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INTRODUCTION 

If you want to write assembly language programs for any system based 
on the 6809, this is the book for you. In it you will find: 

• Everything you need to know about the organization and in­
struction set of this exceptionally interesting microprocessor 

• A complete presentation of the elements of assembly language 
programming 

• All the essential elementary and intermediate programming 
techniques that will allow you to begin programming the 6809 
on your own. 

When you have mastered the material in this book. you will understand 
how 6809 systems, when properly designed and programmed. can 
deliver near 16-bit performance with 8-bit economy-and you will have 
gained the knowledge necessary to make the 6809 do this for you. 

Programming the 6809 is organized so that the chapters proceed from 
the simple to the complex. As you read, you will gradually encounter all 
the concepts and techniques required to build more and more complex 
programs, to do more and more advanced tasks. 

Chapter 1 introduces you to the basics of programming: what it really 
is; how to keep track of what you are doing; and what you have to do. 

Chapter 2 gives the first run-down on the 6809 processor: the registers 
and the buses; and how instructions are actually executed within the 
processor. 

Chapter 3 gets you into simple programs and teaches you the kinds of 
arithmetic the 6809 is capable of. as well as logical operations, and the 
important concept of subroutines. 

Chapter 4 is the big one-a complete description of the 6809 instruction 
set. After a discussion of the classes of 6809 instructions, we present a 
detailed explanation of each instruction. We discuss the instructions in 
alphabetical order for easy reference. 

Chapter 5 details one of the most important aspects of the 6809, the 
addressing modes. We begin this essential treatment with a background 
discussion on the different kinds of addressing possible in microproces­
sors. and how they work. We then go on to examine the actual addressing 

xi 



xii 

modes in this context. Finally, we give concrete examples of the applica­
tion of each of the modes, to help you completely understand what they 
can do. 

Chapter 6 covers essential input/output techniques, 6809 style, in­
cluding: the I/O instruction repertory of the 6809, simple serial and 
parallel I/O programs, some concrete implementations of common I/O 
tasks, and more advanced techniques. 

Chapter 7 considers several I/O chips that are commonly used to 
interface the 6809 to the external world. 

Chapter 8 gets into more extensive application programs. These 
programs do all sorts of things. But each shows how the 6809 can make 
simple and fast, what on other 8-bit microprocessors is cumbersome 
and slow. 

Chapter 9-discusses data structures-another important, though more 
advanced, area in which the 6809 shines, including pointers, list searching, 
sorting, and more complex programs and techniques. 

Chapter 10 concludes the book with a forward look at the world of 
program development that is now open to you. We compare and evaluate 
hexidecimal 'machine language' coding, assemblers and high-level 
language. We also touch on some available, and more or less desirable, 
program development environments. 

Several useful appendices and an index bring the book to an end. 
Most of the programs in this book were tested on a Modulas On� 

single-board computer using the AS04 assembler. Those valuable 
resources are products of Adaptive Science Corporation of Emeryville, 
California, who most graciously made them available to one of the 
authors (William Labiak) for the development of this book. We both thank 
them for thus assuring the accuracy of the programs used throughout 
this book. 

Rodnay Zaks 
William Labiak 

Berkeley, California 
Spring 1982 





CHAPTER 1 



BASIC CONCEPTS 

� THIS CHAPTER, we introduce the basic concepts and defini­
tions used in computer programming. If you are already familiar with 
these concepts, you may only want to glance quickly at the contents of 
this chapter, and then move on to Chapter 2. We suggest, however, that 
you read through this chapter, even if you are an experienced programmer, 
in order to familiarize yourself with the approach we will be using 
throughout this book. 

WHAT IS PROGRAMMING? 

Given a problem, one normally tries to devise a solution. This solution, 
expressed as a step-by-step procedure, is called an algorithm. An algo­
rithm may be expressed in any language or symbolism, and it must 
terminate in a finite number of steps. Here is a simple example of an 
algorithm: 

1. insert key in the keyhole 

2. turn key one full turn to the left 

3. seize doorknob 

4. turn doorknob left and push the door. 

At this point, if the algorithm is correct for the type of lock involved, the 
door will open. 

1 



2 PROGRAMMING THE 6809 

Once a solution to a problem has been expressed in the form of an algo­
rithm, the algorithm can then be executed by a computer. Unfortunately, 
it is now a well-established fact that computers cannot understand or 
execute ordinary spoken English or any other human language. The 
reason for this lies in the syntactic ambiguities of all common human 
languages. Only a well-defined subset of a natural language, called a 
programming language, can be "understood" by a computer. Converting 
an algorithm into a sequence of instructions in a programming language 
is called programming. The actual translation phase of the algorithm 
into the programming language is called coding. Programming refers 
not just to the coding, but also to the overall design of the programs and 
"data structures" that will implement the algorithm. 

Effective programming requires not only an understanding of the 
possible implementation techniques for standard algorithms, but also 
the skillful use of computer hardware resources (such as internal 
registers, memory, and peripheral devices), and a creative use of appro­
priate data structures. We cover these techniques in the following chapters. 

Programming also requires a strict documentation discipline. Well­
documented programs are understandable to others, as well as to the 
author. Documentation must be both internal and external to the program. 
Internal program documentation refers to the comments used in the body 
of a program to explain its operation. External documentation refers to 
the design documents that are separate from the program, including, 
written explanations, manuals, and flowcharts. 

An intermediate step is almost always taken between the designing of 
the algorithm and the program. It is called flowcharting. 

FLOWCHARTING 

A flowchart is simply a symbolic representation of an algorithm, 
expressed as a sequence of rectangles and diamonds. On the flowchart 
rectangles are used to represent commands (or executable statements) 
and diamonds are used for tests such as: If information X is true, then 
take action A, else B. Figure 1.1 shows an example of a flowchart. We 
will not present a formal definition of flowcharts at this point; we 
discuss flowcharting in more detail in Chapter 3. 

Flowcharting is a highly recommended intermediate step between 
the specification of the algorithm and the actual coding of the solution. 
Remarkably, it has been observed that perhaps 10% of the programming 
population can write a program successfully, without having to flowchart. 
Unfortunately, it has also been observed that 90% of the population 
believes it belongs to this 10%! The result is that, on the average, 80% of 
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these programs will fail the first time they are run on a computer. (These 
percentages are naturally not meant to be accurate.) In short, most 
novice programmers seldom see the necessity for drawing a flowchart. 
This usually results in ''unclean" or erroneous programs and the pro­
grammer must then spend a long time testing and correcting his or her 
program. (This is called the debugging phase.) The discipline of 
flowcharting is, therefore, highly recommended in all cases. It requires 
a small amount of additional time prior to the coding, but it usually 
results in a clear program that executes correctly and quickly. Once 
flowcharting is well understood, a small percentage of programmers can 
perform this step mentally, without using paper. Unfortunately, in such 
cases, the programs they write are usually difficult for anyone else to 

2 

NO 

(Room too cold) 

4 

(Optional delay) 

START 

READ TEMPERATURE 
SITTING'T'ON 

THERMOSTAT BOX 

READ ACTUAL ROOM 
TEMPERATURE "R" 

FROM THERMOMETER 
OR OTHER SENSOR 

YES 

(Room too hot) 

5 

(Optional delay) 

'----Figure 1.1: A Flowchart for Keeping Room Temperature Constant 
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understand, since the documentation provided by the flowchart is not 
available. As a result, it is universally recommended that flowcharting be 
used as a strict discipline for any program more than ten or fifteen instruc­
tions long. Many examples of flowcharting are provided throughout 
this book. 

INFORMATION REPRESENTATION 

All computers manipulate information in the form of numbers or 
characters. We will now examine the external and internal representa­
tions of information on a computer. 

Internal Representation of Information 

All information is stored in a computer as groups of bits. A bit stands 
for a binary digit. Because of the limitations of conventional electronics, 
the most practical representation of information uses two-state logic. 
The two states of the circuits used in digital electronics are generally 
"on" and "off." These states are represented logically by the symbols 
"O" and "1." Because these circuits are used to implement logical func­
tions, they are called binary logic circuits. As a result, virtually all 
information processing today is performed in binary format. In the case 
of microprocessors in general, and of the 6809 in particular, these bits 
are structured in groups of eight. A group of eight bits is called a byte. 
A group of four bits is called a nibble. 

Let us now examine how information is represented internally in this 
binary format. Two entities must be represented inside the computer. 
The first is the program, which is a sequence of instructions. The second 
is the data on which the program operates. The data may include 
numbers or alphanumeric text. We will now discuss the representation 
of instructions, numbers, and alphanumerics in binary format. 

Program Representation 
All instructions are represented internally as single or multiple bytes. 

A so-called "short instruction" is represented by a single byte. A longer 
instruction is represented by two or more bytes. Because the 6809 is an 
eight-bit microprocessor, it fetches bytes successively from its memory. 
Therefore, a single-byte instruction always has the potential for executing 
faster than a two- or three-byte instruction. We will see later on that this 
is an important feature of the instruction set of any microprocessor, and 
of the 6809 in particular. However, the limitation to 8 bits in length has 
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resulted in important restrictions, which we will outline later on in this 
chapter. This limitation is a classic example of a compromise that often 
has to be made between speed and flexibility in programming. The binary 
code used to represent instructions is dictated by the manufacturer. 
The 6809, like any other microprocessor, comes equipped with a fixed 
instruction set. The instructions for the 6809 are listed with their codes 
in Appendix D. A program is expressed as a sequence of these binary 
instructions. 

Representing Numeric Data 

Representing numbers in binary is not a straightforward task: several 
cases must be distinguished. We must be able to represent whole 
numbers, then signed numbers, i.e., positive and negative numbers or 
integers, and finally, numbers with a decimal point. Let us now address 
these requirements and possible solutions. 

Integers may be represented using a direct binary representation. The 
direct binary representation is simply the representation of the decimal 
value of a number in the binary system. In the binary system, the right­
most bit represents 2 to the power 0. The next one to the left represents 2 
to the power 1, the next one represents 2 to the power 2, and the left-most 
bit represents 2 to the power 7 = 128. For example, 

h1bebsb4b3b2b1bo 

represents 

b127 + b626 + b525 + b424 + b323 + b222 + b121 + b02° 

The powers of 2 are: 

27 = 128, 26 = 64, 25 = 32, 24 = 16, 23 = 8, 22 = 4. 21 = 2, 2° = 1 

The binary representation is analogous to the decimal representation of 
numbers, where 123 represents: 

1x100 = 100 
+2 x 10 = 20 
+3 x 1 = 3 

= 123 

Note that 100 = 102, 10 = 101. 1 = 1D°. In this positional notation, each 
digit represents a power of 10. In the binary system, each binary digit or bit 
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represents a power of 2, instead of a power of 10 as in the decimal system. 
Let's look at an example of binary. 00001001 in binary represents: 

lX 1=1 (2°) 
OX 2=0 (21) 
OX 4=0 (22) 
lX 8=8 (23) 
ox 16 = 0 (24) 
ox 32 = 0 (25) 
OX 64 = 0 (26) 
0 x 128 = 0 (27) 

in decimal: = 9 

Let's look at some other examples. 10000001 represents: 

lX 1= 1 
OX 2= 0 
ox 4= 0 
ox 8= 0 
ox 16 = 0 
ox 32 = 0 
ox 64= 0 
1x128 = 128 

in decimal: = 129 

Therefore, 10000001 represents the decimal number 129. By examining 
the binary representation of numbers, it is easy to understand why bits 
are numbered from O to 7, going from right to left. Bit 0 is b0 and corre­
sponds to 2°. Bit 1 is b1 and corresponds to 21, and so on. The binary 
equivalents of the numbers from Oto 255 are shown in Figure 1.2. 

Decimal to Binary Conversely, we will now compute the binary equiv­
alent of 11 decimal: 

11 + 2 = 5 remains 1 - 1 (lowest bit) 
5 + 2 = 2 remains 1 .... 1 
2 + 2 = 1 remains O .... O 
1 + 2 = 0 remains 1 .... 1 (highest bit) 

The binary equivalent is 1011 (read the right-most column from bottom 
to top). The binary equivalent of a decimal number may be obtained by 
dividing successively by 2, until a quotient of o is obtained. 
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Operating on Binary Data The arithmetic rules for binary numbers are 
straightforward. The rules for addition are: 

0 + 0 = 0 
0 + 1 = 1 
1+0 = 1 
1 + 1 = (1) 0 

where (1) denotes a "carry" of 1 (note that 10 is the binary equivalent of 
2 decimal). Binary subtraction can be performed by "adding the com­
plement." We will discuss binary subtraction once we learn how to 

Decimal Binary Decimal Binary 

. 
0 OOOOCXXlO 32 00100000 
1 00000001 33 00100001 
2 00000010 . 
3 0000001 1  • 

4 00000100 • 

5 00000101 63 0011 1 1 1 1  
6 000001 10 64 01000000 
7 000001 1 1  65 01000001 
8 00001000 • 

9 00001001 • 

10 00001010 • 

1 1  00001011 127 01 1 1 1 1 1 1  
12 00001 100 128 10000000 
13 00001101 129 10000001 
14 00001 1 10 
15 00001 1 1 1  . 

16 00010000 • 

17 00010001 . 
. 
• 

• 254 1 1 1 1 1 1 10 
31 0001 11 1 1  255 1 1 1 1 1 1 1 1  

--------------- Figure 1.2: Decimal-Binary Table-
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represent negative numbers. Let's consider the following example 
involving addition: 

(2) 10 
+ (1) + 01 

= (3) 11 

Addition is performed just as in decimal, by adding the columns from 
right to left. First you add the right-most column: 

10 
+ o 

(0 + 1 = 1 I. No carry.) 

Then the next column: 

+:h 
11 rt + 0 = 1. No carry.) 

Let us now look at other examples of binary addition: 

0010 
+ 0 0 01 

=0011 

(2) 
(1) 

(3) 

0011 
+ 0 0 01 

= 0100 

(3) 
(1) 

(4) 

The last example illustrates the role of the carry. Looking at the right-most 
bits: 1 + 1 = (1) 0. A carry of 1 is generated, which must be added to the 
next bits: 

001 - column 0 has just been added 
+ OOO-
±___! (carry) 

= (1)0 (where (1) indicates a new carry into column 2) 

The final result is 0 100. 
Let's consider another example: 

0111 (7) 
+ 0 011 +(3) 

1010 =(10) 

In this example, a carry is again generated, up to the left-most column. 
With eight bits, it is, therefore, possible to directly represent the numbers 

00000000to 11111111, i.e., 0 to 255. Two limitations, however, should be 
immediately visible. First, we are only representing positive numbers. 
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Second, the magnitude of these numbers is limited to 255, if we use only 
eight bits. Let's now address these limitations in turn. 

Signed Binary In a signed binary representation, the left-most bit is used 
to indicate the sign of the number. Traditionally, 0 is used to denote a 
positive number and 1 is used to denote a negative number. For example, 
11111111 represents - 1 27, while 01111111 represents +127. We can 
now represent positive and negative numbers, but we have reduced the 
maximum magnitude of these numbers to 127. As another example, 
00000001 represents + 1 (the leading O is"+", followed by 0000001 = 1) 
and 10000001 is -1 (the leading 1 is " -"). 

Let us now address the magnitude problem. In order to represent larger 
numbers, it is necessary to use a larger number of bits. For example, if we 
use sixteen bits (two bytes) to represent numbers, we will be able to repre­
sent numbers from -32K to + 32K in signed binary. (1K in computer 
jargon represents 1,024.) Bit 15 is used for the sign, and the remaining 15 
bits (bit 14 through bit 0) are used for the magnitude: 215 = 32K. If this 
magnitude is too small, we must use 3 bytes or more. 

If we wish to represent large integers, it is necessary to use a larger 
number of bytes internally. This is why most simple BASIC interpreters, 
and other languages, provide only a limited precision for integers. This 
way, they can use a shorter internal format for the numbers they 
manipulate. Better versions of BASIC and some other languages provide 
a larger number of significant decimal digits at the expense of a large 
number of bytes for each number. 

Let us now solve another problem: the one of speed efficiency. Let's 
perform an addition in the signed binary representation we have just 
introduced. We want to add +7 and -5. 

+ 7 is represented by 
-5 is represented by 

the binary sum is: 

00000111 
10000101 

10001100, or -12 

This is not the correct result. The correct result is + 2. We have 
neglected the fact that in order to use this representation, special ac­
tions must be taken, depending on the sign. This results in increased 
complexity and reduced performance. In other words, the binary addi­
tion of signed numbers does not "work correctly." This is annoying. 
Clearly, the computer must not only represent information, but it must 
also perform arithmetic on it. 

The solution to this problem is called the two's complement represen­
tation. We will use the two's complement representation, instead of 
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signed binary representation. In order to introduce two's complement 
we will first introduce an intermediate step: one's complement. 

One's Complement In the one's complement representation, all positive 
integers are represented in their correct binary format. For example + 3 
is represented as usual by 00000011. However, its complement, -3, is 
obtained by complementing every bit in the original representation. 
Each O is transformed into a 1 and each 1 is transformed into a O. In our 
example, the one's complement representation of -3 is 11111100. 

Let's look at another example: 

+ 2 is 00000010 
- 2 is 11111101 

Note that, in this representation, positive numbers start with a 0 on the 
left, and negative numbers start with a 1 on the left. As a test, let's add 
-4 and +6: 

- 4 is 11111011 
+ 6 is 00000110 

The sum is: (1) 00000001 

where (1) indicates a carry. The correct result should be 2 or 00000010. 
Let's try again: 

- 3 is 11111100 
- 2 is 11111101 

The sum is: (1) 11111001 

or -6, plus a carry. The correct result is -5. The representation of -5 is 
11111010. It did not work. 

This representation does represent positive and negative numbers, 
however, the result of an ordinary addition does not always come out 
correctly. We will now use another representation. It is evolved from the 
one's complement and is called the two's complement representation. 

Two's Complement Representation In the two's complement repre­
sentation, positive numbers are represented, as usual, in signed binary, 
just like in one's complement. The difference lies in the representation 
of negative numbers. A negative number represented in two's comple­
ment is obtained by first computing the one's complement and then 
adding one. Let's examine an example: 

Example: +3 is represented in signed binary by 00000011. Its one's 
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complement representation is 11111100. The two's complement is 
obtained by adding one. It is 11111101. 

'Let's try an addition: 

(3) 00000011 
+ (5) + 00000101 

= (8) = 00001000 

The result is correct. 
Let's try a subtraction: 

(3) 00000011 
(-5) + 11111011 

= 11111110 

No�. let's identify the result by computing the two's complement: 

(the one's complement of 11111110 is) 
(Adding 1) 

(therefore, the two's complement is) 

00000001 
+ 1 

00000010 or + 2 

The result 11111110 represents - 2. It is correct. 
We have now tried addition and subtraction, and the results have been 

correct (ignoring the carry). It seems that two's complement works! 
We will now add +4 and -3 (the subtraction is performed by adding 

the two's complement): 

+ 4 is 00000100 
- 3 is 11111101 

The result is: (1) 00000001 

Ifwe ignore the carry, the result is 00000001, i.e., 1 in decimal. This is the 
correct result. Without giving the complete mathematical proof, we will 
simply state that this representation does work. In two's complement, it 
is possible to add or subtract signed numbers, regardless of the sign. 
Using the usual rules of binary addition, the result comes out correct, 
including the sign. The carry is ignored. This is a very significant advan­
tage. If this were not the case, we would have to correct the result for 
sign every time, causing a much slower addition or subtraction time. 

For the sake of completeness, let us state that two's complement is 
simply the most convenient representation to use for simpler proces­
sors, such as microprocessors. On more complex processors, other 
representations may be used. For example, one's complement may be 
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used, but if one's complement is used, special circuitry is required to 
"correct the result." 

From this point on, all signed integers will be implicitly represented 
internally in two's complement notation. See Figure 1.3 for a table of 
two's complement numbers. 

We will now offer examples that demonstrate the rules of two's com­
plement. In particular, C denotes a possible carry (or borrow) condition. 
(It is bit 8 of the result.) V denotes a two's complement overflow. i.e .. when 
the sign of the result is changed "accidentally," because the numbers 
are too large. It is an essentially internal carry from bit 6 to bit 7 (the sign 
bit). This will be clarified below. 

Let us now demonstrate the role of the carry C and the overflow V. 

The Carry£ Here is an example of a carry: 

(128) 10000000 
+ (129) + 10000001 

(257) = (1) 00000001 

where (1) indicates a carry. The result requires a ninth bit (bit 8, since the 
right-most bit is O). It is the carry bit. 

If we assume that the carry is the ninth bit of the result, we recognize 
the result as binary 100000001 = 257. However, the carry must be 
recognized and handled with care. Inside the microprocessor, the 
registers used to hold information are generally only eight-bits wide. 
When storing the result, only bits O to 7 will be preserved. 

A carry, therefore, always requires special action. It must be detected 
by special instructions. then processed. Processsing the carry means 
either storing it somewhere (with a special instruction). ignoring it, or 
deciding that it is an error (if the largest authorized result is 11111111). 

Overflow V Here's an example of overflow: 

bit 6 
bit 7 ,+ 

01000000 (64) 
+ 01000001 + (65) 

= 10000001 =(-127) 

An internal carry has been generated from bit 6 into bit 7. This is called 
an overflow. The result is now negative, "by accident." This situation 
must be detected, so that it can be corrected. 



+ 

+127 
+ 126 
+ 125 

. . .  

+ 65 
+ 64 
+63 
. . . 

;f- 33 
+ 32 
+31 
. . . 

+ 17 
+ 16 
+ 15 
+ 14 
+ 13 
+ 12 
+ 1 1  
+ 1 0 
+ 9 
+ 8 
+ 7 
+ 6 
+ 5 
+ 4 
+ 3 
+ 2 
+ 1 
+ 0 

Two's complement code 

0 1 1 1 1 1 1 1  
0 1 1 1 1 1 1 0 
0 1 1 1 1 101 

01000001 
01 ·000000 
00 1 1 1 1 1 1  

00100001 
00100000 
0001 1 1 1 1  

00010001 
00010000 
00001 1 1 1  
0000 1 1 1 0 
00001 1 0 1 
00001 100 
000010 1 1 
00001010 
00001001 
00001000 
000001 1 1  
000001 1 0 
0000010 1 
00000100 
0000001 1  
00000010 
00000001 
00000000 

-

- 128 
- 127 
- 126 
- 125 

. . .  

- 65 
- 64 
- 63 
. . .  

- 33 
- 32 
- 31 
. . .  

- 17 
- 16 
- 15 
- 14 
- 13 
- 12 
- 1 1 
- 10 
- 9 
- 8 
- 7 
- 6 
- 5 
- 4 
- 3 
- 2 
- 1 
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Two's complement code 

10000000 
10000001 
10000010 
1000001 1  

101 1 1 1 1 1  
1 1000000 
1 1000001 

1 1 0 1 1 1 1 1  
1 1 100000 
1 1 100001 

1 1 1 0 1 1 1 1  
1 1 1 10000 
11 1 10001 
1 1 1 10010 
1 1 1 10011 
1 1 1 10100 
1 1 1 10101 
1 1 1101 10 
1 1 1 10 1 1 1  
1 1 1 1 1000 
1 1 1 1 1001 
1 1 1 1 1010 
1 1 11 101 1 
1 1 1 1 1 100 
1 1 1 1 1 10 1 
1 1 1 1 1 1 1 0  
1 1 1 1 1 1 1 1  

--------------Figure 1.3: Two's Complement Table -
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Let us examine another situation: 

11111111 
+ 11111111 

= (1) 11111110 

' 
carry 

(-1) 
+ (-1) 

=(-2) 

In this case, an internal carry has been generated from bit 6 into bit 7, 
and also from bit 7 into C. The rules of two's complement arithmetic 
specify that this carry should be ignored. The result is then correct. This 
is because the carry from bit 6 to bit 7 did not change the sign bit. 

The carry from bit 6 into bit 7 is not an overflow condition. When 
operating on negative numbers, the overflow is not simply a carry from 
bit 6 into bit 7. Let's examine one more example: 

11000000 
+ 10111111 

= (1) 01111111 

' 
carry 

(-64) 
(-65) 

( + 127) 

This time, there has been no internal carry from bit 6 into bit 7, but there 
has been an external carry. The result is incorrect, as bit 7 has been 
changed. An overflow condition should be indicated. 

Overflow will occur in four situations, including: 

1. the addition of large positive numbers 

2. the addition of large negative numbers 

3. the subtraction of a large positive number from a large negative 
number 

4. the subtraction of a large negative number from a large positive 
number. 

Let us now improve our definition of the overflow. 
Technically, the overflow indicator, a special bit reserved for this pur­

pose, and called a condition code, will be set when there is a carry from 
bit 6 into bit 7, and there is no external carry. It will also be set when 
there is no carry from bit 6 into bit 7, but there is an external carry. This 
indicates that bit 7, i.e., the sign of the result, has been accidentally 
changed. For the technically-minded reader, the overflow flag is set by 
Exclusive ORing the carry-in and carry-out of bit 7 (the sign bit). Prac­
tically every microprocessor is supplied with a special overflow flag to 
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automatically detect this condition-a condition that requires corrective 
action. 

Overflow indicates that the result of an addition or subtraction requires 
more bits than are available in the standard 8-bit register used to contain 
the result. 

The Carry and the Overflow The carry and the overflow bits are called 
condition codes. They are provided in every microprocessor. We will 
learn to use them for effective programming in Chapter 2. These two in­
dicators are located in a special register called the flags or "status" 
register. This register also contains additional indicators (as described 
in Chapter 4). 

Examples We will now look at actual examples that illustrate the 
op�ration of the carry and the overflow. In each example, the symbol V 
denotes the overflow, and C denotes the carry. If there has been no 
overflow, V = 0. Iftherehasbeenan overflow, V = 1. (The sameis true 
for the carry C.) Remember that the rules of two's complement specify 
that the carry be ignored. (The mathematical proof is not supplied here.) 
Let's examine the following examples: 

Positive-Positive 

00000110 
+ 00001000 

= 00001110 
(CORRECT) 

( +6) 
(+8) 

( +14) V:O C:O 

Positive-Positive with Overflow 

01111111 ( +127) 
+ 00000001 ( + 1) 

= 10000000 ( -128) V: 1 C:O 
The above is invalid because an overflow has occurred. 
(ERROR) 

Positive-Negative (result positive) 

00000100 
+ 11111110 

= (1)00000010 
(CORRECT) 

( +4) 

(-2) 

( +2) V:O C:l (disregard) 
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Positive-Negative (result negative) 

00000010 
+ 11111100 

= 11111110 
(CORRECT) 

( +2) 
(-4) 

(-2) V: O C: O 

Negative-Negative 

11111110 

+ 11111100 

= (1)11111010 
(CqRRECT) 

(-2) 
(-4) 

(-6} V:O C:l (disregard) 

Negative-Negative with Overflow 

10000001 

+ 11000010 

= (1)01000011 
(ERROR) 

(-127) 

(-62) 

( +67) V:l C:l 

In the last example, an "underflow" has occurred, by adding two large 
negative numbers. The result is -189, which is too large to reside in 
eight bits. 

Fixed Format Representation We now know how to represent signed 
integers; however, we have not yet resolved the problem of magnitude. 
If we want to represent larger integers, we will need several bytes. In 
order to perform arithmetic operations efficiently, it is necessary to use 
a fixed number of bytes, rather than a variable number. Therefore, once 
the number of bytes is chosen, the maximum magnitude of the number 
that can be represented is fixed. 

The Magnitude Problem When adding numbers we have restricted our­
selves to eight bits, because the processor we are using operates internally 
on eight bits at a time. However, this restricts us to the numbers in the 
range -128 to + 127. Clearly, this is not sufficient for many applications. 

Multiple precision can be used to increase the number of digits that 
can be represented. A two-, three-, or N-byte format can then be used. 
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For example, let's examine a 16-bit. "double-precision" format: 

00000000 
00000000 

01111111 
11111111 
11111111 

00000000 
00000001 

11111111 
11111111 
11111110 

is 0 
is 1 

is 32767 
is -1 
is -2 

However, this method will result in disadvantages. When adding two 
numbers, for example, we will generally have to add them eight bits at a 
time, as explained in Chapter 3. This results in slower processing. Also, 
this representation uses 16 bits for any number, even if it could be repr& 
sented with only eight bits. It is, therefore, common to use the smallest 
number of bytes possible. 

Let us consider the following important point: the number of bits, n, 
chosen for the two's complement representation is usually fixed for that 
program. If any result or intermediate computation should generate a 
number that requires more than n bits, some bits will be lost. The program 
normally retains the n left-most bits (the most significant) and drops the 
low-order ones. This is called truncating the result. 

Let's look at an example in the decimal system, using a six digit 
representation: 

123456 
x 1.2 

246912 
123456 

= 148147.2 

The result requires 7 digits. The 2 after the decimal point will be dropped, 
and the final result will be 14814 7. It has been truncated. Usually, as long 
as the position of the decimal point is not lost, this method is used to 
extend the range of the operations that can be performed, at the expense 
of precision. (The details of binary multiplication are given in Chapter 3.) 
The problem is the same in binary. This fixed-format representation may 
cause a loss of precision, but it may be sufficient for usual computations 
or mathematical operations. 

Unfortunately, in the case of accounting, no loss of precision is 
tolerable. For example, if a customer rings up a large total on a cash 
register, it would not be acceptable to have a five figure total that would 
be approximated to the dollar. Thus, another representation must be used 
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whenever precision in the result is essential. The solution normally used 
is BCD, or binary-coded decimal. 

BCD Representation The principle used in representing numbers in 
BCD is to encode each decimal digit separately and to use as many bits as 
necessary to represent the complete number exactly. In order to encode 
each of the digits from 0 through 9, four bits are necessary. Three bits 
supply only eight combinations, and therefore, cannot encode the ten 
digits. Four bits allow sixteen combinations and are, therefore, sufficient 
to encode the digits 0 through 9. It can also be noted that six of the possible 
codes will not be used in the BCD representation (see Figure 1.4). This 
will result later on in a potential problem, when performing additions 
and subtractions. Since only four bits are needed to encode a BCD digit, 
two BCD digits may be encoded in every byte. This is called packed BCD. 
As an example, 00000000 is 00 in BCD. 10011001 is 99. 

A BCD code is read as follows: 

0010 0001 

BCD digit 2 ..,.,. ___ , I 
BCD digit 1 ..,.,. _______ _ 
BCD number 21 

As many bytes as necessary will be used to represent all BCD digits. 
Typically, one or more nibbles will be used at the beginning of the repre­
sentation to indicate the total number of nibbles, i.e., the total number 
of BCD digits used. Another nibble or byte will be used to denote the 

CODE BCD SYMBOL CODE BCD SYMBOL 

0000 0 1000 8 
0001 1 1001 9 
0010 2 1010 unused 
0011 3 1011 unused 
0100 4 1100 unused 
0101 5 1 101 unused 
0110 6 1 1 10 unused 
01 1 1  7 1 1 1 1  unused 

-Figure 1.4: BCD Tobie-----------------
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position of the decimal point. However, conventions may vary. Here is 
an example of a representation for multibyte BCD integers: 

3 + 

number of tigits sitn 
(up to 255) 

2 2 1 (3 bytes) 

number 221 

This example represents + 221. (The sign may be represented by 0000 
for +, and 0001 for -, for example.) 

The BCD representation can easily accommodate decimal numbers. 
For example, +2.21 may be represented by: 

3 2 + 

3 dig�ts "." is ton the ! 
left of digit 2 

2 2 

221 

1 

The advantage of BCD is that it yields absolutely correct results. 
Its disadvantage is that it uses a large amount of memory and results in 
slow arithmetic operations. This is acceptable only in an accounting 
environment, but BCD is normally not used in other cases. 

We have now solved the problems associated with the representation 
of integers, signed integers, and large integers. We have even presented 
one possible method of representing decimal numbers, with BCD repre­
sentation. Let us now examine the problem of representing decimal 
numbers in fixed length format. 

Floating-Point Representation The basic principle of floating point 
representation is that decimal numbers are represented with a fixed 
length format. In order not to waste bits, the representation will normalize 
all the numbers. For example, 0.000123 wastes three zeroes on the left 
before non-zero digits. These zeroes have no meaning except to indicate 
the position of the decimal point. Normalizing this number results in 
.123 X 10-3, .123 is the normalized mantissa; -3 is the exponent. We 
have normalized this number by eliminating all the meaningless zeroes 
to the left of the first non-zero digit and by adjusting the exponent. Let's 
consider another example. 

Example: 22.1 is normalized as .221 X 10Z. The general form of 
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floating-point representation is M X 102, where M is the mantissa, and 
E is the exponent. 

It can be readily seen that a normalized number is characterized by 
a mantissa less than 1 and greater than or equal to .1 in all cases where 
the number is not zero. In other words, it can be represented mathe­
matically by: 

.1 � M < 1 or 10-1 � M < 100 

Similarly, in the binary representation: 

2-1 < M < 2° (or .5 � M < 1) 

where M is the absolute value of the mantissa (disregarding the sign). 
For example: 

111.01 is normalized as: .11101 X 23• 

The mantissa is .11101. The exponent is 3. 
Now that we have defined the principle of the representation, let us 

examine the actual format. A typical floating-point representation 
appears in Figure 1.5. 

In the representation in Figure 1.5, four bytes are used for a total of 32 
bits. The first byte on the left of the illustration is used to represent the 
exponent. Both the exponent and the mantissa will be represented in 
two's complement. As a result, the maximum exponent will be -128. 
"S" in Figure 1.5 denotes the sign bit. 

Three bytes are used to represent the mantissa. Since the first bit in the 
two's complement representation indicates the sign, this leaves 23 bits 
for the representation of the magnitude of the mantissa. 

This is only one example of a floating point representation. It is possible 
to use only three bytes, or it is possible to use more. The four-byte 
representation proposed above is a common one that represents a 
reasonable compromise in terms of accuracy, magnitude of numbers, 
storage utilization, and efficiency in arithmetic operation. 

We have now explored the problems associated with the representation 

31 24 23 

EXP Is; 

16 15 8 7 0 

Figure 1.5: Typical Floating-Point Representation-----------' 
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of numbers and have learned how to represent them in integer form, 
with a sign, or in decimal form. Let's now go on to examine how to repre­
sent alphanumeric data internally. 

Representing Alphanumeric Data 

The representation of alphanumeric data, i.e., characters, is completely 
straightforward: all characters are encoded in an eight-bit code. Only 
two codes are in general use in the computer world, the ASCII Code and 
the EBCDIC Code. ASCII stands for "American Standard Code for 
Information Interchange," and is universally used in the world of 
microprocessors. EBCDIC is a variation of ASCII used by IBM, and is, 
therefore, not used in the microcomputer world unless one interfaces to 
an IBM terminal. 

Let us briefly examine the ASCII encoding. We encode 26 letters of the 
alphabet for both upper and lower case, plus 10 numeric symbols, and 
perhaps 2 0  additional special symbols. This can be easily accomplished 
with 7 bits, which allow 128 possible codes. (See Figure 1.6. )  All 
characters are, therefore, encoded in 7 bits. The 8th bit, when it is used, 
is the parity bit. Parity is a technique for verifying that the contents of a 
byte have not been accidentally changed. The number of l's in the byte 
are counted and the 8th bit is set to one if the count was odd, thus making 
the total even. This is called even parity. Odd parity, i.e., writing the 8th 
bit (the left-most bit) so that the total number of 1 's in the byte is odd, can 
also be used. 

As an example, let us compute the parity bit for 0010 0 11, by using even 
parity. The number of l's is 3. The parity bit must, therefore, be a 1, so 
that the total numb.er of bits is 4, i.e., even. The result is 100100 11, where 
the leading 1 is the parity bit and 0 0 10011 identifies the character. 

The table of 7-bit ASCII codes is shown in Figure 1.6. In practice, it is 
used "as is," i.e., without parity, by adding a O in the left-most position, 
or else with parity, by adding the appropriate extra bit on the left. 

In specialized situations, such as telecommunications, other codings, 
such as error-correcting codes, may be used. However, descriptions of 
these codings are beyond the scope of this book. 

Now that we have examined the usual representations for both pro­
gram and data inside the computer, let us examine the possible external 
representations. 

External Representation of Information 

The external representation of information refers to the way in­
formation is presented to the user, i.e., generally to the programmer. 
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Information may be presented externally in essentially three formats: 
binary, octal or hexadecimal, and symbolic. Let's examine these formats. 

1. Binary We have seen that information is stored internally in bytes, 
which are sequences of eight bits (O's or l's). It is sometimes desirable to 
display this internal information directly in its binary format-this is 
known as binary representation. A simple example is provided by Light 
Emitting Diodes (LEDs), which are essentially miniature lights on the 
front panel of a microcomputer. In the case of an 8-bit microprocessor, a 
front panel will typically be equipped with eight LEDs to display the 
contents of any internal register. A lighted LED indicates a 1. An 
unlighted LED indicates a 0. Such a binary representation may be used 
for the fine debugging of a complex program, especially if it involves 
input/output, but is naturally impractical at the human level. This is 
because, in most cases, it is easier to look at information in symbolic 
form. For example, 9 is much easier to understand and to remember 
than 1001. More convenient representations have been devised, that im­
prove the interface between people and machines. 

2. Octal and Hexadecimal Octal and hexadecimal encode three and 
four binary bits, respectively, into a unique symbol. Octal is a format using 
three bits, where each combination of three bits is represented by a symbol 
between O and 7. (See Figure 1.7.) 

HEX NSD 0 1 2 3 4 5 6 7 
LSD BITS OOO 001 010 011  100 101 1 10 1 1 1  

0 0000 NUL DLE SPACE 0 @ p - p 
1 0001 SOH DCl I 1 A Q a q 
2 0010 STX DC2 " 2 B R b r 
3 0011 ETX DC3 # 3 c s c s 
4 0100 EOT DC4 $ 4 D T d t 
5 0101 ENQ NAK % 5 E u e u 
6 0110 ACK SYN & 6 F v f v 
7 01 1 1  BEL ETB ' 7 G w g w 
8 1000 BS CAN ( 8 H x h x 
9 1001 HT EM ) 9 I y i y 
A 1010 LF SUB • : J z i z 
B 1011 VT ESC + ; K [ k { 
c 1 1 00  FF FS ' < L \ I --
D 1 101 CR GS - = M ) m } 
E 1 1 10 so RS > N I\ n rv 
F 1 1 1 1  SI us I ? 0 - 0 DEL 

-Figure 1.6: ASCII Conversion Tobie (See Appendix B for Abbreviations.) 
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For example, 00 100 100 binary is represented by: 
' ' ' 
0 4 4 

or 044 in octal. 
As another example: 11 111 111 is: 

or 377 in octal. 

' ' ' 
3 7 7 

Conversely, the octal 211 represents 

010 001 001 

or 1boo1001 binary. 
Octal has traditionally been used on older computers that employ 

various numbers of bits, ranging from 8 to, perhaps, 64. More recently, 
with the dominance of eight-bit microprocessors, the eight-bit format 
has become the standard, and another, more practical, representation is 
used-hexadecimal representation. 

In the hexadecimal representation, a group of four bits is encoded as 
one hexadecimal digit. Hexadecimal digits are represented by the sym­
bols from 0 to 9, and by the letters A. B, C. D, E, F. For example, 0000 is 
represented by O; 0001 is represented by 1; and 1111 is represented by 
the letter F (see Figure 1.8). 

Binary Octal 

00'.) 0 

001 1 

010 2 

011 3 

100 4 

101 5 

1 1 0  6 

1 1 1  7 

L-----------------Figure ::1.7: Octal Symbols 
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For example, 1010 0001 in binary is represented by 
.........,_, '-..,..J 

A 1 

in hexadecimal. 
Hexadecimal offers the advantage of encoding eight bits into only two 

digits. This is easier to visualize or memorize and faster to type into a 
computer than its binary equivalent. Therefore, on most new microcom­
puters, hexadecimal is the preferred method of representation for 
groups of bits. 

Naturally, whenever the information present in the memory has a 
meaning, such as representing text or numbers, hexadecimal is not 
convenient for representing the meaning of this information for a 
human user. 

Symbolic Representation Symbolic representation refers to the external 
representation of information in actual symbolic form. For example, 
decimal numbers are represented as decimal numbers, and not as se­
quences of hexadecimal symbols or bits. Similarly, text is represented as 

DECIMAL BINARY HEX OCTAL 

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 00 1 1  3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 01 1 1  7 7 

8 1000 8 10 

9 1001 9 1 1  

10 1010 A 12 

1 1  1011  B 13 

12 1 100 c 14 

13 1101 D 1 5  

1 4  1 1 1 0  E 16 

15 1 1 1 1  F 17 

- ·  Figure 1.8. Hexadec1mal Codes 
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such. Naturally, symbolic representation is most practical to the user. It 
is used whenever an appropriate display device is available, such as a 
CRT display or a printer. (A CRT display is a television-type screen used 
to display text or graphics.) Unfortunately, in smaller systems, such as 
one-board microcomputers, it is uneconomical to provide such 
displays, and the user is restricted to hexadecimal communication with 
the computer. 

Summary of External Representations 

Symbolic representation of information is the most desirable, since it 
is the most natural for a human user. However, it requires an expensive 
interface in the form of an alphanumeric keyboard, plus a printer or a 
CRT.display. For this reason, it may not be available on the less expensive 
systems. An alternative type of representation is then used, and in such 
a case, hexadecimal is the dominant representation. Only in rare cases, 
relating to fine debugging at the hardware or software level, is the binary 
representation used. Binary directly displays the contents of the 
registers or memory in binary format. 

Now that we have seen how information is represented internally and 
externally, let's go on to examine the actual microprocessor that 
manipulates this information. 
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EXERCISES 

1-1: What is the decimal value of 11111100? 

1-2: What is the binary for 257? 

1-3: Convert 19 to binary, then back to decimal. 

1-4: Compute 5 + 10 in binary. Verify that the result is 15. 

1-5: Compute the result of: 

1 1 1 1  
+·0001 

Does the result fit into four bits? 

1-6: What is the representation of -5 in signed binary? 

1-7: The representation of +6 is 00000110. What is the representation of -6 
in one's complement? 

1-8: What is the two's complement representation of + 127? 

1-9: What is the two's complement representation of - 128? 

1-10: What ore the smallest and the largest numbers that con be represented in 
two's complement notation, using only one byte? 

1-11: Compute the two's complement of 20. Then compute the two's comple­
ment of your result. Do you find 20 again? 

1-12: Complete the following additions. Indicate the result, the carry C, the 
overjlow V, and whether the result is correct or not: 

10111111 (_) 11111010 (_) 
+ 11000001 (_) + 11111001 (_) 
= V:_ C:_ V:_ C:_ 

_CORRECT _ERROR _CORRECT _ERROR 
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00010000 
+ 01000000 

= 

_CORRECT 

(_) 
(_) 
V:_ C:_ 

_ERROR 

01111110 
+ 00101010 

_CORRECT 

(_) 
(_) 
V:_ C:_ 

_ERROR 

1-13: Can you show an example of overflow when adding a positive and a 
negative number? Why or why not? 

1-14: What are the largest and the smallest numbers that can be represented in 
two bytes, using two's complement? 

1-15: What is the largest negative integer that can be represented in a two's 
complement triple-precision format? 

1-16: What is the BCD representation for 29? For 91? 

1-17: Is 10100000 a valid BCD representation? Why or why not? 

1-18: Using the same convention, represent -23123. Show it in BCD format, 
as above, then in binary. 

1-19: Show the BCD for 222 and 111, then for the result of 222 X 111 (Compute 
the result by hand, then show it in the above representation.) 

1-20: How many bits are required to encode 9999 in BCD? And in two's com­
plement? 

1-21: How many decimal digits can the mantissa represent with the 23 bits? 

1-22: Compute the 8-bit representation of the digits 0 through 9, using even 
parity. (This code will be used in application examples of Chapter 8.) 

1-23: Complete Exercise 1-22 for the letters A through F. 

1-24: Using a non-parity ASCII code (where the left-most bit is 0), indicate the 
binary codes of the 4 characters below: 

A 
? 
3 
b 
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1-25: What is the hexadecimal representation of 10101010? 

1-26: Conversely, what is the binary equivalent of FA hexadecimal? 

1-27: What is the octal representation of 01000001? 

1-28: What is the advantage of two's complement over other representations 
used to represent signed numbers? 

1-29: How would you represent 1024 in direct binary? Signed binary? Two's 
complement? 

1-30: What is the V-bit? Should the programmer test it after an addition or sub­
traction? 

1-31: Compute the two's complement of + 16, + 17, + 18, - 16, - 1 7, -18. 

1-32: Show the hexadecimal representation of the following text, which has been 
stored internally in ASCII format, with no parity: MESSAGE. 
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6809 HARDWARE 
ORGANIZATION 

To PROGRAM EFFICIENTLY, you must understand the internal 
structure of the processor you are using. We will begin this chapter with 
a discussion of the basic architecture of a microcomputer system. We 
will then examine the internal organization of the 6809. In particular,

1 

we will study the registers of the 6809 and their combined operations. 
This study is particularly important, because the 6809 has an unusually 
large number and variety of registers. 

SYSTEM ARCHITECTURE 

Figure 2.1 shows the architecture of a typical microcomputer system. 
Appearing on the left of the illustration in Figure 2.1 is the microprocessor 
unit (the MPU}-in this case, the 6809-which implements the functions 
of the central-processing unit (the CPU) on a single chip. The CPU includes 
an arithmetic-logical unit (the ALU), plus its internal registers, and a 
control unit (the CU), which decodes and internally sequences instruc­
tions. (We will rliscuss the CPU in detail later in this chapter.) 

The MPU has three buses: an 8-bit bidirectional data bus (shown at the 
top of the illustration in Figure 2.1), a 1�bit unidirectional address bus, 
and a control bus (both shown at the bottom of the illustration). We will 
now study the functions of these buses. 
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The data bus carries the data that is exchanged by the various 
elements of the system. Typically, it carries the data from the memory to 
the MPU, from the MPU to the memory, and from the MPU to an input/ 
output chip. (An input/output chip communicates with an external 
device.) 

The address bus carries an address, generated by the MPU, which 
specifies the source or destination of the data that transits along the data 
bus. The control bus carries the various synchronization signals required 
by the system. Now that we know the purpose of the buses, let's connect 
the additional components required for a complete system. 

Every MPU requires a precise timing reference, which is supplied 
by a clock and a crystal. In most "older" microprocessors, the clock­
oscillator is external to the MPU and requires an extra chip. In the more 
recent ones, the clock-oscillator is usually incorporated within the 
MPU. The quartz crystal, however, because of its bulk, is always external 
to the system. The crystal and the clock appear on the left of the MPU 
box in Figure 2.1. 
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-Figure Z.1: A Standard 6809 System---------------
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We will now examine the other elements of the system. Going from 
left to right on the illustration, we see the ROM, the RAM and the PIO. 

The ROM or read-only memory stores the program for the system. The 
advantage of ROM memory is that its contents are permanent, i.e., they 
do not disappear when the system is turned off. The ROM, therefore, 
usually contains a bootstrap or monitor program to permit initial system 
operation. In a proces�control environment, nearly all programs reside 
in ROM. This is because they will probably never be changed and must 
be protected against power failures (i.e., they must not be volatile). 

RAM (random-access memory) is the read/write memory for the 
system. In a hobbyist or program-development environment, most of 
the programs reside in RAM, so that they can be easily changed. Such 
programs may be kept in RAM, or transferred into ROM, if desired. RAM, 
however, is volatile. Its contents are lost when power is turned off. In a 
control system, the amount of RAM is typically small (for data only); 
however, in a program-development environment, the amount of RAM 
is large, as it contains programs, plus development software. All RAM 
contents must be loaded, prior to use, from an external device. 

Finally, a system also contains one or more interface chips, so that it can 
communicate with the external world. The most frequently used inter­
face chip is the PIO or porallel input/output chip (shown in Figure 2.1). 
The PIO, like the other chips in the system, connects to all three buses 
and provides at least two 16-bit ports for communication with the outside 
world. For simplicity, the connections between the control bus and the 
various chips do not appear in Figure 2.1. 

The functional modules just described need not necessarily reside on 
a single LSI chip. In fact, we could use combination chips, which may 
include both the PIO and a limited amount of ROM or RAM. 

To build an actual system, we need even more components. In partic­
ular, we may need to buffer the buses. Also, we may need decoding logic 
for the memory RAM chips, and, finally, we may use drivers to amplify 
signals. These auxiliary circuits will not be described here, as they are not 
relevant to programming. For more information on specific assembly and 
interfacing techniques, see reference C207 in the bibliography, and for 
specific information regarding the 6809 system, see Chapter 7. 

INSIDE A MICROPROCESSOR 

A number of microprocessors on the market today implement the 
same internal architecture. Figure 2.2 shows this architecture. Going 
from right to left, we will now describe the different modules making up 
this architecture. 
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The control box on the right of the illustration represents the control 
unit that synchronizes the entire system. We will describe the role of the 
control unit later in this chapter. 

The ALU performs arithmetic and logical operations. Special 
registers, called accumulators, are usually connected to the output of the 
ALU. The accumulators contain the results of arithmetic operations. 
Each accumulator has eight bits. 

The ALU also provides shift and rotate facilities. As illustrated in 
Figure 2.3, a shift moves the contents of a byte by one or more positions 
to the left or right. In this illustration, each bit has been moved to the left 
by one position. The shifter may be on the ALU output, as illustrated in 
Figure 2.2, or on the accumulator input. We describe shift and rotate 
operations in more detail in Chapter 3. 

The status or condition code register appears to the left of the ALU. 
Its role is to store exceptional conditions within the microprocessor. 
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The contents of the condition code register can be tested by specialized 
instructions, or read onto the internal data bus. A conditional instruction 
causes the execution of a different part of the program, depending on 
the value of one of the bits in the condition code register (as shown later). 

Setting Condition Codes 

Most of the instructions executed by the microprocessor modify some 
or all of the status bits. Refer to the chart provided by the manufacturer 
to learn which bits are modified by what instructions. This information 
is essential for understanding the way a program is executed. Appendix D 
lists this information for the 6809. 

Th� Address Registers 

Address registers are 16-bit registers used for the storage of addresses. 
They are also often called data counters or pointers and are double 
registers, i.e., two 8-bit registers. They are connected to the address bus. 
The address registers provide the signals for the address bus. At least 
two address registers are present within most microprocessors. Three 
address registers and an address bus appear in Figure 2.4. 

SHIFT LEFT 

0 

ROTATE LEFT 

------------------Figure 2.3: Shift and Rotate-
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The only way to load the contents of these 16-bit registers is via the 
data bus (also shown in the illustration). Two transfers are necessary 
along the data bus in order to transfer 16 bits. To differentiate between 
the lower and higher half of each register, each half is usually labeled as 
L (low) or H (high), denoting bits 0 through 7 or 6 through 15, respectively. 
Let's examine the three registers shown in the illustration. 

The Progrom Counter (PC} 

The program counter (or PC} must be present in all processors, as it is 
indispensable and fundamental to program execution. It contains the 
address of the next instruction to be executed. 

Execution of a program is normally sequential. To access the next 
instruction, it is necessary to bring it from the memory into the micro­
processor. The contents of the PC are deposited on the address bus, and 
transmitted towards the memory. The memory then reads the contents 
specified by this address and sends the corresponding word or instruc­
tion back to the MPU. In a few exceptional microprocessors, such as the 
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2-chip Fa, there is no PC on the microprocessor. This does not mean, 
however, that there is not a program counter-for reasons of efficiency, 
the PC is implemented directly on the memory chip. 

The Stack Pointer (SP} 

The stack pointer (the SP) is used to implement the stack. The stack is 
described in detail in the next section. 

In most powerful, general-purpose microprocessors, the stack is 
implemented in "software," i.e., within the memory. To keep track of 
the top of the stack within the memory, a 16-bit register is dedicated to the 
stack pointer. The SP contains the address of the top of the stack within 
the memory. The stack is indispensable for interrupts and subroutines. 

The Index Register (IX} 

Indexing is a memory-addressing facility for accessing blocks of data 
in the memory with a single instruction. It is not always provided in 
microprocessors. An index register typically contains a displacement, 
which will automatically be added to a base (or, it might contain a base, 
which will be added to a displacement). In short, indexing is used to 
access any word within a block of data 

The Stack 

A stack, formally called en LIFO (last-in, first-out) structure, is a set of 
registers, or memory locations, allocated to the stack data structure. The 
essential characteristic of the stack is that it is a chronological structure. 
The first element introduced in the stack is always at the bottom of the 
stack; the element most recently deposited is on the top. An analogy can 
be drawn with a stack of plates on a restaurant counter, if we assume 
there is a hole in the counter with a spring at the bottom, and plates are 
piled up in the hole. With this organization, it is guaranteed that the plate 
that has been put first in the stack is always at the bottom. The one 
most recently placed on the stack is the one on top. This example also 
illustrates another characteristic of the stack. In normal use, a stack is 
only accessible via two instructions: PUSH and POP (or PULL). These 
two instructions are illustrated in Figure 2.5. The PUSH operation 
deposits one element on top of the stack (possibly more in the case of the 
6809); the PULL operation removes elements from the stack. In the case 
of a microprocessor, it is the registers that are deposited on top of the 
stack. The POP transfers the top element of the stack into the register 
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specified in the instruction. Other specialized instructions may transfer 
the top of the stack between other specialized registers, such as the 
status register. The 6809 is more versatile than most in this respect. 

A stack is required for implementing three programming facilities 
within the computer system: subroutines, interrupts, and temporary data 
storage. At this point, we will simply assume that the stack is a required 
facility in every computer system. The stack may be implemented in 
two ways: 

1. as a hardware stack, where a fixed number of registers may be 
provided within the microprocessor itself. A hardware stack has 
the advantage of high speed; however, it has the disadvantage of a 
limited number of registers. 

2. as a software stack. In order not to restrict the stack to a small 
number of registers, most general-purpose microprocessors, 
including the 6809, choose the software stack. With the software 
approach, a dedicated register within the microprocessor, here 
register SP, stores the stack pointer, i.e., the address of the top ele­
ment of the stack (or, in some cases, the address of the top element 
of the stack, plus one). The stack is then implemented as an area of 
memory. The stack pointer, therefore, requires 16 bits to point 
anywhere in the memory. 
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The Instruction Execution Cycle 

Let's now examine Figure 2.6, where we fetch an instruction from the 
memory in order to illustrate the role of the program counter. The micrcr 
processor unit appears on the left of the illustration, and the memory 
appears on the right. The memory stores instructions and data. The 
memory chip may be a ROM or a RAM, or any other chip which happens 
to contain memory. 

We assume that the program counter has valid contents. It now holds 
a 16-bit address, which is the address of the next instruction to fetch in 
the memory. 

Every processor proceeds in three cycles, including: 

1. fetching the next instruction 

2. decoding the instruction 

3. executing the instruction. 

We will now follow this sequence. 

Fetching 

In the first cycle, the contents of the program counter are deposited on 
the address bus and gated to the memory (on the address bus). Simulta­
neously, a read signal may be issued on the control bus of the system, if 

MPU ROM/RAM 

PC: INSTRUCTION 

---------Figure 2.6: Fetching on Instruction from the Memory-
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required. The memory receives the address. The address is used to 
specify one location within the memory. Upon receiving the read signal, 
the memory decodes, through internal decoders, the address it has 
received and selects the location specified by the address. A few hundred 
nanoseconds later, the memory deposits the 8-bit data corresponding to 
the specified address on its data bus. This 8-bit word is the instruction 
we want to fetch. In the illustration in Figure 2.7, this instruction is 
deposited on the data bus. 

Let us briefly summarize the sequence. The contents of the program 
counter are output on the address bus. A read signal is generated. The 
memory reads, and approximately 300 nanoseconds later, the instruction 
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at the specified address is deposited on the data bus (assuming a single 
byte instruction). The microprocessor then reads the data bus and 
deposits its contents into a specialized internal register, the IR or in­
struction register. The IR is eight bits wide and is used to contain the 
instruction just fetched from the memory. 

The fetch cycle is now completed. The eight bits of the instruction are 
now in the special internal register of the MPU, called the instruction 
register (the IR). The IR appears on the left of Figure 2.7. It is not accessible 
to the programmer. 

Decoding and Executing 
Once the instruction is in the IR, the control unit of the microprocessor 

decodes the contents and generates the correct sequence of internal and 
external signals for the execution of the specified instruction. There is, 
therefore, a short decoding delay, followed by an execution phase, the 
length of which depends on the nature of the instruction specified. Some 
instructions execute entirely within the MPU. Others fetch or deposit 
data from or into the memory. This is why the instructions of the MPU 
require various lengths of time to execute. This duration is expressed as 
a number of (clock) cycles. Appendix D lists the number of cycles required 
by each instruction. Since various clock rates may be used, speed of 
execution is normally expressed in number of cycles, rather than in 
number of nanoseconds. 

Fetching The Next Instruction 

We have described how an instruction can be fetched from the 
memory, using the program counter. During the execution of a program, 
instructions are fetched, in sequence, from the memory. An automatic 
mechanism must, therefore, be provided to fetch instructions in 
sequence. This task is performed by a simple incrementer attached to 
the program counter, as illustrated in Figure 2.7. Every time the contents 
of the program counter are placed on the address bus, the contents are 
incremented and written back into the program counter. As an example, 
if the program counter contains the value 0, the value 0 is output on the 
address bus. The contents of the program counter are then incremented, 
and the value 1 is written back into the program counter. In this way, the 
next time the program counter is used, it is the instruction at address 1 
that is fetched. We have just implemented an automatic mechanism for 
sequencing instructions. 

It must be stressed that the above descriptions are simplified. In reality, 
some instructions may be two or even three bytes long, so that successive 
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bytes will be }etched in this manner from the memory. However, the 
fetch sequence is identical. The program counter is used to fetch suc­
cessive bytes of an instruction, as well as successive instructions. The 
program counter, together with its incrementer, provides an automatic 
mechanism for pointing to successive memory locations. 

INTERNAL ORGANIZATION OF THE 6809 

Now that we understand the internal organization of a microprocessor, 
we will examine the 6809 in particular, and describe its capabilities. 
Figure 2.8 presents a logical description of the internal workings of the 
6809. There may be additional interconnections that are not shown. 
Let's examine the diagram from right to left. 

On the right side of the illustration, we see the arithmetic-logical unit 
(the ALU), recognizable by its characteristic "V" shape. The operation 
of the ALU will become clear in the next section, when we describe the 
execution of actual instructions. 

The condition code register, called the CC in the 6809, appears to the 
right of the ALU. The contents of the condition code register are essen­
tially conditioned by the ALU; however, some of its bits may also be 
conditioned by other modules or events (see Chapter 4). 

The two registers to the left of the ALU are the accumulators, A and B. 
The accumulators are 8-bit registers, but for some instructions they can 
be used together to form the 1&bit D accumulator. Thus, the D accumu­
lator is formed by using the B accumulator as the low byte, bits �7. and 
the A accumulator as the high byte, bits 8-15. 

The register shown in the center of the illustration is the direct page 
register, labeled DP. The DP register is an 8-bit register used to address 
pages of memory. A page is simply a block of 256 words. Thus, memory 
locations 0 to 255 are page 0 of the memory. Since the 6809 has a 1&bit 
address bus, there are 256 pages. The DP register specifies the page 
number or high eight bits of an address. The other eight bits are obtained 
from the instruction being executed. The DP register allows faster and 
more compact programs to be produced when using blocks of memory 
smaller than 256 bytes. 

The large group of registers to the left of the DP register, are the address 
registers. As in any microprocessor, we find in the group the program 
counter (PC) and the stack pointer (S). Recall that the program counter 
contains the address of the next instruction to be executed. The stack 
pointer points to the top of the stack in the memory. In the case of the 6809, 
the stack pointer points to the last actual entry in the stack. (In some 
microprocessors, the stack pointer points just above the last entry.) Also, 
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the stack grows "downwards," i.e., towards the lower addresses. This 
means that the stack pointer must be decremented any time a new word 
is pushed on the stack. Conversely, whenever a word is removed (pulled) 
from the stack, the stack pointer must be incremented by one. In the case 
of the 6809, PUSH and PULL may involve up to twelve �ords at the 
same time, so that the contents of the stack pointer are decremented or 
incremented by numbers between 1 and 12, inclusive. 

The U register is the user stack pointer. In the case of PUSH and PULL 
operations, this register behaves exactly like the S stack pointer. It 
allows two stacks to be used by the programmer. Recall that with the S 
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stack pointer (also called the hardware or system stack pointer), certain 
instructions and outside events cause automatic pushes and pulls. For 
example, the S register is used in subroutine calls. The U stack pointer is 
not used by the hardware of the computer, therefore, the programmer 
has complete control over it. 

Looking at the remaining two registers of this group of five registers, 
we find another type of register: the index register. The two index­
registers are labeled X and Y. A byte brought along the internal data bus 
may be added to the contents ofX or Y. When using an indexed instruc­
tion, this byte is called a displacement. Special instructions are provided 
that will automatically add this displacement to the contents of X or Y 
and generate an address. This is called indexing, as it allows convenient 
access to any sequential block of data. This feature is also applicable to 
the PC, U, and S address registers. 

We will now move to the far left of the illustration where the control 
section of the microprocessor is located. From top to bottom, we find the 
instruction register (IR), which contains the instruction to be executed. 
The instruction is received from the memory via the data bus and 
transmitted along the internal data bus to the instruction register. Below 
the instruction register appears the decoder, which sends signals to the 
controller sequencer and causes the execution of the instruction within, 
as well as outside, the microprocessor. The control section generates and 
manages the control bus, which appears at the bottom of the illustration. 

The three buses managed or generated by the system, i.e., the data bus, 
address bus, and control bus, all propagate outside the microprocessor 
through its pins. The external connections are shown on the right-most 
part of the illustration. As shown in the figure, the buses are isolated 
from the outside through buffers. 

We have now described all the logical elements of the 6809. Although 
it is not essential to understand the detailed operation of the 6809 in 
order to start writing programs, it is necessary to choose the correct 
registers and techniques in order to write efficient codes. To make a 
correct choice, we need to understand how instructions are executed 
within the microprocessor. Therefore, we will now examine the ex­
ecution of typical instructions inside the 6809, and demonstrate the role 
and use of the internal registers and buses. 

INSTRUCTION FORMATS OF THE 6809 

Appendix D lists the 6809 instructions. (Note that an instruction 
specifies the operation to be performed by the microprocessor.) The 6809 
instructions may be formatted in one, two, three, four, or five bytes. From 
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a more simplified standpoint, every instruction may be represented as 
an opcode, followed by an optional literal or address field, comprising 
one or two words. The opcode field specifies the operation to be carried 
out. In strict computer terminology, the opcode represents only those 
bits that specify the operation to be performed, exclusive of the register 
pointers that might be necessary. In the microprocessor world, it is con­
venient to call the opcode the operation code itself, as well as any register 
pointers that it might incorporate. This "generalized opcode" must 
reside in an 8-bit word, for reasons of efficiency. This 8-bit opcode is a 
limiting factor on the number of instructions available in a microprocessor. 

Most microprocessors use instructions that are one, two or three bytes 
long. (See Figure 2.9.) However, the 6809 is equipped with additional 
indexed instructions, which require one more byte. In the case of the 6809, 
opcodes are, in general, one byte long, except for special instructions, 
which require a 2-byte opcode. 

Many instructions require that one byte of data, or a part of an address, 
follow the opcode. In such a case, the instruction will be a 2-byte 
instruction-the second byte being data or part of an address (with the 
exception of indexing, which adds an extra byte). In other cases, the 
instruction might require the specification of an address. An address 
requires 16 bits and, therefore, two bytes. Thus, the instruction will be a 
3- or 4-byte instruction. 

For each byte of the instruction, the control unit must perform a memory 
fetch, which requires one clock cycle. Thus, the shorter the instruction, 
the faster the execution. 

2WORD 
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I OPTIONAL DATA OR ADDRESS I 
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�-----------Figure 2.9: Typical Instruction Formats 
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One Word Instruction (8809) 

One word instructions require the smallest amount of memory and are, 
therefore, favored by the programmer. A typical one word instruction 
for the 6809 is an increment, for example: 

INCA 

which means: "add 1 to the contents of the A accumulator." This is a 
typical operation. Every microprocessor is equipped with an instruction 
like INCA, which allows the programmer to quickly add a 1 to a register, 
which may then be used as a counter or pointer into memory. Instructions 
referencing different registers of memory will have different opcodes. 

Every instruction must be represented internally in a binary format. 
The above. representation, INCA, is mnemonic, or symbolic; it is the 
assembly language representation of an instruction. It is a convenient 
symbolic representation of the actual binary encoding for that instruc­
tion. The binary code that represents this instruction inside memory is: 
01001100 (bits O to 7). 

The placement of the bits in the binary representation of an instruction 
is not meant for the convenience of the programmer, but for the micropro­
cessor, which must decode and execute the instruction. The assembly 
language representation, however, is meant for the convenience of the 
programmer. 

Another example of a one word instruction is: 

CLRB 

This instruction clears the contents of the specified accumulator (in this 
case, B). This operation may be represented symbolically by B = 0. It can 
be verified in Appendix D that the binary representation of this instruc­
tion is: 01011111. 

Two Word Instruction (6809) 

The two word instruction 

ADDA #n 

adds the contents of the second byte of the instruction to the accumulator. 
The contents of the second word of the instruction are said to be 
"literal." They are data and are treated as eight bits without any particular 
significance. They could be a character or numerical data-a fact that is 
irrelevant to the operation. 
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The code for this instruction is: 

10001011 followed by the 8-bit byte "n" 

The symbol "#" is used to indicate an immediate operation. 
"Immediate" in most programming languages, means that the next 
word, or words, within the instruction contain a piece of data that 
should not be interpreted, i.e., the next one or two words are to be treated 
as literals. 

The control unit is programmed to "know" how many words each 
instruction has. It will, therefore, always fetch and execute the right 
number of words for each instruction. However, the longer the instruc­
tion, the more complex it is for the control unit to decode. 

Three Word Instruction (6809) 

The instruction 

LDB nn 
requires three words. It �eans: "load the B accumulator frorµ the 
memory address specified in the next two bytes of the instruction." 
Since addresses are 16-bits long, they require two words. In binary, 
this instruction is represented by: 

11110110 8 bits for the opcode 

High Address 8 bits for the upper part of the address 

Low Address 8 bits for the lower part of the address 

EXECUTION OF INSTRUCTIONS IN THE 6809 

We have seen that all instructions are executed in three phases: 
fetch, decode, and execute. The amount of time it takes to execute an 
instruction depends on the instruction and the type of memory access 
being done. In the 6809, time is measured in clock cycles. It always 
takes an integral number of clock cycles to execute an instruction. 

Accessing memory requires one clock cycle. Since each instruction 
must first be fetched from memory, even the fastest instruction requires 
more than one clock cycle. The fetch phase of an instruction presents the 
address of the next instruction to the memory. This address is contained 

/ 



48 PROGRAMMING THE 6809 

in the program counter. When the contents of memory are available, 
they can be transferred within the microprocessor to the instruction 
register. The PC is then incremented to point to the next word in the 
program. 

When an instruction is deposited in the instruction register of the 
6809, it is decoded. It takes at least one clock cycle, and possibly more, 
to decode and execute an instruction. Appendix D gives the execution 
time for each instruction. Appendix E describes the address bus cycle­
by-cycle activity for each instruction, and shows the external activities 
of the 6809, while the instruction is being executed. These tables offer 
an in-depth understanding of instruction execution. 

Execution pf A 1-Byte Instruction (6809) 

Recall that the 1-byte instruction 

INCA 

adds a 1 to the A accumul{ltor. This instruction is fetched during the 
first clock cycle and is decoded and executed during the second cycle, 
while the next byte of the program is being fetched. The two cycle 
execution time of a 1-byte instruction illustrates that all instructions 
require at least two clock cycles. 

Execution Of A 2-Byte Instruction (6809) 

Recall that the instruction 

ADDA #n 

described in the previous section, adds to the A accumulator the contents 
of the byte that immediately follows the instruction. During the first 
clock cycle, the instruction is loaded into the IR; and the PC increments. 
During the second clock cycle the instruction is decoded, while the next 
byte, the data, is fetched. The data from this second fetch is added to the 
accumulator before the end of the second cycle. It should be observed 
that two activities occurred during the second cycle: the instruction in the 
IR was decoded, and the next byte was fetched. Since most instructions 
in the 6809 need this second byte, execution is speeded considerably. 

Execution Of A 3-Byte Instruction (6809) 

The instruction 

LDB nn 
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is a 3-byte instruction. Recall that it loads the B accumulator with the 
contents of the memory location addressed by nn. 

This instruction requires 5 cycles to execute. The first cycle fetches the 
opcode. The next decodes the instruction and fetches the high address 
byte. The third fetches the low address byte. The fourth forms the address 
of the data on the internal address bus (see Figure 2.8). The fifth uses this 
address to fetch the data from memory and store it in the accumulator. 

The detailed descriptions we have just presented on the execution of 
typical instructions should help to clarify the role of the registers and 
internal buses. A second reading of the preceding section may be 
helpful in gaining a detailed understanding of the internal operation of 
the 6809. 

THE 6809 CHIP 

For completeness, we will now examine the signals of the 6809 
microprocessor chip. You do not need to understand the functions of 
6809 signals in order to program the 6809. If you do not have an interest 
in the details of hardware, you may want to skip this section. 

The 6809 comes in two different forms: the MC6809 and the MC6809E. 
We will first describe the signals of the MC6809. Then we will describe 
those signals on the MC6809E that are different from those on the 
MC6809. The instructions for the two processors are identical, only a 
few hardware pinouts are different. Figure 2.10 displays the pinout of 
theMC6809. 

The control signals have been divided into four groups. We will now 
describe them, going from the top of the figure to the bottom. 

The first two clock pins, XT AL and EXT AL, are for the connection 
of an external crystal. The oscillator is contained within the MC6809. 
The clock cycle frequency is one-fourth the crystal frequency. The other 
two clock signals, E for enable and Q for quadrature, are used to indicate 
the times when the data and address bus signals are valid. 

The three bus control signals, DMA/BREQ, BS and BA, are used 
to disconnect the MC6809 from its buses. They are mainly used for 
DMA, but could also be used by another processor in the system. The 
DMA/BREQ is the bus request signal issued to the MC6809. In response, 
the MC6809 places its address bus, data bus, and some output control 
signals (tristate) in the high-impedance state at the end of the current 
instruction being executed. The processor status indicators, bus available 
(BA) and bus status (BS), are used to acknowledge that the buses have 



50 PROGRAMMING THE 6809 

been placed in the high-impedance state. There are four possible BA and 
BS combinations. They are: 

BA BS - -

O 0 Normal (Running) 
O 1 Interrupt or Reset Acknowledge 
1 0 Sync Acknowledge 
1 1 HaltJBus Grant Acknowledge 

The last state, when BA and BS are 1, is the state that acknowledges the 
DMNBREQ . In this section, we discuss interrupt and reset; we describe 
the sync acknowledge in Chapter 6. 

The MC6809 can give the bus to DMA devices for only 15 clock cycles 
at a time. The processor will then take control of the bus for at least one 
cycle, to d<? internal refreshing. 
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CONTROL BS 
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IRQ 
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Figure Z.10: MC6809 MPU Pinout-----------------' 
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Six MC6809 control signals are related to its internal status or sequenc­
ing. IRQ, FIRQ, and NMI are the three interrupt signals. IRQ is the usual 
interrupt request. A number of input/output devices may be connected 
to the IRQ interrupt line. Whenever an interrupt request is present on 
this line, and the internal interrupt enable bit is enabled, the 6809 will 
accept the interrupt (provided a DMA operation is not in progress). The 
BA signal will be set to 0, and the BS signal to 1, to indicate an interrupt 
acknowledge. We describe the rest of this sequence in Chapter 6. 

FIRQ is the fast interrupt request signal. It is similar to IRQ but executes 
faster. NMI is the non-maskable interrupt. It is always accepted by the 
6809, assuming no DMA is in progress. 

MRDY is a signal used to synchronize the MC6809 with slow memory 
or input/output devices. When active, this signal indicates that the 
memory on the device is not yet ready for the data transfer. The MC6809 
CPU will wait until the MRDY signal becomes inactive. It will then 
resume normal sequencing. The MRDY signal may be active for 10 
clock cycles at most. 

HALT is used to stop the processor. When HALT is active, the processor 
completes the present instruction and remains halted indefinitely, 
without loss of data. When the processor is halted, the BA and BS signals 
are 1, to indicate that the buses are in the high-impedance state and the 
processor is in the halt/bus grant state. When the HALT signal becomes 
inactive, processing will resume. 

RESET is usually the signal that initializes the MPU. It moves the 
contents of addresses FFFF and FFFE into the PC. The DP register is set 
to O and both fast and normal interrupts are disabled. The BA signal is O 
and BS is 1, to acknowledge a reset. RESET is usually used after power is 
applied to the computer. 

There is one signal for memory control: the read/write (R/W) control 
signal. This output indicates whether the next transfer by the processor 
on the data bus is a read or write . 

MC6809E Control Signals 

The major difference between the MC6809 and the MC6809E is that 
the E version requires an external clock generator circuit. This approach 
allows greater flexibility in the clock circuit capabilities and is useful for 
multi-processor systems. The differences between the MC6809 and the 
MC6809E pinouts are detailed below. Figure 2.11 displays the MC6809E 
pinouts. 

Since there is no clock oscillator in the MC6809E, the XT AL and 
EXT AL pins are not needed. The Q and E clock pins are now inputs, 
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rather than outputs. An external circuit generates Q and E. Otherwise, 
the definitions of the Q and E signals are the same. 

The bus control signals are different. The DMNBREQ is eliminated 
and replaced by TSC, the three-state control line. The TSC signal puts 
the data and address buses and the R/W signal into the high-impedance 
state in the next clock cycle. The E and Q clocks must then be stopped for 
the next cycle. The BS and BA signals are not changed. The BUSY 
control indicates that the processor is executing an instruction that 
requires more than one clock cycle to stabilize the data in memory. 
A TSC should not be done when BUSY is active. This is very important 
for multiprocessor systems. 
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There is only one change in the MPU control signals for the MC6809E: 
the MRDY input is replaced by the advanced valid memory access 
(A VMA) signal. This signal indicates that the processor is going to do a 
valid memory access during the next clock cycle. This indicates to the 
clock circuit that, if slow memory or I/O is being accessed, the clock 
times should be extended. The processor itself cannot control the clock in 
the MC6809E. 

There is one new output signal in the MC6809E: the signal that indicates 
execution of the last instruction cycle (LIC). This signal becomes active 
during the last cycle of every instruction. When it goes low, it indicates 
that the first byte of an instruction will be fetched at the end of the present 
cycle. 

SUMMARY 

This chapter has presented a description of the internal organization 
of the 6809. The role of each register is important and should be fully 
understood before proceeding to the next chapter. Chapter 3 introduces 
the instructions available on the 6809 and many basic programming 
techniques for the 6809. 

EXERCISES 

2-1: Write the binary code that will increment accumulator B, INCB. Consult 
Appendix D for the code. (Note: this table uses hexadecimal notation.) 

2-2: What is the binary code of the instruction that will clear the contents of 
accumulator A? 
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BASIC 
PROGRAMMING 

TECHNIQUES 

IN THIS CHAPTER, we examine the basic techniques necessary for 
writing a program for the 6809. In particular, we show how to move 
information between the memory and the MPU, and how to manipulate 
it within the MPU itself. We develop programs of increasing complexity, 
so that we can see how various instructions and registers interact. 

We will begin by writing simple arithmetic programs. We will then 
go on to explain the use of the 6809's excellent 16-bit arithmetic 
capabilities. Finally, we will discuss the important multiply and divide 
operations. 

ARITHMETIC PROGRAMS 

The arithmetic programs in this chapter show how to do addition, 
subtraction, multiplication, and division. Each uses at least one register. 
Figure 3.1 shows a conceptual diagram of the 6809 registers. These 
programs perform integer arithmetic on positive binary numbers and 
on negative numbers represented as two's complement integers. Let's 
begin with an example of 8-bit addition. 
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8-Bit Addition 

We begin by writing a program that performs 8-bit addition: 

<Instructions> 

LDA 

ADDA 

STA 

ADRl 

ADR2 

ADR3 

<Comments) 

LOAD OPl INTO A 

ADD OP2 TO OPl 

SA VE RESULT RES AT ADR3 

In this program, we add two 8-bit operands, OP1 and OP2, stored at 
memory addresses ADR1 and ADR2, respectively. We call the sum RES, 
and store it at memory address ADR3 (as shown in Figure 3.2). 

Each line of the program, expressed here in symbolic form, is called 
an instruction. Each instruction is translated by the assembler program 
into from one to five binary bytes. For this example, we will not concern 
ourselves with this translation; instead we will examine the symbolic 
representation. 

The first line of the program specifies: "load the contents of ADR1 into 
accumulator A." (Or accumulator B could have been used.). Figure 3.2 
shows that the contents of ADR1 are the first operand, OP1. Thus, the 
first instruction transfers OP1 from the memory into the accumulator 
(see Figure 3.3). 

15 

X- INDEX REGISTER 
Y- INDEX REGISTER 
U- USER STACK POINTER 
S- HARDWARE STACK POINTER 
PC- PROGRAM COUNTER 

0 

' 

ADDRESS l REGISTERS 

1----------""T""---------4 � I B ACCUMULATORS A 

D 

DP-Direct Page Reg. 

CC.Condition Codes 

Figure 3.1: The 6809 Registers----------------' 
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MEMORY 

OPI (First operond) 

OP2 (Second operond) 

RES (Result) 

�--------Fisure 3.2: 8-Bit Addition RES = OPl + OP2 

MEMORY 

DATA BUS 

A 100 

(ADRl) 

ADDRESS BUS 

�------Figure 3.3: LDA ADRl:OPl is Loaded from Memory 
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ADR1 is a symbolic representation of the actual 16-bit address in the 
memory. It is defined elsewhere in the program. For this example, let's 
assume that it is defined as being equal to the address 100. The LOA 
instruction then results in a read operation from address 100 (see Figure 
3.3), i.e., the contents of address 100 are transferred along the data 
bus and deposited inside accumulator A. Recall from Chapter 2 that 
arithmetic and logical operations operate on an accumulator as one of 
the source operands. Since we want to add the two values OP1 and OP2, 
we must first load OP1 into the accumulator; we can then add OP2 to the 
contents of the accumulator. 

Referring back to the program, let's now examine the right-most field 
of each instruction, called the comment field. Comments are ignored by 
the assembler program at translation time; they are useful for program 
readability. To understand what the program does, it is important to 
document it with good comments. For the first line of our program, the 
comment is self-explanatory: the value of OP1, located at address ADR1, 
is loaded into accumulator A. Figure 3.3 shows the result of this first 
instruction. 

The second instruction: 

ADDA ADR2 

specifies: "add from ADR2 to accumulator A." Referring to Figure 3.2, 
we see that the memory location, ADR2, contains the second operand, 
OP2. When the second instruction is executed, OP2 is fetched from 
memory and added to OP1 (see Figure 3.4). The sum is then deposited in 
the accumulator. (Note: remember that, in the case of the 6809, the results 
of the arithmetic operation are deposited back into an accumulator.) 
With other processors, however, it may be possible to deposit these 
results in other registers, or back into the memory. 

The sum of OP1 and OP2 is now contained in accumulator A. To 
complete this program, we must transfer the contents of A into memory 
location ADR3, in order to store the results at the specified location. 
This is done by the third instruction: 

STA ADR3 

This instruction loads the contents of A into the specified address, ADR3. 
Figure 3.5 shows the effect of this final instruction. 

Before execution of the ADDA operation, the accumulator A contained 
OPl (see Figure 3.4). After the addition, a new result was written into 
A: OP1 + OP2. Recall that the contents of any register within the micro­
processor, as well as any memory location, remain the same after a read 
operation has been performed on that register. In other words, reading 
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the contents of a register or memory location does not change its con­
tents. Only a write operation in the register location changes the 
contents. In this program, the contents of ADR1 and ADR2 remain 
unchanged throughout the program. However, after the ADD instruction, 

Mf}N:)RY 

ADDRESS BUS 

'-------------------Figure 3.4: ADDA ADRZ 

- - -, 
DATA BUS - - - , 

I I 

A Y/////..O RE 5///////,1 I I �/,%i I I 

..(} 
ADR3 ,_,_,_,_,_,,,,. RE�� .,, ,,,,. 

(ADR3) ... " 
ADDRESS BUS v' 

'------------------Figure 3.5: STA ADR3 
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the contents of A are modified, because the output of the ALU is written 
into the accumulator. The previous contents of A are then lost. 

Actual numerical addresses may be used instead of ADR1, ADR2, and 
ADR3. To keep symbolic addresses, it is necessary to use so-called 
"pseudo-instructions." Pseudo-instructions specify the value of the 
symbolic addresses, so that during translation the assembly program 
may substitute the actual physical addresses. Examples of pseudo­
instructions include: 

ADR1 
ADR2 
ADR3 

EQU 
EQU 

EQU 

$100 
$120 

$200 

In conclusion, an 8-bit addition only allows the addition of 8-bit 
numbers, i.e., numbers between 0 and 255, if absolute binary is used. For 
most practical applications, however, it is necessary to add numbers 
having 16 bits or more, i.e., to use multiple precision. Therefore, we will 
now look at some examples of arithmetic on 16-bit numbers. 

16-Bit Addition 

For this example, let's assume that the first operand is stored at 
memory locations ADR1 and ADR1-1. Since OP1 is a 16-bit number 
this time, it requires two 8-bit memory locations. Similarly, OP2 is 
stored at ADR2 and ADR2 - 1. The result is to be deposited at memory 
addresses ADR3 and ADR3-1. This process is illustrated in Figure 3.6. 
Note that H indicates the high half (bits 8 through 15), while L indicates 
the low half (bits 0 through 7). 

The logic of this program is exactly like the previous one. First, the 
lower half of the two operands are added. Any carry generated by this 
addition is stored automatically in the internal carry bit (C). Then the 
high order half of the two operands are added, along with any carry, and 
the result is saved in the memory. Here is the program: 

LDA ADR1 LOAD LOW HALF OF OP1 
ADDA ADR2 ADD OP1 AND OP2 LOW 

STA ADR3 STORE RESULT, LOW 

LDA ADR1-1 LOAD HIGH HALF OF OP1 
ADCA ADR2-1 (OP1+0P2) HIGH + CARRY 
STA ADR3-1 STORE RESULT HIGH 

The first three instructions of this program are identical to the ones 
used for the 8-bit addition in the previous section. They add the least 
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significant halves (bits 0-7) of OP1 and OP2. The sum, called RES, is 
stored at memory location ADR3 (see Figure 3.6). 

Automatically, whenever an addition is performed, any resulting 
carry (whether 0 or 1) is saved in the carry bit, C, of the condition codes 
register (register CC). If the two 8-bit numbers generate a carry, then the 
C bit will be equal to 1. (It will be set.) If the two 8-bit numbers do not 
generate a carry, then the value of the carry bit will be 0. 

The next three instructions of the program are similar to those used in 
the previous 8-bit addition program. This time, however, they add the 
most significant half(i.e., the high half-bits 8-15) of OP1 and OP2, plus 
any carry, and store the result at the address ADR3-1. 

After execution of this six-instruction program, the 16-bit result is 
stored at memory locations ADR3 and ADR3 -1, as specified. Note, 
how.ever, that there is one difference between the second half of this 

MEMORY 

ADRl -1 (OPl)H 

ADRl (OPl )l 

ADR2-1 (OP2)H 

ADR2 (OP2)l 

ADR3- 1 (RES)H 

ADR3 (RES)L 

L-----------Figure 3.6: 16 Bit-Addition-The Operands 
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program and the first. The ADC instruction is not the same instruction 
as the one used in the first half. In the first half of the program, we used 
the ADD instruction (the 2nd instruction). This instruction adds the two 
operands, regardless of the carry. In the second half, we used the ADC 
instruction, which adds the two operands, plus any carry that may have 
been generated. Here, we must use the ADC instruction to obtain the 
correct result, as the addition performed on the low operands may result 
in a carry. 

At this point you might ask: "but what if the addition of the high half of 
the operands also results in a carry?" There are two ways to handle this 
situation. First, you can assume that this will not happen, unless an error 
has been made, because the program is designed to work for results of 
only up to 16 bits-not 17; and that the program will halt when the carry is 
set. Or, you can include additional instructions that will handle the extra 
bit in another word of memory, thus making a 24-bit word. It is up to you 
to decide on the best route for your purpose-the first of many decisions. 

(Note: in writing this last program, we have assumed that the high part 
of the operand is stored "on top of" the lower part, i.e., at the lower 
memory address. This need not always be the case, even though it does 
take advantage of the 6809 1&bit instructions. However, the standard 
convention is that all addresses and data be kept with the high part on 
top, as illustrated in Figure 3.7.) 

When operating on multibyte operands, it is important to remember 
the following information: 

1. the order in which data is stored in memory 

2. the location where the data pointers are pointing-to the low or 
high byte. 

The programmer must decide how to store the 1&bit numbers (i.e., 
low or high part first), and whether address references should point to 
the low or high half of these numbers-another decision that must be 
made when designing algorithms or data structures. 

The programs we have presented so far have been traditional: They 
use an 8-bit accumulator. We will now present an alternative program 
for 16-bit addition that does not use the simple 8-bit accumulator. Instead, 
it uses some of the special instructions for the 16-bit accumulator D on 
the 6809. (Remember from Chapter 2 that D is actually A and B, and that 
in a limited manner, the 6809 allows accumulators A and B to be used as 
the 16-bit D accumulator.) Operands will be stored as indicated in Figure 
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3.7. The program is: 

LDD 
ADDD 
STD 

ADR1 
ADR2 
ADR3 

LOAD D ACCUMULATOR WITH OP2 
ADD OP2 TO OP1 16 BITS 
STORE RES INTO ADR3 

Notice how much shorter this program is, when compared to the 
previous version. 

16-bit numbers can be readily extended to 24, 32, or more bits (always 
multiples of 8 bits). Let's now try an interesting exercise. Let's use the 
16-bit instructions we just introduced to write an addition program for 
32-bit operands, assuming the operands are stored as shown in Figure 

Mf.M[)RY 
0000 

ADRl (OPl )H 

ADRl+l {OPl)L 

ADR2 {OP2)H 

ADR2+1 (OP2)L 

ADR3 (RES)H 

ADR3+1  (RES)L 

FFFF 

I 

'----------Figure 3.7: Storing 16-Bit Operands in the 6809 



64 PROGRAMMING THE 6809 

3.8. Here is the program: 
LDD ADR1+2 LOAD LOW HALF OP1 
ADDO ADR2+2 ADD LOW HALF OP2 
STD ADR3+2 STORE LOW HALF RES 
LDD ADR1 LOAD HIGH HALF OP1 
ADCB #0 ADD 0 AND CARRY TO B 
ADCA #0 ADD O AND CARRY TO A 
ADDO ADR2 ADD HIGH HALF OP2 
STD ADR3 STORE HIGH HALF RES 

(Note: There is no instruction that adds a carry to the D accumulator. 
The carry is handled by adding a zero and any carry to B, and then to A, 
after the ltigh 16-bits have been loaded into D.) 

MEMORY 
ADRl HIGH 

OPRl 
LOW 

ADR2 HIGH 
OPR2 
LOW 

ADR3 HIGH 
RES 
LOW 

Figure 3.8: A 32-Bit Addition----------------' 
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Now that we have learned to perform a binary addition, let's learn 
about subtraction. 

Subtracting 16-Bit Numbers 

Performing an 8-bit or 16-bit subtraction is actually quite simple, so 
let's try a 16-bit subtraction. As usual, our two numbers, OPl and OP2, 
are stored at addresses ADRl and ADR2. The memory is assumed to be 
that of Figure 3.7. To perform the subtraction, we use the subtract 
operation (SUB), instead of the add operation (ADD). 

The program appears below. Figure 3.9 shows the data paths. 

LDD 

SUBD 

STD 

ADRl 

ADR2 

ADR3 

OPl INTO D 

OPl - OP2 

RES INTO ADR3 

This program is essentially like the one we developed for 16-bit addi tion. 
Recall that in two's complement arithmetic, the final value of the 

carry indicates a borrow. If a borrow condition has occurred as a result 

MEMORY 

(OPl}H ADRl 

�} 
(OPl)l 

"'< ,,ly 
ADRl +l 

I (OPl}H I (OPl)l J 
H l 

L--------------Fi
gure 3.9: 16-

Bi
t Load: LDD ADR1 
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of the subtraction, the carry bit of the condition codes register will be set, 
and can be tested. 

The examples presented so far in this chapter are simple binary addi­
tions and subtractions. However, we may need to use another type of 
arithmetic, BCD arithmetic. 

BCD ARITHMETIC 

8-Bit BCD Addition 

Chapter 1 discussed the concept of BCD arithmetic. Let's recall its 
features. It is essentially used for business applications, where it is 
imperative that every significant digit in a result be retained. 

In the BCD notation, a 4-bit nibble is used to store one decimal digit 
(0 through 9). As a result, every 8-bit byte may store two BCD digits. (This 
is called a packed BCD.) Let's see how BCD works. Let's add two bytes, 
each containing two BCD digits (see Figure 3.10). 

So that we can identify any problems that might come up, let's try 

rw;MORY 

1 1 
• 

• 

w +) 
2 2 

ADR 
- (RESULT) (ADR) 

Figure 3.10: Storing BCD Digits ---------------' 
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some numeric examples first. Let's add 01 and 02: 

01 is represented by: 
02 is represented by: 
The result is: 

00000001 
00000010 

00000011 

This result is the BCD representation for 03. (If you are not sure of the 
BCD equivalent, refer to the conversion table at the end of this book.) 
Everything worked very simply in this case. Let's try another example. 

08 is represented by: 
03 is represented by: 

00001000 
00000011 

If you obtained 00001011 as your result, you have computed the binary 
s� of 8 and 3. You have, indeed, obtained 11 in binary. But unfortunately, 
1011 is an illegal code in BCD. The BCD representation of 11 is 00010001. 

This difference stems from the fact that the BCD representation uses 
only the first ten combinations of 4 digits in order to encode the decimal 
symbols 0 through 9. Thus, the remaining six possible combinations of 
4 digits are unused in BCD notation, and the illegal 1011 is one such 
combination. In other words, whenever the sum of two BCD digits is 
greater than 9, you must add 6 to the result in order to skip over the 6 
unused codes. 

Let's try another example. Let's add the binary representation of 6 to 
1011: 

1011 (illegal binary result) 
+ 0110 (+6) 

The result is: 00010001 

The result is, indeed, 11 in the BCD notation. We now have the correct 
answer. 

This example illustrates one of the basic difficulties of the BCD mode: 
You must compensate for the six missing codes. It is necessary to use a 
special decimal addition adjust instruction (DAA) to adjust the result of 
the binary addition. (Add 6 if the result is greater than 9.) 

We will use this same example to illustrate another difference. In this 
example, the carry is generated from the lower BCD digit (the right-most 
digit) into the left-most one. This internal carry must be taken into account 
and added to the second BCD digit. The addition instruction takes care 
of this automatically. However, it is often convenient to detect this 
internal carry from bit 3 to bit 4 (the half-carry). The H flag is provided 
for this purpose. 
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As an example, here is a program to add the BCD numbers 11 and 22: 

LOA 
ADDA 
DAA 
STA 

#$11 
#$22 

ADR 

LOAD LITERAL BCD 11 INTO A 
ADD LITERAL BCD 22 
DECIMAL ADJUST RESULT 
STORE RESULT 

The A accumulator is used in this program because the decimal addi­
tion adjust instruction always uses A. The B accumulator is not affected 
by the decimal adjust. However, the D accumulator high byte is affected, 
because it is the A accumulator. 

In this program, we are using a new symbol, the $. The $ sign within 
the operand field of the instruction specifies that the data which follows 
is expressed in hexadecimal notation. The hexadecimal and BCD 
representations for digits o through 9 are identical. 

In this example, we want to add the literals (or constants) 11 and 22. 
The # symbol indicates literal operands. The result is stored at the 
address ADR. 

This program is analogous to the one given for 8 -bit binary addition, 
but it uses a new instruction: DAA. Let's look at an example which 
illustrates the role of this instruction. We first add 11 and 22 in BCD: 

00010001 (11) 
+ 00100010 (22) 

= QQJ.!QQD (33) 
3 3 

The result shown is correct, using the rules of binary addition. 
Now let's add 22 and 39, using the rules of binary addition: 

00100010 (22) 
+ 00111001 (39) 

= !!W.m!.! 
5 ? 

1011 is an illegal BCD code. Recall that BCD uses only the first 10 binary 
codes, and "skips over" the next 6, in order to obtain the correct result. 
We must now do the same, i.e. add 6 to the result: 

01011011 (binary result) 
+ 0110 (6) 

= QUQQQ9.! (61) 
6 1 
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We now have the correct BCD result. 
Let's look at BCD subtraction. 

BCD Subtraction 

BCD subtraction is complex in appearance. To perform a BCD sub­
traction, you must add the ten's complement of the number, just 
like you add the two's complement of a number to perform a binary 
subtraction. An example of this is shown by the equation RES = OP1 + 
99 - OP2 + 1. Since 99 is the largest BCD number, OP2 can be subtracted 
from 99 without any decimal adjustment. The number obtained can 
then be added to OP1, and a DAA can be performed correctly. The 
following program illustrates this simple BCD subtraction (note that a 
fey; instructions have been added). 

LDA #$99 LOAD LITERAL BCD 99 

SUBA 

ADDA 
DAA 
INCA 
STA 

ADR2 

ADR1 

ADR3 

99 - OP2 

OP1 + (99 - OP2) 
DECIMAL ADJUSTMENT 

ADD ONE TO A 
STORE RES 

(Note: remember, the A accumulator must be used when the DAA 
instruction is used.) 

16-Bit BCD Addition 

16-bit addition is performed with a little more work than in the 
binary case, because the 16-bit D accumulator cannot be used. A pro­
gram for such an addition appears below: 

LDA ADR1 + 1 LOAD (OP1) LOW INTO A 

ADDA ADR2 + 1 (OP1 + OP2) LOW 
DAA DECIMAL ADJUSTMENT 

STA ADR3 + 1 STORE RESULT LOW 

LDA ADR1 LOAD (OP1) HIGH INTO A 

ADCA ADR2 (OP1 + OP2) HIGH + CARRY 

DAA DECIMAL ADJUSTMENT 
STA ADR3 STORE RESULT HIGH 

Packed BCD Addition 

We have now learned how to perform elementary BCD addition and 
subtraction. However, in actual practice, BCD numbers include any 
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number of bytes. Let's look at a simplified example of a packed BCD addi­
tion. We will assume that the two numbers located at Nl and N2 include 
the same number of BCD bytes and that number is called COUNT. Figure 
3.11 shows the register and memory allocation. Here is the program: 

BCDPAK LDB #COUNT 
LDX #N2 
LDY #Nl 

AN DCC #0 CLEAR CARRY 
PLUS LDA .

x
+ LOAD NZ BYTE AND INC X 

ADCA ,Y ADD N1 BYTE 
DAA 
STA ,Y+ STORE RESULT INC Y 
DECH B-1 

BNE PLUS LOOP UNTIL B = 0 

Nl and N2 represent the addresses where the BCD numbers are stored. 
These addresses are loaded in the index registers X and Y: 

BCDPAK LDB 

LDX 

LDY 

#COUNT 
#N2 
#Nl 

In anticipation of the first addition, the carry bit must be cleared. We can 
clear it in a number of ways. For example, we can use: 

ANDCC #0 CLEAR CARRY 

The first byte of N2 is loaded into the accumulator, then the first byte of 
Nl is added to it. The DAA instruction is used to obtain the correct 
BCD value: 

PLUS LDA 
ADCA 
DAA 

.x+ 
,Y 

The result is then stored in Nl: 

STA ,Y+ 

LOAD N2 BYTE ANO INC X 
ADO Nl BYTE 

STORE RESULT INC Y 

The forms ,X + and , Y + indicate the use of a powerful capability of the 
index registers: the auto-increment mode. The contents of the index 
register are first used as the address of the operand. Then, after the 
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instruction is finished, the index register is incremented by one. In the 
case of the instruction that specifies "add with carry to A," the Y register 
is used as a simple index register. The counter is decremented and the 
addition loop is executed until it reaches the value 0: 

DEC 

BNE 

B 
PLUS 

B - 1  

LOOP UNTIL B = 0 

By using the auto-increment mode with the index registers, we can 
speed up and simplify the program. In this mode, the instruction first 
executes using the contents of the index register as the address of the 
operand, and then after the instruction is finished, and before the next 

COUNT 

N2 N2 

Nl j=w 
Nl 

----------- Figure 3.ll: Packed BCD Add: Nl - N2 + Nl 



72 PROGRAMMING THE 6809 

instruction starts, the index register is incremented. See Chapter 5 for 
more information on addressing modes. 

Instruction Types 

We have now used two types of microprocessor instructions: LD, 
which loads a register from a memory address, and ST, which stores its 
contents at the specified address. These are data transfer instructions. 
We have also used arithmetic instructions, including ADD, SUB, ADC 
and SBC, that perform addition and subtraction operations. Later in this 
chapter we will introduce even more ALU instructions. 

There are other types of instructions also available within the micro­
processor. For example, there is the "jump" instruction. We can use this 
instruction to modify the order in which a program is executed. In fact, 
we use it later on in an example showing division. Note that jump instruc­
tions are often called "branch" instructions for conditional situations, 
that is, for situations where there is a logical choice in the program. The 
"branch" derives its name from the analogy to a tree, and implies a fork 
in the representation of the program. 

MULTIPLICATION 

Let us now examine a more complex arithmetic problem: the 
multiplication of binary numbers. We will begin by examining a usual 
decimal multiplication. We will multiply 12 by 23: 

12 (multiplicand) 
X 23 (multiplier) 

36 (partial product) 
+ 24 

= 276 (final result) 

The multiplication is performed by first multiplying the right-most digit 
of the multiplier by the multiplicand, i.e., 3 X 12 (the partial product is 
36); and then by multiplying the next digit of the multiplier, i.e., 2, by 12. 
24 is then added to the partial product. 

There is, however, one more operation: 24 is offset to the left (or shifted 
left) by one position. Equivalently, we could say that the partial product 
(36) was shifted right by one position before adding. The two numbers, 
correctly shifted, are then added, and the sum is 276. That was easy. 
Let's look at an example of binary multiplication; it is performed in 
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exactly the same way. Let's multiply 5 X 3: 

(5) 101 (multiplicand) 
(3) X 011 (multiplier) 

101 (partial product) 
101 

OOO 

(15) 01111 (final result) 

The 6809 is one of the few microprocessors with a multiply instruction. 
This instruction multiplies the A accumulator by the B accumulator and 
stores the result in the D accumulator. The results of an 8-bit by 8-bit 
multiplication may require up to 16 bits. This is because 28 X 28 = 216• A 

16-bit register must, therefore, be reserved forthe result. The contents of 
A and B are, of course, lost whenever a MUL instruction is performed. 

Multiplying 16-Bit Numbers 

At this point, doing an 6-bit multiply would be too easy. We'll leave it 
as an exercise and go on to perform a 16-bit multiply. As usual, our two 
numbers, OPl and OP2, are stored at addresses ADRl and ADR2. The 
memory layout is assumed to be that of Figure 3. 7, except that ADR3 has 
four bytes, instead of two. 

The 16-bit multiplication requires four 8-bit multiplications in order 
to obtain the correct result. This process is developed by using the rules 
of factoring and associativity. Figure 3.12 shows a diagram displaying 
16 X 16 multiplication using bytes. 

In Figure 3.12, the two low bytes of OP1 and OP2 are first multiplied. 
Then the low byte of OP2 and the high byte of OPl are multiplied. This 
product is aligned 8-bits left because the operation is really OP1H X 28 
X OP2L, and is, in fact, a 24-bit number with all zeroes in the low 8-bits. 
The low byte of OP1 is multiplied by the high byte of OP2, and the result 
is a 24-bit number with a low byte of zero. OPlH is multiplied by OP2H 
and the 16-bit result is aligned 16 bits left of the first partial product. This 
is because OPlH X 26 X OP2H X 28 is, in fact, a 32-bit number with the 
lowest two bytes zero. Here is the program for this 16 X 16 multiplication: 

CLR ADR3 

CLR ADR3+1 

LDA 

LDB 

MUL 

ADR1 + 1  

ADR2+1 

CLEAR HIGH 16 BITS 

LOWBYTEOPl 

LOWBYTE OP2 

OPlL X OP2L 
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STD ADR3 +2 

LOA ADRl 

LOB ADR2+1 

MUL 

ADDO ADR3+1 

STD ADR3+ 1  

LOA ADRl+l 

LOB ADR2 

MUL 

ADDO ADR3+1 

STD ADR3+1 

BCC NOCARY 

.INC ADR3 

NOCARY LOA ADR1 

LOB ADR2 

MUL 

ADDO ADR3 

STD ADR3 

FIRST PARTIAL PRODUCT 

HIGH BYTE OPl 

LOWBYTE OP2 

OPlH X OP2L 

SECOND HIGHEST BYTE 

LOWBYTEOPl 

HIGH BYTE OP2 

OPlL X OP2H 

LOW 16 BITS DONE 

IF NO CARRY SKIP NEXT 

ADD CARRY BIT 

HIGH BYTE OP1 

HIGH BYTE OP2 

OP1H X OP2H 

HIGHEST BYTE 

FINAL VALUE HIGH 16 BITS 

This program makes use of the dual role of the accumulators as 8- or 
16-bit registers. The MUL instruction puts the results into the 16-bit D 
accumulator. If an 8-bit number is added, the B accumulator is used. If 
a 16-bit number is added, the D accumulator is used. The only time a 
problem may occur is if a carry is created from the 16-bit addition to D. 
In this case, the next multiply might destroy this carry, because the 
multiply instruction sets the carry bit, if bit 7 of accumulator B is set. 
(This is useful for rounding off numbers.) 

We must store the carry until it is needed. We will store it in the highest 
byte of the result at ADR3, which was initialized to zero at the beginning 
of the program. We will store it, using the following instructions: 

BCC 

INC 

NOCARY LOA 

NOCARY 

ADR3 

ADR1 

IF NO CARRY SKIP NEXT 

STORE A CARRY BIT 

HIGH BYTE OF OPl 

The BCC instruction branches if there is no carry bit set. This means 
execution of the program continues at the label specified in the instruc­
tion (in this case, NOCARY). if the carry bit is clear or 0. If the carry bit is 
set, execution continues at the next instruction. 
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BINARY DIVISION 

Division is a more complex problem because there is no divide instruc­
tion in the 6809. We need to develop an algorithm for writing a division 
program for the 6809. Let's start by examining a simple decimal division. 
Let's divide 254 by 12. 

21 (quotient) 
(divisor) 121254 (dividend) 

24 

14 
12 

2 (remainder) 

We perform the division by subtracting the largest possible multiple of 
the divisor from the left-most digits of the dividend. The new dividend is 

OPlH OPll I 
15 8 7 0 

OP2H OP2L I 
15 8 7 0 

OPll � OP2L I 
15 8 7 0 

OPlH � OP2L I 
15 8 7 0 

OPll � OP2H I 
15 8 7 0 

OPlH + OP2H I 
15 8 7 0 

OPl � OP2 I 
31 24 23 16 15 8 7 0 

Figure 3.12: A 16 X 16 Multiplication Using Bytes 
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14. The multiplier of the divisor becomes the second digit of the quotient. 
The remainder is the result of the last subtraction. 

We make trial subtractions or comparisons in order to find the largest 
multiple of the divisor that can be subtracted from the dividend. It should 
be noted that in determining the first digit of the quotient, the actual 
number is 20, not 2, and the number subtracted from the dividend is 240, 
not 24. By leaving the zeroes out, we make notation convenient, but we 
must not lose sight of what is actually being done. 

Binary division is performed in exactly the same way as is decimal 
division. Let's look at an example. We divide 10 by 3: 

0011 (quotient) 
(divisor) 11lto10 (dividend) 

11 
100 

11 

1 (remainder) 

To perform the division, we operate exactly as we have done before. 
The formal representation of this algorithm appears in Figure 3.13. It is 
a flowchart-our first flowchart. Let's examine it. 

This flowchart is a symbolic representation of the algorithm we have 
just presented. Every rectangle represents an order to be carried out and 
will be translated into one or more program instructions. Every diamond­
shaped symbol represents a test being performed, i.e., a branching point 
in the program. If the test succeeds, we will branch to a specified loca­
tion. If it does not, we will branch to another location. We will explain 
the concept of branching later, in the program itself. You should now 
examine the flowchart and ascertain that it does, indeed, represent the 
algorithm presented. 

Note the arrow coming out of the last diamond at the bottom of the 
flowchart and going back to the second rectangle at the top. It represents 
the fact that this portion of the flowchart is executed eight times, once 
for every bit in the divisor. This type of situation, where execution 
restarts at the same point, is called a program loop, for obvious reasons. 

8-By-8 Division 

We will now translate the flowchart in Figure 3.13 into a program for 
the 6809. The complete program appears following the flowchart. Let's 
study it in detail. Note that each box in the flowchart is translated into 
one or more instructions. (In this program we assume that DVS and 
DVD already have a value.) 
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NO 

INITIALIZE 
QUOTIENT=O 
COUNTER=8 

SHIFT LEFT 
DIVIDEND 

(WITH 8 LEADING O's) 
AND QUOTIENT 

SUBTRACT LEFT 
(DIVI DENO)-DIVISOR 

QUOTIENT= QUOTIENT+ 1 

COUNTER= COUNTER - 1 

YES 

END 

(REMAINDER IN LEFT (DIVIDEND)) 

YES 

�---------Figure 3.13: 8-Bit Binary Division Flowchart 
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DIV88 LDA #8 
STA COUNAD 

LDB DVD AD 
CLRA 
CLR QUOTAD 

DIVD ASL QUOTAD 

ASLB 

ROLA 

CMPA DVSAD 

BLO NOSUB 

SUBA DVSAD 

INC QUOTAD 

NOSUB · DEC COUNAD 

BNE DIVD 

STA REMAD 

SHIFT COUNTER IS 8 

LOAD DNIDEND IN B 
8 LEADING o·s IN DVD 
SET QUOTIENT TO O 

SHIFT QUOTIENT LEFT 
SHIFT DNIDEND INTO A 

CHECK DVD< DVS 

BRANCH IF DVD < DVS 
DIVIDEND-DIVISOR 
QUOTIENT=QUOTIENT + 1 
COUNT=COUNT - 1 

LOOP UNTIL COUNT = 0 

STORE REMAINDER 

Figure 3.14 shows the registers and memory locations used by the 
program. 

REGISTERS 

A B 

c 

MEMORY 

DVD DVD AD 

DVS DVSAD 

COUNT COUNAD 

QUOTIENT QUOTAD 

REMAINDER REMAD 

-Figure 3.14: 8-By-8 Division-Registers and Memory--------
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The two accumulators of the 6809 and five memory locations are used 
for this division program. The 8-bit divisor, DVS, is assumed to reside at 
memory address DVSAD. The dividend, DVD, is assumed to reside at 
memory address DVDAD. The shift count is loaded with the number 8. 
The B accumulator is loaded with the dividend, and the A accumulator 
and the quotient are cleared. 

Accumulators A and B will hold the dividend as it is shifted left, one 
bit at a time. The result of an 8-bit by 8-bit division may require an 8-bit 
quotient and an 8-bit remainder. As shown in Figure 3.14, two memory 
locations are reserved for these results. 

The first step is to load the shift counter and accumulator with the 
appropriate contents and to clear A and the quotient, as specified by 
the flowchart in Figure 3.13. This is accomplished by the following 
instructions: 

DIV88 LDA 

STA 

#8 

COUNAD 

LDB DVD AD 

CLRA 

CLR QUOTAD 

The first three instructions load the shift counter with 8, and the ac­
cumulator B with the dividend. The next two instructions clear the 
accumulator A and the quotient. 

In this division program, the dividend and quotient are shifted left, 
before the dividend and divisor are compared. The dividend, DVD, is 
shifted into the A accumulator at each step. Accumulator A must, 
therefore, be initialized to the value 0. This is accomplished by the fourth 
instruction. Finally, the fifth instruction sets the contents of the quotient 
too. 

Referring back to the flowchart in Figure 3.13, the next step is to move 
the quotient and dividend one bit to the left. After this is done, the divisor 
should be checked against the dividend to see if a subtraction takes 
place. This is accomplished by the next five instructions: 

DIVD ASL 

ASLB 

ROLA 

CMPA 

BLO 

QUOTAD 

DVSAD 

NOSUB 

A new type of operation, shift, is introduced here in the instruction 
ASL. It stands for "arithmetic shift left." This operation is performed in 
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the arithmetic and logical unit. A shift left always puts a 0 into bit 0. 
(There are different types of shift operations; we describe them in the 
next chapter.) 

Figure 3.15 illustrates the effect of the ASL QUOT AD with an arrow 
that goes from the quotient to the square that designates the carry bit C. 
The right-most bit of the quotient is set to 0. 

The next two instructions shift the dividend left. The first, ASLB, 
operates like the previous instruction, except that the operand is the B 
accumulator. As an example, let's assume that the initial contents of B 
were 00001001. After the ASL instruction, the contents of B are 00010010 
and the content of the carry bit is O. 

However, looking back at Figure 3.14, we want to shift the most 
significant bit (the MSB) of B directly into A; but, there is no instruction 
that will shift a double accumulator in one operation. Once the contents 
of B have been shifted, the left-most bit has "fallen into" the carry bit. 
We must collect this bit from the carry bit and shift it into the A accumu­
lator. This is accomplished by the ROLA instruction. 

ROL is still another type of shift operation. It stands for "rotate left." 
In a rotation operation, as opposed to a shift operation, the bit coming into 
the register holds the contents of the carry bit C (see Figure 3.16). This is 
exactly what we want. The contents of the carry bit C are loaded into the 
right-most part of A, and we have effectively transferred the left-most 
bit of B. 

Figure 3.17 illustrates this sequence of instructions. The bit in the 
most significant position of B, marked by an X, is first transferred into 
the carry bit, then into the least significant position of A. Effectively, it is 
shifted from B into A. 

The next instruction, CMPA DVSAD, is a compare operation. It means 
"compare the contents of the accumulator" (A) to the contents of DVSAD. 
This instruction subtracts the contents of DVSAD, from A. It is actually 
subtracting the divisor from the dividend shifted into A from B. It is not, 
however, a normal subtraction, because the contents of A are not changed. 
Only the condition codes are affected. For example, if A equals DVS, the 

���t--B-IT_7--t
....._ ___ QUO_T_IENT ___ __,�l�----o 

c 

Figure 3.15: Shift Left Quotient----------------' 
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Z.bit in the condition code register is set. The compare operation does an 
internal subtraction of two operands, a memory location is subtracted 
from a register, and the condition codes are set according to the result of 
the subtraction. The operands are not changed. The condition codes are 
now ready for use by a branch instruction. 

SHIFT LEFT 

0 

ROTATE LEFT 

------------------Figure 3.16: Shi.ft and Rotate-

c 

A B 
x----' '------4 x 

'--------------Figure 3.17: Shifting from B into A 
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The instruction, BLO NOSUB, is a branch operation. It means "branch 
on lower" (C = 1) to the address Oabel) NOSUB. If the result of a previous 
compare operation indicates that the accumulator A is less than the 
divisor, then the program branches to the address NOSUB. If the accum­
ulator A is greater than or equal to the divisor, then no branch occurs, 
and the next sequential instruction is executed (i.e., the instruction 
"SUBA DVSAD" is executed). 

The instruction SUBA DVSAD specifies that the contents of DVSAD 
are to be subtracted from A. This subtracts the divisor from the dividend. 
A 1 is then added to the quotient by the instruction INC QUOT AD. 

At this point, referring back to the flowchait in Figure 3.13, we must 
check to see if all eight bits of the dividend have been shifted. We can do 
this by decrementing the bit counter, contained in the memory at 
COUNAD (see the previous program). The register is decremented by 
the instruction: 

DEC COUNAD 

This decrement instruction has the obvious effect. 
Finally, we must check to see whether or not the counter has been 

decremented to the value zero. We can do this by checking the value of 
the Z bit. Recall that the Z (zero) condition code indicates whether or not 
the previous arithmetic operation (such as a DEC operation) has pro­
duced a zero result. If the counter is not 0, the operation is not finished, 
and we must execute the program loop again. This is accomplished by 
the next instruction: 

BNE DIVD 

This branch instruction specifies that whenever the Z bit is not set (NE 
means " not equal to zero"), a branch occurs to location DIVD. This is the 
program loop, which is executed repeatedly until the counter is 
decremented to the value of 0. Whenever the counter decrements to the 
value 0, the Z bit is set, and the BNE DIVD instruction fails. This results 
in the execution of the next sequential instruction, namely: 

STA REMAD 

This instruction merely saves the contents of A, i.e., the remainder, at 
the address REMAD, the address specified for the remainder. 

Note that, in most cases, the program that we have just developed is a 
subroutine and the final instruction in the subroutine is RTS (return 
from subroutine). We explain the subroutine mechanism later in this 
chapter. 
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Important Self-Test 

This program is the first significant program we have encountered so 
far. It includes many different types of instructions, including transfer 
instructions (LD, ST), arithmetic operations (SUB), logical operations 
(ASL, ROL), and branch operations (BLO, BNE). It also implements a 
program loop, in which the lower nine instructions, starting at address 
DIVD, are executed repeatedly. It is longer and more complex than the 
other arithmetic programs we have developed, therefore, you should 
study it carefully. 

· 

To test your understanding of the program, try the following exercise, 
and correctly complete it before proceeding. It will be your only real 
proof that you have understood the concepts presented so far. If you 
obtain a correct result, then you have proven that you understand how 
instructions manipulate information in the microprocessor, transfer 
this information between the memory and registers, and process it. If 
you do not obtain the correct result, or if you do not do this exercise, it is 
likely that you will experience difficulties later on when you begin 
writing programs yourself. Learning to program requires practice. 
Please pause now, take a piece of paper, or use the illustration in Figure 
3.18, and complete the following exercise. 

A Sample Exercise 

Every time a program is written, it should be verified by hand, to 
ascertain that the results are correct. The goal of this exercise is to do just 
that, by accurately completing the table presented in Figure 3.18. 

You may want to write directly on the table, or you may want to make a 
copy of it. For this exercise, you must determine the contents of every 
relevant register and memory location in the 6809 after the execution of 
each instruction in the program. Figure 3.19 shows the registers and 
memory locations used by the previous program. From left to right, they 
are accumulators A and B, the carry C, and the memory locations for the 
quotient and counter. If applicable, you should first complete the label 
on the left side of this table and then fill in the instructions being executed; 
then, on the right side of the table, you should fill in the contents of each 
register after each instruction has been executed. If you do not know the 
contents of a register, use dashes. 

We will start by filling in the table together. After that you must fill in 
the rest of the form by yourself. The first line appears in Figure 3.19. We 
will assume that we are dividing 28 (DVD) by 4 (DVS). 
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LABEL INSTRUCTION A 8 c QUOTIENT COUNTER 
(CARRY) 

. 

-Figure 3.18: Form for Division Exercise------------

LABEL INSTRUCTION A B c QUOTIENT COUNTER 

_,_ -- - -- --

DIV88 LDA #8  00 -- - -- --

-Figure 3.19: Division-After One Instruction-----------
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The first instruction to be executed is LOA #8. The accumulator A is 
loaded with the number 8. This is the number of times the divide loop 
needs to be executed. After execution of this instruction, the contents of 
A are set to 8. Note that the contents of B, the quotient, and the counter 
are still undefined (this is indicated by dashes). 

The LO instruction does not condition the carry bit, so the contents of 
the carry bit, C, are undefined as indicated by the dash. As shown in 
Figure 3.20, the next instruction loads 8 into the counter. 

Figure 3.21 shows the situation after the first five instructions of the 
program have been executed (just before the DIVO). 

The ASLB instruction performs an arithmetic shift left, and the left­
most bit of B falls into the carry bit. Figure 3.22 shows that the contents 
of B after the shift is 00111000. The carry bit, C, is now set to O. The other 
regfsters are unchanged by this operation. Now that you see how the chart 
works, you should complete it. 

Figure 3.23 shows a second iteration of the divide loop. 

LABEL INSTRUCTION A B c QUOTIENT COUNTER 

- - - - -

DIV88 LDA/18 06 - - - -

STACOUNAD 08 - - - 08 

---------Figure 3.20: Division-After Two In1tructions -

LABEL INSTRUCTION A B c QUOTIENT COUNTER 

- - - - -

DIV88 LDA#S 06 - - - -

STACOUNAD 08 -- - -- 06 
LOB DVDAD 08 IC - -- 08 

CLRA 00 IC - - 08 

CLR QUOTAD 00 IC - 00 08 

--------- Figure 3.21: Divi1ion-After Five Inltructiom -
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Programming Alternatives 

The program we have just finished could have been written in several 
different ways. As a general rule, even the programmer can usually find 
ways to modify, and often improve, a program. For example, we have 
used an algorithm that uses shifts and subtractions; however, we could 
have used a method that uses only repeated subtractions until the 
divisor is larger than the dividend. The quotient is incremented by one 
for each subtraction done. This method is simpler than the first, because 
it is exactly the definition of division. 

Improved Division Program 

The program just developed is a straightforward translation of the algo­
rithm to code. However, effective programming requires close attention to 
detail, and the length or execution time of a program can often be reduced. 
We will now study alternatives for improving this basic program. 

To improve our division program, note that three different shift opera­
tions are used in the initial program. The quotient is shifted left, and then 
the dividend is shifted left in two operations, by first shifting accumulator 

LABEL INSTRUCTION A B c QUOTIENT COUNTER 

- -- - - -
DIV88 LDA#8 08 -- - - -

STACOUNAD 08 - - - 08 
LDBDVDAD 08 IC - - -
aRA 00 IC - - 08 
aRQUOTAD 00 IC - 00 08 

DIVD ASL QUOTAD 00 IC 0 00 08 
ASlB 00 38 0 00 08 
ROlA 00 38 0 00 08 
CMPADVSAD 00 38 1 00 08 
BLO NOSUB 00 38 1 00 08 

NOSUB DECCOUNAD 00 38 1 00 07 
BNEDIVD 00 38 1 00 07 

-Figure a.22: One Poss Through the Loop------------
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B, then rotating accumulator A to the left. Such shifting is time consuming. 
However, there is a standard programming "trick" used in the case of 
division that is based on the following observation: every time the dividend 
is shifted one bit position, another bit position becomes available in the 
dividend register. Each time the dividend shifts left, a bit position becomes 
available on the right. Simultaneously, it can be observed that the first 
quotient (or result) uses, at most, 1 bit. We can use the bit position just 
vacated by the dividend, to store the first bit of the result. 

After the next shift of the dividend, the size of the quotient is increased 
by one bit again. In other words, the bit positions freed by the dividend 
can be used as the quotient. To improve this program, we will make the 
A and B accumulators both the dividend and quotient. 

LABEL INSTRUCTION A B c QUOTIENT COUNTER 

-- -- - -- --

OIV88 LOAIS 08 -- - - -

STACOUNAO 08 - - - 08 

LDB OVOAO 08 IC - - -

QRA ()() IC - - 08 

QRQUOTAO 00 IC - ()() 08 

OIVO ASlQUOTAO ()() IC 0 ()() 08 

ASlB ()() 38 0 ()() 08 

ROLA ()() 38 0 ()() 08 

CMPAOVSAO ()() 38 1 ()() 08 

BlO NOSUB ()() 38 1 ()() 08 

NOSUB OECCOUNAO ()() 38 1 ()() 07 
BNEOIVO ()() 38 1 ()() 07 

DIVO ASlQUOTAO ()() 38 0 ()() 07 
ASLB ()() 70 0 ()() 07 

ROLA ()() 70 0 ()() 07 
CMPAOVSAO ()() 70 1 ()() 07 
BLONOSUB ()() 70 1 00 07 

NOSUB OECCOUNAO 00 70 1 ()() 06 
BNEOIVO ()() 70 1 ()() 06 

----------Figure 3.23: Second Pass Throush the Loop-
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The changed program appears below. Most of the program remains 
unchanged; however, there is a change, in that the quotient is not cleared 
during initialization and is in accumulator B at the end. 

DIV88 LOA #8 

STA COUNAD 

LOB DVD AD 

CLRA 

DIVD ASLB SHIFT LEFT DVD AND QUOTIENT 

ROLA 

CMPA DVSAD 

.BLO NOSUB 

SUBA DVSAD 

INCB INCREMENT QUOTIENT 

NOSUB DEC COUNAD 

BNE DIVD 

STD RE SAD STORE QUOTIENT AND 
REMAINDER 

When we compare this program to the previous one, we see that the 
length of the division loop (the number of instructions between DIVD 
and the branch) has been reduced. This program has fewer instructions, 
which usually results in faster execution. This shows the advantage of 
selecting the correct registers to contain the information. 

A straightforward design generally results in a program that works, 
although it does not necessarily result in a program that is optimized. It 
is, therefore, important to understand and use the available registers 
and instructions in the best possible way. This program illustrates a 
rational approach to register and instruction selection for maximum 
efficiency. 

16-By-16 Bit Division 

Our 16-bit division program is very similar to the 8-bit division pro­
gram. The same algorithm is used; however, for the 16-bit program the A 
and B registers are treated together, as the D accumulator, whenever 
possible. Figure 3.24 shows the layout of memory. Both the quotient and 
remainder may be up to 16-bits long. The quotient is formed in the two 
memory locations of the dividend, as the dividend is shifted out. Here is 
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our 16-bit division program: 

DIV16 LDA 1116 

STA COUNAD 

CLRA 

CLRB 

DIVD ASL DVDAD+l 

ROL DVDAD 

ROLB 

ROLA 

CMPD DVSAD 

BLO NOSUB 

SUBD DVSAD 

INC DVDAD+ 1  

NOSUB DEC COUNAD 

BNE DIVD 

STD RE MAD 

A B 

....._______.I _I � 

D 
c 

SHIFT COUNTER IS 16 

CLEAR ACCUMULATORS 

SHIFT DIVIDEND AND QUOTIENT 

SHIFT DIVIDEND INTO B 

CHECK DVD > DVS 

BRANCH IF DVD< DVS 

DIVIDEND - DIVISOR 

INCREMENT QUOTIENT LOW 
HALF 

COUNT = COUNT - 1 

LOOP UNTIL COUNT = 0 
STORE REMAINDER 

DVOH/QUOT H 
DVOVQUOT L 

DVSH 
DVSL 

COUNT 

REMH 
REMl 

DVD AD 
DVOAD+ l  

DVSAD 

COUNAD 

REMAD 

---- Figure 3.24: 16-By-16 Division-Register and Memory Allocation-
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The division programs we have presented so far have two possible 
flaws. One is that there is no check for division by zero; division by zero 
is undefined, and, therefore, it is an error condition. The divisor should be 
checked at the beginning of the program. If it is zero, a branch should 
be made to a code that handles the error. The other problem is that all of 
the numbers have been assumed to be unsigned numbers. This problem 
is usually rectified by determining the sign of the result from the signs of 
the dividend and the divisor before the division is done. Then the 
dividend and the divisor are converted to positive numbers and the divi­
sion program is executed. The sign of the result is adjusted to the sign 
determined before the division was performed. 

WGICAL OPERATIONS 

The other class of instructions, which can be executed by the ALU in­
side the microprocessor, is the set of logical instructions. These include 
AND, OR, and exclusive OR (EOR). In addition, one can also include the 
shift and rotate operations, which have already been utilized, and the 
comparison instruction, CMP. We will describe the AND, OR, and EOR 
instructions in Chapter 4. 

We will now develop a brief program that checks whether a memory 
location, called LOC, contains the value 0, the value 1, or something else. 
This program uses the comparison instruction, and performs a series of 
logical tests. Depending on the result of the comparison, some segment 
will then be executed. 

Let's look at the program: 

NONEFOUND 

ZERO 

ONE 

LOA 

CMPA 

BEQ 

CMPA 

BEQ 

LOC 

#$00 

ZERO 

#$01 

ONE 

READ CHARACTER IN LOC 

COMPARE TO O 

IS IT A O? 

COMPARETOl 

IS IT A 1? 

The first instruction, LDA LOC, reads the contents of memory loca­
tion LOC and loads it into accumulator A. The data in LOC is the 
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character we want to test. The instruction 

CMPA #$00 

compares the contents of A to the hexadecimal value 00 (i.e., the bit pattern 
00000000). If this comparison instruction is successful, the Z bit in the 
condition code register is set to the value 1. This bit is then tested by the 
next branch instruction: 

BEQ ZERO 

If this comparison is successful, i.e., if the Z bit has been set to one, 
then the branch succeeds. The program then jumps to the address 
ZERO. If the test fails, the next sequential instructions are executed: 

CMPA #$01 

BEQ ONE 

Similarly, the next branch instruction branches to location ONE, if the 
comparison succeeds. If none of the comparisons succeed, then the 
instruction at location NONEFOUND is executed: 

NONEFOUND 

This program demonstrates the value of the comparison instruction 
followed by a branch-a combination used in many of the following 
programs. 

INSTRUCTION SUMMARY 

We have now used most of the important instructions of the 6809. We 
have transferred values between the memory and registers. We have 
performed arithmetic and logical operations on data and introduced the 
program loop. We have tested data, and depending on the results of these 
tests, we have executed various portions of the program. In particular, 
we have made full use of the special 6809 features, such as the 16-bit 
accumulator and the multiply instructions. We will introduce other 
special instructions, PSH, PUL, and SWI, throughout the remainder of 
this book. 

We will now examine another important programming structure, the 
subroutine. 
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SUBROUTINES 

In concept, a subroutine is simply a block of instructions named by the 
programmer. From a more practical point of view, a subroutine must 
start with a label, which identifies it to the assembler. It is terminated by 
a special instruction, called a return. We will now illustrate the use of a 
subroutine in order to demonstrate its value. We will then examine how 
it is actually implemented. 

Figure 3.25 illustrates how a subroutine is used. The main program 
appears on the left of the illustration and the subroutine appears, sym­
bolically, on the right. Let's examine how the subroutine works. In this 
program, the lines of the main program are executed successively until a 
new instruction, CALL SUB, is met. This special instruction is the 
subroutine oa11 and results in a transfer to the subroutine. Thus, the next 
instruction to be executed after the CALL SUB is the first instruction in 
the subroutine. This is illustrated by arrow 1 in the illustration. 

MAIN PROGRAM 

j 
CALL SUB 

CALL SUB 

8 

...i ..,..., I 
,,.. 

...... I 
........ 

6 1 2 1  

I 
I 

SUBROUTINE 

RETURN 

Figure 3.25: Subroutine Qills ------------------' 
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The subprogram within the subroutine executes like any other pro­
gram, as indicated by arrow 2. (We will assume that the subroutine does 
not contain any other calls.) The last instruction of this subroutine is a 
RETURN. This is a special instruction which causes a return to the 
main program. The next instruction to be executed after the RETURN is 
the one following the CALL SUB in the main program. This is illustrated 
by arrow 3 in the illustration. Program execution continues then, as 
illustrated by arrow 4. 

Later, a second CALL SUB appears in the body of the main program. 
A new transfer occurs, as shown by arrow 5. This means that the body of 
the subroutine is again executed, following the CALL SUB instruction. 

Whenever a RETURN is encountered within a subroutine, a return 
occurs to the instruction that follows the CALL SUB being executed. 
This is illustrated by arrow 7. Following the return to the main program, 
program execution proceeds normally, as illustrated by arrow 8. 

The effect of the two special instructions, CALL SUB and RETURN, 
should now be clear. What is the value of the subroutine? The essential 
value of the subroutine is that it can be called from any number of points 
in the main program, and used repeatedly without having to rewrite it. 
An advantage of this approach is that it saves memory space, since the 
subroutine doesn't need to be rewritten each time. Another advantage is 
that the programmer can design a specific subroutine only once, and 
then use it repeatedly. This is a significant simplification in program 
design. 

The disadvantage of a subroutine should be clear just by examining 
the flow of execution between the main program and the subroutine. 
A subroutine results in a slower execution, since extra instructions must 
be executed (i.e., the CALL SUB and the RETURN). 

Implementation of the Subroutine Mechanism 

We will now examine how the two special instructions, CALL SUB 
and RETURN, are implemented internally within the processor. The 
CALL SUB instruction causes the next instruction to be fetched at a new 
address. Recall that this address is contained in the program counter 
(PC). This means that CALL SUB substitutes new contents into register 
PC. In other words, the start address of the subroutine is loaded into the 
program counter. Is that really sufficient? 

To answer this question, let's consider the other special instruction: 
RETURN. This instruction causes a return to the instruction that 
follows the CALL SUB. This is possible only if the address of this 
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instruction (that is, the value of the program counter at the time the 
CALL SUB was executed), has been preserved somewhere. 

The next problem is with saving this return address: It must always be 
saved in a location where it will not be erased. 

We will now, however, consider the situation illustrated in Figure 3.26, 
where subroutine 1 contains a call to SUB2. Our mechanism must work in 
this case, as well as in other cases, where there may be more than two 
subroutines, say n "nested" calls. Whenever a new CALL is encountered, 
the mechanism that stores the return address must again store the program 
counter. Therefore, we need at least 2n memory locations for this 
mechanism. Additionally, we need to return from SUB2 first, and SUB1 
next. In other words, we need a structure that can preserve the chrono­
logical order in which addresses were saved. This structure is the stack. 

Figure 3.'27 shows the actual contents of the stack during successive 
subroutine calls. The memory layout of the program appears in Figure 3.28. 
Let's examine the main program first. The first call, CALL SUB1, is en­
countered at address 100. We will assume that, in this microprocessor, 
the subroutine call uses 3 bytes. The next sequential address is, 
therefore, not 101, but 103. The CALL instruction uses addresses 100, 
101, and 102. Because the control unit of the 6809 "knows" that the in­
struction is 3-bytes long, the value of the program counter, when the call 
has been completely decoded, is 103. The effect of the call is to load the 

MAIN 

1 SUBl SUB2 

CALL SUBl CALL SUB2 

RETURN RETURN 

Figure 3.26: Nested Cans--------------------' 
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value 280 in the program counter. 280 is the starting address of SUB 1. In 
SUB1, the subroutine SUB2 (at location 900) is called at time 2 from the 
memory address 300. This pushes 303, the return address, to SUB1 on 
the stack. 

We are now ready to demonstrate the effect of the RETURN instruc­
tion and the correct operation of the stack mechanism. Execution proceeds 
within SUB2 until the RETURN instruction is encountered at time 3. The 

STACK TIME Q) TIME @ TIME @ TIME © I 
103 103 103 

303 

'---------------Figure 3.27: Staclc Versus Time 

ADDRESS (MAIN) 

100 CALL SUBl 
103 

300 
303 
© 

(SUBl) 

(SUB2) 
@ 900 CALLSUB2 

RETURN 

RETURN 

'----------------Figure 3.28: The Subroutine Calls 
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RETURN instruction simply pops the top of the stack into the program 
counter. In other words, the program counter is restored to the value it 
had prior to the entry into the subroutine. In our example, the top of the 
stack is 303. Figure 3.27 shows that, at time 3, value 303 is removed from 
the stack and put back into the program counter. As a result, instruction 
execution proceeds from address 303. At time 4, the RETURN of SUB 1 is 
encountered. The value on top of the stack is 103. It is popped and installed 
in the program counter. As a result, program execution proceeds from 
location 103 in the main program. That is, indeed, the effect that we 
wanted. Figure 3.27 shows that at time 4 the stack is again empty. Thus, 
the mechanism to store return addresses works. 

The subroutine call mechanism works up to the maximum dimension 
of the stack. That is why early microprocessors with 4- or 8-register 
stacks were essentially limited to 4 or 8 levels of subroutine calls. 

Note that for clarity, Figures 3.25 and 3.26 show the subroutines to the 
right of the main program. In reality, the subroutines are typed as regular 
instructions in the program. When producing the listing of a complete 
program, the subroutines may be listed either at the beginning, middle, 
or end of the text. For this reason, they must be identified, and are, 
therefore, preceded by a label. 

6809 Subroutines 

We have now discussed the basic concepts of subroutines. We have 
seen that a stack is required in order to implement this mechanism. The 
6809 is equipped with two 16-bit stack-pointer registers: the hardware 
stack, S, and the user stack, U. The subroutine call of the 6809 always 
uses the hardware stack. This stack can reside anywhere within memory 
and may have up to 64K (lK = 1024) bytes, assuming they are available 
for that purpose. In practice, the programmer defines the start address 
for the stack, as well as its maximum dimension, before writing the pro­
gram, so that some memory area is then reserved for the stack. 

In the case of the 6809, there are two subroutine call instructions: JSR 
and BSR. JSR ("jump to subroutine"), like the CALL previously described, 
has the address of the subroutine to jump to, contained in the three-byte 
instruction. However, BSR ("branch to subroutine"), differs from JSR in 
the way the address of the beginning of the subroutine is obtained. In the 
case of BSR, a number stored in the one or two bytes following the in­
struction opcode is added to the PC to form the value of the subroutine 
starting address. A one byte number can branch only + 127 bytes or 
-128 bytes from the program counter. A two byte number allows the 
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program to branch to a subroutine anywhere in memory. This long 
branch to a subroutine instruction is called LBSR. 

The advantage that BSR and LBSR have over JSR is that if the whole 
program is moved in memory, the branch to subroutine instructions will 
still branch to the right address. This is because the start address is 
calculated relative to the present value of the PC, a technique useful for 
implementing programs stored in ROM. However, LBSR executes more 
slowly than JSR. 

There is only one return instruction which means return from 
subroutine: RTS. This return instruction operates as previously described. 
Additionally, there is a special type of return instruction available that is 
used to terminate interrupt routines. This instruction, RTI, is described 
in the sections on the 6809 instructions and interrupts. 

Finally, there are three other specialized subroutine call instructions 
which are analogous to a subroutine call. However, these instructions 
store all the registers, except the hardware stack pointer and the return 
address, on the stack. These instructions, called software interrupts 
(SWI), jump to an address stored in the highest memory locations. They 
are called software interrupts, because their action is the same as an 
interrupt, however, this action is initiated by software. The three SWI 
instructions are SWI, SWI2, SWI3. 

The SWI instruction takes the PC for the beginning of the subroutine 
from addresses FFF A:FFFB. The contents of these two memory locations 
are then transferred to the PC. The new PC does not come from bytes 
following the SWI instruction. SWI2 uses addresses FFF4:FFF5 to contain 
the new PC; and SWl3 uses FFF2:FFF3. 

Subroutine Examples 

Most of the programs developed in this book would normally be written 
as subroutines. For example, the division program is likely to be used by 
many areas of the program. To facilitate and clarify program develop­
ment, it is, therefore, convenient to define a subroutine with a name (for 
example, DIV88). At the end of the subroutine then, we would simply 
add the instruction RTS. 

Recursion 

Recursion indicates that a subroutine is calling itself. Recursive 
programs are not encountered very often. Their main application is in 
artificial intelligence programming. We will not discuss recursion any 
further in this book. 
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Subroutine Parameten 

When calling a subroutine, it is normally expected that the subroutine 
will work on some data. For example, in the case of multiplication, it 
is necessary to transmit two numbers, or parameters, to the subroutine 
that performs the multiplication. For example, the multiplication sub­
routine expects to find the multiplier and the multiplicand in given 
memory locations. Using fixed memory locations illustrates one of 
these three methods of passing parameters: 

1. through registers 

2. through memory 

3. through the stack. 

Let's now e�amine each method. 

Passing Parometers 

Registers are often used to pass parameters. This solution is the most 
advantageous if registers are available, since a fixed memory location is 
not needed; therefore, the subroutine remains memory-independent 
The disadvantage of a fixed memory location is that when it is used, other 
users of the subroutine must be careful to use the same convention. Also, 
other users must make sure that the memory location is indeed 
available. That is why, in many cases, a block of m�mory locations is 
reserved simply for passing parameters among various subroutines. 

Using memory to pass parameters offers greater flexibility, but results 
in poorer performance. It also ties the subroutine to a given memory area. 

Depositing parameters in the stack offers the same advantage as using 
registers: it is memory-independent. The subroutine simply knows that 
it is supposed to receive, say, two parameters which are stored on top of 
the stack. Naturally, this method also has disadvantages. It clutters the 
stack with data and, therefore, reduces the number of possible levels of 
subroutine calls. It also significantly complicates the use of the stack, 
and may require multiple stacks. 

The choice is up to the programmer. Generally, it is advantageous to 
remain independent from actual memory locations as long as possible. 

If registers are not available, a possible solution is the stack. However, 
if a large quantity of information must be passed to a subroutine, this 
information may have to reside directly in the memory. An elegant way 
around the problem of passing a block of data is simply to transmit a 
pointer to the information. Recall that a pointer is the address of the 
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beginning of the block. A pointer can be transmitted in a register, in the 
stack (two-stack locations can be used to store a 16-bit address), or in a 
given memory location(s). 

Finally, if neither of the two solutions is applicable, then an agreement 
may be made with the subroutine that the data will be put at some fixed 
memory location (the "mail-box"). 

Subroutine Libra.ry 

There are definite advantages to structuring portions of a program into 
identifiable subroutines. For example, subroutines can be debugged 
independently, and they can have a mnemonic name. Also, provided that 
they can be used in other areas of the program, they become shareable. It 
becomes advantageous to build a library of useful subroutines. However, 
there is no general panacea in computer programming. Using sub­
routines systematically for any group of instructions that can be grouped 
by function can result in poor efficiency. The alert programmer will 
have to weigh the advantages against the disadvantages. 

SUMMARY 

In this chapter, we have described how information is manipulated by 
instructions inside the 6809. We have introduced increasingly complex 
algorithms, and translated them into programs. We have also examined 
the main types of instructions and important structures, such as program 
loops, stacks and subroutines. 

By now you should have acquired a basic understanding of program­
ming, and the major techn�ques used in standard applications. Let's go 
on to the next chapter and study the instructions available. 
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EXERCISES 

3-1: Referring only to the list of instructions at the end of the book, write a pro­
gram that adds two numbers stored at memory locations LOCl and 
LOC2, and deposits the results at memory location LOC3. 

3-2: Rewrite the addition program in Exercise 3-1, using 16-bit numbers and 
the memory layout indicated in Figure 3.6. 

3-3: Refer to Figure 3.6. Assume now that ADR1 does not point to the lower 
half of OPRl, but, instead, points to the higher port of OPR1, as il­
lustrated in Figure 3.7. Now, write the corresponding program. 

3-4: Write an 8-bit subtraction program. 

3-5: Rewrite the subtraction program you wrote in Exercise 3-4, for 16-bit 
numbers, without using the specialized 16-bit instruction. 

3-6: Can we place the DAA instruction in the 16-bit BCD addition program 
after the instruction ST A ADR? 

3-7: Compare the program in Exercise 3-6 to the one for the 16-bit binary addi­
tion. What is the difference? 

3-8: In the packed BCD addition program, can register Y be incremented with 
the ADCA instruction, instead of STA? 

3-9: Write a subtraction program for a 16-bit BCD number. 

3-10: Divide 28 by 4 in binary, using the flowchart, and verify that the result is 
7. If the result is not 7, try again. It is only when you obtain the correct 
result that you are ready to translate this flowchart into a program. 

3-11: Is it really necessary to clear the quotient at the beginning of an 8-bit divi­
sion program? 

3-12: Compute the speed of a division operation, using the improved 8-bit divi­
sion program. Assume that a branch wlll occur in 50% of the oases. Look 
up the number of cycles required by each instruction in the appendix. 
Assume a clock rate of 2 MHz (one cycle = 2.0 microseconds). 

3-13: Write an 8 x 8 division program using the algorithm which subtracts the 
divisor from the dividend, un til the divisor is larger than the dividend. 
The quotient is incremented each time a subtraction is done. Compare it 
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to the 8-bit division program in this chapter, and determine whether this 
approach is faster or slower than the preceding one. The speeds of the 
6809 instructions are given in the appendix. 

3-14: Add a check for divide by zero to the 8 x 8 division program. 

3-15: Make the 16 x 16 division program so that it can handle signed numbers. 
(Hint: Be careful when complementing a 16-bit number.) 

3-18: Refer to the defmition of the LDA LOC instruction in the next chapter. 
Examine the effect, if any, of this instruction on the condition codes. Is it 
necessary to have the second instruction of the program (CMPA $00) 
illustrating logical operations? 

3-17: Write a program that reads the contents of the memory location 24, and 
branches to an address called ST AR, if there is a • in memory location 24. 
The bit pattern for a • in binary notation is assumed to be represented by 
00101010. 

3-18: If DN88 is used as a subroutine, will it "damage" any internal flags or 
registers? 

3-tOr fa it legal to let a subroutine oall itself? (In other words, will everything 
work even if a subroutine calls itself?) If you are not sure, draw the stock 
and fill it with the successive addresses. Then, look at the registers and 
memory and determine if a problem exists. 

3-20: Look at the execution times of the JSR and RTS instructions in the next 
chapter. Why is the return from a subroutine so much faster than the coll? 
(Hint: if the answer is not obvious, look again at the stack implementation 
of the subroutine mechanism, and analyze the internal operations that 
must be performed.) 



CHAPTER 4 
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THE 6809 
INSTRUCTION SET 

IN THIS CHAPTER, we will first analyze the various classes of in­
structions normally available on a general-purpose microcomputer. We 
will then examine the variety of instructions that the 6809 offers in each 
of these categories, and we will see how each of these instructions affects 
the condition codes. We will also see these instructions used in various 
addressing modes. 

CLASSES OF INSTRUCTIONS 

It is possible to classify instructions in a number of different ways; 
there is no standard set of classifications. For the purpose of this discus­
sion, we will distinguish six main categories of instructions: 

1. data transfers 

2. data processing 

3. data pointer 

4. test and branch 

5. input/output 

6. control. 
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Data Transfers 

Data transfer instructions transfer data between registers, between a 
register and memory, and between a register and an input/output device. 
Some registers even offer specialized transfer instructions that can be 
used to organize data (for example, push and pull operations are provided 
for efficient stack operation). 

Data Processing 

Data processing instructions modify data in the computer. These in-
structions fall into four general categories: 

1. arithmetic operations (for example, plus, minus) 

2. bit manipulation (for example, set, reset) 

3. logical operations (for example, AND, OR, exclusive OR) 

4. skew and shift operations (for example, shift, rotate). 

Data Pointer 

The data pointer instructions perform two tasks: 

1. They can load 16-bit address registers from other registers. 

2. They can add a number to the address register. 

They are useful for establishing blocks of data space in a program during 
execution. 

Test and Branch 

Test instructions test the bits in the condition code register for values 
of 0 or1,  and for combinations of these values. It is, therefore, desirable 
to have as many flags as possible in this register. 

It is useful to have instructions that will test for: 

1. combinations of bits 

2. a single bit position in a word 

3. the value of a register compared to the value of a memory location 
(greater than, less than, or equal to). 
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Generally, microprocessor instructions are limited to testing single bits 
of the flags register; in comparison to other processors, the 6809 offers 
better test facilities than most. 

Branch instructions generally fall into three categories: 

1. the branch, which is restricted to an 8-bit displacement field 

2. the long branch, which specifies a full 1�bit address 

3. the branch to a subroutine, which is used for subroutine calls. 

It is convenient to have two-or even three-way branches, depending, for 
example, on whether one operand of a comparison is equal to, greater 
than, or less than the other operand. It is also convenient to have skip 
operations, that jump forward or backward by a few instructions. Note 
that;i "skip" is equivalent to a "branch." 

Input/Output 

Input/output instructions are specialized instructions for handling 
input/output devices. In practice, most 8-bit microprocessors use 
memory-mapped I/O, whereby the input/output devices are connected 
to the address bus in the same way that the memory chips are connected, 
and they are addressed as such. (That is, they appear to the programmer 
as memory locations.) 

Memory-type operations (to the address of an I/O device) normally re­
quire 3 bytes and are, therefore, slow. For efficient input/output handling 
in such an environment, it is usually desirable to have a short addressing 
mechanism. It is possible to use direct page addressing, which requires 
only two bytes, if the I/O device addresses are all on the same page of 
memory. 

C.Ontrol 

Control instructions supply synchronization signals. These instruc­
tions can suspend or interrupt a program. They can also function as 
breaks or simulated interrupts. (See Chapter 6 for a detailed description 
of interrupts.) 

THE 6809 INSTRUCTION SET 

The 6809 microprocessor was designed as an improved version of the 
6800, and, therefore, offers all of the capabilities of the 6800, plus several 
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new instructions. In view of the limited number of bits available in an 
8-bit opcode, one often wonders how the designers of the 6809 succeeded 
in implementing additional instructions. They did so by using a few unused 
opcodes, and adding an additional byte for indexed operations and for 
those operations that use 16-bit addresses and data. It is for this reason 
that some of the 6809 instructions can occupy up to five bytes in memory. 

In this section, we will review the various instructions of the 6809, we 
will explore their capabilities, and group them into logical categories. 
Let's first examine the capabilities provided by the 6809 in terms of the 
five classes of instructions just described. Later, we will present an in­
dividual, in-depth description of each instruction. 

Data Transfer Instructions on the 6809 

We can classify the data transfer instructions on the 6809 into three 
categories: 8-bit transfers, 16-bit transfers, and stack operations. Let's 
examine each category. 

B-Bit Data Transfers 

Most 6-bit data transfers use load and store instructions to transfer 
6-bit data between memory and the two accumulators. For example, the 
instruction 

LOA ADDR1 

loads accumulator A from memory. Similarly, 

STB AODR1 

stores accumulator B in memory. To transfer data to and from the DP 
and CC registers, we use the transfer register and the exchange register 
instructions. The transfer instruction copies the contents of one register 
to another. For example, the instruction 

TFR A,DP 

transfers the contents of A to the DP register. The exchange instruction 
actually exchanges the contents of two registers. For example, 

EXG A,B 

copies the contents of B to A and of A to B. 
There are several different addressing modes, immediat.e, direct, in­

dexed, and extended, that we can use to access the memory location used 
in a load or store instruction. We discuss them in detail in Chapter 5. 
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We can use the same instructions that we used for 8-bit transfers to 
accomplish 16-bit data transfers. For example, we can use the load and 
store instructions to load five 16-bit registers, D, X, Y, U, and S from 
memory, or to store them in memory. We can also use the TFR instruc­
tion to transfer a 16-bit register to any other 16-bit register, including the 
PC; and we can use the EXG instruction to exchange any two 16-bit 
registers, including the PC. Note that by transferring a new value into 
the PC, or by exchanging the PC with another register, we can cause the 
program to continue execution at the memory location addressed by the 
new value of the PC. 

Stqck Operations 

Recall from Chapter 3 that the stack operations move data between 
the top of the stack and the registers. The 6809 has two stack instruc­
tions: PUSH and PULL. It has two stack pointers: the hardware stack 
pointer, S, and the user stack pointer, U. 

The registers to be pushed onto the stack are indicated in the byte 
immediately following a stack instruction opcode. Each bit in this byte, 
called the postbyte, indicates a register. When a bit is set, that register is 
used in the stack operation (see Figure 4.1). 

The stack pointer that we specify in the instruction opcode cannot be 
pushed or pulled. The two instructions for the S stack pointer are PSHS 
and PULS. PSHU and PULU are the two instructions for the U stack 
pointer. 

7 6 5 4 3 2 0 

PC 
I 

u 
I 

y x 
I 

DP B 
I 

A 
I 

cc 

Push Order -
Postbyte for S Stock Operations 

7 6 5 4 3 2 0 

PC s y 
I 

x 
I 

DP B 
I 

A 
I 

cc 

Push Order-
Postbyte f<>< U Stock Operations 

Figure 4.1: Postbytes for Stock Operations 
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Whenever an 8-bit register is pushed on a stack, the stack pointer is 
decremented by 1. Whenever a 16-bit register is pushed on a stack, the 
stack pointer is decremented by 2. The 16-bit push puts the low byte on 
the stack first. Pull instructions are the same as push except, of course, 
they increment the stack pointer. 

Data Processing Operations on the 6809 

We can classify data processing operations on the 6809 into four 
categories: arithmetic, logical, skew and shift, and bit manipulation. 
Let's examine each category. 

Arithmetic 

As we discussed in Chapter 3, the 6809 provides three main arithmetic 
operations: addition, subtraction, and multiplication. Addition has two 
types of instructions: with carry, ADC, and without, ADD. Similarly, 
subtraction has two types of instructions: with carry, SBC, and without, 
SUB. The 6809 also provides three special instructions: DAA, COM, and 
NEG. The decimal addition adjust instruction, DAA, is used to implement 
BCD operations-usually BCD addition and subtraction. COM and NEG 
are two available complementation instructions. COM computes the 
one's complement of an accumulator or memory location, and NEG 
negates an accumulator or memory location into its complement format 
(two's complement}. (Note: All of these instructions operate on 8-bit 
data. 16-bit operations are more restricted: only ADD and SUB are 
available on the D accumulator.} Finally, there are also increment and 
decrement instructions available, which operate on the accumulators 
and memory in 8-bit data format. We can increment or decrement the 
index registers and stack pointers in 16-bit format, by using an auto­
increment or auto-decrement addressing mode. 

In general, all arithmetic operations modify some of the condition 
codes (see Appendix D}. It is important to note, however, that the INC 
and DEC instructions, which operate on 8-bit accumulators and 
memory locations, do not modify the C or carry bit. This means that if 
we increment or decrement past the value 255, the C bit in the condition 
codes register, CC, will not be changed. If it is necessary to detect a value 
changing from positive to negative, or vice versa, we must test the N and 
V bits. 

Also, it is important to note that the ADD and ADC instructions 
always affect all condition codes. This does not mean that all the condi­
tion codes will necessarily be different after their execution; however, 
they might be. 
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The 6809 provides three logical operations, AND, OR (inclusive) and 
EOR (exclusive), plus a comparison instruction, CMP. The logical 
operations operate on 8-bit data, and the CMP instruction operates on 
8-or 16-bit data. Let's examine these operations. 

AND Each logical operation is characterized by a truth table, which 
expresses the logical value of the result as a function of the inputs. Here 
is the truth table for AND. 

0 AND 0 = 0 

o AND 1 = 0 

1 AND 0 = 0 or 
1 AND 1 = 1 

AND 

I o 
I 1 

0 1 

0 0 

0 1 

The AND operation is characterized by the fact that the output is 1, only 
if both inputs are 1. In other words, if one of the inputs is 0, the result is 
guaranteed to be O. This feature, called masking, is used to zero a bit posi­
tion in a word. 

The AND instruction is useful for clearing or "masking out" one or 
more bit positions in a word. Assume, for example, that we want to zero 
the right-most, four-bit positions in a word. The program is: 

LDA 

ANDA 

WORD WORD CONTAINS 10101010 

%11110000 11110000 IS MASK 

We assume that WORD is equal to 10101010. The result of this program 
is to leave the value 10100000 in the accumulator. % is used to indicate a 
binary value. 

OH The OR instruction is the inclusive OR operation. It is characterized 
by the following truth table: 

0 OR O = o 
o OR 1 = 1 

1 OR O = 1 or 
1 OR 1 = 1 

OR 

I o 
I 1 

0 1 

0 1 
1 1 

The logical OR is characterized by the fact that if one of the operands 
is 1, then the result is always 1. The obvious use of OR, then, is to set any 
bit in a word to 1 .  

Let's set the right-most, four bits of WORD to the value 1. The program is: 

LDA WORD 
ORA %00001111 
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Let's assume that WORD contains 10101010. The final value of the 
accumulator is 10101111. 

EOR EOR stands for "exclusive OR." The exclusive OR differs from 
the inclusive OR in one respect: the result is 1 only if one, and only one, 
of the operands is equal to 1. If both operands are equal to 1, then the 
normal OR would give a 1 result The exclusive OR gives a O result. The 
truth table is: 

O EOR o = o 
0 EOR 1 = 1 

1 EOR O = 1 or 
1 EOR 1 = o 

EOR 

I o 
I 1 

0 1 

0 1 

1 0 

We can use the exclusive OR for comparisons. If any bit is different, 
then the exclusive OR of two words will be non-zero. In addition, we can 
use the exclusive OR to complement a word. We do this by performing 
the EOR of a word using all 1s. The program appears below: 

LDA WORD 

EORA %11111111 

Let's assume that WORD contains 10101010. The final value of the 
accumulator is 01010101. We can verify that this is the complement of 
the original value. 

We can use EOR to advantage as a "bit toggle," i.e., the bits in the 
accumulator will change or toggle each time an EOR is done, if the other 
byte used does not change. 

Skew Operations (Shift and Rotate) 

It is necessary here to differentiate between the shift and rotate opera­
tions. In a shift operation, the contents of the register are shifted to the 
left or right by one bit position. The bit falling out of the register goes into 
the carry bit, C, and the bit coming in is zero. 

One exception exists, however: arithmetic-shift-right. When we pe� 
form operations on negative numbers in the two's complement format, 
the left-most bit is the sign bit. In the case of negative numbers, it is 1. 
When we divide a negative number by 2, by shifting it to the right, the 
sign bit should remain negative, i.e., the left-most bit should remain a 1. 
This is performed automatically by the ASR (arithmetic shift right) 
instruction. With this instruction, the bit coming in on the left is iden­
tical to the sign bit. It is a 0 if the left-most bit was a 0, and a 1 if the left-most 
bit was a 1. Figure 4.2 illustrates this. 
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A rotation differs from a shift in that the bit corning into the register is 
the one that will fall from the carry bit. The rotation is actually a 9-bit 
operation. Figure 4.3 illustrates a 9-bit rotation. For example, in the case 
of a right rotation, the 8 bits of the register are shifted right by one bit 
position. The bit falling off the right part of the register goes, as usual, into 
the carry bit. At this time, the bit coming in on the left end of the register 
is the previous value of the carry bit (before it is overwritten with the bit 
falling out). In mathematics this is called a 9-bit rotation, since the eight 
bits of the register, plus the ninth bit (the carry bit), are rotated right by 
one bit position. Conversely, the left rotation accomplishes the same 
result in the opposite direction. 

Bit Manipulation 
. 

We have shown previously how we can use the logical operations to 
set or reset bits or groups of bits, in accumulators or memory. We can 

.. 

c 

L--------------Figure 4.2: Arithmetic Shift Right 

7 0 c 

RIGIT ri....----------' �°J 
7 0 c 

I· °l 
'----------------- Figure 4.3: �Bit Rotation 
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also use two special instructions for operating on the condition codes 
register: ANDCC and ORCC. These two instructions perform the logical 
operations specified on the condition codes register, using the byte 
immediately following the instruction, as the mask. In this way, bits in 
CC may be cleared or set. Only the immediate mode of addressing is 
available with these instructions. 

Finally, the bit test instruction, BIT, sets the condition codes from the 
result of ANDing an accumulator and an 8-bit memory location. In the 
bit test instruction, neither the accumulator nor the memory location is 
changed. The AND operation takes place and changes the condition code 
bits, but not the bytes being tested. 

Data Pointer Instructions on the 8809 

The load effective address (LEA) instruction is the data pointer 
instruction on the 6809. This instruction loads four address registers: X, 
Y, S, and U. The four forms of this instruction are: LEAX, LEAY, LEAS, 
and LEAU. Each address register is loaded from another (or the same) 
address register. At the same time, a number specified in the instruction, 
or one of the accumulators, A, B, or D, is added to the destination 
register. This sets the address register to point to an address. The LEA 
instruction actually loads the address, not the data pointed to by the 
address register. 

We can easily define blocks of data relative to other addresses during 
the execution of a program, by using the LEA instruction. We discuss 
this instruction further in Chapter 5. 

Test and Branch Operations on the 8809 

Since testing operations rely heavily on the use of the condition code 
register, we will now describe the role of each of the condition code bits. 
Figure 4.4 shows the contents of the condition code register. 

F°ISW"' 4.4: The Condition Code Regiater------------' 
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C is the carry bit, V is overflow, Z is zero, and N is negative. Bits 4, 6, 
and 7 are used with interrupts. The code H is used for BCD arithmetic 
and cannot be tested directly. The other four codes (C, V, Z, N) can be 
tested in conjunction with conditional branch instructions. We will 
now describe the role of each condition code bit. 

Carry(C) 
In the case of nearly all microprocessors, and of the 6809 in particular, 

the carry bit assumes a dual role. First, it is used to indicate if an addition 
or subtraction operation has resulted in a carry (or borrow}. Second, it is 
used as a ninth bit in the case of shift and rotate operations. Using a 
single bit to perform both roles facilitates some operations, such as 
a division operation. This should be clear from the description of division 
operations given in Chapter 3. 

When learning to use the carry bit, it is important to remember that all 
arithmetic operations either set or reset it, depending on the result of the 
instructions. Similarly, all shift and rotate operations use the carry bit 
and either set or reset it, depending on the value of the bit coming out of 
the word. 

In the case of logical instructions, we can use ANDCC and ORCC to 
directly reset or set the carry bit. Instructions which affect the carry bit 
are: ADD, ADC, SUB, SUBC, ANDCC, ORCC, ASL, ASR, LSL, LSR, 
ROL, ROR, CLR, CMP, COM, NEG, DAA, and MUL. Also, some data 
transfer instructions and control instructions, including PULS, PULU, 
TFR, EXG, RTI, and CWAI, affect the C bit, and all other condition code 
bits, because they load the condition code register. 

OverjJ.ow (VJ 

We described the overflow flag in Chapter 1, when we introduced the 
two's complement notation. The overflow flag detects the fact that, 
during an addition or subtraction, the sign of the result was "acciden­
tally" changed, due to the overflow of the result into the sign bit. (Recall 
that, using an 8-bit representation, the largest positive number and the 
smallest negative number in two's complement are +127 and -128, 
respectively.} 

The V condition code bit is affected by ADC, ADD, ASL, CMP, DEC, 
INC, LSL, NEG, ROL, SBC, and SUB. The following instructions always 
reset the V bit: AND, OR, BIT, CLR, COM, EOR, LD, SEX, ST, and TST. 
The state of the V bit is undefined for the DAA instruction. 



114 PROGRAMMING THE 6809 

The Half-Carry Bit (HJ 

The half-carry flag indicates a possible carry from bit 3 into bit 4 during 
an addition operation. In other words, it represents the carry from the 
low-order nibble (group of 4 bits) into the high-order nibble. Clearly, 
the half-carry flag is primarily used for BCD operations. In particular, it 
is used internally by the decimal addition adjust (DAA) instruction, in 
order to adjust the result to its correct value. 

The half-carry flag is set during an 8-bit addition, when there is a carry 
from bit 3 to bit 4; it is reset when there is no carry. A 1&bit addition does 
not affect the H bit. 

The 8-bit ADD and ADC instructions affect the H bit. The ASL, ASR, 
NEG, SBC, and the 8-bit forms of the CMP and SUB instructions leave 
the H bit updefined. 

Zero (ZJ 

The Z condition code bit indicates whether or not the value of a byte 
which has been computed or is being transferred, is zero. The Z condition 
code bit is often used with comparison instructions to indicate a match. 

In the case of an operation resulting in a zero result, or in the case of a 
data transfer, the Z bit is set to 1 whenever the byte, or 1&bit word, is 
zero. Otherwise, Z is reset to 0. 

The following instructions condition the value of the Z bit: ADC, 
ADD, AND, OR, ASL, ASR, BIT, CMP, COM, DAA, DEC, EOR, INC, 
LO, NEG, ST, TST, LEAX, LEAY, LSL, LSR, MUL, SEX, ROL, ROR, 
SBC, and SUB. The CLR instruction always sets the Z bit. 

Negative (N} 

This condition code bit reflects the value of the most significant bit of 
a result, or of a byte (or 1&bit data) being transferred. In two's comple­
ment notation, the most significant bit represents the sign: O indicates a 
positive number, and 1 indicates a negative number. As a result, bit 7 (or 
bit 15, for 1&bit numbers) is called the negative bit. 

In most microprocessors, the sign bit plays an important role when 
communicating with input/output devices, because it is usually the most 
convenient bit to test. When examining the status of an input/output 
device, reading the status register automatically conditions the negative 
bit, which is then set to the value of bit 7 of the status register and can be 
conveniently tested by the program. This is why the status register of 
most input/output chips connected to microprocessor systems have 
their most important indicator (usually ready/not ready) in bit position 7. 
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The following instructions affect the negative bit: ADC, ADD, AND, 
OR, ASL, ASR, BIT, CMP, COM, DAA, DEC, EOR, INC, LD, ST, TST, 
LSL, SEX, NEG, ROL, ROR, SBC, and SUB. The CLR and LSR instruc­
tions always clear the N bit. 

Summary of the Condition Code Bits 

The condition code bits automatically detect special conditions 
within the ALU of the microprocessor. We can conveniently test them 
by using specialized instructions-so that specific actions can be taken 
in response to the condition detected. It is important to understand 
the role of the various indicators available, since most decisions made 
within the program are determined by the value of these condition 
code bits. All branches executed within a program jump to specified 
locations, depending on the status of these bits. The only exception 
involves the interrupt mechanism (described in Chapter 6), which may 
cause jumping to specific locations whenever a hardware signal is 
rocoivcd on specialized pins of the 6809. 

At this point, it is only necessary to remember the main function of 
each bit. When programming, you may want to refer to the description 
of each instruction in this chapter to verify its effect on the various 
condition code bits. Most bits can be ignored most of the time, and if you 
are not yet familiar with them, you should not feel intimidated by their 
apparent complexity. Their use will become more clear as you continue 
to examine other application programs. 

The Branch Instructions on· the 6809 

A branch instruction causes a forced branching to a specified program 
address. It changes the normal flow of program execution from a 
sequential mode into one where a different segment of the program is 
suddenly executed. Branches may be conditional or unconditional. An 
unconditional branch is one where the branching occurs to a specific 
address, regardless of any other condition. A conditional branch is one 
where the branching occurs to a specific address only if one or more 
conditions are met. This is the type of jump instruction used to make 
decisions based upon data or computed results. 

To describe conditional branch instructions, it is necessary to under­
stand the role of the condition code register (explained in the preceding 
section), since all branching decisions are based upon these condition 
bits. We will now examine, in more detail, the branch instructions 
provided by the 6809. 
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The two main types of branch instructions provided by the 6809 are 
branch instructions within the main program (called branches), and the 
special branch instructions used to jump to and from a subroutine USR, 
BSR, and RTS). As a result of any branch instruction, the program 
counter (PC) is reloaded with a new address, and the usual program 
execution resumes from that point on. The full power of branch instruc­
tions can be understood only in the context of the various addressing 
modes provided by the microprocessor. (We cover this topic in Chapter 5 
when we discuss addressing modes.) We will only consider here the 
other aspects of these instructions. 

Branches may be either unconditional (always branching to a 
specified memory address) or conditional. In the case of a conditional 
branch, one or more of the four condition code bits, the Z, C, V, and N 
bits, may be tested for the value O or 1. 

The conesponding abbreviations for the individual bits are: 

BCC = carry clear 

BCS = carry set 

BEQ = equal to zero 

BNE = not equal to zero 

BMI = minus 

BPL = plus 

BVC = overflow clear 

BVS = overflow set 

(C = O) 

(C = 1) 

(Z = 1) 

(Z = 0) 

(N= 1) 

(N = O) 

(V = 0) 

(V = 1) 

There are several branch instructions which test for combinations of 
the condition code bits. These are frequently used after a compare 
(CMP) instruction. Here are the abbreviations for these conditional 
branch instructions: 

BGE = greater than or equal to 

BGT = greater than 

BHI = higher 

BLE = less than or equal to 

BLS = lower or same 

BL T = less than 

There are two branch instructions that have the same opcodes as 
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other branch instructions, and are available in the assembler. (This was 
done for the convenience of the programmer.J 'fhese two instructions 
are: 

BHS = higher or same 

BLO = lower 

duplicates BCC 

duplicates BCS 

Even though the same opcode is executed, it is sometimes convenient to 
give two instruction names to one opcode. 

The unconditional branch instruction is BRA (branch always). BRN is 
the "branch never" instruction, which never branches. It is really a null 
operation. 

The availability of conditional branches is a powerful resource in a 
computer, although this resource is generally not provided on most 8-bit 
microprocessors. This resource does, however, improve the efficiency of 
programs by implementing in a single instruction what normally would 
require two instructions. There is, however, one drawback to branch in­
structions on most computers: The address specified with the branch 
instruction is only one byte in length. This byte is added to the PC to obtain 
the new address. This means that a branch may move the PC only 127 
bytes forward or 128 bytes backwards from the location of the branch 
instruction. Branching farther is not possible. However, the 6809 does 
have special long-branch instructions. 

The long-branch has a 16-bit address specified with the instructions. 
When added to the PC, branching is allowed to any of the 65,536 
memory locations on the 6809. This type of branch instruction removes 
the need to branch to a jump instruction (JMP). We form the assembly 
language mnemonic for a long-branch instruction by adding the letter L 
in front of a branch instruction mnemonic. The opcodes for long­
branches are different from their corresponding short-branch instruc­
tions. See Appendix D for a list of opcodes. 

Finally, a special return instruction, RTI, is provided in the case of 
interrupt routines. Chapter 6 will discuss this instruction in detail. 

One more type of specialized branch is available: the software inter­
rupt (SWn instruction. Recall that the SWI instruction is a single instruc­
tion which s(lves all of the registers on the hardware stack S and then 
performs a jump by fetching a new PC from one of three addresses at the 
high end of memory. The three possible locations for the byte pairs 
which form the new PC are: (FFF A):(FFFB), (FFF4):(FFF5), and 
(FFF2):(FFF3). SWI is a powerful instruction, because it saves the entire 
machine state. It is frequently used to jump to a special program, which 
starts and completes other programs in the computer. 
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Input/Output Instructions on the 6809 

We can address input/output devices in one of two ways: as memory 
locations {using any one of the instructions described previously), or by 
using specific input/output instructions. Chapter 6 will examine 
input/output techniques in detail. The 6809 has no special instructions 
devoted to input/output. Usual memory addressing instructions use 
three bytes: one for the opcode and two for the address. As a result, these 
instructions execute slowly, since they require three memory accesses. 
However, if we use the special "direct page" addressing mode, where 
the address is formed by the direct page register and a byte in the instruc­
tion, then the instructions to access an input/output device need only be 
two bytes in length. This allows faster execution. 

Control Instructions on the 6809 

Control instructions modify the operating mode of the CPU and 
manipulate its internal status information. The 6809 provides three 
control instructions: NOP, SYNC, and CWAI. 

The NOP instruction is a nCHJperation instruction which does nothing 
for two cycles. It is typically used either to introduce a deliberate delay 
{2 cycles = 2 microseconds with a 4MHZ crystal) or to fill the gaps created 
in a program during the debugging phase. The opcode of the NOP in­
struction is 12 hexadecimal. Executing NOPs does not cause damage 
nor stop program execution. 

The SYNC instruction is used in conjunction with interrupts. It ac­
tually suspends the operation of the CPU and puts the data and address 
buses into a high impedance state. The CPU then resumes operation 
whenever an interrupt signal is received. A sync is often placed at the 
end of a program during the debugging phase, as there is usually nothing 
else to be done by the main program. The program must be explicitly 
restarted when a SYNC is used. 

Finally, the last control instruction is clear condition code bits and 
wait for an interrupt (CW Al). This instruction ANDs an immediate byte 
with the condition code register, which may clear any bit, stores all the 
registers on the hardware stack, and then waits for an interrupt. When 
an interrupt occurs, the machine state need not be saved before servicing 
the interrupt. Note that the data and address buses are not put in the high 
impedance state, as they were during the SYNC instruction. 

SUMMARY 

We have now described the six categories of instructions available on 
the 6809. Specific details on the individual instructions are presented in 
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the following section of this chapter. I t  is not necessary to understand 
the role of each instruction in order to start programming. At the begin­
ning, it is sufficient to know a few essential instructions of each type; 
however, as you begin writing your own programs, you will want to learn 
all the instructions on the 6809, so that you can make your programs as 
efficient as possible. 

We have not yet described one important aspect of programming: the 
addressing techniques implemented on the 6809 that facilitate data 
retrieval within the memory space. We will cover these addressing 
techniques in the next chapter. 

EXERCISES 

4-1: Write a three-line program that zeroes bits 1 and 6 of WORD. 

4-2: What will happen if we use a MASK equaling 11111111 with an AND in­
struction? 

4-3: What will happen if we use the instruction ORA %10101111 and A con­
tains 10101111? 

4-4: What is the effect of ORing with FF hexadecimal? 

4-5: What is the effect of EOR, if we use a register with 00 hexadecimal, instead 
of 11111111, to complement a byte? 



120 PROGRAMMING THE 6809 

THE 6809 INSTRUCTIONS: 

INDIVIDUAL DESCRIPTIONS 

Abbreviations and Symbols for Instruction Descriptions 

Flags 

x - Flag changed according to operation or result of instruction 
- Flag unchanged (space) 

0 - Flag cleared by instruction 
1 - Flag set by instruction 
? - Flag unpredictably changed by instruction 

Notation 

A, B, D, X, Y, S, U, PC, DP, CC - registers 
ACCX - either A or B 
RR - 16-bit register (D, X, Y, U, S) 
._ - data transfer 
._ - - exchange data 
M - byte memory operand of valid type for given instruction 
MM - 16-bit memory operand 
ADDRM- Address of M or MM 
N - 8-bit immediate mode operand 
NN - 16-bit immediate mode operand 
-high - most significant byte of 16-bit register 
-low - least significant byte of 16-bit register 
< - direct addressing mode 
> - extended addressing mode 
/\ - AND function 
V - OR function 
(XOR) - exclusive OR function 

(Note: All of the numbers used in instruction examples are in hexa­
decimal notation.) 
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-@)-Add Accumulator B into Index Register X-

Mnemonic: ABX 

Function: X - X + B 

Description: The unsigned 8-bit contents of accumulator B are 
added into index register X. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing 
mode: inherent 

Example: ABX 
before: 
X:$8006 
B:$CE 

after: 

X:$80D4 
B:$CE 
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-@ID-Add with Carry into Accumulator ---

Mnemonics: ADCA M; ADCB M 

Function: ACCX - ACCX + M + C 

Description: The carry bit and the memory operand are added into 
the specified accumulator. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

I I lxl lxlxlxl xl 

modes: immediate 

Example: 

extended 
direct 
indexed 

ADCA ,X 
before: 

X:$3C50 
A:$14 
CC:$0B 
$3C50:$22 

after: 

X:$3C50 
A:$37 
CC:$00 
$3C50:$22 
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ADD ea-bit) Add Memory into Accumulator-

Mnemonics: ADDA M; ADDB M 

Function: ACCX - ACCX + M 

Description: The 8-bit memory operand is added into the 
specified accumulator. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

I I lxl lxlxlxlx l 

modes: immediate 

Example: 

extended 
direct 
indexed 

ADDB >$55FE 
before: 

B:$F2 
CC:$13 
$55FE:$39 

after: 

B:$2B 
CC:$11 
$55FE:$39 
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ADD c1s-bu) Add Memory into Accumulator --

Mnemonic: ADDD MM 

Function: D - D + M M  

Description: The 16-bit memory operand is added into the D 
accumulator. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

I I I I Ix Ix Ix Ix I 

modes: immediate 

Example: 

extended 
direct 
indexed 

ADDD #$322 
before: 
D:$OOOF 
CC:$00 

after: 

D:$0331 
CC:$00 
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�AND Memory into Accumulator ----

Mnemonics: ANDA M; ANDB M 

Function: ACCX - ACCX /\ M 

Description: The contents of the memory operand and the 
specified accumulator are logically ANDed; the result 
is stored in the source accumulator. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

I I I I Ix Ix I o I I 

modes: immediate 

Example: 

extended 
direct 
indexed 

ANDA <EF 
before: 

A:$8B 
DP:$7E 
CC:$32 
$7EEF:$0F 

after: 

A:$0B 
DP:$7E 
CC:$30 
$7EEF:$0F 
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� AND Immediate Data into Condition Code­� Register 

Mnemonic: 

Function: 

Description: 

Condition 
codes: 

Addressing 

ANDCC #N 

cc - CCl\N 

The condition code register is logically ANDed to 
the immediate data byte; the result is stored in the 
condition code register. This instruction may be 
used to clear a specific bit, e.g., an interrupt mask. 

E F H I N Z V C 

l ?l?l?l?l?l?l?l?I 
(Changed according to operand.) 

mode: immediate 

Example: ANDCC #$AF 
before: 
CC:$79 

after: 

CC:$29 
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�Arithmetic Shift Left -------

Mnemonics: ASLA; ASLB; ASL M 

Function: operand{A, B, or M) 

c- I I I 1 1  I I I l -0 

b7 - bo 

Description: All of the bits in the operand are shifted left by one 
position. Bit 7 is transferred to the carry bit; bit 0 
becomes a zero. 

Condition 
codes: 

Addressing 
modes: 

Example: 

E F H I N Z V C 

I I l?I lxlxlx Ix I 

inherent 
extended 
direct 
indexed 

ASLB 
before: 

B:$A5 
CC:$04 

t L_ set to bit 7 of original L_ operand. 
b7 {xor) b6 (bits of 
original operand.) 

after: 

B:$4A 
CC:$03 
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�Arithmetic Shift Right------

Mnemonics: ASRA; ASRB; ASR M 

Function: '---= operand(A, B, or M) 

�1 1 1 1 1 1 1 1 - c 

b7 - bo 
Descriptidn: All of the bits in the operand are shifted right by one 

position. Bit 0 is transferred to the carry bit; bit 7 re­
mains unchanged (this allows the shift to be used on 
signed binary numbers). 

Condition 
codes: E F H I N Z V C 

I I I? I Ix Ix I Ix I 
l Bit zero of original operand. 

Addressing 
modes: inherent 

extended 
direct 
indexed 

Example: ASR >$1A04 
before: 
CC:$00 
$1A04:$E5 

after: 

CC:$09 
$1A04:$F2 
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�Brunch on Carry Clear·------

Mnemonics: BCC N; LBCC NN 

Function: IfC=O then: PC - PC +  N (or) PC - PC +  NN 

Description: If the C bit is clear, then a PC relative branch is ex­
ecuted. The short branch can access any instruction in 
the range + 129 to -126 bytes, relative to the first byte 
of the branch instruction. The long branch can access 
any instruction in the 64K memory area. 

Condition 
codes: E F H I N Z V C  

I I I I I I I I I 
(no change) 

Addressing 
mode: relative 
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�Branch on Carry Set-------

Mnemonics: BCS N; LBCS NN 

Function: 

Description: 

Condition 
codes: 

Addressing 

If C = l  then: PC - PC + N (or) PC - PC + NN 

If the carry bit is set, then a PC relative branch is exe­
cuted. The short branch can access any instruction 
in the range + 129 to - 126 bytes, relative to the first 
byte of the branch instruction. The long branch can 
access any instruction in the 64K memory area. 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 
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�Branch on Equal---------

Mnemonics: BEQ N; LBEQ NN 

Function: If Z=l then: PC - PC + N (or) PC - PC + NN 

Description: If the zero bit is set, then a PC relative branch is ex­
ecuted. This condition is true after a subtract or 
compare on any binary values, if the register was the 
same as the memory operand. The short branch can 
access any instruction in the range + 129 to -126 
bytes, relative to the first byte of the branch instruc­
tion. The long branch can access any instruction in 
the 64K memory area. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing 
mode: relative 
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�Bronch on Greater Than or Equal To---

Mnemonics: BGE N; LBGE NN 

Function: If(N (XOR)V)=Othen: PC - PC + N(or) 
PC - PC +  NN 

Description: If the N and V bits are either both set or both clear, 
then PC relative branch is executed. These conditions 
are true after a subtract or compare on two's comple­
ment values if the register was greater than or equal 
to the memory operand. The short branch can access 
any instruction in the range + 129 to -126 bytes, 
relative to the first byte of the branch instruction. 
The long branch can access any instruction in the 
64K memory area. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing 
mode: relative 
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--@!)-Branch on Greater Than------

Mnemonics: BGT N; LBGT NN 

Function: 

Description: 

Condition 
codes: 

Addressing 

If Z /\ (N (XOR) V)=O then: PC - PC +  N (or) 
PC - PC +  NN 

If the N and V bits are either both set or both clear 
and the Z bit is clear, then a PC relative branch is ex­
ecuted. These conditions are true after a subtract or 
compare on two's complement values if the register 
was strictly greater than the memory operand. The 
short branch can access any instruction in the range 
+ 129 to - 126 bytes, relative to the first byte of the 
branch instruction. The long branch can access any 
instruction in the 64K memory area. 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 
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�Branch on Higher--------

Mnemonics: BHI N; BHI NN 

Function: If (CVZ)=O then: PC - PC +  N (or) 
PC - PC +  NN 

Description: If the C and Z bits are both clear, then a PC relative 
branch is executed. These conditions are true after a 
subtract or compare on unsigned values if the 
register was strictly greater than the memory 
operand. The short branch can access any instruc­
tion in the range + 129 to -126 bytes, relative to the 
first byte of the branch instruction. The long branch 
can access any instruction in the 64K memory area. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing 
mode: relative 
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�Branch on Higher or Same------

Mnemonics: BHS N; BHS NN 

Function: If C = O then: PC - PC + N (or) PC - PC + NN 

Description: If the C bit is clear, then a PC relative branch is ex­
ecuted. This is a duplicate mnemonic for the BCC 
instruction. The short branch can access any in­
struction in the range + 129 to -126 bytes, relative 
to the first byte of the branch instruction. The long 
branch can access any instruction in the 64K 
memory area. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 
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�Test Bits----------

Mnemonics: BITA M; BITB M 

Function: ACCXAM 

Description: The specified accumulator and the memory operand 
are logically ANDed and the result is discarded. Only 
the condition code bits are affected; neither operand 
is affected. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix I o I 
Addressing 
modes: immediate 

extended 
direct 
indexed 
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�Branch on Less than or Equal to ----

Mnemonic: BLE N; LBLE NN 

Function: If Z V (N (XOR) V) = 1 then: PC - PC + N (or) 
PC - PC +  NN 

Description: If either, but not both, of the N and V bits is set, or if 
the Z bit is set, then a PC relative branch is executed. 
These conditions are true after a subtract or compare 
on two's complement values, if the register was less 
than or equal to the memory operand. The short 
branch can access any instruction in the range + 129 
to -126 bytes, relative to the first byte of the branch 
instruction. The long branch can access any instruc­
tion in the 64K memory area. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing 
mode: relative 
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�Branch on Lower --------

Mnemonics: BLO N; LBLO NN 

Function: If C = 1 then: PC - PC + N (or) PC - PC + NN 

Description: If the carry bit is set, then a PC relative branch is exe­
cuted. This condition is true after a subtract or com­
pare on unsigned values, if the register was strictly 
lower than the memory operand. This is a duplicate 
mnemonic for the BCS instruction. The short branch 
can access any instruction in the range + 129 to 
-126 bytes, relative to the first byte of the branch in­
struction. The long branch can access any instruction 
in the 64K memory area. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing 
mode: relative 
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-@)---Branch on Lower or Same------

Mnemonics: BLS N; LBLS NN 

Function: If (CVZ)=l then: PC - PC + N (or) 
PC - PC +  NN 

Description: If either or both of the C or Z bits is set, then a PC 
relative branch is executed. These conditions are 
true after a subtract or compare on unsigned values, 
if the register was lower than or the same as the 
memory operand. The short branch can access any 
instruction in the range + 129 to - 126 bytes, relative 
to the first byte of the branch instruction. The long 
branch can access any instruction in the 64K 
memory area. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 
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�Branch on Less Than--------

Mnemonics: BLT N; LBLT NN 

Function: If (N (XOR) V) = 1 then: PC - PC + N (or) 
PC - PC +  NN 

Description: If either, but not both, of the N and V bits is set, then a 
PC relative branch is executed. This condition is true 
after a subtract or compare on two's complement 
values, if the register was strictly less than the 
memory operand. The short branch can access any 
instruction in the range + 129 to -126 bytes, relative 
to the first byte of the branch instruction. The long 
branch can access any instruction in the 64K 
memory area. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 



THE 6809 INSTRUCTION SET 141 

�Branch on Minus---------

Mnemonics: BMI N; LBMI NN 

Function: If N = 1 then: PC - PC + N (or) PC - PC + NN 

Description: If the N bit is set, then a PC relative branch is executed. 

Condition 

This condition is generally true after an operation, if 
the sign bit of the result was set. It is preferable to use 
the BL T instruction when testing two's complement 
results. The short branch can access any instruction 
in the range + 129 to -126 bytes, relative to the first 
byte of the branch instruction. The long branch can 
access any instruction in the 64K memory area. 

codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing 
mode: relative 
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�Branch on Not Equal-------

Mnemonics: BNE N; LBNE NN 

Function: 

Description: 

Condition 
codes: 

Addressing 

If Z=O then: PC +- PC + N (or) PC - PC + NN 

If the Z bit is clear, then a PC relative branch is exe­
cuted. This condition is true after a subtract or 
compare on any binary values, if the register was not 
equal to the memory operand. The short branch can 
access any instruction in the range + 129 to -126 
bytes, relative to the first byte of the branch instruc­
tion. The long branch can access any instruction in 
the 64K memory area. 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 
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�Branch on Plus---------

Mnemonics: BPL N; LBPL NN 

Function: 

Description: 

Condition 
codes: 

Addressing 

If N=O then: PC - PC +  N (or) PC - PC + NN 

If the N bit is clear, then a PC relative branch is ex­
ecuted. This condition is generally true after an 
operation, if the sign bit of the result was clear. It 
is preferable to use the BGE instruction on two's 
complement results. The short branch can access 
any instruction in the range + 129 to -126 bytes, 
relative to the first byte of the branch instruction. 
The long branch can access any instruction in the 
64K memory area. 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 
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�Branch Always---------

Mnemonics: BRA N; LBRA NN 

Function: PC - PC + N (or) PC - PC + NN 

Description: A PC relative branch is unconditionally executed. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing 
mode: relative 
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�Branch Never----------

Mnemonics: BRN N; LBRN NN 

Function: No operation. 

Description: No branch is executed. This instruction is, essentially, 
a NOP and is included to maintain the symmetry of 
the instruction set. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

, I I I I I I I I I 
(no change) 

mode: relative 



146 PROGRAMMING THE 6809 

�Bronch to Subroutine--------

Mnemonics: BSR N; LBSR NN 

Function: 

Description: 

Condition 
codes: 

Addressing 

S - S - 1 ; (S) - PC-low 
S - S - 1 ; (S) - PC-high 
PC - PC + N (or) PC - PC + NN 

The program counter is pushed onto the hardware 
stack and a PC relative branch is executed. The RTS 
(return from subroutine) instruction reverses this 
procedure and returns control to the instruction 
following the BSR instruction. The short branch can 
access any instruction in the range + 129 to -126 
bytes, relative to the first byte of the branch instruc­
tion. The long branch can access any instruction in 
the 64K memory area. 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 
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�Branch on Overflow Clear ------

Mnemonics: BVC N; LBVC NN 

Function: 

Description: 

Condition 
codes: 

Addressing 

If V=O then: PC - PC + N (or) PC - PC + NN 

If the V bit is clear, then a PC relative branch is exe­
cuted. This condition is true after an operation of 
two's complement values, if the result was valid, i.e., 
there was no overflow. The short branch can access 
any instruction in the range + 129 to -126 bytes, 
relative to the first byte of the branch instruction. 
The long branch can access any instruction in the 
64K memory area. 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 
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�Branch on Overflow Set -------

Mnemonics: BVS N; LBVS NN 

Function: 

Description: 

Condition 
codes: 

Addressing 

If V=l then: PC - PC +  N (or) PC - PC +  NN 

If the V bit is set, then a PC relative branch is ex­
ecuted. This condition is true after an operation on 
two's complement values, if the result was invalid, 
i.e. there was an overflow. The short branch can ac­
cess any instruction in the range + 129 to - 126 
bytes, relative to the first byte of the branch instruc­
tion. The long branch can access any instruction in 
the 64K memory area. 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: relative 
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�Clear-------

Mnemonics: CLRA; CLRB; CLR M 

Function: ACCX - 0 (or) M - 0 

Description: The specified operand is cleared to 0. Note: A 
memory operand will be read before being cleared. 
This may have significance in non-memory (i.e., UO) 
accesses. 

Condition 
codes: E F H I N Z V C 

I I I I lo I 1 I o I o I 

Addressing 
modes: inherent 

Example: 

extended 
direct 
indexed 

CLR >$F23 
before: 

$0F23:$E2 

after: 

$0F23:$00 
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-{ CMP (8-bit) }compare Memory from Accumulator 

Mnemonics: CMPA M; CMPB M 

Function: ACCX - M 

Description: The memory operand is subtracted from the 
specified accumulator, and the result is discarded. 
Only the condition code bits are affected; neither 
operand is affected. 

Condition 
codes: E F H I N Z V C 

Addressing 

I I j ?j jxj xjxjxj 

modes: immediate 

Example: 

extended 
direct 
indexed 

CMPA #6 
before: 
A:$05 
CC:$52 

after: 
A:$05 
CC:$59 
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-( CMP {16-hit) }compare Memory from Register -

Mnemonics: CMPD MM; CMPX MM; CMPY MM; 
CMPU MM; CMPS MM 

Function: RR - MM 

Description: The 16-bit memory operand is subtracted from the 
specified register and the result is discarded. Only 
the condition code bits are affected; neither the 
memory operand nor the register is affected. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix Ix Ix I 

Addressing 
modes: immediate 

Example: 

extended 
direct 
indexed 

CMPX >$3B33 
before: 

X:$5410 
CC:$23 
$3B33:$54 
$3B34:$10 

after: 

X:$5410 
CC:$24 
3B33:$54 
3B34:$10 
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�Complement----------

Mnemonics: COMA; COMB; COM M 

Function: ACCX - ACCX (or) M - M 

Description: The operand byte is replaced by its logical or one's 
complement. 

Condition 
codes: E F H I N Z V C 

I I I I I xl x I o I 1 I 

Add.ressing 
modes: inherent 

Example: 

extended 
direct 
indexed 

COM $E,Y 
before: 

Y:$03F2 
CC:$04 
$0400:$9B 

after: 

Y:$03F2 
CC:$01 
$0400:$64 
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--(" CWAI )-clear CC bits and Wait for Interrupt-

Mnemonic: CWAI #N 

Function: CC - CC/\N 
E - 1  
S - S - 1 ; (S) - PC-low 
S - S - 1 ; (S) - PC-high 
S - S - 1 ; (S) - U-low 
S - S - 1 ; (S) - U-high 
S - S - 1 ; (S) - Y-low 
S - S - 1 ; (S) - Y-high 
S - S - 1 ; (S) - X-low 
S - S - 1 ; (S) - X-high 
S - S - 1 ; (S) - DP 
S - S - 1 ; (S) - B 
S - S - 1 ; (S) - A 
S - S - 1 ; (S} - CC 

Description: The immediate byte operand is logically ANDed 
with the condition code register. This action may 
clear specific bits, e.g., the interrupt masks. The E bit 
is set next. Then the entire processor state is saved on 
the hardware stack, and the processor waits for an 
interrupt. An RTI instruction will restore the entire 
processor state upon finding the E bit set in the 
recovered condition code register. 

Condition 
codes: E F H I N Z V C 

l?l?l?l?l?l?l?l?I 
(Changed according to operand} 

Addressing 
mode: immediate 
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�Decimal Addition Adjust-------

Mnemonic: DAA 

Function: A - A + Correction 
Correction: 

Description: 

Condition 
codes: 

Addressing 
mode: 

Example: 

Least Significant Nibble: 
6: if H=1, or if LSN>9 
O: otherwise 

Most Significant Nibble: 
6: if C=1, or ifMSN>9, or if MSN>8 and LSN>9 
0: otherwise 

The appropriate correction factor is computed based 
on the values of the most significant nibble of A 
(MSNA), the least significant nibble of A (LSNA), 
and the condition code bits. It is then added to A. 
This instruction may be used after the addition of 
two BCD numbers to assure a proper BCD result. 
The carry bit generated by this instruction is the 
correct carry of the BCD addition. 

E F H I N Z V C 

I I I I I xl x I ? Ix I 

inherent 

DAA 
before: 

A:$7F 
CC:$00 

after: 

A:$85 
CC:$08 
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�Decrement----------

Mnemonics: DECA; DECB; DEC M 

Function: ACCX - ACCX - 1 (or) M - M - 1 

Description: One is subtracted from the specified operand. Note 
that the carry bit is not affected. 

Condition 
codes: 

Addressing 
modes: 

Example: 

E F H I N Z V C 

I I I I Ix Ix Ix I I 

inherent 
extended 
direct 
indexed 

DECA 
before: 

A:$32 
CC:$35 

L_ set only if original operand 
was $80, cleared otherwise. 

after: 

A:$31 
CC:$31 
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�Exclusive OR----------

Mnemonics: EORA M; EORB M 

Function: ACCX - ACCX (XOR) M 

Description: The memory operand is logically Exclusive ORed 
into the specified accumulator. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix I o I I 

Addressing 
modes: immediate 

Example: 

extended 
direct 
indexed 

EORA 8,Y 
before: 
Y:$32FO 
A:$F2 
CC:$03 
$32F8:$98 

after: 

Y:$32FO 
A:$6A 
CC:$01 
$32F8:$98 
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-@ID-Exchange Registers--------

Mnemonic: EXG R1,R2 

Function: Rl -- R2 

Description: The registers'values specified by the postbyte of the 
instruction are exchanged. The low and high nibbles 
of the postbyte specify the registers to be exchanged 
in the following way: 

Condition 
codes: 

Addressing 

O = D  8 = A  
l = X  9 = B  
2 = Y A =  CC 
3 = U B = DP 
4 = S 6, 7, C, D, E, F = undefined 
5 = PC 

Only registers of like size may be exchanged. 

E F H I N Z V C 

I I I I I I I I I 
(No change unless one register is CC) 

mode: immediate 

Example: EXG A,DP 
before: 

A:$42 
DP:$00 

after: 

A:$00 
DP:$42 
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�Increment----------

Mnemonics: INCA; INCB; INC M 

Function: ACCX - ACCX + 1 (or) M - M  + 1 

Description: One is added to the operand. Note that the carry bit is 
not affected. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix Ix I I 
Lset if original operand was 7F 

Addressing 
modes: inherent 

extended 
direct 
indexed 

Example: INCA 
before: 

A:$35 
CC:$00 

after: 
A:$36 
CC:$00 
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�Jump------

Mnemonic: JMP M 

Function: PC - ADDRM 

Description: The value of the memory operand is transferred to 
the PC, and program execution continues at that 
address. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

modes: extended 

Example: 

direct 
indexed 

JMP ,x 
before: 

X:$B290 
PC:$0341 

after: 

X:$B290 
PC:$B290 
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�Jump to Subroutine--------

Mnemonic: 

Function: 

Description: 

Condition 
codes: 

Addressing 

JSR M 

S - S - 1 ; (S) - PC-low 
S - S - 1 ; (S) - PC-high 
PC - ADDRM 

The PC is pushed onto the hardware stack. The value 
of the memory operand is transferred to the PC and 
execution continues at that point. An RTS (return 
from subroutine) instruction will return control to 
the instruction following the JSR instruction. 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

modes: extended 

Example: 

direct 
indexed 

JSR $3200 
before: 
S:$03F2 
PC:$10CB 
$03F0:$03 
$03F1:$4B 

after: 

S:$03FO 
PC:$320D 
03F0:$10 
03F1:$CB 
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--( LD (8-bit) }-Load Register From Memory --

Mnemonics: LDA M; LDB M 

Function: ACCX - M  

Description: The memory operand is loaded into the specified 
register. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix I o I I 
Addres!Jing 
modes: immediate 

Example: 

extended 
direct 
indexed 

LDB >$EE01 
before: 

B:$05 
CC:$13 
$EE01:$F2 

after: 

B:$F2 
CC:$19 
$EE01:$F2 
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--(" LD (16-bit) )-Load Register From Memory --

Mnemonics: LDD MM; LDX MM; LDY MM; LDS MM; 
LDU MM 

Function: RR - MM 

Description: The 16-bit memory operand is loaded into the 
specified register. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix I o I I 

Addressing 
modes: immediate 

Example: 

extended 
direct 
indexed 

LDD H$14A2 
before: 

D:$0330 
CC:$54 

after: 

D:$14A2 
C:$50 
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�Load Effective Address-------

Mnemonics: LEAX M; LEA Y M; LEAS M; LEAU M 

Function: RR - ADDRM 

Description: The specified register is loaded with the address of 
the memory operand. The only addressing mode 
allowed is indexed. 

Condition 
codes: 

Addressing 
mode: 

Example: 

E F H I N Z V C 

I I I I I I I I I 
+�--x: LEAX, LEAY 

indexed 

LEAU $A,U 
before: 

U:$0455 

: LEAS, LEAU (no change) 

after: 

U:$045F 
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-@D--Logical Shift Left --------

Mnemonics: LSLA; LSLB; LSL M 

Function: 
operand(A, B, or M) 

c - 1  I I 1 1  I I I l
- 0  

b7 - bo 

Description: All of the bits in the operand are shifted left by one 
position. Bit 7 is transferred to the carry bit; bit 0 
becomes a zero. This is a duplicate mnemonic for the 
ASL instruction. 

Condition 
codes: E F H I N Z V C 

Addressing 
modes: 

Example: 

inherent 
extended 
direct 
indexed 

jxjxjxj� 

L set to bit 7 of original 
operand. 
b7 (XOR) b6 (bits of 
original operand.) 

LSL [$0310] 
before: 

CC:$00 
$0310:$4B 
$0311:$28 
$4B28:$B8 

after: 

CC:$03 
$0310:$4B 
$0311:$28 
$4B28:$70 
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�Logical Shift Right -------

Mnemonics: LSRA; LSRB; LSR M 

Function: operand{A, B, or M) 

0 - I I I 1 1 1  I I 1 -c 
b7 - bo 

Description: All of the bits in the operand are shifted right by one 
position. Bit 0 is transferred to the carry bit; bit 7 be­
comes a zero. 

Condition 
codes: E F H I N Z V C 

I I I I I ol x I Ix I 
•L---set to bit O of original 

Addressing 
modes: inherent 

Example: 

extended 
direct 
indexed 

LSRA 
before: 

A:$3E 
CC:$0F 

operand 

after: 

A:$1F 
CC:$00 
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-@@-Multiply---------

Mnemonic: MUL 

Function: D - A X B 

Description: The two unsigned values in accumulators A and B 
are multiplied together and the result is placed in D 
(i.e., original values of A and B are lost, and A con­
tains the most significant byte of A X B.) 

Condition 
codes: E F H I N Z V C 

I I I I I lxl I� 
..___..___,__...._...._...._...._.........,.L.... set only if b7 of B in result 

Addressing 
mode: inherent 

Example: MUL 
before: 
A:$0C 
B:$64 

is set. 

after: 

A:$04 
B:$BO 
(D:$04BO) 
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�Negate--------

Mnemonics: NEGA; NEGB; NEG M 

Function: ACCX - o  - ACCX (or) M - o  - M 

Description: Replaces operand with its two's complement. 

Condition 
codes: E F H I N Z V C 

I I l?I lxlxlxlxl 

Addressing 
modes: inherent 

extended 
direct 
indexed 

Example: NEG >$4002 
before: 

CC:34 
4002: F3 

•L----set only if original 
operand was $80 

after: 

CC:lO 
4002: OD 
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-@QV--No Operation---------

Mnemonic: NOP 

Function: Does nothing 

Description: No registers or memory locations are affected. Uses 
time and program memory space. 

Condition 
codes: 

Addressing 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: inherent 
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-(®-oH Memory Into Register------

Mnemonics: ORA M; ORB M 

Function: ACCX - ACCX V M 

Description: The specified accumulator and memory operand 
are logically ORed, and the result is stored in the 
accumulator. 

Condition 
codes: 

Addressing 
modes: 

Example: 

E F H I N Z V C 

I I I I Ix Ix I o I I 

immediate 
extended 
direct 
indexed 

ORA #$OF 
before: 

A:$DA 
CC:$43 

after: 
A:$DF 
CC:$49 
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� OH Immediate Data into Condition Code ­� Register 

Mnemonic: ORCC #N 

Function: CC - CCV N 

Description: The condition code register and the immediate 
memory byte are logically ORed, and the result is 
stored in the condition code register. This instruction 
may be used to set specific flags. 

Condition 
codes: E F H I N Z V C 

I ?!1l1l1l1l1l1l1 I 
(Changed according to operand) 

Addressing 
mode: immediate 

Example: ORCC #$50 
before: 

CC:$13 

after: 

CC:$53 
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-( PSHS )Push Registers onto Hardware Stack-

Mnemonics: PSHS register-list; PSHS llN 

Function: If b7 of postbyte set: s - s  - 1 ;  (S) - PC-low 
s - s - 1 ; (S) - PC-high 

If b6 of postbyte set: s - s  - 1 ;  (S) - U-low 
s - s - 1 ;  (S) - U-high 

If b5 of postbyte set: s - s  - 1 ;  (S) - Y-low 
s - S - 1 ;  (S) - Y-high 

If b4 of postbyte set: s - s - 1 ; (S) - X-low 
s - s - 1 ;  (S) - X-high 

If b3 of postbyte set: s - s  - 1 ;  (S) - DP 
If b2 of postbyte set: s - s  - 1 ;  (S) - B  
If b1 of postbyte set: s - S - 1 ;  (S) - A  
If bo of postbyte set: s - s  - 1 ;  (S) - CC 

Description: Any combination of registers, including no registers, 
is pushed onto the hardware stack. The postbyte, n, is 
determined by the register list. The postbyte has the 
following structure: 

Condition 
codes: 

Addressing: 

b7 b6 b5 b4 b3 b2 b 1 bO 

jPCj u l v j x f� s 
I A f cj 

push order -
One register may be pushed with an autodecrement 
store. Example: STY ,--S pushes Y, but also 
changes condition code bits. 

E F H I N Z V C 

I I I I I I I I I 
(no change) 

mode: immediate 
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PSHU Push Registers onto User Stack--

Mnemonics: PSHU register-list; PSHU #N 

Function: If b7 of postbyte set: U - U - 1 ; (U) +- PC-low 
U - U - 1 ; (U) - PC-high 

If b6 of postbyte set: U +- U - 1 ; (U) +- S-low 
u - u - 1 ; (U) - S-high 

If b5 of postbyte set: U - U - 1 ; (U} - Y-low 
U - U - 1 ; (U) +- Y-high 

If b4 of postbyte set: U +- U - 1 ; (U) +- X-low 
U +- U - 1 ; (U) +- X-high 

If b3 of postbyte set: U - U - 1 ; (U) - DP 
If b2 of postbyte set: U +- U - 1 ; (U) +- B 
If b1 of postbyte set: U - U - 1 ; (U) +- A 
If bo of postbyte set: U - U - 1 ; (U) - CC 

Description: Any combination of registers, including no registers, 
is pushed onto the user stack. The postbyte, n, is 
determined by the register list. The postbyte has the 
following structure: 

Condition 

b7 b6 b5 b4 b3 b2 b 1 bO 

IPCI s I Y j x !o1 s j A §cl 

push order -
One register may be pushed with an autodecrement 
store. Example: STY , -- U pushes Y, but also 
changes condition code bits. 

codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing: 
mode: immediate 
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-( PULS }Pull Registers from Hardware Stack-

Mnemonics: PULS register-list; PULS #N 

Function: If bo of postbyte set: cc - CSJ ; s - s + 1  
If b1 of postbyte set: A - CS) ; s - s+ 1  
If b2 of postbyte set: B - (S) ; s - s+1 
If b3 of postbyte set: DP - CS) ; s - s+ 1  
If b4 of postbyte set: X-high - CSJ ; s - s + 1  

X-low - CS) ; s - s + 1  
If bs of postbyte set: Y-high - CS) ; s - s+ 1  

Y-low - CS) ; s - s+ 1  
If b6 of postbyte set: U-high - CS) ; s - s+ 1  

U-low - CS) ; s - s+ 1  
If b 7  of postbyte set: PC-high - (S) ; s - s+ 1  

PC-low - CS) ; s - s+ 1  

Description: Any combination of registers, including no register, 
is pulled from the hardware stack. The postbyte, n, is 
determined by the register list. The postbyte has the 
following structure: 

Condition 

b7 b6 b5 b4 b3 b2 b 1 bO 

IPCI u I v Ix f PI 8 I A §cl 
- pull order 

One register may be pulled with an autoincrement 
load. Example: LOY ,S+ + pulls Y, but also 
changes condition code bits. 

codes: E F H I N Z V C 

I I I I I I I I I 
(no change-unless CC pulled) 

Addressing: 
mode: immediate 
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PULU Puil Registers from User Stack--

Mnemonics: PULU register-list; PULU #N 

Function: If bo of postbyte set: CC - (S) ; s - s+ 1  
If b1 of postbyte set: A - (S) ; s - s+ 1  
If b2 of postbyte set: B - (S) ; s - s+ 1  
If b3 of postbyte set: DP - (S) ; s - s+ 1  
If b4 of postbyte set: X-high - (S) ; s - s+ 1  

X-low - (S) ; s - s+ 1  
If b5 of postbyte set: Y-high - (S) ; s - s+1 

Y-low - (S) ; s - s+1 
If b6 of postbyte set: S-high - (S) ; s - s+ 1  

S-low - (S) ; s - s+1 
If b7 of postbyte set: PC-high - (S) ; s - s+ 1  

PC-low - (S) ; s - s+ 1  

Description: Any combination of registers, including no register, 
is pulled from the user stack. The postbyte, n, is 
determined by the register list. The postbyte has the 
following structure: 

Condition 

b7 b6 b5 b4b3 b2 bl  bO 

IPCI s I y Ix f PI B I A §1 

-pull order 
One register may be pulled with an autoincrement 
load. Example: LDY ,U + + pulls Y, but also 
changes condition code bits. 

codes: E F H I N z v c 

I I I I I I I I I 
(no change-unless CC pulled} 

Addressing: 
mode: immediate 
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�Rotate Left---------

Mnemonics: ROLA; ROLB; ROL M 

Function: [ opera:d{�. B. or M]  

b7 - bo 

DetJcription: All of the bits in the operand are rotated left by one 
position through the carry bit (9-bit rotation); that is, 
b7 is transferred to the carry bit and the original 
value of the carry bit is transferred to bO. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix Ix Ix I f +._ ___ set to b7 of original 

Addressing: 
modes: inherent 

Example: 

extended 
direct 
indexed 

ROLB 
before: 

B:$89 
CC:$09 

J operand. 
'------ b7 (XOR) b6 of 

original operand. 

after: 

B:$13 
CC:$03 
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�Rotate Right---------

Mnemonics: RORA; RORB; ROR M 

Function: C ----� 
operand{A, B, or M) 

b7 - bo 

Descriptron: All of the bits of the operand are rotated right by one 
position through the carry bit {9-bit rotation); that is, 
bO is transferred to the carry bit and the original 
value of the carry bit is transferred to b7. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix I I� 

Addressing 
modes: inherent 

extended 
direct 
indexed 

Example: RORB 
before: 

B:$89 
CC:$09 

set to bo of original operand 

after: 

B:$C4 
CC:$09 
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--@)-Return from Interrupt -------

Mnemonic: RTI 

Function: CC - (S) ; S - S + 1 
If E=1 then: A - (S) ; S - S + 1  

B - (S) ; S - S + 1 
DP - (S) ; S - S + 1 
X-high - (S) ; S - S+1 
X-low - (S) ; S - S+1 
Y-high - (S) ; S - s+1 
Y-low - CS) ; S - s+1 
U-high - CS) ; S - s+1 
U-low - (S) ; S - S + 1  
PC-high-(S) ; S -s+1 
PC-low -(S) ; S -s+1 

Description: The condition code register is pulled from the hard­
ware stack. If the E bit is set, then the entire machine 
state is pulled from the stack, otherwise, only the PC 
is pulled from the stack. This instruction reverses the 
effects of an interrupt and should be placed at the 
end of an interrupt routine. 

Condition 
codes: E F H I N Z V C 

l?l?l?l?l?l?l?l?I 
(Pulled from stack) 

Addressing: 
mode: inherent 
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�Returnfrom Subroutine------

Mnemonic: RTS 

Function: PC-high - (S) ; S - S + 1 
PC-low -(S) ; s - s + 1  

Description: The PC is pulled from the hardware stack. This in­
struction reverses the effects of the BSR and JSR 
instructions and should be placed at the end of a 
subroutine. 

Condition 
codes: E F H I N z v c 

I I I I I I I I I 
(no change) 

Addressing: 
mode: inherent 
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�Subtract with Borrow·-------

Mnemonics: SBCA M; SBCB M 

Function: ACCX - ACCX - M - C 

Description: The memory operand and the C bit are subtracted 
from the specified accumulator. The resulting C bit 
is a borrow and is set to the complement of the carry 
of the internal addition. 

Condition 
codes: E F H I N Z V C 

l I l?I lxlxlxlx l 

Addressing: 
modes: immediate 

Example: 

extended 
direct 
indexed 

SBCB <$3 
before: 

DP:$45 
B:$35 
CC:$01 
$4503:$03 

after: 

DP:$45 
B:$31 
CC:$20 
$4503:$03 
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-@)-sign Extend---------

Mnemonic: SEX 

Function: If b7 of B = 1 then: A - FF 
else: A - o  

Description: The 8-bit two's complement value in accumulator B 
is sign extended to a 16-bit value in accumulator D. 
The original value of A is lost. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix I I I 

Addressing: 
mode: inherent 

Example: SEX 
before: 

B:$E6 

after: 

D:$FFE6 
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ST ea-bit) Store Register into Memory---

Mnemonics: STA M; STB M 

Function: M +- ACCX 

Description: The contents of the specified accumulator are stored 
at the memory operand . 

. 

Condition 
codes: 

Addressing: 
modes: 

Example: 

E F H I N Z V C 

I I I I Ix Ix I o I I 

extended 
direct 
indexed 

STB [$F,X] 
before: 

B:$E5 
X:$556A 
$5579:$03 
$557A:$BB 
$03BB:$02 

after: 
B:$E5 
X:$556A 
$5579:$03 
$557A:$BB 
$03BB:$E5 
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ST c1s-bit) Store Register into Memory---

Mnemonics: STD MM; STX MM; STY MM; STS MM; 
STU MM 

Function: MM - RR 

Description: The contents of the specified register are stored at 
the 16-bit memory operand. 

Condition 
codes: 

Addressing: 

E F H I N Z V C 

I I I I Ix Ix I o I I 

modes: extended 

Example: 

direct 
indexed 

STX >$12BO 
before: 

X:$660C 
$12B0:$37 
$12B1:$BF 

after: 

X:$660C 
$12B0:$66 
$12B1:$0C 
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-( SUB (8-bit) }suhtroct Memory from Register-

Mnemonics: SUBA M; SUBB M 

Function: ACCX - ACCX - M 

Description: The memory operand is subtracted from the 
specified accumulator. The C bit is a borrow and is 
set to the complement of the carry of the internal 
binary addition. 

Condition 
codes: E F H I N Z V C 

I I l?I lxlxlxlxl 

Addressing 
modes: immediate 

Example: 

extended 
direct 
indexed 

SUBB ,Y 
before: 
B:$03 
Y:$0021 
CC:$44 
$0021:$21 

after: 
B:$E2 
Y:$0021 
CC:$69 
$0021:$21 
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SUB c1a-bit) Subtract Memory from Register-

Mnemonic: 

Function: 

Description: 

Condition 
codes: 

Addressing: 
modes: 

Example: 

SUBD MM 

D - D - MM 

The 16-bit memory operand is subtracted from the D 
accumulator. The carry bit represents a borrow and 
is set to the complement of the internal binary addi­
tion carry. 

E F H I N Z V C 

I I I I Ix Ix Ix Ix I 

immediate 
extended 
direct 
indexed 

SUBD #$020F 
before: 

0:$6B90 
CC:$59 

after: 

0:$6981 
CC:$50 
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�Software Interrupt-------

Mnemonic: SWI 

Function: E - 1 
S - S - 1 ; (S) - PC-low 
S - S - 1 ; (S) - PC-high 
S - S - 1 ; (S) - U-low 
S - S - 1 ; (S) - U-high 
S - S - 1 ; (S) - Y-low 
S - S - 1 ; (S) - Y-high 
S - S - 1 ; (S) - X-low 
S - S - 1 ; (S) - X-high 
S - S - 1 ; (S) - DP 
S - S - 1 ; (S) - B 
S - S - 1 ; (S) - A 
S - S - 1 ; (S) - CC 
1 - 1 ;  F - 1  
PC-high - FFF A ; PC-low - FFFB 

Description: The entire machine state is pushed onto the hardware 
stack. Program control is transferred via the soft­
ware interrupt 1 vector. Fast and normal interrupts 
are disabled. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing: 
mode: inherent 
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�Software Interrupt 2 -------

Mnemonic: SWI2 

Function: E - 1 
S - S - 1 ; (S) - PC-low 
S - S - 1 ; (S) - PC-high 
S - S - 1 ; (S) - U-low 
S - S - 1 ; (S) - U-high 
S - S - 1 ; (S) - Y-low 
S - S - 1 ; (S) - Y-high 
S - S - 1 ; (S) - X-low 
S - S - 1 ; (S) - X-high 
S - S - 1 ; (S) - DP 
S - S - 1 ; (S) - B 
S - S - 1 ; (S) - A 
S - S - 1 ; (S) - CC 
PC-high - FFF4 ; PC-low - FFF5 

Description: The entire machine state is pushed onto the hardware 
stack. Program control is transferred through the 
software interrupt 2 vector. The F and I interrupt 
masks are not affected. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing: 
mode: inherent 
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�Software Interrupt 3-------

Mnemonic: SWl3 

Function: E - 1 
S - S - 1 ; (S) - PC-low 
S - S - 1 ; (S) - PC-high 
S - S - 1 ; (S) - U-low 
S - S - 1 ; (S) - U-high 
S - S - 1 ; (S) - Y-low 
S - S - 1 ; (S) - Y-high 
S - S - 1 ; (S) - X-low 
S - S - 1 ; (S) - X-high 
S - S - 1 ; (S) - DP 
S - S - 1 ; (S) - B 
S - S - 1 ; (S) - A 
S - S - 1 ; (S) - CC 
PC-high - FFF2 ; PC-low - FFF3 

Description: The entire machine state is pushed onto the hardware 
stack. Program control is transferred through soft­
ware interrupt vector 3. The F and I interrupt masks 
are not affected. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing: 
mode: inherent 
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-( 
SYNC } Synchronize to External Event--

Mnemonic: SYNC 

Function: Halt processor. 

Description: The processor halts and waits for an interrupt to 
occur. If the interrupt is masked (disabled) or is 
shorter than 3 cycles, then the processor continues 
execution with the instruction following the SYNC 
instruction. If the interrupt is enabled and lasts more 
than 3 cycles, then a normal interrupt sequence 
begins. The return address pushed onto the stack is 
that of the instruction following the SYNC instruc­
tion. This instruction can be used to synchronize the 
processor with high speed, critical events, such as 
reading data from a disk drive. 

Condition 
codes: E F H I N Z V C 

I I I I I I I I I 
(no change) 

Addressing: 
mode: inherent 
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-000--Tronsfer Register to Register ------

Mnemonic: TRF R1,R2 

Function: R2 - R 1 

Description: The contents of the register specified by the high 
nibble of the postbyte are transferred to the register 
specified by the low nibble of the postbyte. The 
nibbles of the postbyte specify the registers in the 
following way: 

Condition 
codes: 

Addressing: 

O = D  B = A  
1 = X  9 = B  
2 = Y A =  CC 
3 = U B = DP 
4 = S 6, 7, C, D, E, F: undefined 
5 = PC 

Only registers of like sizes may be paired up. 

E F H I N Z V C 

I I I I I I I I I 
(no change-unless R2 is CC) 

mode: immediate 
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-(!@-Test------

Mnemonics: TSTA; TSTB; TST M 

Function: ACCX - 0 (or) M - 0 

Description: The Z and N bits are affected according to the value 
of the specified operand. The V bit is cleared. 

Condition 
codes: E F H I N Z V C 

I I I I Ix Ix I o I I 

Addressing: 
modes: inherent 

extended 
direct 
indexed 





CHAPTER 5 
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ADDRESSING 
TECHNIQUES 

IN THIS CHAPTER, we will begin by discussing the general theory 
of addressing And examining the various techniques used for accessing 
data. We will then go on to examine the most important aspect of the 
6809's architecture-the area where its special power is most apparent­
the extensive 6809 addressing capabilities. The most uniquely important 
of these are indexed and relative addressing. 

The special registers and modes provided for indexed addressing 
make the 6809 an excellent machine for writing efficient routines to 
handle complex data structures. The 6809's relative addressing modes 
make it possible to write position independent code (especially important 
in ROM-based applications)-a task which would be impossible on any 
other 8-bit microprocessor. 

Although complex data accessing methods are not necessary in the 
beginning stages of programming, it is crucial to understand the address­
ing modes in order to realize the full power of the 6809. Once you have 
mastered the addressing techniques that we present in this chapter, it 
will then be a straightforward matter to write efficient data handling 
routines. 

POSSIBLE ADDRESSING MODES 

Addressing refers to the specification within an instruction, of the 
location of the operand on which the instruction will operate. We begin 
by examining the six basic addressing modes (shown in Figure 5.1). 
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Figure 5.1: Basic Addressing Modes------------_. 
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Inherent (Implied or Register) Addressing 

Instructions that operate exclusively on registers normally use in­
herent addressing (as illustrated in Figure 5.1). An inherent instruction 
derives its name from the fact that it does not specifically contain the 
address of the operand on which it operates; instead, its opcode 
specifies one or more registers. Since internal registers are usually few 
in number (commonly eight), only a small number of bits are needed to 
specify a particular register in the opcode. 

An example of an inherent addressing instruction is: 

DECA 

This instruction specifies: "decrement the contents of A by 1." 

Immediate Addressing 

In the immediate addressing mode, an 8- or 16-bit literal (a constant) 
follows the 8-bit opcode (see Figure 5.1). Since the microprocessor is 
equipped with 16-bit registers, it may be necessary to load 8- or 16-bit 
literals. An example of an immediate instruction is: 

ADDB #$5 

The second word of this instruction contains the literal 5, which is added 
to accumulator B. 

Another form of immediate addressing uses a byte (called the postbyte) 
following the opcode, to specify the registers to be used in the instruction. 
Here is an example of an immediate instruction using the postbyte: 

TFR A,B 

The second word of this instruction contains the codes for registers A 
and B, because A is transferred to B. 

Extended (or Absolute) Addressing 

In extended addressing, the 16-bit address of the operand follows the 
opcode. Extended addressing, therefore, requires three-byte instructions. 
Here is an example using the extended addressing mode: 

STA $1234 

This instruction specifies that the contents of the accumulator are to be 
stored at memory location 1234 hexadecimal. Extended addressing is 
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also called absolute addressing, because an absolute memory address 
is specified. 

A disadvantage of extended addressing is that it requires a thretrbyte 
instruction. To improve the efficiency of the microprocessor, there may 
be another addressing mode available, direct addressing, which requires 
that only one word be used for the address. 

Direct Addressing 

In direct addressing, the opcode is followed by an 8-bit address (see 
Figure 5.1). The advantage of this approach is that it requires only two 
bytes, instead of three, for extended addressing. A disadvantage is that 
on most microprocessors it limits all addressing within this mode to 
addresses 0 to 255. (Note: the 6809 does not have this limitation.) When 
addresses'O to 255 are used, this type of addressing is also known as short 
or 0-page addressing. 

Relative Addressing 

You use relative addressing with branch instructions. If the state of the 
condition codes satisfies the test made by the branch instruction, then 
the branch instruction loads the PC with a new address. The byte following 
the opcode, called the displacement, is added to the PC to form the new 
PC, to which the instruction branches. Figure 5.1 shows the structure of 
the relative addressing mode. 

Since the displacement is a positive or negative number, a relative 
branch instruction allows a branch forward of 127 bytes or backward of 
128 bytes (usually + 129 or -126, since the PC will have been incrtr 
mented by 2). The branch instructions are used in program loops. 
Because most loops are short, relative branching with a one byte 
displacement is the most common. Relative branching usually results in 
significantly improved performance for short routines. 

If you need a larger branch displacement, you can use the long branch 
instruction with a l&bit displacement. This instruction also has an extra 
opcode byte, so that it is four bytes long (see Figure 5.1). The long branch 
can branch to any address in the memory because the displacement 
ranges from -32768 to 32767. Since long branch instructions take 
longer to execute than the simple branch instructions, you normally use 
them only when the shorter branch will not work. Relative addressing 
provides improved speed performance with branch instructions. If a 
program uses relative addressing, it can be easily moved to different 
areas of memory. In addition, if you do not use absolute addresses, then 
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it is possible to relocate the program to other areas of memory. The jump 
instruction, JMP, allows the use of absolute addressing. The absolute ad­
dressing mode should generally be avoided in favor of relative addressing. 

Indexed Addressing 
You use indexed addressing to access, in succession, the elements of .a 

block or table. This addressing mode appears in examples given later in 
this chapter. With indexed addressing, the instruction specifies both an 
index register and a base address. The contents of the register and base 
address are added to provide the final address. In this way, the address 
could be the beginning of a table in memory. The index register would 
then be used to efficiently access all the elements of a table successively. 
Ho\Yever, there must be a way to increment or decrement the index 
register. 

Pre-Indexing and Post-Indexing 

There are two modes of indexing: pre-indexing and post-indexing. Pre­
indexing is the usual indexing mode in which the final address is the 
sum of a displacement or address, plus the contents of the index register. 
Figure 5.2 illustrates this approach (assuming an 8-bit displacement 
field and a 16-bit index register). 

OPCODE 

DISPLACEMENT 

MEMORY 

I 
I 
I 
I 

J 

FINAL ADDRESS 

INDEX REGISTER 

BASE 

--------------- Figure 5.Z: Addressing (Pre-indexing) 
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On the other hand, post-indexing treats the contents of the displacement 
field like the address of the actual displacement, rather than like the 
displacement itself. In post-indexing, the final address is the sum of the 
contents of the index register, plus the contents of the memory word 
designated by the displacement field (see Figure 5.3}. This feature, in fact, 
utilizes a combination of indirect addressing and pr&-indexing. Let's 
now define indirect addressing. 

Indirect Addressing 

At times, it is necessary for two subroutines to exchange a large quan­
tity of data stored in the memory. More generally, several programs or 
subroutines may need to access a common block of information. To 
preserve tjie generality of the program, it is desirable not to keep such a 
block at a fixed memory location. In particular, the size of the block may 
grow or shrink dynamically, and thus, it may have to reside in various 

MEMORY 

OPCODE 

ADDRESS 

POINTER 

MEMORY 

POINTER = BASE DATA 

FINAl 16-BIT 

ADDRESS 

Y(index) 
N 

Figure 5.3: Indirect Indexed Addressing (Post-Indexing}---------' 
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areas of the memory, depending on its size. It would, therefore, be 
impractical to try to access this block using absolute addresses-that is, 
without rewriting the program every time. 

The solution to this problem then is to deposit the starting address of 
the block at a fixed memory location. Indirect addressing, therefore, 
normally uses an opcode (16 bits in the case of the 6809), followed by a 
16-bit address. This address is used to retrieve a 16-bit word from the 
memory. This is used as the address of the operand. Figure 5.4 illustrates 
the structure of an instruction using indirect addressing, where the two 
bytes at the specified address Al contain A2. A2 is then interpreted as 
the actual address of the data to be accessed. 

Indirect addressing is particularly useful any time pointers are used. 
Various areas of the program can then refer to these pointers to conve­
niently and elegantly access a word or block of data. Another form of 
indirect addressing, indexed indirect addressing, uses an index register, 
rather than a memory location, to contain the address of the address of 
the desired data. 

Combinations of Modes 

It is possible to combine addressing modes. In particular, it is possible 
in a completely general addressing scheme to use many levels of indirec­
tion. For example, in Figure 5.4 the address A2 could be interpreted as 
an indirect address again, and so on. 

INSTRUCTION f\IEMORY 

OPCOOE 

POSTBYTE A1 -
FINAL 

--I -
INDIRECT ADDRESS (A,) 

� 
ADDRESS A1 

Ai DATA ..__ 

'---------------Yi.gure 5.4: Indirect Addressing 
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You can also combine indexed addressing with indirect access. This 
allows efficient access to word n of a block of data, provided you know 
the location of the pointer to the starting address (see Figure 5.2). 

Mode Summary 

We are now familiar with all the usual addressing modes that can be 
provided in a system. Most microprocessor systems, because of the 
limitation of the MPU (i.e., that it must be realized within a single chip), 
do not provide all possible modes, but only a small subset of them. The 
6809 provides a good subset of possibilities. Let's examine them. 

6809 ADDRESSING MODES 

The 6809 addressing modes are an important feature of the 6809 pro­
cessor. They can be used with most instructions to offer great power and 
flexibility. Even though there are fewer instructions on the 6809 than 
there were on its predecessor, the 6800, the new addressing modes make 
the 6809 a more capable machine. To make good use of the 6809 processor 
and to write better programs, it is important to learn to use all the ad­
dressing modes. 

Position Independent Code (PIC) 

The powerful addressing modes on the 6809 make it possible to write 
position independent code. A position independent program can be run 
anywhere in memory. Subroutines are normally written with position 
independence in mind. 

For example, a subroutine may reside at location $0100 on one 
machine. If the subroutine is written with position independent code, it 
can be moved to location $2000 without requiring changes. This is an 
important consideration if there is a possibility that a program may be 
run on machines with different mixes of RAM and ROM. 

Note that you should never use extended addressing to write position 
independent code. All addressing should be relative to the PC. This can 
be accomplished by using the LEA instruction and the index registers. 
Parameters, especially absolute or extended addresses, should be passed 
to the subroutine on the stack. 

As you begin writing programs, the use of position independent code 
is not that important. However, as you write more programs, it becomes 
more important, as it becomes necessary to combine different parts of a 
program, without modifying or rErassembling the program. 
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Inherent Addressing (6809) 

On the 6809, inherent addressing is primarily used by single-byte instruc­
tions which operate on internal registers. Many of these instructions 
require only two cycles to execute. Instructions using inherent address-
ing are: 

ABX DECB ROLA 
ASLA EXG ROLB 

ASLB INCA RORA 
ASRA INCB RORB 

ASRB LSLA RTI 

CLRA LSLB RTS 

CLRB LSRA SEX 

COMA LSRB SWI 

COMB MUL SYNC 

CWAI NEGA TFR 

DAA NEGB TSTA 

DECA NOP TSTB 

Some instructions, such as MUL, require more than two cycles to ex­
ecute. Other instructions, such as TFR and EXG, require more than one 
byte. Inherent addressing is also called register addressing. 

Immediate Addressing (6809) 

Since the 6809 has both single-length (8-bit) and double-length (16-bit) 
registers, it provides two types of immediate addressing, with both 
8-and 16-bit literals. Instructions are then either two or three bytes long. 

Here are examples of instructions using the immediate addressing mode: 

and 

LDA 

LDX 

ADDA 

#n 
#nn 

#n 

(one byte) 
(two bytes) 

(one byte) 

Extended (or Absolute) Addressing (6809) 

By definition, extended addressing requires three bytes. The first is the 
opcode and the next two are the 16-bit address specifying the memory 
location (i.e., the absolute address). 

Extended addressing always specifies a particular address, which 
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does not change while the program executes. Thus, position independent 
code cannot be written when extended addressing is used. Input and 
output programs often use extended addressing. Examples of instruc­
tions using extended addressing are: 

and 
LDA >$0100 

JMP >$1234 

where the two hexadecimal numbers represent the 16-bit addresses of 
data or instructions. 

Direct Addressing (6809) 

On most microprocessors, direct addressing, if available, addresses 
only the first 256 bytes, 0 page, of memory (addresses 0 to 255). This is 
because only an 8-bit address is specified, allowing the instruction to 
use two bytes instead of three. On the 6809 it is possible to address any 
byte in memory by using direct addressing and manipulating the direct 
page (DP) register. 

When direct addressing is used, the low byte of the address is the byte 
immediately following the opcode, and the high byte is the contents of 
the DP register. By changing the DP register appropriately, any page in 
memory may be addressed. When the DP register contains zero, the 
6809 direct addressing mode operates in the same manner as other 
microprocessors. 

Relative Addressing (6809) 

By definition, relative addressing requires two bytes. The first is the 
"branch relative" opcode; the second specifies the displacement and its 
sign. A long branch requires an extra opcode byte to indicate a long 
branch, and a second byte for the displacement, thus, making a total of 
four bytes. 

From a timing standpoint, this instruction should be examined with 
caution. Whether a test succeeds or fails, (i.e., whether or not there is a 
branch), all short branch instructions require three cycles. However, the 
long branch instruction requires five cycles when the test fails, and six 
when it succeeds and the branch is taken. 

Caution must be exercised when computing the duration of the execu­
tion of a program segment. If you are not sure that the long branch will 
succeed, you must remember that sometimes the instruction will require 
six cycles (if the condition is met) and sometimes five (if the condition is not 
met). An average value is often used for the duration of a long branch. 
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This timing problem does not apply to the long branch always instruc­
tion, LBRA, as this instruction does not test any condition, and always 
lasts five cycles. 

(Note: In order to differentiate the absolute jump instruction from the 
relative branch, the jump instruction is labeled JMP.) 

Indexed Addressing (6809) 

The indexed addressing mode is very powerful on the 6809 micropro­
cessor. In all indexed addressing, one of the address registers (X, Y, U, S, 
and sometimes the PC) is used to calculate the effective address of the 
data used by the instruction. There are five different types of indexed 
addressing. The second byte or postbyte of an instruction using indexed 
addressing specifies the type of addressing mode, as well as the address 
register to be used. The structure of an indexed instruction appears in 
Figure 5.5. 

Appendix F gives for each variation, the assembler form and number 
of cycles and bytes added to the basic values for indexed addressing. 

Zero-Offset Indexed 

In the zero-offset indexed mode, an address register contains the effec­
tive address of the data to be used by the instruction. Zero-offset indexed 
is the fastest indexed mode, because a displacement is not needed. The 
instruction is two bytes long. Examples of zero-offset indexed addressing 
are: 

and 
LDD O,Y 

LDB ,U 

� BYTEl � BYTE2 
I DISPlACEMENT I BYTE 3 L����-J BYTE 4 

....__----Figure 5.5: Indexed Addressins Needs Two or More Bytes 
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Constant Offset Indexed 

The constant offset indexed mode uses a two's complement displace­
ment and the contents of one of the address registers added together to 
form the effective address of the operand. The address register's initial 
content is unchanged by the addition. Three sizes of displacements are 
available: 

1. 5-bit ( -16 to + 15) 

2. 8-bit ( -128 to + 127) 

3. 16-bit (-32768 to +32767) 

The 5-bit displacement is included in the postbyte and is, therefore, 
most efficiEUtt in size and speed. The 8-bit displacement is contained in 
the byte following the postbyte. The two byte 16-bit displacement 
immediately follows the postbyte, high byte first. Examples of constant­
offset indexing are: 

LDA 33,X 
LDY -2,S 
LDX 400,Y 

Accumulator--Offset Indexed 

The accumulator-offset indexed mode uses the two's complement 
value of one of the accumulators, A, B, or D. This value is added to one 
of the address registers to form the effective address of the operand. The 
contents of both the accumulator and the address register are unaffected 
by the addition. The postbyte specifies the accumulator to use, so no 
displacement bytes are needed. The accumulator offset mode is also 
advantageous in that the offset may be calculated while the program is 
running. Examples of instructions using this mode are: 

LDA B,Y 
LDX D,Y 
LEAX B,X 

Auto Increment/Decrement Indexed 

If an address register is pointing at the beginning (or end) of a table of 
data, the auto increment and decrement modes provide a method for 
efficiently accessing successive elements. In the auto increment mode, 
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the address register is first used as the effective address to fetch the 
operand. Then the address register is incremented by one or two before 
the next instruction is fetched. This allows stepping through a table 
from low addresses to high addresses. The address register is incre­
mented by one if 8-bit data is used, and by two if 16-bit data is used. A + 
after the register indicates auto increment mode. One + is used for 8-bit 
data; two +'s are used for 16-bit data. Here are examples: 

LDA ,X+ 
STD ,Y++ 

In the second example, two + 's are necessary because a 16-bit word is 
stored in the D accumulator. It is up to the programmer to decide if 
single or double incrementing is needed. Auto decrement mode is the 
opposite of auto increment mode. 

When the auto decrement mode is used, the address register is 
decremented by one or two, before it is used to fetch the operand. This is 
different from the auto increment mode, where the increment takes 
place after the operand is fetched. With auto decrement, a table may be 
accessed from high addresses to low addresses. A " -" before the name 
of the register indicates auto decrement mode. Here are examples: 

LDB , - Y  
LDX , - - S 

In the second example, - - means that S is decremented by two before 
it is used as the effective address of the operand. 

The auto increment/decrement mode is useful for moving data and for 
creating software stacks. The pre-decrement, post-increment nature of 
these modes allow them to be used to create stacks with the X and Y 
registers, that behave in the same way as the stacks with the U and S 
registers. 

Indexed Indirect 
The indexed indirect mode is a combination of indirect and indexed 

addressing modes. All but two of the indexing modes may have a level of 
indirection added. In this mode, the effective address of the operand is 
contained in the memory location formed by the contents of an address 
register, plus any offset. Indirection is indicated by enclosing the 
operand specification in square brackets, [ ]. In the example below, 
the A accumulator is loaded indirectly, using an effective address 
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calculated from the X register and an offset: 

$0100 LDX #$FOOO LOAD X IMMEDIATE 

$0103 LDA ($10,X] EA IS NOW $F010 

$F010 $F1 $F150 IS NOW THE 

$F011 

$F150 

$50 

$AA 

NEW EA 

After execution, A contains the data $AA, and X contains $FOOO. 
The two modes that cannot be used for indexed indirect addressing 

are auto increment/decrement by one, and a constant offset of 5 bits. In 
the first case, if an indirect auto increment or decrement mode is being 
used, the addresses, which are two bytes long, are pointed to by the 
indexed register. An increment or decrement of one is not sensible, 
because the index register would point to the low byte of the address, 
rather than the high byte. 

The mode containing a 5-bit offset in the postbyte is not available, 
because it would have a postbyte identical to the other indexed indirect 
postbytes (see Appendix F). An offset of 5 bits or less is contained in the 
first displacement byte. 

Extended Indirect (6809) 

Extended indirect is the name of the indirect addressing mode on the 
6809. The opcode is followed by a postbyte (which indicates extended 
indirect addressing) and two other bytes (which contain the address 
which points to the effective address of the data). The instruction is at 
least four bytes long when extended indirect addressing is used. In the 
example below, the data is contained in the address pointed to by the 
address in the instruction: 

$0100 

$E081 

$FFFE 

LDA 

$55 

$EO 

$FFFF $81 

[$FFFE] EA IS $FFFE FIRST 

THE DAT A TO LOAD INTO A 

EA IS NOW $E081 

After execution, A contains $55, but no other register is changed. 

Progra.m Counter Relative (6809) 

The program counter relative addressing mode is a cross between 
constant-offset indexed, and relative addressing. When program counter 
relative mode is used, either an 8- or 16-bit two's complement offset is 
added to the current PC to create the effective address. This effective 
address is used to fetch the data. The PC is not changed by the addition, 
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as is the case in normal relative addressing. A post byte after the opcode 
specifies program counter relative addressing. 

It is often desirable to have the data tables and the programs that access 
them, maintain the same addressing relationship after the program and 
table are moved to a different place in memory. This can be done with 
program counter relative addressing. Also, this addressing mode is 
needed for position independent code. 

In the following example, the starting address of a table is loaded into 
the X register: 

LEAX T ABLE,PCR 

The number of memory locations between this instruction and the 
beginning of the table are contained in the symbol TABLE. As long as 
this.number does not change, the program and the table may be moved 
anywhere in memory, and the program will still run correctly. This is 
the essence of position independent code. 

Program counter relative addressing is a type of indexed addressing. 
Therefore, it may also have a level of indirection, as in this example: 

LEAX [T ABLE,PCR] 

USING THE 6809 ADDRESSING MODES 

This section contains short program examples illustrating the use of 
several addressing modes. These programs are often used as parts of 
larger programs. 

Use of Indexing for Sequential Block Access 

Indexing is primarily used for addressing successive locations within 
a table. It is sometimes desirable to limit the table size to 256, so that an 
8-bit register may count the entries. 

Let's now search a table of 100 elements for the * character. The start­
ing address for this table is called BASE. The table has only 100 
elements. Figure 5.6 shows the algorithm. Here is the program: 

SEARCH LDX #BASE 
LDA #'* 
LDB #COUNT 

TEST CPA .x+ 

BEQ FOUND 
DECB 
BNE TEST 

NOTFND 
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A Block Transfer Routine for Fewer than 256 Elements 

In the following program, "COUNT" is the number of elements in the 
block to be moved. The number is assumed to be less than 256. FROM is 
the base address of the block, and TO is the base of the memory area 
where it should be moved. The algorithm is quite simple: We will move a 
word at a time, and keep track of the word we are moving by storing its 
position in the counter B. Let's examine the program: 

BLKMOV LOX #FROM 

NEXT 

LOY #TO 
LOB #COUNT 
LOA 

STA 
· OECB 

BNE 

,x+ 

,Y+ 

NEXT 

The first three instructions: 

BLKMOV LOX 
LOY 
LOB 

#FROM 
#TO 
#COUNT 

INITIALIZE 
TO FIRST ELEMENT 

READ ELEMENT 
AND POINT TO NEXT 

YES 

NOT FOUND 

STAR 
FOUND 

Fisure 5.6: Character Search Flowchart------------' 
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initialize registers X, Y, and B, respectively. The process appears in 
Figure 5.7. 

Index register X is used as the source pointer, and is incremented by 
using the auto-increment addressing mode. Index register Y is used as 
the destination pointer, and is also incremented by using the auto­
increment addressing mode. Register B is loaded with the number of 
elements to be transferred (limited to 256, since this is an 8-bit register), 
and is decremented regularly. Whenever B decrements to zero, all 
elements have been transferred. The next two instructions: 

NEXT LDA 

STA 

.x+ 

,Y+ 

load the contents of the memory location pointed to by X into the ac­
curqulator A and increment the register X. Then, A is stored in the 
memory location pointed to by the register Y, and Y is incremented. In 
other words, these two instructions transfer an element of the source 

A 

el COUNT 

x SOURCE 

Y DESTINATION 

MEMORY 

FROM 

Figure 5.7: Block TlQJIBfer. Initializing the Register--------' 
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block into the destination block. and increment the X and Y registers. 
The counter register is decremented: 

DECB 

Finally, as long as the counter is not 0, the program loops back to the 
label NEXT: 

BNE NEXT 

This program is an example of the possible utilization of index 
registers. However, let's now compare it to the same program using the 
accumulator offset indexing mode. In this program, accumulator B is 
used as the off set, as well as the count: 

BLKMOV LDX #FROM 

LDY #TO 
· LDB 

NEXT LDA 

#COUNT 

B,X 

STA B,Y 

DECB 
BNE NEXT 

This program is functionally the same as the previous one: less than 
256 words may be moved. However, it executes faster because the accu­
mulator offset addressing mode requires one less cycle than the auto­
increment mode. 

Generalized Block fransfer Routine (More Than 256 Elements) 

Figure 5.8 shows the register allocation and the memory map for a 
generalized block transfer routine. Let's examine the program: 

NOTODD 

NEXT 

LDD #LENGTH 
LSRA DIVIDE 16-BIT LENGTH BY 2 
RORB 

BCC NOTODD 
ADDO #1 INCREMENT IF LENGTH ODD 
LDY #FROM 
LOU #TO 
LOX ,Y+ + 
STX ,u+ + 
SUBD #1 

BNE NEXT 

This program transfers two bytes at a time. An even number of bytes 
are always transferred. That is why the LENGTH is divided by 2. If the 
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length is an odd number before division, the last byte is not transferred. 
This is taken into account by testing the carry after the division. If there 
is a carry, one is added to D, so the last byte and one extra byte will be 
transferred. 

The X register is used as the transfer register, while Y and U are used 
as index registers. The autcrincrement by two address mode is used 
because two bytes are transferred each time the loop is executed. 

Finally, a decrement is not available for the D accumulator, so a one is 
subtracted. When the D accumulator is zero, the program is finished. 

Adding Two Blocb 

We will now develop a program that adds, element-by-element, two 
blocks that start at addresses BLK1, and BLK2, respectively, and that 
have an equal number of elements, COUNT. Here is the program: 

BLKADD LDX #BLKl 

LDY 
LDB 
CLRA 

#BLK2 

#COUNT 

LOOP LDA 
ADCA 
STA 

DECB 

.x 
,Y+ 

,x+ 

BNE LOOP 

The memory layout appears in Figure 5.9. 

A COUNTER 

U DESTINATION 

Y SOURCE 

REGISTERS 

B MiNDRY 

Figure 5.8: A Bloclc I'raN.fe.r-Memory Map-----------' 
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The program is straightforward. The number of elements to be added 
is loaded into the counter register B, and the two index registers, X and 
Y, are initialized to their values BLK1 and BLK2: 

BLKADD LDX 
LDY 
LDB 

#BLK1 
#BLK2 
#COUNT 

The carry bit is then cleared in anticipation of the first addition: 

CLRA 

The first element is loaded into the accumulator: 

LOOP LOA ,x 

The corresponding element of BLK 2 is then added to it, and the Y 
register is incremented: 

ADCA ,Y+ 

and finally saved in the memory element of BLK1 pointed to by X: 

STA ,X+ 

The X register is incremented when the byte is stored in BLK1. The 
counter register is decremented: 

DECB 

sl COUNTER 

x BLKl 

y BLK2 
REGISTERS 

Figure 5.9: Addins Two Blocks: BLKl = BLKl + BLK2-----_. 
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As long as the counter register is not 0, the addition loop is executed: 

BNE LOOP 

SUMMARY 

We have now discussed addressing modes and analyzed those avail­
able on the 6809. We have seen that the 6809 offers many possible 
addressing mechanisms. To program the 6809 efficiently, it is necessary 
to understand these mechanisms. They will be used throughout the 
remainder of this book. 

EX�RCISES 

5-1: Use the block addition program to perform a 32-bit addition. 

5-2: Use the block addition program to perform a 64-bit addition. 

5-3: Modify the block addition program, so that the result is stored in a separate 
block starting at address BLK3. 

5-4: Modify the block addition program to perform a subtraction, rather than 
on addition. 

5-5: Write a program to add the first 10 bytes of a table stored at location BASE. 
The result will have 16 bits. (This is a checksum computation.) 

5-6: Con you solve the some problem in Exercise 5-5 without using the indexing 
mode? 

5-7: Reverse the order of the 10 bytes of this table. Store the result of the addition 
at address REYER. 

5-8: Search the some table for its largest element. Store it at memory address 
LARGE. 
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INPUT/OUTPUT 
TECHNIQUES 

So FAR IN THIS BOOK, we have seen how to exchange information 
between the memory and the various registers of the processor; we have 
learned how to manage registers; and we have learned how to use a variety 
of instructions to manipulate data. We will now examine input/output 
techniques and learn how to communicate with the external world. 

The principal advantage of the 6809 architecture in this important 
area is its powerful interrupt structure, which provides, in addition to a 
regular interrupt mode, a fast and a non-maskable interrupt mode. Also 
important in the use of these interrupt modes are the 6809's unique 
SYNC and CW AI instructions, which we will also explore in this chapter. 

Input is the transfer of data from an external peripheral (keyboard, 
disk, or physical sensor) to internal computer storage. Output is the 
transfer of data from within the microprocessor or the memory to an 
external device, such as a printer, CRT, disk, or actual sensors and relays. 
In this chapter, we will perform the input/output operations required in 
most computer applications. We will be managing several input/output 
devices simultaneously. and, finally, we will discuss the subject of polling 
versus interrupts. 

THE 6809 INPUT/OUTPUT INSTRUCTIONS 

For input or output on the 6809, we can use any instruction that 
transfers data to or from the memory. Input/output interfacing on the 
6809 is called memory mapped interfacing, because input/output 
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devices are interfaced to the 6809 in the same way that memory is 
interfaced. We can use any addressing mode for input or output; 
however, extended addressing is commonly used, because the addresses 
of input/output devices rarely change once a system has been built. 

Generating a Signal 

To generate a signal, the computer must turn an output device off or 
on. To do this, we must change an electrical voltage level in the device 
from a logical Oto a logical 1, or from a 1 to a O. For example, let's assume 
that an external relay is connected to bit O of a register called OUTt. To 
turn the relay on, we simply write a 1 in the appropriate bit position of 
the register. We assume here that OUT1 represents the address of the 
device output register in the system. Here is a program that will turn the 
relay on: 

TURNON LOA 

STA 

#%00000001 LOAD PATTERN INTO A 

> OUTl OUTPUT IT TO DEVICE 

ST A is the output instruction. The > symbol indicates extended 
addressing. 

In this example, we have assumed that the states of the other seven bits 
of the register OUT1 are irrelevant However, this is often not the case, as 
these bits might be connected to other relays. Let's, therefore, improve 
this simple program by turning the relay on, without changing the state of 
any other bit in the register. We will assume that we can read and write 
the contents of this register. The improved program is: 

TURNON LOA 
ORA 

STA 

> OUT1 READ CONTENTS OF OUTl 
#%00000001 FORCE BIT 0 TO 1 IN A 

>OUT1 

This program first reads the contents of OUT1, then performs an in­
clusive OR on its contents. It changes bit position 0 to 1, and leaves the 
rest of the register intact (see Figure 6.1). 

Pulses 

We can generate a pulse in the same way that we change the voltage 
level. We first turn an output bit on, then we turn it off. This results in a 
pulse, as illustrated in Figure 6.2. In this example, however, we must 
solve an additional problem: We need to generate a pulse for a specified 
length of time. Thus, we must generate a computed delay. 
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Delay Generation and Measurement 

We can generate a delay by using both software and hardware 
methods. Let's first generate one using software; then we will later 
generate one using a hardware counter, called a programmable interval 
timer (PIT). 

BEFORE 

RELAY 

OFF 

AFTER 

OUT 
I 

RELAY 

ON 

'------------------ Figure 6.1: Turning on a Relay 

CPU OUTPUT PORT 
REGISTER 

SIGNAL 

� N USEC � 

_ _ _ _  __. __ __, ....___ __ o 

THE PROGRAM: 
SELECT OUTPUT PORT 
LOAD OUTPUT REGISTER WITH PAITTRN 
WAIT {LOOP FOR N USEC) 
LOAD OUTPUT PORT WITH ZERO 
RETURN 

0�1 1�0  

"----------------- Figure 6.2: A Prosmmmed Pulse 
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Programmed delays are achieved by counting. A counter register is 
first loaded with a value, then decremented. The program loops on itself 
and continues decrementing until the counter reaches the value 0. The 
total length of time used by this process implements the required delay. 
As an example, let's generate a delay of 27 clock cycles: 

DELAY LDA #5 A IS COUNTER 

NEXT DECA DECREMENT 

BNE NEXT LOOP TIL ZERO 

The first instruction loads A with the value 5. The next instruction 
decrements A; and the following instruction causes a branch to NEXT, 
as long as A does not decrement to O. When A finally decrements to 0, 
the program exits from this loop and executes whatever instruction 
follows. 'Phe logic of the program is simple and appears in the flowchart 
in Figure 6.3. 

Let's now compute the effective delay that the program will implement. 
To do this we will use Appendix D, in order to look up the number of 
cycles required by each instruction. Appendix D shows that LOA in the 
immediate mode requires two clock cycles. DECA also requires two 
cycles, and finally, BNE uses three cycles. The timing is, therefore, 
two cycles for the first instruction, plus five for the next two, multiplied 
by the number of times the loop is executed: 

Delay = 2 + 5 X 5 = 27 cycles 

COUNTER = VALUE 

DECREMENT COUNTER 

NO 

OUT 

Figure 6.3: Basic Delay Flowchart----------------' 
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Assuming a 1 microsecond clock (a 4 MHz crystal), the programmed 
delay will be 27 microseconds. 

(Note: The delay loop just described is used by most input/output pro­
grams. Be sure you understand it.) 

To implement a longer delay, we simply add extra instructions in the 
program between the instructions DECA and BNE. The simplest way to 
do this is to add several NOP instructions. (The NOP instruction does 
nothing for two cycles.) 

Longer Delays 

To generate longer delays using software, we can use a wider counter. 
For example, we can use a register pair to hold a l&bit count. To 
simplify, let us assume that the lower count is 0. We load the lower byte 
with 0 (the maximum count), and it will go through a decrementation 
loop. When it is decremented to 0, the upper byte of the counter is 
decremented by 1. When the upper byte is decremented to the value 0, 
the program terminates. If more precision is required in the delay 
generation, the lower count can have a non-null value. In this case, we 
would write the program as explained and add the three-line delay 
generation program described above. 

Here is a 24-bit delay program: 

DEL24 LDA #COUNTH COUNTER HIGH (8 BITS) 

STA COUNTR 

DEL16 LDD #COUNTL COUNTER LOW (16 BITS) 
LOOP SUBD #1 DECREMENT IT 

BNE LOOP LOOP UNTIL ZERO 
DEC COUNTR DECREMENT HIGH COUNTER 

BNE DEL16 REPEAT UNTIL ZERO 

Note that a SUBD must be used because there is no DECO. 
Naturally, we could generate still longer delays by using more than 

three words. Actually, this example is analogous to the way an odometer 
works on a car. When the right-most wheel goes from 9 to 0, the next 
wheel to the left is incremented by 1. This is the general principle when 
counting with multiple discrete units. 

The main disadvantage of this method, however, is that when the 
computer is counting delays, the microprocessor does nothing else for 
hundreds of milliseconds or even seconds. If the computer has nothing 
else to do, this is acceptable. However, in general, the microcomputer 
should be available for other tasks. Therefore, long delays are normally 
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not implemented by software. In fact, even short delays may be objec­
tionable in a system, if the system is to provide guaranteed response time 
in certain situations. (In such situations, we must use hardware delays.) 
Another disadvantage of the software delay is that, if the program is 
interrupted, timing accuracy may be lost. 

Hardware Delays 

Hardware delays are implemented by using a programmable interval 
timer, or "timer," in short. When using a programmable interval timer, a 
register of the timer is loaded with a value. The timer automatically 
decrements the counter periodically. The programmer can usually adjust 
or select the amount of time between decrements. When the timer has 
decremented to 0, it normally sends an interrupt to the microprocessor. 
It may also set a status bit, that can be sensed periodically by the com­
puter. (We discuss interrupts later in this chapter.) 

Other timer operating modes may include starting from 0 and counting 
the duration of the signal or the number of pulses received. When func­
tioning as an interval timer, the timer is said to operate in a one-shot 
mode. When counting pulses, it is said to operate in a pulse counting 
mode. Some timer devices may even include multiple registers and a 
number of optional facilities, which the programmer can select. 

Sensing Pulses 

The problem with sensing pulses is the reverse of the problem with 
generating pulses, and includes one more difficulty: an output pulse is 
generated under program control; an input pulse occurs asynchronously 
with the program. We can use two methods to detect a pulse: polling and 
interrupts. Let's first discuss polling. 

Using the polling technique, the program continuously reads the 
value of a given input register and tests a bit position, perhaps bit O. We 
will assume that bit 0 was originally 0. (Thus, when a pulse is received, 
this bit takes the value 1.) The program continuously monitors bit O until 
it takes the value 1. When a 1 is found, the pulse has been detected. Here 
is a program that does this: 

POLL LDA 

BITA 
BEQ 

>INPUT READ INPUT REGISTER 

#%00000001 TEST FOR o 
POLL KEEP POLLING IF ZERO 

Conversely, let's assume that the input line is normally 1, and we want 
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to detect a 0. This is the usual case for detecting a ST ART bit, when 
monitoring a line connected to a Teletype. Here is the program: 

POLL 

START 

LOA >INPUT READ INPUT REGISTER 
BIT A #%00000001 SET Z BIT 
BNE POLL TEST IS REVERSED 

Monitoring the Duration 

We monitor the duration of a pulse in the same way that we compute 
the duration of an output pulse. We may use either a hardware or soft­
ware technique. When we monitor a pulse by using software, a counter 
is regularly incremented by 1, then the presence of the pulse is verified. 
If the pulse is still present, the program loops upon itself. If the pulse 
disappears, the count contained in the counter register is used to com­
pute the effective duration of the pulse. Here is a program that monitors 
pulse duration: 

DURTN 
AGAIN 

LONGER 

CLRB 
LDA 
BITA 

BEQ 
INCB 

LOA 

BITA 
BNE 

>INPUT 
#%00000001 

AGAIN 

>INPUT 

#%00000001 

LONGER 

CLEAR COUNTER 

READ INPUT 
MONITOR BIT 0 

WAIT FOR A 1 

INCREMENT COUNTER 

CHECK BITO 
WAIT FOR A O  

Naturally, we assume that the maximum duration of the pulse will not 
cause register B to overflow. However, if B does overflow, the program 
will have to be changed to take that into account (or there will be a pro­
gramming error!). 

Since we now know how to sense and generate pulses, let's learn how 
to capture and transfer large amounts of data. We will later apply this 
knowledge to actual input/output devices. 

PARAL.LEL WORD TRANSFER 

We will assume here that eight bits of transfer data are available in 
parallel at address INPUT (see Figure 6.4). We will also assume that the 
status information is contained in bit 7 of address STATUS. The micro­
processor must read the data word at this location whenever a status 
word indicates that it is valid. 
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We will now write a progam that reads and automatically saves each 
word of data as it comes in. For simplicity, we will assume that the 
number of words to be read is known in advance and is contained in 
location COUNT. But, if this information is not available, we will test for 
a so-called break character, such as a rubout, or perhaps the character 
"•''. We have learned how to do this already. 

The flowchart for this example appears in Figure 6.5. We will test the 
status information until bit 7 becomes 1, indicating that a word is ready. 
When the word is ready, we will read it and save it at an appropriate 
memory location. We will then decrement the counter and test whether 
it has decremented to 0. If so, the task is completed; if not, we will read 

COUNT 

STATUS 

INPUT 

7 0 

Figure 6.4: ParoHel WonJ Tra.nsfe!'-The Memory---------' 
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the next word. Here is a simple program that implements this algorithm: 

PARAL LDB COUNT READ COUNT INTO A 
WATCH LDA >STATUS LOOK FOR DAT AREADY TRUE 

BPL WATCH LOOP TIL READY 
LDA >INPUT READ DATA 
PSHS A SAVE DATA ON STACK 
DECB DECREMENT COUNT 
BNE WATCH REPEAT UNTIL ZERO 

We assume here that the "data ready" flag is automatically cleared 
when STATUS is read. This is usually the case on a device controller. 

NO 

POLLING OR 
SERVICE REQUEST 

READ COUNT 

TRANSFER WORD 

DECREMENT 
COUNTER 

OUT 

NO 

'----------Figure 6.5: Parallel Word Transfer: Flowchart 
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The first instruction initializes the counter register B: 

PARAL LOB COUNT 

The next few instructions read the status information and cause a loop 
to occur when bit 7 of the status register is 0. The LD instruction sets the 
condition code bits. Bit 7 causes the N bit to be set. 

LDA >STATUS 

BPL WATCH 

When BPL fails, the data is valid and we can read it: 

LOA > INPUT 

The word has now been read from address INPUT and must be saved. 
Assuming that a sufficient stack area is available, we can use the follow­
ing instrudion: 

PSHS A 

which saves A on the stack. If the stack is full, or the number of words to 
be transferred is large, we will not be able to push them on the stack, and 
we will have to transfer them to a designated memory area, using, for 
example, an index register. 

The word of data has now been read and saved. We simply decrement 
the word counter and test whether we are finished: 

DECB 

BNE WATCH 

We keep looping until the counter eventually decrements to 0. 
This nine-instruction program, called a benchmark program, is 

designed to test the capabilities of a given processor for a specific opera­
tion. For example, we can compute the maximum transfer speed of the 
parallel transfer program-a program designed for maximum speed 
and efficiency. We assume that COUNT is contained in memory. Let's 
now examine the length of duration of each instruction (these figures 
are also given at the end of this book): 

PARAL LDB COUNT 5 
WATCH LDA >STATUS 5 

BPL WATCH 3 

LDA >INPUT 5 
PSHS A 6 
DECB 2 

BNE WATCH 3 

We can obtain the minimum execution time by assuming that the data 



INPUT/OUTPUT TECHNIQUES 225 

is ready every time we sample STATUS. In other words, if we assume 
that the BPL will fail every time, the length of time necessary to transfer 
a block is then: 

5 + ( 5 + 3 + 5 + 6 + 2 + 3) X COUNT 

If we neglect the first 5 cycles necessary to initialize the counter 
register, the time used to transfer one word is 24 clock cycles, which is 24 
microseconds with a 4MHz crystal. The maximum data transfer rate is: 

1 6 = 42 K bytes per second 
24(10-) 

We have now learned to perform high-speed parallel transfers. Let's 
examine a more complex case. 

BIT SERIAL TRANSFER 

A serial input is one in which the bits of information (Os or ls) come in 
successively on a line. These bits may come in at regular intervals, called 
synchronous transmission, or at random intervals as bursts of data, called 
asynchronous transmission. We will now develop a program that works 
in both cases. 

The principle of the capture of sequential data is simple. We watch an 
input line, which we assume to be line 0. When a bit of data is detected 
on this line, we read the bit in, and shift it into a holding register. When 
we have assembled eight bits, we preserve the byte of data in the 
memory and assemble the next one. 

To simplify this example, we will assume that we know the number of 
bytes to be received. Otherwise, we might have to watch for a special 
break character, and stop the bit-serial transfer at that point. Figure 6.6 
shows the flowchart for this program. Here is the program: 

SERIAL CLRB CLEAR INPUT WORD 
LDA 

STA 

LOOP LDA 
BPL 
LSRA 

ROLB 

BCC 

PSHS 
LDB 

DEC 
BNE 

#COUNT 

COUNTR 

>INPUT 
LOOP 

LOOP 

B 

#$01 
COUNTR 
LOOP 

PUT BYTE COUNT INTO 

COUNTRWORD 

READ PORT 
WAIT FOR BIT 7 = 1 
SHIFT DAT A BIT INTO CARRY 
SA VE CARRY IN B 

CONTINUE UNTIL 8 BITS IN 

SA VE WORD ON STACK 

RESET MARKER BIT 

DECREMENT BYTE COUNTER 
ASSEMBLE NEXT WORD 



226 PROGRAMMING THE 6809 

This program has been designed for efficiency. It uses new techniques, 
which we will explain later in this chapter (see Figure 6.7). The conven­
tions are the following: memory location COUNTR is assumed to contain 
a count of the number of words to be transferred. Register B is used to 
assemble eight consecutive bits coming in. Address INPUT refers to an 
input register. It is assumed that bit position 7 of this register is a status 
flag, or a clock bit. (When it is 0, the data is invalid; when it is 1, the data is 
valid.) We assume that the data itself appears in bit position o of this 
same address. (In many instances, the status information appears on a 
different register than the data register. Since this is in the same address, 
it should be a simple task, then, to modify this program accordingly.) 
In addition, we assume that the first bit of data to be received by this 
program is guaranteed to be a 1. This 1 indicates that the real data 
follows. However, if this is not the case, as we will later see, there is an 
obvious modification that will correct this problem. 

The program corresponds to the flowchart in Figure 6.6. The first few 
lines of the program implement a waiting loop, which tests whether a 
bit is ready. To determine whether a bit is ready, we first read the input 
register, then we test the negative bit (N). As long as this bit is 0, the 
instruction BPL will succeed, and we will branch back to the loop. 
Whenever the status (or clock) bit becomes true (1), then BPL will fail and 
the next instruction will be executed. This initial sequence of instructions 
corresponds to arrow 1 in Figure 6. 7. 

At this point, A contains a 1 in bit position 7, and the actual data bit is 
in bit position 0. The first data bit to arrive will be a 1. However, the 
following bits may be either 0 or 1. We will now preserve the data bit that 
has been collected in position 0. The instruction: 

LSRA 

shifts the contents of A to the right by one position. This causes the right­
most bit of A, the data bit, to fall into the carry bit. Next, we preserve this 
data bit into register B (this process is illustrated by arrows 2 and 3 in 
Figure 6.7) with the instruction: 

ROLB 

This instruction reads the carry bit into the right-most bit position of B. 
At the same time, the left-most bit of B falls into the carry bit. (If you have 
any doubts about the rotation operation, refer to Chapter 4.) 

It is important to remember that a rotation operation both saves the 
carry bit (here into the right-most bit position), and reconditions the 
carry bit with the value of bit 7. In this case, a 0 falls into the carry. 
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POLLING OR 
SERVICE REQUEST 

READ WORD 
COUNT 

STORE BIT 

INCREMENT 
COUNTER 

DECREMENT 
WORD COUNT 

DONE 

NO 

NO 

NO 

-----------Figure 6.6: Bit Serial Transfer-Flowchart 
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The next instruction: 

BCC LOOP 

tests the carry and branches back to address LOOP, as long as the carry 
is O. This instruction is the automatic bit counter. As a result of the first 
ROL, B contains 00000001. Eight shifts later, the 1 will fall into the carry 
bit and stop the branching. This is an ingenious way to implement � 
automatic loop counter without wasting an instruction to decrement the 
contents of a register. This technique shortens the program and improves 
its performance. 

When BCC finally fails, 8 bits will have been assembled into B. This 
value should then be preserved in the memory. This is accomplished by 
the next instruction (arrow 4 in Figure 6.7): 

.PSHS B 

0 

STATUS ....-----+---
OR 

(!) CLOCK 

L-------___::�--������ SERIAL DATA 
IN 

7 0 

Figure 6.7: Serial-�Parollel: The Registers----------' 
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This instruction saves the contents of B on the stack. But, this is possible 
only if there is enough room in the stack. Provided this condition is met, 
this is usually the fastest way to preserve a word in the memory. The 
stack pointer is updated automatically. If we were not pushing a word 
on the stack, we would have to use one more instruction to update a 
memory pointer. We could equivalently perform an indexed addressing 
operation by using an auto increment or decrement addressing mode. 

After the first word of data has been saved, there is no guarantee that 
the first data bit to come in will be a 1. It could be a 0. We must, therefore, 
reset the contents of B to 00000001, so that we can continue to use the 
carry bit as a bit counter. We do this with the next instruction: 

LDB #$01 

F:inally, we decrement the word counter, since a word has been 
assembled, and test whether we have reached the end of the transfer. 
This is accomplished by the next two instructions: 

DEC COUNTR 

BNE LOOP 

The above program has been designed for speed, so that we may cap­
ture a fast input stream of data bits. Once the program terminates, it is 
naturally advisable to immediately read away from the stack the words 
that have been saved there, and transfer them into another part of the 
memory where they may be processed. We performed such a block 
transfer in Chapter 5. 

This program is more complex than the previous ones. Let's look at it 
again in more detail, and examine some possible trade-offs (see Figure 6.6). 

Referring to the bit serial transfer program, we see that from time to 
time a bit of data comes into bit position O of INPUT. For example, there 
might be three ls in succession. We must, therefore, differentiate be­
tween the successive bits coming in. This is the function of the clock signal. 

The clock (or STATUS) signal tells us when the input bit is valid. 
Therefore, before we read a bit, we must test the status bit. If the status is 
0, we must wait. If it is 1, the data bit is good. We assume here that the 
status signal is connected to bit 7 of register INPUT. 

Once we have captured a data bit, we want to preserve it in a safe loca­
tion. Then, we want to shift it left, so that we can get the next bit. 

Unfortunately, in this program we use the accumulator to read and test 
both data and status. If we were to accumulate data in the A accumulator, 
bit position 7 would be erased by the status bit. 

In this example, we have assumed that the first bit to come in is a 
special signal, guaranteed to be a 1. However, in general, it could be a 0. 
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The program could be modified to handle data as the first bit. In addition, 
note that we have saved the assembled word in the stack; however, we 
could have saved it in some other memory area. 

The Hardware Alternative 

As usual for most standard input/output algorithms, we can imple­
ment the serial to parallel conversion through hardware. The hardware 
chip to do this is called a UART. The UART automatically accumulates 
the bits. If we want to reduce the component count, we should use this 
program, or a variation of it. 

BASIC I/O SUMMARY 

So far, we have learned to perform elementary input/output operations 
and to manage a stream of parallel data or serial bits. We are now ready 
to communicate with real input/output devices. 

COMMUNICATING WITH INPUT/OUTPUT DEVICES 

To exchange data with input/output devices, we must first ascertain 
whether data is available, and if so, if we want to read it; or, we must 
ascertain whether the device is ready to accept data, and if so, if we 
want to send it. We can use two procedures to do this: handshaking and 
interrupts. Let's first discuss handshaking. 

Handshaking 

Handshaking is generally used as a communication tool between two 
asynchronous devices, i.e., between two devices that are not synchr«r 
nized. For example, if we want to send a word to a parallel printer, we 
must first make sure that the input buffer of the printer is available. We 
must, therefore, ask the printer: "Are you ready?" The printer will 
respond either "yes" or "no." If it is not ready, we must wait If it is ready, 
we can send the data (see Figure 6.8). 

Conversely, before reading data from an input device, we must verify 
whether the data is valid. We ask: "Is data valid?" The device will respond 
either "yes" or "no." The "yes" or "no" may be indicated by status bits, 
or by some other means (see Figure 6.9). 

As an analogy, if we wish to exchange information with someone who 
is doing something else at the time, we need to ascertain that that person 
is ready to communicate with us. The usual rule of courtesy is to shake 
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hands-data exchange may then follow. This is also the procedure nor­
mally used in communicating with input/output devices. Let's examine 
a simple example. 

Sending a Character to the Printer 

In this example, the character we wish to print is assumed to be in 
memory location CHAR. Here is the program that we can use to print it: 

WAIT LDA 

BPL 
LDA 

STA 
BR 

MPU 

> STATUS 

WAIT WAIT TIL READY 

CHAR 

>PRINTD 
WAIT 

GET CHARACTER 

PRINT IT 
GO FOR NEXT 

REAl>Y? -
(REAi> -

D 

STATUS STATUS) REGISTER -- YES/NO 

l/OCHIP 

DATA .. 

ou�o 
' 

REGISTER � ,. 

OUTPUT 
DEVICE 

,__-------------Figure 6.8: Handshalcins (Output) 

.A DATA 
INM

D 
K=---::: REGISTER � 

MPU l/OCHIP INPUT 
DATA DEVICE 

REAl>Y? -

D 

STATUS 
- REGISTER 

YES/NO 

�-------------Figure 6.9: HandshaJcins (Input) 
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This program is straightforward and uses the handshaking procedure 
described previously. The data paths appear in Figure 6.10. 

The character (called DATA) is located at memory location CHAR. 
First, the status of the printer is checked. Whenever bit 7 of the status 
register becomes 1, it indicates that the printer is ready for output, i.e., 
its output buffer is available. At this point, the character is loaded into 
the accumulator, and then output to the printer, via the accumulator. As 
long as the status bit remains 0, the program will remain in a loop, called 
WAIT. 

Let's now complicate the output procedure by requiring a code con­
version and by outputting to several devices at a time. 

Output To.a 7-Segment LED 

We can use a traditional 7-segment light-emitting diode (LED) to 
display the digits 0 through 9, or even 0 through F hexadecimal, by 
lighting combinations of its 7 segments. Figure 6.11 shows a 7-segment 
LED. Figure 6.12 shows the characters generated with this LED. The 
segments of an LED are labeled A through G in both figures. 

For example, we can display 0 by lighting the segments ABCDEF. We 
assume, now, that bit O of an output port is connected to segment A; that 
1 is connected to segment B; and so on; and that bit 7 is not used. The 
binary code required to light up FEDCBA (to display 0) is, therefore, 
0111111. In hexadecimal, this is 3F. 

STATUS 

A PRINTD 

CHAR 

PRINTER 

MEMORY 

-Fisure 6.10: Printer-Doto Poths---------------
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A /"'-" /V 
.. I .. I 

/V /VI 
F B 

/V A.II 

/V /Vf  
•I .. , G 

/VI /V 
E c 

/V /vl 
A.II /Vf 

.. , •I 
D 

.__----------Figure 6.ll: 7-Segment LED 

A I -, I I I -

f 
s 

/_ 
I ,- _/ -, I 

G fc I -, ,-, I l ,
-, 

D 
_I I I -/ / I !_I 

I I I ,- I I I_ 
I I I I I I I ,- I 

Figure 6.12: Hexadecimal Characters Generated with a 7-Segment LE 
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As an exercise, try computing the 7-segment equivalent for the hexa­
decimal digits 0 through F, and complete the following table. 

Hex LED code Hex LED code Hex LED code Hex LED code 

0 3F 4 8 c 
1 5 9 D 
2 6 A E 
3 7 B F 

We will now display hexadecimal values on several LEDs. 

Driving Multiple LEDs 

An LED has no memory. It displays data only as long as its segment 
lines are active. To keep the cost of an LED display low, the micropro­
cessor displays information on each of the LEDs, in turn. The rotation 
between the LEDs must be fast enough so that there is no apparent blink­
ing. This implies that the time spent going from one LED to the next is less 
than 100 milliseconds. Let's design a program that accomplishes this. 

We will use register B to point to the LED on which we want to display 
a digit. A is assumed to contain the hexadecimal value to be displayed on 
the LED. Our first concern is to convert the hexadecimal value into its 
7-segment representation. In the last section, we built an equivalence 
table. Since we are accessing the table, we will use the indexed addressing 
mode, where the displacement index is provided by the hexadecimal 
value. This means that the 7-segment code for the hexadecimal digit 3 is 
obtained by looking up the third element of the table after the base. The 
address of the base is SEGBAS. Here is the program: 

LEDS LUX #SEGBAS TABLE BASE ADDRESS 

DELAY 

OUT 

LOA A,X READ CODE FROM TABLE 
STA B,Y OUTPUT FOR SET DURATION 
LDA #$50 DELAY VALUE ='ANY LARGE 

NUMBER 
DECA DELAY COUNTER 
BNE DELAY KEEP LOOPING 
DECB B IS PORT INDEX 
BNE OUT DONE WITH LAST LED? 
LDB #MAXLED IF SO, RESET B TO TOP LED 
RTS 
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This program assumes that the Y register points to the base address of 
the LEDs, and that B is added to Yin order to point to the next LED to be 
illuminated. The A accumulator contains the digits to be displayed. 

The program first looks up the 7-segment code corresponding to the 
hexadecimal value contained in the accumulator. The A register is used 
as a displacement field, and the X register is used as a l�bit index 
register. The code for the hexadecimal digit is added to the base address 
of the table: 

LEDS LDX 

LDA 

#SEGBAS 

A,X 

The next instruction outputs the 7-segment code to the address speci­
fie�, by using B as a displacement for the Y index register: 

STA B,Y 

A delay loop is then implemented, so that the code from the table is dis­
played for an appropriate duration. Here we have arbitrarily chosen the 
constant, 50 hexadecimal. The next three instructions implement the 
delay loop: 

LDA #$50 
DELAY DECA 

BNE DELAY 

Once the delay has been implemented, we simply decrement the LED 
pointer displacement, and make sure we loop around to the highest 
LED address, if the smallest LED address has been reached. 

DECB 
BNE OUT 
LDB #MAXLED 

OUT RTS 

It is assumed here that this program was written as a subroutine; the 
last instruction is, therefore, RTS: "return from subroutine." 

We have now solved common input/output problems. Let's consider 
the case of a common peripheral: the Teletype. 

Teletype Input/Output 

The Teletype is a serial device that sends and receives words of infor­
mation in a serial format. Each character is encoded in an 8-bit ASCII 
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format. (The ASCII table appears in Appendix B.) In addition, every 
character is preceded by a "start" bit, and terminated by two "stop" bits. 
In the 20-milliamp current loop interface, which is most frequently used, 

the state of the line is normally a 1. This is used to indicate to the processor 
that the line has not been cut. A start is a 1-tcH> transition. This indicates 
to the receiving device that data bits follow. The standard Teletype is a 
10-characters-per-second device. We have just established that each 
character requires 11 bits. This means that the Teletype will transmit 
110 bits per second, i.e., that it is a 110-baud device. We will now design a 
program to serialize bits out to the Teletype at the correct speed. 

One hundred ten bits per second implies that bits are separated by 9.09 
milliseconds. This will have to be the duration in a program of the delay 
loop to be implemented between transmission or reception of successive 
bits. Figure- 6.13 shows the format of a Teletype word. Figure 6.14 
displays the flowchart for bit input. Here is the program: 

TTYIN LDA >STATUS 

NEXT 

BPL TTYIN DATA READY? 
BSR DELA Y1 CENTER OF PULSE 
LOA 
STA 
BSR 

LOB 
STB 

LDA 

STA 

LSRA 
RORB 
BSR 
DEC 

BNE 

LDA 

STA 
BSR 
RTS 

>TTYBIT 
>TTYBIT 
DELAY9 

#$08 
COUNTR 
>TTYBIT 

>TTYBIT 

DELAY9 
COUNTR 

NEXT 

>TTYBIT 
>TTYBIT 
DELAY9 

START BIT 
ECHO IT 
NEXT PULSE 9MS 

BIT COUNT 
COUNTER WORD 

READ DATA BIT 

ECHO IT 

SAVE IT IN CARRY 
PRESERVE IT IN B 
NEXT PULSE 9MS 

DECREMENT BIT COUNT 

READ STOP BIT 

ECHO IT 

SKIP SECOND STOP 

Let's examine this program in detail. 
First, we test the status of the Teletype to determine if a character is 

available: 

TTYIN LDA 

BPL 

>STATUS 

TTYIN 
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Then, we implement a 4.5 ms delay, in order to sense the start bit in the 
middle of the pulse: 

BSR DELAYl 

DELA Yl is the delay subroutine that implements the required delay. 
The first bit to come is the start bit. It should be echoed to the Teletype, 
but ignored by the rest of the program. This is done by the next few 
instructions: 

LDA >TTYBIT 
STA >TTYBIT 

We must now wait for the first data bit. The necessary delay is equal to 
9.09 ms and is implemented by a subroutine: 

BSR DELAY9 

Memory location COUNTR is used as a counter and loaded through the 
B register with the value 8, because 8 data bits are captured: 

LDB #$08 
STB COUNTR 

Next, each data bit is read into A, in turn, then echoed. The data bit is 
assumed to arrive in bit position O of A. The data bit is then preserved in 
register B, where it is shifted in. The transfer from A to B is performed 
through the carry bit: 

NEXT LDA > TTYBIT 

STA >TTYBIT 

LSRA 
RORB 

Figure 6.15 illustrates this sequence. 

-------------Figure 6.13: Format of a Teletype Word-
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NO 

NO 

TIYIN 

WAIT 4.5 ms 
ECHO ST ART BIT 

WAIT 9.<:R ms 

SHIFT IN DATA BIT 
ECHO IT 

WAIT 9.CR ms 

OUTPUT STOP BIT 

WAIT 9.CR ms 

Figure 6.14: ITY Input with Echo--------------' 
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Next, the usual 9 ms delay is implemented, the bit counter is decre­
mented, and the loop is entered again-as long as the eight bits have not 
been captured: 

BSR DELAY9 

DEC COUNTR 
BNE NEXT 

Finally, the STOP bit is captured, and echoed. It is usually sufficient to 
send a single STOP bit; however, both could be sent back by using two 
more instructions: 

LDA >ITYBIT 

STA >ITYBIT 

BSR DELAY9 
RTS 

The logic of this program is quite simple: whenever a bit is read from 
the Teletype (at address TTYBIT), it is echoed back to the Teletype. This 
is a standard feature of the Teletype. Whenever a user presses a key, the 
information is transmitted to the processor and then back to the printing 
mechanism of the Teletype. This verifies that the transmission lines are 
working and that the processor is operating when a character is, indeed, 
printed correctly on the paper. 

Using the above program, we will now write a PRINTC program that 
will print the contents of memory location CHAR on the Teletype. 

A 

B 

COUNTR 

STATUS X 

TTY BIT 

NiMORY 

TELETYPE 
DATA 

-----------------Figure 6.15: Teletype Input-
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Figure 6.16 shows the relevant flowcharts. Here is the program: 

PRINTC LOB #11 COUNTER = 11 BITS 
CLRA CLEAR CARRY = ST ART BIT 
LDA CHAR GET CHARACTER 
ROLA CARRY BIT INTO A 

NEXT STA >'ITYBIT OUTPUT BIT 
BSR DELAY9 
RORA NEXT BIT 
ORCC #$01 SET CARRY BIT 
DECB BIT COUNT 
BNE NEXT 
RTS 

The B register is used as a bit counter for the transmission. The contents 
of bit 0 of register A are sentto the Teletype line (TTYBIT). Note how the 
carry is used to provide a ninth bit (the ST ART bit). Also, note that the 

ENTER ENTER 

SEND START SET BIT 
BIT COUNTER TO 

ELEVEN 

SEND DATA 
BITS 

OUTPUT 
A BIT 

SEND STOP 
BIT 

DELAY 
9.1 MSK 

EXIT 

NO 

(RETURN) 
.Fisure 6.16: Teletype Output----------------' 



INPUT/OUTPUT TECHNIQUES 241 

carry is cleared by: 

CLRA 

At the end of the program, the carry is set to 1 to generate a stop bit: 

ORCC #$01 

Let's now print a string of characters. 

Printing a String of Characters 

We will assume that the PRINTC routine prints a character on the 
printer, the display, or any serial output device. Let's now print the 
contents of memory locations START to (START) + N. Figure 6.17 
shows the memory and registers used. Here is the program: 

PS1'RING LOB #NBR LENGTH OF STRING 

LOX START BASE ADDRESS 

PSHS B SA VE B PRINTC DESTROYS 

NEXT LOA ,
x

+ GET CHARACTER 

STA CHAR PUT IT WHERE PRINTC WANTS IT 

BSR PRINTC PRINT IT 

PULS B GET COUNT BACK 

DEC B 
BNE NEXT DO IT AGAIN 

RTS 

PERIPHERAL SUMMARY 

We have now described the basic programming techniques used to 
communicate with typical input/output devices. In addition to the data 
transfer, it is necessary to condition one or more control registers within 
each I/O device, in order to correctly condition the transfer speeds, the 
interrupt mechanism, and various other options. Consult the user's 
manual to obtain the appropriate information for each device. (See 
reference C207 in the bibliography for more details on the specific algo­
rithms for exchanging information with all the usual peripherals.) 

We have now learned to manage single devices. However, in a real 
system, all peripherals are connected to the buses and may request 
service simultaneously. How can we then schedule the processor's time? 

INPUT/OUTPUT SCHEDULING 

Since input/output requests may occur simultaneously, it is necessary 
to implement a scheduling mechanism in every system, to determine the 
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order that service will be granted. Three basic input/output techniques 
are used: polling, interrupt. and OMA. Figure 6.18 illustrates these three 
techniques. The techniques can all be combined with each other. We 
will now describe polling and interrupts. Since OMA is a hardware 
technique, we will not describe it here. (See references C201A and C207 
in the bibliography for further information on OMA.) 

Polling 

Conceptually, polling is the simplest method for managing multiple 
peripherals. With this strategy, the processor interrogates, in turn, each 
device that is connected to the buses. If a device requests service, the 
service is granted. If it does not, the next peripheral is examined. Polling 
is used not only for devices, but for any device service routine. 

As an ex·ample, if the system is equipped with a Teletype, a tape 
recorder, and a CRT display, the polling routine would interrogate the 
Teletype: "Do you have a character to transmit?" It would also interrogate 
the Teletype output routine; "Do you have a character to send?" Then, 
assuming that the answers are negative, it would interrogate the tape­
recorder routines, and finally, the CRT display. Even if only one device 
is connected to a system, polling would be used to determine whether it 
needs service. As examples of polling, Figures 6.19 and 6.20 show the 

ME.MORY 

B A 

COUNTER 

OUTPUT REGISTER 
TO PRINTER 

Figure 6.17: Printing a Memory BlocJc--------------J 
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MEMORY 

DATA BUS 
MPU 

I I 
I L _ _ _ _ _ _ _ _ _ _ _ _ _  ? 
I 
L - - - - - - - - - - - - - - - - - - - - - - - - -

MEMORY 

MPU 

IRQ 

HOLD 

MPU t----�'---:--��--+----!1---�--v OMA I 
I 
I 
I 
I 
L _ _ _ _ _ _ _ _ _ _ _ _  _ 

------------Figure 6.18: Three Methods of I/O Control-
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SET READER 
ENABLE ON 

YES 

READ 
CHARACTER 

NO 

Fi
gure 6.19: Reading from a Paper-Tape Reader--------� 

YES 

LOAD PUNCH 
OR PRINTER 

BUFFER 

TRANSMIT DATA 

NO 

Fi
gure 6.20: Printing on a Punch or Printer----------� 
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flowcharts for reading a paper-tape reader and printing on a printer. 
Figure 6.21 shows a polling loop flowchart for 3 devices. 

A program for a polling loop of four devices follows. The devices are 

SERVICE ROUTINE 
FOR DEVICE A 

SERVICE ROUTINE 
FOR DEVICE B 

SE.RVICE ROUTINE 
FOR DEVICEC 

------------Figure 6.21: Polling Loop Flowchart 
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called 1, 2, 3, and 4: 

POLL4 LOA >STATUS1 GET STATUS OF DEVICE 1 

BMI CALL1 SERVICE REQUEST 

TEST2 LOA >STATUS2 DEVICE 2 
BMI CALL2 

TEST3 LOA >STATUS3 DEVICE 3 
BMI CALL3 

TEST4 LOA >STATUS4 DEVICE 4 
BMI CALL4 

BR POLL4 TRY AGAIN 

CALL1 BSR ONE SERVICE DEVICE 1 
BR TEST2 CONTINUE POLLING 

CALL2 BSR TWO DEVICE 2 
BR TEST3 

CALL3 BSR THREE DEVICE 3 

BR TEST4 

CALL4 BSR FOUR DEVICE4 

BR POLL4 TRY ALL AGAIN 

When the device wants service, bit 7 of the status register for each 
device is 1. When a request is sensed, the program calls the device 
handler subroutine. 

There is a fine point worth noting here. It is possible to branch to the 
subroutine directly with a BMI or LBMI instruction, thus eliminating 
the second part of the program, which does the BSR instruction. Use of 
the branch requires the handler subroutine to "know" which address to 
return to when it is finished. This means that, if the simple branch is used, 
the handler could only be called from one place in the program and no 
other. If the handler is used elsewhere in the program, it must be rewritten 
with a different return address. Subroutines help eliminate unnecessary 
duplication of code. 

The advantages of polling are obvious. Polling is simple. It does not 
require hardware assistance, and it keeps all input/output synchronous 
with the program operation. The disadvantages are just as obvious. 
Most of the processor's time is wasted looking at devices that do not 
need service. In addition, by wasting so much time, the processor might 
then be late in giving service to a device. 

Another mechanism is, therefore, desirable in order to guarantee that 
the processor's time is used for performing useful computations, rather 
than the needless continuous polling of devices. However, let us stress 
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that polling is used extensively whenever a microprocessor has nothing 
better to do, as it keeps the overall organization simple. Let's examine an 
essential alternative to polling: interrupts. 

Interrupts 

Figure 6.18 illustrates the concept of interrupts. A special hardware 
line, the interrupt line is connected to a specialized pin of the micropro­
cessor. Multiple input/output devices may be connected to this interrupt 
line. Then, when any one of them needs service, it sends a level or pulse 
on this line. An interrupt signal is the service request from an input/output 
device to the processor. Let's examine the response of the processor to 
this interrupt. 

In all cases, when an interrupt occurs, the processor completes the in­
struction that it is currently executing (otherwise, such an interruption 
would create chaos inside the microprocessor). Next, the microprocessor 
branches to an interrupt-handling routine, which processes the interrupt. 
Branching to this subroutine implies that the contents of the program 
counter must be saved on the stack. An interrupt must, therefore, cause the 
automatic preservation of the program counter on the stack. In addition, 
the condition code register, CC, should also be preserved automatically, 
as its contents will be altered by any subsequent instruction. Finally, if 
the interrupt-handling routine should modify any internal registers, 
these internal registers should also be preserved on the stack(see Figures 
6.22 and 6.23). 

6809 Interrupts 

An interrupt is a signal sent to the microprocessor, which may request 
service at any time. This signal is asynchronous to the program. 
Whenever a program branches to a subroutine, such branching is 
synchronous to program execution, i.e., scheduled by the program. An 
interrupt, however, can occur at any time, and it generally suspends the 

SP - cc 

PCH 

PCl 

'------------Figure 6.22: 6809 Stack After Interruption 
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execution of the current program (without the program knowing it). 
Because it may happen at any time relative to program execution, it is 
called asynchronous. 

Four interruption mechanisms are provided on the 6809: 

1. the bus request (OMA/BREQ) 

2. the non-maskable interrupt (NMO 

3. the fast interrupt request (FIRQ) 

4. the usual interrupt request (IRQ). 

Let's examine them. 

The Bus Request 

The bus request is the highest priority interrupt mechanism on the 
6809. As a general rule, no interrupt will be sensed by the 6809 until the 
current machine cycle is finished; and the NMI, FIRQ, and IRQ inter­
rupts will not be taken into account until the current instruction is 
finished. The OMA/BREQ (TSC on the MC6809E), however, will be 
handled at the end of the current machine cycle, without necessarily 
waiting for the end of the instruction. It is used for a direct memory access 
(OMA), and causes the 6809 to go into OMA mode. 

CXXX) 

SP 
A 

B 

YH 

Yl 

FFFF 

Fisure 6.23: Saving Some Working Registers----------' 
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In OMA mode, the 6809 suspends operation and releases its data-bus 
and address-bus in the high-impedance state. This mode is normally 
used by a OMA controller to perform transfers between a high speed 
input/output device and memory, using the microprocessor address­
bus and data-bus. The end of a OMA operation is indicated to the 6809 
by OMA/BREQ changing levels. At this point, the 6809 will resume 
normal operation. 

The OMA should normally not be of concern to the programmer, unless 
timing is important. If a OMA controller is present in the system, the 
programmer must understand that the OMA may delay the response to 
one of the other three interrupts. 

The Non-Maskable Interrupt 

Th13 non-maskable interrupt (NMI) cannot be inhibited by the pro­
grammer. It is always accepted by the 6809 upon completion of the 
current instruction, assuming no bus request was received. Figure 6.24 
shows the interrupt sequence for the 6809. 

The NMI causes the automatic push of the program counter and all 
other registers (except the S register) onto the hardware stack, S. (If an 
NMI is received during a OMA/BREQ, it will set an internal NMI latch, 
and be processed at the end of the OMA/BREQ.) A new program counter 
is loaded from the data in memory locations FFFC and FFFO. The start­
ing address of the NMI handler is stored with the high byte in FFFC and 
the low byte in FFFO, as shown in Figure 6.25. 

The NMI is used in an "emergency," such as a power failure. It does 
not offer the flexibility of the maskable interrupts. The address of the 
NMI handler must be placed in location FFFC:FFFO, before an interrupt 
occurs. After a hardware reset, the NMI is inhibited until the hardware 
stack pointer is loaded. The interrupt handler must finish before the 
next NMI occurs, otherwise, the stack may fill the memory. 

When an NMI occurs, three bits in the condition code register (E, F, 
and I) are set to 1. The E bit, when set, indicates that the entire state of the 
processor-all the registers-have been saved on the stack. The registers 
are saved so that the interrupt handler may freely use registers, but not 
destroy the data used previously by the interrupted program. The return 
from interrupt (RTI) instruction is executed at the end of the interrupt 
handler program. This instruction checks the E bit and, if it is set, 
restores all the registers and the PC of the interrupted program. If the E 
bit is clear when the RTI is executed, only the condition code register 
and the PC will be restored from the stack. The I and F bits enable, or 
disable (when they are O or 1) the IRQ and FIRQ interrupts. 
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Interrupt Request 

The interrupt request, a maskable interrupt, is the most commonly used 
interrupt mechanism. The maskable interrupt is ignored or masked 
when the interrupt enable bit, I, in the condition code register is set to 1. 
When the I bit is o, IRQ interrupts are accepted by the processor. 

When an IRQ occurs and the I bit is zero, the PC and all the registers 
(except S) are pushed onto the hardware stack. The PC of the IRQ 
handler is fetched from memory locations FFF8:FFF9. This process is 
the same for the NMI. The E bit in the condition register is set to 1, 
because the entire machine state is saved; the I bit is set to 1 to prevent 
any more IRQs. It is usually not necessary to be able to handle more than 
one IRQ at a time. However, the I bit may be cleared by the program and 
more IRQs accepted if necessary. 

The IRQ handler is terminated with an RTI instruction. This instruc­
tion restores all the registers from the stack and the PC of the interrupted 
program. 

E F H 

I 
I 

I 

I · I 

N Z V C 

I I I 
CC REGISTER 

PC 
I 
I I 

/� 

I 

MEMORY 
OOCXl 

NMI 
HANDLER 

� REGISTERS -

STACK 
.... >-I' 

PC -

PCH FFFC 

PCL 
- FFFO 

Figure 6.25: Non-Moslcoble Interrupt Sequence-----------' 
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Fast Interrupt Request 

The fast interrupt request is similar to the IRQ, as it is maskable by 
setting the F bit in the condition code register to 1. When an FIRQ is 
received, only the PC and condition code register are saved on the hard­
ware stack. The E bit is not set, because the entire machine state has not 
been saved. The PC for the FIRQ handler is fetched from locations 
FFF6:FFF7. Both the F and I bits are set to 1 to prevent any more 
interrupts. 

The fast interrupt request executes much more quickly than the NMI 
or IRQ, because only three bytes are pushed onto the stack. The FIRQ 
takes ten cycles to execute. The NMI and IRQ require nineteen. The fast 
interrupt request is very useful when speed is essential, but the registers 
are not used extensively. If a register is used, it must first be pushed and 
then pulled, before execution of the RTI instruction. The RTI restores 
the condition code register and the PC of the interrupted program. 

Interrupt Dependent Instructions 

Two instructions on the 6809 depend on interrupts. They are the 
synchronize to external event (SYNC) instruction and the clear condition 
code bits and wait for interrupt instruction (CWAI). 

The SYNC instruction stops the 6809 from processing until an interrupt 
occurs. It also sets the bus available (BA) pin on the 6809 chip to 1 and 
the bus status (BS) pin to 0. This is the sync acknowledge state of the pro­
cessor. If the mask bit for that interrupt is 0, the interrupt handler is 
executed. If the interrupt is not enabled, execution of the program 
proceeds immediately after the SYNC instruction. This instruction can 
be useful for very fast I/O from a device. 

The CW AI instruction ANDs the byte immediately following the in­
struction with the condition code register, saves all of the processor 
registers on the stack, and suspends program execution until an interrupt 
occurs. If the interrupt is not masked, the interrupt handler is executed. 
Otherwise the processor stays in a suspended state. This instruction is 
provided for compatability with the MC6800 microprocessor. 

Interrupt Overhead 

Figure 6.18 gives a graphic comparison of the polling process versus 
the interrupt process-the polling process is illustrated on top, and the 
interrupt process below. It can be seen in the illustration that the program 
wastes a lot of time waiting in the polling technique. 

When using interrupts, the program is interrupted, the interrupt is 
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serviced, and the program resumes. However, an obvious disadvantage 
of an interrupt is that it introduces several additional instructions at 
the beginning and end of the device handler program. thus resulting in 
a delay before execution of the first instruction of the device handler. 
This delay is additional overhead. 

Now that we have clarified the operation of the interrupt lines, let's 
consider two remaining problems, involving: 

• multiple devices triggering an interrupt at the same time 

• an interrupt occurring while another is being serviced. 

Multiple Devices Connected to a Single Interrupt Line 

Whenev.er an interrupt occurs, the processor branches to a specified 
address. Before it can do any effective processing, the interrupt handler 
must determine which device triggered the interrupt. A polling method 
can be used to find the device that interrupted the processor. The micro­
processor asks each device in turn, "Did you trigger the interrupt?" 
If the answer is negative, it interrogates the next one. The following 
program illustrates this process: 

POLINT LDA 
BMI 

>STATUS1 READ STATUS 
ONE 

LOA > STATUS2 

BMI TWO 

Simultaneous Interrupts 

HANDLE DEVICE IF IT 
INTERRUPTED 

A second problem is that a new interrupt may be triggered during the 
execution of an interrupt-handling routine. Let's examine what happens 
when this occurs, and see how the stack can solve this problem. We 
previously indicated that this was another essential role of the stack; the 
time has now come to demonstrate its use. The illustration in Figure 6.26 
shows the concept of multiple interrupts. 

The contents of the stack are shown at the bottom of the illustration. 
Time elapses from left to right. Looking at time TO on the left, program P 
is executing. Moving to the right, at time T1, interrupt I1 occurs. We 
assume that the interrupt mask was enabled, thus authorizing I1. 
Program P is suspended, as shown at the bottom of the illustration. The 
stack contains, at the least, the program counter and the status register 
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of program P, plus any optional registers that might be saved by the 
interrupt handler or 11 itself. 

At time Tl, interrupt 11 starts executing until time T2. At time T2, 
interrupt 12 occurs. We assume that interrupt 12 has a higher priority 
than interrupt 11. Ifit had a lower priority, it would be ignored until 11 was 
completed. At time T2, the registers for 11 are stacked (as shown at the 
bottom of the illustration). Again, the contents of the program counter 
and the condition code register are pushed onto the stack. In addition, 
the routine for 12 might decide to save additional registers. 12 executes to 
completion at time T3. 

When 12 terminates, the contents of the stack are automatically popped 
back into the 6809 (as illustrated at the bottom of Figure 6.26). Thus, 11 
resumes execution automatically. Unfortunately, at time T4, an interrupt 
13 of higher priority occurs again. We can see at the bottom of the illus­
tration that the registers for 11 are again pushed onto the stack. Interrupt 
13 executes from T4 to T5 and terminates at T5. At that time, the contents 
of the stack are popped into the 6809, and interrupt 11 resumes execution. 
This time it runs to completion and terminates at T6. At T6, the remaining 
registers that have been saved in the stack are popped into the 6809, and 
program P can resume execution. At this point, we can verify that the 
stack is empty. In fact, the number of dashed lines indicating program 
suspension also indicate the number of levels in the stack. 

We must stress here, however, that, in practice, microprocessor 
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.__-------Figure 6.26: Stack Contents During Multiple Interrupts 
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systems are normally connected to a small number of devices that use 
interrupts. It is, therefore, unlikely that a high number of simultaneous 
interrupts will occur in such a system. 

We have now solved all the problems usually associated with inter­
rupts. Their use is, in fact, simple, and they should be used to advantage 
by even the novice programmer. 

SUMMARY 

In this chapter, we have presented programming techniques that can 
be used to communicate with the outside world. These techniques have 
ranged from elementary input/output routines to more complex pro­
grams for communication with actual peripherals. We have learned to 
develop all the usual programs and have even examined the efficiency of 
benchmark programs in the case of a parallel transfer and a parallel-to­
serial conversion. Finally, we have learned to schedule the operation of 
multiple peripherals, using polling and interrupts. 

Naturally, many exotic input/output devices may be connected to a 
system. With the array of techniques presented so far, and with an 
understanding of the peripherals involved, we should now be able to 
solve most common problems. 

In the next chapter, we will examine the actual characteristics of the 
input/output interface chips usually connected to a 6809 processor. We 
will then discuss the basic data structures available for use. 

EXERCISES 

6-1: What are the maximum and minimum delays that con be implemented 
with the simple three instruction delay loop program? 

6-2: Modify the three instruction delay loop program to obtain a delay of 
about 100 microseconds. 

6-3: Write a program to implement a 100 ms delay (typical of a Teletype). 
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6-4: Assume that the number of words to be transferred to memory is greater 
than 256. Modify the parallel word transfer program accordingly, and 
determine the impact on the maximum data transfer rate. 

6-5: Compute the maximum speed at which the serial bit transfer program 
will be able to read serial bits. Look up in the appendix the number of 
cycles required by every instruction in the table, then compute the time 
that will elapse during execution of this program. To compute the length 
of time used by a loop, simply multiply the total duration of this loop, 
expressed in microseconds, by the number of times it will be executed. 
Also, when computing the maximum speed, assume that a data bit will be 
ready each time the input location is sensed. 

6-6: Can you explain why bit 7 is used for status and bit 0 for data in the bit 
serial transfer program? Does it matter? 

6-7: Modify the bit serial transfer program, assuming that the first bit to come 
in is valid data (not to be discarded), and that it con be 0or1. (Hint: our bit 
counter should still work correctly, if you initialize it with the correct 
value.) 

6-8: Modify the bit serial transfer program to save the assembled word in the 
memory area starting at BASE. 

6-9: Modify the bit serial transfer program so that the transfer stops when the 
S character is detected in the input stream. 

6-10: Modify the bit serial transfer program, assuming that data is ava.ilable in 
bit position 0 of location INPUT, while the status information is available 
in bit position O of address INPUT + 1. 

6-11: When using an actual printer, it is usually necessary to send a start order 
before using the device. Modify the printer program to generate such an 
order, assuming that the start command is obtained by writing a 1 in bit 
position 0 of the STATUS register, which is assumed to be bidirectional. 

6-12: Modify the printer program to print a string of n characters, where n is 
assumed to be less than 255. 

6-13: Modify the printer program to print a string of characters, until a 
carriage-return code is encountered. 

6-14: It is usually necessary to turn off the segment drivers for an LED, prior to 
displaying new digits. Modify the LED program by adding the necessary 
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instructions (output 00 as the character code, prior to outputting the 
character). 

6-15: What would happen to the LED display if the DELAY label in the LED 
program was moved up by one line position? Would this change the timing? 
Would it change the appearance of the display? 

6-16: Assuming that the LED program is a subroutine, notice that it uses the 
register X internally and modifies its contents. If the subroutine freely 
uses the memory area designated by SA VEX, can you odd instructions at 
the beginning and end of this program which guarantee that, when the 
subroutine returns, the contents of the register X will be the some as when 
the subroutine was entered? 

6-17: Same exercise as above, but assume that the memory area SA VEX, etc., 
is not available to the subroutine. (Hint: remember that there is a built-in 
mechanism in every computer for preserving inf ormotion in chrono­
logical order.) 

6-18: Write the delay routine which results in the 9.09 millisecond delay. 
(DELA ¥9 subroutine.) 

6-19: Assume that the area available to the stock is limited to 300 locations in a 
specific program. Also, assume that all the registers must always be saved 
and that the programmer allows interrupts to be nested, i.e., to interrupt 
each other. What is the maximum number of simultaneous interrupts 
that can be handled? Will any other factor contribute to reducing further 
the maximum number of simultaneous interrupts? 

6-20: A 7-segment LED display can also display digits other than the hex 
alphabet. Compute the codes for: H, I,], L, 0, P, S, U, Y, g, h, i, j, l, n, o, p, r, 
t, u, y. 

6-21: The flowchart for interrupt management appears on the next page. 
Answer the following questions: 

a. What is done by hardware? What is done by software? 
b. What is the use of the mask? 
c. How many registers should be preserved? 
d. How is the interrupting device identified? 
e. What does the RTI instruction do? How does it differ from a subroutine 

return? 
f. Suggest a way to handle a stack overflow situation. 
g. What is the overhead ("lost time") introduced by the interrupt 

mechanism? 
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RETURN 
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INPUT/OUTPUT 
DEVICES 

WiTH THE PROGRESS OF LSI, more and more elaborate input/ 
output chips have been developed. As a result, the task of programming 
a system includes not only programming the microprocessor itself, 
but also programming the input/output chips. In fact, it is often more 
difficult to remember how to program the various control options of an 
input/output chip than it is to program the microprocessor itself. This is 
not because the programming is more difficult, but because each device 
has its own idiosyncrasies. In this chapter, we will examine the most 
general input/output device-the programmable input/output chip (the 
PIO). We will also examine some input/output devices designed by 
Motorola. 

The 6809 was designed to provide 16-bit microprocessor capability, 
while interfacing easily with any of the extensive 68xx family of UO 
chips developed for 8-bit processors. The 6809 will also interface with 
most 6502 UO devices, such as those used in the Apple, Atari, Commo­
dore, and many other personal computers. 
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THE "STANDARD" PIO 

A PIO provides a multi-port connection for input/output devices. 
(A port is a set of 8 input/output lines.) At the very least, each input/output 
device needs a data buffer to stabilize the contents of the data bus on out­
put. Most PIO's are equipped with a buffer for each port. Although there 
is no "standard" PIO, most manufacturers produce PIOs that are 
similar in function. 

We previously established that a microcomputer uses a handshaking 
procedure, or interrupts to communicate with an I/O device. The PIO 
also uses a similar procedure to communicate with a peripheral. There­
fore, to implement a handshaking function, each PIO must be equipped 
with at least two control lines per port. 

A microprocessor also needs to read the status of each port. Thus, 
each port must be equipped with one or more status bits. In addition, the 
PIO has a number of options for configuring its resources. To specify 
these programming options, a programmer must be able to access a 
special register in the PIO, called the control register. In some cases, the 
status information is part of the control register. 

One essential faculty of the PIO is that each line may be configured as 
either an input or output line. Figure 7 .1 shows a diagram of a PIO. It is 
up to the programmer to specify whether a line will be input or output. 
To program the direction of the lines, a data-direction register is provided 
for each port. A 0 in a bit position of the data-direction register specifies 
an input. A 1 specifies an output. 

It may be surprising that a 0 is used for input and a 1 for output, when 
usually a 0 corresponds to output and a 1 to input. However, this change is 
quite deliberate: whenever power is applied to the system, it is important 
that all the I/O lines are configured as input. Otherwise, if the microcom­
puter is connected to some dangerous peripheral, it may be activated by 
accident. When a reset is applied, all registers are normally zeroed, which 
results in configuring all input lines of the PIO as inputs. The connection 
to the microprocessor appears on the left of the illustration in Figure 7 .1. 
The PIO connects to the 8-bit data bus, the microprocessor address bus, 
and the microprocessor control-bus. The programmer simply specifies 
the address of any register to be accessed within the PIO. 

THE INTERNAL CONTROL REGISTER 

The control register of the PIO provides a number of options for gen­
erating or sensing interrupts, or for implementing automatic handshake 
functions. We will not provide a complete description of these facilities 
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here. However, very simply, when using a practical system that uses a 
PIO, it is usually necessary to refer to the data-sheet showing the effects 
of setting the various bits of the control register. When the system is ini­
tialized, the programmer must load the control register of the PIO with 
the correct contents for the expected application. 

PROGRAMMING A PIO 

Let's now look at a typical sequence, using a PIO channel (assuming 
an input): 

1. Load the control register by using a programmed transfer 
between a 6809 register (usually an accumulator) and the PIO 

CA 1 CA2 PORT A 

PORA 

DORA 

CRA 

PERIPHERAL 
DATA 

REGISTER 

DATA 
DIRECTION 
REGISTER 

CONTROL 
REGISTER 

DATA 
BUS 

PDRB 

DDRB 

PORT B CB2 CB 1 

O = INPUT 
1 =OUTPUT 

CR•D 
RSO RSl 

R�R JRQA' IRQB 
SELECT 

....._----------------- Figure 7.1: Typical PIO 
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control register. The options and operating mode of the PIO are 
set when the register is loaded (see Figure 7.2). The loading is 
normally done only once, at the beginning of a program. 

IRQA 

CONTROL 

} CHIP 
SELECT 

}REGISTER 
SELECT 

INTI 
STATUS 

(CRA) 

IRQB -------------------1 INT/ 
STATUS 

PAO-
PA7 

PBO-
P87 

Figure 7.2: Using a PIO.Load Control Register------------' 
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2. Load the direction register to specify the direction in which the 
I/O lines will be used. (See Figure 7.3.) 

IRQA 

CONTROL 

} CHIP 
SELECT 

} REGISTER 
SELECT 

IRQB 

INT/ 
STATUS 

INT/ 
STATUS 

PAO-
PA7 

PBO-
PB7 

'-------------Figure 7.3: Using a PIO-Load Doto Direction 
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3. Read the status register to check if a valid byte is available on 
input. (See Figure 7.4.) 

4. Read the port; the byte is read into the 6809. (See Figure 7.5.) 

� 
07 

IRQA 

EN 
RESET 

IRQB 

CONTROL 

} CHIP 
SElfCT 

} REGISTER 
SElfCT 

INT/ 
STATUS 

PAG­
PA7 

PBO­
P87 

Figure 7.4: Using a PIO-Head Status---------------' 
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THE MOTOROLA 6821 PROGRAMMABLE INTERFACE ADAPTER 

00-
07 

The 6821 PIA is a two-port PIO with an architecture that is essentially 
the same as the standard model we have just described. Figure 7 .6 shows 
the actual pinout of a 6821. 

IRQA 

IRQ6 

CONTROL 

} CHIP 
SELECT 

} REGISTER 
SELECT 

INT/ 
STATUS 

INT/ 
STATUS 

--------------Figure 7.5: Using a PIO-Head INPUT 
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The control register for each port has bits which control the conditions 
in which an interrupt can be generated and the conditions when the 
handshake bits can change state. 

PROGRAMMING THE MOTOROLA PIO 

Let's now examine a typical sequence for using a PIO: 

1. Load the control register to set the handshake bits mode. 

2. Load the data direction register of port A to specify that lines 0-5 
are inputs and lines 6 and 7 are outputs. 

3.  Read a word by reading the contents of the input buffer. 

DO 
DI 
D2 

DATA D3 

BUS D4 
DS 
06 
D7 

CHIP CSI 
[cso 

SELECT CS2� 

REGISTER [ RSO 

SELECT RSl 

CHIP t� 
CONTROL ENABLE 

RESET 
INTERRUPT IRQA 
REQUEST � 

33 
32 
31 
30 
'l9 
28 
27 
26 

22 
24 
23 

36 
35 

21 
25 
34 
38 
37 

PAO 
PAI 
PA2 
PA3 
PA4 PORTA 
PAS 
PA6 
PA7 
PBO 
PBI 
PB2 

13 PB3 
14 PB4 PORTS 
15 PBS 
16 PB6 
17 PB7 

40 CAl )HANDSHAKE 
39 CA2 BITS PORT A 

16 CBl }HANDSHAKE 
20 1 9  CB2 BITS PORT B 

+SV GND 

Fisure 7.6: 6821 PIA Pinout-------------------' 
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THE MC6850 ACIA FOR THE 6809 

The MC6850 ACIA (Asynchronous Communications Interface 
Adapter) is a peripheral chip designed to facilitate asynchronous com­
munications in serial form. It includes a universal asynchronous 
receiver-transmitter (a UART). The essential function of the ACIA is 
serial-to-parallel and parallel-to-serial conversion. The ACIA also offers 
a choice of data format and interrupt modes. 

OTHER I/O CHIPS 

Because the 6809 is commonly used as an upgraded replacement for 
the 6800, it has been designed so that it can be used with almost any of 
the usual 6800 input/output chips, as well as with specific I/O chips 
manufactured for the 6809 by Motorola. 

SUMMARY 

To make effective use of input/output components, it is necessary to 
understand the function of each bit or group of bits within the various con­
trol registers. These complex new chips automate a number of procedures 
previously carried out by software or special logic. In particular, many 
of the handshaking procedures are automated within components, such 
as the ACIA. Interrupt handling and detection may also be internal. 

By the end of this chapter, you should be familiar with the functions of 
the basic signals and registers of the I/O devices. Naturally, in the future, 
new components will be introduced that will off er a hardware imple­
mentation of even more complex algorithms. 
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APPLICATION 
EXAMPLES 

IN THIS CHAPTER, you can sharpen your new programming skills 
by developing a collection of utility programs that fetch characters from 
an I/O device and process them in various ways. These programs give 
you a chance to apply the knowledge and techniques you have learned 
so far, in the development of a number of routines that are useful in 
many applications. The development of these routines demonstrates 
how the architecture of the 6809 can make the programming of such 
common algorithms exceptionally straightforward. 

Before we begin, we will clear an area of the memory in which we will 
put the characters from the I/O device. Clearing memory is not always 
necessary; we do it here as a programming example. 

CLEARING A SECTION OF MEMORY 

We will start by clearing (zeroing) the contents of the memory from ad­
dress BASE to address BASE + LENGTH, where LENGTH is less than 
256 bytes. The program is: 

ZEROM LDB #LENGTH LOAD B WITH LENGTH 
LDX #BASE POINT TO BASE 

CLEAR CLR .x+ CLEAR LOCATION AND POINT TO 
NEXT 

DECB DECREMENT COUNTER 
BNE CLEAR END OF SECTION? 
RTS 

In this program, we assume that the length of the section of memory is 
equal to LENGTH. We use the index register, X, as a pointer to the current 
word to be cleared, and register B as a counter. 

We could use this utility in a memory test program to zero the contents 
of a block. The memory test program would then verify that the contents 
of the block remain zero. 
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Let's now improve this routine: 

ZEROM LDB #LENGTH 
LDX #BASE 
CLRA SET A TO ZERO 

CLEAR STA ,x+ 
DECB 
BNE CLEAR 
RTS 

We have improved the program by storing the A register, rather than by 
using the CLR instruction. When using the indexed addressing modes, 
the ST A instruction requires 6 cycles, rather than the 8 required by CLR. 

This example demonstrates that every time a program is written, even 
though it may be correct, it can usually be improved. It is necessary, 
however, to be familiar with the complete instruction set in order to 
implement such improvements. These improvements are not simply 
cosmetic; they can often improve the execution time of the program; 
they might also require fewer instructions and less memory space, and 
they may improve the readability of the program and, therefore, its 
chances of being correct. 

GETIING CHARACTERS IN 

We will now write a program that reads characters from an UO 
device. Assuming that the computer we are using has a keyboard as an 
input device, each time we type a character, the character will be saved 
in an area of memory called the BUFFER, until a special character called 
SPACE is encountered. (Appendix B gives the code number for SPACE.) 
The subroutine GETCHAR fetches one character from the keyboard 
and puts it in the A accumulator. We assume that 256 characters 
(maximum) will be fetched before a SPACE character is encountered: 

STRING 
NEXT 

OUT 

LDX 
JSR 
CMPA 
BEQ 
STA 
BRA 
RTS 

#BUFFER POINT TO BUFFER 
GETCHAR GET A CHARACTER 
#SPC CHECK FOR SPACE 
OUT FOUND IT? 
,x+ STORE CHAR IN BUFFER 
NEXT GET NEXT CHAR 
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At the end of this routine, we have a string of characters in the memory 
buffer. We will now process them in various ways. 

TESTING A CHARACTER 

This program determines if the character at memory location LOC is 
equal to 0, 1, or 2: 

WT LDA LOC GET CHARACTER 
CMPA #0 IS IT A ZERO? 
BEQ ZERO BRANCH ROUTINE 

CMPA #1 A ONE? 
BEQ ONE 

CMPA #2 A TWO? 

BEQ TWO 
BRA NOTFND FAILURE 

This routine simply reads the character, and then uses the CMP instruc­
tion to check its value. 

We will now run a different test. 

BRACKET TESTING 

This program determines if the ASCII character at memory location 
LOG is a digit between 0 and 9: 

BRACK LDA LOC GET CHARACTER 
ANDA #$7F MASK OUT PARITY BIT 
CMPA #$30 ASCII O 
BLT OUT CHAR TOO LOW? 
CMPA #$39 ASCII 9 
BGT OUT CHAR TOO HIGH? 

CLRA FORCE ZERO FLAG 
OUT RTS 

ASCII O is represented in hexadecimal by 30 or by BO, depending upon 
whether the parity bit is used or not. Similarly, ASCII 9 is represented in 
hexadecimal by 39 or by B9. 

The purpose of the second instruction of the program is to delete bit 7, 
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the parity bit, in case it was used, so that the program is applicable to 
both cases. The value of the character is then compared to the ASCII 
values for 0 and 9. When using a comparison instruction, the Z bit is set, 
if both the contents of the register and the operand are equal. The carry 
bit is set, if there is a borrow. This means that the carry bit is set, if the 
value of the operand is greater than the contents of the register. 

The instruction CLRA forces a O into the Z bit. The Z bit is used to indicate 
to the calling routine that the character in LOC was indeed in the interval 
(0,9). Other conventions, such as loading a digit in the accumulator, 
could also be used to indicate the results of the test. 

When using an ASCII table, note that parity is often used. For example, 
the ASCII representation for 0 is 0110000, a 7-bit code. If, however, we 
use odd parity and guarantee that the total number of 1s in a word is odd, 
then the code becomes 10110000 (or BO in hexadecimal). An extra 1 is 
added to the left side of the code. Let's now develop a program to 
generate parity. 

GENERATING PARITY 

This program generates even parity in bit position 7: 

PARITY LOA 
PSHS 
CLRA 
LOB 

BITCNT LSR 
BCC 
INCA 

NOINC DECB 
BNE 
LSRA 
BCC 
LOA 
ORA 

CHAR 
A 

#7 
.s 
NO INC 

BITCNT 

DONE 
CHAR 
#$80 

STA CHAR 
DONE PULS A 

RTS 

GET CHARACTER 
SA VE CHAR ON STACK 

COUNT 7 BITS 
SHIFT CHAR RIGHT 
C = ZERO SKIP 
COUNT CARRY BITS 
LOOP TILL 
7 BITS ARE TESTED 
CHECK IF A IS EVEN 
IF EVEN THEN DONE 
GET CHARACTER 
SET BIT 7 

CLEAN UP STACK 

This program shifts a character and then counts the number of 1s in it. If 
the number of 1s is even, the parity bit is not set, if the number is odd, the 
parity bit is set. 

I 
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The stack is  used as working space for this program. Shifting destroys 
the character, but it is preserved in CHAR. It is important to note that the 
stack pointer, S, is restored to its previous value by the PULS A instruc­
tion. If this is not done, the stack will eventually overflow memory. 

CODE CONVERSION: ASCII TO BCD 

Converting ASCII to BCD is very simple. In this example, we see that 
the hexadecimal representation of ASCII characters 0 to 9 is 30 to 39 or 
BO to B9, depending on parity. The BCD representation is simply obtained 
by dropping the 3 or the B, i.e., masking off the left nibble (4 bits). Here is 
the program: 

ASCBCD JSR BRACK CHECK THAT CHAR IS 0 TO 9 

BNE ILLEGAL EXIT IF ILLEGAL CHAR 
LOA CHAR GET CHARACTER 
ANDA #$OF ZERO HIGH NIBBLE 
STA BCDCHR STORE RESULT 

In full BCD notation, the first word contains the count of BCD digits, 
the next contains the sign, and every successive nibble contains a BCD 
digit (we assume no decimal point). The last nibble of the block may not 
be used. 

CONVERTING HEX TO ASCII 

In the example, the A register contains one hexadecimal digit. We 
simply need to add a 3 (or a B) into the left nibble. Here is the program: 

ANDA 
ADDA 
CMPA 
BLT 
ADDA 

#$F 
#$30 
#$3A 
OUT 
#7 

ZERO LEFT NIBBLE 
ASCII 
CORRECTION NEEDED? 

CORRECTION FOR A THRU F 

FINDING THE LARGEST ELEMENT OF A TABLE 

The beginning address of the table is contained at memory address 
BASE. The first entry of the table is the number of bytes it contains. The 
following program searches for the largest element of the table. Its value 
is then stored in A, and its position is stored in Y. 

This program uses registers A, B, X, and Y, and indexed addressing, to 
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search a table anywhere in memory (see Figure 8.1): 

MAX LDX #BASE TABLE ADDRESS 
LDB ,x+ BYTES IN TABLE 
CLRA CLEAR MAXIMUM VALUE 
TFR X,Y INITIALIZE Y 

LOOP CMPA .x+ COMPARE ENTRY 
BHI NOSWIT BRANCH IF LESS THAN MAX 
LEAY -1,X SET NEW POSITION 
LDA ,Y LOAD NEW MAX 

NOSWIT DECB DECREMENT COUNTER 
BNE LOOP KEEP GOING UNTIL ZERO 
RTS 

This program tests the nth entry. If it is greater than A, the entry goes 
into A, and its location is remembered in Y. The (n + lst) entry is then 
tested, etc. This program works for positive integers only. 

SUM OF N ELEMENTS 

This program computes the 16-bit sum of N entries of a table. The 
starting address of the table is contained at memory address BASE, in 

A I :URRENT MAX 

B I COUNTER COUNT = N BASE 

ELEMENT 1 

x 

y I POINTER lO MAX 

E.LEMENT N 

Figure 8.1: Larsest Elements in a Table---------------' 
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page zero. The first entry of the table contains the number of elements in 
N. The 16-bit sum is left in memory locations SUMLO and SUMHI. If 
the sum requires more than 16 bits, only the lower 16 bits are kept. (The 
high order bits are said to be truncated.) 

This program modifies registers A, B, X, and Y. It assumes 256 

/ elements maximum (see Figure 8.2): 

SUMIG LOX #BASE POINT TOT ABLE BASE 
LOB ,x+ READ LENGTH INTO COUNTER 
LOY #SUMLO POINT TO RESULT LO 
CLR SUM LO CLEAR RESULT 
CLR SUM HI 

AD LOOP LOA ,x+ GET TABLE ENTRY 
ADDA ,Y COMPUTE PARTIAL SUM 

STA ,Y STORE IT 
BCC NOCARY CHECK FOR CARRY 

INC 1,Y ADD CARRY TO HIGH BYTE 

NOCARY DECB DECREMENT BYTE COUNT 

BNE AD LOOP KEEP ADDING TIL END 
RTS 

This program should be self-explanatory. 

B COUNT 

x 

y 

LENGTH = N 

ELEMENT 1 

ELEMENT N 

BASE 

SUMLO 

SUMHI 

"--------------- Figure 8.2: Sum of N Elements 



278 PROGRAMMING THE 6809 

A CHECKSUM COMPUTATION 

A checksum is a digit or set of digits computed from a block of succes­
sive characters. The checksum is computed at the time the data is stored; 
it is then put at the end. To verify the integrity of the data, the data is read, 
and the checksum is recomputed and compared with the stored value. 
A discrepancy indicates an error or failure. 

We can use several algorithms. In this example, we exclusiv�OR all the 
bytes in a table of N elements, and leave the results in the accumulator. 
As usual, the base of the table is stored at address BASE. The first entry 
of the table is its number of elements, N. The program then modifies A, 
B, and X. N must be less than 256 elements: 

CHKSUM ,LOX #BASE POINT TO TABLE 
LOB ,

x
+ GET LENGTH 

CLRA CLEAR CHECK SUM 
CHLOOP EORA .

x
+ COMPUTE CHECKSUM 

DECB DECREMENT COUNTER 
BNE CH LOOP REPEAT UNTIL END 
STA ,X PUT CHECKSUM AT END OFT ABLE 
RTS 

COUNT THE ZEROES 

This program counts the number of zeroes in the table, and puts the 
total in location TOT AL. It modifies A, B, and X. 

ZEROS LDX #BASE POINT TO TABLE 
LDB .

x
+ GET LENGTH 

CLR TOTAL ZERO TOTAL 
ZLOOP LDA .

x
+ GET ELEMENT 

BNE NOTZ IS IT A ZERO? 
INC TOTAL IF SO, INCREMENT ZERO COUNTER 

NOTZ OECB OECREMENT COUNTER 
BNE ZLOOP 
RTS 

BLOCK TRANSFER 

We will now pick up every third entry in the source block at address 
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FROM and store it in a block at address TO: 

FER3 LDX #FROM 
LDY #TO SET UP POINTERS 
LDB #LENGTH 

LOOP LDA ,x GET AN ENTRY 
STA ,Y+ STORE IT 
LEAX 3,X POINT TO THIRD 
DECB 
BNE LOOP 

BUBBLE-SORT 

Bubble-sort is a sorting technique used to arrange the elements of a 
table in ascending or descending order. The bubble-sort technique 
derives its name from the fact that the smallest element "bubbles up" to 
the top of the table; every time it "collides" with a "heavier" element, it 
jumps over it. 

Figures 8.3 and 8.4 show practical examples of a bubble-sort. The list 
to be sorted contains the numbers 10, 5, 0, 2, and 100, and must be sorted 
in descending order (O on top). The algorithm is simple. The flowchart 
for the algorithm appears in Figure 8.5. 

The two top (or else the two bottom) elements are compared. If the 
lower element is less (lighter) than the top element, they are exchanged. 
Otherwise, they are left alone. For practical purposes, the exchange, if it 
occurs, is indicated by a flag, called "EXCHANGED." The process is 
then repeated on the next pair of elements, etc., until all elements have 
been compared, two by two. 

Figure 8.3 illustrates this first pass in steps 1, 2, 3, 4, 5, and 6, going 
from the bottom up. (Equivalently, we could go from the top down.) If no 
elements have been exchanged, the sort is complete. If an exchange has 
occurred, we must start over again. Looking at Figure 8.4, we see that 
four passes are necessary in this example. This process is simple, and 
widely used. 

One possible complication resides in the actual mechanism of the 
exchange. When exchanging A and B, we may not write: 

A = B  
or 

B = A  

as this would result in the loss of the previous value of A. (Try it on an 
example.) The correct solution is to use a temporary variable or location 
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0 10 0 10 0 10 

5 5 5 1=2 

0 0 1=3 0 1=3 

2 1=4 2 1=4 2 

100 1=5 100 100 

100>2 2>0 0<5 
NO CHANGE NO CHANGE EXCHANGE 

0 10 0 10 0 

0 0 10 

5 5 5 

2 2 2 

100 100 100 

EXCHANGED 0<10 EXCHANGE O 
EXCHANGE END OF PASS 1 

0 0 © 0 0 0 

10 10 10 

5 5 1=3 2 

2 1=4 2 1=4 5 

100 1=5 100 100 

100>2 2>5 EXCHANGED 
NO CHANGE EXCHANGE 

® 0 ® 0 @ 0 1=1 

10 1=2 2 2 1=2 

2 1=3 10 10 

5 5 5 

100 100 100 

2<10 EXCHANGED 2>0 
EXCHANGE NO CHANGE 

END OF PASS 2 

-Figure 8.3: Bubble-Sort Example: Phases 1 to 12 
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2 

10 

5 1=4 

100 1=5 

100>5 
NO CHANGE 

® 0 ® 
2 1=2 

5 1=3 

1 0  

100 

5>2 
NO CHANGE 

® 0 @ 
2 

5 1=3 

10 1=4 

100 

100>5 
NO CHANGE 
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0 @) 0 

2 2 

10 1=3 5 

5 1=4 10 

100 100 

5<10 EXCHANGED 
EXCHANGE 

0 0 

2 2 

5 5 

1 0  10 1=4 

100 100 1=5 

2>0 100>10 
NO CHANGE NO CHANGE 
END OF PASS3 

0 © 0 l=l 

2 1=2 2 1=2 

5 1=3 5 

10 10 

100 100 

5>2 2>0 
NO CHANGE NO CHANGE 

END 

---------Figure 8.4: Bubble-Sort Example: Phases 13 to 21-
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YES 

EXCHANGED = 0 

GET NUMBER 
OF ELEMENTS N 

l = N 

DECREMENT I 

READ E'(I) 

EXCHANGE E AND E' 
TEMP=E(I) 
E(l)=E'(I) 
E'(l)=TEMP 

EXCHANGED= 1 

DONE 

Figure 8.5: Bubble-Sort Flowchart--------------' 
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to preserve the value of A. For example, we may use: 

TEMP = A 
A = B  
B = TEMP 

This process, called circular permutation, works. (Try it on an example.) 
All programs implement the exchange in this way. Figure 8.5 illustrates 

the process. Figure 8.6 shows the register and memory assignments. 

B I  COUNT 

LIST 
x 

LIST 

COUNT 

EX CHG 

.__----------------FigureB.6: Bubble-Sort 
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The program is: 

BUBBLE LDX #BASE GET TABLE 
LDB #LENGTH GET LENGTH 
DECB 
LEAX B,X POINT TO END 
CLR EX CHG CLEAR EXCHANGE FLAG 

NEXT LOA .x A = CURRENT ENTRY 
CMPA .-x COMPARE WITH NEXT 
BGE NOSWIT GO TO NOSWITCH IF CURRENT 

>= NEXT 
PSHS B SAVE B 
LDB .x GET NEXT 
STB 1,X STORE IN CURRENT 
STA .x STORE CURRENT IN NEXT 
PULS B RESTORE B 
INC EXCHG SET EXCHANGE FLAG 

NOSWIT DECB DECREMENT B 
BNE NEXT CONTINUE UNTIL ZERO 
TST EX CHG EXCHANGED = O? 
BNE BUBBLE RESTART IF NOT = 0 
RTS 

SUMMARY 

We have just explored common utility routines that use combina­
tions of the various techniques described in previous chapters. In 
several of these routines, we have used a special data structure, called 
a table, which is useful for designing programs. In addition, there are 
other techniques that we can use to structure data; we discuss them in 
the next chapter. 
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S.1: Write a memory test program that: 

• zeroes a 256-word block and verifies that each location is 0 

• writes all 1s and verifies the contents of the block 

• writes 01010101 and verifies the contents 

• and, finally, writes 10101010 and verifies the contents. 

S.2: Modify the program you wrote for Exercise 8-1, so that it fills the memory 
I 

section with alternating Os and ls (i.e., Os, then all 1s). 

S:3: Try to improve the STRING program by: 

• Echoing the character back to the device (for a Teletype, for example). 

• Checking that the input string is no longer than 256 characters. 

8-4: Is the following program equivalent to the Bracket Testing program?: 

LDA LOC 

SUBA #$30 
BMI OUT 

SUB #10 
BPL OUT 

ADDA #10 

S.5: Determine if an ASCII character contained in an accumulator is a letter 
of the alphabet. 

S.6: Using the parity generation program as an example, verify the parity of a 
word. Compute the correct parity, then compare it to the one that is 
expected. 

S.7: Write a program to convert BCD to ASCII. 

S.8: Write a program to convert BCD to binary (more difficult). (Hint: 
N3N2N1N0 in BCD is (((N3 X 10) + N;J X 10 + NJ X 10 + N0 in binary.) 

S.9: Convert HEX to ASCII, assuming a packed format (two hex digits in A). 
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8-10: Modify the program that finds the largest element in a table, so that it also 

works for negative numbers in two's complement. 

8-11: Will the program in Exercise 8-10 also work for ASCII characters? 

8-12: Write a program that sorts n numbers in ascending order. 

8-13: Write a program that sorts n names (3 characters each) in alphabetical 
order. 

8-14: Modify the sum of the n elements program to: 

• compute a 24-bit sum 

• c;gmpute a 32-bit sum 

• detect any overflow. 

8-15: Modify the Count the Zeroes program to count: 

• the number of stars (the character "•") 

• the number of letters of the alphabet 

• the number of digits between 0 and 9. 





CHAPTER 9 
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DATA 
STRUCTURES 

PART I-THEORY 

To DESIGN A GOOD PROGRAM you need both a good algorithm 
design and a good -data structure design. Most simple programs do not 
involve significant data structures, therefore, up to this point, we have 
only concentrated on designing and coding good algorithms in a given 
machine language. We will now turn our attention to the design of data 
structures, so that we can develop more complex programs. We have 
already used two data structures in this book: the table and the stack. We 
will now examine several other, more general, data structures. 

The material presented in this chapter is theoretical in concept; it 
involves the logical organization of data in any system. However, the 
aptness of the 6809 is particularly apparent here as its addressing modes 
(often combined with its multiplication instruction) yield particularly 
efficient implementations of more complex data structures. We have 
limited the material in this chapter to only that which is essential for 
understanding common data structures. We will begin by reviewing the 
most common data structure: the pointer. 

POINTERS 

A pointer is a number that designates the location of actual data. Every 
pointer is an address. However, every address is not necessarily a 
pointer. An address is a pointer only if it points to some type of data or 
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structured information. In this book, we have already encountered a 
typical pointer, the stack pointer, which points to the top of the stack (or 
just over the top of the stack). The stack, called an LIFO structure, is a 
common data structure. As another example, when using indirect address­
ing, the indirect address is always a pointer to the data that is to be retrieved. 

LISTS 

Almost all data structures are organized as lists. We will now examine 
several types of lists. 

A Sequential List 

A sequential list, table, or block is probably the simplest data structure 
(see Chapter 8). Tables are normally ordered in function of a specific 
criterion, such as an alphabetical or numerical ordering. Because of 
this, it is easy to retrieve an element in a table, by using, for example, 
indexed addressing. 

A block normally refers to a group of data that has definite limits, 
but whose contents are not ordered. A block may contain a string of 
characters. It may be a sector on a disk, or it may be some logical area 
(called segment) of the memory. Generally, it is not easy to access a 
random element of a block. Directories are used to facilitate the retrieval 
of blocks of information. 

A Directory 

A directory is a list of tables or blocks. For example, the file system 
normally uses a directory structure. As a simple example, the master 
directory of a system may include a list of users' names (illustrated in 
Figure 9.1). In this example, the entry for user "John" points to John's file 
directory. In this case, the file directory is a table of pointers containing the 
names and locations of all of John's files. For this example, we have 
designed a twcrlevel directory. This flexible directory system allows the 
inclusion of additional, intermediate directories-a convenient feature 
for the user. 

A Linked List 

In a system, there are often blocks of information that represent data, 
events, or other structures that cannot be moved around easily. If they 
could, we would probably assemble them in a table in order to sort or 
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structure them. Let's assume, for example, that we want to leave several 
blocks where they are, but we also want to establish an ordering among 
them, such as first, second, third, or fourth. To do this, we will use a linked 
list (see Figure 9.2). 

In the illustration in Figure 9.2, a list pointer, called FIRSTBLOCK, 
points to the beginning of the first block. A dedicated location within 
Block 1, such as the first or last word, contains a pointer to Block 2, called 
PTR1. The process is then repeated for Blocks 2 and 3. Since Block 3 is 
the last entry in the list, then, by convention, PTR3 contains either a 
special "nil" value or points to itself. This is done so that the end of the 
list can be detected. The linked list structure is economical, as it requires 
only one pointer per block, and frees the user from having to physically 
move the blocks in the memory. 

USER 
DIRECTORY 

JOHN � . 

JOHN'S 
FILE 

DIRECTORY 

ALPHA 

SIGMA 

JOHN'S FILE 

ALPHA 

-

DATA 

-
SIGMA 

L-+ 

'--------------Figure 9.1: A Directory Structure 
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------------------ Figure 9.Z: A Linlced List-
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Let's now examine how a new block is inserted into a linked list (see 
Figure 9.3). We will assume that the new block is at address NEWBLOCK, 
and is to be inserted between Block 1 and Block2. Pointer PTR1 is simply 
changed to the value NEWBLOCK, so that it now points to Block X. 
PTRX now contains the former value of PTR1, i.e., it points to Block 2. 
The other pointers in the structure are left unchanged. We can see that 
the insertion of a new block has simply required the updating of two 
pointers in the structure-a clearly efficient procedure. 

Several types of lists have been developed to facilitate specific types 
of access, insertions, and deletions, to and from the list. We will now 
examine some of the more frequently used types of linked lists. 

A Queue 

Figure 9.4 displays a queue, formally called a FIFO, or first-in-first-out 
list. For clarity, let's assume, for example, that the block on the left is a 
service routine for an output device, such as a printer. The blocks appear­
ing on the right are the request blocks from various programs or 
routines, to print characters. The order in which they are serviced is the 
order established by the waiting queue. It can be seen that the first event 
to obtain service is Block 1; Block 2 is next; and Block 3 follows. In a 
queue, the convention is that any new event arriving in the queue is 
inserted at the end. In Figure 9.4, any new event is inserted after PTR3. 
This guarantees that the first block inserted in the queue is the first one 
serviced. It is quite common in a computer system to have queues for a 
number of events, whenever they must wait for a scarce resource, such 
as the processor or some input/output device. 

BLOCK X 

BLOCK 1 
PTR 

BLOCK 2 

PTR 
x 

BLOCK 3 
PTR 

3 

-Figure 9.3: Inserting a New Block---------------
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We have already discussed the stack structure, a last-in-first-out 
(LIFO) structure. The last element deposited on top is the first one to be 
removed. A stack may be implemented as either a sorted block or a list. 
Because most stacks in microprocessors are used for high-speed events, 
such as subroutines and interrupts, a continuous block is usually 
allocated to the stack. rather than a linked list structure. 

Linked List Versus Block 

Similarly, a queue could be implemented as a block of reserved loca­
tions. Advantages of using a continuous block include fast retrieval and 
the elimination of pointers. A disadvantage is that it is usually necessary 
to 8.edicate a fairly large block in order to accommodate the worst-case 
size of the structure. In addition, it is often difficult or impractical to 
insert or remove elements from within the block. Since memory is 
traditionally a scarce resource, blocks have usually been reserved for 
fixed-size structures or structures, such as the stack, that require the 
maximum speed of retrieval. 

A Circular List 

"Round robin" is a common name for a circular list. A circular list is a 
linked list in which the last entry points back to the first (see Figure 9.5). 

SERVICE 
ROUTINE 

NEXT 

BLOCK 1 PTR 
3 

--------------------Figure 9.4: A Queue--
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In the case of a circular list, a current-block pointer is often kept. In the 
case of events, or programs waiting for service, a current-event pointer is 
moved by one position to the left or right each time. A round robin usually 
corresponds to a structure in which all blocks are assumed to have the 
same priority. However, a circular list may also be used as a subcase of 
other structures, in order to facilitate the retrieval of the first block after 
the last one, when performing a search. 

A polling program is a good example of a circular list. It usually goes in 
a round robin fashion, interrogating all peripherals and then coming 
back to the first one. 

A Tree Structure 

A tree structure may be used whenever a logical relationship (called a 
syntax) exists among all elements of a structure. A simple example of a 
tree structure is a descendant or genealogical tree (see Figure 9.6). The 
tree in Figure 9.6 shows that Smith has two children: a son, Robert, and a 
daughter, Jane. Jane, in turn, has three children: Liz, Tom and Phil. 
Tom, in turn, has two children: Max and Chris. Robert, on the left of the 
illustration, has no descendants. 

This tree is a structured tree. Figure 9.1 showed an example of a simple 
tree: the directory structure was a two-level tree. 

Trees are used to advantage whenever elements can be classified ac­
cording to a fixed structure, thus facilitating insertion and retrieval. 
In addition, trees can be used to establish groups of information in a 
structured way, so that they can be easily used for later processing, such 
as in a compiler or interpreter design. 

A Doubly-Linked List 

Additional links may be established between elements of a list. The 
simplest example is the doubly-linked list (see Figure 9.7). Figure 9.7 

EVENT 1 EVENT 2 • • •  EVENTN 

CURRENT EVENT 

-Figure 9.5: A Round Robin Is A CirculOJ' List-----------
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shows the usual sequence oflinks from left to right, plus another sequence 
of links from right to left. The goal is to allow easy retrieval of the 
elements just before and after the element being processed. This method 
does, however, cost an extra pointer per block. 

SEARCHING AND SORTING 

The process of searching and sorting elements of a list depends directly 
on the type of structure used for the list. Many searching algorithms 
have been developed for the most frequently used data structures. As an 
example, we used indexed addressing in Chapter 8 to search through a 
table for a particular element. Recall that we can use indexed addressing 

SMITH 

ROBERT 

a CHRIS 

'----------------Figure 9.6: Genealogical Tree 

BLOCK 1 
I 

PTR H PTR 
I 

BLOCK 2 I PTR H PTR 
I 

BLOCK 3 

'---------------Figure 9.7: Doubly-Linked List 



296 PROGRAMMING THE 6809 

whenever the elements of a table are ordered by a function of known 
criterion. Such elements can then be retrieved by their numbers. 

Sequential searching refers to the linear scanning of an entire block. 
This technique is clearly inefficient; however, it may be necessary to use it 
when no better technique is available, for lack of ordering of the elements. 

Binary or logarithmic searching attempts to find an element in a sorted 
list, by dividing the search interval in half at each step. For example, let's 
assume that we are searching an alphabetical list. We might start in the 
middle of a table and determine if the name we are looking for is before 
or after that point. If it is after, we will eliminate the first half of the table 
and look at the middle element of the second half. We compare this entry 
again to the one we are looking for, and we restrict our search to one 
of the two halves, and so on. The maximum length of a search is then 
guaranteed to be log2n, where n is the number of elements in a table. 

Many other search techniques exist; however, we cannot describe 
them all here. 

SECTION SUMMARY 

In this section, we have offered only a brief presentation of the usual 
data structures used by a programmer. Although most common data struc­
tures have been organized in types and given a name, the overall 
organization of data in a complex system may use any combination of 
data structures, or even require the programmer to invent more appro­
priate ones. The array of possibilities is only limited by the imagination of 
the programmer. Similarly, a number of well-known sorting and searching 
techniques have been developed for coping with the usual data structures. 
A comprehensive description is beyond the scope of this book. This 
section has stressed the importance of designing appropriate structures 
for manipulating data, and of providing the basic tools to that effect. 

We will now examine actual programming examples in detail. 

PART II-DESIGN EXAMPLES 
This section offers actual design examples for typical data structures, 

including the table, sorted list, and linked list. In particular, we will 
program searching, insertion and deletion algorithms for these struc­
tures. To completely understand these design examples, it is necessary 
to understand the concepts presented in the first part of this chapter. 
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The programs we present in this section use most of the addressing 
modes of the 6809, and integrate many of the concepts and techniques 
presented in previous chapters. 

We will now introduce three structures: a simple list, an alphabetical 
list, and a linked-list, plus directory. For each structure, we will develop 
three programs: search, enter and delete. 

DATA REPRESENTATION FOR THE LIST 

In the example shown in Figure 9.8, note that both the simple list and 
the alphabetic list use a common representation for each list element. 
Each element, or "entry," includes a 3-byte label, and an n-byte block of 
data, where n is between 1 and 253. Thus, at most, each entry uses one 
page (256 bytes). Within each list, all elements are the same length (see 
Figure 9.9). Note that the programs operating on these two simple lists 
use some common variable conventions, including: 

ENTLEN is the length of an element. For example, if each ele-
ment has 10 bytes of data, ENTLEN = 3 + 10 = 13. 

T ABASE is the base of the list or table in the memory. 

POINTR is the running pointer to the current element. 

OBJECT is the current entry to be located, inserted or deleted. 

T ABLEN is the number of entries. 

All labels are assumed to be distinct. Changing this convention would 
require a minor change in the programs. 

A SIMPLE LIST 

In this example, we have organized a simple list as a table of n 
elements. The elements are not sorted (see Figure 9.10). When searching, 

3-8YTE !ABEL DATA 

----------------Figure 9.8: A Single List Entry-



298 PROGRAMMING THE 6809 

ENTlEN 

TABlEN 
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BASE 

ENTRY 

El.EMENT 
1 

ELEMENT 
2 

-
-
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c 
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c 
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LENG TH OF ENTRY 

NU MBER OF ENTRIES 
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ENTER 
NEW 
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} �  
ENTL£N 

DATA 

LABEL 

ENTLEN 

DATA 

Figure 9.9: Typical List Entries in the Memory--------� 
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the list is scanned until either an entry is found or the end of the table is 
reached. When inserting, the new entry is appended to the existing ones. 
When deleting, the entries in higher memory locations, if any, are shifted 
down to keep the table continuous. Let's examine these functions in 
more detail. 

Searching 

We will now look at an example using a serial search technique, 
where each entry's label field is compared in turn to the OBJECT's label, 
letter by letter. We will initialize the running pointer in the X register to 
the value of the T ABASE. In this program, we will use indexed addressing 
modes and the load effective address (LEA) instruction. 

The search proceeds in an obvious way. Figure 9.11 shows the cor­
responding flowchart. The program appears in Figure 9.14 (program 
SEARCH). 

Inserting 

When we insert a new element, the first available memory block 
ENTLEN bytes long at the end of the list is used (see Figure 9.10). The 

TABASe ELEMENT 1 
t LENGTH = 

ENTLEN 

ELEMENT 2 

POINTR CURRENT ELEMENT 

ELEMENT n (TABLEN = n) 
FREE SPACE FREE SPACE INSERT 

OBJECT 
TO BE INSERTED 

---------------Figure 9.10: The Simple List 
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program first checks that the new entry is not already in the list. All 
labels are assumed to be distinct in this example. If the entry is not 
found, the program increments the list length T ABLEN, and moves the 
OBJECT to the end of the list. Figure 9.12 shows the corresponding 
flowchart. Figure 9.15 displays the program, called NEW. 

SEARCH 

COUNTER= 
NUMBER Of ENTRIES 

READ ENTRY 
(3 lffiERS) 

COUNTER= 
COUNTER- 1  

POINT 
TO NEXT ENTRY 

EXIT 

YES 

FOUND 

YES (SET A TO "FF") 

FAILURE EXIT 

Figure 9.11: Table Search Flowchart------------' 



Deleting 
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To delete an element from the list, the elements following that element 
in the list at higher addresses are merely moved up by one element posi­
tion. The length of the list must also be decremented (see Figure 9.13). 

EXIT 

END 

------------Figure 9.12: Table Insertion Flowchart 

BEFORE AFTER 

2 

DELETE 
MOVE 

TEMPTR 
MOVE 

'-----------Figure 9.13: Deleting An Entry (Simple List) 
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The corresponding program, called DELETE, appears in Figure 9.16 at 
the end of this section. 

ALPHABETIC LIST 

Unlike a simple list, an alphabetic list or table keeps all of its elements 
sorted in alphabetical order. This allows the use of faster search tech­
niques than can be used with a simple list. 

Searching 

The search algorithm is a classic binary search. Recall that this tech­
nique is essentially analogous to the one used to find a name in a telephone 
book, where you start somewhere in the middle of the book, and then, 
depending.on the entries found, go either forward or backward to find 
the desired entry. This method is fast and reasonably simple to implement. 

The binary search flowchart appears in Figure 9.17. Figure 9.18 
shows the program. 

SEARCH LDB TABLEN GET TABLE LENGTH 

BEQ EXIT END FOR ZERO LENGTH 

LDY #OBJECT OBJECT ADDRESS IN Y 

LDX #TABASE TABLE ADDRESS IN X 

LOOP PSHS B SAVE B 
LDB #2 COUNTER FOR 3 BYTES 

NEXTCH LDA B,X GET THIRD BYTE OF TABLE 

CMPA B,Y COMPARE WITH OBJECT 
BNE NEXTEN NEXT ENTRY IF NOTEQUAL 

DECB DECREMENT COUNT 

BPL NEXTCH CHECK NEXT CHAR TIL B < 0 
PULS B RESTORE B 
LDA #$FF INDICATES FOUND 
RTS FINISHED WHEN FOUND 

NEXTEN PULS B RESTORE B WITH TABLEN COUNT 
DECB DECREMENT COUNT 
BEQ EXIT STOP AT END OF TABLE 
LEAX ENTLEN,X POINT TO NEXT ENTRY 
BRA LOOP CONTINUE CHECK 

EXIT CLRA INDICATES NOT FOUND 
RTS RETURN NOT FOUND 

Figure 9.14: Simple List-Search 
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NEW BSR SEARCH SEE IF OBJECT IS IN TABLE 
TSTA CHECK RESULT OF SEARCH 
BNE OUT QUIT IF ALREADY IN TABLE 
LOA TABLEN GET TABLE LENGTH 

INC TABLEN INCREMENT TABLE LENGTH 
LDB #ENTLEN GET ENTRY LENGTH 

MUL MAKE TABLE SIZE 

LDX #TABASE GET ST ART ADDRESS 
LEAX D,X POINT TO END OF TABLE 
LDY #OBJECT GET OBJECT ADDRESS 

LDB #ENTLEN GET ENTRY LENGTH 
TRLQOP LDA ,Y+ GET BYTE 

STA .x+ STORE BYTE 

DECB 
BNE TRLOOP LOOP UNTIL TRANSFERRED 

OUT RTS FINISHED 

Figure 9.15: Simple List-New 

DELETE BSR SEARCH SEE IF OBJECT IS IN TABLE 

TSTA CHECK RESULT OF SEARCH 

BEQ DONE QUIT IF NOT THERE 

DEC TABLEN DECREMENT TABLE LENGTH 

DECB B = # OF ENTRIES LEFT IN TABLE 
BEQ DONE ... AFTER ONE TO BE DELETED 

TFR X,Y X POINTS TO ENTRY TO DELETE 

LEAY ENTLEN,Y Y POINTS TO NEXT BLOCK 

MOREBK PSHS B SAVE B 
LOB #ENTLEN COUNT TO MOVE A BLOCK 

MOVBLK LDA ,Y+ MOVE BYTE FROM A BLOCK 

ST.A .x+ UP ONE BLOCK 

DECB 
BNE MOVBLK LOOP TIL A BLOCK IS DONE 

PULS B RESTORE BLOCK COUNT 

DECB 
BNE MOREBK LOOP TIL ALL BLOCKS MOVED 

DONE RTS ALL FINISHED 

Figure 9.16: Simple List-Delete 
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NOT 
FOUND 

FLAGS=O 

POINT TO TABLE BASE 

LOGICAL POSITION= 
INCREMENT VALUE= 

TABLE LENGTH/ 2 
(odd I if it was odd) 

YES 

POINT TO MIDDLE 
OF TABLE 

INCREMENT VALUE= 
INCREMENT VALUE/2 

ADD ONE IF 
IT WAS ODD 

COMPARE OBJECT 
TO ENTRY 

PRESERVE CARRY 
(sign of comparison) 

IN COMPRES FLAG 

YES 

YES 

FOUND 

Figure 9.17: Binary Search Flowchart---------------' 
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CLOSE NOW 
=COMPRES 

(ENTRY) 

NOT 
FOUND 

YES 

YES 

INCREMENT= 1 
CLOSE NOW= 

COMPRES 

(ENTRY) 

�-----------Figure 9.17: Binary Search Flowchart (cont.) 
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SEARCH LEAU -4,U MAKE ROOM FOR 4 BYTES 
LDA TABLEN GETT ABLE LENGTH 
BEQ NOTFND DONE IF ZERO 
STA INCMNT,U INITIAL INCREMENT 
CLR CLOSE,U CLEAR CLOSE FLAG 
CLR CMPRES,U CLEAR COMPARE RESULT 

NEXTRY LDY #OBJECT GET ADDRESS OF OBJECT 
LSRA DIVIDE BY 2 

ADCA #0 ADD CARRY FOR ODD 

STA INCMNT,U SA VE INCREMENT 

TST CMPRES,U CHECK LAST COMPARE 
BEQ HIGHER IF ZERO ADD INCREMENT 

NEGA ELSE SUBTRACT 
HIGHER ADDA LOGPOS,U MAKE TEST LOGICAL POSITION 

BEQ TOO LOW IF ZERO OFF TABLE 
CMPA TABLEN SEE IF TOO LARGE 
BHI TOO HI FIX IF TOO BIG 

CALADR STA LOGPOS,U SAVE NEW LOGICAL POSITION 

LDB #ENTLEN GET ELEMENT LENGTH 

DECA TAKE ACCOUNT ZERO ADDRESS 
MUL 
LDX #TABASE GET TABLE BASE ADDRESS 

LEAX D,X POINT TO ENTRY 
LDB #3 INDEX FOR LABEL LENGTH 

COMP AR LDA ,Y+ GET OBJECT 
CMPA .x+ COMPARE WITH ELEMENT 
BNE NOGOOD STOP IF NOT EQUAL 
DECB 
BNE COMP AR TEST 3 CHAR 
LDB LOGPOS,U FOUND PUT POSITION IN B 
TFR CC,A PUT CONDITION CODES IN A 
ANDA #1 CLEAR ALL BUT C BIT 
ORCC #4 SET Z BIT 

Figure 9.18: Binary Sea.rch Program-Alphabetical List 



ANDCC #4 
LEAU 4,U 
RTS 

NOGOOD TFR CC,A 
ANDA #1 
TST CLOSE,U 
BEQ CHKINC 
CMPA CMPRES,U 
BNE NOTFND 

CHKINC STA CMPRES,U 
LDA INCMNT,U 
CMPA #1 
BNE NEXTRY 
INC CLOSE,U 
BRA NEXTRY 

NOTFND LDB LOGPOS,U 
AN DCC #0 
LEAU 4,U 
RTS 

TOO LOW LDA LOGPOS,U 
CMPA #1 
BNE ADJUST 
LDA #1 
BRA NOTFND 

ADJUST LDA #1 
BRA CALADR 

TOO HI LDA LOGPOS,U 
CMPA TABLEN 
BNE FIXIT 
CLRA 
BRA NOTFND 

FIXIT LDA TABLEN 
BRA CALADR 
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CLEAR ALL OTHER BITS 
RESTORE U ST ACK POINTER 
ALL DONE WHEN FOUND 
PUT CONDITION CODES IN A 
CLEAR ALL BUT C BIT 
ARE WE CLOSE? 
ZERO THEN NOT CLOSE 
CLOSE COMPARE C BITS 
NOT EQUAL NOT FOUND 
STORE LAST COMPARE RESULT 
GET INCREMENT 
SEE IF IT IS 1 
NOT 1 NEXT CHECK 
IF 1 SET CLOSE FLAG 
TRY ONCE MORE 
PUT POSITION IN B 
CLEAR Z BIT 
RESTORE U STACK POINTER 
FINISHED NOT FOUND 
GET LAST POSITION 
SEE IF IT WAS 1 
NOT 1 FIX POSITION 
SETC BIT IN A 
NOT IN TABLE 
POSITION IS 1 

CALCULATE ADDRESS 
GET LAST POSITION 
SEE IF ATEND 

CLEAR C BIT IN A 
BEYOND TABLE 
POINT TO LAST ELEMENT 
CALCULATE ADDRESS 

'------Figure 9.18: Binary Search Program-Alphabetical List (cont.) 
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The alphabetic list keeps the entries in alphabetical order and 
retrieves them using a binary or logarithmic type search. Figure 9.19 
shows an example of a binary search. The search is somewhat com­
plicated, because it is necessary to keep track of several conditions. The 
major problem is to avoid searching forever for an object that is not 
there. In such a case, the entries with higher and lower alphabetic values 
would be alternately tested forever. To avoid such an occurrence, a flag 
is maintained in the program to preserve the value of the carry flag after 
an unsuccessful comparison. When the INCMNT value, which shows 
the amount by which the pointer was incremented, reaches the value of 
1, another flag called CLOSENOW, is set to 1. A flag called COMPRES 
(comparison result) stores the carry bit from the last comparison. When 
CLOSE NOW is set, the value of COMPRES is compared with the carry 
bit of the most recent comparison. If they are not equal, the search ter­
minates because the object cannot be found. 

The carry bit for the last comparison is returned in A for use by the 
NEW program. This allows the NEW program to determine whether a 
new element goes before or after the entry pointed to by the SEARCH 
program. 

The other major problem that must be dealt with is the possibility of 
running off one end of the table when adding or subtracting the increment. 
This is solved by performing a test add or subtract of the increment to 
the logical position or element number. This number is then compared 

OBJECT 

TABASE 

� 
AAA 

BAC 

FIL 

TES 
XYZ 

FIRSTTRY 
SEARCH INTERVAL=5 

(No) TES 
xvz 

SECOND TRY 
SEARCH INTERVAL = 2 

(No) 

Figure 9.19: A Binary Search----------------" 
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to 1 and the table length. Ifit is greater than the table length orless than 1, 
it is adjusted, to fall within the table boundaries. 

The following variables are used in the program: 

LOGPOS indicates logical position (element number). 

INCMNT represents the value by which the pointer will be incre­
mented or decremented if the next comparison fails. 

CLOSE is short for CLOSENOW. 

CMPRES is short for comparison result. 

These variables are accessed by using the U register as an index register. 
The symbols LOGPOS, INCMNT, CLOSE, and COMPRES have the 
values 0, 1, 2, and 3, respectively. 

An additional complication to this program occurs because the search 
interval at times can be either even or odd. Since the interval is divided 
by two to form the increment, we use an LSR instruction. If the bit falling 
off the right end is not added back into the accumulator, then only even 
or odd numbered elements would be checked, depending on the value of 
the table length. This would cause erroneous results. 

Study the SEARCH program in Figure 9.18 with care, as it is much 
more complex than the linear search. 

Figure 9.20 shows the insertion process, and Figure 9.21 displays the 
NEW program. 

Element Insertion 

In order to insert a new element, a binary search must be conducted. If 
the element is found in the table, it does not need to be inserted. But if it is 
not, it must be inserted immediately before or after the last element to 
which it was compared. The value of the COMPRES flag, returned in reg­
ister A, indicates whether the new object should be inserted immediately 
before or after the last element compared. All the elements following the 
new location are moved down by one block position, and the new object 
is inserted. 

Figure 9.20 shows the insertion process, and Figure 9.21 displays the 
NEW program. 

Element Deletion 

Similarly, a binary search is conducted to find the object. If the search 
fails, the element does not need to be deleted. If the search succeeds, the 
element is deleted, and all the following elements are moved up by one 
block position. A corresponding example appears in Figure 9.22. Figure 
9.23 shows the flowchart and Figure 9.24 displays the program. 
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BEFORE 

TABASE _., AAA 

ABC 

BAT 

TAR 

ZAP 

, 
OBJECT .-.j._ __ BA_c __ _.I �� 

Figure 9.20: Insert: "BAC" 

NEW LBSR SEARCH 
BEQ OUT 
LDX #TABASE 
TST TABLEN 
BEQ INSERT 
TSTA 
BNE LOS IDE 
INCB 

LOS IDE TFR B,A 
NEGA 
ADDA TABLEN 
INCA 

PSHS A 
LDA TABLEN 
LDB #ENTLEN 
MUL 
LEAX D,X 
LEAY ENTLEN,X 
PULS A 

AFTER 

AAA 

ABC 

BAC � 
BAT 

TAR 

ZAP 

SEE IF OBJECT IN LIST 
ALREADY IN LIST 
GET TABLE BASE 
CHECK TABLE LENGTH 
IF 0 JUST INSERT 
CHECK LAST CARRY 
PUT ABOVE ENTRY IN B 
PUT BELOW ENTRY IN B 
PUT POSITION IN A 
SUBTRACT IT FROM 
... TABLE LENGTH 

NEW ELEMENT 

A IS NUMBER ELEMENTS TO 
MOVE 
SAVE A 
GET TABLE LENGTH 
GET ELEMENT LENGTH 

POINT TO END OF TABLE 
POINT ONE ELEMENT BEYOND 
RESTORE A 

Figure 9.21: NEW Prosram For An Alphabetical List(continues} 



BLOOP TSTA 
BEQ 
PSHS 
LDB 

MLOOP LDA 
STA 
DECB 
BNE 
PULS 
DECA 
BRA 

INSERT INC 
LDY 
LDB 

MOVOBJ LDA 
STA 
DECB 
BNE 

OUT RTS 

INSERT 
A 
#ENTLEN 
. -x 

,-Y 

MLOOP 
A 

BLOOP 
TABLEN 
#OBJECT 
#ENTLEN 
,Y+ 
.x+ 

MOVOBJ 
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CHECK A 
IF O READY TO INSERT 
SAVE A 
PREPARE TO MOVE A BLOCK 
MOVE A BLOCK DOWN 
TO A HIGHER ADDRESS 

LOOP TIL BLOCK DONE 
RESTORE A 
DECREMENT BLOCK COUNT 
CONTINUE 
ONE MORE ELEMENT 
GET OBJECT ADDRESS 
PREPARE TO MOVE OBJECT 
GET OBJECT 
STORE IN LIST 

FINISHED 

Figure 9.21: NEW Prosrom For An Alphabetical List (cont.) 

MOVE 
UP 

BEFORE 

AAA 

A8C 

BAC 

BAT 

TAR 

ZAP 

AFTER 

AAA 

A8C 

- BAT 

TAR 

ZAP 

, 
DELETE 

'----------------- Figure 9.22: Delete "BAC" 



312 PROGRAMMING THE 6809 

NO 

DELETE 

COUNT HOW MANY 
ELEMENTS FOLLOW THE 

ONE TO BE DELETED 

RESULT= COUNTER 
(LOGPOS) 

POINT TO NEXT 
ENTRY POINTER 

= TEMP(SOURCE) 

TRANSFER IT 
UP ONE BLOCK 

POi NT TO NEXT ENTRY 
POINTER= POINTER 

(DESTINATION) 

DECREMENT LOGPOS 

SET 2 FLAGS 

RTS 

YES 

Figure 9.23: Deletion Flowchart (Alphabetical List}------� 

-

.. 
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The linked list is assumed to contain, as usual, the three alphanumeric 
characters for the label, followed by 1 to 250 bytes of data, then a 2-byte 
pointer that contains the starting address of the next entry, and finally, 
a 1-byte marker. Whenever this 1-byte marker is set to 1, it prevents the 

DELETE LBSR SEARCH FIND OBJECT 
BNE OUTD QUIT IF NOT FOUND 
CMPB TABLEN SEE IF LAST ELEMENT 
BEQ TABM1 ... IN TABLE 
PSHS B SAVE B 
DECB ACCOUNT FOR 0 ADDRESS 
LDA #ENTLEN GET LENGTH 
MUL 
LDX #TABASE 
LEAX D,X POINT TO ELEMENT TO DELETE 
LEAY ENTLEN,X POINT TO NEXT ELEMENT 
PULS B RESTORE BLOCK COUNT 
NEGB SUBTRACT FROM TABLE 
ADDB TABLEN ... LENGTH 

MOVMOR TSTB SEE IF ALL MOVED 
BEQ TABM1 FINISH IF MOVED 
PSHS B SAVE COUNT 
LDB #ENTLEN PREPARE TO MOVE A BLOCK 

MOVENT LDA ,Y+ MOVE A BLOCK UP 
STA ,x+ 
DECB 
BNE MO VENT 
PULS B RESTORE COUNT 
DECB ANOTHER BLOCK DONE 
BNE MOVMOR GO FOR MORE 

TABM1 DEC TABLEN ONELESS IN LIST 
OUTD RTS ALL DONE 

---------Figure 9.24: Delete Program - Alphabetical Lists 
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insert routine from substituting a new entry in place of the existing one. 
Figure 9.25 shows the structure of an entry. 

Further, a directory contains a pointer to the first entry for each letter 
of the alphabet, in order to facilitate retrieval. It is assumed in the pro­
gram that the labels are ASCII alphabetic characters. All pointers at the 
end of the list are set to a NIL value (which has been chosen here to be 
equal to the table base, minus 1), as this value should never occur within 
the linked list. 

The insertion and deletion programs perform the obvious pointer ma­
nipulations. They use the flag INDEXED to indicate if a pointer pointing 
to an object came from a previous entry in the list or from the directory 
table. Figure 9.26 shows the data structure. 

An application for this data structure would be a computerized ad­
dress book, where each person is represented by a unique three-letter 
code (perhaps the usual initials); and the data field would contain a 
simplified address, plus the telephone number (up to 250 characters). 
Let us examine the structure in more detail (see Figure 9.25). The entry 
format also appears in Figure 9.25. As usual, the conventions are: 

ENTLEN: total element length (in bytes) 
T ABASE: address of base list 

Here, REFBASE points to the base address of the directory, or the 
"reference table." 

Each two-byte address within this directory points to the first occurrence 
of the letter to which it corresponds in the list. Thus, each group of entries 
with an identical first letter in their labels actually forms a separate list 
within the whole structure. This feature facilitates searching and is 

c c 

UNIQUE LABEL 
{ASCII) 

c 
I 

o 
I o I / /.....__L--I 

o
___.___

P
__.__

P 
_,__

o
___. 

POINTERTO t DATA (1 to 250 BYTES) 
NEXT OCCUPIED 

Figure 9.25: Data Structure of a Linked List Entry----------' 
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analogous to an address book. Note that no data are moved during an 
insertion or deletion; only pointers are changed, as in every well-behaved 
linked list structure. 

If no entry starting with a specific letter is found, or if there is no entry 
that alphabetically follows an existing one, the pointers will point to the 
beginning of the table minus 1 (NIL). The letters in the three-character 
code are assumed to be alphabetic letters in ASCII code. Changing this 
would require changing the constant in the PRET AB routine. 

The end-of-table marker is set to the value of the beginning of the table 
minus 1 (NIL). By convention, the NIL pointers, found at the end of a string, 
or within a directory location that does not point to a string, are set to the 
value of the table base minus 1, in order to provide a unique identifica­
tion. Some other convention could be used, but the NIL pointer must 
never be confused with the address of an entry. 

Insertions and deletions are performed in the usual way (see Part I of 
this chapter), by merely modifying the required pointers. The INDEXED 
flag is used to indicate if the pointer to the object is in the reference table 
or in another string element. 

DIRECTORY A A 

"A" POINTER ___. ____. 
POINTER NIL 

R 

"R" POINTER -----+-
NIL 

'----------------Figure 9.26: Linked List Structure 
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Searching 

The SEARCH program, appearing in Figure 9.27, uses a subroutine 
called PRET AB. The search principle, as shown in Figure 9.28, is 
straightforward: 

1. Get the directory entry corresponding to the letter of the 
alphabet in the first position of the OBJECT's label. PRETAB 
does this. 

2. Get the pointer. Access the element. If NIL, the entry does not 
exist. 

3. If not NIL, match the element against the OBJECT. If they are 
not the same, get the pointer to the next entry down the list. 

4. Go back to 2. 

PRETAB LOX #OBJECT GET OBJECT ADDRESS 
LOA ,x GET FIRST LETTER 
SUBA #$41 REMOVE ASCII OFFSET 
LSLA MULTIPLY BY 2 

LOY #REFBAS GET REFERENCE TABLE 
LEAY A,Y POINT TO ADDRESS 
RTS ALL DONE 

SEARCH CLR INDEXD SET INDEXED FLAG 
INC INDEXD . . .  TOONE 
BSR PRETAB GET REFERENCE ADDRESS 
LOX ,Y GET ADDRESS OF ENTRY 

COMP AR PSHS x SA VE ADDRESS IN X 
CMPX #TBASM1 CHECK IF VALID 
BEQ NOTFND IF EQUAL NOT VALID 
LOY #OBJECT GET OBJECT ADDRESS 
LOB #3 COUNT FOR 3 CHAR 

CHKLOP LOA ,x+ GET CHAR 
CMPA ,Y+ COMPARE WITH OBJECT 

Figure 9.27: Linked List-Search Program (continues) ---------' 



BLO NOGOOD 
BNE NOTFND 
DECB 
BNE CHKLOP 
PULS x 
CLRB 
RTS 

NOGOOD PULS x 
TFR x.u 

LEAY ENTLEN -3,X 
LOX ,Y 
CLR INDEXD 
BRA COMP AR 

NOTFND PULS x 
LOB #1 

RTS 
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TRY NEXT ENTRY 
GONE TOO FAR NOT FOUND 

CHECK 3 CHAR 
RECOVER ORIGINAL ADDRESS 
INDICATE FOUND 
DONE WHEN FOUND 
GET ORIGINAL ADDRESS 
SA VE AS PREVIOUS ADDRESS 
POINT TO NEXT POINTER 
GET NEXT POINTER 
NOT FROM REFERENCE NOW 
TRY NEXT 
GET ORIGINAL ADDRESS 
NOT FOUND FLAG SET 
ALL DONE WHEN NOT FOUND 

....._--------Figure 9.27: Linked List-Search Program (cont.} 

A-POINTER AAA ABC 
8-POINTER 

0 AZ.C 

NIL 

(FOUND) 
OBJECT 

., 

AZ.C 

-------------Figure 9.28: Linked List-A Search-
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Inserting 

The insertion is essentially a search followed by an insertion once a 
NIL has been found (see Figure 9.29). A block of storage for the new 
entry is allocated by looking for an occupancy marker set at" available." 
The program, called NEW, appears in Figure 9.30. 

BEFORE 
A-POINTER CAB czz 

B-POINTER Nil 

C-POINTER 

� OBJECT 
l 

AFTER 
A-POINTER CAB czz 
B-POINTER Nil 

C-POINTER 

CBS 

Figure 9.Z9: Lin.Iced List-Example of Insertion-----------' 

NEW BSR 

TSTB 

BEQ 

LDB 

SEARCH 

OUTLN 

#ENTLEN-1 

CHECK IF IN TABLE 

STOP IF FOUND 

POINTS TO OCCUPIED BYTE 

Figure 9.30: NEW Program For a Lin.Iced List (continues)--------' 



PSHS 

LDX 
NEXTEN LEAX 

LOA 
BNE 

LOY 
LEAX 

LOB 

MOVE IT LDA 
STA 
DECB 
BNE 
PULS 

STD 

INC 
TST 

BNE 

LEAX 
LEAU 

STX 

RTS 
SETINX LEAX 

PSHS 
BSR 
PULS 
STX 

OUTLN RTS 

x 

#TABASE 
B,X 
,x+ 
NEXTEN 

#OBJECT 
-ENTLEN,X 

#ENTLEN-3 

,Y+ 
,x+ 

MOVE IT 
D 

.x++ 

,x 
INDEXD 

SETINX 
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SAVE POINTER TO 
FOLLOWING ENTRY 
ST ART AT BASE OF TABLE 
POINT TO OCCUPIED BYTE 
GET THAT BYTE 
SEARCH TIL UNOCCUPIED 
FOUND 
GET OBJECT ADDRESS 
POINT BACK TO ST ART OF 
BLOCK 
NUMBER OF BYTES TO 
TRANSFER 
GET BYTE 
STORE IT 

GET ADDRESS OF NEXT 
ENTRY 
STORE IN NEW ENTRY'S 
POINTER 
AND SET OCCUPIED 
SEE IF REFERENCE TABLE 
. . .  NEEDS UPDATING 
PUT NEW POINTR IN 
REFERENCE 

-(ENTLEN - 1),X POINT TO ENTRY AGAIN 
ENTLEN-3,U POINT TO PREVIOUS 

ENTRY'S POINTER BYTES 
.u PUT NEW ENTRY ADDRESS 

HERE 
ALL DONE 

-(ENTLEN -1),X POINT TO NEW ENTRY 
x SA VE THE ADDRESS 
PRETAB GET REFERENCE ADDRESS 
x RESTORE ADDRESS 
,Y STORE IN REFERENCE 

TABLE 
ALL DONE 

Figure 9.30: NEW Program For a Lin.Iced List (cont.) 
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Deleting 

The element is deleted by setting its occupancy marker to "available" 
and adjusting the pointer to it from the directory or the previous ele­
ment. An example appears in Figure 9.31. The program, called 
DELETE, appears in Figure 9.32. 

A 
B 
c 
D 

OAF POINTER 

A e ­
c _  
D 

-

-

DOC POINTER 

BEFORE 

"OAF" "DOC" 

DOC POINTER Nil 

DELETE 

AFTER 

"DOC" I 
Nil I 

(NOTE: OAF is not erased, but "invisible") 

Figure 9.31: Linked List-Example of Deletion----------' 

DELETE BSR SEARCH GET ADDRESS OF OBJECT 

TSTB 

BNE OUTLD QUIT IF NOT FOUND 

LEAX ENTLEN-3,X POINT TO POINTER BYTES 

LOY .x++ PUT POINTER IN Y 

CLR .x MARK AS UNOCCUPIED 

TST INDEXD CHECK IF IN REFERENCE 
TABLE 

BNE CHG REF CHANGE ADDRESS IN 
TABLE 

Figure 9.32: DELETE Program For a Linlced List (continues} 



LEAU ENTLEN-3,U 

STY .u 
RTS 

CHG REF PSHS y 

BSR PRETAB 

PULS x 
STX ,Y 

OUTLD RTS 
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POINT TO PREVIOUS ENTRY 
LINK POINTER 

UPDATE LINK POlNTER 

ALL DONE 

SA VE FOLLOWING ENTRY'S 
ADDRESS 

GETT ABLE ADDRESS 

RESTORE ADDRESS 

STORE ADDRESS IN TABLE 

ALL DONE 

'-------- Figure 9.32: DELETE Program For a Linked List (cont.) 

SU�MARY 

If you are a beginning programmer, it is not essential for you to 
understand the details of data structure implementation and manage­
ment. However, as you program more complex problems, you will need 
to learn more about data structures. The actual examples presented in 
this chapter have been designed to help you understand and solve all 
the common problems often encountered with these structures. 

EXERCISES 

9-1: Examine the figure below. At address 15 in the memory, there is a pointer 
to Table T. Table T starts at address 500. What are the actual contents of 
the pointer to T? 

0 

15 
16 

500 

- POINTER TOT -,___ 

-
TABl,E T 

9-2: Draw a diagram showing how Block 2 would be removed from the struc­
ture in Figure 9.2. 
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PROGRAM 
DEVELOPMENT 

WE HA VE NOW REACHED THE POINT where we should seri­
ously consider developing actual programs. Before proceeding to this 
task, which is the ultimate goal of our efforts, we should give careful 
consideration to the options and tools available for developing programs. 
There are several levels of hardware and software resources to consider. 
Which level is appropriate depends on the individual application. This 
chapter presents and evaluates all the available resources. 

PROGRAMMING CHOICES 

We may write a program either in binary or hexadecimal, in an 
assembly-level language, or in a high-level language. Let's discuss these 
alternatives. Figure 10.1 shows the different levels of programming. 
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Hexadecimal Coding 

Most programs are conceived using assembly language mnemonics. 
The actual translation of such mnemonics into corresponding binary 
code requires an assembler. When there is no assembler, it is necessary 
to perform the translation from mnemonics into binary, by hand. Because 
translating into binary is tedious and error-prone, users often use hexa­
decimal. Also, many single-board microcomputers require the entry of 
programs in hexadecimal mode. 

(Note: in Chapter 1, we showed that one hexadecimal digit represents 
four binary bits. Therefore, two hexadecimal digits can represent the 
contents of a byte. (Appendix D offers a table showing the hexadecimal 
equivalent of the 6809 instructions.)) 

POWER OF THE 
LANGUAGE 

SYMBOi.iC 

APl 
C060L 

FORTRAN 

Pl/M 

PASCAL 
BASIC 

MINI-BASIC 

MACRO 

CONDITIONAL 

ASSEMBLY 

HEXADECIMAL/ 
OCTAL 

BINARY 

HIGH 
LEVEL 

ASSEMBLY 
LEVEL 

Figure 10.l: Prognmuning Levels -------------� 
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Although it is reasonable to translate a program into hexadecimal by 
hand for a small number of instructions (for example, 10 to 100), when a 
program is large, this process becomes tedious and error-prone. Although 
most single-board microcomputers do not have an assembler and a full 
alphanumeric keyboard (in order to limit cost), they do provide a hex­
adecimal keyboard and 7-segment displays for program entry and 
debugging. 

In summary, hexadecimal coding is not a desirable way to enter a 
program in a computer, it is simply an economical one. The cost of an 
assembler and the required alphanumeric keyboard is traded-off against 
the increased time and effort required to enter the program in the 
memory. Therefore, if it is necessary to use hexadecimal coding, it is 
wise to first write the program in assembly language mnemonics, then 
cohvert it into hexadecimal code. This is because a program written in 
assembly language is easier to understand and debug. 

Assembly Language Programming 

Assembly-level programming includes both those programs entered 
into the system in hexadecimal form and those entered in symbolic 
assembly-level form. We will now examine the entry of a program directly 
in its assembly language representation. 

When entering a program in assembly language, there must be an 
assembler program available that will read the mnemonic instructions 
of the program and translate them into the required bit patterns, using 1 
to 5 bytes, as specified by the encoding of the instructions. A good 
assembler will also offer a number of additional facilities for writing a 
program. In particular, it might offer directives that modify the value of 
symbols; it might also facilitate symbolic addressing. 

(Note: by using symbolic labels, it is possible to insert an extra instruc­
tion between a branch and the point to which it branches, without 
rewriting the entire program. The assembler will automatically adjust 
all the labels during the translation process. In addition, it is possible to 
debug the program in symbolic form, if an assembler is available.) 

Later in this chapter, we will review the various software resources 
normally available on a system. We will first, however, examine the 
third alternative: high-level language programming. 

High-Level Language 

We can also write a program in a high-level language, such as BASIC, 
APL, or Pascal. A high-level language offers powerful instructions that 
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make programming faster and easier than assembly language. These 
instructions are then translated by a complex program into the final 
binary representation that a microcomputer can execute. Typically, 
each high-level instruction is translated into many individual binary in­
structions by a program called a compiler or an interpreter. A compiler 
translates all the instructions of a program into object code, and then ex­
ecutes the resulting code. By contrast, an interpreter interprets a single 
instruction, executes it, and then translates the next one, and executes it. 
An interpreter offers the advantage of interactive response, but results 
in low efficiency, when compared to a compiler. We will not cover these 
topics further here. Instead, we will program an actual microprocessor 
in assembly-level language. 

SOITW AltE SUPPORT 

We will begin by reviewing the main software facilities available in a 
complete system for convenient software development. As we proceed, 
we will summarize the definitions introduced previously and define the 
remaining important programs available in a software development 
system. 

The assembler translates the mnemonic representation of instruc­
tions into their binary equivalent. It normally translates one symbolic 
instruction into one binary instruction (which may occupy between 1 
and 5 bytes). The resulting binary code, called the object code, is directly 
executable by the microcomputer. The assembler will also produce a 
complete mnemonic listing of the program, and a symbol definition list 
(examples of listings appear later in this chapter). In addition, the 
assembler will list syntax errors (such as misspelled or illegal instruc­
tions), branching errors, duplicate or missing labels. It will not, 
however, delete logical errors. (Such errors are your problem.) 

A compiler translates high-level language instructions into their 
binary form. An interpreter, on the other hand, is similar to a compiler, 
but it often does not generate an intermediate code; it simply executes 
the high-level instructions directly. 

The monitor is the basic program which is indispensable for using the 
hardware resources of the system. It continuously monitors the input 
devices for input; it also manages the rest of the devices. As an example, 
a minimal monitor for a single-board microcomputer, equipped with a 
keyboard and LEDs, will continuously scan the keyboard for user input, 
and display the specified contents on the light-emitting diodes. In addi­
tion, it must recognize a number of limited commands from the 
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keyboard, such as ST ART, STOP, CONTINUE, LOAD MEMORY, or 
EXAMINE MEMORY. On a large system that provides complex file 
management or task scheduling, the monitor is often qualified as the 
executive program. The overall set of facilities is called the operating 
system; and if the files are residing on a disk, the operating system is 
qualified as the disk operating system, or DOS. 

An editor facilitates the entry and modification of text or programs. It 
allows the user to conveniently enter, append, and insert characters; 
add and remove lines of text; and search for characters or strings. The 
editor is an important resource for convenient and effective text entry. 

A debugger is a facility necessary for debugging programs. When a 
program does not work correctly, there may typically be no indication 
of the cause. In such a case, the programmer may want to insert break­
points in the program in order to suspend the execution of the program at 
specified addresses and to examine the contents of registers or memory 
at these points. The debugger is useful for suspending a program; exam­
ining, displaying and modifying the contents of its registers or memory; 
and then resuming execution. A good debugger also offers a number 
of additional facilities that allow the programmer to examine data in 
symbolic form (hexadecimal, binary, or other usual representations), as 
well as to enter data in this format. 

A loader or linking loader places various blocks of object code at 
specified positions in the memory and adjusts their respective symbolic 
pointers, so that they can reference each other. 

A simulator or an emulator program simulates the operation of a 
device, usually the microprocessor, when developing a program on a 
simulated processor, prior to placing it on the actual board. Using this 
approach, it is possible to suspend the program, modify it, and keep it in 
RAM memory. The disadvantages of a simulator are the following: 

1. It usually only simulates the processor itself, not input/output 
devices. 

2. The execution speed is slow, so the instruction cycle times are 
much longer. It is, therefore, not possible to test real-time devices; 
and synchronization problems may still occur, even though the 
logic of the program may be found to be correct. 

An emulator is essentially a simulator in real time. An emulator uses one 
processor to simulate another one, and it simulates it in complete detail. 

Utility routines are essentially the routines necessary in most applica­
tions. They are usually the routines that the user wishes the manufac­
turer had provided. They may include multiplication, division and other 



328 PROGRAMMING THE 6809 

arithmetic operations, as well as block move routines, character tests, 
input/output device handlers (or drivers), and others. Figure 10.2 shows 
a memory map for a typical program development system. 

THE PROGRAM DEVELOPMENT SEQUENCE 

We will now examine a typical sequence for developing an assembly­
level program. We will assume that all the usual software facilities are 
available, so that we may demonstrate their value. If they are not 
available in a particular system, we can still develop programs, but the 
convenience will be decreased and, therefore, the amount of time 
necessary to debug the program is likely to be increased. 

Recall that the normal approach for developing an assembly-level 
program is to, first, design an algorithm and the data structures for the 
problem to be solved; then, develop a comprehensive set of flowcharts 
that represent the program flow; and, finally, translate the flowcharts 
into the assembly-level language for the microprocessor (this is the 
coding phase) and enter the program on the computer. A program can be 
entered in the RAM memory of the system under the control of the 
editor. Once entered, we can test a section of the program, such as one or 
more subroutines. 

We must first, however, use the assembler to translate the program into 
binary code. If the assembler does not already reside in the system, we 
must load it from an external memory, such as a disk. Assembly will 
result in an object program that is ready to be executed. 

A program is not normally expected to work correctly the first time. 
To verify its correct operation, we can use the debugger to set a number of 
breakpoints at crucial locations that will test whether the intermediate 
results a.re correct. 

Whenever incorrect data is found, an error in the program has been 
detected. At this point, we should refer to the program listing and verify 
that the coding is correct. If we cannot find an error in the program­
ming, we should refer to the flowchart-the error might be a logical one. 

If we have checked the flowcharts by hand and believe them to be 
reasonably correct, the error probably stems from the coding. There­
fore, we must now modify a section· of the program. If the symbolic 
representation of the program is still in the memory, we can simply re­
enter the editor, modify the required lines, and then go through the 
preceding sequence once again. In some systems, the memory available 
may not be large enough. In such a case, we will need to flush out the 
symbolic representation of the program onto a disk or cassette, prior to 
executing the object code. Naturally, in this case, we will need to reload 
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the symbolic representation of the program from its support medium, 
prior to entering the editor again. 

We can then repeat this procedure, until the results ofthe program are 
correct. We stress here that prevention is much more effective than a 
cure. A correct design typically results in a program that runs correctly 
very soon after the usual typing mistakes or obvious coding errors have 

ROM 

ASSEMBl.£R OR 
BOOTSTRAP COMPILER OR 

INTERPRETER 

KEYBOARD 
DRIVER 

DOS 

DISPLAY 
DRIVER 

EDITOR OR 
DEBUGGER OR 

SIMULATOR 

TTY 
DRIVER 

SYSTEM 
WORKSPAO: 
(AND STACK) 

CASSETTE USER 
DRIVER PROGRAM 

COMMAND USER 
INTERPRETER WORKSPACE 

UTILITY 
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ELEMENTARY 
DEBUGGER 

ELEMENTARY 
EDITOR 

-------------Figure 10.2: A Typical Memory Map 
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been removed. However, a sloppy design may result in programs that 
take an extremely long time to debug. The debugging time is generally 
considered to be much longer than the actual design time. In short, it is 
always worth investing more time in the design, in order to shorten the 
debugging phase. 

Using the previous approach, we can test the overall organization of 
the program, but we cannot test it in real time with input/output devices. 
The direct solution for testing input/output devices is to transfer the 
program onto EPROM's, install it on the board, and then watch to see if 
it works. 

However, there is another solution. We can use an in-circuit emulator. 
An in-circuit emulator uses the 6809 microprocessor (or any other one) 
to emulate a 6809 in (almost) real time. (It emulates the 6809 physically.) 
The emulator is equipped with a cable terminated by a 40-pin connector, 
identical to the pin-out of the 6809. If we insert this connector on the real 
application board we are developing, the signals generated by the 
emulator will be exactly like those of the 6809, only perhaps a little 
slower. The essential advantage of this approach is that the program 
under test can continue to reside in the RAM memory of the development 
system. Because an in-circuit emulator generates the real signals that 
communicate with the real input/output devices we wish to use, we can 
continue to develop the program by using all the resources of the 
development system (i.e., the editor, debugger, symbolic facilities, file 
system), while testing input/output in real time. 

In addition, a good emulator provides special facilities, such as a trace. 
In short, a trace provides the film of the events that occurred prior to the 
breakpoint or malfunction. It is a recording of the last instructions and 
the status of the buses in the system, prior to a breakpoint. Such a facility 
is of great value, since when an error is found, it is usually too late (i.e., 
the instruction or data which caused the error has occurred prior to the 
detection). Using a trace, we can find the segment of the program that 
caused the error to occur. If the trace is not long enough, we can set an 
earlier breakpoint. 

This completes our description of the usual sequence of events involved 
in developing a program. We will now review the hardware alternatives 
available for developing programs. 

HARDWARE ALTERNATIVES 

There are many different hardware systems available for program 
development. The different systems vary in cost and capabilities. The 
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more expensive and complex the system, the more tools it provides for 
developing programs. 

Single-Board Microcomputer 

The single-board microcomputer offers the lowest cost approach to 
program development. It is normally equipped with a hexadecimal key­
board, plus some function keys, and six LEDs, which can display address 
and data. Since a single-board microcomputer is equipped with a small 
amount of memory, an assembler is not usually available. At best, a 
single-board microcomputer has a small monitor and virtually no editing 
or debugging facilities, except for a very few commands. All programs 
must, therefore, be entered in hexadecimal form. They are then displayed 
in hexadecim!ll form on the LEDs. 

A single-board microcomputer has, in theory, the same hardware 
power as any other computer. However, because of its restricted 
memory size and keyboard, it does not support all the usual facilities of a 
larger system and, therefore, program development is much slower. 
Because developing programs in hexadecimal format is a tedious task, a 
single-board microcomputer is best-suited for educational and training 
purposes, where programs of limited length are developed. and their short 
length is not an obstacle to programming. Single-boards are probably 
the least expensive way to learn programming through actual practice. 
They cannot, however, be used for complex program development, 
unless additional memory boards are attached. and the usual software 
aids are made available. 

The Development System 

A development system is a microcomputer system equipped with a si� 
nificant amount of RAM memory (32K, 481<), the required input/output 
devices (a CRT display, a printer, disks, and, usually, a PROM program­
mer), and, perhaps, an in-circuit emulator. A development system is 
specifically designed to facilitate program development in an industrial 
environment. It normally offers all, or most, of the software facilities 
mentioned in the preceding section. In principle, it is the ideal software 
development tool. 

A limitation of a microcomputer development system is that it may 
not be capable of supporting a compiler or interpreter. This is because a 
compiler typically requires a large amount of memory, often more than 
is available on the system. However, it does offer all of the required 
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facilities for developing programs in assembly-level language. Because 
development systems sell in relatively small numbers when compared 
to hobby computers, their cost is significantly higher. 

Hobby-Type Microcomputers 

The hobby-type microcomputer hardware is naturally analogous to 
that of a development system. The main difference is that it is normally 
not equipped with the sophisticated software development aids avail­
able on an industrial development system. As an example, many hobby­
type microcomputers offer only elementary assemblers and minimal 
editors and file systems. They normally do not have the facilities to 
attach a PROM programmer, an in-circuit emulator, or a powerful 
debugger. 'Fhey represent, therefore, an intermediate step between the 
single-board microcomputer and the full microprocessor development 
system. For a user who wishes to develop programs of modest complexity, 
they are probably the best compromise. Even though they are quite 
limited as to their convenience, they can still off er the advantages oflow 
cost and a reasonable array of software development tools. 

Time-Sharing System 

It is possible to rent terminals that connect to time-sharing networks. 
These terminals share the time of a larger computer and benefit from the 
advantages of the large installations. Cross assemblers are available for 
all microcomputers on virtually all commercial time-sharing systems. 
Formally, a cross assembler is an assembler for microprocessor X, that 
resides on processor Y. The nature of the computer being used is irrele­
vant. For example, we can write a program in 6809 assembly-level 
language, and the cross assembler will translate it into the appropriate 
binary pattern. The difference, however, is that the program cannot be 
executed at that point. It can only be executed by a simulated processor, 
if one is available, provided it does not use any input/output resources. 
Therefore, this solution is used only in industrial environments. 

In-House Computer 

Whenever a large in-house computer is available, cross assemblers may 
also be available to facilitate program development. If such a computer 
offers time-shared service, this option is essentially analogous to the one 
above. If it offers only batch service, this is probably one of the most 
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inconvenient methods of program development, since submitting 
programs in batch mode at the assembly level for a microprocessor, 
results in a very long development time. 

Front Panel or No Front Panel? 

We can use a front panel, a hardware accessory, to facilitate program 
debugging. The front panel has traditionally been a tool that conveniently 
displays the binary contents of a register or memory. However, all the 
functions of the control panel may now be accomplished from a terminal, 
and the CRT display now offers a service almost equivalent to the control 
panel, by displaying the binary value of bits. The additional advantage of 
using the CRT display is that it is possible to switch at will from binary 
representation to hexadecimal, symbolic, or decimal (if the appropriate 
conversion routines are available, naturally). The disadvantage of the 
CRT is that it is necessary to hit several keys to obtain the appropriate 
display, rather than simply turning a knob. However, since the cost of 
providing a control panel is quite substantial, most newer microcom­
puters have abandoned this debugging tool. The value of the control 
panel is often considered more on the basis of emotional arguments in­
fluenced by a user's past experience, than by reason. In other words, the 
front panel is not indispensable. 

Summary of Hardware Resources 

We can distinguish three broad categories of hardware systems. 
Specifically, single-board microcomputer is available for those who have 
only a minimal budget and want to learn how to program. Using a single­
board microcomputer, it is possible to develop all the simple programs 
in this book and many more. Eventually, however, the user will feel the 
limitations of this approach; for example, when it is necessary to 
develop programs of more than a few hundred instructions. 

A full development system is available for the industrial user. Any 
solution short of the full development system will cause a significantly 
longer development time. The trade-off is clear: hardware resources 
versus programming time. Naturally, if the programs being developed 
are simple, there are less expensive approaches. But if they are complex, 
it is difficult to justify any hardware savings when buying a develoir 
ment system, since the programming costs will be by far the dominant 
cost of the project. 

For a personal computerist, a hobby-type microcomputer typically 
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offers sufficient, although minimal, facilities. Good development soft­
ware is now becoming available for many of the hobby computers. 

Let us now analyze in more detail the most indispensable resource: 
the assembler. 

THE ASSEMBLER 

We will now present the formal syntax or definition of assembly-level 
language. An assembler allows the convenient symbolic representation 
of a user program, and makes it simple for the assembler program to 
convert these mnemonics into their binary representation. 

Assembler Fields 

When typing in a program for the assembler, we have seen that several 
fields are used. They are: 

• the label field, which is optional, and may contain a symbolic 
address for the instruction that follows. 

• the instruction field, which includes the opcode and any 
operands. (A separate operand field may be distinguished.) 

• the comment field, which is optional, and intended to clarify the 
program. 

These fields appear on the programming form in Figure 10.3. 
Once a program is fed to the assembler, the assembler produces a listing 

of it When generating a listing, the assembler will provide four additional 
fields, usually on the left of the page. An example of assembler output 
appears in Figure 10.4. 

On the far left of the output is the line number. Each line typed is 
assigned a symbolic line number. The next field to the right is the actual 
address field, which shows in hexadecimal, the value of the program 
counter that points to that instruction. Even further to the right is the 
hexadecimal representation of the instruction, and, finally, to the right 
of the hexadecimal representation appears the number of cycles required 
to execute the instruction. 

We have now shown one possible use of an assembler. Even if we are 
designing programs for a single-board microcomputer that accepts only 
hexadecimal, we should still write the program in assembly-level 
language, providing we have access to a system equipped with an assem­
bler. We can then run the programs on the system, using the assembler. 
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The assembler automatically generates the correct hexadecimal codes 
on the system. This shows, in a simple example, the value of additional 
software resources. 

Tables 

When the assembler translates the symbolic program into its binary 
representation, it performs two essential tasks: 

ADDRESS 

1. It translates the mnemonic instructions into their binary encoding. 

2. It translates the symbols used for constants and addresses into 
their binary representations. 

HEX SYMBOLIC 
INSTRUCTION COMMENTS 

1 2 3 4 LABEL OPCODE OPERAND 

-----------Fisure 10.3: Microprocessor P.rosnunmins Form -
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To facilitate program debugging, the assembler shows, at the end of the 
listing, the equivalence between the symbol used and its hexadecimal 
value. This is called the symbol table. 

Some symbol tables not only list the symbol and its value, but also the 
line numbers where the symbol occurs-thereby providing an additional 
facility. 

00038 

00039 

00040 

00041 

00042 

00043 

00044 

00045 
00046 
00047 

00048 

00049 

00051 1019 86 
00052 101 B 8E 

00053 101 E C6 

00055 1020 A 1 

00056 1022 27 
00057 1024 SA 

00058 1025 26 

00059 1027 8E 

00060 102A 30 

00062 102C 20 

00064 
00065 1 02E 

00066 1042 

* * * * * CHARACTER SEARCH * * *  * * 

i< 

i< SEARCH A TABLE OF N CHARACTERS FOR A SPECIFIC 

i< CHARACTER. IF FOUND, RETURN THE ADDRESS OF 

i< THE MATCH, ELSE RETURN ZERO. LET N BE 40. 
i< LET THE SEARCH FAIL. 

i< 
i< SETUP: 3 LN, 7 BY, 7 CY 

i< OPERATION: 6 LN, 1 2  BY, (14*40)+8=568 CY 

i< TOTAL: 9 LN, 1 9  BY, 575 CY 

i< 
* * * * * * * * * * * * * * * * * * * * * * *  

4A 2 CSRCH LDA #CHAR CHAR TO FIND 

102E 3 LDX #BUF PTR INTO TABLE 

28 2 LDB #40 LENGTH OF TABLE 

80 6 CS1 CMPA ,X+ SAME CHAR? 

06 3 BEQ CS2 IF YES, POINT AT IT 

2 DECB ANOTHER ONE DOWN 

F9 3 BNE CSl ALL DONE? 

0001 3 LDX #1 TRICKY CLRX 

l F  5 CS2 LEAX - 1 ,X WENT PAST! 

FE 3 BRA * 

004A CHAR EQU 'J 
00 BUF FCB 0,,,,,,,,,,,,,,,,,,,0 

00 FCB O'"'"'"""''""O 

Courtesy of Molorolo, Inc. 

-Figure 10.4: Assembler Output-An Example-----------
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Error Messages 

During the assembly process, the assembler detects syntax errors and 
includes them as part of the final listing. Typical diagnostics include: 
undefined symbols, label already defined, illegal opcode, illegal address, 
and illegal addressing mode. Many additional diagnostics are desirable, 
and are usually provided. Such features vary with each assembler. 

The Assembly Language 

We have already discussed opcodes. We will define here the symbols, 
constants, and operators that we can use as part of the assembler syntax. 

SylJ!bols 

Symbols are used to represent numerical values, either data or ad­
dresses. Symbols may include up to six characters, and must start with 
an alphabetic character or a period. The characters are restricted to letters 
of the alphabet, numbers, a ".", and a "$". Also, we may not choose 
names identical to the opcodes utilized by the 6809, the names of the 
registers (A, B, D, X, Y, U, S, PC, DP, and PCR), or the various names used 
as pseudo-operators by the assembler. The names of these assembler 
directives are listed later in the corresponding section. 

Assigning a Value to a Symbol 

Labels are special symbols with values that do not need to be defined 
by the programmer. The value is automatically defined by the assembler 
program when it finds that label. Thus, the label value automatically cor· 
responds to the number of the line where it appears. There are special 
pseudo-instructions available for forcing a new starting value for labels, 
or for assigning them a specific value. However, any other symbols used 
for constants or memory addresses must be defined by the programmer, 
prior to use. 

We can use a special assembler directive to assign a value to a symbol. 
This directive is essentially an instruction to the assembler that will not 
be translated into an ex�cutable statement. For example, the constant 
LOG is defined as: 

LOG EQU $302 

This assigns the value 302 hexadecimal to the symbol LOG. We examine 
the assembler directives in detail in a later section. 
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Constants or Literals 

Constants may be expressed in decimal, hexadecimal, octal, binary, 
or as alphanumeric strings. To differentiate between the bases used to 
represent numbers, we must use a symbol. To load O into accumulator 
A, we simply write: 

LDA #0 

The absence of a symbol always means decimal. 
A hexadecimal number is preceded by the symbol $ or terminated by 

H. To load the value FF into A, we write: 

or 
LOA #$FF 

tDA #OFFH 

An octal symbol is preceded by an @, or terminated by a Q. A binary 
symbol is preceded by a%, or terminated by a B. For example, in order to 
load the value 11111111 into A, we write: 

LOA #%11111111 

We may also use literal ASCII characters in the literal field. The ASCII 
symbol must be preceded by a single quote. For example, to load the 
symbol S into A, we write: 

Operators 

LOA #'S 

To further facilitate the writing of symbolic programs, assemblers 
allow the use of operators. At a minimum, they usually allow plus and 
minus, so that the user can specify, for example: 

LOA ADDRESS 

LOB ADDRESS + 1 

It is important to understand that the expression ADDRESS + 1 is 
computed by the assembler, in order to determine the actual memory 
address that must be inserted as the binary equivalent. An operator is 
computed at assembly time, not at program-execution time. 

In addition, there may be other operators available, such as multiply 
and divide-a convenience when accessing tables in memory. There 
may also be available more specialized operators, such as greater than 
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and less than, which truncate a two-byte value, respectively, into its high 
and low byte. 

Naturally, an expression must evaluate to a positive value. Negative 
numbers may normally not be used and should be expressed in hexa­
decimal format. 

Finally, it has traditionally been the case that a special symbol 
represents the current value of the address of the line: "*". This symbol 
should be interpreted as meaning "current location" (value of PC). 

Expressions 

The 6809 assembler specifications allow a wide range of expressions 
with arithmetic and logical operations. Figure 10.5 displays these opera­
tions. Let's examine the order of precedence of the various operations: 

Operations within parenthesis are evaluated first. 

Multiplication, division and all of the two-character operations 
take precedence over addition and subtraction. 

Operators with the same precedence are evaluated from left 
to right. 

Addressing Modes 

It is necessary to distinguish the different addressing modes used in the 
6809 with special symbols. If a symbol is not used, the assembler normally 

OPERATOR FUNCTION 

+ Addition 
- Subtraction 

* Multiplication 

I Division 

IA Exponentiation 

! .  Logical AND 

1 +  Logical OR 

IX Logical Exclusive OR 

I< Shift Left 

I >  Shift Right 

I L Rotate Left 

! R  Rotate Right 

--------------Figure 10.5: Assembler Operators-
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chooses direct or extended addressing. (Note: the assembler chooses 
direct page addressing whenever possible.) To force direct page ad­
dressing, we must put the symbol "< 

11 
before the operand. Similarly, we 

can force extended addressing by putting the symbol ">" before the 
operand. 

The symbol "#11 indicates immediate mode. We can use the general 
form: 

OFFSET,R 

to indicate indexed addressing. By preceding the OFFSET with a "< 
11, 

the assembler will use an 8-bit offset mode. Placing the symbol "> 11 

before the offset forces a �6-bit offset mode. The assembler will always 
try to use a zero, 5-bit, or 8-bit offset, if it is not restricted. 

The form: 

DEST,PCR 

instructs the assembler to use the indexed mode with the PC. The 
assembler calculates the relative distance from the present PC and the 
symbol, DEST. This constant is then added at run time to the PC to fetch 
the operand. 

The symbols + and + + after an index register, indicate auto incre­
ment mode. The symbols - or -- before an index register indicate 
autodecrement mode. Finally, any operand contained in square brackets 
"[ ]" indicates indirect addressing. 

Assembler Directives 

Directives are special orders given by the programmer to the 
assembler, which result in storing values into symbols or in memory, or 
in controlling the execution of the assembler. To provide a specific 
example, we will now review the eight assembler directives available on 
the 6809 assembler. We begin with: 

ORG nn 

This directive sets the assembler address counter to the value on. In 
other words, the first executable in�truction encountered after this 
directive will reside at the value nn. This directive can be used to locate 
different segments of a program at different memory locations. 

The directive 

LABEL EQU nn 

assigns a value to a label. 
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written out as form constant byte, assigns the 8-bit value n to a byte 
residing at the current program counter. A label may be used with FCB. 

The form double byte constant directive 

FDB nn 

assigns the value nn to the two-byte memory word residing at the current 
program counter. A label may be used with FDB. 

The form constant character string directive 

FCC /string/ 

plac:es the 7-bit ASCII characters in "string" in successive bytes in 
memory. The character "/" is a delimiter for the string. We can use a 
number preceding the string to signify the number of characters in the 
string in place of the "/" delimiter. 

The directive 

FCC 5,START 

puts the five characters in ASCII code in successive memory locations. 
A label may be used with FCC. 

The reserve memory bytes directive 

RMB nn 

allocates nn bytes of space at the present location in the program. A label 
may be used with RMB. 

The set direct page directive 

SETDP n 

tells the assembler which page of memory to use for the direct page ad­
dressing mode. The default page is zero. This directive does not insert 
instructions to set the register; that must be done by the user. An example 
follows: 

LDA 

TFR 

SETDP 

The end directive 

END 

#DPAGE 

A,DP 

DP AGE 
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marks the end of the program. The assembler does not look for any state­
ment following this directive. 

SUMMARY 

This chapter has presented the techniques and hardware and software 
tools required to develop a program; it has also examined various trade­
offs and alternatives. These techniques range, at the hardware level, 
from a single-board microcomputer to a full development system, and, 
at the software level, from binary coding to high-level programming. 

CONCLUSION 

In this bobk, we have covered all the important aspects of programming 
the 6809, ranging from the basic definitions and concepts, to the internal 
manipulation of the 6809 registers, the management of input/output 
devices, and the implementation of software development aids. These 
concepts apply to other microprocessors, as well as to the 6809. 

What is the next step? There is no substitute for actual experience. 
Once you have studied the examples in this book and have completed 
the exercises, you should be ready to move ahead and create your own 
programs. 
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APPENDIX A 
HEXADECIMAL CONVERSION TABLE 

HEX 0 1 2 3 4 5 6 7 8 9 A B c D E F 00 OOO 

0 0 1 2 3 4 5 6 7 8 9 10 1 1  12 13 14 15 0 0 
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096 
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192 
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288 
4 64 65 66 67 68 69 70 71 72 73 74 75 76 n 78 79 1024 16384 
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1280 20480 
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 1 1 0  1 1 1  1536 24576 
7 1 1 2  i 13 1 1 4  115 1 1 6  1 1 7  118 1 1 9  120 121 122 123 124 125 126 127 1792 28672 
8 128 129 130 131 132 13J 134 135 136 137 138 139 140 141 142 143 2048 32768 
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 2304 36864 
A 160 16i 162 163 164 165 166 167 168 169 170 171 172 173 174 175 25tAJ 40960 
B 176 1n 178 179 180 181 182 183 184 185 186 187 188 189 190 191 2816 45056 
c 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 49152 
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248 
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344 
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440 

5 4 3 2 1 0 

HEXI DEC HEXI DEC HEXI DEC HEXI DEC HEXI DEC HEX j DEC 
0 0 0 0 0 0 0 0 0 0 0 0 
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1 

2 2,097,152 2 131 ,072 2 8,192 2 512 2 32 2 2 
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3 

4 4, 194,304 4 262,144 4 16,384 4 1,024 4 64 4 4 
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5 

6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6 
7 7,340,032 7 458,752 7 28,672 7 1,792 7 1 12  7 7 

8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8 
9 9, 437, 184 9 589,824 9 36,864 9 2,304 9 144 9 9 

A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10 
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 1 1  

c 12.582,912 c 786,432 c 49,152 c 3,072 c 192 c 12 
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13 

E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14 
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15 



HEX 
LSD 

0 
1 
2 
3 
4 
5 
6 
7 
8· 
9 
A 
B 
c 
D 
E 
F 
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APPENDIX B 
ASCII CONVERSION TABLE 

MSD 0 1 2 3 4 5 6 
BITS OOO 001 010 01 1 100 101 1 10 

0000 NUL DLE SPACE 0 @ p -
0001 SOH Del ! 1 A Q 0 
0010 STX DC2 " 2 B R b 
001 1 ETX DCJ # 3 c s c 
0100 EOT DC4 $ 4 D T d 
0101 ENQ NAK % 5 E u e 
0110 ACK SYN & 6 F v f 
0 1 1 1  BEL ETB ' 7 G w g 
1 000 BS CAN ( 8 H x h 
1001 HT EM ) 9 I y i 
1010 LF SUB • : J z i 
101 1 VT ESC + ; K [ k 
1 100 FF FS ' < l \ I 
1 101 CR GS - = M J m 
1 1 10 so RS > N " n 
1 1 1 1  SI us I ? 0 - 0 

THE ASCII SYMBOLS 

NUL - Null SOH - Start of Heeding 
STX - StortofText ETX -End of Text 
EOT - End of Transmission 
ENQ - Enquiry 
AO: - Acknowledge 
BEL - Bell 
8S - Boclaf)oce 
HT - Horizontal Tobulotlon 
LF - Une Feed 
VT - Vertical Tobulotlon 
FF - Form Feed 
CR - Carriage Return 
SO -ShiflOut 
SI -Shift In 

oLE - Doto unk escor 
DC - Device Contra NAK - Negolive Acknowledge 
SYN - Synchronous Idle ETB - End of Transmission Block CAN -Cancel 
EM - End of Medium 
SUB - Substitute ESC - Escape 
FS - File Seporotor GS - Group Seporotor 
RS - Record Seporotor 
US - Uni t Seporotor 
SP - Space (Blank) 
DEL -Delete 

7 
1 1 1  

p 

q 
r 
s 
I 
u 
v 
w 
x 

y 
z 

{ --
} 

"' 
DEL 
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APPENDIX C 
DECIMAL TO BCD CONVERSION TABLE 

DECIMAL BCD DEC BCD DEC BCD 

0 0000 10 00010000 91 10010000 
1 0001 1 1  00010001 91 10010001 
2 0010 12 00010010 92 10010010 
3 0011 13 00010011 93 10010011 
4 0100 14 00010100 94 10010100 
5 0101 15 00010101 95 10010101 
6 0110 16 00010110 96 10010110 
7 0111 17 00010111  97 100101 1 1  
8 . 1000 18 0001 1000 98 10011000 
9 1001 1 9  00011001 99 1001 1001 
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APPENDIX D 
6809 INSTRUCTION SET 

·-
- ....... Op - I 

AS• 
AOC AOCA 89 2 2 

AOCB C9 2 2 

AOO AOOA ea 2 2 

ADDS ce 2 2 

ADDO C3 • J 
AND ANDA 84 2 2 

AN08 C4 2 2 

ANOCC IC 3 2 

ASL ASLA 
ASLB 
ASL 

ASR ASRA 
ASRB 
ASR 

BIT 811A 8S 2 2 

BITS CS 2 2 

CLR CL RA 
CLRB 
CLR 

CMP CMPA BI 2 2 
CMPB Cl 2 2 
CMPO 1 0 s 4 

BJ 
CMPS 11 5 • 

BC 
CMPU 11  5 4 

83 
CMPX BC 4 J 
CMPY 10 5 4 

BC 
COM COMA 

COMB 
COM 

CWAI 3C l>:2 2 
OAA 
DEC OECA 

OECB 
DEC 

EOA EDRA 88 2 2 

EOR9 CB 2 2 

EXG A l. R2 

INC INCA 
INCB 
INC 

JMP 

JSR 
LO LOA 86 1 2 

LOB <:(; 2 2 

LOO LC 3 J 
LOS 10 4 4 

CE 
L OU CE 3 J 
LOX al' 3 3 
LOY 10 4 4 

BE 

LEA LEAS lEAU 
LEA X 
LEA \' 

Legend 
OP Opera1ton Code tHe)ladeomao 

Number ot MPU Cycles 
Number of Prog1am Bytes 
An1hme11c Plus 
A111hme1tc Minus 
Mul11ply 

Op 

99 09 
9B 
DB 
OJ 

94 
04 

08 

01 
95 
OS 

Of 
91 
01 
10 
93 
11 
9C 
11 
93 
9C 
10 

9C 

00 

OA 

98 
ce 

oc 
OE 

90 
96 
06 
DC 

10 
O E 
OE 
9E 
10 
9E 

Courtesy of Motorolo, Inc. 

�-
Dhct ·- £.--

- , Op - , Op 

• 2 A9 . . 2 • B9 • 2 E9 .. 2 • F9 
• 2 AB .. 2• BB 
4 2 E B .. 2+ FB 
6 2 E3 6• 2 + F3 

4 2 A4 4 .  2 - 84 
4 2 E4 . .  2 •  �· 

6 2 68 6· 2 • 18 

6 2 67 6 • 2 • 17 

4 2 A5 . .  2 · BS 
• 2 ES .. 2 • FS 

6 2 6f 6 · 2 . IF 
4 2 Al 4 . 2 . 81 
4 2 El 4 . 2· f1 
1 J 10 I · J• 10 

A3 83 

1 3 11 1 · 3 • 11 

AC BC 
l 3 11 , . 3 · 11 

A3 BJ 
6 2 AC 6 · 2 . BC 
I J 10 1 . J . 10 

AC BC 

6 2 63 6 .  2 . 1J 

6 2 6A 6 . 2 . IA 
4 2 A8 4 .  2 · 98 
4 2 £8 4 . 2 . FB 

• 2 6C 6. 2 .  IC 
3 2 6E 3 . 2 . IE 

1 2 AO 7 . 2 · BO 
4 2 A6 4 . 2 . B6 
• 2 E6 4. 1 • f6 
5 1 EC 5 . 2 . fC 
6 3 10 6 .  3 . 10 

E E FE 
5 2 EE s . 2 · FE 
5 1 AE 5 . 1 • BE 
6 J 10 6 · J . 10 

A E BE 
32 . . 2 . 

33 4 .  1 • 
3:) . . 1 • 
31 4 . 1 . 

M Com.ptcmcnt ot M 

T ransle1 Into 
H Hall·carrv (from bit 3J 
N Nega11ve (sign bl1l 
l Ze10 resull 

-

5 
s 
s 
5 
1 
5 
5 

I 

1 

s 
s 

1 
s 
s 
8 

B 

B 

I 
B 

1 

1 
5 
5 

I 
4 

8 
� 
5 
6 
I 

6 

6 
1 

v Overflow, 2's comotemeni 
C Carry !tom ALU 

, 

3 
3 

3 

3 
3 
3 

3 

J 

J 

3 
3 

3 

J 
3 
• 

4 

4 

J 
4 

3 

3 

J 
3 

J 
J 

3 

3 
3 
3 
4 

3 
J 
4 

- 6 3 2 1 0 
Op - , Dooctlptlon H N z v c 
3A 3 1 8 + X-X I VnsignedJ . . . . . 

A+M+C-A I I I I I 
8 + M + C-8 I I I I I 

A+ M-A I I I I I 
8 -.. M-8 I I I I I 
D • M.M +  1-0 . I I I I 
A A M- A . I I 0 . 
8 A M-8 . I I 0 . 
CC A IMM -CC 1 

48 2 1 Al - 8 I I I I 
58 2 1 B [J.{Ilil]Il}-0 8 I I I I 

M C b 7 bo 8 I I I I 
47 2 1 � j c;:jlll JI I 'JiJ B I I . I 
57 2 1 8 I I . I 

M o, -,,. 8 I I . I 
811 T8$1 A I M A Al . I I 0 . 
811 Tes-18 t M A  9 , . I I 0 . 

4F 2 1 0- A  . 0 1 0 0 
5F 2 I o-e . 0 1 0 0 

0-M . 0 I 0 0 
Como•1e M trom A 8 I I I I 
Comoe1e M ll()l'n 8 8 I I I 1 
Compate M M + 1 11om D . I I I 1 

Compa1e M M • l 11om S . I I I I 
Compare M M • 1 irorn lJ . I I I I 

Comoa1e M M .. 1 hom X I I I I 
Comoa1e M M • I hom Y . I I I I 

4J 2 1 A-A I I 0 I 
SJ 2 1 lf-8 I I 0 I 

M-M . I I 0 I 
CC /\ IMM- CC W � ·• f\ 11 lnterrv Ot 1 

I• 2 1 11_...ma1 Ad"" .. 1 A . 1 I 0 I 
• • 2 I 
SA 2 1 

1E 8 2 
, c 2 1 
!>C 2 I 

A 1-A . I I I 
B • - 9  . I I I 
... 1-M . I I 1 . 
A _,,,,..M -A I I 0 
9 ¥ M - 9 . I I 0 . 
fH- A21 . . . . . 
A · 1- A . I 1 I . 
e. 1-e . I 1 1 . 
M •  l - M . I I I . 
EA°l-PC . . . 
J v mo 10 S1.1b1ou1.ne . 
M-A I 1 0 
M-9 1 1 0 
M M ·  1 - 0  1 I 0 . 
M M ·  1 - S  I I 0 

M M •  1-U . I I 0 
M M ·  1 - X  . I 1 0 . 
M M •  1-Y I I 0 . 

EA3-s . . 
EAl - u 
EA.l-x 1 

E.,.J_y I 

T e51 and se1 11 oue, cleared 01herw1se 
Not Attec1ed 

CC Cono111on Code Aeg1s1er 
Conca1ena11on 

v Log.teal or 
A Log.cal and 
¥ logJCal Ell.elusive o-
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-- - -00 - CD LSl lSLA 
tSt8 
tSt 08 

I SR lSRA 
lSRB 
lSR O< 

MUl 
NEG N!GA 

NEG8 
NEG 00 

NO P 
OR ORA BA 2 2 9A 

ORB CA 2 2 OA 
ORCC IA 3 2 

PSH PSHS 3' ; . 2 
PSHU 36 S· 4 2 

PUl PUtS . 3'> s . 2 
PVlU 31 � · 4 2 

ROL IAOLA 
R0l8 
ROl 09 

ROR RQRA 
ROR8 
ROR 06 

"" 
RTS 
SB C sec• 82 2 ,. 92 

S8C8 " 2 2 02 
SlX 
$1 ISIA 97 

SIB 01 
SID 00 
SI � 10 

O F 
SIV OF 
SIX 9 F 
STY 10 

g, 
sue SU8A eo 2 2 90 suee co 2 2 00 

SUBD 83 • 3 93 
S WI swl& 

sw16 

swi6 

SYNC 
IFR ft1 R2 
!ST ISTA 

1 518 
TSI ()() 

Notes; 

6809 INSTRUCTION SET 

.....-.. -OWOCt _,..T � - I CD - CD -

6 2 68 6· 2 . 18 1 3 

6 2 64 G • 2 · ,. , 3 

6 2 llO 6 · 2 · IO I 3 

• 2 AA . . 2 · BA ; 3 
• 2 [A . . 2 · FA ; 3 

6 2 li9 5 · 2· ,., ' 3 

6 2 68 a · 2· 76 , l 

4 2 A2 . . 2 . 82 ; J 
• 2 (2 . .  2 · f2 ; 3 

• 2 A .. 2 . 81 ; 3 
• 2 l1 . . 2 • , , ; ) 
s 2 lO S • 2 . •o 6 3 
6 3 10 6 · ) · 10 I . 

f f " ; 2 [f ; . 2 . H 6 3 ; 2 Af ; . 2 . Bf 6 3 
6 3 10 10 , • 

M 0 · 3 . Bf 
• 2 "" . .  2· 80 ; 3 . 2 EO . .  2· f<I s 3 
0 2 Al 6 · 2 . 83 , 3 

6 2 60 S • 2 . ID 1 3 

-
CD - I 

"8 2 1 
!i8 2 I 

.. 2 I 
"' 2 1 

30 I I  1 
'° 2 I 
IO 2 I 

12 2 I 

• 9 2 1 

!-9 2 1 

46 2 I 
!16 2 1 

JB 6 I� 1 

39 ; I 

10 2 I 

Jf 19 I 
10 20 2 
3f 
II 20 1 

Jf 
13 �· I 
" 6 2 

• O 2 I 
!j() 2 I 

-� Irr-! 1ilili I M b7 bn 
0 

�, 0 -a:rr:mn-o M b7 t10 c 
A • 8 -0 UJ1'$C)Md1 "l· 1 -A 
II"· 1-8 
ll · l -M 
No 01'.Mttttion 
A V M- A 
B V  M-8 er� IMM-CC 
Putn R49s••s on S S1..,g. 
P-.th A-1et'\ on u Stac' 
Pul R1QJ1tt o I tem S Sttc' 
PI.II AtfJtS t tt • l r om u S1�' �IYrfTITI 111+1 M 6i" bn �I L..[J...{ 111 II I n-J M C b 7 Cl() 
Relut" f r om tn•t!f •uOt 
Retw n h orf' Subtouh"* 
A M c -• 
8 M c-e 
59' [,ttend 8 �to A 
A- M 
8-M 
0 - M M •  I 
5-M M• 1 

U - M M •  I 
X - M M •  I 
't' - M M ·  I 

A M -A 
8·M-8 
0 M M •  1-0 
So 1t w•1eo lntenuo1 1 
Sohwt•e lntem,1p1 2 
Sottw•ie lnletr1o1p1 J 

$yft(IWoni1e to tn1erruot 
Rt-R2' 
fnl A 
f ttl 8 
Test M  

s 312 
H N l . . 
. 
. . 
8 
8 
8 . . 
. . 

1 · 1 
' · ' 
I I 
0 1 
0 , , 
0 I 
• I I 
1(1 
I l l 
I I . . . 
1 I 
' 1 ' 
·1· 

• I • . . . . 
1 I 

• : •  I . I I . I I 
I I . 1 I 

I 0 IV ,C 
I I 
I I 
I I 

1 
I . I . 9 

I I 
I I 
I I . 
0 . 
0 , . . . . . . 
I I 
I I 
I I . I I . I , . . . '. . 

B 

8 . . . 

8 
8 

. . . 

1 1 1  
1 I 
111 

• 11 I I I I 
I I 

I I 
I I 
I I 

I I 
I I 

I I 
I I 
0 . 
0 . 
0 I' 0 • 
0 

I' 0 • 
0 • 
0 

I I 
I I 

I , . , I 

. . . 

. . 

. . . . . . . . 'I' 0 . 
I I 0 . 
I I 0 

I. T ... column-1t>noc:vd11ndbytec:oun1 To ot> ..... totalcoun1.odd lhov_Ob_flom1helNOEXEOAOORESSINGMOOE t-. 
T-2 

2. A 1 M'd A2 may be any prw of 8 btt or any PIM' o• 1& btt registers 
The 8 bol rogos10<s 110· A, 8, CC. OP 
The 18 bll rogiS10ts ero: X, Y, U. S. D. PC 

3. EA rt the effective addreu 
4. The PSH Ind PUL nslructlont r_.ro 5 cyctos C>lus I CydO for NCI! byi. pusl>ed or putlod 
5. 5181 ,,_,. 5 c:yc1os d twanc:n not UlkM. 8 c:yc1os of - tB11nCh otl$1rucoonsl 
6, SWI Mtl I Ind F bots SW12 Ind SWl3 do no1 1ffot1 f Ind F 
7. Cond.1 .ons Codes Mt as 1 dlftct resYll of the 1ns1rucuon 
8. Vlfuo of hllf�rry flog Is undefined. 
9. Special CaM - Carry SOI If b7 01 SET 

Courtesy of Moforolo, Inc. 
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6809 INSTRUCTION SET 
Branch Instructions 

- A- I I 
�� ,, 1 n �i;:;: " , n ..._.._ ,...,.. """""'"" H H l v c ' """""°" ....... Deowpt..., H N l v c 

sec sec 24 3 2 Bt•rocri C •O BLS BLS 23 3 2 8f� l� 
lBCC 10 516) 4 L otig 8 ,at!ie,, .. s-

2• c.o lBlS 10 51& ' Long 81anc" lo� 
BCS BCS :zr. 3 1 8t•"'C" C • I 23 ,-�:·;;�o L8 CS 10 Slet 4 LO'lg 8tfof'<l'I BLI e:.. r lO 3 

:zr. C - 1 LBU 10 Si � 4 L<Jr19 B•al\IC:l'l<Zeeo 

BlO BEO 27 3 2 8t ¥tef'I Z•O lO 
LBEO 10 516• ' l&'lg 81lt!C,, .... 8M• 28 3 1 B••f'IC" M .n..,� 

,, l•O lf' M I lO 5"161 . Long 81•ncn w� 
8GE 8G E 2C 3 1 8 r �r'l� lff 0 78 

lBGE 10 5181 • LO"Mil 81..-..;1i1:Z9to 8Nf 8NE l8 3 1 B••nc" z,,. o 
2 C L8NE 10 � 61 . long 81tt11Cl'I 

8GT BGT 2l 3 2 8lo9"Cl'l>lf!IO l8 l• O 

lBGl 10 .... • Long 811i11Ch>Zero 8Pl 8Pl 2A 3 9 r � l'l �S ·!· 
2l LBPL 10 �61 lOl'lg 81tl\C!'I PlvS 

SHI SHI 22 3 2 B• •l'ICPI H..gnet 2 A 

l8HI 10 ... , ' l� 81eneh l-491'1er 8RA BRA "' 8r.t0el'I Alw;w$ 
22 L8 FI A 1 $ lonQ 81•� A! W it'f 'l 

BHS BHS ,. 3 2 8t¥W:h Higtief 8RN 8RN 21 8reroc11 N� .. ..... LBflN 10 lotlgB••� � 
lBHS 10 !481 4 long 8rll'Cft Htgntr , , 

,. ..s- es• BS R 9 0 Br•ncn to S\looou1•l'lf • 
BLE BLE " 3 81..-.cns:ZtJo LBSR " lOt\i 81•""' IO 

UU: 10 !481 long 8111'1Cf\llZ•O S\bou11 ne 
,, eve 8VC l8 3 2 Bt•!"Ch V • O 

BLO BLO :zr. 3 1 Br� lewet l8VC 10 5!61 4 LOl'IQ 81a"Cfl 
28 V • O LBLO �(' 4 L0"1Q8t� l� 

evs 8VS "' 3 2 Bt•l'ICJI V • l . -: ��� 

SIMPLE BRANCHES 

OP 
BRA 20 
lBRA 16 
BRN 21 
lBRN 1021 
BSR BO 
LBSR 17 

SIGNED CONDITIONAL BRANCHES INot• 1-41 

T• True OP F- OP 

r>m BGT 2E BLE 2f 
r>:m BGE 2C Bll 20 
••m BEO 27 BNE 28 
roSm BLE 2f BGT 2E 
•<m BlT 20 BGE 2C 

Notes: 

I 

1.  All conditional branches haYI both Shon and long variahons. 
2. Al short blanches are 2 bytes and 1equire 3 cycles. 

lBVS 10 �It 4 Lone) Bt•nc" 
,, V• 1 

SIMPlE CONDITIONAl BRANCHES INOIH 1-41 

Toot True OP F- OP 
Na 1 BMI 28 BPL 2A 
z-1 BEO 27 BNE 28 
\la 1 8\IS 29 eve 28 
C • l  BCS 25 BCC 24 

UNSIGNED CONDITIONAL BRANCHES INot• 1-41 

Toot True OP F- OP 

r> m BHI 22 BLS 23 
r>:m BHS 2• BlO 25 

BEO 27 8NE 26 
rs m BLS 23 BHI 22 
r<m BLO 25 BHS 24 

3. All condi1ionel long brenehes ·� formed by prefixing the short branch ol)COde with $10 and using a 16-bll dest111a1.t0n offset. 
4. All conditional IOng bfancheS reqvue 4 bytes and 6 cycles if the branc:h is talc.en or �cycles 1f the branch Is no1 1aken. 

S. 5(61 meens: 5 c::yc1es ii branch not taken. 6 cycles if talc.en. 

Courtesy of N\otorolo, Inc. 

i 
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APPENDIX E 
ADDRESS BUS CYCLE-BY-CYCLE PERFORMANCE 

long 
Bronch 

Shor1 lmmediole 
Bronch & 

I 

N VMA 

ACCAOfhel ACCBOffMt 
R+ S8it 
R+ 88it PC +  Bit 

WM 

inh«e<>I 

VMA 
VMA 

I Slock (Wr11e) 
Slock (Writ•) 

Fetch 

Aulo Inc/ 
Dec. 
8yl 

I 
WM 
WM 

Otrect 

T Opcode+ 
WM WM 

Auto Inc/ 
Dec. 

0,,..011011 
{Following Poge1) 

R+l6811 

I R+O I 8y2 
Opcode + Opcode + 

I I 
VMA VMA 

WM VMA VMA 
VMA VMA VMA 

NOTES: I. All subsequent opcodes will be ignored after initial opcode fetch. 
2. Write operation durlll8 store inslruction. 

BUSY; t durlll8 double byte or read-modify-write operations. 
3. BUSY� I during double byte Immediate load. 
4. AV MA is asserted on the cycle befor• 1 VMA cycle. 

*Adapted from Motorola � Doto Sheet 
Courtesy of Motorola, Inc. 

� 
Opcode(felth) 

Opcode +{Nole 3) 

PC+1611lt bi tended No 

I tndirect OffMI 
I Opcode + Opcode + 

VMA _I 
VMA VMA 
WM 
WM 

VMA 
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ADDRESS BUS CYCLE-BY-CYCLE PERFORMANCE 

Inherent Page 

ASlA ABX RTS TFR EXG 
ASl8 

ASRA 
ASRB 
CLRA 
CLRB 

COMA VfM 
COMB VfM 

DAA VMA 
OECA VMA VfM 
DECB 
INCA VMA 
INCB VfM 
lSlA V/IAA 
LSLB V/IAA 

lSRA STACK V/IAA 
LSRB ST�CK VfM 

NEGA V/IAA 
NEGB 

NOP 
ROlA 
ROLB 

RORA 
RORB 

sex 

Courtesy of Motorolo, Inc. 

MUL PSHU PULU 
PSHS PULS 

VfM 
VMA 

I 
VMA STACK' 
V/IAA I 
� {STACK }12 �: (Write) 0 
VMA 
VMA 
VfM 
V/IAA V/IAA 

iJMA 

SWI 
SWl2 
SWl3 

VMA 

I 
12•STACK 

(Write) 

I 
V/IAA 

I 
1-BUSY 
VECTOR 
VECTOR 

VfM 

I 
{STACK }12 

(Write) 0 

I 
STACK' 

! 

� 
CNAI RTI 

AOOR STACK 
I 

VMA 

I 
(Write) 

I {VFM}f 0 

I 
I-BUSY 
VECTOR 
VECTOR 

VfM 2"STACK 

�� 
STACK' 

! 
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ADDRESS BUS CYCLE-BY-CYCLE PERFORMANCE 

Non-lnherents 

AfX.A 

ADC8 
AOOA 
A008 

ANOA 
AN08 

BITA 
BITB 

CMPA 
CMPB 
EORA 
EORB 

LOA 

LOB 
OAA 

ORB 
S8CA 
S8C8 

STA 

STB 
SUBA 
SUB8 
TSTA 

TSTB 

LOO 

LOS 

LOU 
LOX 
LOY 

ANOCC 
ORCC 

ASI. 

Af,R 

OR 

COM 
DEC 
I NC 

lSl 
LSR 

NEG 

ROt 
ROR 

TST AOOO 

CMPO 

CMPS 
CMPU 

CMPX 
CMPY 

SUBO 

VMA 

STACK 
1-+BUSY (Write) 

STO 
STS 
STU 

STX 
STY 

WVIA. VMA AQOR+ STACK AOOR+ 

1+ T T T T T 
Courtesy of Molorolo, Inc. 
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APPENDIX F 
INDIRECT ADDRESSING MODE POSTBYTES 

Non lnclfrect .......... 
Ty1>9 Form1 Anembler Poatbyte + + Auemblet Pos1by1e 

Form OP Code .... I Form OP Code 

Con1tont Offqt No ()ffwl .R IR ROOIOO 0 0 (.R) IRRIOI OO 

From R 

(2'1 Complemenl 
5 &;1 0fhe1 " · R ORR:nnnnn I 0 de·f·oult1 to 8-b. 1 

Ofhe••I 

Accumulotor 

Offset From R 

(2'1 Compl•ment 
OlfHll) 

Auto Increment/ 
0.cfement R 

Consiont Offset 
from PC 
(:rs Complemen1 Olhe11l 
blended I ndirect 

R - x, Y. U ors 
x • 0on·1 Care 

88i• Off .. 1 
l6&;1()ffw1 

A Regi1-ter Offset 

8 Register Offiet 

0 Regis ter Ofhet 

I n crement By 1 

Increment By 2 

Decrement By 1 

Oectement 8y 2 

88it OffMI 
1 68J t0ffs.et 
16 811 .A.ddreu 

RR: 
OO•X 

Ol•Y 
10-u 
11-s 

"· R 

n. R 
A. R 

B . R 

D , R 

.R+ 

, R+ +  

. - R  

. - -R 

n. PCll 

n. PCll 

-

IRROIOOO 

IRROIOOI 

1RR00110 

1RROOI01 

IRR01 0 1 1  

I R ROOOOO 

I RROOOO I 

IRROOOIO 

I RROOOl l  

1..01 100 

hx01101 

-

I I (n. R) 

• 2 (n. R) 

I 0 (A. R) 

I 0 (8, R) 

• 0 ID.R) 

2 0 
3 0 (.R++) 

2 0 

3 0 (.--R) 
1 I (n. PCR) 

5 2 (n, PCR) 

- - (n) 

+ and + indicate the number of addltlonal cyclea and bytes for the particular varlallon . .... 

Courtesy of Molorolo, Inc. 

IRR1 1 000 

I RR1 1001 

IRRIOllO 

IRRIOIOI 

IRRllOll 

no1 ollowed 

I RRIOOOI 

not allowed 

1RR10011 

h .x1 1 100 

1 .. 1 1 101 

10011111  

+ + "' I 

3 0 

• I 

7 2 

• 0 
• 0 

7 0 

6 0 

6 0 

• 1 

8 2 

5 2 
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INDEX 

A, 42, 68 
Absolute addressing, 195, 201 
ABX. 121 
Accumulator, 34, 42 
Accumulator-offset indexed, 204 
A.DC, 62, 72, 108, 122 
ADD, 72, 108 

(8-bit), 123 . 

(18-bit}, 124 
ADDA, 46 
Addition, 7, 55 
Address, 45 
Address bus, 31-32, 249 
Address register, 35 
Addressing, 193 
Addressing mode, 193, 339 
Algorithm, 1, 289 
Alphabetic list, 297, 302 
Alphanumeric, 338 

data, 21 
keyboard,325 

ALU, 31, 42 
AND, 90, 109, 125 
ANDCC, 112, 126 
APL, 325 
Architecture, 31 
Arithmetic, 7, 72, 108 
Arithmetic-logical unit, 31, 42 
Arithmetic shift left, 79 
Arithmetic shift right, 110 
ASCil, 21, 235, 273, 314-315, 341 
ASL, 79,83, 127, 164 
ASR, 110, 128 
Assembler, 56, 324, 326 

directive, 340 

field, 334 
Assembly language, 46 
Assembly language programming, 

325 
Assembly-level language, 323, 328 
Assembly time, 338 
Asynchronous, 220, 225, 248 
Asynchronous device, 230 
Auto-increment, 70 
Auto-increment/decrement 

indexed, 204 
AVMA. 53 
B,42 
BA, 49-50, 253 
BASIC, 325 
BCC, 116, 129, 135 
BCD, 18 

addition, 108 
arithmetic, 66, 113 
subtraction, 69, 108 

BCS, 116, 130, 138 
Benchmark program, 224 
BEQ, 91, 116, 131 
BGE, 116, 133, 143 
BGT, 116, 132 
BHI, 116, 134 
BHS, 117, 135 
Binary, 22, 323, 338 

division, 75 
logic circuit, 4 
representation, 22 
search, 302 
searching, 296 

Binary-coded decimal, 18 
BIT, 112,136 



Bit, 4 
Bit serial transfer, 225 
Bit toggle, 110 
BLE, 116, 137 
BLO, 82-83, 117, 138 
Block, 290, 293 
Block transfer, 208, 278 
BLS, 116, 139 
BLT, 116, 140-141 
BMI, 116, 141 
BNE, 82-83, 116, 142 
Bootstrap, 33 
Borrow, 12 
BPL, 116, 143, 226 
BRA, 117, 144 
Bracket testing. 273 
Branch, 72,76,81, 105 

instruction, 115, 196 
Branch to a subroutine, 105 
Break character, 222, 225 
Breakpoint, 330 
BRN, 117, 145 
BS, 4�50, 253 
BSR, 96, 116, 146, 178 
Bubbl&-sort, 279 
Buffer, 33 
Bus available, 49 
Bus request, 248 
Bus status, 49 
BUSY, 52 
BVC, 116, 147 
BVS, 116, 148 
Byte, 4 
c. 12, 60, 108, 113 
CALL, 92, 96 
Carry, 7, 12, 60, 113 
CC, 42, 61, 108, 247 
Central-processing unit, 31 
Checksum, 278 

computation, 278 
Circular list, 293 

Circular permutation, 283 
Clear, 46 
Clock, 32, 41, 49 
CLR, 149, 272 
CLRB, 46 
CMP, 90, 116, 273 

(8-bit). 150 
(16-bit), 151 

Code conversion, 275 
Coding, 2 
COM, 108, 152 
Command, 2 
Comment, 2, 58 
Comment field, 334 
Compare operation, 80 
Compiler, 326, 331 
Complement, 7 
Condition code, 14, 61 
Condition code register, 34, 42, 247 
Conditional, 35 
Conditional branch, 115 
Constant, 338 
Constant offset indexed, 204 
Control, 44 

bus, 31-32 
instruction, 105, 118 
register, 262 
unit, 31, 34 

CPU, 31 
Cross assembler, 332 
CRT, 215, 331 

display, 25, 242, 333 
Crystal, 32 
CU, 31 
Current-block pointer, 294 
Current-event pointer, 294 
Current loop interface, 236 
CWAI, 118, 153, 215, 253 
Cycle, 41 
0, 42, 62, 108 
DAA, 67, 108, 114, 154 

357 



358 

Data buffer, 262 
Data bus, 31-32, 249 

Data counter, 35 

Data-direction register, 262 
Data pointer, 104 
Data pointer instruction, 112 

Data processing, 104, 108 
Data ready flag, 223 

Data structure, 2, 289 

Data transfer, 72, 104 

Debugger, 327 

Debugging, 3 

DEC, 82, 108, 155 
Decimal, 338 • 

Decimal addition adjust, 114 

Decode, 41 

Decoder, 44 
Decoding, 39 

logic, 33 

Decrement instruction, 82 

Delay generation, 216 
Deleting, 301, 320 
Deletion, 309 

Development system, 331, 333 

Device service routine, 242 

Direct, 106 
Direct addressing, 196, 202 
Direct binary, 5 

Direct page addressing, 105, 340 

Direct page register, 42, 202 
Directive, 325, 337 

Directory, 290,314 

Disk operating system, 327 
Displacement, 44, 196 

Division, 55 
DMA, 49, 242 

DMA/BREQ, 49, 248 

DOS,327 

Double-precision, 17 

Doubly-linked list, 294 

DP, 42, 202 

Driver, 33 

E,49,51, 153, 177, 249, 252-253 

EBCDIC, 21 

Editor, 327 
8-bit addition, 56, 60 
Emulator, 327 
Enable, 49 

END, 341 

Entry, 297 
EOR, 90, 110, 156 

EQU, 337, 340 
Errol'-Correcting, 21 
Even parity, 21, 274 

Exchange,279,283 

Exclusive OR, 14, 90, 110, 278 

Executing, 39 

Executive, 327 

EXG, 106, 157 

Exponent, 19 
Expression, 339 
EXTAL, 49 

Extended, 106 
Extended addressing, 195, 201, 340 
Extended indirect, 206 

F, 249 

Fast interrupt request, 248, 253 
FCB, 341 
FCC, 341 
FDB, 341 

Fetching, 39 
FIFO, 292 

File directory, 290 

FIRQ, 51, 248, 253 

Fixed format, 16 
Flag, 15 

Floating-point representation, 19-20 

Flowchart, 2, 76, 328 

Flowcharting, 2 

Form constant byte, 341 

Form constant character string, 341 

Form double byte, 341 



Front panel, 333 
Generalized block transfer, 210 
Generating parity, 274 
1-1, 36, 60, 113-114 
1-Ialf-carry bit, 114 
1-IALT, 51 
1-Iandshaking, 230, 262 
1-Iardware, 323 

delay, 220 
stack, 96, 107, 249, 252-253 
stack pointer, 44 

1-Iexadecimal, 22-23, 323, 338 
coding, 324 
keyboard, 325 

l-l flag, 67 
1-Iigh-impedance state, 249 
1-Iigh-ievel language, 323, 325 
I-lobby-type microcomputer, 

332-333 
I, 249 
Immediate, 106 
Immediate addressing, 195, 201 
Implied addressing, 195 
INC, 82, 108, 158 
In-circuit emulator, 330 
INCA,46 
In-house computer, 332 
Index register, 37, 44 
Indexed. 106 
Indexed addressing, 197, 203. 275 
Indexed indirect, 205 
Indexing. 37, 44 

post-, 197 
pre-, 197 

Indirect addressing, 198 
Inherent addressing, 195, 201 
Input, 215 
Input/output, 32 
Input/output chip, 261 
Input/output instruction, 105 
IR, 41, 44 

IRQ, 51, 248, 252 
Inserting, 299, 318 
Insertion, 309 
Instruction, 4, 40, 44, 56 

field, 334 
register, 41, 44 

Interpreted, 47 
Interpreter, 326, 331 
Interrupt, 38, 51, 97, 220, 242, 247, 

262 
maskable, 252 

Interrupt request, 252 
IX, 37 
JMP, 159 
JSR, 96, 116, 160, 178 
Jump, 72 
Keyboard, 272 
L, 36,60 
Label field, 334 
LBSR, 97 
LD, 72, 83 

(8-bit). 161 
(16-bit). 162 

LDB, 47 
LEA, 112, 163, 200, 299 
LED, 232 
Level, 215 
LIC, 53 
LIFO, 37, 290, 293 
Linked list, 290, 293, 313 
Linkingloader,327 
List, 290 
List pointer, 291 
Listing, 334 
Literal, 45, 47, 338 
Logarithmic searching, 296 
Logical, 109 
Logical instruction, 90 
Long branch, 105 
Long branch instruction, 117, 196 
LSL, 164 
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LSR, 165, 309 

Magnitude, 9 

Mantissa, 19 

Maskable, 252 

Masking, 109 

MC6800, 253 

MC6809, 49 

MC6809E, 49, 51, 248 

MC6850 ACIA, 269 

Memory, 32 

Memory-mapped, 105, 215 

Memory test, 271 

Mnemonic, 46, 324 

Monitor, 33, 326 

MPU, 31 

MRDY, 51 

MUL, 73, 166 

Multiple precision, 60 
Multiplication, 55, 72 

N, 108, 113-114 

NEG. 108, 167 

Negative,9, 113-114 

bit, 226 

number, 8, 10 

Nibble, 4 

NIL, 314-316, 318 

NMI, 51, 248-249 

Non-maskable interrupt, 248-249 

NOP, 118, 168 

Normalize, 19 

Object code, 326 

Octal, 22, 338 

Odd parity, 21 

1K, 9 

One-shot, 220 

One word instruction, 46 

One's complement, 10, 108 

Opcode, 45, 337 

Operand, 56 

Opera ting system, 327 

Operator, 338 

OR, 90, 109, 169 
ORCC, 112, 170 

ORG, 340 

Output, 215 

Overflow, 12, 14, 113 

Overhead, 253 

Packed BCD, 18, 66 

Packed BCD addition, 69 

Page,42 

Parallel input/output chip, 33 

Parallel transfer, 221, 225 

Parameter, 98 

Parity bit, 21, 274 

Pascal, 325 

PC, 36, 42, 93, 116, 203 

PIC, 200 

PIO, 33, 261 

PIT, 217 

Pointer, 35, 289 

Polling, 220, 242, 254 

Polling loop, 245 

POP, 37 

Port, 262 

Position independent code, 193, 200, 

207 

Positive, 9 

Positive number, 8 

Post-indexing, 197 

Postbyte, 107, 203 

Pre-indexing, 197 

Program, 33, 323 

counter, 36, 93, 116 

counter relative, 206 

loop, 76 

Programmable input/output, 261 

Programmable interval timer, 217, 

220 

Programmed delay, 218 

Programming, 2 

Programming a PIO, 263 

Progranuning language,2 



Pseudo-instruction, 60 
PSH, 91 

PSHS, 171 

PSHU, 172 
PUL. 91 
PULL, 37, 43, 107 

PULS, 173 
Pulse, 215 

Pulse counting, 220 

PULU, 174 

PUSH, 37, 43, 107 

Q. 49, 51 

Quadrature, 49 
Queue, 292 

RAM, 33, 328 
Random-access memory, 33 

Read-only memory, 33 

Recursion, 97 

Register, 31, 34, 37 
Register addressing, 195, 201 

Register pair, 219 

Relative addressing. 196, 202 
Relay, 215 

Reserve memory byte, 341 

RESET, 51 

Return, 92 
RMB, 341 
ROL, 80, 83, 175 
ROM, 33,97 

ROR, 176 
Rotate, 34 
Rotation, 111 

Rotation operation, 80 
Round robin, 293 
RTI, 97, 117. 153. 177. 249. 252 

RTS, 82, 97, 116, 146, 160, 178 
Rubout, 222 

R/W, 51-52 

S, 42-43, 96, 107, 203, 249, 252 
SBC, 72, 108, 179 

Scheduling, 241 

Search, 276 

Searching, 295, 316 

Sequential, 290, 296 
list, 290 

searching, 296 
Serial search, 299 

Set direct page, 341 
SETDP, 341 

7-segment displays, 325 

7-segment light-emitting diode. 232 
SEX, 180 

Shift, 34, 79, 110 
Signed binary, 9 
Signed number, 5 
Simple list, 297 

Simulator, 327 

Single-board microcomputer, 324, 

326, 331, 333, 

16-bit BCD addition, 66, 69 

16-bit multiply, 73 

16-bit subtraction, 65 

16-by-16 bit division, 88 
6821 PIA, 267 

6821 programmable interface 

adapter, 267 

Software, 323 
interrupt, 97, 117 

Sorting. 295 
SP, 37 
ST, 72, 83 

(8-bit). 181 

(16-bit}, 182 
STA, 272 

Stack, 37, 94,247, 289, 293 
pointer, 37, 290 

ST ART bit, 221, 236 

Status, 15, 34, 232 

bit, 262 
information, 221 

register, 232, 246 

Stop bit, 236 
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SUB, 72, 83, 108 
(&-bit), 183 

(16-bit), 184 

Subroutine, 38, 44, 92 
call, 92 
library, 99 

Subtraction, 7, 11,55 
S\VI, 91, 97, 117, 185 

SWl2, 97, 186 

SWl3, 97, 187. 

Symbol, 335, 337 

table, 336 
Symbolic, 325 

representation, 24 
SYNC, 118, 188, 215, 253 

Synchronous,225, 247 

System stack pointer, 44 

Table, 289-290, 335 
Teletype, 235, 242 
Ten's complement, 69 
Test, 2 

instruction, 104 
TFR, 106, 189 

Three-state control, 52 

Three word instruction, 47 

Time-sharing system, 332 
Timer, 220 

Trace, 330 

Tree structure, 294 

Tristate, 49 
Truncated, 17, 277 

TSC, 52, 248 
TST, 190 

Two word instruction, 46 
Two's complement, 9-10, 108 
u. 43, 96, 107, 203 
UART, 230, 269 

Unconditional branch, 115 

User, 43 

User stack. 107 
Usual interrupt request, 248 
Utility routine, 327 
v. 12, 108, 113 

Whole number, 5 

x. 44, 70, 203 
XTAL,49 

Y, 44, 70, 203 
z, 81, 91, 113-114 
z bit, 274 
Zero, 113- 114 

Zero-offset indexed, 203 
$,68 

#,47 
.x+, 10 

,Y+, 70 
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