulator

Mnemonics: CMPA M; CMPB M

Function: ACCX - M

Description: The memory operand is subtracted from the
specified accumulator, and the result is discarded.
Only the condition code bits are affected; neither
operand is affected.

Condition
codes: E F H I N Z V C

Addressing

I I j ?j jxj xjxjxj

modes: immediate

Example:

extended
direct
indexed

CMPA #6
before:
A:$05
CC:$52

after:
A:$05
CC:$59

THE 6809 INSTRUCTION SET 151

-(CMP {16-hit) }compare Memory from Register -

Mnemonics: CMPD MM; CMPX MM; CMPY MM;
CMPU MM; CMPS MM

Function: RR - MM

Description: The 16-bit memory operand is subtracted from the
specified register and the result is discarded. Only
the condition code bits are affected; neither the
memory operand nor the register is affected.

Condition
codes: E F H I N Z V C

I I I I Ix Ix Ix Ix I

Addressing
modes: immediate

Example:

extended
direct
indexed

CMPX >$3B33
before:

X:$5410
CC:$23
$3B33:$54
$3B34:$10

after:

X:$5410
CC:$24
3B33:$54
3B34:$10

152 PROGRAMMING THE 6809

�Complement----------

Mnemonics: COMA; COMB; COM M

Function: ACCX - ACCX (or) M - M

Description: The operand byte is replaced by its logical or one's
complement.

Condition
codes: E F H I N Z V C

I I I I I xl x I o I 1 I

Add.ressing
modes: inherent

Example:

extended
direct
indexed

COM $E,Y
before:

Y:$03F2
CC:$04
$0400:$9B

after:

Y:$03F2
CC:$01
$0400:$64

THE 6809 INSTRUCTION SET 153

--(" CWAI)-clear CC bits and Wait for Interrupt-

Mnemonic: CWAI #N

Function: CC - CC/\N
E - 1
S - S - 1 ; (S) - PC-low
S - S - 1 ; (S) - PC-high
S - S - 1 ; (S) - U-low
S - S - 1 ; (S) - U-high
S - S - 1 ; (S) - Y-low
S - S - 1 ; (S) - Y-high
S - S - 1 ; (S) - X-low
S - S - 1 ; (S) - X-high
S - S - 1 ; (S) - DP
S - S - 1 ; (S) - B
S - S - 1 ; (S) - A
S - S - 1 ; (S} - CC

Description: The immediate byte operand is logically ANDed
with the condition code register. This action may
clear specific bits, e.g., the interrupt masks. The E bit
is set next. Then the entire processor state is saved on
the hardware stack, and the processor waits for an
interrupt. An RTI instruction will restore the entire
processor state upon finding the E bit set in the
recovered condition code register.

Condition
codes: E F H I N Z V C

l?l?l?l?l?l?l?l?I
(Changed according to operand}

Addressing
mode: immediate

154 PROGRAMMING THE 6609

�Decimal Addition Adjust-------

Mnemonic: DAA

Function: A - A + Correction
Correction:

Description:

Condition
codes:

Addressing
mode:

Example:

Least Significant Nibble:
6: if H=1, or if LSN>9
O: otherwise

Most Significant Nibble:
6: if C=1, or ifMSN>9, or if MSN>8 and LSN>9
0: otherwise

The appropriate correction factor is computed based
on the values of the most significant nibble of A
(MSNA), the least significant nibble of A (LSNA),
and the condition code bits. It is then added to A.
This instruction may be used after the addition of
two BCD numbers to assure a proper BCD result.
The carry bit generated by this instruction is the
correct carry of the BCD addition.

E F H I N Z V C

I I I I I xl x I ? Ix I

inherent

DAA
before:

A:$7F
CC:$00

after:

A:$85
CC:$08

THE 6809 INSTRUCTION SET 155

�Decrement----------

Mnemonics: DECA; DECB; DEC M

Function: ACCX - ACCX - 1 (or) M - M - 1

Description: One is subtracted from the specified operand. Note
that the carry bit is not affected.

Condition
codes:

Addressing
modes:

Example:

E F H I N Z V C

I I I I Ix Ix Ix I I

inherent
extended
direct
indexed

DECA
before:

A:$32
CC:$35

L_ set only if original operand
was $80, cleared otherwise.

after:

A:$31
CC:$31

156 PROGRAMMING THE 6809

�Exclusive OR----------

Mnemonics: EORA M; EORB M

Function: ACCX - ACCX (XOR) M

Description: The memory operand is logically Exclusive ORed
into the specified accumulator.

Condition
codes: E F H I N Z V C

I I I I Ix Ix I o I I

Addressing
modes: immediate

Example:

extended
direct
indexed

EORA 8,Y
before:
Y:$32FO
A:$F2
CC:$03
$32F8:$98

after:

Y:$32FO
A:$6A
CC:$01
$32F8:$98

THE 6809 INSTRUCTION SET 157

-@ID-Exchange Registers--------

Mnemonic: EXG R1,R2

Function: Rl -- R2

Description: The registers'values specified by the postbyte of the
instruction are exchanged. The low and high nibbles
of the postbyte specify the registers to be exchanged
in the following way:

Condition
codes:

Addressing

O = D 8 = A
l = X 9 = B
2 = Y A = CC
3 = U B = DP
4 = S 6, 7, C, D, E, F = undefined
5 = PC

Only registers of like size may be exchanged.

E F H I N Z V C

I I I I I I I I I
(No change unless one register is CC)

mode: immediate

Example: EXG A,DP
before:

A:$42
DP:$00

after:

A:$00
DP:$42

158 PROGRAMMING THE 6809

�Increment----------

Mnemonics: INCA; INCB; INC M

Function: ACCX - ACCX + 1 (or) M - M + 1

Description: One is added to the operand. Note that the carry bit is
not affected.

Condition
codes: E F H I N Z V C

I I I I Ix Ix Ix I I
Lset if original operand was 7F

Addressing
modes: inherent

extended
direct
indexed

Example: INCA
before:

A:$35
CC:$00

after:
A:$36
CC:$00

THE 6809 INSTRUCTION SET 159

�Jump------

Mnemonic: JMP M

Function: PC - ADDRM

Description: The value of the memory operand is transferred to
the PC, and program execution continues at that
address.

Condition
codes:

Addressing

E F H I N Z V C

I I I I I I I I I
(no change)

modes: extended

Example:

direct
indexed

JMP ,x
before:

X:$B290
PC:$0341

after:

X:$B290
PC:$B290

160 PROGRAMMING THE 6809

�Jump to Subroutine--------

Mnemonic:

Function:

Description:

Condition
codes:

Addressing

JSR M

S - S - 1 ; (S) - PC-low
S - S - 1 ; (S) - PC-high
PC - ADDRM

The PC is pushed onto the hardware stack. The value
of the memory operand is transferred to the PC and
execution continues at that point. An RTS (return
from subroutine) instruction will return control to
the instruction following the JSR instruction.

E F H I N Z V C

I I I I I I I I I
(no change)

modes: extended

Example:

direct
indexed

JSR $3200
before:
S:$03F2
PC:$10CB
$03F0:$03
$03F1:$4B

after:

S:$03FO
PC:$320D
03F0:$10
03F1:$CB

THE 6809 INSTRUCTION SET 161

--(LD (8-bit) }-Load Register From Memory --

Mnemonics: LDA M; LDB M

Function: ACCX - M

Description: The memory operand is loaded into the specified
register.

Condition
codes: E F H I N Z V C

I I I I Ix Ix I o I I
Addres!Jing
modes: immediate

Example:

extended
direct
indexed

LDB >$EE01
before:

B:$05
CC:$13
$EE01:$F2

after:

B:$F2
CC:$19
$EE01:$F2

162 PROGRAMMING THE 6809

--(" LD (16-bit))-Load Register From Memory --

Mnemonics: LDD MM; LDX MM; LDY MM; LDS MM;
LDU MM

Function: RR - MM

Description: The 16-bit memory operand is loaded into the
specified register.

Condition
codes: E F H I N Z V C

I I I I Ix Ix I o I I

Addressing
modes: immediate

Example:

extended
direct
indexed

LDD H$14A2
before:

D:$0330
CC:$54

after:

D:$14A2
C:$50

THE 6809 INSTRUCTION SET 163

�Load Effective Address-------

Mnemonics: LEAX M; LEA Y M; LEAS M; LEAU M

Function: RR - ADDRM

Description: The specified register is loaded with the address of
the memory operand. The only addressing mode
allowed is indexed.

Condition
codes:

Addressing
mode:

Example:

E F H I N Z V C

I I I I I I I I I
+�--x: LEAX, LEAY

indexed

LEAU $A,U
before:

U:$0455

: LEAS, LEAU (no change)

after:

U:$045F

164 PROGRAMMING THE 6809

-@D--Logical Shift Left --------

Mnemonics: LSLA; LSLB; LSL M

Function:
operand(A, B, or M)

c - 1 I I 1 1 I I I l
- 0

b7 - bo

Description: All of the bits in the operand are shifted left by one
position. Bit 7 is transferred to the carry bit; bit 0
becomes a zero. This is a duplicate mnemonic for the
ASL instruction.

Condition
codes: E F H I N Z V C

Addressing
modes:

Example:

inherent
extended
direct
indexed

jxjxjxj�

L set to bit 7 of original
operand.
b7 (XOR) b6 (bits of
original operand.)

LSL [$0310]
before:

CC:$00
$0310:$4B
$0311:$28
$4B28:$B8

after:

CC:$03
$0310:$4B
$0311:$28
$4B28:$70

THE 6809 INSTRUCTION SET 165

�Logical Shift Right -------

Mnemonics: LSRA; LSRB; LSR M

Function: operand{A, B, or M)

0 - I I I 1 1 1 I I 1 -c
b7 - bo

Description: All of the bits in the operand are shifted right by one
position. Bit 0 is transferred to the carry bit; bit 7 be­
comes a zero.

Condition
codes: E F H I N Z V C

I I I I I ol x I Ix I
•L---set to bit O of original

Addressing
modes: inherent

Example:

extended
direct
indexed

LSRA
before:

A:$3E
CC:$0F

operand

after:

A:$1F
CC:$00

166 PROGRAMMING THE 6809

-@@-Multiply---------

Mnemonic: MUL

Function: D - A X B

Description: The two unsigned values in accumulators A and B
are multiplied together and the result is placed in D
(i.e., original values of A and B are lost, and A con­
tains the most significant byte of A X B.)

Condition
codes: E F H I N Z V C

I I I I I lxl I�
..___..___,__...._...._...._...._.........,.L.... set only if b7 of B in result

Addressing
mode: inherent

Example: MUL
before:
A:$0C
B:$64

is set.

after:

A:$04
B:$BO
(D:$04BO)

THE 6809 INSTRUCTION SET 167

�Negate--------

Mnemonics: NEGA; NEGB; NEG M

Function: ACCX - o - ACCX (or) M - o - M

Description: Replaces operand with its two's complement.

Condition
codes: E F H I N Z V C

I I l?I lxlxlxlxl

Addressing
modes: inherent

extended
direct
indexed

Example: NEG >$4002
before:

CC:34
4002: F3

•L----set only if original
operand was $80

after:

CC:lO
4002: OD

168 PROGRAMMING THE 6809

-@QV--No Operation---------

Mnemonic: NOP

Function: Does nothing

Description: No registers or memory locations are affected. Uses
time and program memory space.

Condition
codes:

Addressing

E F H I N Z V C

I I I I I I I I I
(no change)

mode: inherent

THE 6809 INSTRUCTION SET 169

-(®-oH Memory Into Register------

Mnemonics: ORA M; ORB M

Function: ACCX - ACCX V M

Description: The specified accumulator and memory operand
are logically ORed, and the result is stored in the
accumulator.

Condition
codes:

Addressing
modes:

Example:

E F H I N Z V C

I I I I Ix Ix I o I I

immediate
extended
direct
indexed

ORA #$OF
before:

A:$DA
CC:$43

after:
A:$DF
CC:$49

170 PROGRAMMING THE 6809

� OH Immediate Data into Condition Code ­� Register

Mnemonic: ORCC #N

Function: CC - CCV N

Description: The condition code register and the immediate
memory byte are logically ORed, and the result is
stored in the condition code register. This instruction
may be used to set specific flags.

Condition
codes: E F H I N Z V C

I ?!1l1l1l1l1l1l1 I
(Changed according to operand)

Addressing
mode: immediate

Example: ORCC #$50
before:

CC:$13

after:

CC:$53

THE 6809 INSTRUCTION SET 171

-(PSHS)Push Registers onto Hardware Stack-

Mnemonics: PSHS register-list; PSHS llN

Function: If b7 of postbyte set: s - s - 1 ; (S) - PC-low
s - s - 1 ; (S) - PC-high

If b6 of postbyte set: s - s - 1 ; (S) - U-low
s - s - 1 ; (S) - U-high

If b5 of postbyte set: s - s - 1 ; (S) - Y-low
s - S - 1 ; (S) - Y-high

If b4 of postbyte set: s - s - 1 ; (S) - X-low
s - s - 1 ; (S) - X-high

If b3 of postbyte set: s - s - 1 ; (S) - DP
If b2 of postbyte set: s - s - 1 ; (S) - B
If b1 of postbyte set: s - S - 1 ; (S) - A
If bo of postbyte set: s - s - 1 ; (S) - CC

Description: Any combination of registers, including no registers,
is pushed onto the hardware stack. The postbyte, n, is
determined by the register list. The postbyte has the
following structure:

Condition
codes:

Addressing:

b7 b6 b5 b4 b3 b2 b 1 bO

jPCj u l v j x f� s
I A f cj

push order -
One register may be pushed with an autodecrement
store. Example: STY ,--S pushes Y, but also
changes condition code bits.

E F H I N Z V C

I I I I I I I I I
(no change)

mode: immediate

172 PROGRAMMING THE 6809

PSHU Push Registers onto User Stack--

Mnemonics: PSHU register-list; PSHU #N

Function: If b7 of postbyte set: U - U - 1 ; (U) +- PC-low
U - U - 1 ; (U) - PC-high

If b6 of postbyte set: U +- U - 1 ; (U) +- S-low
u - u - 1 ; (U) - S-high

If b5 of postbyte set: U - U - 1 ; (U} - Y-low
U - U - 1 ; (U) +- Y-high

If b4 of postbyte set: U +- U - 1 ; (U) +- X-low
U +- U - 1 ; (U) +- X-high

If b3 of postbyte set: U - U - 1 ; (U) - DP
If b2 of postbyte set: U +- U - 1 ; (U) +- B
If b1 of postbyte set: U - U - 1 ; (U) +- A
If bo of postbyte set: U - U - 1 ; (U) - CC

Description: Any combination of registers, including no registers,
is pushed onto the user stack. The postbyte, n, is
determined by the register list. The postbyte has the
following structure:

Condition

b7 b6 b5 b4 b3 b2 b 1 bO

IPCI s I Y j x !o1 s j A §cl

push order -
One register may be pushed with an autodecrement
store. Example: STY , -- U pushes Y, but also
changes condition code bits.

codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing:
mode: immediate

THE 6809 INSTRUCTION SET 173

-(PULS }Pull Registers from Hardware Stack-

Mnemonics: PULS register-list; PULS #N

Function: If bo of postbyte set: cc - CSJ ; s - s + 1
If b1 of postbyte set: A - CS) ; s - s+ 1
If b2 of postbyte set: B - (S) ; s - s+1
If b3 of postbyte set: DP - CS) ; s - s+ 1
If b4 of postbyte set: X-high - CSJ ; s - s + 1

X-low - CS) ; s - s + 1
If bs of postbyte set: Y-high - CS) ; s - s+ 1

Y-low - CS) ; s - s+ 1
If b6 of postbyte set: U-high - CS) ; s - s+ 1

U-low - CS) ; s - s+ 1
If b 7 of postbyte set: PC-high - (S) ; s - s+ 1

PC-low - CS) ; s - s+ 1

Description: Any combination of registers, including no register,
is pulled from the hardware stack. The postbyte, n, is
determined by the register list. The postbyte has the
following structure:

Condition

b7 b6 b5 b4 b3 b2 b 1 bO

IPCI u I v Ix f PI 8 I A §cl
- pull order

One register may be pulled with an autoincrement
load. Example: LOY ,S+ + pulls Y, but also
changes condition code bits.

codes: E F H I N Z V C

I I I I I I I I I
(no change-unless CC pulled)

Addressing:
mode: immediate

174 PROGRAMMING THE 6809

PULU Puil Registers from User Stack--

Mnemonics: PULU register-list; PULU #N

Function: If bo of postbyte set: CC - (S) ; s - s+ 1
If b1 of postbyte set: A - (S) ; s - s+ 1
If b2 of postbyte set: B - (S) ; s - s+ 1
If b3 of postbyte set: DP - (S) ; s - s+ 1
If b4 of postbyte set: X-high - (S) ; s - s+ 1

X-low - (S) ; s - s+ 1
If b5 of postbyte set: Y-high - (S) ; s - s+1

Y-low - (S) ; s - s+1
If b6 of postbyte set: S-high - (S) ; s - s+ 1

S-low - (S) ; s - s+1
If b7 of postbyte set: PC-high - (S) ; s - s+ 1

PC-low - (S) ; s - s+ 1

Description: Any combination of registers, including no register,
is pulled from the user stack. The postbyte, n, is
determined by the register list. The postbyte has the
following structure:

Condition

b7 b6 b5 b4b3 b2 bl bO

IPCI s I y Ix f PI B I A §1

-pull order
One register may be pulled with an autoincrement
load. Example: LDY ,U + + pulls Y, but also
changes condition code bits.

codes: E F H I N z v c

I I I I I I I I I
(no change-unless CC pulled}

Addressing:
mode: immediate

THE 6809 INSTRUCTION SET 175

�Rotate Left---------

Mnemonics: ROLA; ROLB; ROL M

Function: [opera:d{�. B. or M]

b7 - bo

DetJcription: All of the bits in the operand are rotated left by one
position through the carry bit (9-bit rotation); that is,
b7 is transferred to the carry bit and the original
value of the carry bit is transferred to bO.

Condition
codes: E F H I N Z V C

I I I I Ix Ix Ix Ix I f +._ ___ set to b7 of original

Addressing:
modes: inherent

Example:

extended
direct
indexed

ROLB
before:

B:$89
CC:$09

J operand.
'------ b7 (XOR) b6 of

original operand.

after:

B:$13
CC:$03

176 PROGRAMMING THE 6809

�Rotate Right---------

Mnemonics: RORA; RORB; ROR M

Function: C ----�
operand{A, B, or M)

b7 - bo

Descriptron: All of the bits of the operand are rotated right by one
position through the carry bit {9-bit rotation); that is,
bO is transferred to the carry bit and the original
value of the carry bit is transferred to b7.

Condition
codes: E F H I N Z V C

I I I I Ix Ix I I�

Addressing
modes: inherent

extended
direct
indexed

Example: RORB
before:

B:$89
CC:$09

set to bo of original operand

after:

B:$C4
CC:$09

THE 6809 INSTRUCTION SET 177

--@)-Return from Interrupt -------

Mnemonic: RTI

Function: CC - (S) ; S - S + 1
If E=1 then: A - (S) ; S - S + 1

B - (S) ; S - S + 1
DP - (S) ; S - S + 1
X-high - (S) ; S - S+1
X-low - (S) ; S - S+1
Y-high - (S) ; S - s+1
Y-low - CS) ; S - s+1
U-high - CS) ; S - s+1
U-low - (S) ; S - S + 1
PC-high-(S) ; S -s+1
PC-low -(S) ; S -s+1

Description: The condition code register is pulled from the hard­
ware stack. If the E bit is set, then the entire machine
state is pulled from the stack, otherwise, only the PC
is pulled from the stack. This instruction reverses the
effects of an interrupt and should be placed at the
end of an interrupt routine.

Condition
codes: E F H I N Z V C

l?l?l?l?l?l?l?l?I
(Pulled from stack)

Addressing:
mode: inherent

178 PROGRAMMING THE 6809

�Returnfrom Subroutine------

Mnemonic: RTS

Function: PC-high - (S) ; S - S + 1
PC-low -(S) ; s - s + 1

Description: The PC is pulled from the hardware stack. This in­
struction reverses the effects of the BSR and JSR
instructions and should be placed at the end of a
subroutine.

Condition
codes: E F H I N z v c

I I I I I I I I I
(no change)

Addressing:
mode: inherent

THE 6809 INSTRUCTION SET 179

�Subtract with Borrow·-------

Mnemonics: SBCA M; SBCB M

Function: ACCX - ACCX - M - C

Description: The memory operand and the C bit are subtracted
from the specified accumulator. The resulting C bit
is a borrow and is set to the complement of the carry
of the internal addition.

Condition
codes: E F H I N Z V C

l I l?I lxlxlxlx l

Addressing:
modes: immediate

Example:

extended
direct
indexed

SBCB <$3
before:

DP:$45
B:$35
CC:$01
$4503:$03

after:

DP:$45
B:$31
CC:$20
$4503:$03

180 PROGRAMMING THE 6809

-@)-sign Extend---------

Mnemonic: SEX

Function: If b7 of B = 1 then: A - FF
else: A - o

Description: The 8-bit two's complement value in accumulator B
is sign extended to a 16-bit value in accumulator D.
The original value of A is lost.

Condition
codes: E F H I N Z V C

I I I I Ix Ix I I I

Addressing:
mode: inherent

Example: SEX
before:

B:$E6

after:

D:$FFE6

THE 6809 INSTRUCTION SET 181

ST ea-bit) Store Register into Memory---

Mnemonics: STA M; STB M

Function: M +- ACCX

Description: The contents of the specified accumulator are stored
at the memory operand .

.

Condition
codes:

Addressing:
modes:

Example:

E F H I N Z V C

I I I I Ix Ix I o I I

extended
direct
indexed

STB [$F,X]
before:

B:$E5
X:$556A
$5579:$03
$557A:$BB
$03BB:$02

after:
B:$E5
X:$556A
$5579:$03
$557A:$BB
$03BB:$E5

182 PROGRAMMING THE 6809

ST c1s-bit) Store Register into Memory---

Mnemonics: STD MM; STX MM; STY MM; STS MM;
STU MM

Function: MM - RR

Description: The contents of the specified register are stored at
the 16-bit memory operand.

Condition
codes:

Addressing:

E F H I N Z V C

I I I I Ix Ix I o I I

modes: extended

Example:

direct
indexed

STX >$12BO
before:

X:$660C
$12B0:$37
$12B1:$BF

after:

X:$660C
$12B0:$66
$12B1:$0C

THE 6809 INSTRUCTION SET 183

-(SUB (8-bit) }suhtroct Memory from Register-

Mnemonics: SUBA M; SUBB M

Function: ACCX - ACCX - M

Description: The memory operand is subtracted from the
specified accumulator. The C bit is a borrow and is
set to the complement of the carry of the internal
binary addition.

Condition
codes: E F H I N Z V C

I I l?I lxlxlxlxl

Addressing
modes: immediate

Example:

extended
direct
indexed

SUBB ,Y
before:
B:$03
Y:$0021
CC:$44
$0021:$21

after:
B:$E2
Y:$0021
CC:$69
$0021:$21

184 PROGRAMMING THE 6809

SUB c1a-bit) Subtract Memory from Register-

Mnemonic:

Function:

Description:

Condition
codes:

Addressing:
modes:

Example:

SUBD MM

D - D - MM

The 16-bit memory operand is subtracted from the D
accumulator. The carry bit represents a borrow and
is set to the complement of the internal binary addi­
tion carry.

E F H I N Z V C

I I I I Ix Ix Ix Ix I

immediate
extended
direct
indexed

SUBD #$020F
before:

0:$6B90
CC:$59

after:

0:$6981
CC:$50

THE 6809 INSTRUCTION SET 185

�Software Interrupt-------

Mnemonic: SWI

Function: E - 1
S - S - 1 ; (S) - PC-low
S - S - 1 ; (S) - PC-high
S - S - 1 ; (S) - U-low
S - S - 1 ; (S) - U-high
S - S - 1 ; (S) - Y-low
S - S - 1 ; (S) - Y-high
S - S - 1 ; (S) - X-low
S - S - 1 ; (S) - X-high
S - S - 1 ; (S) - DP
S - S - 1 ; (S) - B
S - S - 1 ; (S) - A
S - S - 1 ; (S) - CC
1 - 1 ; F - 1
PC-high - FFF A ; PC-low - FFFB

Description: The entire machine state is pushed onto the hardware
stack. Program control is transferred via the soft­
ware interrupt 1 vector. Fast and normal interrupts
are disabled.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing:
mode: inherent

186 PROGRAMMING THE 6809

�Software Interrupt 2 -------

Mnemonic: SWI2

Function: E - 1
S - S - 1 ; (S) - PC-low
S - S - 1 ; (S) - PC-high
S - S - 1 ; (S) - U-low
S - S - 1 ; (S) - U-high
S - S - 1 ; (S) - Y-low
S - S - 1 ; (S) - Y-high
S - S - 1 ; (S) - X-low
S - S - 1 ; (S) - X-high
S - S - 1 ; (S) - DP
S - S - 1 ; (S) - B
S - S - 1 ; (S) - A
S - S - 1 ; (S) - CC
PC-high - FFF4 ; PC-low - FFF5

Description: The entire machine state is pushed onto the hardware
stack. Program control is transferred through the
software interrupt 2 vector. The F and I interrupt
masks are not affected.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing:
mode: inherent

THE 6809 INSTRUCTION SET 187

�Software Interrupt 3-------

Mnemonic: SWl3

Function: E - 1
S - S - 1 ; (S) - PC-low
S - S - 1 ; (S) - PC-high
S - S - 1 ; (S) - U-low
S - S - 1 ; (S) - U-high
S - S - 1 ; (S) - Y-low
S - S - 1 ; (S) - Y-high
S - S - 1 ; (S) - X-low
S - S - 1 ; (S) - X-high
S - S - 1 ; (S) - DP
S - S - 1 ; (S) - B
S - S - 1 ; (S) - A
S - S - 1 ; (S) - CC
PC-high - FFF2 ; PC-low - FFF3

Description: The entire machine state is pushed onto the hardware
stack. Program control is transferred through soft­
ware interrupt vector 3. The F and I interrupt masks
are not affected.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing:
mode: inherent

188 PROGRAMMING THE 6809

-(
SYNC } Synchronize to External Event--

Mnemonic: SYNC

Function: Halt processor.

Description: The processor halts and waits for an interrupt to
occur. If the interrupt is masked (disabled) or is
shorter than 3 cycles, then the processor continues
execution with the instruction following the SYNC
instruction. If the interrupt is enabled and lasts more
than 3 cycles, then a normal interrupt sequence
begins. The return address pushed onto the stack is
that of the instruction following the SYNC instruc­
tion. This instruction can be used to synchronize the
processor with high speed, critical events, such as
reading data from a disk drive.

Condition
codes: E F H I N Z V C

I I I I I I I I I
(no change)

Addressing:
mode: inherent

THE 6809 INSTRUCTION SET 189

-000--Tronsfer Register to Register ------

Mnemonic: TRF R1,R2

Function: R2 - R 1

Description: The contents of the register specified by the high
nibble of the postbyte are transferred to the register
specified by the low nibble of the postbyte. The
nibbles of the postbyte specify the registers in the
following way:

Condition
codes:

Addressing:

O = D B = A
1 = X 9 = B
2 = Y A = CC
3 = U B = DP
4 = S 6, 7, C, D, E, F: undefined
5 = PC

Only registers of like sizes may be paired up.

E F H I N Z V C

I I I I I I I I I
(no change-unless R2 is CC)

mode: immediate

190 PROGRAMMING THE 6809

-(!@-Test------

Mnemonics: TSTA; TSTB; TST M

Function: ACCX - 0 (or) M - 0

Description: The Z and N bits are affected according to the value
of the specified operand. The V bit is cleared.

Condition
codes: E F H I N Z V C

I I I I Ix Ix I o I I

Addressing:
modes: inherent

extended
direct
indexed

CHAPTER 5

193

ADDRESSING
TECHNIQUES

IN THIS CHAPTER, we will begin by discussing the general theory
of addressing And examining the various techniques used for accessing
data. We will then go on to examine the most important aspect of the
6809's architecture-the area where its special power is most apparent­
the extensive 6809 addressing capabilities. The most uniquely important
of these are indexed and relative addressing.

The special registers and modes provided for indexed addressing
make the 6809 an excellent machine for writing efficient routines to
handle complex data structures. The 6809's relative addressing modes
make it possible to write position independent code (especially important
in ROM-based applications)-a task which would be impossible on any
other 8-bit microprocessor.

Although complex data accessing methods are not necessary in the
beginning stages of programming, it is crucial to understand the address­
ing modes in order to realize the full power of the 6809. Once you have
mastered the addressing techniques that we present in this chapter, it
will then be a straightforward matter to write efficient data handling
routines.

POSSIBLE ADDRESSING MODES

Addressing refers to the specification within an instruction, of the
location of the operand on which the instruction will operate. We begin
by examining the six basic addressing modes (shown in Figure 5.1).

194 PROGRAMMING THE 6809

INHERENT

IMMEDIATE

EXTENDED/ ABSOLUTE

7 0

I OPCODE

�

� LITERAL L _ _ _ _ _ _ J

OPCODE

FULL 16-BIT
- -

ADDRESS

DIRECT OPCOOE

RELATIVE

INDEXED

AND

INDIRECT

SHORT ADDRESS

r------,
OPCOOE

OPCODE

DISPLACEMENT

�

� I-������ OR ADDRESS L __ _ _ _ _ J
Figure 5.1: Basic Addressing Modes------------_.

ADDRESSING TECHNIQUES 195

Inherent (Implied or Register) Addressing

Instructions that operate exclusively on registers normally use in­
herent addressing (as illustrated in Figure 5.1). An inherent instruction
derives its name from the fact that it does not specifically contain the
address of the operand on which it operates; instead, its opcode
specifies one or more registers. Since internal registers are usually few
in number (commonly eight), only a small number of bits are needed to
specify a particular register in the opcode.

An example of an inherent addressing instruction is:

DECA

This instruction specifies: "decrement the contents of A by 1."

Immediate Addressing

In the immediate addressing mode, an 8- or 16-bit literal (a constant)
follows the 8-bit opcode (see Figure 5.1). Since the microprocessor is
equipped with 16-bit registers, it may be necessary to load 8- or 16-bit
literals. An example of an immediate instruction is:

ADDB #$5

The second word of this instruction contains the literal 5, which is added
to accumulator B.

Another form of immediate addressing uses a byte (called the postbyte)
following the opcode, to specify the registers to be used in the instruction.
Here is an example of an immediate instruction using the postbyte:

TFR A,B

The second word of this instruction contains the codes for registers A
and B, because A is transferred to B.

Extended (or Absolute) Addressing

In extended addressing, the 16-bit address of the operand follows the
opcode. Extended addressing, therefore, requires three-byte instructions.
Here is an example using the extended addressing mode:

STA $1234

This instruction specifies that the contents of the accumulator are to be
stored at memory location 1234 hexadecimal. Extended addressing is

196 PROGRAMMING THE 6809

also called absolute addressing, because an absolute memory address
is specified.

A disadvantage of extended addressing is that it requires a thretrbyte
instruction. To improve the efficiency of the microprocessor, there may
be another addressing mode available, direct addressing, which requires
that only one word be used for the address.

Direct Addressing

In direct addressing, the opcode is followed by an 8-bit address (see
Figure 5.1). The advantage of this approach is that it requires only two
bytes, instead of three, for extended addressing. A disadvantage is that
on most microprocessors it limits all addressing within this mode to
addresses 0 to 255. (Note: the 6809 does not have this limitation.) When
addresses'O to 255 are used, this type of addressing is also known as short
or 0-page addressing.

Relative Addressing

You use relative addressing with branch instructions. If the state of the
condition codes satisfies the test made by the branch instruction, then
the branch instruction loads the PC with a new address. The byte following
the opcode, called the displacement, is added to the PC to form the new
PC, to which the instruction branches. Figure 5.1 shows the structure of
the relative addressing mode.

Since the displacement is a positive or negative number, a relative
branch instruction allows a branch forward of 127 bytes or backward of
128 bytes (usually + 129 or -126, since the PC will have been incrtr
mented by 2). The branch instructions are used in program loops.
Because most loops are short, relative branching with a one byte
displacement is the most common. Relative branching usually results in
significantly improved performance for short routines.

If you need a larger branch displacement, you can use the long branch
instruction with a l&bit displacement. This instruction also has an extra
opcode byte, so that it is four bytes long (see Figure 5.1). The long branch
can branch to any address in the memory because the displacement
ranges from -32768 to 32767. Since long branch instructions take
longer to execute than the simple branch instructions, you normally use
them only when the shorter branch will not work. Relative addressing
provides improved speed performance with branch instructions. If a
program uses relative addressing, it can be easily moved to different
areas of memory. In addition, if you do not use absolute addresses, then

ADDRESSING TECHNIQUES 197

it is possible to relocate the program to other areas of memory. The jump
instruction, JMP, allows the use of absolute addressing. The absolute ad­
dressing mode should generally be avoided in favor of relative addressing.

Indexed Addressing
You use indexed addressing to access, in succession, the elements of .a

block or table. This addressing mode appears in examples given later in
this chapter. With indexed addressing, the instruction specifies both an
index register and a base address. The contents of the register and base
address are added to provide the final address. In this way, the address
could be the beginning of a table in memory. The index register would
then be used to efficiently access all the elements of a table successively.
Ho\Yever, there must be a way to increment or decrement the index
register.

Pre-Indexing and Post-Indexing

There are two modes of indexing: pre-indexing and post-indexing. Pre­
indexing is the usual indexing mode in which the final address is the
sum of a displacement or address, plus the contents of the index register.
Figure 5.2 illustrates this approach (assuming an 8-bit displacement
field and a 16-bit index register).

OPCODE

DISPLACEMENT

MEMORY

I
I
I
I

J

FINAL ADDRESS

INDEX REGISTER

BASE

--------------- Figure 5.Z: Addressing (Pre-indexing)

198 PROGRAMMING THE 6809

On the other hand, post-indexing treats the contents of the displacement
field like the address of the actual displacement, rather than like the
displacement itself. In post-indexing, the final address is the sum of the
contents of the index register, plus the contents of the memory word
designated by the displacement field (see Figure 5.3}. This feature, in fact,
utilizes a combination of indirect addressing and pr&-indexing. Let's
now define indirect addressing.

Indirect Addressing

At times, it is necessary for two subroutines to exchange a large quan­
tity of data stored in the memory. More generally, several programs or
subroutines may need to access a common block of information. To
preserve tjie generality of the program, it is desirable not to keep such a
block at a fixed memory location. In particular, the size of the block may
grow or shrink dynamically, and thus, it may have to reside in various

MEMORY

OPCODE

ADDRESS

POINTER

MEMORY

POINTER = BASE DATA

FINAl 16-BIT

ADDRESS

Y(index)
N

Figure 5.3: Indirect Indexed Addressing (Post-Indexing}---------'

ADDRESSING TECHNIQUES 199

areas of the memory, depending on its size. It would, therefore, be
impractical to try to access this block using absolute addresses-that is,
without rewriting the program every time.

The solution to this problem then is to deposit the starting address of
the block at a fixed memory location. Indirect addressing, therefore,
normally uses an opcode (16 bits in the case of the 6809), followed by a
16-bit address. This address is used to retrieve a 16-bit word from the
memory. This is used as the address of the operand. Figure 5.4 illustrates
the structure of an instruction using indirect addressing, where the two
bytes at the specified address Al contain A2. A2 is then interpreted as
the actual address of the data to be accessed.

Indirect addressing is particularly useful any time pointers are used.
Various areas of the program can then refer to these pointers to conve­
niently and elegantly access a word or block of data. Another form of
indirect addressing, indexed indirect addressing, uses an index register,
rather than a memory location, to contain the address of the address of
the desired data.

Combinations of Modes

It is possible to combine addressing modes. In particular, it is possible
in a completely general addressing scheme to use many levels of indirec­
tion. For example, in Figure 5.4 the address A2 could be interpreted as
an indirect address again, and so on.

INSTRUCTION f\IEMORY

OPCOOE

POSTBYTE A1 -
FINAL

--I -
INDIRECT ADDRESS (A,)

�
ADDRESS A1

Ai DATA ..__

'---------------Yi.gure 5.4: Indirect Addressing

200 PROGRAMMING THE 6809

You can also combine indexed addressing with indirect access. This
allows efficient access to word n of a block of data, provided you know
the location of the pointer to the starting address (see Figure 5.2).

Mode Summary

We are now familiar with all the usual addressing modes that can be
provided in a system. Most microprocessor systems, because of the
limitation of the MPU (i.e., that it must be realized within a single chip),
do not provide all possible modes, but only a small subset of them. The
6809 provides a good subset of possibilities. Let's examine them.

6809 ADDRESSING MODES

The 6809 addressing modes are an important feature of the 6809 pro­
cessor. They can be used with most instructions to offer great power and
flexibility. Even though there are fewer instructions on the 6809 than
there were on its predecessor, the 6800, the new addressing modes make
the 6809 a more capable machine. To make good use of the 6809 processor
and to write better programs, it is important to learn to use all the ad­
dressing modes.

Position Independent Code (PIC)

The powerful addressing modes on the 6809 make it possible to write
position independent code. A position independent program can be run
anywhere in memory. Subroutines are normally written with position
independence in mind.

For example, a subroutine may reside at location $0100 on one
machine. If the subroutine is written with position independent code, it
can be moved to location $2000 without requiring changes. This is an
important consideration if there is a possibility that a program may be
run on machines with different mixes of RAM and ROM.

Note that you should never use extended addressing to write position
independent code. All addressing should be relative to the PC. This can
be accomplished by using the LEA instruction and the index registers.
Parameters, especially absolute or extended addresses, should be passed
to the subroutine on the stack.

As you begin writing programs, the use of position independent code
is not that important. However, as you write more programs, it becomes
more important, as it becomes necessary to combine different parts of a
program, without modifying or rErassembling the program.

ADDRESSING TECHNIQUES 201

Inherent Addressing (6809)

On the 6809, inherent addressing is primarily used by single-byte instruc­
tions which operate on internal registers. Many of these instructions
require only two cycles to execute. Instructions using inherent address-
ing are:

ABX DECB ROLA
ASLA EXG ROLB

ASLB INCA RORA
ASRA INCB RORB

ASRB LSLA RTI

CLRA LSLB RTS

CLRB LSRA SEX

COMA LSRB SWI

COMB MUL SYNC

CWAI NEGA TFR

DAA NEGB TSTA

DECA NOP TSTB

Some instructions, such as MUL, require more than two cycles to ex­
ecute. Other instructions, such as TFR and EXG, require more than one
byte. Inherent addressing is also called register addressing.

Immediate Addressing (6809)

Since the 6809 has both single-length (8-bit) and double-length (16-bit)
registers, it provides two types of immediate addressing, with both
8-and 16-bit literals. Instructions are then either two or three bytes long.

Here are examples of instructions using the immediate addressing mode:

and

LDA

LDX

ADDA

#n
#nn

#n

(one byte)
(two bytes)

(one byte)

Extended (or Absolute) Addressing (6809)

By definition, extended addressing requires three bytes. The first is the
opcode and the next two are the 16-bit address specifying the memory
location (i.e., the absolute address).

Extended addressing always specifies a particular address, which

202 PROGRAMMING THE 6809

does not change while the program executes. Thus, position independent
code cannot be written when extended addressing is used. Input and
output programs often use extended addressing. Examples of instruc­
tions using extended addressing are:

and
LDA >$0100

JMP >$1234

where the two hexadecimal numbers represent the 16-bit addresses of
data or instructions.

Direct Addressing (6809)

On most microprocessors, direct addressing, if available, addresses
only the first 256 bytes, 0 page, of memory (addresses 0 to 255). This is
because only an 8-bit address is specified, allowing the instruction to
use two bytes instead of three. On the 6809 it is possible to address any
byte in memory by using direct addressing and manipulating the direct
page (DP) register.

When direct addressing is used, the low byte of the address is the byte
immediately following the opcode, and the high byte is the contents of
the DP register. By changing the DP register appropriately, any page in
memory may be addressed. When the DP register contains zero, the
6809 direct addressing mode operates in the same manner as other
microprocessors.

Relative Addressing (6809)

By definition, relative addressing requires two bytes. The first is the
"branch relative" opcode; the second specifies the displacement and its
sign. A long branch requires an extra opcode byte to indicate a long
branch, and a second byte for the displacement, thus, making a total of
four bytes.

From a timing standpoint, this instruction should be examined with
caution. Whether a test succeeds or fails, (i.e., whether or not there is a
branch), all short branch instructions require three cycles. However, the
long branch instruction requires five cycles when the test fails, and six
when it succeeds and the branch is taken.

Caution must be exercised when computing the duration of the execu­
tion of a program segment. If you are not sure that the long branch will
succeed, you must remember that sometimes the instruction will require
six cycles (if the condition is met) and sometimes five (if the condition is not
met). An average value is often used for the duration of a long branch.

ADDRESSING TECHNIQUES 203

This timing problem does not apply to the long branch always instruc­
tion, LBRA, as this instruction does not test any condition, and always
lasts five cycles.

(Note: In order to differentiate the absolute jump instruction from the
relative branch, the jump instruction is labeled JMP.)

Indexed Addressing (6809)

The indexed addressing mode is very powerful on the 6809 micropro­
cessor. In all indexed addressing, one of the address registers (X, Y, U, S,
and sometimes the PC) is used to calculate the effective address of the
data used by the instruction. There are five different types of indexed
addressing. The second byte or postbyte of an instruction using indexed
addressing specifies the type of addressing mode, as well as the address
register to be used. The structure of an indexed instruction appears in
Figure 5.5.

Appendix F gives for each variation, the assembler form and number
of cycles and bytes added to the basic values for indexed addressing.

Zero-Offset Indexed

In the zero-offset indexed mode, an address register contains the effec­
tive address of the data to be used by the instruction. Zero-offset indexed
is the fastest indexed mode, because a displacement is not needed. The
instruction is two bytes long. Examples of zero-offset indexed addressing
are:

and
LDD O,Y

LDB ,U

� BYTEl � BYTE2
I DISPlACEMENT I BYTE 3 L����-J BYTE 4

....__----Figure 5.5: Indexed Addressins Needs Two or More Bytes

204 PROGRAMMING THE 6809

Constant Offset Indexed

The constant offset indexed mode uses a two's complement displace­
ment and the contents of one of the address registers added together to
form the effective address of the operand. The address register's initial
content is unchanged by the addition. Three sizes of displacements are
available:

1. 5-bit (-16 to + 15)

2. 8-bit (-128 to + 127)

3. 16-bit (-32768 to +32767)

The 5-bit displacement is included in the postbyte and is, therefore,
most efficiEUtt in size and speed. The 8-bit displacement is contained in
the byte following the postbyte. The two byte 16-bit displacement
immediately follows the postbyte, high byte first. Examples of constant­
offset indexing are:

LDA 33,X
LDY -2,S
LDX 400,Y

Accumulator--Offset Indexed

The accumulator-offset indexed mode uses the two's complement
value of one of the accumulators, A, B, or D. This value is added to one
of the address registers to form the effective address of the operand. The
contents of both the accumulator and the address register are unaffected
by the addition. The postbyte specifies the accumulator to use, so no
displacement bytes are needed. The accumulator offset mode is also
advantageous in that the offset may be calculated while the program is
running. Examples of instructions using this mode are:

LDA B,Y
LDX D,Y
LEAX B,X

Auto Increment/Decrement Indexed

If an address register is pointing at the beginning (or end) of a table of
data, the auto increment and decrement modes provide a method for
efficiently accessing successive elements. In the auto increment mode,

ADDRESSING TECHNIQUES 205

the address register is first used as the effective address to fetch the
operand. Then the address register is incremented by one or two before
the next instruction is fetched. This allows stepping through a table
from low addresses to high addresses. The address register is incre­
mented by one if 8-bit data is used, and by two if 16-bit data is used. A +
after the register indicates auto increment mode. One + is used for 8-bit
data; two +'s are used for 16-bit data. Here are examples:

LDA ,X+
STD ,Y++

In the second example, two + 's are necessary because a 16-bit word is
stored in the D accumulator. It is up to the programmer to decide if
single or double incrementing is needed. Auto decrement mode is the
opposite of auto increment mode.

When the auto decrement mode is used, the address register is
decremented by one or two, before it is used to fetch the operand. This is
different from the auto increment mode, where the increment takes
place after the operand is fetched. With auto decrement, a table may be
accessed from high addresses to low addresses. A " -" before the name
of the register indicates auto decrement mode. Here are examples:

LDB , - Y
LDX , - - S

In the second example, - - means that S is decremented by two before
it is used as the effective address of the operand.

The auto increment/decrement mode is useful for moving data and for
creating software stacks. The pre-decrement, post-increment nature of
these modes allow them to be used to create stacks with the X and Y
registers, that behave in the same way as the stacks with the U and S
registers.

Indexed Indirect
The indexed indirect mode is a combination of indirect and indexed

addressing modes. All but two of the indexing modes may have a level of
indirection added. In this mode, the effective address of the operand is
contained in the memory location formed by the contents of an address
register, plus any offset. Indirection is indicated by enclosing the
operand specification in square brackets, []. In the example below,
the A accumulator is loaded indirectly, using an effective address

206 PROGRAMMING THE 6809

calculated from the X register and an offset:

$0100 LDX #$FOOO LOAD X IMMEDIATE

$0103 LDA ($10,X] EA IS NOW $F010

$F010 $F1 $F150 IS NOW THE

$F011

$F150

$50

$AA

NEW EA

After execution, A contains the data $AA, and X contains $FOOO.
The two modes that cannot be used for indexed indirect addressing

are auto increment/decrement by one, and a constant offset of 5 bits. In
the first case, if an indirect auto increment or decrement mode is being
used, the addresses, which are two bytes long, are pointed to by the
indexed register. An increment or decrement of one is not sensible,
because the index register would point to the low byte of the address,
rather than the high byte.

The mode containing a 5-bit offset in the postbyte is not available,
because it would have a postbyte identical to the other indexed indirect
postbytes (see Appendix F). An offset of 5 bits or less is contained in the
first displacement byte.

Extended Indirect (6809)

Extended indirect is the name of the indirect addressing mode on the
6809. The opcode is followed by a postbyte (which indicates extended
indirect addressing) and two other bytes (which contain the address
which points to the effective address of the data). The instruction is at
least four bytes long when extended indirect addressing is used. In the
example below, the data is contained in the address pointed to by the
address in the instruction:

$0100

$E081

$FFFE

LDA

$55

$EO

$FFFF $81

[$FFFE] EA IS $FFFE FIRST

THE DAT A TO LOAD INTO A

EA IS NOW $E081

After execution, A contains $55, but no other register is changed.

Progra.m Counter Relative (6809)

The program counter relative addressing mode is a cross between
constant-offset indexed, and relative addressing. When program counter
relative mode is used, either an 8- or 16-bit two's complement offset is
added to the current PC to create the effective address. This effective
address is used to fetch the data. The PC is not changed by the addition,

ADDRESSING TECHNIQUES 207

as is the case in normal relative addressing. A post byte after the opcode
specifies program counter relative addressing.

It is often desirable to have the data tables and the programs that access
them, maintain the same addressing relationship after the program and
table are moved to a different place in memory. This can be done with
program counter relative addressing. Also, this addressing mode is
needed for position independent code.

In the following example, the starting address of a table is loaded into
the X register:

LEAX T ABLE,PCR

The number of memory locations between this instruction and the
beginning of the table are contained in the symbol TABLE. As long as
this.number does not change, the program and the table may be moved
anywhere in memory, and the program will still run correctly. This is
the essence of position independent code.

Program counter relative addressing is a type of indexed addressing.
Therefore, it may also have a level of indirection, as in this example:

LEAX [T ABLE,PCR]

USING THE 6809 ADDRESSING MODES

This section contains short program examples illustrating the use of
several addressing modes. These programs are often used as parts of
larger programs.

Use of Indexing for Sequential Block Access

Indexing is primarily used for addressing successive locations within
a table. It is sometimes desirable to limit the table size to 256, so that an
8-bit register may count the entries.

Let's now search a table of 100 elements for the * character. The start­
ing address for this table is called BASE. The table has only 100
elements. Figure 5.6 shows the algorithm. Here is the program:

SEARCH LDX #BASE
LDA #'*
LDB #COUNT

TEST CPA .x+

BEQ FOUND
DECB
BNE TEST

NOTFND

208 PROGRAMMING THE 6809

A Block Transfer Routine for Fewer than 256 Elements

In the following program, "COUNT" is the number of elements in the
block to be moved. The number is assumed to be less than 256. FROM is
the base address of the block, and TO is the base of the memory area
where it should be moved. The algorithm is quite simple: We will move a
word at a time, and keep track of the word we are moving by storing its
position in the counter B. Let's examine the program:

BLKMOV LOX #FROM

NEXT

LOY #TO
LOB #COUNT
LOA

STA
· OECB

BNE

,x+

,Y+

NEXT

The first three instructions:

BLKMOV LOX
LOY
LOB

#FROM
#TO
#COUNT

INITIALIZE
TO FIRST ELEMENT

READ ELEMENT
AND POINT TO NEXT

YES

NOT FOUND

STAR
FOUND

Fisure 5.6: Character Search Flowchart------------'

ADDRESSING TECHNIQUES 209

initialize registers X, Y, and B, respectively. The process appears in
Figure 5.7.

Index register X is used as the source pointer, and is incremented by
using the auto-increment addressing mode. Index register Y is used as
the destination pointer, and is also incremented by using the auto­
increment addressing mode. Register B is loaded with the number of
elements to be transferred (limited to 256, since this is an 8-bit register),
and is decremented regularly. Whenever B decrements to zero, all
elements have been transferred. The next two instructions:

NEXT LDA

STA

.x+

,Y+

load the contents of the memory location pointed to by X into the ac­
curqulator A and increment the register X. Then, A is stored in the
memory location pointed to by the register Y, and Y is incremented. In
other words, these two instructions transfer an element of the source

A

el COUNT

x SOURCE

Y DESTINATION

MEMORY

FROM

Figure 5.7: Block TlQJIBfer. Initializing the Register--------'

210 PROGRAMMING THE 6809

block into the destination block. and increment the X and Y registers.
The counter register is decremented:

DECB

Finally, as long as the counter is not 0, the program loops back to the
label NEXT:

BNE NEXT

This program is an example of the possible utilization of index
registers. However, let's now compare it to the same program using the
accumulator offset indexing mode. In this program, accumulator B is
used as the off set, as well as the count:

BLKMOV LDX #FROM

LDY #TO
· LDB

NEXT LDA

#COUNT

B,X

STA B,Y

DECB
BNE NEXT

This program is functionally the same as the previous one: less than
256 words may be moved. However, it executes faster because the accu­
mulator offset addressing mode requires one less cycle than the auto­
increment mode.

Generalized Block fransfer Routine (More Than 256 Elements)

Figure 5.8 shows the register allocation and the memory map for a
generalized block transfer routine. Let's examine the program:

NOTODD

NEXT

LDD #LENGTH
LSRA DIVIDE 16-BIT LENGTH BY 2
RORB

BCC NOTODD
ADDO #1 INCREMENT IF LENGTH ODD
LDY #FROM
LOU #TO
LOX ,Y+ +
STX ,u+ +
SUBD #1

BNE NEXT

This program transfers two bytes at a time. An even number of bytes
are always transferred. That is why the LENGTH is divided by 2. If the

ADDRESSING TECHNIQUES 211

length is an odd number before division, the last byte is not transferred.
This is taken into account by testing the carry after the division. If there
is a carry, one is added to D, so the last byte and one extra byte will be
transferred.

The X register is used as the transfer register, while Y and U are used
as index registers. The autcrincrement by two address mode is used
because two bytes are transferred each time the loop is executed.

Finally, a decrement is not available for the D accumulator, so a one is
subtracted. When the D accumulator is zero, the program is finished.

Adding Two Blocb

We will now develop a program that adds, element-by-element, two
blocks that start at addresses BLK1, and BLK2, respectively, and that
have an equal number of elements, COUNT. Here is the program:

BLKADD LDX #BLKl

LDY
LDB
CLRA

#BLK2

#COUNT

LOOP LDA
ADCA
STA

DECB

.x
,Y+

,x+

BNE LOOP

The memory layout appears in Figure 5.9.

A COUNTER

U DESTINATION

Y SOURCE

REGISTERS

B MiNDRY

Figure 5.8: A Bloclc I'raN.fe.r-Memory Map-----------'

212 PROGRAMMING THE 6809

The program is straightforward. The number of elements to be added
is loaded into the counter register B, and the two index registers, X and
Y, are initialized to their values BLK1 and BLK2:

BLKADD LDX
LDY
LDB

#BLK1
#BLK2
#COUNT

The carry bit is then cleared in anticipation of the first addition:

CLRA

The first element is loaded into the accumulator:

LOOP LOA ,x

The corresponding element of BLK 2 is then added to it, and the Y
register is incremented:

ADCA ,Y+

and finally saved in the memory element of BLK1 pointed to by X:

STA ,X+

The X register is incremented when the byte is stored in BLK1. The
counter register is decremented:

DECB

sl COUNTER

x BLKl

y BLK2
REGISTERS

Figure 5.9: Addins Two Blocks: BLKl = BLKl + BLK2-----_.

ADDRESSING TECHNIQUES 213

As long as the counter register is not 0, the addition loop is executed:

BNE LOOP

SUMMARY

We have now discussed addressing modes and analyzed those avail­
able on the 6809. We have seen that the 6809 offers many possible
addressing mechanisms. To program the 6809 efficiently, it is necessary
to understand these mechanisms. They will be used throughout the
remainder of this book.

EX�RCISES

5-1: Use the block addition program to perform a 32-bit addition.

5-2: Use the block addition program to perform a 64-bit addition.

5-3: Modify the block addition program, so that the result is stored in a separate
block starting at address BLK3.

5-4: Modify the block addition program to perform a subtraction, rather than
on addition.

5-5: Write a program to add the first 10 bytes of a table stored at location BASE.
The result will have 16 bits. (This is a checksum computation.)

5-6: Con you solve the some problem in Exercise 5-5 without using the indexing
mode?

5-7: Reverse the order of the 10 bytes of this table. Store the result of the addition
at address REYER.

5-8: Search the some table for its largest element. Store it at memory address
LARGE.

CHAPTER 6

215

INPUT/OUTPUT
TECHNIQUES

So FAR IN THIS BOOK, we have seen how to exchange information
between the memory and the various registers of the processor; we have
learned how to manage registers; and we have learned how to use a variety
of instructions to manipulate data. We will now examine input/output
techniques and learn how to communicate with the external world.

The principal advantage of the 6809 architecture in this important
area is its powerful interrupt structure, which provides, in addition to a
regular interrupt mode, a fast and a non-maskable interrupt mode. Also
important in the use of these interrupt modes are the 6809's unique
SYNC and CW AI instructions, which we will also explore in this chapter.

Input is the transfer of data from an external peripheral (keyboard,
disk, or physical sensor) to internal computer storage. Output is the
transfer of data from within the microprocessor or the memory to an
external device, such as a printer, CRT, disk, or actual sensors and relays.
In this chapter, we will perform the input/output operations required in
most computer applications. We will be managing several input/output
devices simultaneously. and, finally, we will discuss the subject of polling
versus interrupts.

THE 6809 INPUT/OUTPUT INSTRUCTIONS

For input or output on the 6809, we can use any instruction that
transfers data to or from the memory. Input/output interfacing on the
6809 is called memory mapped interfacing, because input/output

216 PROGRAMMING THE 6809

devices are interfaced to the 6809 in the same way that memory is
interfaced. We can use any addressing mode for input or output;
however, extended addressing is commonly used, because the addresses
of input/output devices rarely change once a system has been built.

Generating a Signal

To generate a signal, the computer must turn an output device off or
on. To do this, we must change an electrical voltage level in the device
from a logical Oto a logical 1, or from a 1 to a O. For example, let's assume
that an external relay is connected to bit O of a register called OUTt. To
turn the relay on, we simply write a 1 in the appropriate bit position of
the register. We assume here that OUT1 represents the address of the
device output register in the system. Here is a program that will turn the
relay on:

TURNON LOA

STA

#%00000001 LOAD PATTERN INTO A

> OUTl OUTPUT IT TO DEVICE

ST A is the output instruction. The > symbol indicates extended
addressing.

In this example, we have assumed that the states of the other seven bits
of the register OUT1 are irrelevant However, this is often not the case, as
these bits might be connected to other relays. Let's, therefore, improve
this simple program by turning the relay on, without changing the state of
any other bit in the register. We will assume that we can read and write
the contents of this register. The improved program is:

TURNON LOA
ORA

STA

> OUT1 READ CONTENTS OF OUTl
#%00000001 FORCE BIT 0 TO 1 IN A

>OUT1

This program first reads the contents of OUT1, then performs an in­
clusive OR on its contents. It changes bit position 0 to 1, and leaves the
rest of the register intact (see Figure 6.1).

Pulses

We can generate a pulse in the same way that we change the voltage
level. We first turn an output bit on, then we turn it off. This results in a
pulse, as illustrated in Figure 6.2. In this example, however, we must
solve an additional problem: We need to generate a pulse for a specified
length of time. Thus, we must generate a computed delay.

INPUT/OUTPUT TECHNIQUES 217

Delay Generation and Measurement

We can generate a delay by using both software and hardware
methods. Let's first generate one using software; then we will later
generate one using a hardware counter, called a programmable interval
timer (PIT).

BEFORE

RELAY

OFF

AFTER

OUT
I

RELAY

ON

'------------------ Figure 6.1: Turning on a Relay

CPU OUTPUT PORT
REGISTER

SIGNAL

� N USEC �

_ _ _ _ __. __ __,___ __ o

THE PROGRAM:
SELECT OUTPUT PORT
LOAD OUTPUT REGISTER WITH PAITTRN
WAIT {LOOP FOR N USEC)
LOAD OUTPUT PORT WITH ZERO
RETURN

0�1 1�0

"----------------- Figure 6.2: A Prosmmmed Pulse

218 PROGRAMMING THE 6809

Programmed delays are achieved by counting. A counter register is
first loaded with a value, then decremented. The program loops on itself
and continues decrementing until the counter reaches the value 0. The
total length of time used by this process implements the required delay.
As an example, let's generate a delay of 27 clock cycles:

DELAY LDA #5 A IS COUNTER

NEXT DECA DECREMENT

BNE NEXT LOOP TIL ZERO

The first instruction loads A with the value 5. The next instruction
decrements A; and the following instruction causes a branch to NEXT,
as long as A does not decrement to O. When A finally decrements to 0,
the program exits from this loop and executes whatever instruction
follows. 'Phe logic of the program is simple and appears in the flowchart
in Figure 6.3.

Let's now compute the effective delay that the program will implement.
To do this we will use Appendix D, in order to look up the number of
cycles required by each instruction. Appendix D shows that LOA in the
immediate mode requires two clock cycles. DECA also requires two
cycles, and finally, BNE uses three cycles. The timing is, therefore,
two cycles for the first instruction, plus five for the next two, multiplied
by the number of times the loop is executed:

Delay = 2 + 5 X 5 = 27 cycles

COUNTER = VALUE

DECREMENT COUNTER

NO

OUT

Figure 6.3: Basic Delay Flowchart----------------'

INPUT/OUTPUT TECHNIQUES 219

Assuming a 1 microsecond clock (a 4 MHz crystal), the programmed
delay will be 27 microseconds.

(Note: The delay loop just described is used by most input/output pro­
grams. Be sure you understand it.)

To implement a longer delay, we simply add extra instructions in the
program between the instructions DECA and BNE. The simplest way to
do this is to add several NOP instructions. (The NOP instruction does
nothing for two cycles.)

Longer Delays

To generate longer delays using software, we can use a wider counter.
For example, we can use a register pair to hold a l&bit count. To
simplify, let us assume that the lower count is 0. We load the lower byte
with 0 (the maximum count), and it will go through a decrementation
loop. When it is decremented to 0, the upper byte of the counter is
decremented by 1. When the upper byte is decremented to the value 0,
the program terminates. If more precision is required in the delay
generation, the lower count can have a non-null value. In this case, we
would write the program as explained and add the three-line delay
generation program described above.

Here is a 24-bit delay program:

DEL24 LDA #COUNTH COUNTER HIGH (8 BITS)

STA COUNTR

DEL16 LDD #COUNTL COUNTER LOW (16 BITS)
LOOP SUBD #1 DECREMENT IT

BNE LOOP LOOP UNTIL ZERO
DEC COUNTR DECREMENT HIGH COUNTER

BNE DEL16 REPEAT UNTIL ZERO

Note that a SUBD must be used because there is no DECO.
Naturally, we could generate still longer delays by using more than

three words. Actually, this example is analogous to the way an odometer
works on a car. When the right-most wheel goes from 9 to 0, the next
wheel to the left is incremented by 1. This is the general principle when
counting with multiple discrete units.

The main disadvantage of this method, however, is that when the
computer is counting delays, the microprocessor does nothing else for
hundreds of milliseconds or even seconds. If the computer has nothing
else to do, this is acceptable. However, in general, the microcomputer
should be available for other tasks. Therefore, long delays are normally

220 PROGRAMMING THE 6809

not implemented by software. In fact, even short delays may be objec­
tionable in a system, if the system is to provide guaranteed response time
in certain situations. (In such situations, we must use hardware delays.)
Another disadvantage of the software delay is that, if the program is
interrupted, timing accuracy may be lost.

Hardware Delays

Hardware delays are implemented by using a programmable interval
timer, or "timer," in short. When using a programmable interval timer, a
register of the timer is loaded with a value. The timer automatically
decrements the counter periodically. The programmer can usually adjust
or select the amount of time between decrements. When the timer has
decremented to 0, it normally sends an interrupt to the microprocessor.
It may also set a status bit, that can be sensed periodically by the com­
puter. (We discuss interrupts later in this chapter.)

Other timer operating modes may include starting from 0 and counting
the duration of the signal or the number of pulses received. When func­
tioning as an interval timer, the timer is said to operate in a one-shot
mode. When counting pulses, it is said to operate in a pulse counting
mode. Some timer devices may even include multiple registers and a
number of optional facilities, which the programmer can select.

Sensing Pulses

The problem with sensing pulses is the reverse of the problem with
generating pulses, and includes one more difficulty: an output pulse is
generated under program control; an input pulse occurs asynchronously
with the program. We can use two methods to detect a pulse: polling and
interrupts. Let's first discuss polling.

Using the polling technique, the program continuously reads the
value of a given input register and tests a bit position, perhaps bit O. We
will assume that bit 0 was originally 0. (Thus, when a pulse is received,
this bit takes the value 1.) The program continuously monitors bit O until
it takes the value 1. When a 1 is found, the pulse has been detected. Here
is a program that does this:

POLL LDA

BITA
BEQ

>INPUT READ INPUT REGISTER

#%00000001 TEST FOR o
POLL KEEP POLLING IF ZERO

Conversely, let's assume that the input line is normally 1, and we want

INPUT/OUTPUT TECHNIQUES 221

to detect a 0. This is the usual case for detecting a ST ART bit, when
monitoring a line connected to a Teletype. Here is the program:

POLL

START

LOA >INPUT READ INPUT REGISTER
BIT A #%00000001 SET Z BIT
BNE POLL TEST IS REVERSED

Monitoring the Duration

We monitor the duration of a pulse in the same way that we compute
the duration of an output pulse. We may use either a hardware or soft­
ware technique. When we monitor a pulse by using software, a counter
is regularly incremented by 1, then the presence of the pulse is verified.
If the pulse is still present, the program loops upon itself. If the pulse
disappears, the count contained in the counter register is used to com­
pute the effective duration of the pulse. Here is a program that monitors
pulse duration:

DURTN
AGAIN

LONGER

CLRB
LDA
BITA

BEQ
INCB

LOA

BITA
BNE

>INPUT
#%00000001

AGAIN

>INPUT

#%00000001

LONGER

CLEAR COUNTER

READ INPUT
MONITOR BIT 0

WAIT FOR A 1

INCREMENT COUNTER

CHECK BITO
WAIT FOR A O

Naturally, we assume that the maximum duration of the pulse will not
cause register B to overflow. However, if B does overflow, the program
will have to be changed to take that into account (or there will be a pro­
gramming error!).

Since we now know how to sense and generate pulses, let's learn how
to capture and transfer large amounts of data. We will later apply this
knowledge to actual input/output devices.

PARAL.LEL WORD TRANSFER

We will assume here that eight bits of transfer data are available in
parallel at address INPUT (see Figure 6.4). We will also assume that the
status information is contained in bit 7 of address STATUS. The micro­
processor must read the data word at this location whenever a status
word indicates that it is valid.

222 PROGRAMMING THE 6809

We will now write a progam that reads and automatically saves each
word of data as it comes in. For simplicity, we will assume that the
number of words to be read is known in advance and is contained in
location COUNT. But, if this information is not available, we will test for
a so-called break character, such as a rubout, or perhaps the character
"•''. We have learned how to do this already.

The flowchart for this example appears in Figure 6.5. We will test the
status information until bit 7 becomes 1, indicating that a word is ready.
When the word is ready, we will read it and save it at an appropriate
memory location. We will then decrement the counter and test whether
it has decremented to 0. If so, the task is completed; if not, we will read

COUNT

STATUS

INPUT

7 0

Figure 6.4: ParoHel WonJ Tra.nsfe!'-The Memory---------'

INPUT/OUTPUT TECHNIQUES 223

the next word. Here is a simple program that implements this algorithm:

PARAL LDB COUNT READ COUNT INTO A
WATCH LDA >STATUS LOOK FOR DAT AREADY TRUE

BPL WATCH LOOP TIL READY
LDA >INPUT READ DATA
PSHS A SAVE DATA ON STACK
DECB DECREMENT COUNT
BNE WATCH REPEAT UNTIL ZERO

We assume here that the "data ready" flag is automatically cleared
when STATUS is read. This is usually the case on a device controller.

NO

POLLING OR
SERVICE REQUEST

READ COUNT

TRANSFER WORD

DECREMENT
COUNTER

OUT

NO

'----------Figure 6.5: Parallel Word Transfer: Flowchart

224 PROGRAMMING THE 6809

The first instruction initializes the counter register B:

PARAL LOB COUNT

The next few instructions read the status information and cause a loop
to occur when bit 7 of the status register is 0. The LD instruction sets the
condition code bits. Bit 7 causes the N bit to be set.

LDA >STATUS

BPL WATCH

When BPL fails, the data is valid and we can read it:

LOA > INPUT

The word has now been read from address INPUT and must be saved.
Assuming that a sufficient stack area is available, we can use the follow­
ing instrudion:

PSHS A

which saves A on the stack. If the stack is full, or the number of words to
be transferred is large, we will not be able to push them on the stack, and
we will have to transfer them to a designated memory area, using, for
example, an index register.

The word of data has now been read and saved. We simply decrement
the word counter and test whether we are finished:

DECB

BNE WATCH

We keep looping until the counter eventually decrements to 0.
This nine-instruction program, called a benchmark program, is

designed to test the capabilities of a given processor for a specific opera­
tion. For example, we can compute the maximum transfer speed of the
parallel transfer program-a program designed for maximum speed
and efficiency. We assume that COUNT is contained in memory. Let's
now examine the length of duration of each instruction (these figures
are also given at the end of this book):

PARAL LDB COUNT 5
WATCH LDA >STATUS 5

BPL WATCH 3

LDA >INPUT 5
PSHS A 6
DECB 2

BNE WATCH 3

We can obtain the minimum execution time by assuming that the data

INPUT/OUTPUT TECHNIQUES 225

is ready every time we sample STATUS. In other words, if we assume
that the BPL will fail every time, the length of time necessary to transfer
a block is then:

5 + (5 + 3 + 5 + 6 + 2 + 3) X COUNT

If we neglect the first 5 cycles necessary to initialize the counter
register, the time used to transfer one word is 24 clock cycles, which is 24
microseconds with a 4MHz crystal. The maximum data transfer rate is:

1 6 = 42 K bytes per second
24(10-)

We have now learned to perform high-speed parallel transfers. Let's
examine a more complex case.

BIT SERIAL TRANSFER

A serial input is one in which the bits of information (Os or ls) come in
successively on a line. These bits may come in at regular intervals, called
synchronous transmission, or at random intervals as bursts of data, called
asynchronous transmission. We will now develop a program that works
in both cases.

The principle of the capture of sequential data is simple. We watch an
input line, which we assume to be line 0. When a bit of data is detected
on this line, we read the bit in, and shift it into a holding register. When
we have assembled eight bits, we preserve the byte of data in the
memory and assemble the next one.

To simplify this example, we will assume that we know the number of
bytes to be received. Otherwise, we might have to watch for a special
break character, and stop the bit-serial transfer at that point. Figure 6.6
shows the flowchart for this program. Here is the program:

SERIAL CLRB CLEAR INPUT WORD
LDA

STA

LOOP LDA
BPL
LSRA

ROLB

BCC

PSHS
LDB

DEC
BNE

#COUNT

COUNTR

>INPUT
LOOP

LOOP

B

#$01
COUNTR
LOOP

PUT BYTE COUNT INTO

COUNTRWORD

READ PORT
WAIT FOR BIT 7 = 1
SHIFT DAT A BIT INTO CARRY
SA VE CARRY IN B

CONTINUE UNTIL 8 BITS IN

SA VE WORD ON STACK

RESET MARKER BIT

DECREMENT BYTE COUNTER
ASSEMBLE NEXT WORD

226 PROGRAMMING THE 6809

This program has been designed for efficiency. It uses new techniques,
which we will explain later in this chapter (see Figure 6.7). The conven­
tions are the following: memory location COUNTR is assumed to contain
a count of the number of words to be transferred. Register B is used to
assemble eight consecutive bits coming in. Address INPUT refers to an
input register. It is assumed that bit position 7 of this register is a status
flag, or a clock bit. (When it is 0, the data is invalid; when it is 1, the data is
valid.) We assume that the data itself appears in bit position o of this
same address. (In many instances, the status information appears on a
different register than the data register. Since this is in the same address,
it should be a simple task, then, to modify this program accordingly.)
In addition, we assume that the first bit of data to be received by this
program is guaranteed to be a 1. This 1 indicates that the real data
follows. However, if this is not the case, as we will later see, there is an
obvious modification that will correct this problem.

The program corresponds to the flowchart in Figure 6.6. The first few
lines of the program implement a waiting loop, which tests whether a
bit is ready. To determine whether a bit is ready, we first read the input
register, then we test the negative bit (N). As long as this bit is 0, the
instruction BPL will succeed, and we will branch back to the loop.
Whenever the status (or clock) bit becomes true (1), then BPL will fail and
the next instruction will be executed. This initial sequence of instructions
corresponds to arrow 1 in Figure 6. 7.

At this point, A contains a 1 in bit position 7, and the actual data bit is
in bit position 0. The first data bit to arrive will be a 1. However, the
following bits may be either 0 or 1. We will now preserve the data bit that
has been collected in position 0. The instruction:

LSRA

shifts the contents of A to the right by one position. This causes the right­
most bit of A, the data bit, to fall into the carry bit. Next, we preserve this
data bit into register B (this process is illustrated by arrows 2 and 3 in
Figure 6.7) with the instruction:

ROLB

This instruction reads the carry bit into the right-most bit position of B.
At the same time, the left-most bit of B falls into the carry bit. (If you have
any doubts about the rotation operation, refer to Chapter 4.)

It is important to remember that a rotation operation both saves the
carry bit (here into the right-most bit position), and reconditions the
carry bit with the value of bit 7. In this case, a 0 falls into the carry.

INPUT/OUTPUT TECHNIQUES 227

POLLING OR
SERVICE REQUEST

READ WORD
COUNT

STORE BIT

INCREMENT
COUNTER

DECREMENT
WORD COUNT

DONE

NO

NO

NO

-----------Figure 6.6: Bit Serial Transfer-Flowchart

228 PROGRAMMING THE 6809

The next instruction:

BCC LOOP

tests the carry and branches back to address LOOP, as long as the carry
is O. This instruction is the automatic bit counter. As a result of the first
ROL, B contains 00000001. Eight shifts later, the 1 will fall into the carry
bit and stop the branching. This is an ingenious way to implement �
automatic loop counter without wasting an instruction to decrement the
contents of a register. This technique shortens the program and improves
its performance.

When BCC finally fails, 8 bits will have been assembled into B. This
value should then be preserved in the memory. This is accomplished by
the next instruction (arrow 4 in Figure 6.7):

.PSHS B

0

STATUS-----+---
OR

(!) CLOCK

L-------___::�--������ SERIAL DATA
IN

7 0

Figure 6.7: Serial-�Parollel: The Registers----------'

INPUT/OUTPUT TECHNIQUES 229

This instruction saves the contents of B on the stack. But, this is possible
only if there is enough room in the stack. Provided this condition is met,
this is usually the fastest way to preserve a word in the memory. The
stack pointer is updated automatically. If we were not pushing a word
on the stack, we would have to use one more instruction to update a
memory pointer. We could equivalently perform an indexed addressing
operation by using an auto increment or decrement addressing mode.

After the first word of data has been saved, there is no guarantee that
the first data bit to come in will be a 1. It could be a 0. We must, therefore,
reset the contents of B to 00000001, so that we can continue to use the
carry bit as a bit counter. We do this with the next instruction:

LDB #$01

F:inally, we decrement the word counter, since a word has been
assembled, and test whether we have reached the end of the transfer.
This is accomplished by the next two instructions:

DEC COUNTR

BNE LOOP

The above program has been designed for speed, so that we may cap­
ture a fast input stream of data bits. Once the program terminates, it is
naturally advisable to immediately read away from the stack the words
that have been saved there, and transfer them into another part of the
memory where they may be processed. We performed such a block
transfer in Chapter 5.

This program is more complex than the previous ones. Let's look at it
again in more detail, and examine some possible trade-offs (see Figure 6.6).

Referring to the bit serial transfer program, we see that from time to
time a bit of data comes into bit position O of INPUT. For example, there
might be three ls in succession. We must, therefore, differentiate be­
tween the successive bits coming in. This is the function of the clock signal.

The clock (or STATUS) signal tells us when the input bit is valid.
Therefore, before we read a bit, we must test the status bit. If the status is
0, we must wait. If it is 1, the data bit is good. We assume here that the
status signal is connected to bit 7 of register INPUT.

Once we have captured a data bit, we want to preserve it in a safe loca­
tion. Then, we want to shift it left, so that we can get the next bit.

Unfortunately, in this program we use the accumulator to read and test
both data and status. If we were to accumulate data in the A accumulator,
bit position 7 would be erased by the status bit.

In this example, we have assumed that the first bit to come in is a
special signal, guaranteed to be a 1. However, in general, it could be a 0.

230 PROGRAMMING THE 6809

The program could be modified to handle data as the first bit. In addition,
note that we have saved the assembled word in the stack; however, we
could have saved it in some other memory area.

The Hardware Alternative

As usual for most standard input/output algorithms, we can imple­
ment the serial to parallel conversion through hardware. The hardware
chip to do this is called a UART. The UART automatically accumulates
the bits. If we want to reduce the component count, we should use this
program, or a variation of it.

BASIC I/O SUMMARY

So far, we have learned to perform elementary input/output operations
and to manage a stream of parallel data or serial bits. We are now ready
to communicate with real input/output devices.

COMMUNICATING WITH INPUT/OUTPUT DEVICES

To exchange data with input/output devices, we must first ascertain
whether data is available, and if so, if we want to read it; or, we must
ascertain whether the device is ready to accept data, and if so, if we
want to send it. We can use two procedures to do this: handshaking and
interrupts. Let's first discuss handshaking.

Handshaking

Handshaking is generally used as a communication tool between two
asynchronous devices, i.e., between two devices that are not synchr«r
nized. For example, if we want to send a word to a parallel printer, we
must first make sure that the input buffer of the printer is available. We
must, therefore, ask the printer: "Are you ready?" The printer will
respond either "yes" or "no." If it is not ready, we must wait If it is ready,
we can send the data (see Figure 6.8).

Conversely, before reading data from an input device, we must verify
whether the data is valid. We ask: "Is data valid?" The device will respond
either "yes" or "no." The "yes" or "no" may be indicated by status bits,
or by some other means (see Figure 6.9).

As an analogy, if we wish to exchange information with someone who
is doing something else at the time, we need to ascertain that that person
is ready to communicate with us. The usual rule of courtesy is to shake

INPUT/OUTPUT TECHNIQUES 2 31

hands-data exchange may then follow. This is also the procedure nor­
mally used in communicating with input/output devices. Let's examine
a simple example.

Sending a Character to the Printer

In this example, the character we wish to print is assumed to be in
memory location CHAR. Here is the program that we can use to print it:

WAIT LDA

BPL
LDA

STA
BR

MPU

> STATUS

WAIT WAIT TIL READY

CHAR

>PRINTD
WAIT

GET CHARACTER

PRINT IT
GO FOR NEXT

REAl>Y? -
(REAi> -

D

STATUS STATUS) REGISTER -- YES/NO

l/OCHIP

DATA ..

ou�o
'

REGISTER � ,.

OUTPUT
DEVICE

,__-------------Figure 6.8: Handshalcins (Output)

.A DATA
INM

D
K=---::: REGISTER �

MPU l/OCHIP INPUT
DATA DEVICE

REAl>Y? -

D

STATUS
- REGISTER

YES/NO

�-------------Figure 6.9: HandshaJcins (Input)

232 PROGRAMMING THE 6809

This program is straightforward and uses the handshaking procedure
described previously. The data paths appear in Figure 6.10.

The character (called DATA) is located at memory location CHAR.
First, the status of the printer is checked. Whenever bit 7 of the status
register becomes 1, it indicates that the printer is ready for output, i.e.,
its output buffer is available. At this point, the character is loaded into
the accumulator, and then output to the printer, via the accumulator. As
long as the status bit remains 0, the program will remain in a loop, called
WAIT.

Let's now complicate the output procedure by requiring a code con­
version and by outputting to several devices at a time.

Output To.a 7-Segment LED

We can use a traditional 7-segment light-emitting diode (LED) to
display the digits 0 through 9, or even 0 through F hexadecimal, by
lighting combinations of its 7 segments. Figure 6.11 shows a 7-segment
LED. Figure 6.12 shows the characters generated with this LED. The
segments of an LED are labeled A through G in both figures.

For example, we can display 0 by lighting the segments ABCDEF. We
assume, now, that bit O of an output port is connected to segment A; that
1 is connected to segment B; and so on; and that bit 7 is not used. The
binary code required to light up FEDCBA (to display 0) is, therefore,
0111111. In hexadecimal, this is 3F.

STATUS

A PRINTD

CHAR

PRINTER

MEMORY

-Fisure 6.10: Printer-Doto Poths---------------

INPUT/OUTPUT TECHNIQUES 233

A /"'-" /V
.. I .. I

/V /VI
F B

/V A.II

/V /Vf
•I .. , G

/VI /V
E c

/V /vl
A.II /Vf

.. , •I
D

.__----------Figure 6.ll: 7-Segment LED

A I -, I I I -

f
s

/_
I ,- _/ -, I

G fc I -, ,-, I l ,
-,

D
_I I I -/ / I !_I

I I I ,- I I I_
I I I I I I I ,- I

Figure 6.12: Hexadecimal Characters Generated with a 7-Segment LE

234 PROGRAMMING THE 6809

As an exercise, try computing the 7-segment equivalent for the hexa­
decimal digits 0 through F, and complete the following table.

Hex LED code Hex LED code Hex LED code Hex LED code

0 3F 4 8 c
1 5 9 D
2 6 A E
3 7 B F

We will now display hexadecimal values on several LEDs.

Driving Multiple LEDs

An LED has no memory. It displays data only as long as its segment
lines are active. To keep the cost of an LED display low, the micropro­
cessor displays information on each of the LEDs, in turn. The rotation
between the LEDs must be fast enough so that there is no apparent blink­
ing. This implies that the time spent going from one LED to the next is less
than 100 milliseconds. Let's design a program that accomplishes this.

We will use register B to point to the LED on which we want to display
a digit. A is assumed to contain the hexadecimal value to be displayed on
the LED. Our first concern is to convert the hexadecimal value into its
7-segment representation. In the last section, we built an equivalence
table. Since we are accessing the table, we will use the indexed addressing
mode, where the displacement index is provided by the hexadecimal
value. This means that the 7-segment code for the hexadecimal digit 3 is
obtained by looking up the third element of the table after the base. The
address of the base is SEGBAS. Here is the program:

LEDS LUX #SEGBAS TABLE BASE ADDRESS

DELAY

OUT

LOA A,X READ CODE FROM TABLE
STA B,Y OUTPUT FOR SET DURATION
LDA #$50 DELAY VALUE ='ANY LARGE

NUMBER
DECA DELAY COUNTER
BNE DELAY KEEP LOOPING
DECB B IS PORT INDEX
BNE OUT DONE WITH LAST LED?
LDB #MAXLED IF SO, RESET B TO TOP LED
RTS

INPUT/OUTPUT TECHNIQUES 235

This program assumes that the Y register points to the base address of
the LEDs, and that B is added to Yin order to point to the next LED to be
illuminated. The A accumulator contains the digits to be displayed.

The program first looks up the 7-segment code corresponding to the
hexadecimal value contained in the accumulator. The A register is used
as a displacement field, and the X register is used as a l�bit index
register. The code for the hexadecimal digit is added to the base address
of the table:

LEDS LDX

LDA

#SEGBAS

A,X

The next instruction outputs the 7-segment code to the address speci­
fie�, by using B as a displacement for the Y index register:

STA B,Y

A delay loop is then implemented, so that the code from the table is dis­
played for an appropriate duration. Here we have arbitrarily chosen the
constant, 50 hexadecimal. The next three instructions implement the
delay loop:

LDA #$50
DELAY DECA

BNE DELAY

Once the delay has been implemented, we simply decrement the LED
pointer displacement, and make sure we loop around to the highest
LED address, if the smallest LED address has been reached.

DECB
BNE OUT
LDB #MAXLED

OUT RTS

It is assumed here that this program was written as a subroutine; the
last instruction is, therefore, RTS: "return from subroutine."

We have now solved common input/output problems. Let's consider
the case of a common peripheral: the Teletype.

Teletype Input/Output

The Teletype is a serial device that sends and receives words of infor­
mation in a serial format. Each character is encoded in an 8-bit ASCII

236 PROGRAMMING THE 6809

format. (The ASCII table appears in Appendix B.) In addition, every
character is preceded by a "start" bit, and terminated by two "stop" bits.
In the 20-milliamp current loop interface, which is most frequently used,

the state of the line is normally a 1. This is used to indicate to the processor
that the line has not been cut. A start is a 1-tcH> transition. This indicates
to the receiving device that data bits follow. The standard Teletype is a
10-characters-per-second device. We have just established that each
character requires 11 bits. This means that the Teletype will transmit
110 bits per second, i.e., that it is a 110-baud device. We will now design a
program to serialize bits out to the Teletype at the correct speed.

One hundred ten bits per second implies that bits are separated by 9.09
milliseconds. This will have to be the duration in a program of the delay
loop to be implemented between transmission or reception of successive
bits. Figure- 6.13 shows the format of a Teletype word. Figure 6.14
displays the flowchart for bit input. Here is the program:

TTYIN LDA >STATUS

NEXT

BPL TTYIN DATA READY?
BSR DELA Y1 CENTER OF PULSE
LOA
STA
BSR

LOB
STB

LDA

STA

LSRA
RORB
BSR
DEC

BNE

LDA

STA
BSR
RTS

>TTYBIT
>TTYBIT
DELAY9

#$08
COUNTR
>TTYBIT

>TTYBIT

DELAY9
COUNTR

NEXT

>TTYBIT
>TTYBIT
DELAY9

START BIT
ECHO IT
NEXT PULSE 9MS

BIT COUNT
COUNTER WORD

READ DATA BIT

ECHO IT

SAVE IT IN CARRY
PRESERVE IT IN B
NEXT PULSE 9MS

DECREMENT BIT COUNT

READ STOP BIT

ECHO IT

SKIP SECOND STOP

Let's examine this program in detail.
First, we test the status of the Teletype to determine if a character is

available:

TTYIN LDA

BPL

>STATUS

TTYIN

INPUT/OUTPUT TECHNIQUES 237

Then, we implement a 4.5 ms delay, in order to sense the start bit in the
middle of the pulse:

BSR DELAYl

DELA Yl is the delay subroutine that implements the required delay.
The first bit to come is the start bit. It should be echoed to the Teletype,
but ignored by the rest of the program. This is done by the next few
instructions:

LDA >TTYBIT
STA >TTYBIT

We must now wait for the first data bit. The necessary delay is equal to
9.09 ms and is implemented by a subroutine:

BSR DELAY9

Memory location COUNTR is used as a counter and loaded through the
B register with the value 8, because 8 data bits are captured:

LDB #$08
STB COUNTR

Next, each data bit is read into A, in turn, then echoed. The data bit is
assumed to arrive in bit position O of A. The data bit is then preserved in
register B, where it is shifted in. The transfer from A to B is performed
through the carry bit:

NEXT LDA > TTYBIT

STA >TTYBIT

LSRA
RORB

Figure 6.15 illustrates this sequence.

-------------Figure 6.13: Format of a Teletype Word-

238 PROGRAMMING THE 6809

NO

NO

TIYIN

WAIT 4.5 ms
ECHO ST ART BIT

WAIT 9.<:R ms

SHIFT IN DATA BIT
ECHO IT

WAIT 9.CR ms

OUTPUT STOP BIT

WAIT 9.CR ms

Figure 6.14: ITY Input with Echo--------------'

INPUT/OUTPUT TECHNIQUES 239

Next, the usual 9 ms delay is implemented, the bit counter is decre­
mented, and the loop is entered again-as long as the eight bits have not
been captured:

BSR DELAY9

DEC COUNTR
BNE NEXT

Finally, the STOP bit is captured, and echoed. It is usually sufficient to
send a single STOP bit; however, both could be sent back by using two
more instructions:

LDA >ITYBIT

STA >ITYBIT

BSR DELAY9
RTS

The logic of this program is quite simple: whenever a bit is read from
the Teletype (at address TTYBIT), it is echoed back to the Teletype. This
is a standard feature of the Teletype. Whenever a user presses a key, the
information is transmitted to the processor and then back to the printing
mechanism of the Teletype. This verifies that the transmission lines are
working and that the processor is operating when a character is, indeed,
printed correctly on the paper.

Using the above program, we will now write a PRINTC program that
will print the contents of memory location CHAR on the Teletype.

A

B

COUNTR

STATUS X

TTY BIT

NiMORY

TELETYPE
DATA

-----------------Figure 6.15: Teletype Input-

240 PROGRAMMING THE 6809

Figure 6.16 shows the relevant flowcharts. Here is the program:

PRINTC LOB #11 COUNTER = 11 BITS
CLRA CLEAR CARRY = ST ART BIT
LDA CHAR GET CHARACTER
ROLA CARRY BIT INTO A

NEXT STA >'ITYBIT OUTPUT BIT
BSR DELAY9
RORA NEXT BIT
ORCC #$01 SET CARRY BIT
DECB BIT COUNT
BNE NEXT
RTS

The B register is used as a bit counter for the transmission. The contents
of bit 0 of register A are sentto the Teletype line (TTYBIT). Note how the
carry is used to provide a ninth bit (the ST ART bit). Also, note that the

ENTER ENTER

SEND START SET BIT
BIT COUNTER TO

ELEVEN

SEND DATA
BITS

OUTPUT
A BIT

SEND STOP
BIT

DELAY
9.1 MSK

EXIT

NO

(RETURN)
.Fisure 6.16: Teletype Output----------------'

INPUT/OUTPUT TECHNIQUES 241

carry is cleared by:

CLRA

At the end of the program, the carry is set to 1 to generate a stop bit:

ORCC #$01

Let's now print a string of characters.

Printing a String of Characters

We will assume that the PRINTC routine prints a character on the
printer, the display, or any serial output device. Let's now print the
contents of memory locations START to (START) + N. Figure 6.17
shows the memory and registers used. Here is the program:

PS1'RING LOB #NBR LENGTH OF STRING

LOX START BASE ADDRESS

PSHS B SA VE B PRINTC DESTROYS

NEXT LOA ,
x

+ GET CHARACTER

STA CHAR PUT IT WHERE PRINTC WANTS IT

BSR PRINTC PRINT IT

PULS B GET COUNT BACK

DEC B
BNE NEXT DO IT AGAIN

RTS

PERIPHERAL SUMMARY

We have now described the basic programming techniques used to
communicate with typical input/output devices. In addition to the data
transfer, it is necessary to condition one or more control registers within
each I/O device, in order to correctly condition the transfer speeds, the
interrupt mechanism, and various other options. Consult the user's
manual to obtain the appropriate information for each device. (See
reference C207 in the bibliography for more details on the specific algo­
rithms for exchanging information with all the usual peripherals.)

We have now learned to manage single devices. However, in a real
system, all peripherals are connected to the buses and may request
service simultaneously. How can we then schedule the processor's time?

INPUT/OUTPUT SCHEDULING

Since input/output requests may occur simultaneously, it is necessary
to implement a scheduling mechanism in every system, to determine the

242 PROGRAMMING THE 6809

order that service will be granted. Three basic input/output techniques
are used: polling, interrupt. and OMA. Figure 6.18 illustrates these three
techniques. The techniques can all be combined with each other. We
will now describe polling and interrupts. Since OMA is a hardware
technique, we will not describe it here. (See references C201A and C207
in the bibliography for further information on OMA.)

Polling

Conceptually, polling is the simplest method for managing multiple
peripherals. With this strategy, the processor interrogates, in turn, each
device that is connected to the buses. If a device requests service, the
service is granted. If it does not, the next peripheral is examined. Polling
is used not only for devices, but for any device service routine.

As an ex·ample, if the system is equipped with a Teletype, a tape
recorder, and a CRT display, the polling routine would interrogate the
Teletype: "Do you have a character to transmit?" It would also interrogate
the Teletype output routine; "Do you have a character to send?" Then,
assuming that the answers are negative, it would interrogate the tape­
recorder routines, and finally, the CRT display. Even if only one device
is connected to a system, polling would be used to determine whether it
needs service. As examples of polling, Figures 6.19 and 6.20 show the

ME.MORY

B A

COUNTER

OUTPUT REGISTER
TO PRINTER

Figure 6.17: Printing a Memory BlocJc--------------J

INPUT/OUTPUT TECHNIQUES 243

MEMORY

DATA BUS
MPU

I I
I L _ _ _ _ _ _ _ _ _ _ _ _ _ ?
I
L -

MEMORY

MPU

IRQ

HOLD

MPU t----�'---:--��--+----!1---�--v OMA I
I
I
I
I
L _ _ _ _ _ _ _ _ _ _ _ _ _

------------Figure 6.18: Three Methods of I/O Control-

244 PROGRAMMING THE 6809

SET READER
ENABLE ON

YES

READ
CHARACTER

NO

Fi
gure 6.19: Reading from a Paper-Tape Reader--------�

YES

LOAD PUNCH
OR PRINTER

BUFFER

TRANSMIT DATA

NO

Fi
gure 6.20: Printing on a Punch or Printer----------�

INPUT/OUTPUT TECHNIQUES 245

flowcharts for reading a paper-tape reader and printing on a printer.
Figure 6.21 shows a polling loop flowchart for 3 devices.

A program for a polling loop of four devices follows. The devices are

SERVICE ROUTINE
FOR DEVICE A

SERVICE ROUTINE
FOR DEVICE B

SE.RVICE ROUTINE
FOR DEVICEC

------------Figure 6.21: Polling Loop Flowchart

246 PROGRAMMING THE 6809

called 1, 2, 3, and 4:

POLL4 LOA >STATUS1 GET STATUS OF DEVICE 1

BMI CALL1 SERVICE REQUEST

TEST2 LOA >STATUS2 DEVICE 2
BMI CALL2

TEST3 LOA >STATUS3 DEVICE 3
BMI CALL3

TEST4 LOA >STATUS4 DEVICE 4
BMI CALL4

BR POLL4 TRY AGAIN

CALL1 BSR ONE SERVICE DEVICE 1
BR TEST2 CONTINUE POLLING

CALL2 BSR TWO DEVICE 2
BR TEST3

CALL3 BSR THREE DEVICE 3

BR TEST4

CALL4 BSR FOUR DEVICE4

BR POLL4 TRY ALL AGAIN

When the device wants service, bit 7 of the status register for each
device is 1. When a request is sensed, the program calls the device
handler subroutine.

There is a fine point worth noting here. It is possible to branch to the
subroutine directly with a BMI or LBMI instruction, thus eliminating
the second part of the program, which does the BSR instruction. Use of
the branch requires the handler subroutine to "know" which address to
return to when it is finished. This means that, if the simple branch is used,
the handler could only be called from one place in the program and no
other. If the handler is used elsewhere in the program, it must be rewritten
with a different return address. Subroutines help eliminate unnecessary
duplication of code.

The advantages of polling are obvious. Polling is simple. It does not
require hardware assistance, and it keeps all input/output synchronous
with the program operation. The disadvantages are just as obvious.
Most of the processor's time is wasted looking at devices that do not
need service. In addition, by wasting so much time, the processor might
then be late in giving service to a device.

Another mechanism is, therefore, desirable in order to guarantee that
the processor's time is used for performing useful computations, rather
than the needless continuous polling of devices. However, let us stress

INPUT/OUTPUT TECHNIQUES 24 7

that polling is used extensively whenever a microprocessor has nothing
better to do, as it keeps the overall organization simple. Let's examine an
essential alternative to polling: interrupts.

Interrupts

Figure 6.18 illustrates the concept of interrupts. A special hardware
line, the interrupt line is connected to a specialized pin of the micropro­
cessor. Multiple input/output devices may be connected to this interrupt
line. Then, when any one of them needs service, it sends a level or pulse
on this line. An interrupt signal is the service request from an input/output
device to the processor. Let's examine the response of the processor to
this interrupt.

In all cases, when an interrupt occurs, the processor completes the in­
struction that it is currently executing (otherwise, such an interruption
would create chaos inside the microprocessor). Next, the microprocessor
branches to an interrupt-handling routine, which processes the interrupt.
Branching to this subroutine implies that the contents of the program
counter must be saved on the stack. An interrupt must, therefore, cause the
automatic preservation of the program counter on the stack. In addition,
the condition code register, CC, should also be preserved automatically,
as its contents will be altered by any subsequent instruction. Finally, if
the interrupt-handling routine should modify any internal registers,
these internal registers should also be preserved on the stack(see Figures
6.22 and 6.23).

6809 Interrupts

An interrupt is a signal sent to the microprocessor, which may request
service at any time. This signal is asynchronous to the program.
Whenever a program branches to a subroutine, such branching is
synchronous to program execution, i.e., scheduled by the program. An
interrupt, however, can occur at any time, and it generally suspends the

SP - cc

PCH

PCl

'------------Figure 6.22: 6809 Stack After Interruption

248 PROGRAMMING THE 6809

execution of the current program (without the program knowing it).
Because it may happen at any time relative to program execution, it is
called asynchronous.

Four interruption mechanisms are provided on the 6809:

1. the bus request (OMA/BREQ)

2. the non-maskable interrupt (NMO

3. the fast interrupt request (FIRQ)

4. the usual interrupt request (IRQ).

Let's examine them.

The Bus Request

The bus request is the highest priority interrupt mechanism on the
6809. As a general rule, no interrupt will be sensed by the 6809 until the
current machine cycle is finished; and the NMI, FIRQ, and IRQ inter­
rupts will not be taken into account until the current instruction is
finished. The OMA/BREQ (TSC on the MC6809E), however, will be
handled at the end of the current machine cycle, without necessarily
waiting for the end of the instruction. It is used for a direct memory access
(OMA), and causes the 6809 to go into OMA mode.

CXXX)

SP
A

B

YH

Yl

FFFF

Fisure 6.23: Saving Some Working Registers----------'

INPUT/OUTPUT TECHNIQUES 249

In OMA mode, the 6809 suspends operation and releases its data-bus
and address-bus in the high-impedance state. This mode is normally
used by a OMA controller to perform transfers between a high speed
input/output device and memory, using the microprocessor address­
bus and data-bus. The end of a OMA operation is indicated to the 6809
by OMA/BREQ changing levels. At this point, the 6809 will resume
normal operation.

The OMA should normally not be of concern to the programmer, unless
timing is important. If a OMA controller is present in the system, the
programmer must understand that the OMA may delay the response to
one of the other three interrupts.

The Non-Maskable Interrupt

Th13 non-maskable interrupt (NMI) cannot be inhibited by the pro­
grammer. It is always accepted by the 6809 upon completion of the
current instruction, assuming no bus request was received. Figure 6.24
shows the interrupt sequence for the 6809.

The NMI causes the automatic push of the program counter and all
other registers (except the S register) onto the hardware stack, S. (If an
NMI is received during a OMA/BREQ, it will set an internal NMI latch,
and be processed at the end of the OMA/BREQ.) A new program counter
is loaded from the data in memory locations FFFC and FFFO. The start­
ing address of the NMI handler is stored with the high byte in FFFC and
the low byte in FFFO, as shown in Figure 6.25.

The NMI is used in an "emergency," such as a power failure. It does
not offer the flexibility of the maskable interrupts. The address of the
NMI handler must be placed in location FFFC:FFFO, before an interrupt
occurs. After a hardware reset, the NMI is inhibited until the hardware
stack pointer is loaded. The interrupt handler must finish before the
next NMI occurs, otherwise, the stack may fill the memory.

When an NMI occurs, three bits in the condition code register (E, F,
and I) are set to 1. The E bit, when set, indicates that the entire state of the
processor-all the registers-have been saved on the stack. The registers
are saved so that the interrupt handler may freely use registers, but not
destroy the data used previously by the interrupted program. The return
from interrupt (RTI) instruction is executed at the end of the interrupt
handler program. This instruction checks the E bit and, if it is set,
restores all the registers and the PC of the interrupted program. If the E
bit is clear when the RTI is executed, only the condition code register
and the PC will be restored from the stack. The I and F bits enable, or
disable (when they are O or 1) the IRQ and FIRQ interrupts.

250 PROGRAMMING THE 6809

O- OPR
1-f I
1-iw Clr NW

logk !AsormNMi

SYNC

HALi

Noles: 1. Asserling RESET will resuh in enlering the reset
sequence from ony poinl in the flow chorl.

2. BUSY is high during first veclor fetch cycle.

Courtesy of Molorolo, Inc.

0

Execution
of

Figure 6.24: Flowchart for MC6609E Interrupts a.nd Instructions-----'

NOie 2
(VKIO<)-PC

NMI FFFC
SWI FFFA
IRQ fff8
FIRO fff6
SW l 2 FFF4
SWl3 fff2

Courtesy of Motorola, Inc.

N

INPUT/OUTPUT TECHNIQUES

CWAI

... stwte IA IS
Running 0 0
Interrupt or Reset Acknowledge 0 I
Sync Acknowledge 1 0
Holt Acknowledge 1 1

Figure 6.24: Flowchart for MC6809E Interrupts and Instructions (cont.}

251

252 PROGRAMMING THE 6809

Interrupt Request

The interrupt request, a maskable interrupt, is the most commonly used
interrupt mechanism. The maskable interrupt is ignored or masked
when the interrupt enable bit, I, in the condition code register is set to 1.
When the I bit is o, IRQ interrupts are accepted by the processor.

When an IRQ occurs and the I bit is zero, the PC and all the registers
(except S) are pushed onto the hardware stack. The PC of the IRQ
handler is fetched from memory locations FFF8:FFF9. This process is
the same for the NMI. The E bit in the condition register is set to 1,
because the entire machine state is saved; the I bit is set to 1 to prevent
any more IRQs. It is usually not necessary to be able to handle more than
one IRQ at a time. However, the I bit may be cleared by the program and
more IRQs accepted if necessary.

The IRQ handler is terminated with an RTI instruction. This instruc­
tion restores all the registers from the stack and the PC of the interrupted
program.

E F H

I
I

I

I · I

N Z V C

I I I
CC REGISTER

PC
I
I I

/�

I

MEMORY
OOCXl

NMI
HANDLER

� REGISTERS -

STACK
.... >-I'

PC -

PCH FFFC

PCL
- FFFO

Figure 6.25: Non-Moslcoble Interrupt Sequence-----------'

INPUT/OUTPUT TECHNIQUES 253

Fast Interrupt Request

The fast interrupt request is similar to the IRQ, as it is maskable by
setting the F bit in the condition code register to 1. When an FIRQ is
received, only the PC and condition code register are saved on the hard­
ware stack. The E bit is not set, because the entire machine state has not
been saved. The PC for the FIRQ handler is fetched from locations
FFF6:FFF7. Both the F and I bits are set to 1 to prevent any more
interrupts.

The fast interrupt request executes much more quickly than the NMI
or IRQ, because only three bytes are pushed onto the stack. The FIRQ
takes ten cycles to execute. The NMI and IRQ require nineteen. The fast
interrupt request is very useful when speed is essential, but the registers
are not used extensively. If a register is used, it must first be pushed and
then pulled, before execution of the RTI instruction. The RTI restores
the condition code register and the PC of the interrupted program.

Interrupt Dependent Instructions

Two instructions on the 6809 depend on interrupts. They are the
synchronize to external event (SYNC) instruction and the clear condition
code bits and wait for interrupt instruction (CWAI).

The SYNC instruction stops the 6809 from processing until an interrupt
occurs. It also sets the bus available (BA) pin on the 6809 chip to 1 and
the bus status (BS) pin to 0. This is the sync acknowledge state of the pro­
cessor. If the mask bit for that interrupt is 0, the interrupt handler is
executed. If the interrupt is not enabled, execution of the program
proceeds immediately after the SYNC instruction. This instruction can
be useful for very fast I/O from a device.

The CW AI instruction ANDs the byte immediately following the in­
struction with the condition code register, saves all of the processor
registers on the stack, and suspends program execution until an interrupt
occurs. If the interrupt is not masked, the interrupt handler is executed.
Otherwise the processor stays in a suspended state. This instruction is
provided for compatability with the MC6800 microprocessor.

Interrupt Overhead

Figure 6.18 gives a graphic comparison of the polling process versus
the interrupt process-the polling process is illustrated on top, and the
interrupt process below. It can be seen in the illustration that the program
wastes a lot of time waiting in the polling technique.

When using interrupts, the program is interrupted, the interrupt is

254 PROGRAMMING THE 6809

serviced, and the program resumes. However, an obvious disadvantage
of an interrupt is that it introduces several additional instructions at
the beginning and end of the device handler program. thus resulting in
a delay before execution of the first instruction of the device handler.
This delay is additional overhead.

Now that we have clarified the operation of the interrupt lines, let's
consider two remaining problems, involving:

• multiple devices triggering an interrupt at the same time

• an interrupt occurring while another is being serviced.

Multiple Devices Connected to a Single Interrupt Line

Whenev.er an interrupt occurs, the processor branches to a specified
address. Before it can do any effective processing, the interrupt handler
must determine which device triggered the interrupt. A polling method
can be used to find the device that interrupted the processor. The micro­
processor asks each device in turn, "Did you trigger the interrupt?"
If the answer is negative, it interrogates the next one. The following
program illustrates this process:

POLINT LDA
BMI

>STATUS1 READ STATUS
ONE

LOA > STATUS2

BMI TWO

Simultaneous Interrupts

HANDLE DEVICE IF IT
INTERRUPTED

A second problem is that a new interrupt may be triggered during the
execution of an interrupt-handling routine. Let's examine what happens
when this occurs, and see how the stack can solve this problem. We
previously indicated that this was another essential role of the stack; the
time has now come to demonstrate its use. The illustration in Figure 6.26
shows the concept of multiple interrupts.

The contents of the stack are shown at the bottom of the illustration.
Time elapses from left to right. Looking at time TO on the left, program P
is executing. Moving to the right, at time T1, interrupt I1 occurs. We
assume that the interrupt mask was enabled, thus authorizing I1.
Program P is suspended, as shown at the bottom of the illustration. The
stack contains, at the least, the program counter and the status register

TIME

INPUT/OUTPUT TECHNIQUES 255

of program P, plus any optional registers that might be saved by the
interrupt handler or 11 itself.

At time Tl, interrupt 11 starts executing until time T2. At time T2,
interrupt 12 occurs. We assume that interrupt 12 has a higher priority
than interrupt 11. Ifit had a lower priority, it would be ignored until 11 was
completed. At time T2, the registers for 11 are stacked (as shown at the
bottom of the illustration). Again, the contents of the program counter
and the condition code register are pushed onto the stack. In addition,
the routine for 12 might decide to save additional registers. 12 executes to
completion at time T3.

When 12 terminates, the contents of the stack are automatically popped
back into the 6809 (as illustrated at the bottom of Figure 6.26). Thus, 11
resumes execution automatically. Unfortunately, at time T4, an interrupt
13 of higher priority occurs again. We can see at the bottom of the illus­
tration that the registers for 11 are again pushed onto the stack. Interrupt
13 executes from T4 to T5 and terminates at T5. At that time, the contents
of the stack are popped into the 6809, and interrupt 11 resumes execution.
This time it runs to completion and terminates at T6. At T6, the remaining
registers that have been saved in the stack are popped into the 6809, and
program P can resume execution. At this point, we can verify that the
stack is empty. In fact, the number of dashed lines indicating program
suspension also indicate the number of levels in the stack.

We must stress here, however, that, in practice, microprocessor

To T2 T3 Ts

PROGRAM P 1------1 - t----
INTERRUPT h

INTERRUPT 12

INTERRUPT 13

STACK

I
I 1 - - - - - - --1 I - - - t---1
I
I
I
I
I
I
I
I

0

I
I
I
I

ill

I
I
I
I
I I I

0

I
I

ffi
I
I
I
I
I

0
Ts

.__-------Figure 6.26: Stack Contents During Multiple Interrupts

256 PROGRAMMING THE 6809

systems are normally connected to a small number of devices that use
interrupts. It is, therefore, unlikely that a high number of simultaneous
interrupts will occur in such a system.

We have now solved all the problems usually associated with inter­
rupts. Their use is, in fact, simple, and they should be used to advantage
by even the novice programmer.

SUMMARY

In this chapter, we have presented programming techniques that can
be used to communicate with the outside world. These techniques have
ranged from elementary input/output routines to more complex pro­
grams for communication with actual peripherals. We have learned to
develop all the usual programs and have even examined the efficiency of
benchmark programs in the case of a parallel transfer and a parallel-to­
serial conversion. Finally, we have learned to schedule the operation of
multiple peripherals, using polling and interrupts.

Naturally, many exotic input/output devices may be connected to a
system. With the array of techniques presented so far, and with an
understanding of the peripherals involved, we should now be able to
solve most common problems.

In the next chapter, we will examine the actual characteristics of the
input/output interface chips usually connected to a 6809 processor. We
will then discuss the basic data structures available for use.

EXERCISES

6-1: What are the maximum and minimum delays that con be implemented
with the simple three instruction delay loop program?

6-2: Modify the three instruction delay loop program to obtain a delay of
about 100 microseconds.

6-3: Write a program to implement a 100 ms delay (typical of a Teletype).

INPUT/OUTPUT TECHNIQUES 257

6-4: Assume that the number of words to be transferred to memory is greater
than 256. Modify the parallel word transfer program accordingly, and
determine the impact on the maximum data transfer rate.

6-5: Compute the maximum speed at which the serial bit transfer program
will be able to read serial bits. Look up in the appendix the number of
cycles required by every instruction in the table, then compute the time
that will elapse during execution of this program. To compute the length
of time used by a loop, simply multiply the total duration of this loop,
expressed in microseconds, by the number of times it will be executed.
Also, when computing the maximum speed, assume that a data bit will be
ready each time the input location is sensed.

6-6: Can you explain why bit 7 is used for status and bit 0 for data in the bit
serial transfer program? Does it matter?

6-7: Modify the bit serial transfer program, assuming that the first bit to come
in is valid data (not to be discarded), and that it con be 0or1. (Hint: our bit
counter should still work correctly, if you initialize it with the correct
value.)

6-8: Modify the bit serial transfer program to save the assembled word in the
memory area starting at BASE.

6-9: Modify the bit serial transfer program so that the transfer stops when the
S character is detected in the input stream.

6-10: Modify the bit serial transfer program, assuming that data is ava.ilable in
bit position 0 of location INPUT, while the status information is available
in bit position O of address INPUT + 1.

6-11: When using an actual printer, it is usually necessary to send a start order
before using the device. Modify the printer program to generate such an
order, assuming that the start command is obtained by writing a 1 in bit
position 0 of the STATUS register, which is assumed to be bidirectional.

6-12: Modify the printer program to print a string of n characters, where n is
assumed to be less than 255.

6-13: Modify the printer program to print a string of characters, until a
carriage-return code is encountered.

6-14: It is usually necessary to turn off the segment drivers for an LED, prior to
displaying new digits. Modify the LED program by adding the necessary

258 PROGRAMMING THE 6809

instructions (output 00 as the character code, prior to outputting the
character).

6-15: What would happen to the LED display if the DELAY label in the LED
program was moved up by one line position? Would this change the timing?
Would it change the appearance of the display?

6-16: Assuming that the LED program is a subroutine, notice that it uses the
register X internally and modifies its contents. If the subroutine freely
uses the memory area designated by SA VEX, can you odd instructions at
the beginning and end of this program which guarantee that, when the
subroutine returns, the contents of the register X will be the some as when
the subroutine was entered?

6-17: Same exercise as above, but assume that the memory area SA VEX, etc.,
is not available to the subroutine. (Hint: remember that there is a built-in
mechanism in every computer for preserving inf ormotion in chrono­
logical order.)

6-18: Write the delay routine which results in the 9.09 millisecond delay.
(DELA ¥9 subroutine.)

6-19: Assume that the area available to the stock is limited to 300 locations in a
specific program. Also, assume that all the registers must always be saved
and that the programmer allows interrupts to be nested, i.e., to interrupt
each other. What is the maximum number of simultaneous interrupts
that can be handled? Will any other factor contribute to reducing further
the maximum number of simultaneous interrupts?

6-20: A 7-segment LED display can also display digits other than the hex
alphabet. Compute the codes for: H, I,], L, 0, P, S, U, Y, g, h, i, j, l, n, o, p, r,
t, u, y.

6-21: The flowchart for interrupt management appears on the next page.
Answer the following questions:

a. What is done by hardware? What is done by software?
b. What is the use of the mask?
c. How many registers should be preserved?
d. How is the interrupting device identified?
e. What does the RTI instruction do? How does it differ from a subroutine

return?
f. Suggest a way to handle a stack overflow situation.
g. What is the overhead ("lost time") introduced by the interrupt

mechanism?

YES

INPUT/OUTPUT TECHNIQUES 259

NO

PRESERVE
REGISTERS
(il.-..-y)

IDENTIFY
DEVICE

(lfn.c..-y)

RETURN

CHAPTER 7

261

INPUT/OUTPUT
DEVICES

WiTH THE PROGRESS OF LSI, more and more elaborate input/
output chips have been developed. As a result, the task of programming
a system includes not only programming the microprocessor itself,
but also programming the input/output chips. In fact, it is often more
difficult to remember how to program the various control options of an
input/output chip than it is to program the microprocessor itself. This is
not because the programming is more difficult, but because each device
has its own idiosyncrasies. In this chapter, we will examine the most
general input/output device-the programmable input/output chip (the
PIO). We will also examine some input/output devices designed by
Motorola.

The 6809 was designed to provide 16-bit microprocessor capability,
while interfacing easily with any of the extensive 68xx family of UO
chips developed for 8-bit processors. The 6809 will also interface with
most 6502 UO devices, such as those used in the Apple, Atari, Commo­
dore, and many other personal computers.

262 PROGRAMMING THE 6809

THE "STANDARD" PIO

A PIO provides a multi-port connection for input/output devices.
(A port is a set of 8 input/output lines.) At the very least, each input/output
device needs a data buffer to stabilize the contents of the data bus on out­
put. Most PIO's are equipped with a buffer for each port. Although there
is no "standard" PIO, most manufacturers produce PIOs that are
similar in function.

We previously established that a microcomputer uses a handshaking
procedure, or interrupts to communicate with an I/O device. The PIO
also uses a similar procedure to communicate with a peripheral. There­
fore, to implement a handshaking function, each PIO must be equipped
with at least two control lines per port.

A microprocessor also needs to read the status of each port. Thus,
each port must be equipped with one or more status bits. In addition, the
PIO has a number of options for configuring its resources. To specify
these programming options, a programmer must be able to access a
special register in the PIO, called the control register. In some cases, the
status information is part of the control register.

One essential faculty of the PIO is that each line may be configured as
either an input or output line. Figure 7 .1 shows a diagram of a PIO. It is
up to the programmer to specify whether a line will be input or output.
To program the direction of the lines, a data-direction register is provided
for each port. A 0 in a bit position of the data-direction register specifies
an input. A 1 specifies an output.

It may be surprising that a 0 is used for input and a 1 for output, when
usually a 0 corresponds to output and a 1 to input. However, this change is
quite deliberate: whenever power is applied to the system, it is important
that all the I/O lines are configured as input. Otherwise, if the microcom­
puter is connected to some dangerous peripheral, it may be activated by
accident. When a reset is applied, all registers are normally zeroed, which
results in configuring all input lines of the PIO as inputs. The connection
to the microprocessor appears on the left of the illustration in Figure 7 .1.
The PIO connects to the 8-bit data bus, the microprocessor address bus,
and the microprocessor control-bus. The programmer simply specifies
the address of any register to be accessed within the PIO.

THE INTERNAL CONTROL REGISTER

The control register of the PIO provides a number of options for gen­
erating or sensing interrupts, or for implementing automatic handshake
functions. We will not provide a complete description of these facilities

INPUT/OUTPUT DEVICES 263

here. However, very simply, when using a practical system that uses a
PIO, it is usually necessary to refer to the data-sheet showing the effects
of setting the various bits of the control register. When the system is ini­
tialized, the programmer must load the control register of the PIO with
the correct contents for the expected application.

PROGRAMMING A PIO

Let's now look at a typical sequence, using a PIO channel (assuming
an input):

1. Load the control register by using a programmed transfer
between a 6809 register (usually an accumulator) and the PIO

CA 1 CA2 PORT A

PORA

DORA

CRA

PERIPHERAL
DATA

REGISTER

DATA
DIRECTION
REGISTER

CONTROL
REGISTER

DATA
BUS

PDRB

DDRB

PORT B CB2 CB 1

O = INPUT
1 =OUTPUT

CR•D
RSO RSl

R�R JRQA' IRQB
SELECT

....._----------------- Figure 7.1: Typical PIO

264 PROGRAMMING THE 6809

control register. The options and operating mode of the PIO are
set when the register is loaded (see Figure 7.2). The loading is
normally done only once, at the beginning of a program.

IRQA

CONTROL

} CHIP
SELECT

}REGISTER
SELECT

INTI
STATUS

(CRA)

IRQB -------------------1 INT/
STATUS

PAO-
PA7

PBO-
P87

Figure 7.2: Using a PIO.Load Control Register------------'

00-
07

INPUT/OUTPUT DEVICES 265

2. Load the direction register to specify the direction in which the
I/O lines will be used. (See Figure 7.3.)

IRQA

CONTROL

} CHIP
SELECT

} REGISTER
SELECT

IRQB

INT/
STATUS

INT/
STATUS

PAO-
PA7

PBO-
PB7

'-------------Figure 7.3: Using a PIO-Load Doto Direction

266 PROGRAMMING THE 6809

3. Read the status register to check if a valid byte is available on
input. (See Figure 7.4.)

4. Read the port; the byte is read into the 6809. (See Figure 7.5.)

�
07

IRQA

EN
RESET

IRQB

CONTROL

} CHIP
SElfCT

} REGISTER
SElfCT

INT/
STATUS

PAG­
PA7

PBO­
P87

Figure 7.4: Using a PIO-Head Status---------------'

INPUT/OUTPUT DEVICES 267

THE MOTOROLA 6821 PROGRAMMABLE INTERFACE ADAPTER

00-
07

The 6821 PIA is a two-port PIO with an architecture that is essentially
the same as the standard model we have just described. Figure 7 .6 shows
the actual pinout of a 6821.

IRQA

IRQ6

CONTROL

} CHIP
SELECT

} REGISTER
SELECT

INT/
STATUS

INT/
STATUS

--------------Figure 7.5: Using a PIO-Head INPUT

268 PROGRAMMING THE 6809

The control register for each port has bits which control the conditions
in which an interrupt can be generated and the conditions when the
handshake bits can change state.

PROGRAMMING THE MOTOROLA PIO

Let's now examine a typical sequence for using a PIO:

1. Load the control register to set the handshake bits mode.

2. Load the data direction register of port A to specify that lines 0-5
are inputs and lines 6 and 7 are outputs.

3. Read a word by reading the contents of the input buffer.

DO
DI
D2

DATA D3

BUS D4
DS
06
D7

CHIP CSI
[cso

SELECT CS2�

REGISTER [RSO

SELECT RSl

CHIP t�
CONTROL ENABLE

RESET
INTERRUPT IRQA
REQUEST �

33
32
31
30
'l9
28
27
26

22
24
23

36
35

21
25
34
38
37

PAO
PAI
PA2
PA3
PA4 PORTA
PAS
PA6
PA7
PBO
PBI
PB2

13 PB3
14 PB4 PORTS
15 PBS
16 PB6
17 PB7

40 CAl)HANDSHAKE
39 CA2 BITS PORT A

16 CBl }HANDSHAKE
20 1 9 CB2 BITS PORT B

+SV GND

Fisure 7.6: 6821 PIA Pinout-------------------'

INPUT/OUTPUT DEVICES 269

THE MC6850 ACIA FOR THE 6809

The MC6850 ACIA (Asynchronous Communications Interface
Adapter) is a peripheral chip designed to facilitate asynchronous com­
munications in serial form. It includes a universal asynchronous
receiver-transmitter (a UART). The essential function of the ACIA is
serial-to-parallel and parallel-to-serial conversion. The ACIA also offers
a choice of data format and interrupt modes.

OTHER I/O CHIPS

Because the 6809 is commonly used as an upgraded replacement for
the 6800, it has been designed so that it can be used with almost any of
the usual 6800 input/output chips, as well as with specific I/O chips
manufactured for the 6809 by Motorola.

SUMMARY

To make effective use of input/output components, it is necessary to
understand the function of each bit or group of bits within the various con­
trol registers. These complex new chips automate a number of procedures
previously carried out by software or special logic. In particular, many
of the handshaking procedures are automated within components, such
as the ACIA. Interrupt handling and detection may also be internal.

By the end of this chapter, you should be familiar with the functions of
the basic signals and registers of the I/O devices. Naturally, in the future,
new components will be introduced that will off er a hardware imple­
mentation of even more complex algorithms.

CHAPTER 8

271

APPLICATION
EXAMPLES

IN THIS CHAPTER, you can sharpen your new programming skills
by developing a collection of utility programs that fetch characters from
an I/O device and process them in various ways. These programs give
you a chance to apply the knowledge and techniques you have learned
so far, in the development of a number of routines that are useful in
many applications. The development of these routines demonstrates
how the architecture of the 6809 can make the programming of such
common algorithms exceptionally straightforward.

Before we begin, we will clear an area of the memory in which we will
put the characters from the I/O device. Clearing memory is not always
necessary; we do it here as a programming example.

CLEARING A SECTION OF MEMORY

We will start by clearing (zeroing) the contents of the memory from ad­
dress BASE to address BASE + LENGTH, where LENGTH is less than
256 bytes. The program is:

ZEROM LDB #LENGTH LOAD B WITH LENGTH
LDX #BASE POINT TO BASE

CLEAR CLR .x+ CLEAR LOCATION AND POINT TO
NEXT

DECB DECREMENT COUNTER
BNE CLEAR END OF SECTION?
RTS

In this program, we assume that the length of the section of memory is
equal to LENGTH. We use the index register, X, as a pointer to the current
word to be cleared, and register B as a counter.

We could use this utility in a memory test program to zero the contents
of a block. The memory test program would then verify that the contents
of the block remain zero.

2 72 PROGRAMMING THE 6809

Let's now improve this routine:

ZEROM LDB #LENGTH
LDX #BASE
CLRA SET A TO ZERO

CLEAR STA ,x+
DECB
BNE CLEAR
RTS

We have improved the program by storing the A register, rather than by
using the CLR instruction. When using the indexed addressing modes,
the ST A instruction requires 6 cycles, rather than the 8 required by CLR.

This example demonstrates that every time a program is written, even
though it may be correct, it can usually be improved. It is necessary,
however, to be familiar with the complete instruction set in order to
implement such improvements. These improvements are not simply
cosmetic; they can often improve the execution time of the program;
they might also require fewer instructions and less memory space, and
they may improve the readability of the program and, therefore, its
chances of being correct.

GETIING CHARACTERS IN

We will now write a program that reads characters from an UO
device. Assuming that the computer we are using has a keyboard as an
input device, each time we type a character, the character will be saved
in an area of memory called the BUFFER, until a special character called
SPACE is encountered. (Appendix B gives the code number for SPACE.)
The subroutine GETCHAR fetches one character from the keyboard
and puts it in the A accumulator. We assume that 256 characters
(maximum) will be fetched before a SPACE character is encountered:

STRING
NEXT

OUT

LDX
JSR
CMPA
BEQ
STA
BRA
RTS

#BUFFER POINT TO BUFFER
GETCHAR GET A CHARACTER
#SPC CHECK FOR SPACE
OUT FOUND IT?
,x+ STORE CHAR IN BUFFER
NEXT GET NEXT CHAR

APPLICATION EXAMPLES 273

At the end of this routine, we have a string of characters in the memory
buffer. We will now process them in various ways.

TESTING A CHARACTER

This program determines if the character at memory location LOC is
equal to 0, 1, or 2:

WT LDA LOC GET CHARACTER
CMPA #0 IS IT A ZERO?
BEQ ZERO BRANCH ROUTINE

CMPA #1 A ONE?
BEQ ONE

CMPA #2 A TWO?

BEQ TWO
BRA NOTFND FAILURE

This routine simply reads the character, and then uses the CMP instruc­
tion to check its value.

We will now run a different test.

BRACKET TESTING

This program determines if the ASCII character at memory location
LOG is a digit between 0 and 9:

BRACK LDA LOC GET CHARACTER
ANDA #$7F MASK OUT PARITY BIT
CMPA #$30 ASCII O
BLT OUT CHAR TOO LOW?
CMPA #$39 ASCII 9
BGT OUT CHAR TOO HIGH?

CLRA FORCE ZERO FLAG
OUT RTS

ASCII O is represented in hexadecimal by 30 or by BO, depending upon
whether the parity bit is used or not. Similarly, ASCII 9 is represented in
hexadecimal by 39 or by B9.

The purpose of the second instruction of the program is to delete bit 7,

274 PROGRAMMING THE 6809

the parity bit, in case it was used, so that the program is applicable to
both cases. The value of the character is then compared to the ASCII
values for 0 and 9. When using a comparison instruction, the Z bit is set,
if both the contents of the register and the operand are equal. The carry
bit is set, if there is a borrow. This means that the carry bit is set, if the
value of the operand is greater than the contents of the register.

The instruction CLRA forces a O into the Z bit. The Z bit is used to indicate
to the calling routine that the character in LOC was indeed in the interval
(0,9). Other conventions, such as loading a digit in the accumulator,
could also be used to indicate the results of the test.

When using an ASCII table, note that parity is often used. For example,
the ASCII representation for 0 is 0110000, a 7-bit code. If, however, we
use odd parity and guarantee that the total number of 1s in a word is odd,
then the code becomes 10110000 (or BO in hexadecimal). An extra 1 is
added to the left side of the code. Let's now develop a program to
generate parity.

GENERATING PARITY

This program generates even parity in bit position 7:

PARITY LOA
PSHS
CLRA
LOB

BITCNT LSR
BCC
INCA

NOINC DECB
BNE
LSRA
BCC
LOA
ORA

CHAR
A

#7
.s
NO INC

BITCNT

DONE
CHAR
#$80

STA CHAR
DONE PULS A

RTS

GET CHARACTER
SA VE CHAR ON STACK

COUNT 7 BITS
SHIFT CHAR RIGHT
C = ZERO SKIP
COUNT CARRY BITS
LOOP TILL
7 BITS ARE TESTED
CHECK IF A IS EVEN
IF EVEN THEN DONE
GET CHARACTER
SET BIT 7

CLEAN UP STACK

This program shifts a character and then counts the number of 1s in it. If
the number of 1s is even, the parity bit is not set, if the number is odd, the
parity bit is set.

I

APPLICATION EXAMPLES 275

The stack is used as working space for this program. Shifting destroys
the character, but it is preserved in CHAR. It is important to note that the
stack pointer, S, is restored to its previous value by the PULS A instruc­
tion. If this is not done, the stack will eventually overflow memory.

CODE CONVERSION: ASCII TO BCD

Converting ASCII to BCD is very simple. In this example, we see that
the hexadecimal representation of ASCII characters 0 to 9 is 30 to 39 or
BO to B9, depending on parity. The BCD representation is simply obtained
by dropping the 3 or the B, i.e., masking off the left nibble (4 bits). Here is
the program:

ASCBCD JSR BRACK CHECK THAT CHAR IS 0 TO 9

BNE ILLEGAL EXIT IF ILLEGAL CHAR
LOA CHAR GET CHARACTER
ANDA #$OF ZERO HIGH NIBBLE
STA BCDCHR STORE RESULT

In full BCD notation, the first word contains the count of BCD digits,
the next contains the sign, and every successive nibble contains a BCD
digit (we assume no decimal point). The last nibble of the block may not
be used.

CONVERTING HEX TO ASCII

In the example, the A register contains one hexadecimal digit. We
simply need to add a 3 (or a B) into the left nibble. Here is the program:

ANDA
ADDA
CMPA
BLT
ADDA

#$F
#$30
#$3A
OUT
#7

ZERO LEFT NIBBLE
ASCII
CORRECTION NEEDED?

CORRECTION FOR A THRU F

FINDING THE LARGEST ELEMENT OF A TABLE

The beginning address of the table is contained at memory address
BASE. The first entry of the table is the number of bytes it contains. The
following program searches for the largest element of the table. Its value
is then stored in A, and its position is stored in Y.

This program uses registers A, B, X, and Y, and indexed addressing, to

276 PROGRAMMING THE 6809

search a table anywhere in memory (see Figure 8.1):

MAX LDX #BASE TABLE ADDRESS
LDB ,x+ BYTES IN TABLE
CLRA CLEAR MAXIMUM VALUE
TFR X,Y INITIALIZE Y

LOOP CMPA .x+ COMPARE ENTRY
BHI NOSWIT BRANCH IF LESS THAN MAX
LEAY -1,X SET NEW POSITION
LDA ,Y LOAD NEW MAX

NOSWIT DECB DECREMENT COUNTER
BNE LOOP KEEP GOING UNTIL ZERO
RTS

This program tests the nth entry. If it is greater than A, the entry goes
into A, and its location is remembered in Y. The (n + lst) entry is then
tested, etc. This program works for positive integers only.

SUM OF N ELEMENTS

This program computes the 16-bit sum of N entries of a table. The
starting address of the table is contained at memory address BASE, in

A I :URRENT MAX

B I COUNTER COUNT = N BASE

ELEMENT 1

x

y I POINTER lO MAX

E.LEMENT N

Figure 8.1: Larsest Elements in a Table---------------'

APPLICATION EXAMPLES 277

page zero. The first entry of the table contains the number of elements in
N. The 16-bit sum is left in memory locations SUMLO and SUMHI. If
the sum requires more than 16 bits, only the lower 16 bits are kept. (The
high order bits are said to be truncated.)

This program modifies registers A, B, X, and Y. It assumes 256

/ elements maximum (see Figure 8.2):

SUMIG LOX #BASE POINT TOT ABLE BASE
LOB ,x+ READ LENGTH INTO COUNTER
LOY #SUMLO POINT TO RESULT LO
CLR SUM LO CLEAR RESULT
CLR SUM HI

AD LOOP LOA ,x+ GET TABLE ENTRY
ADDA ,Y COMPUTE PARTIAL SUM

STA ,Y STORE IT
BCC NOCARY CHECK FOR CARRY

INC 1,Y ADD CARRY TO HIGH BYTE

NOCARY DECB DECREMENT BYTE COUNT

BNE AD LOOP KEEP ADDING TIL END
RTS

This program should be self-explanatory.

B COUNT

x

y

LENGTH = N

ELEMENT 1

ELEMENT N

BASE

SUMLO

SUMHI

"--------------- Figure 8.2: Sum of N Elements

278 PROGRAMMING THE 6809

A CHECKSUM COMPUTATION

A checksum is a digit or set of digits computed from a block of succes­
sive characters. The checksum is computed at the time the data is stored;
it is then put at the end. To verify the integrity of the data, the data is read,
and the checksum is recomputed and compared with the stored value.
A discrepancy indicates an error or failure.

We can use several algorithms. In this example, we exclusiv�OR all the
bytes in a table of N elements, and leave the results in the accumulator.
As usual, the base of the table is stored at address BASE. The first entry
of the table is its number of elements, N. The program then modifies A,
B, and X. N must be less than 256 elements:

CHKSUM ,LOX #BASE POINT TO TABLE
LOB ,

x
+ GET LENGTH

CLRA CLEAR CHECK SUM
CHLOOP EORA .

x
+ COMPUTE CHECKSUM

DECB DECREMENT COUNTER
BNE CH LOOP REPEAT UNTIL END
STA ,X PUT CHECKSUM AT END OFT ABLE
RTS

COUNT THE ZEROES

This program counts the number of zeroes in the table, and puts the
total in location TOT AL. It modifies A, B, and X.

ZEROS LDX #BASE POINT TO TABLE
LDB .

x
+ GET LENGTH

CLR TOTAL ZERO TOTAL
ZLOOP LDA .

x
+ GET ELEMENT

BNE NOTZ IS IT A ZERO?
INC TOTAL IF SO, INCREMENT ZERO COUNTER

NOTZ OECB OECREMENT COUNTER
BNE ZLOOP
RTS

BLOCK TRANSFER

We will now pick up every third entry in the source block at address

APPLICATION EXAMPLES 2 79

FROM and store it in a block at address TO:

FER3 LDX #FROM
LDY #TO SET UP POINTERS
LDB #LENGTH

LOOP LDA ,x GET AN ENTRY
STA ,Y+ STORE IT
LEAX 3,X POINT TO THIRD
DECB
BNE LOOP

BUBBLE-SORT

Bubble-sort is a sorting technique used to arrange the elements of a
table in ascending or descending order. The bubble-sort technique
derives its name from the fact that the smallest element "bubbles up" to
the top of the table; every time it "collides" with a "heavier" element, it
jumps over it.

Figures 8.3 and 8.4 show practical examples of a bubble-sort. The list
to be sorted contains the numbers 10, 5, 0, 2, and 100, and must be sorted
in descending order (O on top). The algorithm is simple. The flowchart
for the algorithm appears in Figure 8.5.

The two top (or else the two bottom) elements are compared. If the
lower element is less (lighter) than the top element, they are exchanged.
Otherwise, they are left alone. For practical purposes, the exchange, if it
occurs, is indicated by a flag, called "EXCHANGED." The process is
then repeated on the next pair of elements, etc., until all elements have
been compared, two by two.

Figure 8.3 illustrates this first pass in steps 1, 2, 3, 4, 5, and 6, going
from the bottom up. (Equivalently, we could go from the top down.) If no
elements have been exchanged, the sort is complete. If an exchange has
occurred, we must start over again. Looking at Figure 8.4, we see that
four passes are necessary in this example. This process is simple, and
widely used.

One possible complication resides in the actual mechanism of the
exchange. When exchanging A and B, we may not write:

A = B
or

B = A

as this would result in the loss of the previous value of A. (Try it on an
example.) The correct solution is to use a temporary variable or location

280 PROGRAMMING THE 6809

0 10 0 10 0 10

5 5 5 1=2

0 0 1=3 0 1=3

2 1=4 2 1=4 2

100 1=5 100 100

100>2 2>0 0<5
NO CHANGE NO CHANGE EXCHANGE

0 10 0 10 0

0 0 10

5 5 5

2 2 2

100 100 100

EXCHANGED 0<10 EXCHANGE O
EXCHANGE END OF PASS 1

0 0 © 0 0 0

10 10 10

5 5 1=3 2

2 1=4 2 1=4 5

100 1=5 100 100

100>2 2>5 EXCHANGED
NO CHANGE EXCHANGE

® 0 ® 0 @ 0 1=1

10 1=2 2 2 1=2

2 1=3 10 10

5 5 5

100 100 100

2<10 EXCHANGED 2>0
EXCHANGE NO CHANGE

END OF PASS 2

-Figure 8.3: Bubble-Sort Example: Phases 1 to 12

® 0 e
2

10

5 1=4

100 1=5

100>5
NO CHANGE

® 0 ®
2 1=2

5 1=3

1 0

100

5>2
NO CHANGE

® 0 @
2

5 1=3

10 1=4

100

100>5
NO CHANGE

APPLICATION EXAMPLES 281

0 @) 0

2 2

10 1=3 5

5 1=4 10

100 100

5<10 EXCHANGED
EXCHANGE

0 0

2 2

5 5

1 0 10 1=4

100 100 1=5

2>0 100>10
NO CHANGE NO CHANGE
END OF PASS3

0 © 0 l=l

2 1=2 2 1=2

5 1=3 5

10 10

100 100

5>2 2>0
NO CHANGE NO CHANGE

END

---------Figure 8.4: Bubble-Sort Example: Phases 13 to 21-

282 PROGRAMMING THE 6809

YES

EXCHANGED = 0

GET NUMBER
OF ELEMENTS N

l = N

DECREMENT I

READ E'(I)

EXCHANGE E AND E'
TEMP=E(I)
E(l)=E'(I)
E'(l)=TEMP

EXCHANGED= 1

DONE

Figure 8.5: Bubble-Sort Flowchart--------------'

APPLICATION EXAMPLES 283

to preserve the value of A. For example, we may use:

TEMP = A
A = B
B = TEMP

This process, called circular permutation, works. (Try it on an example.)
All programs implement the exchange in this way. Figure 8.5 illustrates

the process. Figure 8.6 shows the register and memory assignments.

B I COUNT

LIST
x

LIST

COUNT

EX CHG

.__----------------FigureB.6: Bubble-Sort

284 PROGRAMMING THE 6809

The program is:

BUBBLE LDX #BASE GET TABLE
LDB #LENGTH GET LENGTH
DECB
LEAX B,X POINT TO END
CLR EX CHG CLEAR EXCHANGE FLAG

NEXT LOA .x A = CURRENT ENTRY
CMPA .-x COMPARE WITH NEXT
BGE NOSWIT GO TO NOSWITCH IF CURRENT

>= NEXT
PSHS B SAVE B
LDB .x GET NEXT
STB 1,X STORE IN CURRENT
STA .x STORE CURRENT IN NEXT
PULS B RESTORE B
INC EXCHG SET EXCHANGE FLAG

NOSWIT DECB DECREMENT B
BNE NEXT CONTINUE UNTIL ZERO
TST EX CHG EXCHANGED = O?
BNE BUBBLE RESTART IF NOT = 0
RTS

SUMMARY

We have just explored common utility routines that use combina­
tions of the various techniques described in previous chapters. In
several of these routines, we have used a special data structure, called
a table, which is useful for designing programs. In addition, there are
other techniques that we can use to structure data; we discuss them in
the next chapter.

EXERCISES

APPLICATION EXAMPLES 285

S.1: Write a memory test program that:

• zeroes a 256-word block and verifies that each location is 0

• writes all 1s and verifies the contents of the block

• writes 01010101 and verifies the contents

• and, finally, writes 10101010 and verifies the contents.

S.2: Modify the program you wrote for Exercise 8-1, so that it fills the memory
I

section with alternating Os and ls (i.e., Os, then all 1s).

S:3: Try to improve the STRING program by:

• Echoing the character back to the device (for a Teletype, for example).

• Checking that the input string is no longer than 256 characters.

8-4: Is the following program equivalent to the Bracket Testing program?:

LDA LOC

SUBA #$30
BMI OUT

SUB #10
BPL OUT

ADDA #10

S.5: Determine if an ASCII character contained in an accumulator is a letter
of the alphabet.

S.6: Using the parity generation program as an example, verify the parity of a
word. Compute the correct parity, then compare it to the one that is
expected.

S.7: Write a program to convert BCD to ASCII.

S.8: Write a program to convert BCD to binary (more difficult). (Hint:
N3N2N1N0 in BCD is (((N3 X 10) + N;J X 10 + NJ X 10 + N0 in binary.)

S.9: Convert HEX to ASCII, assuming a packed format (two hex digits in A).

286 PROGRAMMING THE 6809

8-10: Modify the program that finds the largest element in a table, so that it also

works for negative numbers in two's complement.

8-11: Will the program in Exercise 8-10 also work for ASCII characters?

8-12: Write a program that sorts n numbers in ascending order.

8-13: Write a program that sorts n names (3 characters each) in alphabetical
order.

8-14: Modify the sum of the n elements program to:

• compute a 24-bit sum

• c;gmpute a 32-bit sum

• detect any overflow.

8-15: Modify the Count the Zeroes program to count:

• the number of stars (the character "•")

• the number of letters of the alphabet

• the number of digits between 0 and 9.

CHAPTER 9

289

DATA
STRUCTURES

PART I-THEORY

To DESIGN A GOOD PROGRAM you need both a good algorithm
design and a good -data structure design. Most simple programs do not
involve significant data structures, therefore, up to this point, we have
only concentrated on designing and coding good algorithms in a given
machine language. We will now turn our attention to the design of data
structures, so that we can develop more complex programs. We have
already used two data structures in this book: the table and the stack. We
will now examine several other, more general, data structures.

The material presented in this chapter is theoretical in concept; it
involves the logical organization of data in any system. However, the
aptness of the 6809 is particularly apparent here as its addressing modes
(often combined with its multiplication instruction) yield particularly
efficient implementations of more complex data structures. We have
limited the material in this chapter to only that which is essential for
understanding common data structures. We will begin by reviewing the
most common data structure: the pointer.

POINTERS

A pointer is a number that designates the location of actual data. Every
pointer is an address. However, every address is not necessarily a
pointer. An address is a pointer only if it points to some type of data or

290 PROGRAMMING THE 6809

structured information. In this book, we have already encountered a
typical pointer, the stack pointer, which points to the top of the stack (or
just over the top of the stack). The stack, called an LIFO structure, is a
common data structure. As another example, when using indirect address­
ing, the indirect address is always a pointer to the data that is to be retrieved.

LISTS

Almost all data structures are organized as lists. We will now examine
several types of lists.

A Sequential List

A sequential list, table, or block is probably the simplest data structure
(see Chapter 8). Tables are normally ordered in function of a specific
criterion, such as an alphabetical or numerical ordering. Because of
this, it is easy to retrieve an element in a table, by using, for example,
indexed addressing.

A block normally refers to a group of data that has definite limits,
but whose contents are not ordered. A block may contain a string of
characters. It may be a sector on a disk, or it may be some logical area
(called segment) of the memory. Generally, it is not easy to access a
random element of a block. Directories are used to facilitate the retrieval
of blocks of information.

A Directory

A directory is a list of tables or blocks. For example, the file system
normally uses a directory structure. As a simple example, the master
directory of a system may include a list of users' names (illustrated in
Figure 9.1). In this example, the entry for user "John" points to John's file
directory. In this case, the file directory is a table of pointers containing the
names and locations of all of John's files. For this example, we have
designed a twcrlevel directory. This flexible directory system allows the
inclusion of additional, intermediate directories-a convenient feature
for the user.

A Linked List

In a system, there are often blocks of information that represent data,
events, or other structures that cannot be moved around easily. If they
could, we would probably assemble them in a table in order to sort or

DATA STRUCTURES 291

structure them. Let's assume, for example, that we want to leave several
blocks where they are, but we also want to establish an ordering among
them, such as first, second, third, or fourth. To do this, we will use a linked
list (see Figure 9.2).

In the illustration in Figure 9.2, a list pointer, called FIRSTBLOCK,
points to the beginning of the first block. A dedicated location within
Block 1, such as the first or last word, contains a pointer to Block 2, called
PTR1. The process is then repeated for Blocks 2 and 3. Since Block 3 is
the last entry in the list, then, by convention, PTR3 contains either a
special "nil" value or points to itself. This is done so that the end of the
list can be detected. The linked list structure is economical, as it requires
only one pointer per block, and frees the user from having to physically
move the blocks in the memory.

USER
DIRECTORY

JOHN � .

JOHN'S
FILE

DIRECTORY

ALPHA

SIGMA

JOHN'S FILE

ALPHA

-

DATA

-
SIGMA

L-+

'--------------Figure 9.1: A Directory Structure

�
-

BL

_

oc

_

K

_

,

___.

l PT
_

1 R;l ----.. .ii BLOCK 2
I
�R 1-l ---ti ... MI BLOCK 3 I 7 b

------------------ Figure 9.Z: A Linlced List-

292 PROGRAMMING THE 6809

Let's now examine how a new block is inserted into a linked list (see
Figure 9.3). We will assume that the new block is at address NEWBLOCK,
and is to be inserted between Block 1 and Block2. Pointer PTR1 is simply
changed to the value NEWBLOCK, so that it now points to Block X.
PTRX now contains the former value of PTR1, i.e., it points to Block 2.
The other pointers in the structure are left unchanged. We can see that
the insertion of a new block has simply required the updating of two
pointers in the structure-a clearly efficient procedure.

Several types of lists have been developed to facilitate specific types
of access, insertions, and deletions, to and from the list. We will now
examine some of the more frequently used types of linked lists.

A Queue

Figure 9.4 displays a queue, formally called a FIFO, or first-in-first-out
list. For clarity, let's assume, for example, that the block on the left is a
service routine for an output device, such as a printer. The blocks appear­
ing on the right are the request blocks from various programs or
routines, to print characters. The order in which they are serviced is the
order established by the waiting queue. It can be seen that the first event
to obtain service is Block 1; Block 2 is next; and Block 3 follows. In a
queue, the convention is that any new event arriving in the queue is
inserted at the end. In Figure 9.4, any new event is inserted after PTR3.
This guarantees that the first block inserted in the queue is the first one
serviced. It is quite common in a computer system to have queues for a
number of events, whenever they must wait for a scarce resource, such
as the processor or some input/output device.

BLOCK X

BLOCK 1
PTR

BLOCK 2

PTR
x

BLOCK 3
PTR

3

-Figure 9.3: Inserting a New Block---------------

A Stack

DATA STRUCTURES 293

We have already discussed the stack structure, a last-in-first-out
(LIFO) structure. The last element deposited on top is the first one to be
removed. A stack may be implemented as either a sorted block or a list.
Because most stacks in microprocessors are used for high-speed events,
such as subroutines and interrupts, a continuous block is usually
allocated to the stack. rather than a linked list structure.

Linked List Versus Block

Similarly, a queue could be implemented as a block of reserved loca­
tions. Advantages of using a continuous block include fast retrieval and
the elimination of pointers. A disadvantage is that it is usually necessary
to 8.edicate a fairly large block in order to accommodate the worst-case
size of the structure. In addition, it is often difficult or impractical to
insert or remove elements from within the block. Since memory is
traditionally a scarce resource, blocks have usually been reserved for
fixed-size structures or structures, such as the stack, that require the
maximum speed of retrieval.

A Circular List

"Round robin" is a common name for a circular list. A circular list is a
linked list in which the last entry points back to the first (see Figure 9.5).

SERVICE
ROUTINE

NEXT

BLOCK 1 PTR
3

--------------------Figure 9.4: A Queue--

294 PROGRAMMING THE 6809

In the case of a circular list, a current-block pointer is often kept. In the
case of events, or programs waiting for service, a current-event pointer is
moved by one position to the left or right each time. A round robin usually
corresponds to a structure in which all blocks are assumed to have the
same priority. However, a circular list may also be used as a subcase of
other structures, in order to facilitate the retrieval of the first block after
the last one, when performing a search.

A polling program is a good example of a circular list. It usually goes in
a round robin fashion, interrogating all peripherals and then coming
back to the first one.

A Tree Structure

A tree structure may be used whenever a logical relationship (called a
syntax) exists among all elements of a structure. A simple example of a
tree structure is a descendant or genealogical tree (see Figure 9.6). The
tree in Figure 9.6 shows that Smith has two children: a son, Robert, and a
daughter, Jane. Jane, in turn, has three children: Liz, Tom and Phil.
Tom, in turn, has two children: Max and Chris. Robert, on the left of the
illustration, has no descendants.

This tree is a structured tree. Figure 9.1 showed an example of a simple
tree: the directory structure was a two-level tree.

Trees are used to advantage whenever elements can be classified ac­
cording to a fixed structure, thus facilitating insertion and retrieval.
In addition, trees can be used to establish groups of information in a
structured way, so that they can be easily used for later processing, such
as in a compiler or interpreter design.

A Doubly-Linked List

Additional links may be established between elements of a list. The
simplest example is the doubly-linked list (see Figure 9.7). Figure 9.7

EVENT 1 EVENT 2 • • • EVENTN

CURRENT EVENT

-Figure 9.5: A Round Robin Is A CirculOJ' List-----------

DATA STRUCTURES 295

shows the usual sequence oflinks from left to right, plus another sequence
of links from right to left. The goal is to allow easy retrieval of the
elements just before and after the element being processed. This method
does, however, cost an extra pointer per block.

SEARCHING AND SORTING

The process of searching and sorting elements of a list depends directly
on the type of structure used for the list. Many searching algorithms
have been developed for the most frequently used data structures. As an
example, we used indexed addressing in Chapter 8 to search through a
table for a particular element. Recall that we can use indexed addressing

SMITH

ROBERT

a CHRIS

'----------------Figure 9.6: Genealogical Tree

BLOCK 1
I

PTR H PTR
I

BLOCK 2 I PTR H PTR
I

BLOCK 3

'---------------Figure 9.7: Doubly-Linked List

296 PROGRAMMING THE 6809

whenever the elements of a table are ordered by a function of known
criterion. Such elements can then be retrieved by their numbers.

Sequential searching refers to the linear scanning of an entire block.
This technique is clearly inefficient; however, it may be necessary to use it
when no better technique is available, for lack of ordering of the elements.

Binary or logarithmic searching attempts to find an element in a sorted
list, by dividing the search interval in half at each step. For example, let's
assume that we are searching an alphabetical list. We might start in the
middle of a table and determine if the name we are looking for is before
or after that point. If it is after, we will eliminate the first half of the table
and look at the middle element of the second half. We compare this entry
again to the one we are looking for, and we restrict our search to one
of the two halves, and so on. The maximum length of a search is then
guaranteed to be log2n, where n is the number of elements in a table.

Many other search techniques exist; however, we cannot describe
them all here.

SECTION SUMMARY

In this section, we have offered only a brief presentation of the usual
data structures used by a programmer. Although most common data struc­
tures have been organized in types and given a name, the overall
organization of data in a complex system may use any combination of
data structures, or even require the programmer to invent more appro­
priate ones. The array of possibilities is only limited by the imagination of
the programmer. Similarly, a number of well-known sorting and searching
techniques have been developed for coping with the usual data structures.
A comprehensive description is beyond the scope of this book. This
section has stressed the importance of designing appropriate structures
for manipulating data, and of providing the basic tools to that effect.

We will now examine actual programming examples in detail.

PART II-DESIGN EXAMPLES
This section offers actual design examples for typical data structures,

including the table, sorted list, and linked list. In particular, we will
program searching, insertion and deletion algorithms for these struc­
tures. To completely understand these design examples, it is necessary
to understand the concepts presented in the first part of this chapter.

DATA STRUCTURES 297

The programs we present in this section use most of the addressing
modes of the 6809, and integrate many of the concepts and techniques
presented in previous chapters.

We will now introduce three structures: a simple list, an alphabetical
list, and a linked-list, plus directory. For each structure, we will develop
three programs: search, enter and delete.

DATA REPRESENTATION FOR THE LIST

In the example shown in Figure 9.8, note that both the simple list and
the alphabetic list use a common representation for each list element.
Each element, or "entry," includes a 3-byte label, and an n-byte block of
data, where n is between 1 and 253. Thus, at most, each entry uses one
page (256 bytes). Within each list, all elements are the same length (see
Figure 9.9). Note that the programs operating on these two simple lists
use some common variable conventions, including:

ENTLEN is the length of an element. For example, if each ele-
ment has 10 bytes of data, ENTLEN = 3 + 10 = 13.

T ABASE is the base of the list or table in the memory.

POINTR is the running pointer to the current element.

OBJECT is the current entry to be located, inserted or deleted.

T ABLEN is the number of entries.

All labels are assumed to be distinct. Changing this convention would
require a minor change in the programs.

A SIMPLE LIST

In this example, we have organized a simple list as a table of n
elements. The elements are not sorted (see Figure 9.10). When searching,

3-8YTE !ABEL DATA

----------------Figure 9.8: A Single List Entry-

298 PROGRAMMING THE 6809

ENTlEN

TABlEN

TAB
BASE

ENTRY

El.EMENT
1

ELEMENT
2

-
-

�

M=

N=

LABEL

DATA

--

c
c
c
D

--
--

D
c
c
c
D

--

-
-

�

�
�

�

LENG TH OF ENTRY

NU MBER OF ENTRIES

M
BYTES

i.-
ENTER
NEW
ELEMENT

} �
ENTL£N

DATA

LABEL

ENTLEN

DATA

Figure 9.9: Typical List Entries in the Memory--------�

DATA STRUCTURES 299

the list is scanned until either an entry is found or the end of the table is
reached. When inserting, the new entry is appended to the existing ones.
When deleting, the entries in higher memory locations, if any, are shifted
down to keep the table continuous. Let's examine these functions in
more detail.

Searching

We will now look at an example using a serial search technique,
where each entry's label field is compared in turn to the OBJECT's label,
letter by letter. We will initialize the running pointer in the X register to
the value of the T ABASE. In this program, we will use indexed addressing
modes and the load effective address (LEA) instruction.

The search proceeds in an obvious way. Figure 9.11 shows the cor­
responding flowchart. The program appears in Figure 9.14 (program
SEARCH).

Inserting

When we insert a new element, the first available memory block
ENTLEN bytes long at the end of the list is used (see Figure 9.10). The

TABASe ELEMENT 1
t LENGTH =

ENTLEN

ELEMENT 2

POINTR CURRENT ELEMENT

ELEMENT n (TABLEN = n)
FREE SPACE FREE SPACE INSERT

OBJECT
TO BE INSERTED

---------------Figure 9.10: The Simple List

300 PROGRAMMING THE 6809

program first checks that the new entry is not already in the list. All
labels are assumed to be distinct in this example. If the entry is not
found, the program increments the list length T ABLEN, and moves the
OBJECT to the end of the list. Figure 9.12 shows the corresponding
flowchart. Figure 9.15 displays the program, called NEW.

SEARCH

COUNTER=
NUMBER Of ENTRIES

READ ENTRY
(3 lffiERS)

COUNTER=
COUNTER- 1

POINT
TO NEXT ENTRY

EXIT

YES

FOUND

YES (SET A TO "FF")

FAILURE EXIT

Figure 9.11: Table Search Flowchart------------'

Deleting

DATA STRUCTURES 301

To delete an element from the list, the elements following that element
in the list at higher addresses are merely moved up by one element posi­
tion. The length of the list must also be decremented (see Figure 9.13).

EXIT

END

------------Figure 9.12: Table Insertion Flowchart

BEFORE AFTER

2

DELETE
MOVE

TEMPTR
MOVE

'-----------Figure 9.13: Deleting An Entry (Simple List)

302 PROGRAMMING THE 6809

The corresponding program, called DELETE, appears in Figure 9.16 at
the end of this section.

ALPHABETIC LIST

Unlike a simple list, an alphabetic list or table keeps all of its elements
sorted in alphabetical order. This allows the use of faster search tech­
niques than can be used with a simple list.

Searching

The search algorithm is a classic binary search. Recall that this tech­
nique is essentially analogous to the one used to find a name in a telephone
book, where you start somewhere in the middle of the book, and then,
depending.on the entries found, go either forward or backward to find
the desired entry. This method is fast and reasonably simple to implement.

The binary search flowchart appears in Figure 9.17. Figure 9.18
shows the program.

SEARCH LDB TABLEN GET TABLE LENGTH

BEQ EXIT END FOR ZERO LENGTH

LDY #OBJECT OBJECT ADDRESS IN Y

LDX #TABASE TABLE ADDRESS IN X

LOOP PSHS B SAVE B
LDB #2 COUNTER FOR 3 BYTES

NEXTCH LDA B,X GET THIRD BYTE OF TABLE

CMPA B,Y COMPARE WITH OBJECT
BNE NEXTEN NEXT ENTRY IF NOTEQUAL

DECB DECREMENT COUNT

BPL NEXTCH CHECK NEXT CHAR TIL B < 0
PULS B RESTORE B
LDA #$FF INDICATES FOUND
RTS FINISHED WHEN FOUND

NEXTEN PULS B RESTORE B WITH TABLEN COUNT
DECB DECREMENT COUNT
BEQ EXIT STOP AT END OF TABLE
LEAX ENTLEN,X POINT TO NEXT ENTRY
BRA LOOP CONTINUE CHECK

EXIT CLRA INDICATES NOT FOUND
RTS RETURN NOT FOUND

Figure 9.14: Simple List-Search

DATA STRUCTURES 303

NEW BSR SEARCH SEE IF OBJECT IS IN TABLE
TSTA CHECK RESULT OF SEARCH
BNE OUT QUIT IF ALREADY IN TABLE
LOA TABLEN GET TABLE LENGTH

INC TABLEN INCREMENT TABLE LENGTH
LDB #ENTLEN GET ENTRY LENGTH

MUL MAKE TABLE SIZE

LDX #TABASE GET ST ART ADDRESS
LEAX D,X POINT TO END OF TABLE
LDY #OBJECT GET OBJECT ADDRESS

LDB #ENTLEN GET ENTRY LENGTH
TRLQOP LDA ,Y+ GET BYTE

STA .x+ STORE BYTE

DECB
BNE TRLOOP LOOP UNTIL TRANSFERRED

OUT RTS FINISHED

Figure 9.15: Simple List-New

DELETE BSR SEARCH SEE IF OBJECT IS IN TABLE

TSTA CHECK RESULT OF SEARCH

BEQ DONE QUIT IF NOT THERE

DEC TABLEN DECREMENT TABLE LENGTH

DECB B = # OF ENTRIES LEFT IN TABLE
BEQ DONE ... AFTER ONE TO BE DELETED

TFR X,Y X POINTS TO ENTRY TO DELETE

LEAY ENTLEN,Y Y POINTS TO NEXT BLOCK

MOREBK PSHS B SAVE B
LOB #ENTLEN COUNT TO MOVE A BLOCK

MOVBLK LDA ,Y+ MOVE BYTE FROM A BLOCK

ST.A .x+ UP ONE BLOCK

DECB
BNE MOVBLK LOOP TIL A BLOCK IS DONE

PULS B RESTORE BLOCK COUNT

DECB
BNE MOREBK LOOP TIL ALL BLOCKS MOVED

DONE RTS ALL FINISHED

Figure 9.16: Simple List-Delete

304 PROGRAMMING THE 6809

NOT
FOUND

FLAGS=O

POINT TO TABLE BASE

LOGICAL POSITION=
INCREMENT VALUE=

TABLE LENGTH/ 2
(odd I if it was odd)

YES

POINT TO MIDDLE
OF TABLE

INCREMENT VALUE=
INCREMENT VALUE/2

ADD ONE IF
IT WAS ODD

COMPARE OBJECT
TO ENTRY

PRESERVE CARRY
(sign of comparison)

IN COMPRES FLAG

YES

YES

FOUND

Figure 9.17: Binary Search Flowchart---------------'

NO
NOT -�r

FOUND

ENTRY
LARGER

NO

NOT
FOUND

UPDATE
POINTERS

(ENTRY)

YES

YES

ENTRY
SMALLER

MOVE POINTERS
DOWN BY 1

DATA STRUCTURES 305

CLOSE NOW
=COMPRES

(ENTRY)

NOT
FOUND

YES

YES

INCREMENT= 1
CLOSE NOW=

COMPRES

(ENTRY)

�-----------Figure 9.17: Binary Search Flowchart (cont.)

306 PROGRAMMING THE 6809

SEARCH LEAU -4,U MAKE ROOM FOR 4 BYTES
LDA TABLEN GETT ABLE LENGTH
BEQ NOTFND DONE IF ZERO
STA INCMNT,U INITIAL INCREMENT
CLR CLOSE,U CLEAR CLOSE FLAG
CLR CMPRES,U CLEAR COMPARE RESULT

NEXTRY LDY #OBJECT GET ADDRESS OF OBJECT
LSRA DIVIDE BY 2

ADCA #0 ADD CARRY FOR ODD

STA INCMNT,U SA VE INCREMENT

TST CMPRES,U CHECK LAST COMPARE
BEQ HIGHER IF ZERO ADD INCREMENT

NEGA ELSE SUBTRACT
HIGHER ADDA LOGPOS,U MAKE TEST LOGICAL POSITION

BEQ TOO LOW IF ZERO OFF TABLE
CMPA TABLEN SEE IF TOO LARGE
BHI TOO HI FIX IF TOO BIG

CALADR STA LOGPOS,U SAVE NEW LOGICAL POSITION

LDB #ENTLEN GET ELEMENT LENGTH

DECA TAKE ACCOUNT ZERO ADDRESS
MUL
LDX #TABASE GET TABLE BASE ADDRESS

LEAX D,X POINT TO ENTRY
LDB #3 INDEX FOR LABEL LENGTH

COMP AR LDA ,Y+ GET OBJECT
CMPA .x+ COMPARE WITH ELEMENT
BNE NOGOOD STOP IF NOT EQUAL
DECB
BNE COMP AR TEST 3 CHAR
LDB LOGPOS,U FOUND PUT POSITION IN B
TFR CC,A PUT CONDITION CODES IN A
ANDA #1 CLEAR ALL BUT C BIT
ORCC #4 SET Z BIT

Figure 9.18: Binary Sea.rch Program-Alphabetical List

ANDCC #4
LEAU 4,U
RTS

NOGOOD TFR CC,A
ANDA #1
TST CLOSE,U
BEQ CHKINC
CMPA CMPRES,U
BNE NOTFND

CHKINC STA CMPRES,U
LDA INCMNT,U
CMPA #1
BNE NEXTRY
INC CLOSE,U
BRA NEXTRY

NOTFND LDB LOGPOS,U
AN DCC #0
LEAU 4,U
RTS

TOO LOW LDA LOGPOS,U
CMPA #1
BNE ADJUST
LDA #1
BRA NOTFND

ADJUST LDA #1
BRA CALADR

TOO HI LDA LOGPOS,U
CMPA TABLEN
BNE FIXIT
CLRA
BRA NOTFND

FIXIT LDA TABLEN
BRA CALADR

DATA STRUCTURES 307

CLEAR ALL OTHER BITS
RESTORE U ST ACK POINTER
ALL DONE WHEN FOUND
PUT CONDITION CODES IN A
CLEAR ALL BUT C BIT
ARE WE CLOSE?
ZERO THEN NOT CLOSE
CLOSE COMPARE C BITS
NOT EQUAL NOT FOUND
STORE LAST COMPARE RESULT
GET INCREMENT
SEE IF IT IS 1
NOT 1 NEXT CHECK
IF 1 SET CLOSE FLAG
TRY ONCE MORE
PUT POSITION IN B
CLEAR Z BIT
RESTORE U STACK POINTER
FINISHED NOT FOUND
GET LAST POSITION
SEE IF IT WAS 1
NOT 1 FIX POSITION
SETC BIT IN A
NOT IN TABLE
POSITION IS 1

CALCULATE ADDRESS
GET LAST POSITION
SEE IF ATEND

CLEAR C BIT IN A
BEYOND TABLE
POINT TO LAST ELEMENT
CALCULATE ADDRESS

'------Figure 9.18: Binary Search Program-Alphabetical List (cont.)

308 PROGRAMMING THE 6809

The alphabetic list keeps the entries in alphabetical order and
retrieves them using a binary or logarithmic type search. Figure 9.19
shows an example of a binary search. The search is somewhat com­
plicated, because it is necessary to keep track of several conditions. The
major problem is to avoid searching forever for an object that is not
there. In such a case, the entries with higher and lower alphabetic values
would be alternately tested forever. To avoid such an occurrence, a flag
is maintained in the program to preserve the value of the carry flag after
an unsuccessful comparison. When the INCMNT value, which shows
the amount by which the pointer was incremented, reaches the value of
1, another flag called CLOSENOW, is set to 1. A flag called COMPRES
(comparison result) stores the carry bit from the last comparison. When
CLOSE NOW is set, the value of COMPRES is compared with the carry
bit of the most recent comparison. If they are not equal, the search ter­
minates because the object cannot be found.

The carry bit for the last comparison is returned in A for use by the
NEW program. This allows the NEW program to determine whether a
new element goes before or after the entry pointed to by the SEARCH
program.

The other major problem that must be dealt with is the possibility of
running off one end of the table when adding or subtracting the increment.
This is solved by performing a test add or subtract of the increment to
the logical position or element number. This number is then compared

OBJECT

TABASE

�
AAA

BAC

FIL

TES
XYZ

FIRSTTRY
SEARCH INTERVAL=5

(No) TES
xvz

SECOND TRY
SEARCH INTERVAL = 2

(No)

Figure 9.19: A Binary Search----------------"

DATA STRUCTURES 309

to 1 and the table length. Ifit is greater than the table length orless than 1,
it is adjusted, to fall within the table boundaries.

The following variables are used in the program:

LOGPOS indicates logical position (element number).

INCMNT represents the value by which the pointer will be incre­
mented or decremented if the next comparison fails.

CLOSE is short for CLOSENOW.

CMPRES is short for comparison result.

These variables are accessed by using the U register as an index register.
The symbols LOGPOS, INCMNT, CLOSE, and COMPRES have the
values 0, 1, 2, and 3, respectively.

An additional complication to this program occurs because the search
interval at times can be either even or odd. Since the interval is divided
by two to form the increment, we use an LSR instruction. If the bit falling
off the right end is not added back into the accumulator, then only even
or odd numbered elements would be checked, depending on the value of
the table length. This would cause erroneous results.

Study the SEARCH program in Figure 9.18 with care, as it is much
more complex than the linear search.

Figure 9.20 shows the insertion process, and Figure 9.21 displays the
NEW program.

Element Insertion

In order to insert a new element, a binary search must be conducted. If
the element is found in the table, it does not need to be inserted. But if it is
not, it must be inserted immediately before or after the last element to
which it was compared. The value of the COMPRES flag, returned in reg­
ister A, indicates whether the new object should be inserted immediately
before or after the last element compared. All the elements following the
new location are moved down by one block position, and the new object
is inserted.

Figure 9.20 shows the insertion process, and Figure 9.21 displays the
NEW program.

Element Deletion

Similarly, a binary search is conducted to find the object. If the search
fails, the element does not need to be deleted. If the search succeeds, the
element is deleted, and all the following elements are moved up by one
block position. A corresponding example appears in Figure 9.22. Figure
9.23 shows the flowchart and Figure 9.24 displays the program.

310 PROGRAMMING THE 6809

BEFORE

TABASE _., AAA

ABC

BAT

TAR

ZAP

,
OBJECT .-.j._ __ BA_c __ _.I ��

Figure 9.20: Insert: "BAC"

NEW LBSR SEARCH
BEQ OUT
LDX #TABASE
TST TABLEN
BEQ INSERT
TSTA
BNE LOS IDE
INCB

LOS IDE TFR B,A
NEGA
ADDA TABLEN
INCA

PSHS A
LDA TABLEN
LDB #ENTLEN
MUL
LEAX D,X
LEAY ENTLEN,X
PULS A

AFTER

AAA

ABC

BAC �
BAT

TAR

ZAP

SEE IF OBJECT IN LIST
ALREADY IN LIST
GET TABLE BASE
CHECK TABLE LENGTH
IF 0 JUST INSERT
CHECK LAST CARRY
PUT ABOVE ENTRY IN B
PUT BELOW ENTRY IN B
PUT POSITION IN A
SUBTRACT IT FROM
... TABLE LENGTH

NEW ELEMENT

A IS NUMBER ELEMENTS TO
MOVE
SAVE A
GET TABLE LENGTH
GET ELEMENT LENGTH

POINT TO END OF TABLE
POINT ONE ELEMENT BEYOND
RESTORE A

Figure 9.21: NEW Prosram For An Alphabetical List(continues}

BLOOP TSTA
BEQ
PSHS
LDB

MLOOP LDA
STA
DECB
BNE
PULS
DECA
BRA

INSERT INC
LDY
LDB

MOVOBJ LDA
STA
DECB
BNE

OUT RTS

INSERT
A
#ENTLEN
. -x

,-Y

MLOOP
A

BLOOP
TABLEN
#OBJECT
#ENTLEN
,Y+
.x+

MOVOBJ

DATA STRUCTURES 311

CHECK A
IF O READY TO INSERT
SAVE A
PREPARE TO MOVE A BLOCK
MOVE A BLOCK DOWN
TO A HIGHER ADDRESS

LOOP TIL BLOCK DONE
RESTORE A
DECREMENT BLOCK COUNT
CONTINUE
ONE MORE ELEMENT
GET OBJECT ADDRESS
PREPARE TO MOVE OBJECT
GET OBJECT
STORE IN LIST

FINISHED

Figure 9.21: NEW Prosrom For An Alphabetical List (cont.)

MOVE
UP

BEFORE

AAA

A8C

BAC

BAT

TAR

ZAP

AFTER

AAA

A8C

- BAT

TAR

ZAP

,
DELETE

'----------------- Figure 9.22: Delete "BAC"

312 PROGRAMMING THE 6809

NO

DELETE

COUNT HOW MANY
ELEMENTS FOLLOW THE

ONE TO BE DELETED

RESULT= COUNTER
(LOGPOS)

POINT TO NEXT
ENTRY POINTER

= TEMP(SOURCE)

TRANSFER IT
UP ONE BLOCK

POi NT TO NEXT ENTRY
POINTER= POINTER

(DESTINATION)

DECREMENT LOGPOS

SET 2 FLAGS

RTS

YES

Figure 9.23: Deletion Flowchart (Alphabetical List}------�

-

..

UNKED LIST

DATA STRUCTURES 313

The linked list is assumed to contain, as usual, the three alphanumeric
characters for the label, followed by 1 to 250 bytes of data, then a 2-byte
pointer that contains the starting address of the next entry, and finally,
a 1-byte marker. Whenever this 1-byte marker is set to 1, it prevents the

DELETE LBSR SEARCH FIND OBJECT
BNE OUTD QUIT IF NOT FOUND
CMPB TABLEN SEE IF LAST ELEMENT
BEQ TABM1 ... IN TABLE
PSHS B SAVE B
DECB ACCOUNT FOR 0 ADDRESS
LDA #ENTLEN GET LENGTH
MUL
LDX #TABASE
LEAX D,X POINT TO ELEMENT TO DELETE
LEAY ENTLEN,X POINT TO NEXT ELEMENT
PULS B RESTORE BLOCK COUNT
NEGB SUBTRACT FROM TABLE
ADDB TABLEN ... LENGTH

MOVMOR TSTB SEE IF ALL MOVED
BEQ TABM1 FINISH IF MOVED
PSHS B SAVE COUNT
LDB #ENTLEN PREPARE TO MOVE A BLOCK

MOVENT LDA ,Y+ MOVE A BLOCK UP
STA ,x+
DECB
BNE MO VENT
PULS B RESTORE COUNT
DECB ANOTHER BLOCK DONE
BNE MOVMOR GO FOR MORE

TABM1 DEC TABLEN ONELESS IN LIST
OUTD RTS ALL DONE

---------Figure 9.24: Delete Program - Alphabetical Lists

314 PROGRAMMING THE 6809

insert routine from substituting a new entry in place of the existing one.
Figure 9.25 shows the structure of an entry.

Further, a directory contains a pointer to the first entry for each letter
of the alphabet, in order to facilitate retrieval. It is assumed in the pro­
gram that the labels are ASCII alphabetic characters. All pointers at the
end of the list are set to a NIL value (which has been chosen here to be
equal to the table base, minus 1), as this value should never occur within
the linked list.

The insertion and deletion programs perform the obvious pointer ma­
nipulations. They use the flag INDEXED to indicate if a pointer pointing
to an object came from a previous entry in the list or from the directory
table. Figure 9.26 shows the data structure.

An application for this data structure would be a computerized ad­
dress book, where each person is represented by a unique three-letter
code (perhaps the usual initials); and the data field would contain a
simplified address, plus the telephone number (up to 250 characters).
Let us examine the structure in more detail (see Figure 9.25). The entry
format also appears in Figure 9.25. As usual, the conventions are:

ENTLEN: total element length (in bytes)
T ABASE: address of base list

Here, REFBASE points to the base address of the directory, or the
"reference table."

Each two-byte address within this directory points to the first occurrence
of the letter to which it corresponds in the list. Thus, each group of entries
with an identical first letter in their labels actually forms a separate list
within the whole structure. This feature facilitates searching and is

c c

UNIQUE LABEL
{ASCII)

c
I

o
I o I / /.....__L--I

o
___.___

P
__.__

P
_,__

o
___.

POINTERTO t DATA (1 to 250 BYTES)
NEXT OCCUPIED

Figure 9.25: Data Structure of a Linked List Entry----------'

DATASTRUCTURES 315

analogous to an address book. Note that no data are moved during an
insertion or deletion; only pointers are changed, as in every well-behaved
linked list structure.

If no entry starting with a specific letter is found, or if there is no entry
that alphabetically follows an existing one, the pointers will point to the
beginning of the table minus 1 (NIL). The letters in the three-character
code are assumed to be alphabetic letters in ASCII code. Changing this
would require changing the constant in the PRET AB routine.

The end-of-table marker is set to the value of the beginning of the table
minus 1 (NIL). By convention, the NIL pointers, found at the end of a string,
or within a directory location that does not point to a string, are set to the
value of the table base minus 1, in order to provide a unique identifica­
tion. Some other convention could be used, but the NIL pointer must
never be confused with the address of an entry.

Insertions and deletions are performed in the usual way (see Part I of
this chapter), by merely modifying the required pointers. The INDEXED
flag is used to indicate if the pointer to the object is in the reference table
or in another string element.

DIRECTORY A A

"A" POINTER ___. ____.
POINTER NIL

R

"R" POINTER -----+-
NIL

'----------------Figure 9.26: Linked List Structure

316 PROGRAMMING THE 6809

Searching

The SEARCH program, appearing in Figure 9.27, uses a subroutine
called PRET AB. The search principle, as shown in Figure 9.28, is
straightforward:

1. Get the directory entry corresponding to the letter of the
alphabet in the first position of the OBJECT's label. PRETAB
does this.

2. Get the pointer. Access the element. If NIL, the entry does not
exist.

3. If not NIL, match the element against the OBJECT. If they are
not the same, get the pointer to the next entry down the list.

4. Go back to 2.

PRETAB LOX #OBJECT GET OBJECT ADDRESS
LOA ,x GET FIRST LETTER
SUBA #$41 REMOVE ASCII OFFSET
LSLA MULTIPLY BY 2

LOY #REFBAS GET REFERENCE TABLE
LEAY A,Y POINT TO ADDRESS
RTS ALL DONE

SEARCH CLR INDEXD SET INDEXED FLAG
INC INDEXD . . . TOONE
BSR PRETAB GET REFERENCE ADDRESS
LOX ,Y GET ADDRESS OF ENTRY

COMP AR PSHS x SA VE ADDRESS IN X
CMPX #TBASM1 CHECK IF VALID
BEQ NOTFND IF EQUAL NOT VALID
LOY #OBJECT GET OBJECT ADDRESS
LOB #3 COUNT FOR 3 CHAR

CHKLOP LOA ,x+ GET CHAR
CMPA ,Y+ COMPARE WITH OBJECT

Figure 9.27: Linked List-Search Program (continues) ---------'

BLO NOGOOD
BNE NOTFND
DECB
BNE CHKLOP
PULS x
CLRB
RTS

NOGOOD PULS x
TFR x.u

LEAY ENTLEN -3,X
LOX ,Y
CLR INDEXD
BRA COMP AR

NOTFND PULS x
LOB #1

RTS

DATA STRUCTURES 317

TRY NEXT ENTRY
GONE TOO FAR NOT FOUND

CHECK 3 CHAR
RECOVER ORIGINAL ADDRESS
INDICATE FOUND
DONE WHEN FOUND
GET ORIGINAL ADDRESS
SA VE AS PREVIOUS ADDRESS
POINT TO NEXT POINTER
GET NEXT POINTER
NOT FROM REFERENCE NOW
TRY NEXT
GET ORIGINAL ADDRESS
NOT FOUND FLAG SET
ALL DONE WHEN NOT FOUND

....._--------Figure 9.27: Linked List-Search Program (cont.}

A-POINTER AAA ABC
8-POINTER

0 AZ.C

NIL

(FOUND)
OBJECT

.,

AZ.C

-------------Figure 9.28: Linked List-A Search-

318 PROGRAMMING THE 6809

Inserting

The insertion is essentially a search followed by an insertion once a
NIL has been found (see Figure 9.29). A block of storage for the new
entry is allocated by looking for an occupancy marker set at" available."
The program, called NEW, appears in Figure 9.30.

BEFORE
A-POINTER CAB czz

B-POINTER Nil

C-POINTER

� OBJECT
l

AFTER
A-POINTER CAB czz
B-POINTER Nil

C-POINTER

CBS

Figure 9.Z9: Lin.Iced List-Example of Insertion-----------'

NEW BSR

TSTB

BEQ

LDB

SEARCH

OUTLN

#ENTLEN-1

CHECK IF IN TABLE

STOP IF FOUND

POINTS TO OCCUPIED BYTE

Figure 9.30: NEW Program For a Lin.Iced List (continues)--------'

PSHS

LDX
NEXTEN LEAX

LOA
BNE

LOY
LEAX

LOB

MOVE IT LDA
STA
DECB
BNE
PULS

STD

INC
TST

BNE

LEAX
LEAU

STX

RTS
SETINX LEAX

PSHS
BSR
PULS
STX

OUTLN RTS

x

#TABASE
B,X
,x+
NEXTEN

#OBJECT
-ENTLEN,X

#ENTLEN-3

,Y+
,x+

MOVE IT
D

.x++

,x
INDEXD

SETINX

DATA STRUCTURES 319

SAVE POINTER TO
FOLLOWING ENTRY
ST ART AT BASE OF TABLE
POINT TO OCCUPIED BYTE
GET THAT BYTE
SEARCH TIL UNOCCUPIED
FOUND
GET OBJECT ADDRESS
POINT BACK TO ST ART OF
BLOCK
NUMBER OF BYTES TO
TRANSFER
GET BYTE
STORE IT

GET ADDRESS OF NEXT
ENTRY
STORE IN NEW ENTRY'S
POINTER
AND SET OCCUPIED
SEE IF REFERENCE TABLE
. . . NEEDS UPDATING
PUT NEW POINTR IN
REFERENCE

-(ENTLEN - 1),X POINT TO ENTRY AGAIN
ENTLEN-3,U POINT TO PREVIOUS

ENTRY'S POINTER BYTES
.u PUT NEW ENTRY ADDRESS

HERE
ALL DONE

-(ENTLEN -1),X POINT TO NEW ENTRY
x SA VE THE ADDRESS
PRETAB GET REFERENCE ADDRESS
x RESTORE ADDRESS
,Y STORE IN REFERENCE

TABLE
ALL DONE

Figure 9.30: NEW Program For a Lin.Iced List (cont.)

320 PROGRAMMING THE 6809

Deleting

The element is deleted by setting its occupancy marker to "available"
and adjusting the pointer to it from the directory or the previous ele­
ment. An example appears in Figure 9.31. The program, called
DELETE, appears in Figure 9.32.

A
B
c
D

OAF POINTER

A e ­
c _
D

-

-

DOC POINTER

BEFORE

"OAF" "DOC"

DOC POINTER Nil

DELETE

AFTER

"DOC" I
Nil I

(NOTE: OAF is not erased, but "invisible")

Figure 9.31: Linked List-Example of Deletion----------'

DELETE BSR SEARCH GET ADDRESS OF OBJECT

TSTB

BNE OUTLD QUIT IF NOT FOUND

LEAX ENTLEN-3,X POINT TO POINTER BYTES

LOY .x++ PUT POINTER IN Y

CLR .x MARK AS UNOCCUPIED

TST INDEXD CHECK IF IN REFERENCE
TABLE

BNE CHG REF CHANGE ADDRESS IN
TABLE

Figure 9.32: DELETE Program For a Linlced List (continues}

LEAU ENTLEN-3,U

STY .u
RTS

CHG REF PSHS y

BSR PRETAB

PULS x
STX ,Y

OUTLD RTS

DATA STRUCTURES 321

POINT TO PREVIOUS ENTRY
LINK POINTER

UPDATE LINK POlNTER

ALL DONE

SA VE FOLLOWING ENTRY'S
ADDRESS

GETT ABLE ADDRESS

RESTORE ADDRESS

STORE ADDRESS IN TABLE

ALL DONE

'-------- Figure 9.32: DELETE Program For a Linked List (cont.)

SU�MARY

If you are a beginning programmer, it is not essential for you to
understand the details of data structure implementation and manage­
ment. However, as you program more complex problems, you will need
to learn more about data structures. The actual examples presented in
this chapter have been designed to help you understand and solve all
the common problems often encountered with these structures.

EXERCISES

9-1: Examine the figure below. At address 15 in the memory, there is a pointer
to Table T. Table T starts at address 500. What are the actual contents of
the pointer to T?

0

15
16

500

- POINTER TOT -,___

-
TABl,E T

9-2: Draw a diagram showing how Block 2 would be removed from the struc­
ture in Figure 9.2.

CHAPTER 10

323

PROGRAM
DEVELOPMENT

WE HA VE NOW REACHED THE POINT where we should seri­
ously consider developing actual programs. Before proceeding to this
task, which is the ultimate goal of our efforts, we should give careful
consideration to the options and tools available for developing programs.
There are several levels of hardware and software resources to consider.
Which level is appropriate depends on the individual application. This
chapter presents and evaluates all the available resources.

PROGRAMMING CHOICES

We may write a program either in binary or hexadecimal, in an
assembly-level language, or in a high-level language. Let's discuss these
alternatives. Figure 10.1 shows the different levels of programming.

324 PROGRAMMING THE 6809

Hexadecimal Coding

Most programs are conceived using assembly language mnemonics.
The actual translation of such mnemonics into corresponding binary
code requires an assembler. When there is no assembler, it is necessary
to perform the translation from mnemonics into binary, by hand. Because
translating into binary is tedious and error-prone, users often use hexa­
decimal. Also, many single-board microcomputers require the entry of
programs in hexadecimal mode.

(Note: in Chapter 1, we showed that one hexadecimal digit represents
four binary bits. Therefore, two hexadecimal digits can represent the
contents of a byte. (Appendix D offers a table showing the hexadecimal
equivalent of the 6809 instructions.))

POWER OF THE
LANGUAGE

SYMBOi.iC

APl
C060L

FORTRAN

Pl/M

PASCAL
BASIC

MINI-BASIC

MACRO

CONDITIONAL

ASSEMBLY

HEXADECIMAL/
OCTAL

BINARY

HIGH
LEVEL

ASSEMBLY
LEVEL

Figure 10.l: Prognmuning Levels -------------�

PROGRAM DEVELOPMENT 325

Although it is reasonable to translate a program into hexadecimal by
hand for a small number of instructions (for example, 10 to 100), when a
program is large, this process becomes tedious and error-prone. Although
most single-board microcomputers do not have an assembler and a full
alphanumeric keyboard (in order to limit cost), they do provide a hex­
adecimal keyboard and 7-segment displays for program entry and
debugging.

In summary, hexadecimal coding is not a desirable way to enter a
program in a computer, it is simply an economical one. The cost of an
assembler and the required alphanumeric keyboard is traded-off against
the increased time and effort required to enter the program in the
memory. Therefore, if it is necessary to use hexadecimal coding, it is
wise to first write the program in assembly language mnemonics, then
cohvert it into hexadecimal code. This is because a program written in
assembly language is easier to understand and debug.

Assembly Language Programming

Assembly-level programming includes both those programs entered
into the system in hexadecimal form and those entered in symbolic
assembly-level form. We will now examine the entry of a program directly
in its assembly language representation.

When entering a program in assembly language, there must be an
assembler program available that will read the mnemonic instructions
of the program and translate them into the required bit patterns, using 1
to 5 bytes, as specified by the encoding of the instructions. A good
assembler will also offer a number of additional facilities for writing a
program. In particular, it might offer directives that modify the value of
symbols; it might also facilitate symbolic addressing.

(Note: by using symbolic labels, it is possible to insert an extra instruc­
tion between a branch and the point to which it branches, without
rewriting the entire program. The assembler will automatically adjust
all the labels during the translation process. In addition, it is possible to
debug the program in symbolic form, if an assembler is available.)

Later in this chapter, we will review the various software resources
normally available on a system. We will first, however, examine the
third alternative: high-level language programming.

High-Level Language

We can also write a program in a high-level language, such as BASIC,
APL, or Pascal. A high-level language offers powerful instructions that

326 PROGRAMMING THE 6809

make programming faster and easier than assembly language. These
instructions are then translated by a complex program into the final
binary representation that a microcomputer can execute. Typically,
each high-level instruction is translated into many individual binary in­
structions by a program called a compiler or an interpreter. A compiler
translates all the instructions of a program into object code, and then ex­
ecutes the resulting code. By contrast, an interpreter interprets a single
instruction, executes it, and then translates the next one, and executes it.
An interpreter offers the advantage of interactive response, but results
in low efficiency, when compared to a compiler. We will not cover these
topics further here. Instead, we will program an actual microprocessor
in assembly-level language.

SOITW AltE SUPPORT

We will begin by reviewing the main software facilities available in a
complete system for convenient software development. As we proceed,
we will summarize the definitions introduced previously and define the
remaining important programs available in a software development
system.

The assembler translates the mnemonic representation of instruc­
tions into their binary equivalent. It normally translates one symbolic
instruction into one binary instruction (which may occupy between 1
and 5 bytes). The resulting binary code, called the object code, is directly
executable by the microcomputer. The assembler will also produce a
complete mnemonic listing of the program, and a symbol definition list
(examples of listings appear later in this chapter). In addition, the
assembler will list syntax errors (such as misspelled or illegal instruc­
tions), branching errors, duplicate or missing labels. It will not,
however, delete logical errors. (Such errors are your problem.)

A compiler translates high-level language instructions into their
binary form. An interpreter, on the other hand, is similar to a compiler,
but it often does not generate an intermediate code; it simply executes
the high-level instructions directly.

The monitor is the basic program which is indispensable for using the
hardware resources of the system. It continuously monitors the input
devices for input; it also manages the rest of the devices. As an example,
a minimal monitor for a single-board microcomputer, equipped with a
keyboard and LEDs, will continuously scan the keyboard for user input,
and display the specified contents on the light-emitting diodes. In addi­
tion, it must recognize a number of limited commands from the

PROGRAM DEVELOPMENT 32 7

keyboard, such as ST ART, STOP, CONTINUE, LOAD MEMORY, or
EXAMINE MEMORY. On a large system that provides complex file
management or task scheduling, the monitor is often qualified as the
executive program. The overall set of facilities is called the operating
system; and if the files are residing on a disk, the operating system is
qualified as the disk operating system, or DOS.

An editor facilitates the entry and modification of text or programs. It
allows the user to conveniently enter, append, and insert characters;
add and remove lines of text; and search for characters or strings. The
editor is an important resource for convenient and effective text entry.

A debugger is a facility necessary for debugging programs. When a
program does not work correctly, there may typically be no indication
of the cause. In such a case, the programmer may want to insert break­
points in the program in order to suspend the execution of the program at
specified addresses and to examine the contents of registers or memory
at these points. The debugger is useful for suspending a program; exam­
ining, displaying and modifying the contents of its registers or memory;
and then resuming execution. A good debugger also offers a number
of additional facilities that allow the programmer to examine data in
symbolic form (hexadecimal, binary, or other usual representations), as
well as to enter data in this format.

A loader or linking loader places various blocks of object code at
specified positions in the memory and adjusts their respective symbolic
pointers, so that they can reference each other.

A simulator or an emulator program simulates the operation of a
device, usually the microprocessor, when developing a program on a
simulated processor, prior to placing it on the actual board. Using this
approach, it is possible to suspend the program, modify it, and keep it in
RAM memory. The disadvantages of a simulator are the following:

1. It usually only simulates the processor itself, not input/output
devices.

2. The execution speed is slow, so the instruction cycle times are
much longer. It is, therefore, not possible to test real-time devices;
and synchronization problems may still occur, even though the
logic of the program may be found to be correct.

An emulator is essentially a simulator in real time. An emulator uses one
processor to simulate another one, and it simulates it in complete detail.

Utility routines are essentially the routines necessary in most applica­
tions. They are usually the routines that the user wishes the manufac­
turer had provided. They may include multiplication, division and other

328 PROGRAMMING THE 6809

arithmetic operations, as well as block move routines, character tests,
input/output device handlers (or drivers), and others. Figure 10.2 shows
a memory map for a typical program development system.

THE PROGRAM DEVELOPMENT SEQUENCE

We will now examine a typical sequence for developing an assembly­
level program. We will assume that all the usual software facilities are
available, so that we may demonstrate their value. If they are not
available in a particular system, we can still develop programs, but the
convenience will be decreased and, therefore, the amount of time
necessary to debug the program is likely to be increased.

Recall that the normal approach for developing an assembly-level
program is to, first, design an algorithm and the data structures for the
problem to be solved; then, develop a comprehensive set of flowcharts
that represent the program flow; and, finally, translate the flowcharts
into the assembly-level language for the microprocessor (this is the
coding phase) and enter the program on the computer. A program can be
entered in the RAM memory of the system under the control of the
editor. Once entered, we can test a section of the program, such as one or
more subroutines.

We must first, however, use the assembler to translate the program into
binary code. If the assembler does not already reside in the system, we
must load it from an external memory, such as a disk. Assembly will
result in an object program that is ready to be executed.

A program is not normally expected to work correctly the first time.
To verify its correct operation, we can use the debugger to set a number of
breakpoints at crucial locations that will test whether the intermediate
results a.re correct.

Whenever incorrect data is found, an error in the program has been
detected. At this point, we should refer to the program listing and verify
that the coding is correct. If we cannot find an error in the program­
ming, we should refer to the flowchart-the error might be a logical one.

If we have checked the flowcharts by hand and believe them to be
reasonably correct, the error probably stems from the coding. There­
fore, we must now modify a section· of the program. If the symbolic
representation of the program is still in the memory, we can simply re­
enter the editor, modify the required lines, and then go through the
preceding sequence once again. In some systems, the memory available
may not be large enough. In such a case, we will need to flush out the
symbolic representation of the program onto a disk or cassette, prior to
executing the object code. Naturally, in this case, we will need to reload

PROGRAM DEVELOPMENT 329

the symbolic representation of the program from its support medium,
prior to entering the editor again.

We can then repeat this procedure, until the results ofthe program are
correct. We stress here that prevention is much more effective than a
cure. A correct design typically results in a program that runs correctly
very soon after the usual typing mistakes or obvious coding errors have

ROM

ASSEMBl.£R OR
BOOTSTRAP COMPILER OR

INTERPRETER

KEYBOARD
DRIVER

DOS

DISPLAY
DRIVER

EDITOR OR
DEBUGGER OR

SIMULATOR

TTY
DRIVER

SYSTEM
WORKSPAO:
(AND STACK)

CASSETTE USER
DRIVER PROGRAM

COMMAND USER
INTERPRETER WORKSPACE

UTILITY
ROUTINES

ELEMENTARY
DEBUGGER

ELEMENTARY
EDITOR

-------------Figure 10.2: A Typical Memory Map

330 PROGRAMMING THE 6809

been removed. However, a sloppy design may result in programs that
take an extremely long time to debug. The debugging time is generally
considered to be much longer than the actual design time. In short, it is
always worth investing more time in the design, in order to shorten the
debugging phase.

Using the previous approach, we can test the overall organization of
the program, but we cannot test it in real time with input/output devices.
The direct solution for testing input/output devices is to transfer the
program onto EPROM's, install it on the board, and then watch to see if
it works.

However, there is another solution. We can use an in-circuit emulator.
An in-circuit emulator uses the 6809 microprocessor (or any other one)
to emulate a 6809 in (almost) real time. (It emulates the 6809 physically.)
The emulator is equipped with a cable terminated by a 40-pin connector,
identical to the pin-out of the 6809. If we insert this connector on the real
application board we are developing, the signals generated by the
emulator will be exactly like those of the 6809, only perhaps a little
slower. The essential advantage of this approach is that the program
under test can continue to reside in the RAM memory of the development
system. Because an in-circuit emulator generates the real signals that
communicate with the real input/output devices we wish to use, we can
continue to develop the program by using all the resources of the
development system (i.e., the editor, debugger, symbolic facilities, file
system), while testing input/output in real time.

In addition, a good emulator provides special facilities, such as a trace.
In short, a trace provides the film of the events that occurred prior to the
breakpoint or malfunction. It is a recording of the last instructions and
the status of the buses in the system, prior to a breakpoint. Such a facility
is of great value, since when an error is found, it is usually too late (i.e.,
the instruction or data which caused the error has occurred prior to the
detection). Using a trace, we can find the segment of the program that
caused the error to occur. If the trace is not long enough, we can set an
earlier breakpoint.

This completes our description of the usual sequence of events involved
in developing a program. We will now review the hardware alternatives
available for developing programs.

HARDWARE ALTERNATIVES

There are many different hardware systems available for program
development. The different systems vary in cost and capabilities. The

PROGRAM DEVELOPMENT 331

more expensive and complex the system, the more tools it provides for
developing programs.

Single-Board Microcomputer

The single-board microcomputer offers the lowest cost approach to
program development. It is normally equipped with a hexadecimal key­
board, plus some function keys, and six LEDs, which can display address
and data. Since a single-board microcomputer is equipped with a small
amount of memory, an assembler is not usually available. At best, a
single-board microcomputer has a small monitor and virtually no editing
or debugging facilities, except for a very few commands. All programs
must, therefore, be entered in hexadecimal form. They are then displayed
in hexadecim!ll form on the LEDs.

A single-board microcomputer has, in theory, the same hardware
power as any other computer. However, because of its restricted
memory size and keyboard, it does not support all the usual facilities of a
larger system and, therefore, program development is much slower.
Because developing programs in hexadecimal format is a tedious task, a
single-board microcomputer is best-suited for educational and training
purposes, where programs of limited length are developed. and their short
length is not an obstacle to programming. Single-boards are probably
the least expensive way to learn programming through actual practice.
They cannot, however, be used for complex program development,
unless additional memory boards are attached. and the usual software
aids are made available.

The Development System

A development system is a microcomputer system equipped with a si�
nificant amount of RAM memory (32K, 481<), the required input/output
devices (a CRT display, a printer, disks, and, usually, a PROM program­
mer), and, perhaps, an in-circuit emulator. A development system is
specifically designed to facilitate program development in an industrial
environment. It normally offers all, or most, of the software facilities
mentioned in the preceding section. In principle, it is the ideal software
development tool.

A limitation of a microcomputer development system is that it may
not be capable of supporting a compiler or interpreter. This is because a
compiler typically requires a large amount of memory, often more than
is available on the system. However, it does offer all of the required

332 PROGRAMMING THE 6809

facilities for developing programs in assembly-level language. Because
development systems sell in relatively small numbers when compared
to hobby computers, their cost is significantly higher.

Hobby-Type Microcomputers

The hobby-type microcomputer hardware is naturally analogous to
that of a development system. The main difference is that it is normally
not equipped with the sophisticated software development aids avail­
able on an industrial development system. As an example, many hobby­
type microcomputers offer only elementary assemblers and minimal
editors and file systems. They normally do not have the facilities to
attach a PROM programmer, an in-circuit emulator, or a powerful
debugger. 'Fhey represent, therefore, an intermediate step between the
single-board microcomputer and the full microprocessor development
system. For a user who wishes to develop programs of modest complexity,
they are probably the best compromise. Even though they are quite
limited as to their convenience, they can still off er the advantages oflow
cost and a reasonable array of software development tools.

Time-Sharing System

It is possible to rent terminals that connect to time-sharing networks.
These terminals share the time of a larger computer and benefit from the
advantages of the large installations. Cross assemblers are available for
all microcomputers on virtually all commercial time-sharing systems.
Formally, a cross assembler is an assembler for microprocessor X, that
resides on processor Y. The nature of the computer being used is irrele­
vant. For example, we can write a program in 6809 assembly-level
language, and the cross assembler will translate it into the appropriate
binary pattern. The difference, however, is that the program cannot be
executed at that point. It can only be executed by a simulated processor,
if one is available, provided it does not use any input/output resources.
Therefore, this solution is used only in industrial environments.

In-House Computer

Whenever a large in-house computer is available, cross assemblers may
also be available to facilitate program development. If such a computer
offers time-shared service, this option is essentially analogous to the one
above. If it offers only batch service, this is probably one of the most

PROGRAM DEVELOPMENT 333

inconvenient methods of program development, since submitting
programs in batch mode at the assembly level for a microprocessor,
results in a very long development time.

Front Panel or No Front Panel?

We can use a front panel, a hardware accessory, to facilitate program
debugging. The front panel has traditionally been a tool that conveniently
displays the binary contents of a register or memory. However, all the
functions of the control panel may now be accomplished from a terminal,
and the CRT display now offers a service almost equivalent to the control
panel, by displaying the binary value of bits. The additional advantage of
using the CRT display is that it is possible to switch at will from binary
representation to hexadecimal, symbolic, or decimal (if the appropriate
conversion routines are available, naturally). The disadvantage of the
CRT is that it is necessary to hit several keys to obtain the appropriate
display, rather than simply turning a knob. However, since the cost of
providing a control panel is quite substantial, most newer microcom­
puters have abandoned this debugging tool. The value of the control
panel is often considered more on the basis of emotional arguments in­
fluenced by a user's past experience, than by reason. In other words, the
front panel is not indispensable.

Summary of Hardware Resources

We can distinguish three broad categories of hardware systems.
Specifically, single-board microcomputer is available for those who have
only a minimal budget and want to learn how to program. Using a single­
board microcomputer, it is possible to develop all the simple programs
in this book and many more. Eventually, however, the user will feel the
limitations of this approach; for example, when it is necessary to
develop programs of more than a few hundred instructions.

A full development system is available for the industrial user. Any
solution short of the full development system will cause a significantly
longer development time. The trade-off is clear: hardware resources
versus programming time. Naturally, if the programs being developed
are simple, there are less expensive approaches. But if they are complex,
it is difficult to justify any hardware savings when buying a develoir
ment system, since the programming costs will be by far the dominant
cost of the project.

For a personal computerist, a hobby-type microcomputer typically

334 PROGRAMMING THE 6809

offers sufficient, although minimal, facilities. Good development soft­
ware is now becoming available for many of the hobby computers.

Let us now analyze in more detail the most indispensable resource:
the assembler.

THE ASSEMBLER

We will now present the formal syntax or definition of assembly-level
language. An assembler allows the convenient symbolic representation
of a user program, and makes it simple for the assembler program to
convert these mnemonics into their binary representation.

Assembler Fields

When typing in a program for the assembler, we have seen that several
fields are used. They are:

• the label field, which is optional, and may contain a symbolic
address for the instruction that follows.

• the instruction field, which includes the opcode and any
operands. (A separate operand field may be distinguished.)

• the comment field, which is optional, and intended to clarify the
program.

These fields appear on the programming form in Figure 10.3.
Once a program is fed to the assembler, the assembler produces a listing

of it When generating a listing, the assembler will provide four additional
fields, usually on the left of the page. An example of assembler output
appears in Figure 10.4.

On the far left of the output is the line number. Each line typed is
assigned a symbolic line number. The next field to the right is the actual
address field, which shows in hexadecimal, the value of the program
counter that points to that instruction. Even further to the right is the
hexadecimal representation of the instruction, and, finally, to the right
of the hexadecimal representation appears the number of cycles required
to execute the instruction.

We have now shown one possible use of an assembler. Even if we are
designing programs for a single-board microcomputer that accepts only
hexadecimal, we should still write the program in assembly-level
language, providing we have access to a system equipped with an assem­
bler. We can then run the programs on the system, using the assembler.

PROGRAM DEVELOPMENT 335

The assembler automatically generates the correct hexadecimal codes
on the system. This shows, in a simple example, the value of additional
software resources.

Tables

When the assembler translates the symbolic program into its binary
representation, it performs two essential tasks:

ADDRESS

1. It translates the mnemonic instructions into their binary encoding.

2. It translates the symbols used for constants and addresses into
their binary representations.

HEX SYMBOLIC
INSTRUCTION COMMENTS

1 2 3 4 LABEL OPCODE OPERAND

-----------Fisure 10.3: Microprocessor P.rosnunmins Form -

336 PROGRAMMING THE 6809

To facilitate program debugging, the assembler shows, at the end of the
listing, the equivalence between the symbol used and its hexadecimal
value. This is called the symbol table.

Some symbol tables not only list the symbol and its value, but also the
line numbers where the symbol occurs-thereby providing an additional
facility.

00038

00039

00040

00041

00042

00043

00044

00045
00046
00047

00048

00049

00051 1019 86
00052 101 B 8E

00053 101 E C6

00055 1020 A 1

00056 1022 27
00057 1024 SA

00058 1025 26

00059 1027 8E

00060 102A 30

00062 102C 20

00064
00065 1 02E

00066 1042

* * * * * CHARACTER SEARCH * * * * *

i<

i< SEARCH A TABLE OF N CHARACTERS FOR A SPECIFIC

i< CHARACTER. IF FOUND, RETURN THE ADDRESS OF

i< THE MATCH, ELSE RETURN ZERO. LET N BE 40.
i< LET THE SEARCH FAIL.

i<
i< SETUP: 3 LN, 7 BY, 7 CY

i< OPERATION: 6 LN, 1 2 BY, (14*40)+8=568 CY

i< TOTAL: 9 LN, 1 9 BY, 575 CY

i<
*

4A 2 CSRCH LDA #CHAR CHAR TO FIND

102E 3 LDX #BUF PTR INTO TABLE

28 2 LDB #40 LENGTH OF TABLE

80 6 CS1 CMPA ,X+ SAME CHAR?

06 3 BEQ CS2 IF YES, POINT AT IT

2 DECB ANOTHER ONE DOWN

F9 3 BNE CSl ALL DONE?

0001 3 LDX #1 TRICKY CLRX

l F 5 CS2 LEAX - 1 ,X WENT PAST!

FE 3 BRA *

004A CHAR EQU 'J
00 BUF FCB 0,,,,,,,,,,,,,,,,,,,0

00 FCB O'"'"'"""''""O

Courtesy of Molorolo, Inc.

-Figure 10.4: Assembler Output-An Example-----------

PROGRAM DEVELOPMENT 33 7

Error Messages

During the assembly process, the assembler detects syntax errors and
includes them as part of the final listing. Typical diagnostics include:
undefined symbols, label already defined, illegal opcode, illegal address,
and illegal addressing mode. Many additional diagnostics are desirable,
and are usually provided. Such features vary with each assembler.

The Assembly Language

We have already discussed opcodes. We will define here the symbols,
constants, and operators that we can use as part of the assembler syntax.

SylJ!bols

Symbols are used to represent numerical values, either data or ad­
dresses. Symbols may include up to six characters, and must start with
an alphabetic character or a period. The characters are restricted to letters
of the alphabet, numbers, a ".", and a "$". Also, we may not choose
names identical to the opcodes utilized by the 6809, the names of the
registers (A, B, D, X, Y, U, S, PC, DP, and PCR), or the various names used
as pseudo-operators by the assembler. The names of these assembler
directives are listed later in the corresponding section.

Assigning a Value to a Symbol

Labels are special symbols with values that do not need to be defined
by the programmer. The value is automatically defined by the assembler
program when it finds that label. Thus, the label value automatically cor·
responds to the number of the line where it appears. There are special
pseudo-instructions available for forcing a new starting value for labels,
or for assigning them a specific value. However, any other symbols used
for constants or memory addresses must be defined by the programmer,
prior to use.

We can use a special assembler directive to assign a value to a symbol.
This directive is essentially an instruction to the assembler that will not
be translated into an ex�cutable statement. For example, the constant
LOG is defined as:

LOG EQU $302

This assigns the value 302 hexadecimal to the symbol LOG. We examine
the assembler directives in detail in a later section.

338 PROGRAMMING THE 6809

Constants or Literals

Constants may be expressed in decimal, hexadecimal, octal, binary,
or as alphanumeric strings. To differentiate between the bases used to
represent numbers, we must use a symbol. To load O into accumulator
A, we simply write:

LDA #0

The absence of a symbol always means decimal.
A hexadecimal number is preceded by the symbol $ or terminated by

H. To load the value FF into A, we write:

or
LOA #$FF

tDA #OFFH

An octal symbol is preceded by an @, or terminated by a Q. A binary
symbol is preceded by a%, or terminated by a B. For example, in order to
load the value 11111111 into A, we write:

LOA #%11111111

We may also use literal ASCII characters in the literal field. The ASCII
symbol must be preceded by a single quote. For example, to load the
symbol S into A, we write:

Operators

LOA #'S

To further facilitate the writing of symbolic programs, assemblers
allow the use of operators. At a minimum, they usually allow plus and
minus, so that the user can specify, for example:

LOA ADDRESS

LOB ADDRESS + 1

It is important to understand that the expression ADDRESS + 1 is
computed by the assembler, in order to determine the actual memory
address that must be inserted as the binary equivalent. An operator is
computed at assembly time, not at program-execution time.

In addition, there may be other operators available, such as multiply
and divide-a convenience when accessing tables in memory. There
may also be available more specialized operators, such as greater than

PROGRAM DEVELOPMENT 339

and less than, which truncate a two-byte value, respectively, into its high
and low byte.

Naturally, an expression must evaluate to a positive value. Negative
numbers may normally not be used and should be expressed in hexa­
decimal format.

Finally, it has traditionally been the case that a special symbol
represents the current value of the address of the line: "*". This symbol
should be interpreted as meaning "current location" (value of PC).

Expressions

The 6809 assembler specifications allow a wide range of expressions
with arithmetic and logical operations. Figure 10.5 displays these opera­
tions. Let's examine the order of precedence of the various operations:

Operations within parenthesis are evaluated first.

Multiplication, division and all of the two-character operations
take precedence over addition and subtraction.

Operators with the same precedence are evaluated from left
to right.

Addressing Modes

It is necessary to distinguish the different addressing modes used in the
6809 with special symbols. If a symbol is not used, the assembler normally

OPERATOR FUNCTION

+ Addition
- Subtraction

* Multiplication

I Division

IA Exponentiation

! . Logical AND

1 + Logical OR

IX Logical Exclusive OR

I< Shift Left

I > Shift Right

I L Rotate Left

! R Rotate Right

--------------Figure 10.5: Assembler Operators-

340 PROGRAMMING THE 6809

chooses direct or extended addressing. (Note: the assembler chooses
direct page addressing whenever possible.) To force direct page ad­
dressing, we must put the symbol "<

11
before the operand. Similarly, we

can force extended addressing by putting the symbol ">" before the
operand.

The symbol "#11 indicates immediate mode. We can use the general
form:

OFFSET,R

to indicate indexed addressing. By preceding the OFFSET with a "<
11,

the assembler will use an 8-bit offset mode. Placing the symbol "> 11

before the offset forces a �6-bit offset mode. The assembler will always
try to use a zero, 5-bit, or 8-bit offset, if it is not restricted.

The form:

DEST,PCR

instructs the assembler to use the indexed mode with the PC. The
assembler calculates the relative distance from the present PC and the
symbol, DEST. This constant is then added at run time to the PC to fetch
the operand.

The symbols + and + + after an index register, indicate auto incre­
ment mode. The symbols - or -- before an index register indicate
autodecrement mode. Finally, any operand contained in square brackets
"[]" indicates indirect addressing.

Assembler Directives

Directives are special orders given by the programmer to the
assembler, which result in storing values into symbols or in memory, or
in controlling the execution of the assembler. To provide a specific
example, we will now review the eight assembler directives available on
the 6809 assembler. We begin with:

ORG nn

This directive sets the assembler address counter to the value on. In
other words, the first executable in�truction encountered after this
directive will reside at the value nn. This directive can be used to locate
different segments of a program at different memory locations.

The directive

LABEL EQU nn

assigns a value to a label.

The directive

FCB n

PROGRAM DEVELOPMENT 341

written out as form constant byte, assigns the 8-bit value n to a byte
residing at the current program counter. A label may be used with FCB.

The form double byte constant directive

FDB nn

assigns the value nn to the two-byte memory word residing at the current
program counter. A label may be used with FDB.

The form constant character string directive

FCC /string/

plac:es the 7-bit ASCII characters in "string" in successive bytes in
memory. The character "/" is a delimiter for the string. We can use a
number preceding the string to signify the number of characters in the
string in place of the "/" delimiter.

The directive

FCC 5,START

puts the five characters in ASCII code in successive memory locations.
A label may be used with FCC.

The reserve memory bytes directive

RMB nn

allocates nn bytes of space at the present location in the program. A label
may be used with RMB.

The set direct page directive

SETDP n

tells the assembler which page of memory to use for the direct page ad­
dressing mode. The default page is zero. This directive does not insert
instructions to set the register; that must be done by the user. An example
follows:

LDA

TFR

SETDP

The end directive

END

#DPAGE

A,DP

DP AGE

342 PROGRAMMING THE 6809

marks the end of the program. The assembler does not look for any state­
ment following this directive.

SUMMARY

This chapter has presented the techniques and hardware and software
tools required to develop a program; it has also examined various trade­
offs and alternatives. These techniques range, at the hardware level,
from a single-board microcomputer to a full development system, and,
at the software level, from binary coding to high-level programming.

CONCLUSION

In this bobk, we have covered all the important aspects of programming
the 6809, ranging from the basic definitions and concepts, to the internal
manipulation of the 6809 registers, the management of input/output
devices, and the implementation of software development aids. These
concepts apply to other microprocessors, as well as to the 6809.

What is the next step? There is no substitute for actual experience.
Once you have studied the examples in this book and have completed
the exercises, you should be ready to move ahead and create your own
programs.

344

APPENDIX A
HEXADECIMAL CONVERSION TABLE

HEX 0 1 2 3 4 5 6 7 8 9 A B c D E F 00 OOO

0 0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 0 0
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288
4 64 65 66 67 68 69 70 71 72 73 74 75 76 n 78 79 1024 16384
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1280 20480
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 1 1 0 1 1 1 1536 24576
7 1 1 2 i 13 1 1 4 115 1 1 6 1 1 7 118 1 1 9 120 121 122 123 124 125 126 127 1792 28672
8 128 129 130 131 132 13J 134 135 136 137 138 139 140 141 142 143 2048 32768
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 2304 36864
A 160 16i 162 163 164 165 166 167 168 169 170 171 172 173 174 175 25tAJ 40960
B 176 1n 178 179 180 181 182 183 184 185 186 187 188 189 190 191 2816 45056
c 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 49152
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440

5 4 3 2 1 0

HEXI DEC HEXI DEC HEXI DEC HEXI DEC HEXI DEC HEX j DEC
0 0 0 0 0 0 0 0 0 0 0 0
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1

2 2,097,152 2 131 ,072 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3

4 4, 194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5

6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28,672 7 1,792 7 1 12 7 7

8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 9, 437, 184 9 589,824 9 36,864 9 2,304 9 144 9 9

A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 1 1

c 12.582,912 c 786,432 c 49,152 c 3,072 c 192 c 12
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13

E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

HEX
LSD

0
1
2
3
4
5
6
7
8·
9
A
B
c
D
E
F

345

APPENDIX B
ASCII CONVERSION TABLE

MSD 0 1 2 3 4 5 6
BITS OOO 001 010 01 1 100 101 1 10

0000 NUL DLE SPACE 0 @ p -
0001 SOH Del ! 1 A Q 0
0010 STX DC2 " 2 B R b
001 1 ETX DCJ # 3 c s c
0100 EOT DC4 $ 4 D T d
0101 ENQ NAK % 5 E u e
0110 ACK SYN & 6 F v f
0 1 1 1 BEL ETB ' 7 G w g
1 000 BS CAN (8 H x h
1001 HT EM) 9 I y i
1010 LF SUB • : J z i
101 1 VT ESC + ; K [k
1 100 FF FS ' < l \ I
1 101 CR GS - = M J m
1 1 10 so RS > N " n
1 1 1 1 SI us I ? 0 - 0

THE ASCII SYMBOLS

NUL - Null SOH - Start of Heeding
STX - StortofText ETX -End of Text
EOT - End of Transmission
ENQ - Enquiry
AO: - Acknowledge
BEL - Bell
8S - Boclaf)oce
HT - Horizontal Tobulotlon
LF - Une Feed
VT - Vertical Tobulotlon
FF - Form Feed
CR - Carriage Return
SO -ShiflOut
SI -Shift In

oLE - Doto unk escor
DC - Device Contra NAK - Negolive Acknowledge
SYN - Synchronous Idle ETB - End of Transmission Block CAN -Cancel
EM - End of Medium
SUB - Substitute ESC - Escape
FS - File Seporotor GS - Group Seporotor
RS - Record Seporotor
US - Uni t Seporotor
SP - Space (Blank)
DEL -Delete

7
1 1 1

p

q
r
s
I
u
v
w
x

y
z

{ --
}

"'
DEL

346

APPENDIX C
DECIMAL TO BCD CONVERSION TABLE

DECIMAL BCD DEC BCD DEC BCD

0 0000 10 00010000 91 10010000
1 0001 1 1 00010001 91 10010001
2 0010 12 00010010 92 10010010
3 0011 13 00010011 93 10010011
4 0100 14 00010100 94 10010100
5 0101 15 00010101 95 10010101
6 0110 16 00010110 96 10010110
7 0111 17 00010111 97 100101 1 1
8 . 1000 18 0001 1000 98 10011000
9 1001 1 9 00011001 99 1001 1001

347

APPENDIX D
6809 INSTRUCTION SET

·-
- Op - I

AS•
AOC AOCA 89 2 2

AOCB C9 2 2

AOO AOOA ea 2 2

ADDS ce 2 2

ADDO C3 • J
AND ANDA 84 2 2

AN08 C4 2 2

ANOCC IC 3 2

ASL ASLA
ASLB
ASL

ASR ASRA
ASRB
ASR

BIT 811A 8S 2 2

BITS CS 2 2

CLR CL RA
CLRB
CLR

CMP CMPA BI 2 2
CMPB Cl 2 2
CMPO 1 0 s 4

BJ
CMPS 11 5 •

BC
CMPU 11 5 4

83
CMPX BC 4 J
CMPY 10 5 4

BC
COM COMA

COMB
COM

CWAI 3C l>:2 2
OAA
DEC OECA

OECB
DEC

EOA EDRA 88 2 2

EOR9 CB 2 2

EXG A l. R2

INC INCA
INCB
INC

JMP

JSR
LO LOA 86 1 2

LOB <:(; 2 2

LOO LC 3 J
LOS 10 4 4

CE
L OU CE 3 J
LOX al' 3 3
LOY 10 4 4

BE

LEA LEAS lEAU
LEA X
LEA \'

Legend
OP Opera1ton Code tHe)ladeomao

Number ot MPU Cycles
Number of Prog1am Bytes
An1hme11c Plus
A111hme1tc Minus
Mul11ply

Op

99 09
9B
DB
OJ

94
04

08

01
95
OS

Of
91
01
10
93
11
9C
11
93
9C
10

9C

00

OA

98
ce

oc
OE

90
96
06
DC

10
O E
OE
9E
10
9E

Courtesy of Motorolo, Inc.

�-
Dhct ·- £.--

- , Op - , Op

• 2 A9 . . 2 • B9 • 2 E9 .. 2 • F9
• 2 AB .. 2• BB
4 2 E B .. 2+ FB
6 2 E3 6• 2 + F3

4 2 A4 4 . 2 - 84
4 2 E4 . . 2 • �·

6 2 68 6· 2 • 18

6 2 67 6 • 2 • 17

4 2 A5 . . 2 · BS
• 2 ES .. 2 • FS

6 2 6f 6 · 2 . IF
4 2 Al 4 . 2 . 81
4 2 El 4 . 2· f1
1 J 10 I · J• 10

A3 83

1 3 11 1 · 3 • 11

AC BC
l 3 11 , . 3 · 11

A3 BJ
6 2 AC 6 · 2 . BC
I J 10 1 . J . 10

AC BC

6 2 63 6 . 2 . 1J

6 2 6A 6 . 2 . IA
4 2 A8 4 . 2 · 98
4 2 £8 4 . 2 . FB

• 2 6C 6. 2 . IC
3 2 6E 3 . 2 . IE

1 2 AO 7 . 2 · BO
4 2 A6 4 . 2 . B6
• 2 E6 4. 1 • f6
5 1 EC 5 . 2 . fC
6 3 10 6 . 3 . 10

E E FE
5 2 EE s . 2 · FE
5 1 AE 5 . 1 • BE
6 J 10 6 · J . 10

A E BE
32 . . 2 .

33 4 . 1 •
3:) . . 1 •
31 4 . 1 .

M Com.ptcmcnt ot M

T ransle1 Into
H Hall·carrv (from bit 3J
N Nega11ve (sign bl1l
l Ze10 resull

-

5
s
s
5
1
5
5

I

1

s
s

1
s
s
8

B

B

I
B

1

1
5
5

I
4

8
�
5
6
I

6

6
1

v Overflow, 2's comotemeni
C Carry !tom ALU

,

3
3

3

3
3
3

3

J

J

3
3

3

J
3
•

4

4

J
4

3

3

J
3

J
J

3

3
3
3
4

3
J
4

- 6 3 2 1 0
Op - , Dooctlptlon H N z v c
3A 3 1 8 + X-X I VnsignedJ

A+M+C-A I I I I I
8 + M + C-8 I I I I I

A+ M-A I I I I I
8 -.. M-8 I I I I I
D • M.M + 1-0 . I I I I
A A M- A . I I 0 .
8 A M-8 . I I 0 .
CC A IMM -CC 1

48 2 1 Al - 8 I I I I
58 2 1 B [J.{Ilil]Il}-0 8 I I I I

M C b 7 bo 8 I I I I
47 2 1 � j c;:jlll JI I 'JiJ B I I . I
57 2 1 8 I I . I

M o, -,,. 8 I I . I
811 T8$1 A I M A Al . I I 0 .
811 Tes-18 t M A 9 , . I I 0 .

4F 2 1 0- A . 0 1 0 0
5F 2 I o-e . 0 1 0 0

0-M . 0 I 0 0
Como•1e M trom A 8 I I I I
Comoe1e M ll()l'n 8 8 I I I 1
Compate M M + 1 11om D . I I I 1

Compa1e M M • l 11om S . I I I I
Compare M M • 1 irorn lJ . I I I I

Comoa1e M M .. 1 hom X I I I I
Comoa1e M M • I hom Y . I I I I

4J 2 1 A-A I I 0 I
SJ 2 1 lf-8 I I 0 I

M-M . I I 0 I
CC /\ IMM- CC W � ·• f\ 11 lnterrv Ot 1

I• 2 1 11_...ma1 Ad"" .. 1 A . 1 I 0 I
• • 2 I
SA 2 1

1E 8 2
, c 2 1
!>C 2 I

A 1-A . I I I
B • - 9 . I I I
... 1-M . I I 1 .
A _,,,,..M -A I I 0
9 ¥ M - 9 . I I 0 .
fH- A21
A · 1- A . I 1 I .
e. 1-e . I 1 1 .
M • l - M . I I I .
EA°l-PC . . .
J v mo 10 S1.1b1ou1.ne .
M-A I 1 0
M-9 1 1 0
M M · 1 - 0 1 I 0 .
M M · 1 - S I I 0

M M • 1-U . I I 0
M M · 1 - X . I 1 0 .
M M • 1-Y I I 0 .

EA3-s . .
EAl - u
EA.l-x 1

E.,.J_y I

T e51 and se1 11 oue, cleared 01herw1se
Not Attec1ed

CC Cono111on Code Aeg1s1er
Conca1ena11on

v Log.teal or
A Log.cal and
¥ logJCal Ell.elusive o-

348

-- - -00 - CD LSl lSLA
tSt8
tSt 08

I SR lSRA
lSRB
lSR O<

MUl
NEG N!GA

NEG8
NEG 00

NO P
OR ORA BA 2 2 9A

ORB CA 2 2 OA
ORCC IA 3 2

PSH PSHS 3' ; . 2
PSHU 36 S· 4 2

PUl PUtS . 3'> s . 2
PVlU 31 � · 4 2

ROL IAOLA
R0l8
ROl 09

ROR RQRA
ROR8
ROR 06

""
RTS
SB C sec• 82 2 ,. 92

S8C8 " 2 2 02
SlX
$1 ISIA 97

SIB 01
SID 00
SI � 10

O F
SIV OF
SIX 9 F
STY 10

g,
sue SU8A eo 2 2 90 suee co 2 2 00

SUBD 83 • 3 93
S WI swl&

sw16

swi6

SYNC
IFR ft1 R2
!ST ISTA

1 518
TSI ()()

Notes;

6809 INSTRUCTION SET

.....-.. -OWOCt _,..T � - I CD - CD -

6 2 68 6· 2 . 18 1 3

6 2 64 G • 2 · ,. , 3

6 2 llO 6 · 2 · IO I 3

• 2 AA . . 2 · BA ; 3
• 2 [A . . 2 · FA ; 3

6 2 li9 5 · 2· ,., ' 3

6 2 68 a · 2· 76 , l

4 2 A2 . . 2 . 82 ; J
• 2 (2 . . 2 · f2 ; 3

• 2 A .. 2 . 81 ; 3
• 2 l1 . . 2 • , , ;)
s 2 lO S • 2 . •o 6 3
6 3 10 6 ·) · 10 I .

f f " ; 2 [f ; . 2 . H 6 3 ; 2 Af ; . 2 . Bf 6 3
6 3 10 10 , •

M 0 · 3 . Bf
• 2 "" . . 2· 80 ; 3 . 2 EO . . 2· f<I s 3
0 2 Al 6 · 2 . 83 , 3

6 2 60 S • 2 . ID 1 3

-
CD - I

"8 2 1
!i8 2 I

.. 2 I
"' 2 1

30 I I 1
'° 2 I
IO 2 I

12 2 I

• 9 2 1

!-9 2 1

46 2 I
!16 2 1

JB 6 I� 1

39 ; I

10 2 I

Jf 19 I
10 20 2
3f
II 20 1

Jf
13 �· I
" 6 2

• O 2 I
!j() 2 I

-� Irr-! 1ilili I M b7 bn
0

�, 0 -a:rr:mn-o M b7 t10 c
A • 8 -0 UJ1'$C)Md1 "l· 1 -A
II"· 1-8
ll · l -M
No 01'.Mttttion
A V M- A
B V M-8 er� IMM-CC
Putn R49s••s on S S1..,g.
P-.th A-1et'\ on u Stac'
Pul R1QJ1tt o I tem S Sttc'
PI.II AtfJtS t tt • l r om u S1�' �IYrfTITI 111+1 M 6i" bn �I L..[J...{ 111 II I n-J M C b 7 Cl()
Relut" f r om tn•t!f •uOt
Retw n h orf' Subtouh"*
A M c -•
8 M c-e
59' [,ttend 8 �to A
A- M
8-M
0 - M M • I
5-M M• 1

U - M M • I
X - M M • I
't' - M M · I

A M -A
8·M-8
0 M M • 1-0
So 1t w•1eo lntenuo1 1
Sohwt•e lntem,1p1 2
Sottw•ie lnletr1o1p1 J

$yft(IWoni1e to tn1erruot
Rt-R2'
fnl A
f ttl 8
Test M

s 312
H N l . .
.
. .
8
8
8 . .
. .

1 · 1
' · '
I I
0 1
0 , ,
0 I
• I I
1(1
I l l
I I . . .
1 I
' 1 '
·1·

• I •
1 I

• : • I . I I . I I
I I . 1 I

I 0 IV ,C
I I
I I
I I

1
I . I . 9

I I
I I
I I .
0 .
0 ,
I I
I I
I I . I I . I , . . . '. .

B

8 . . .

8
8

. . .

1 1 1
1 I
111

• 11 I I I I
I I

I I
I I
I I

I I
I I

I I
I I
0 .
0 .
0 I' 0 •
0

I' 0 •
0 •
0

I I
I I

I , . , I

. . .

. .

. 'I' 0 .
I I 0 .
I I 0

I. T ... column-1t>noc:vd11ndbytec:oun1 To ot> totalcoun1.odd lhov_Ob_flom1helNOEXEOAOORESSINGMOOE t-.
T-2

2. A 1 M'd A2 may be any prw of 8 btt or any PIM' o• 1& btt registers
The 8 bol rogos10<s 110· A, 8, CC. OP
The 18 bll rogiS10ts ero: X, Y, U. S. D. PC

3. EA rt the effective addreu
4. The PSH Ind PUL nslructlont r_.ro 5 cyctos C>lus I CydO for NCI! byi. pusl>ed or putlod
5. 5181 ,,_,. 5 c:yc1os d twanc:n not UlkM. 8 c:yc1os of - tB11nCh otl$1rucoonsl
6, SWI Mtl I Ind F bots SW12 Ind SWl3 do no1 1ffot1 f Ind F
7. Cond.1 .ons Codes Mt as 1 dlftct resYll of the 1ns1rucuon
8. Vlfuo of hllf�rry flog Is undefined.
9. Special CaM - Carry SOI If b7 01 SET

Courtesy of Moforolo, Inc.

349

6809 INSTRUCTION SET
Branch Instructions

- A- I I
�� ,, 1 n �i;:;: " , n ..._.._ ,...,.. """""'"" H H l v c ' """""°" Deowpt..., H N l v c

sec sec 24 3 2 Bt•rocri C •O BLS BLS 23 3 2 8f� l�
lBCC 10 516) 4 L otig 8 ,at!ie,, .. s-

2• c.o lBlS 10 51& ' Long 81anc" lo�
BCS BCS :zr. 3 1 8t•"'C" C • I 23 ,-�:·;;�o L8 CS 10 Slet 4 LO'lg 8tfof'<l'I BLI e:.. r lO 3

:zr. C - 1 LBU 10 Si � 4 L<Jr19 B•al\IC:l'l<Zeeo

BlO BEO 27 3 2 8t ¥tef'I Z•O lO
LBEO 10 516• ' l&'lg 81lt!C,, 8M• 28 3 1 B••f'IC" M .n..,�

,, l•O lf' M I lO 5"161 . Long 81•ncn w�
8GE 8G E 2C 3 1 8 r �r'l� lff 0 78

lBGE 10 5181 • LO"Mil 81..-..;1i1:Z9to 8Nf 8NE l8 3 1 B••nc" z,,. o
2 C L8NE 10 � 61 . long 81tt11Cl'I

8GT BGT 2l 3 2 8lo9"Cl'l>lf!IO l8 l• O

lBGl 10 • Long 811i11Ch>Zero 8Pl 8Pl 2A 3 9 r � l'l �S ·!·
2l LBPL 10 �61 lOl'lg 81tl\C!'I PlvS

SHI SHI 22 3 2 B• •l'ICPI H..gnet 2 A

l8HI 10 ... , ' l� 81eneh l-491'1er 8RA BRA "' 8r.t0el'I Alw;w$
22 L8 FI A 1 $ lonQ 81•� A! W it'f 'l

BHS BHS ,. 3 2 8t¥W:h Higtief 8RN 8RN 21 8reroc11 N� LBflN 10 lotlgB••� �
lBHS 10 !481 4 long 8rll'Cft Htgntr , ,

,. ..s- es• BS R 9 0 Br•ncn to S\looou1•l'lf •
BLE BLE " 3 81..-.cns:ZtJo LBSR " lOt\i 81•""' IO

UU: 10 !481 long 8111'1Cf\llZ•O S\bou11 ne
,, eve 8VC l8 3 2 Bt•!"Ch V • O

BLO BLO :zr. 3 1 Br� lewet l8VC 10 5!61 4 LOl'IQ 81a"Cfl
28 V • O LBLO �(' 4 L0"1Q8t� l�

evs 8VS "' 3 2 Bt•l'ICJI V • l . -: ���

SIMPLE BRANCHES

OP
BRA 20
lBRA 16
BRN 21
lBRN 1021
BSR BO
LBSR 17

SIGNED CONDITIONAL BRANCHES INot• 1-41

T• True OP F- OP

r>m BGT 2E BLE 2f
r>:m BGE 2C Bll 20
••m BEO 27 BNE 28
roSm BLE 2f BGT 2E
•<m BlT 20 BGE 2C

Notes:

I

1. All conditional branches haYI both Shon and long variahons.
2. Al short blanches are 2 bytes and 1equire 3 cycles.

lBVS 10 �It 4 Lone) Bt•nc"
,, V• 1

SIMPlE CONDITIONAl BRANCHES INOIH 1-41

Toot True OP F- OP
Na 1 BMI 28 BPL 2A
z-1 BEO 27 BNE 28
\la 1 8\IS 29 eve 28
C • l BCS 25 BCC 24

UNSIGNED CONDITIONAL BRANCHES INot• 1-41

Toot True OP F- OP

r> m BHI 22 BLS 23
r>:m BHS 2• BlO 25

BEO 27 8NE 26
rs m BLS 23 BHI 22
r<m BLO 25 BHS 24

3. All condi1ionel long brenehes ·� formed by prefixing the short branch ol)COde with $10 and using a 16-bll dest111a1.t0n offset.
4. All conditional IOng bfancheS reqvue 4 bytes and 6 cycles if the branc:h is talc.en or �cycles 1f the branch Is no1 1aken.

S. 5(61 meens: 5 c::yc1es ii branch not taken. 6 cycles if talc.en.

Courtesy of N\otorolo, Inc.

i

350

APPENDIX E
ADDRESS BUS CYCLE-BY-CYCLE PERFORMANCE

long
Bronch

Shor1 lmmediole
Bronch &

I

N VMA

ACCAOfhel ACCBOffMt
R+ S8it
R+ 88it PC + Bit

WM

inh«e<>I

VMA
VMA

I Slock (Wr11e)
Slock (Writ•)

Fetch

Aulo Inc/
Dec.
8yl

I
WM
WM

Otrect

T Opcode+
WM WM

Auto Inc/
Dec.

0,,..011011
{Following Poge1)

R+l6811

I R+O I 8y2
Opcode + Opcode +

I I
VMA VMA

WM VMA VMA
VMA VMA VMA

NOTES: I. All subsequent opcodes will be ignored after initial opcode fetch.
2. Write operation durlll8 store inslruction.

BUSY; t durlll8 double byte or read-modify-write operations.
3. BUSY� I during double byte Immediate load.
4. AV MA is asserted on the cycle befor• 1 VMA cycle.

*Adapted from Motorola � Doto Sheet
Courtesy of Motorola, Inc.

�
Opcode(felth)

Opcode +{Nole 3)

PC+1611lt bi tended No

I tndirect OffMI
I Opcode + Opcode +

VMA _I
VMA VMA
WM
WM

VMA

351

ADDRESS BUS CYCLE-BY-CYCLE PERFORMANCE

Inherent Page

ASlA ABX RTS TFR EXG
ASl8

ASRA
ASRB
CLRA
CLRB

COMA VfM
COMB VfM

DAA VMA
OECA VMA VfM
DECB
INCA VMA
INCB VfM
lSlA V/IAA
LSLB V/IAA

lSRA STACK V/IAA
LSRB ST�CK VfM

NEGA V/IAA
NEGB

NOP
ROlA
ROLB

RORA
RORB

sex

Courtesy of Motorolo, Inc.

MUL PSHU PULU
PSHS PULS

VfM
VMA

I
VMA STACK'
V/IAA I
� {STACK }12 �: (Write) 0
VMA
VMA
VfM
V/IAA V/IAA

iJMA

SWI
SWl2
SWl3

VMA

I
12•STACK

(Write)

I
V/IAA

I
1-BUSY
VECTOR
VECTOR

VfM

I
{STACK }12

(Write) 0

I
STACK'

!

�
CNAI RTI

AOOR STACK
I

VMA

I
(Write)

I {VFM}f 0

I
I-BUSY
VECTOR
VECTOR

VfM 2"STACK

��
STACK'

!

352

ADDRESS BUS CYCLE-BY-CYCLE PERFORMANCE

Non-lnherents

AfX.A

ADC8
AOOA
A008

ANOA
AN08

BITA
BITB

CMPA
CMPB
EORA
EORB

LOA

LOB
OAA

ORB
S8CA
S8C8

STA

STB
SUBA
SUB8
TSTA

TSTB

LOO

LOS

LOU
LOX
LOY

ANOCC
ORCC

ASI.

Af,R

OR

COM
DEC
I NC

lSl
LSR

NEG

ROt
ROR

TST AOOO

CMPO

CMPS
CMPU

CMPX
CMPY

SUBO

VMA

STACK
1-+BUSY (Write)

STO
STS
STU

STX
STY

WVIA. VMA AQOR+ STACK AOOR+

1+ T T T T T
Courtesy of Molorolo, Inc.

353

APPENDIX F
INDIRECT ADDRESSING MODE POSTBYTES

Non lnclfrect
Ty1>9 Form1 Anembler Poatbyte + + Auemblet Pos1by1e

Form OP Code I Form OP Code

Con1tont Offqt No ()ffwl .R IR ROOIOO 0 0 (.R) IRRIOI OO

From R

(2'1 Complemenl
5 &;1 0fhe1 " · R ORR:nnnnn I 0 de·f·oult1 to 8-b. 1

Ofhe••I

Accumulotor

Offset From R

(2'1 Compl•ment
OlfHll)

Auto Increment/
0.cfement R

Consiont Offset
from PC
(:rs Complemen1 Olhe11l
blended I ndirect

R - x, Y. U ors
x • 0on·1 Care

88i• Off .. 1
l6&;1()ffw1

A Regi1-ter Offset

8 Register Offiet

0 Regis ter Ofhet

I n crement By 1

Increment By 2

Decrement By 1

Oectement 8y 2

88it OffMI
1 68J t0ffs.et
16 811 .A.ddreu

RR:
OO•X

Ol•Y
10-u
11-s

"· R

n. R
A. R

B . R

D , R

.R+

, R+ +

. - R

. - -R

n. PCll

n. PCll

-

IRROIOOO

IRROIOOI

1RR00110

1RROOI01

IRR01 0 1 1

I R ROOOOO

I RROOOO I

IRROOOIO

I RROOOl l

1..01 100

hx01101

-

I I (n. R)

• 2 (n. R)

I 0 (A. R)

I 0 (8, R)

• 0 ID.R)

2 0
3 0 (.R++)

2 0

3 0 (.--R)
1 I (n. PCR)

5 2 (n, PCR)

- - (n)

+ and + indicate the number of addltlonal cyclea and bytes for the particular varlallon

Courtesy of Molorolo, Inc.

IRR1 1 000

I RR1 1001

IRRIOllO

IRRIOIOI

IRRllOll

no1 ollowed

I RRIOOOI

not allowed

1RR10011

h .x1 1 100

1 .. 1 1 101

10011111

+ + "' I

3 0

• I

7 2

• 0
• 0

7 0

6 0

6 0

• 1

8 2

5 2

355

BIBLIOGRAPHY

Leventhal, Lance A., Assembly Language Programming, Berkeley,
California: Osborne/McGraw-Hill, 1981.

Motorola, Inc. MC 6809-MC 6809E Microprocessor Programmming
Manual. 1981.

Staugaard, Andrew C., Jr., 6809 Microcomputer Programming &
Interfacing, With Experiments, Indianapolis, Indiana: Howard W. Sams
& Go., Inc., 1981.

Warren, Carl R., The MC6B09 Cookbook, Blue Ridge Summit, Pennsyl­
vania: Tab Books, Inc., 1981.

Zaks, Rodnay. From Chips To Systems: An Introduction To Micropro­
cessors, Ref. C201A. Berkeley, California: Sybex, Inc., 1981.

Zaks, Rodnay, and Lesea, Austin. Microprocessor Interfacing Techniques,
3rd ed., Ref. C207. Berkeley, California: Sybex, Inc., 1979.

356

INDEX

A, 42, 68
Absolute addressing, 195, 201
ABX. 121
Accumulator, 34, 42
Accumulator-offset indexed, 204
A.DC, 62, 72, 108, 122
ADD, 72, 108

(8-bit), 123 .

(18-bit}, 124
ADDA, 46
Addition, 7, 55
Address, 45
Address bus, 31-32, 249
Address register, 35
Addressing, 193
Addressing mode, 193, 339
Algorithm, 1, 289
Alphabetic list, 297, 302
Alphanumeric, 338

data, 21
keyboard,325

ALU, 31, 42
AND, 90, 109, 125
ANDCC, 112, 126
APL, 325
Architecture, 31
Arithmetic, 7, 72, 108
Arithmetic-logical unit, 31, 42
Arithmetic shift left, 79
Arithmetic shift right, 110
ASCil, 21, 235, 273, 314-315, 341
ASL, 79,83, 127, 164
ASR, 110, 128
Assembler, 56, 324, 326

directive, 340

field, 334
Assembly language, 46
Assembly language programming,

325
Assembly-level language, 323, 328
Assembly time, 338
Asynchronous, 220, 225, 248
Asynchronous device, 230
Auto-increment, 70
Auto-increment/decrement

indexed, 204
AVMA. 53
B,42
BA, 49-50, 253
BASIC, 325
BCC, 116, 129, 135
BCD, 18

addition, 108
arithmetic, 66, 113
subtraction, 69, 108

BCS, 116, 130, 138
Benchmark program, 224
BEQ, 91, 116, 131
BGE, 116, 133, 143
BGT, 116, 132
BHI, 116, 134
BHS, 117, 135
Binary, 22, 323, 338

division, 75
logic circuit, 4
representation, 22
search, 302
searching, 296

Binary-coded decimal, 18
BIT, 112,136

Bit, 4
Bit serial transfer, 225
Bit toggle, 110
BLE, 116, 137
BLO, 82-83, 117, 138
Block, 290, 293
Block transfer, 208, 278
BLS, 116, 139
BLT, 116, 140-141
BMI, 116, 141
BNE, 82-83, 116, 142
Bootstrap, 33
Borrow, 12
BPL, 116, 143, 226
BRA, 117, 144
Bracket testing. 273
Branch, 72,76,81, 105

instruction, 115, 196
Branch to a subroutine, 105
Break character, 222, 225
Breakpoint, 330
BRN, 117, 145
BS, 4�50, 253
BSR, 96, 116, 146, 178
Bubbl&-sort, 279
Buffer, 33
Bus available, 49
Bus request, 248
Bus status, 49
BUSY, 52
BVC, 116, 147
BVS, 116, 148
Byte, 4
c. 12, 60, 108, 113
CALL, 92, 96
Carry, 7, 12, 60, 113
CC, 42, 61, 108, 247
Central-processing unit, 31
Checksum, 278

computation, 278
Circular list, 293

Circular permutation, 283
Clear, 46
Clock, 32, 41, 49
CLR, 149, 272
CLRB, 46
CMP, 90, 116, 273

(8-bit). 150
(16-bit), 151

Code conversion, 275
Coding, 2
COM, 108, 152
Command, 2
Comment, 2, 58
Comment field, 334
Compare operation, 80
Compiler, 326, 331
Complement, 7
Condition code, 14, 61
Condition code register, 34, 42, 247
Conditional, 35
Conditional branch, 115
Constant, 338
Constant offset indexed, 204
Control, 44

bus, 31-32
instruction, 105, 118
register, 262
unit, 31, 34

CPU, 31
Cross assembler, 332
CRT, 215, 331

display, 25, 242, 333
Crystal, 32
CU, 31
Current-block pointer, 294
Current-event pointer, 294
Current loop interface, 236
CWAI, 118, 153, 215, 253
Cycle, 41
0, 42, 62, 108
DAA, 67, 108, 114, 154

357

358

Data buffer, 262
Data bus, 31-32, 249

Data counter, 35

Data-direction register, 262
Data pointer, 104
Data pointer instruction, 112

Data processing, 104, 108
Data ready flag, 223

Data structure, 2, 289

Data transfer, 72, 104

Debugger, 327

Debugging, 3

DEC, 82, 108, 155
Decimal, 338 •

Decimal addition adjust, 114

Decode, 41

Decoder, 44
Decoding, 39

logic, 33

Decrement instruction, 82

Delay generation, 216
Deleting, 301, 320
Deletion, 309

Development system, 331, 333

Device service routine, 242

Direct, 106
Direct addressing, 196, 202
Direct binary, 5

Direct page addressing, 105, 340

Direct page register, 42, 202
Directive, 325, 337

Directory, 290,314

Disk operating system, 327
Displacement, 44, 196

Division, 55
DMA, 49, 242

DMA/BREQ, 49, 248

DOS,327

Double-precision, 17

Doubly-linked list, 294

DP, 42, 202

Driver, 33

E,49,51, 153, 177, 249, 252-253

EBCDIC, 21

Editor, 327
8-bit addition, 56, 60
Emulator, 327
Enable, 49

END, 341

Entry, 297
EOR, 90, 110, 156

EQU, 337, 340
Errol'-Correcting, 21
Even parity, 21, 274

Exchange,279,283

Exclusive OR, 14, 90, 110, 278

Executing, 39

Executive, 327

EXG, 106, 157

Exponent, 19
Expression, 339
EXTAL, 49

Extended, 106
Extended addressing, 195, 201, 340
Extended indirect, 206

F, 249

Fast interrupt request, 248, 253
FCB, 341
FCC, 341
FDB, 341

Fetching, 39
FIFO, 292

File directory, 290

FIRQ, 51, 248, 253

Fixed format, 16
Flag, 15

Floating-point representation, 19-20

Flowchart, 2, 76, 328

Flowcharting, 2

Form constant byte, 341

Form constant character string, 341

Form double byte, 341

Front panel, 333
Generalized block transfer, 210
Generating parity, 274
1-1, 36, 60, 113-114
1-Ialf-carry bit, 114
1-IALT, 51
1-Iandshaking, 230, 262
1-Iardware, 323

delay, 220
stack, 96, 107, 249, 252-253
stack pointer, 44

1-Iexadecimal, 22-23, 323, 338
coding, 324
keyboard, 325

l-l flag, 67
1-Iigh-impedance state, 249
1-Iigh-ievel language, 323, 325
I-lobby-type microcomputer,

332-333
I, 249
Immediate, 106
Immediate addressing, 195, 201
Implied addressing, 195
INC, 82, 108, 158
In-circuit emulator, 330
INCA,46
In-house computer, 332
Index register, 37, 44
Indexed. 106
Indexed addressing, 197, 203. 275
Indexed indirect, 205
Indexing. 37, 44

post-, 197
pre-, 197

Indirect addressing, 198
Inherent addressing, 195, 201
Input, 215
Input/output, 32
Input/output chip, 261
Input/output instruction, 105
IR, 41, 44

IRQ, 51, 248, 252
Inserting, 299, 318
Insertion, 309
Instruction, 4, 40, 44, 56

field, 334
register, 41, 44

Interpreted, 47
Interpreter, 326, 331
Interrupt, 38, 51, 97, 220, 242, 247,

262
maskable, 252

Interrupt request, 252
IX, 37
JMP, 159
JSR, 96, 116, 160, 178
Jump, 72
Keyboard, 272
L, 36,60
Label field, 334
LBSR, 97
LD, 72, 83

(8-bit). 161
(16-bit). 162

LDB, 47
LEA, 112, 163, 200, 299
LED, 232
Level, 215
LIC, 53
LIFO, 37, 290, 293
Linked list, 290, 293, 313
Linkingloader,327
List, 290
List pointer, 291
Listing, 334
Literal, 45, 47, 338
Logarithmic searching, 296
Logical, 109
Logical instruction, 90
Long branch, 105
Long branch instruction, 117, 196
LSL, 164

359

360

LSR, 165, 309

Magnitude, 9

Mantissa, 19

Maskable, 252

Masking, 109

MC6800, 253

MC6809, 49

MC6809E, 49, 51, 248

MC6850 ACIA, 269

Memory, 32

Memory-mapped, 105, 215

Memory test, 271

Mnemonic, 46, 324

Monitor, 33, 326

MPU, 31

MRDY, 51

MUL, 73, 166

Multiple precision, 60
Multiplication, 55, 72

N, 108, 113-114

NEG. 108, 167

Negative,9, 113-114

bit, 226

number, 8, 10

Nibble, 4

NIL, 314-316, 318

NMI, 51, 248-249

Non-maskable interrupt, 248-249

NOP, 118, 168

Normalize, 19

Object code, 326

Octal, 22, 338

Odd parity, 21

1K, 9

One-shot, 220

One word instruction, 46

One's complement, 10, 108

Opcode, 45, 337

Operand, 56

Opera ting system, 327

Operator, 338

OR, 90, 109, 169
ORCC, 112, 170

ORG, 340

Output, 215

Overflow, 12, 14, 113

Overhead, 253

Packed BCD, 18, 66

Packed BCD addition, 69

Page,42

Parallel input/output chip, 33

Parallel transfer, 221, 225

Parameter, 98

Parity bit, 21, 274

Pascal, 325

PC, 36, 42, 93, 116, 203

PIC, 200

PIO, 33, 261

PIT, 217

Pointer, 35, 289

Polling, 220, 242, 254

Polling loop, 245

POP, 37

Port, 262

Position independent code, 193, 200,

207

Positive, 9

Positive number, 8

Post-indexing, 197

Postbyte, 107, 203

Pre-indexing, 197

Program, 33, 323

counter, 36, 93, 116

counter relative, 206

loop, 76

Programmable input/output, 261

Programmable interval timer, 217,

220

Programmed delay, 218

Programming, 2

Programming a PIO, 263

Progranuning language,2

Pseudo-instruction, 60
PSH, 91

PSHS, 171

PSHU, 172
PUL. 91
PULL, 37, 43, 107

PULS, 173
Pulse, 215

Pulse counting, 220

PULU, 174

PUSH, 37, 43, 107

Q. 49, 51

Quadrature, 49
Queue, 292

RAM, 33, 328
Random-access memory, 33

Read-only memory, 33

Recursion, 97

Register, 31, 34, 37
Register addressing, 195, 201

Register pair, 219

Relative addressing. 196, 202
Relay, 215

Reserve memory byte, 341

RESET, 51

Return, 92
RMB, 341
ROL, 80, 83, 175
ROM, 33,97

ROR, 176
Rotate, 34
Rotation, 111

Rotation operation, 80
Round robin, 293
RTI, 97, 117. 153. 177. 249. 252

RTS, 82, 97, 116, 146, 160, 178
Rubout, 222

R/W, 51-52

S, 42-43, 96, 107, 203, 249, 252
SBC, 72, 108, 179

Scheduling, 241

Search, 276

Searching, 295, 316

Sequential, 290, 296
list, 290

searching, 296
Serial search, 299

Set direct page, 341
SETDP, 341

7-segment displays, 325

7-segment light-emitting diode. 232
SEX, 180

Shift, 34, 79, 110
Signed binary, 9
Signed number, 5
Simple list, 297

Simulator, 327

Single-board microcomputer, 324,

326, 331, 333,

16-bit BCD addition, 66, 69

16-bit multiply, 73

16-bit subtraction, 65

16-by-16 bit division, 88
6821 PIA, 267

6821 programmable interface

adapter, 267

Software, 323
interrupt, 97, 117

Sorting. 295
SP, 37
ST, 72, 83

(8-bit). 181

(16-bit}, 182
STA, 272

Stack, 37, 94,247, 289, 293
pointer, 37, 290

ST ART bit, 221, 236

Status, 15, 34, 232

bit, 262
information, 221

register, 232, 246

Stop bit, 236

361

362

SUB, 72, 83, 108
(&-bit), 183

(16-bit), 184

Subroutine, 38, 44, 92
call, 92
library, 99

Subtraction, 7, 11,55
S\VI, 91, 97, 117, 185

SWl2, 97, 186

SWl3, 97, 187.

Symbol, 335, 337

table, 336
Symbolic, 325

representation, 24
SYNC, 118, 188, 215, 253

Synchronous,225, 247

System stack pointer, 44

Table, 289-290, 335
Teletype, 235, 242
Ten's complement, 69
Test, 2

instruction, 104
TFR, 106, 189

Three-state control, 52

Three word instruction, 47

Time-sharing system, 332
Timer, 220

Trace, 330

Tree structure, 294

Tristate, 49
Truncated, 17, 277

TSC, 52, 248
TST, 190

Two word instruction, 46
Two's complement, 9-10, 108
u. 43, 96, 107, 203
UART, 230, 269

Unconditional branch, 115

User, 43

User stack. 107
Usual interrupt request, 248
Utility routine, 327
v. 12, 108, 113

Whole number, 5

x. 44, 70, 203
XTAL,49

Y, 44, 70, 203
z, 81, 91, 113-114
z bit, 274
Zero, 113- 114

Zero-offset indexed, 203
$,68

#,47
.x+, 10

,Y+, 70

The SYBEX Library

YOUR FIRST COMPUTER
by Rodnay Zaks 264 pp., 150 illustr., Ref. 0-045
The most popular introduction to small computers and their peripherals: what
they do and how to buy one.

DON'T (or How to Care for Your Computer)
by Rodnay Zaks 222 pp., 100 illustr., Ref. 0-065
The correct way to handle and care for all elements of a computer system, in·
cllfding what to do when something doesn't work.

INTERNATIONAL MICROCOMPUTER DICTIONARY
140 pp., Ref. 0-067
All the definitions and acronyms of microcomputer jargon defined in a handy
pocket-size edition. Includes translations of the most popular terms into ten
languages.

FROM CHIPS TO SYSTEMS:
AN INTRODUCTION TO MICROPROCESSORS
by Rodnay Zaks 558 pp .. 400 illustr. Ref. 0-063
A simple and comprehensive introduction to microprocessors from both a
hardware and software standpoint: what they are, how they operate, how to
assemble them into a complete system.

INTRODUCTION TO WORD PROCESSING
by Hal Glatzer 216 pp .. 140 illustr., Ref. 0-076
Explains in plain language what a word processor can do, how it improves pro­
ductivity, how to use a word processor and how to buy one wisely.

INTRODUCTION TO WORDSTAR™
by Arthur Naiman 208 pp., 30 illustr., Ref. 0-077
Makes it easy to learn how to use WordStar, a powerful word processing pro­
gram for personal computers.

DOING BUSINESS WITH VISICALC®
by Stanley R. Trost 200 pp .. Ref. 0-086
Presents accounting and management planning applications-from financial
statements to master budgets; from pricing models to investment strategies.

EXECUTIVE PLANNING WITH BASIC
by X. T. Bui 192 pp., 19 illustr., Ref. 0-083
An important collection of business management decision models in BASIC,
including Inventory Management (EOQ), Critical Path Analysis and PERT,
Financial Ratio Analysis, Portfolio Management, and much more.

BASIC FOR BUSINESS
by Douglas Hergert 250 pp., 15 illustr., Ref. 0-080
A logically organized, no-nonsense introduction to BASIC programming for
business applications. Includes many fully-explained accounting programs,
and shows you how to write them.

FIFTY BASIC EXERCISES
by J. P. Lamoitier 236 pp., 90 illustr., Ref. 0-056
Teaches BASIC by actual practice, using graduated exercises drawn from
everyday applications. All programs written in Microsoft BASIC.

BASIC EXERCISES FOR THE APPLE
by J. P. Lamoitier 230 pp., 90 illustr .. Ref. 0-084
This book is an Apple version of Fifty BASIC Exercises.

BASIC EXERCISES FOR THE IBM PERSONAL COMPUTER
by J. P. Lamoitier 232 pp., 90 illustr .. Ref. 0-088
This book is an IBM version of Fifty BASIC Exercises.

INSIDE BASIC GAMES
by Richard Mateosian 352 pp., 120 illustr., Ref. 0-055
Teaches interactive BASIC programming through games. Games are written
in Microsoft BASIC and can run on the TRS-80, Apple II and PET/CBM.

THE PASCAL HANDBOOK
by Jacques Tiberghien 492 pp., 270 illustr., Ref. 0-053
A dictionary of the Pascal language, defining every reserved word, operator, pro­
cedure and function found in all major versions of Pascal.

INTRODUCTION TO PASCAL (Including UCSD Pascal™)
by Rodnay Zaks 422 pp., 130 illustr. Ref. 0-066
A step-by-step introduction for anyone wanting to learn the Pascal language.
Describes UCSD and Standard Pascals. No technical background is assumed.

APPLE® PASCAL GAMES
by Douglas Hergert and Joseph T. Kalash 376 pp., 40 illustr., Ref. 0-074
A collection of the most popular computer games in Pascal, challenging the
reader not only to play but to investigate how games are implemented on the
computer.

CELESTIAL BASIC: Astronomy on Your Computer
by Eric Burgess 312 pp., 65 illustr., Ref. 0-087
A collection of BASIC programs that rapidly complete the chores of typical
astronomical computations. It's like having a planetarium in your own home!
Displays apparent movement of stars, planets and meteor showers.

PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan R. Miller 378 pp., 120 illustr., Ref. 0-058
A comprehensive collection of frequently used algorithms for scientific and
technical applications. programmed in Pascal. Includes such programs as
curve-fitting, integrals and statistical techniques.

...

BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan R. Miller 326 pp., 120 iUustr., Ref. 0-073 ·

This second book in the " Programs for Scientists and Engineers" series provides
a library of problem·solving programs while developing proficiency in BASIC.

FORTRAN PROGRAMS FOR SCIENTISTS AND
ENGINEERS
by Alan R. Miller 320 pp., 120 illustr., Ref. 0-082
Third in the "Programs for Scientists and Engineers" series. Specific scientific
and engineering application programs written in FORTRAN.

PROGRAMMING THE 6809
by Rodnay Zaks and William Labiak 520 pp., 150 illustr., Ref. 0-078
This book explains how to program the 6809 in assembly language. No prior
programming knowledge required.

PROGRAMMING THE 6502
by Rodnay Zak.s 388 pp., 160 illustr., Ref. 0-046
Assembly language programming for the 6502, from basic concepts to advanced
data structures.

6502 APPLICATIONS
by Rodnay Zaks 286 pp., 200 illustr., Ref. 0-015
Real·life application techniques: the input/output book for the 6502.

ADVANCED 6502 PROGRAMMING
by Rodnay Zaks 292 pp., 140 illustr., Ref. 0-089
Third in the 6502 series. Teaches more advanced programming techniques,
using games as a framework for learning.

PROGRAMMING THE Z80
by Rodnay Zaks 626 pp., 200 illustr., Ref. 0-069
A complete course in programming the 280 microprocessor and a thorough
introduction to assembly language.

PROGRAMMING THE Z8000
by Richard Mateosian 300 pp .. 124 illustr., Ref. 0-032
How to program the 28000 1&bit microprocessor. Includes a description of the
architecture and function of the 28000 and its family of support chips.

THE CP/M® HANDBOOK (with MP/M™)
by Rodnay Zaks 324 pp .. 100 illustr., Ref. 0-048
An indispensable reference and guide to CP/M-the most widely-used operating
system for small computers.

MASTERING CP/M®
by Alan R. Miller 320 pp., Ref. 0-068
For advanced CP/M users or systems programmers who want maximum use of
the CP/M operating system . . . takes up where our CP/M Handbook leaves off.

INTRODUCTION TO THE UCSD �SYSTEM™
by Charles W. Grant and Jon Bulah 250 pp., 10 illustr., Ref. 0-061

A simple, clear introduction to the UCSD Pascal Operating System; for begin­
ners through experienced programmers.

A MICROPROGRAMMED APL IMPLEMENTATION
by Rodnay Zalcs 350 pp., Ref. 0-005

An expert-level text presenting the complete conceptual analysis and design of
an APL interpreter, and actual listing of the microcode.

THE APPLE CONNECTION
by James W. Coffron 228 pp., 120 illustr., Ref. 0-085
Teaches elementary interfacing and BASIC programming of the Apple for con­
nection to external devices and household appliances.

MICROPROCESSOR INTERFACING TECHNIQUES
by Rodnay Zalcs and Austin Lesea 458 pp., 400 illustr., Ref. 0-029

Complete llardware and software interconnect techniques, including D to A
conversion, peripherals, standard buses and troubleshooting.

SELF STUDY COURSES

Recorded live at seminars given by recognized professionals in the microprocessor
field.

INTRODUCTORY SHORT COURSES:
Each includes two cassettes plus special coordinated workbook (2'h hours).

S10-INTRODUCTION TO PERSONAL AND BUSINESS
COMPUTING
A comprehensive introduction to small computer systems for those planning to
use or buy one, including peripherals and pitfalls.

St-INTRODUCTION TO MICROPROCESSORS
How microprocessors work, including basic concepts, applications, advantages
and disadvantages.

S2-PROGRAMMING MICROPROCESSORS
The companion to Sl. How to program any standard microprocessor, and how it
operates internally. Requires a basic understanding of microprocessors.

S3-DESIGNING A MICROPROCESSOR SYSTEM
Learn how to interconnect a complete system, wire by wire. Techniques dis­
cussed are applicable to all standard microprocessors.

<
...

INTRODUCTORY COMPREHENSIVE
COURSES:
Each includes a 300-500 page seminar book and seven or eight COO cassettes.

SB3-MICROPROCESSORS
This seminar teaches all aspects of microprocessors: from the operation of an
MPU to the complete interconnect of a system. The basic hardware course
(12 hours).

SB2-MICROPROCESSOR PROGRAMMING
The basic software course: step by step through all the important aspects of
microcomputer programming (10 hours).

ADVANCED COURSES:
Each includes a 300-500 page workbook and three or four C90 cassettes.

SB3-SEVERE ENVIRONMENT/MILITARY
MICROPROCESSOR SYSTEMS
Complete discussion of constraints, techniques and systems for severe environ­
mental applications, including Hughes, Raytheon, Actron and other militarized
systems (6 hours).

SBS-BIT-SLICE
Learn how to build a complete system with bit slices. Also examines innovative
applications of bit slice techniques (6 hours).

SB6-INDUSTRIAL MICROPROCESSOR SYSTEMS
Seminar examines actual industrial hardware and software techniques, com­
ponents, programs and cost (4112 hours).

SB7-MICROPROCESSOR INTERFACING
Explains how to assemble, interface and interconnect a system (6 hours).

SOF1WARE
BAS 65™ CROSS-ASSEMBLER IN BASIC
8" diskette, Ref. BAS 65
A complete assembler for the 6502, written in standard Microsoft BASIC under
CP/M® .

8080 SIMULATORS
Turns any 6502 into an 8080. Two versions are available for APPLE II.
APPLE II cassette, Ref. 56580-APL(T)
APPLE II diskette, Ref. 56580-APL(D)

..

FOR A COMPLETE CATALOG
OF OUR PUBLICATIONS

U.S.A.
2344 Sixth Street

Berkeley,
California 94710

Tel: (415) 848-8233
Telex: 336311

SYBEX-EUROPE
4 Place Felix-Eboue

75583 Paris Cedex 12
France

Tel: 1/347-30-20
Telex: 211801

SYBEX-VERLAG
Heyestr. 22

4000 Dtisseldorf 12
West Germany

Tel: (0211) 287066
Telex: 08 588 163

	Cover
	Table of Contents
	Introduction
	1. Basic Concepts
	2. 6809 Hardware Organization
	3. Basic Programming Techniques
	4. The 6809 Instruction Set
	5. Addressing Techniques
	6. Input/Output Techniques
	7. Input/Output Devices
	8. Application Examples
	9. Data Structures
	10. Program Development
	A. Hexadecimal Conversion Table
	B. ASCII Conversion Table
	C. Decimal to BCD Conversion Table
	D. 6809 Instruction Set
	E. Address Bus Cycle-by-Cycle Performance
	F. Indirect Addressing Mode Postbytes
	Bibliography
	Index

