
D)7‘

TH E

WORKING
E
i

< ■

^Rv-'Er

DAVID LAWRENCE

CREATIVE COMPUTING PRESS
MORRIS PLAINS, NEW JERSEY

wss-®®

Published by arrangement with Scot Press Ltd.

86 85 84 987654321

The Working TRS-80 Color Computer

Copyright ©1984 by David Lawrence.

All rights reserved. No portion of this book may be reproduced—
mechanically, electronically, or by any other means including photocopying—
without express written permission from the publisher.

Creative Computing Press
39 East Hanover Avenue
Morris Plains, New Jersey 07950 USA

Manufactured in the United States of America

The Author and Publisher have made every effort to verify the accuracy of
the information contained in this book. However, neither the Author nor the
Publisher assumes any responsibility for the use of this information, nor for
any infringements of patents or other rights of third parties that may arise
from the use of the information in this book. Neither the Author nor the
Publisher assumes any Eability for any damages that may result from the
information contained herein.

TRS-80 is a registered trademark of Radio Shack, a Division of Tandy
Corporation.

Special thanks to Jim Klaproth for technical assistance.

Library of Congress Cataloging in Publication Data

Lawrence. David
The working TRS-80 Color Computer.

1. TRS-80 color computer—Programming. 2. Subroutines (Computer
programs) I. Title. II. Title: Working T.R.S.-80 Color Computer.
III. Title: Working TRS-Eighty Color Computer.
QA76.8.T183L38 1984 001.64’2 83-25205
ISBN 0-916688-65-8

CONTENTS

3

3

97
105
111

117
128

134
140
142
148
156

9
24

34
42
51

162
166
169

69
79
83
89

Page
7Introduction

1 Storing and Searching
Unifile I
Unifile II

2 Managing your money
Banket-
Accountant
Budget

Drawing on the Color Computer
Artist
Doodle
Tangrams
Designer

4 Easy Education
MultiQ
Words
Where?

5 High Resolution Text
Characters
Dictionary

6 Handy programs
Name and number
Typist
Texted
Music
Graph

7 Fun and games
Tracker
Headlong
Quoits

i

!

Contents in detail

5

CHAPTER 4
Easy Education
4.1 MultiQ — this program enables you to input a series of questions and
answers which form the basis for multiple choice tests.
4.2 Words — here the questions take the form of simple pictures. Based on
the Artist program it could serve as a reading tutor with a potential
vocabulary of 100 words.
4.3 Where? — this uncomplicated program tests your knowledge of
geography.

CHAPTER 2
Managing your money
2.1 Banker — this program allows you to keep your financial records in
much the same form as your bank statement. We also make use of our first
multi-statement lines.
2.2 Accountant — this simple program helps you display your accounts
clearly and easily.
2.3 Budget — a powerful tool which lets you plan your finances over a 12
month period.

CHAPTER 1
Storing and searching
1.1 Unifile I — this is a flexible program which allows you to store up to
500 entries with a regular structure of items such as name, address etc. You
can search for named items, amend or delete entries and recall them
quickly and easily.
1.2 Unifile II — this program is designed to cope with less structured files.
You can conduct a multiple search, and amend, delete or insert new items.

CHAPTER 3
Drawing on the Color Computer
3.1 Artist — this makes use of the Color Computer’s excellent graphics
capabilities to draw multi-colored pictures.
3.2 Doodle — with your joysticks.
3.3 Tangrams — this program introduces the useful DRAW command to
build up the shapes in this ancient Chinese game.
3.4 Designer — allows you to define a design of up to 10,000*10,000
pixels, examine it at various scales and rotate all or part of it on the screen.

The Working TRS-80 Color Computer

6

CHAPTER 5
High resolution text
5.1 Characters — this chapter looks at the problem of mixing text and high
resolution graphics on the screen at the same time. The program enables
you to build up any character capable of being fitted into an area on the
screen of 32*32 pixels.
5.2 Dictionary — allows you to store up to 100 of your newly created
characters at one time so as to provide material for high resolution
programs which require text.

CHAPTER 6
Handy programs
6.1 Name and number — a general purpose tool to build up a dictionary of
items and their related quantities, for example, in counting your calories.
6.2 Typist — not every program needs to be hundreds of lines long. This
one helps you to learn to touch type.
6.3 Texted — a useful word-processing package.
6.4 Music — this introduces the Help function and makes use of the
PLAY command to edit music.
6.5 Graph —this program enables the user to draw line graphs of a variety
of data, specifying the units and the set-up of the axes.

CHAPTER?
Fun and games
7.1 Tracker — an infuriating game in which you hunt an invisible quarry.
7.2 Headlong — almost impossible to win, this is a fast skillful game based
on the Doodle program.
7.3 Quoits — how fine is your judgment?

Introduction

7

This book, and the series of which it forms a part, was undertaken to
try and fill a huge gap. That gap was the absence of works aimed at
fulfilling the new micro- owner’s dream that his or her machine will not
simply be a toy, nor even an educational introduction to the silicon age,
but a powerful tool, taking over all kinds of tasks and opening up all
kinds of possibilities. The majority of books consist either of trivia or
assume too great a desire — perhaps even the capacity — to
experiment.

I wanted to write a book based on a solid collection of programs in
such areas as data storage, finance, graphics, music, household
management and education. Discussion of programming techniques
would arise out of the programs themselves rather than as part of a
curriculum of ‘things that should be learned’. I hope that you will find
that the book that has emerged from that desire is a useful one, not
only as a way of learning new programming techniques but also as a
collection of programs in itself, offering a wide range of applications
that might otherwise- have been open only to those prepared to buy
expensive commercial software or able to write substantial programs
themselves early on in their programming experience.

In addition to the programs there are the parts of the programs —
not as silly as it sounds, for all the programs in this book are written in
‘modular’ form. That is to say that they are made up of clearly
identifiable functional units which, as you come to understand them,
you will be able to lift out and employ for your own purposes.

Each module is fully commented upon where it covers new ground
and instructions are given for the testing of programs at each stage of
their entry.

In using this book you will find that, though there are sections where
general issues are discussed, it is not a book to be read but to be used.
The relevance of comments and advice will often only be apparent
when you have taken the plunge and begun the task of entering what
appear at first to be dauntingly long and complex programs. Here the
modular approach will help to prevent programs becoming
unredeemable tangles of errors, so do take the tests suggested seriously.

The Working TRS'80 Color Computer

8

In the end, however, the success or failure of this book must be judged
on whether it helps you to enjoy your Color Computer. While the struc
ture of this book is closely modelled on my earlier book, The Working
Timex Sinclair 2068, the programs have been revised extensively in the
light of the Color Computer’s very different capabilities. I have enjoyed
the writing of these programs — enjoyed the sensation that has come very
often in the writing of this book that the Color Computer has produced
better programs for me than other micros I have worked with. It is an
idiosyncratic machine, sometimes a downright irritating one but its capa
bilities go far beyond many others and, I suspect, far beyond the realiza
tion of many of its owners.

Notes
1) Because multi-statement lines are difficult to debug, the early pro
grams in this book, by and large, avoid their use. If you feel confident of
your own ability there is no reason why you should not merge lines. This
does mean that extra care should be taken in testing modules.
2) I have adopted no short cuts when it comes to spelling out Basic
statements. You may well wish to omit LETs from statement lines or
replace PRINT with ?.
3) Please note that all programs within this text require 32K. If you have a
16K machine, you will need Extended Basic to properly input the listings.
4) The T symbol is always represented by ~.
5) Inverse characters appear in the program printouts in lower case.

CHAPTER 1
Storing and Searching

MODULE 1.1.1

9

I think it’s worth mentioning that all of my programs begin with these three
lines (though obviously the program name changes). Typing GOTO2 is a
great deal easier than spelling out the program name every time and a lot
less prone to error. The result is that you will be more likely to save the
program on tape regularly as you build it up and the result of that will be to
save you a lot of frustration when you one day accidentally lose the last two
hours of hard work as a result of mishap or stupidity. Always enter these
three lines first and then save the program regularly as you enter it.

1 goto 3
2 CSAVE”UNIFILE”:SOUND l,l:ST0P
3 REM

1.1 UNIFILE I
Sooner or later, most micro owners realize that their new digital friend
really comes into its own when it is storing information, processing it and
presenting it in ways that would be laborious in the extreme if done
manually. They then begin the task of writing simple programs which will
store their friends* names and addresses or catalogue their stamp albums.
They may end up with half a dozen programs, each limited to one use but
each working on much the same method.

In this opening chapter we jump in at the deep end and examine how a
single program can be written to satisfy a wide variety of different filing
tasks, without the need for constant rewriting every time a new application
comes along.

The program is called Unifile and it is capable of flexibly storing up to
500 entries, as well as allowing the user to search through them for named
items, to change entries and to delete them. Quite apart from the wide
applications of the program, however, in building it up we shall learn a
great deal about the Color Computer’s considerable abilities as a working
member of the family.

MODULE 1.1.2
1000 REM***********************
1010 REM MENU
1020 REM***********************

The Working TRS-80 Color Computer

10

I

As a rule of thumb, a utility program that does not commence with a fairly
clear- cut menu of what the program does is a bad program. And if you
don’t agree with that statement now, you certainly will at some time when
you have to return to a complex but useful program which has not been
used for some weeks and find that you have to spend hours going through
the listing trying to remind yourself of what it does and how.

In this module, which is common to many of the programs in this book,
the user is asked to choose between five numbered functions. If a number
outside the range 1-5 is input, it is ignored.

1)SET UP NEW FILE”
2) ENTER INFORMATION”
3) SEARCH/DISPLAY/CHANGE”
4) DATA FILES”
5) STOP”

Commentary

Lines 1000-1020: All of the program modules in this book are labelled in
this way. Normally the modules so headed are subroutines but even where
they are not, they represent a clear-cut program function.

Line 1140: An economical and time-saving way of choosing between the
different destinations. Without the ON.. .GOSUB we should be looking
at a series of five IF. .THEN. .GOTOs. The destination chosen by this line
will be the Zth, based on the user’s input.

Lines 1030-1050: An uncomplicated way of dressing up the titles used in
the process of the program. STRINGS simply prints a line of the same
character, the line being as long as the first figure in the parentheses. The
second figure is the ASCII code of one of the graphics characters referred
to in Appendix B of Getting Started With Color Basic. These characters
can be printed on the screen but not displayed in a program line since
there is no key on the keyboard which will access them.

1030 CLS:PRINT £ 9,STRING$(9,140)
1040 PRINT £ 41,CHR$(128)+”UNIFILE”+CHR$
(128)
1050 PRINT £ 73,STRING$(9,131)
1060 PRINT:PRINT”C0MMANDS AVAILABLE:”
1070 PRINT.-PRINT”
1080 PRINT ”
1090 PRINT ”
1100 PRINT ”
1110 PRINT ”
1120 PRINT: INPUT "WHICH DO YOU REQUIRE:
”;Z
1130 CLS
1140 ON Z GOSUB 1500,2000,3500,6000,1170
1160 GOTO 1000
1170 PRINT £ 260,STRING$(22,140)
1180 PRINT £ 292,CHR$(128)+”FILING SYSTE
M CLOSED"+CHR$(128)
1190 PRINT £ 324,STRING$(22,131)
1200 END

Chapter 1 Storing and Searching

MODULE 1.1.3

MODULE 1.1.4

11

Testing Module 1.1.2
At this stage, all that can be tested is that the module presents a neatly
ordered menu page and accepts an input. Inputs in the range 1-4 should
result in an undefined line error report. Input of 5 should terminate the
program. Any other input should be ignored.

Line 1160: Although lines 1000-1020 serve no useful purpose, lines which
return the program to the beginning of this or any other module should
always point to these first, decorative lines since you may, at some stage
want to add another line before the present first, functional line at 1030,
necessitating changes to any lines which took 1030 as the start of the
module.

Lines 1070-1200: These lines are not strictly necessary but they neatly
terminate the use of the program.

"HOW MANY ITEMS IN EACH

When a function, whether complex or simple, needs to be carried out
several times and in several places during the course of the execution of a
program, it is worth considering either defining a user-defined function,
which will be discussed later, or inserting a short subroutine which will do
the job. These two short subroutines need to be entered early on since they
are called up fairly frequently by other modules but the explanation of
their functions will be left until they are actually used.

•»* »•

4000 REM***********************
4010 REM FUNCTIONAL SUBROUTINES
4020 REM***********************
4030 LINE INPUT Q$
4040 LET Q$=Q$+"*"
4050 RETURN
4060 LET ST=INSTR(ST+1,B$(S),
4070 RETURN

1500 REM***********************
1510 REM ENTRY STRUCTURE
1520 REM***********************
1530 PCLEAR1:CLEAR 20000
1540 PRINT ® 8,STRING$(16,128)1550 PRINT @ 40,CHR$(128)+”FILE STRUCTUR
E"+CHR$(128)
1560 PRINT £ 72,STRING$(16,128)
1570 PRINT:INPUT
ENTRYX:CLS

1580 DIM A$(X-1)
1590 PRINT 8 9 , ’’names” ; CHR$ (128) ; "of " ; CH
R$(128);"items"
1600 FOR 1=0 TO X-l
1610 PRINT "ITEM ";I+1;":";

The Working TRS-80 Color Computer

12

Lines 1570-1630: In this section the user is requested to input the number
of items which a typical entry will contain, and then to give each item a
name, such as ‘name, address, etc.’. An array called A$ is set up, with as
many elements as there will be items per entry. Note that although the user
specifies X items, the array A$ is set up with apparently only X-l elements
in it. This is because in the version of the Basic language which the Color
Computer uses, all such arrays actually start with element number zero.
You can ignore the zero element in your programming, which does make
the numbering of things more sensible, but then again it wastes space. It’s
sad that a modern machine such as the Color Computer has to be tied to
such an outdated convention.

Line 1640: Our file will be held in the array B$, which has 499 + 1 elements.
One limitation of this will be that the total number of characters in any one
entry will not be able to exceed 255 and the program will have to be made to
ensure that this does not happen in error.

Lines 1650-1660: The file will be arranged in alphabetical order of the first
item in each entry. The method we shall use to insert new entries into the
file in their correct position requires that there be some entries there

The purpose of this module is to provide Unifile with its chameleon-like
properties by allowing the user to specify the kind of file to be set up, and
the names of the items that a typical entry will contain.

Commentary
Line 1530: PCLEAR 1 is an important instruction in programs such as this
one, which require as much memory as possible for maximum usefulness.
When you switch your Color Computer on, it automatically reserves
roughly 6,000 memory locations for use with graphics. Since we shall not
be using graphics in a data-handling program like this one, we can reduce
the amount of memory given to the display. All we actually need is one
‘page’ or screenful of memory on which to display the program’s printed
output. This makes available an extra 4,500 memory locations — a con
siderable addition. The other command on this line sets aside 20,000
memory locations specifically for our filing use, otherwise we would
quickly run out of space.

1620 INPUT A$(I)
1630 NEXT I
1640 DIM B$(499)
1650 LET B$(0)=CHR$(0)+”*”
1660 B$(1)=CHR$(255~”
1670 N=2
1680 GOTO 1000

Chapter 1 Storing and Searching

MODULE 1.1.5

13

already, to compare the new entry with. So rather than start with an empty
file we insert a pair of dummy entries. The actual entries are the single
characters CHR$(0) and CHR$(255). Neither of them actually mean
anything, they are simply the A and Z of the Color Computer’s alphabet
and any subsequent entry which begins with a normal text character will
automatically be inserted between them.

Line 1670: The variable N records the number of entries in the file. Because
of the eccentric numbering of the arrays, N will seldom if ever be used on its
own, but usually as N-l or N-2.

Testing Module 1.1.4
You should now be able to RUN the program and call up the first function
on the menu. You should be requested to specify the number of items in
each entry and then to name the type of item. Having named the requisite
number of items you should be returned to the menu. You may wish to
check, in direct mode, that the names of the items are stored in the first X-l
places of the array A$.

Line 1680: Subroutines end with the RETURN command, returning
program execution to the line which called the subroutine up in the first
place. The difference here is that during the course of this module we
cleared the memory, and this led to the loss of the return address of the line
which called the subroutine. Hence in this particular case we need to
specify the return address.

2000 REM***********************
2010 REM NORMAL INPUT
2020 REM***********************
2030 LET R$=”"
2040 PRINT G 10,STRINGS(9,140)
2050 PRINT @ 42,CHR$(128)+"ENTRIES"+CHR$
(128)
2060 PRINT @ 74,STRINGS(9,131)
2070 PRINT "COMMANDS AVAILABLE:"
2080 PRINT ">ENTER ITEM SPECIFIED":PRINT
">'ZZZ' TO RETURN TO MENU"

2090 PRINT STRING$(32,"*")
2100 PRINT "NUMBER OF ITEMSN-2;”/500"
2110 FOR 1=0 TO X-l
2120 PRINT A$(I)
2130 GOSUB 40302150 IF LEN(R$)+LEN(Q$)>255 THEN PRINT "
ENTRY TOO LONG.": FOR J=1 TO 5000 .-NEXT J:
RETURN
2160 IF Q$="ZZZ'‘” THEN RETURN
2170 LET R$=R$+Q$

The Working TRS-80 Color Computer

I

Commentary
Line 2030: R$ is the string in which the entry will be built up before being
placed in the main file.

Line 2130: Items for input are all accepted by the short subroutine (already
entered) at 4030. All this does is to add the character J to the end of each
item. This symbol will later be used to redivide the entry into its constituent
items. This means that the character J is a reserved symbol as far as this
program is concerned, and if you include it in an item then you are likely to
get a nonsense result from that particular entry.

Line 2150: Having accepted an item, the length of the entry is checked to
see that it will not exceed the maximum length imposed by the Color
Computer of 255 characters for a single string.

Line 2160: At any point in the process of inputting an entry, the user can
type ZZZ as an item and the program will return to the menu.

Testing Module 1.1.5
Though items cannot be inserted into the actual file, you should now be
able to call up the first function on the menu, specify item names then call
up this module and input items under your named headings. Putting a
temporary line 2500 RETURN should enable you to go on doing it
indefinitely. You should check that the module does not accept entries
whose overall length is greater than 255 characters.

Line 2170: Provided that the entry is not too long and the user has not input
ZZZ, the item just input, with its added J character, is added to R$ which is
being built up into the completed entry.

Line 2200: The module which inserts the completed entry into the main file
is now summoned up.

2180 NEXT I
2190 CLS
2200 GOSUB 2500
2210 GOTO 2000

The purpose of this module is to accept the input of a new entry composed
of the correct number of items specified in the last module and to present
the new entry to the section of the program which will insert it into its
correct place in the file.

MODULE 1.1.6
2500 REM***********************
2510 REM PLACE DATA IN PILE
2520 REM***********************

14

Chapter 1 Storing and Searching

15

Probably the most complex module in the program. The purpose of this
module is to determine the correct place for a new entry in the file. To
understand its functions you must first of all understand the technique of
the ‘binary search’ which is used to dramatically reduce the number of
comparisons between entries that have to be made before the correct
position is determined. Consider the following example:

We have established a file containing 2,000 entries (not in this program,
but never mind) and there is a new entry which needs to be inserted at
position 1731, though the program has yet to determine this. The program
begins its search by looking at the first entry in the file and comparing it
with the new entry. The new entry is found to be the greater of the two
alphabetically and so the program proceeds to examine the next entry in the
file and so on for 1,731 comparisons until the correct place is found. This is
a straightforward procedure and an easy one to program. Compare it with
this:

The program begins by examining the entry in position 1024 in the file,
since 1024 is the greatest power of 2 which is less than the total number of
entries in the file. Entry 1024 is found to be alphabetically less than the new
entry and so the program adds 1024/2 to the original 1024 and moves on to
entry number 1536. The entry at 1536 is still less than the new entry and so
1024/4 is added to 1536, making 1792. Entry number 1792 is greater than
the new entry and so 1024/8 is subtracted from 1792 giving 1664. The
search proceeds at the following locations in the file and with the following
additions or subtractions:
1644 (then add 64)
1728 (then add 32)

2530 IF N<500 THEN GOTO 2560
2540 CLS.-PRINT @ 14*32 + 10 ,’’FILE NOW FILE
ii

2550 FOR 1 = 1 TO 1000.-NEXT I:RETURN
2560 LET POWER=INT(LOG(N-l)/LOG(2))
2570 LET S=2"P0WER
2580 LET T$=LEFT$(R$,INSTR(R$,)-l)
2590 FOR K=POWER-1 TO 0 STEP -1
2600 LET ST=1:GOSUB 4060:LET U$=LEFT$(B$
(S),ST-1)
2610 IF T$>U$ THEN LET S=S+2"K
2620 IF T$<U$ THEN LET S=S-2~K
2630 IF S>N-1 THEN LET S=N-1
2640 IF S<1 THEN LET S=1
2650 NEXT K
2660 LET ST=1:GOSUB 4060:LET U$=LEFT$(B$
(S),ST-1)
2670 IF T$<U$ THEN LET S=S-1
2680 FOR I=N+1 TO INT(S+2) STEP -1
2690 LET B$(I)=B$(1-1)
2700 NEXT I
2710 LET B$(S+1)=R$
2720 LET N=N+1
2730 RETURN

The Working TRS-80 Color Computer

16

Commentary
Lines 2530-2550: A check is made to determine that there is in fact room in
the file for another entry.

Line 2560: This line determines the largest power of two that is less than the
total length of the file (including the zero element).

Line 2580: Using the powerful INSTR function, which scans a specified
string for any combination of characters named, we find the first J in the
new entry and take everything to the left of that as the first item in the
entry, T$.

Lines 2680-2710: The new entry is inserted into the file by the simple
method of moving everything above its intended position up one place.
Other versions of Unifile for other popular micros have avoided such a

Lines 2660-2670: At the end of the search the file entry next to which the
new entry must be placed has been identified. These two lines are needed to
see whether the new entry should go before or after the existing one.

Lines 2590-2650: This loop, using decreasing powers of 2 to add and
subtract from the number of the search location, moves through the file
carrying out the type of binary search described above.

1760 (then subtract 16)
1744 (then subtract 8)
1736 (then subtract 4)
1732 (then subtract 2)
1730 (then add 1)
Final result 1731.

The power of a binary search should be apparent.

Lines 2630-2640: If the search moves beyond the confines of the file it is
shunted back in.

Line 2600: This line calls up the one line subroutine at line 4060. The
purpose of that subroutine is to search for the first occurrence of the
character J in whichever entry in B$ is pointed to by the search variable S.
The search begins at character ST, which in this case is set at 1. The
resulting figure is used in line 2600 to identify the first item of the particular
entry in BS.

Chapter 1 Storing and Searching

MODULE 1.1.7

SI

17

Testing Module 1.1.6
You should now be in a position, having set up your file, to enter some
items and see them correctly inserted into the main file. Since you have not
yet entered the module which displays the file, this can only be checked in
direct mode by first entering one or two items and then printing out
B$(1),B$(2) etc. If the module is misbehaving, work through the procedure
(as you have entered it, not as it is in the book) with paper and a pencil, for
the entries you have made. Such a technique is almost always the best way
of debugging a complex module such as this. ‘S starts as 2 and B$(2) would
be ’ may seem like a laborious method but it reduces the complexity to
a manageable level.

solution as being too slow, leading to complex methods of recording the
correct position of each entry in the file. In the case of the Color Com
puter, the speed of the machine meant that, even with a fairly full file the
wait involved in shifting all the elements one place is such that it is not
worth wasting the extra program space on more complicated solutions.
Were the Color Computer to be mass marketed with a 64K memory,
permitting a practical file of more than 1,000 items easily, then you might
want to look again at that decision. If you happen to like complexity for
the sake of it, I would refer you to the method described in the same
chapter of the previous book in this series, The Working Timex Sinclair
2068.

3500 rem***********************
3510 REM SEARCH
3520 REM***********************
3530 LET Sl = l
3540 PRINT @ 11,STRING$(8,140)
3550 PRINT @ 43,CHR$(128)+"SEARCH”+CHR$(
128)
3560 PRINT @ 75,STRING$(8,131)
3570 PRINT ”>INPUT SEARCH ITEM”,”>ENTER
FOR FIRST ITEM ON FILE”
3580 PRINT STRING$(32,137)
3590 INPUT ’’ENTER SEARCH COMMAND: ”;S$
3600 IF S$="” THEN GOTO 3650
3610 FOR Sl = l TO N-2
3620 IF INSTR(B$(SI),S$)<>0 THEN GOTO 36
60
3630 NEXT SI
3640 RETURN
3650 IF INT(S1)=N-1 THEN RETURN
3660 CLS
3670 PRINT "ENTRY
3680 LET ST=0
3690 FOR 1=0 TO X-l
3700 LET TEMP=ST+1

The Working TRS-80 Color Computer

18

Line 3650: You may wonder why the INT function, which reduces a
number like 1.16 to the integer 1, is applied to SI. The reason is that in a
module you have yet to enter, SI is set equal to the search variable S from
the binary search. That variable can sometimes pick up a totally invisible

Lines 3610-3640: If the user inputs anything other than ENTER, this
simple loop will begin a fast search for it through the file. All that happens
is that the INSTR function is applied to each item in the file in turn. If it
produces a value other than zero, then the specified combination of
characters is present in that file entry and it is displayed by a later part of
the module. Having displayed an item which satisfies the search criteria,
the search may be continued later if the user requires.

Commentary
Line 3530: SI is the variable that will be used to point to the entry to be
displayed. Note that it starts at 1 since the first real (as opposed to dummy)
entry is at B$(l).

Line 3570: To begin with the user is offered two choices:
1) to enter some characters which will then be searched for in the file.
2) to press ENTER, which will display the first item in the file.

FOR NEXT ITEM”
TO AMEND”
TO CONTINUE SEARCH"
TO QUIT FUNCTION”;

Having placed your entries into the file, it would be nice to know that they
can be retrieved for later examination. More than that, since they are
stored in an electronic marvel, it would be nice to think that they could be
retrieved at high speed and in clever ways. This is what this module sets out
to achieve. Here again, we make use of the INSTR function on the Color
Computer, one of the most useful innovations to have surfaced in recent
years.

3710 LET S=S1:GOSUB 4060:PRINT A$(I);":"
;MID$(B$(S1),TEMP,ST-TEMP)
3720 NEXT I
3730 LET S1=S1+1
3740 PRINT 6 10*32,"search:” ;S$
3750 PRINT "COMMANDS AVAILABE:"
3760 PRINT ">’ENTER'
3770 PRINT ”>'AAA'
3780 PRINT ">’CCC’
3790 PRINT ”>'ZZZ’
3800 INPUT P$
3810 CLS
3820 IF P$="CCC" THEN GOTO 3620
3830 IF P$="" THEN GOTO 3650
3840 IF P$="AAA" THEN GOSUB 3010: GOTO 36
50
3850 IF P$="ZZZ" THEN RETURN
3860 LET S1=S1-1:GOTO 3650

Chapter 1 Storing and Searching

MODULE 1.1.8

”;S1

19

Testing Module 1.1.7
Having set up and entered some material on your file, you should now be
able to search for any combination of characters within the file, or to move
through the file entry by entry, pressing ENTER. If a combination of
characters is not present in the file, the program should return to the menu.
The same should happen if you move past the last entry. Tagging [onto the
front of the characters you specify for a search should result in a search
only for items that begin with those characters.

fraction as a result of inaccuracies in the LOG function. You cannot see
anything irregular about the value of the variable, but it will never be found
to be equal to an integer like N (the number of items in the file). As a safety
check against this extremely infrequent occurrence, the INT function is
used. It could just as well have been done at line 3240 in the next module,
which sets SI =S + 1.

Lines 3740-3850: Once an entry has been displayed, a new set of options is
offered to the user. The search can be continued (for the same target
characters), the next entry can be displayed, the search module can be quit,
or the amend module can be called.

Line 3860: SI must be decremented since it has already moved on one
place. This only happens if the user makes an incorrect input. The effect is
simply to leave the same entry on display.

Lines 3660-3720: You should recognize what is going on here from
previous lines you have entered. The subroutine at line 4060 is being used to
find the J symbols and thus identify the different items in the entry to be
displayed. The difference here to previous uses is that, with the aid of the
variable TEMP, the loop works all the way through the entry, rather than
finding only the first item: TEMP records the first character of an item
while ST is set by 4060 to the position of the J at the end of the item — then
TEMP is set to the position after ST, and so on.

3000 rem***********************
3010 REM CHANGE ENTRY
3020 rem***********************
3030 LET S1=S1-1
3040 LET R$="”3050 PRINT "ENTRY
3060 LET ST=0
3070 FOR 1=0 TO X-l

The Working TRS-80 Color Computer

20

This module permits the user to make changes to existing entries and to
delete entries from the file.

Commentary
Line 3150: Note the continuing use of the short subroutine at 4030 to
accept inputs.

Line 3200: Entry of any combination of characters other than the prompts
specified in the menu for this module is taken as the input of an item to
replace the item currently on display.

Line 3220: The current entry is deleted since the new entry may not fit
alphabetically into the same position.

Line 3180: Whether or not any changes are actually made, a new entry is
being built up in a string called R$, which will be presented to the insertion
module. If ENTER is pressed in response to any item, the item is lifted out
of the original entry and placed into the new entry.

Line 3190: An input of DDD results in deletion of the entry by a module yet
to be entered.

M*M THEN LET Q$=MID$(B$(S1) , T
EMP,ST-TEMP)+"*":GOTO 3200
3190 IF Q$="DDD*" THEN GOSUB 4500:RETURN
3200 LET R$=R$+Q$
3210 NEXT I
3220 GOSUB 4530
3230 GOSUB 2500
3240 LET S1=S+1
3250 RETURN

3080 LET TEMP=ST+1
3090 LET S=S1: GOSUB 4060 .-PRINT A$(I);"x"
;MID$(B$(S1),TEMP,ST-TEMP)
3100 PRINT $ 9*32+12,"amend”
3110 PRINT "COMMANDS AVAILABLE:”
3120 PRINT ’"ENTER’ LEAVES ITEM UNCHANGE
D”
3130 PRINT ">ENTER NEW ITEM"
3140 PRINT ”>’DDD' DELETES WHOLE ENTRY”
3145 PRINT ”>'ZZZ’ TO QUIT FUNCTION”
3150 GOSUB 4030
3160 CLS
3170 IF Q$=”ZZZ“" THEN RETURN
3180 IF Q$=

Chapter 1 Storing and Searching

MODULE 1.1.9

MODULE 1.1.10

21

Testing Module 1.1.9
You should now be able to amend existing entries and also to delete them
from the file.

Commentary
Line 4560: Note that there is now a duplicated item at the end of the file —
the dummy entry. This is not erased since once N has been reduced by 1, the
program will no longer be aware of the position of the second entry.

Testing Module 1.1.8
The module cannot be properly tested until the next short module has been
entered.

4500 REM***********************
4510 REM TELESCOPE FILE
4520 REM***********************
4530 FOR I = S1 TO N-l
4540 LET B$(I)=B$(I+1)
4550 NEXT I
4560 LET N=N-1
4570 RETURN

This module simply shifts the whole file, from the position above the item
to be deleted, down one place, thus overwriting it.

6000 REM***********************
6010 REM DATA FILES
6020 REM***********************
6030 MOTOR ON.-AUDIO ON:CLS:INPUT "POSITI
ON TAPE THEN PRESS enter (MOTOR IS ON)";
Q$6040 MOTOR OFF:INPUT "PLACE RECORDER I NT
0 CORRECT MODETHEN PRESS enter:”;Q$
6050 PRINT:PRINT "FUNCTIONS AVAILABLE:",
"1)SAVE DATA",,"2)LOAD DATA":INPUT "WHIC
H DO YOU REQUIREQ:ON Q GOTO 6070,6190
6060 RETURN
6070 MOTOR ON: FOR 1 = 1 TO 10000.-NEXT
6080 OPEN "O",#-l,"UNIFILE"
6090 PRINT #-l,X
6100 FOR 1=0 TO X-l
6110 PRINT #-l,A$(I)
6120 NEXT I
6130 PRINT #-l,N
6140 FOR 1=1 TO N-2
6150 PRINT #-l,B$(I)
6160 NEXT I
6170 CLOSE #-l
6180 RETURN
6190 PCLEAR1 .-CLEAR 20000:DIM B$(499)

The Working TRS-80 Color Computer

22

Lines 6190—6320: This section is slightly more complex since, before
loading a set of data from tape, the memory must first be cleared in the
same way that it would be in setting up a file in the first place. In addition,

Commentary
Line 6030: What the line does is to switch on the cassette recorder’s motor,
and the Color Computer’s AUDIO function, thus allowing you to position
the tape in the recorder to take account of the contents.

6200 OPEN ”1”,#-l,"UNIFILE"
6210 INPUT #-l,X
6220 DIM A$(X)
6230 FOR 1=0 TO X-l
6240 INPUT |-1,A$(I)
6250 NEXT I
6260 INPUT #-l,N
6270 FOR 1=1 TO N-2
6280 INPUT #-l,B$(I)
6290 NEXT I
6300 LET B$(0)=CHR$(0)+"~"
6310 LET B$(N-1)=CHR$(255) + '’*”
6315 CLOSE #-l
6320 GOTO 1000

Lines 6070-6180: This section prints a ‘header’ of several seconds before
actually recording the data. This ensures that when you read the data back
you are not going to find it immediately preceded by the garbled contents
of some previous recording, leading to an error message. The rest of the
section opens an output file, that is, opens communication with the
cassette recorder and then ‘prints’ into that file (i.e. onto tape) the contents
of A$ and B$.

Lines 6040-6050: Having positioned the tape, the cassette is put into
record or playback mode, according to whether you want to load or save.
The correct function is then chosen from the menu.

This module, or one very much like it, will be shared with the vast majority
of programs in this book. Its purpose is to allow the user to save the
contents of the file and the associated variables, on tape. The advantage of
this is that if changes have to be made to the program, or when the machine
is switched off, the data need not be lost. Many modern micros
automatically save the data associated with a program when that program
is saved (or CSAVEd), unfortunately the Color Computer does not. To
make up for this the Color Computer provides a flexible set of file han
dling commands which allow data to be stored on tape and retrieved with
ease. This module is designed to make the process of finding the right
place on the tape and saving or loading as painless as possible.

Chapter 1 Storing and Searching

23

Going further
1) The program is deliberately written without much use of
multi-statement lines. Once it is working well and you understand what is
going on, try to reduce the number of lines by combining them where
appropriate. Substantial memory savings are to be had in this way.
2) The program makes no provision for output to a printer if you possess
one.
3) One fascinating challenge would be to see if you could make the
program handle numeric data as well as strings. This would involve setting
up a numeric array with 500 elements, at least, and making provision to
input values to it and perhaps some search commands appropriate to the
stored values, like ‘search for all items larger than specified number’.
There are quite a large range of applications where the ability to store one
or more numeric items in an entry would be an advantage.

once having cleared the memory, arrays must be set up to receive the data.
In the case of the array A$, this cannot be done until we have first read
from the tape the number of item names it is to contain. Lastly the dummy
entries must again be loaded into first and last place. They cannot be saved
on tape and reloaded since they are not recognized as real characters by
the Color Computer’s operating system. Since the memory has been
cleared we must return with a GOTO, as in Module 4.

Summary
You have now completed the input of a substantial and complex program
which I hope you find useful in a variety of applications. Along with that
process you have also learned a number of techniques which will stand you
in good stead whenever you decide to embark on ambitious programs to
store and process non- numeric data.

More importantly, however, if you have taken the trouble to understand
what you have been entering, you will have gained confidence that
substantial and complex programs are not as awesome as they are often
made out to be. Using a modular approach which breaks down the
program into a series of manageable tasks, applications like this one can be
tackled by anyone who is prepared to invest a little time (and a little hair).

Testing Module 1.1.10
Having entered some data and satisfied yourself that the rest of the
program functions are working satisfactorily, call up this module from the
menu and save the file on tape. Stop the program then restart with RUN,
which will wipe out all the data. Call up this module again and reload your
file — it should be as if you had never lost the data. If this module functions
correctly then the program is ready for use.

The Working TRS-80 Color Computer

MODULE 1.2.1

24

1.2 UNIFILE II
After entering Unifile I and debugging it, the last thing that you may want
to face is variations on it, so feel free to skip this part of the chapter for the
present if you’d like to move on to fresh pastures. At some stage, however,
you will want to come back to this program to solve some problems that
Unifile itself is not designed to cope with. Unifile is fine for those files
which have a regular structure, and many do. Equally, there are a large
number of applications where you simply do not know in advance how
many items there are going to be in an entry. You may, for instance, want
to catalogue your books. You could set up the original Unifile program to
request author and title but if you happen to have several books by the
same author, that is going to be a great waste of space.

Unifile II is designed to cope with such less structured files. It is more
flexible than Unifile 1 in that you can go on adding items to an entry as long
as you like (provided that the total length does not exceed 255 characters).
The price to be paid is that the program is more complicated to use since
there are none of the easy prompts as to which item to put in next. If you
want to label items you have to specify the labels to be attached to them.
The program is also more flexible in that it will conduct a ‘multiple search’
— that is, it will search for entries in the file which satisfy a number of
search criteria at the same time like all entries containing ‘red’ and
‘London’ and ‘male’ if you were looking for the entry of a red-headed man
who lives in London.

Because the program is so similar to Unifile I we shall begin by entering
the only new module it requires and the rest of the modules will only be
commented upon insofar as they differ significantly from the original.
Note that the modules are in the same place within the program but that
there is not an exact correspondence between line numbers. You can use
Unifile I as a basis for entering this one but you will need to adapt GOTOs
and GOSUBs here and there.

5000 rem***********************
5010 REM ITEM TYPES
5020 REM***********************
5030 FOR 1=0 TO 49 STEP 7
5040 CLS:FOR J=0 TO 1+6
5050 PRINT J+l;”)”;A$(J)
5060 NEXT J
5070 PRINT:PRINT "COMMANDS:”
5080 PRINT ’^’ZZZ^QUIT"
5090 PRINT ”>'III’=ITEM”
5100 PRINT ”>’NNN’=NEXT PAGE”
5110 INPUT Q$:IF Q$="ZZZ" THEN RETURN
5120 IF Q$="NNN" THEN NEXT I:RETURN

Chapter 1 Storing and Searching

MODULE 1.2.2

>»

25

i
I

■I

Since there will be no regular structure to the files this program will handle,
there will be no regular set of headings for the items. This module allows
headings to be stored which may be attached to items if the user specifies a
heading when an item is input.

Commentary
Lines 5030-5040: The effect of these two loops is to display all the items
stored in A$ in batches of 7.

Lines 5070-5130: The user has the option of moving on to the next batch
of item headings, quitting the module, or inputting III. In the latter case,
the user is asked to specify a position in the dictionary and a heading to be
placed in that position. There is no provision for deletion, which can in any
case be accomplished by simply inputting an empty string to the desired
position. The use of these item types will be discussed later.

Testing Module 1.2.1
Full testing of this module cannot be undertaken yet, but a temporary test
can be made by dimensioning an array A$(49) in direct mode and then
entering GOTO 5000. You should be able to enter item types, to delete
them and to alter them.

■

1)SET UP NEW FILE”
2) ENTER INFORMATION”
3) SEARCH/DISPLAY/CHANGE”
4) DATA FILES”
5) NEW ITEM NAMES
6) STOP”

INPUT ’’WHICH DO YOU REQUIRE:

5130 IF Q$="III” THEN INPUT "NUMBER:”•TY
PE: INPUT "TYPE NAMEQ$:LET A$(TYPE-1)
=Q$:CLS:GOTO 5040
5140 GOTO 5110

1000 REM***********************
1010 REM MENU
1020 REM***********************
1030 CLS:PRINT @ 9,STRINGS(9,140)
1040 PRINT @ 41,CHR$(128)+"UNIFILE”+CHR$
(128)
1050 PRINT @ 73,STRINGS(9,131)
1060 PRINT:PRINT”COMMANDS AVAILABLE:”
1070 PRINT:PRINT”
1080 PRINT ”
1090 PRINT "
1100 PRINT "
1105 PRINT ”
1110 PRINT ”
1120 PRINT:
";Z
1130 CLS

The Working TRS-80 Color Computer

MODULE 1.2.3

As Unifile 1.1.3.

MODULE 1.2.4

26

Commentary
Line 1540: The array M$ will be used to store the individual items to be
searched for when a multiple search is specified. Accordingly, up to 20
items can be included in the search.

For comments and testing see Unifile 1.1.1, with the exception that you
should be able to call up the item names function, which will report a BAD
SUBSCRIPT error.

Shorter than the equivalent in Unifile, since there is no need to make
provision for the input of item headings here.

Line 1550: A$ will be used to store the item headings input by Module
1.2.1. There can be 50 such headings.

1140 ON Z GOSUB 1500,2000,3500,6000,5000
,1170
1160 GOTO 1000
1170 PRINT S 260,STRING$(22,140)
1180 PRINT 6 292 , CHR$(128)+‘»FILING SYSTE
M CLOSED"+CHR$(128)
1190 PRINT § 324,STRING$(22,131)
1200 END

4000 REM***********************
4010 REM FUNCTIONAL SUBROUTINES
4020 REM***********************
4030 LINE INPUT Q$
4040 LET Q$=Q$+"''”
4050 RETURN
4060 LET ST=INSTR(ST+1,B$(S)
4070 RETURN

1500 REM***********************
1510 REM ENTRY STRUCTURE
1520 REM***********************
1530 PCLEAR1:CLEAR 20000
1540 DIM M$(19)
1550 DIM A$(49)
1560 DIM B$(499)
1570 LET B$(0)=CHR$(0)+”*”
1580 B$(1)=CHR$(255)+”''"
1590 N=2
1600 GOTO 1000

Chapter 1 Storing and Searching

MODULE 1.2.5

74,STRINGS(9,131)

THEN RETURN

Function as in Unifile Module 1.1.5.

27

Testing Module 1.2.4
Calling up menu function 5 after calling this module should not result in an
error as before.

Commentary
Lines 2140-2150: These two lines illustrate one difference between this
program and its predecessor. If the first character of an input consists of
the symbol # then the next two characters are taken to be a two digit
number between 1 and 50. The item input is reprinted with the item heading
found at that position in A$ preceding it. If no item heading is specified,
the item is reprinted with the heading Untyped:.

Line 2180: If the item input was a single asterisk, this is added to the entry
but the entry is regarded as finished and control is passed to the insertion
module.

10,STRING$(9,140)
42,CHR$(128)+"ENTRIES"+CHR$

E
TO RETURN TO MENU"

2000 REM***********************
2010 REM NORMAL INPUT
2020 REM***********************
2030 LET R$=""
2040 PRINT @
2050 PRINT @
(128)
2060 PRINT @
2070 PRINT "COMMANDS AVAILABLE.-"
2080 PRINT ">ENTER ITEM SPECIFIED (’*’
NDS)";:PRINT ”>'ZZZ’
2090 PRINT STRING$(32,
2100 PRINT "NUMBER OF ITEMSN-2;"/500"
2110 GOSUB 4030
2120 IF Q$="ZZZ/'" THEN RETURN
2130 IF LEN(R$)+LEN(Q$)>255 THEN PRINT "
ENTRY TOO LONG.";FOR J=1 TO 5000:NEXT J:
RETURN
2140 IF LEFTS(Q$,1)="#" THEN PRINT A$(VA
L(MID$(Q$,2,2))-l);":";
2150 IF LEFTS(Q$,1)="#" THEN PRINT MID$(
Q$,4,LEN(Q$)-4) ELSE PRINT "UNTYPEDLE
FT$(Q$,LEN(Q$)-1)
2160 IF Q$="ZZZ<'"
2170 LET R$=R$+Q$
2180 IF LEFTS(Q$,1)<>"*" THEN GOTO 2110
2190 CLS
2200 GOSUB 2500
2210 GOTO 2000

The Working TRS-80 Color Computer

MODULE 1.2.6

Identical to Unifile Module 1.1.6.

MODULE 1.2.7

r

FOR MULTIPLE SEARCH”

28

Testing Module 1.2.5
You should be able to input item headings and to see them displayed if you
tag $NN onto the front of an item you are inputting (where NN is the
number of a heading you have entered).

”>ENTER

2500 REM***********************
2510 REM PLACE DATA IN FILE
2520 REM***********************
2530 IF N<500 THEN GOTO 2560
2540 CLS:PRINT S 14*32+10,’’FILE NOW FILE
2550 FOR 1=1 TO 1000:NEXT I:RETURN
2560 LET POWER=INT(LOG(N-1)/L0G(2))
2570 LET S=2*POWER
2580 LET T$=LEFT$(R$,INSTR(R$,
2590 FOR K=POWER-1 TO 0 STEP -1
2600 LET ST=1:GOSUB 4060:LET U$=LEFT$(B$
(S),ST-1)
2610 IF T$>U$ THEN LET S=S+2~K
2620 IF T$<U$ THEN LET S=S-2~K
2630 IF S>N-1 THEN LET S=N-1
2640 IF S<1 THEN LET S=1
2650 NEXT K
2660 LET ST=1:GOSUB 4060:LET U$=LEFT$(B$
(S).ST-l)
2670 IP T$<U$ THEN LET S=S-1
2680 FOR I=N+1 TO INT(S+2) STEP -1
2690 LET B$(I) = B$(1-1)
2700 NEXT I
2710 LET B$(S+1)=R$
2720 LET N=N+1
2730 RETURN

3500 REM***********************
3510 REM SEARCH
3520 REM***********************
3530 LET Sl=l
3540 IF N=2 THEN RETURN
3550 PRINT G 11,STRINGS(8,140)
3560 PRINT S 43 , CHR$ (128) + "SEARCH” + CHR$ (
128)
3570 PRINT G 75,STRINGS(8,131)
3580 PRINT ”>INPUT SEARCH ITEM”,
FOR FIRST ITEM ON FILE”
3590 PRINT ”>'MMM'
3600 PRINT STRINGS(32,137)
3610 INPUT "ENTER SEARCH COMMAND: ”;S$
3620 IF S$="" THEN GOTO 3740
3630 IF S$="MMM" THEN GOTO 3680
3640 FOR Sl=l TO N-2

Chapter 1 Storing and Searching

”;S1;":—"

THEN GOTO 3730

29

The same function as the module in Unifile I except that provision is made
for multiple searches.

Commentary
Lines 3680-3720: If a multiple search is specified by the input of MMM
then the user is asked to specify how many items are to be searched for (up
to 20) and then to input them one by one. The file is then scanned for the
first of the items specified. If it is found in an entry, then the same entry is
scanned for the next search item until it has been scanned for all the search

FOR NEXT ITEM”
TO AMEND"
TO CONTINUE SEARCH”
TO QUIT FUNCTION”

3650 IF INSTR(B$(SI),S$)<>0 THEN GOTO 37
40
3660 NEXT SI
3670 RETURN
3680 CLS
3690 PRINT:INPUT "NUMBER OF SEARCH ITEMS

SEARCH:FOR K=0 TO SEARCH-1:PRINT "SEA
RCH ITEM ";K+1;": "; .-INPUT Q$:LET M$(K)=
Q$:NEXT K-
3700 FOR Sl = l TO N-2
3710 FOR K=0 TO SEARCH-1:IF INSTR(B$(S1)
,M$(K))<>0 THEN NEXT K:GOTO 3730
3720 NEXT SI:RETURN
3730 IF INT(S1)=N-1 THEN RETURN
3740 CLS
3750 PRINT "ENTRY
3760 LET ST=0
3770 LET TEMP=ST+1
3780 LET S=S1:GOSUB 4060
3790 IF MID$(B$(SI),TEMP,1)="*" THEN GOT
O 3830
3800 IF MID$(B$(SI),TEMP,1)="#" THEN PRI
NT A$(VAL(MID$(B$(SI).TEMP+l,2))-l)
:LET Cl = 3
3810 PRINT MID$(B$(SI),TEMP+C1,ST-TEMP-C
1).-LET C1=0
3820 GOTO 3770
3830 LET S1=S1+1
3840 PRINT @ 9*32,"searchS$
3850 PRINT "COMMANDS AVAILABLE:"
3860 PRINT ">'ENTER’
3870 PRINT ”>’AAA'
3880 PRINT ">’CCC’
3890 PRINT ">’ZZZ'
3900 INPUT P$
3910 CLS
3920 IF P$="CCC" AND S$="MMM” THEN GOTO
3710
3930 IF P$="CCC" THEN GOTO 3650
3940 IF P$=""
3950 IF P$="AAA" THEN GOSUB 3010 .-GOTO 37
30
3960 IF P$="ZZZ" THEN RETURN
3970 LET S1-S1-1:GOTO 3730

The Working TRS-80 Color Computer

Line 3800: Item headings from A$ are printed where appropriate.

MODULE 1.2.8

30

items. If all are present in an entry then the item will be displayed. If no
entries are found to contain all the specified search items, the program
returns to the menu.

Line 3790: Since there is no regular number of items in an entry the
program goes on printing items until it comes across an item which consists
of.

Testing Module 1.2.7
As for the equivalent module in Unifile except that you should be able to
specify a multiple search too.

Line 3920: To continue a multiple search we have to jump back into the
middle of the loop in order not to reset SI to 1.

3000 REM***********************
3010 REM CHANGE ENTRY
3020 REM***********************
3030 LET S1=S1-1
3040 LET R$=""
3050 LET ST=0
3060 CLS:PRINT "ENTRY
3070 LET TEMP=ST+1
3080 LET S=S1:GOSUB 4060
3090 IF MID$(B$ (SI),TEMP , ST-TEMP) = "*"THE
N LET R$=R$+"*~" : GOSUB 4530:GOSUB 2510.-R
ETURN
3100 IF MID$(B$(S1), TEMP , 1)="#" THEN PRI
NT A$(VAL(MID$(B$(S1) ,TEMP+1,2))-l
:LET Cl=3
3110 PRINT MID$(B$(S1) .TEMP+Cl, ST-TEMP-C
1):LET C1=0
3120 PRINT S 7*32+12,"amend"
3130 PRINT "COMMANDS AVAILABLE:"
3140 PRINT ENTER' LEAVES ITEM UNCHANG
ED"
3145 PRINT ”>’ZZZ’ TO QUIT FUNCTION"
3150 PRINT ">NEW ITEM ENDING WITH
3160 PRINT ">ENTER REPLACEMENT ITEM"
3170 PRINT ”>'ZZZ' QUITS WITHOUT CHANGES
ii

3180 PRINT ">'DDD' DELETES WHOLE ENTRY"
3190 PRINT ”>'RRR' REMOVES THIS ITEM"
3200 GOSUB 4030
3210 CLS
3220 IF Q$="ZZZ*" THEN RETURN
3230 IF Q$="RRR*" THEN GOTO 3060

Chapter 1 Storing and Searching

AND Q$<>"~" T

Line 3280: Insertion of items input ending in > .

MODULE 1.2.9

Identical to Unifile 1.1.9.

31

Line 3240: In the case of an input ending in > the item currently on display
is added to the new R$ thus insertions are always after the item currently
displayed.

Commentary
Lines 3230: Input of RRR does not add the existing item to the new R$
being built up, thus effectively deleting it from the entry.

A slightly more complex module than the equivalent one in Unifile I, since
provision must be made for the insertion and deletion of items, not simply
of entries.

4500 rem***********************
4510 REM TELESCOPE FILE
4520 REM***********************
4530 FOR I = S1 TO N-l
4540 LET B$(I)=B$(1+1)
4550 NEXT I
4560 LET N=N-1
4570 RETURN

Testing Module 1.2.8
You should be able to delete entries, to amend items, to delete items and to
insert items.

3240 IF RIGHT$(Q$,2)<>">*"
HEN GOTO 3250
3244 IF LEN(R$)+ST-TEMP+1>255 THEN CLS:P
RINT "ENTRY NOW TOO LONGFOR 1=1 TO 50
00:NEXT I:RETURN
3248 LET R$=R$+MID$(B$(Si),TEMP,ST-TEMP+
1)
3250 CLS
3260 IF Q$="*" THEN GOTO 3060
3270 IF Q$="DDD~" THEN GOSUB 4500 .-RETURN
3280 IF RIGHT$(Q$,2)=">*" THEN LET Q$=LE
FT$(Q$, LEN(Q$)-2) : LET Q$=Q$+"'‘"
3282 IF LEN(R$)+LEN(Q$)>255 THEN PRINT "
ENTRY NOW TOO LONGFOR 1=1 TO 5000:NEX
T:RETURN
3290 LET R$=R$+Q$
3300 GOTO 3060

The Working TRS-80 Color Computer

MODULE 1.2.10

Almost identical to the equivalent module in Unifile I.

32

I

Summary
The comments made in relation to Unifile apply equally to this even more
substantial program.

In addition, I hope that entering this program has given you some
insights into the strengths of modular programming — as writing it did for
me. This whole program, when it was first written, took less than a
morning for the simple reason that the structure was already laid down in
the Unifile I program and its modular form made it clear where changes
would have to be made. Provided that a desperate need for space does not
lead you to compress everything as much as possible, you will save time and
many tears over your life as a programmer by setting out your programs in

Testing Module 1.2.10
If this module is functioning correctly you deserve some kind of medal and
the program is ready for use.

6000 rem***********************
6010 REM DATA FILES
6020 REM***********************
6030 MOTOR ON:AUDIO ON:CLS:INPUT "POSITI
ON TAPE THEN PRESS enter (MOTOR IS ON)”;
Q$
6040 MOTOR OFF: INPUT "PLACE RECORDER INT
0 CORRECT MODETHEN PRESS enter :";Q$
6050 PRINT: PRINT "FUNCTIONS AVAILABLE:",
"1)SAVE DATA", , "2) LOAD DATA”: INPUT "WHIC
H DO YOU REQU IRE : " ; Q: ON Q GOTO 6070,6150
6060 RETURN
6070 MOTOR ON: FOR 1=1 TO 10000: NEXT
6080 OPEN "0",#-l,"DBASE"
6090 FOR 1 = 0 TO 49:PRINT #-l, A$ (I) : NEXT
6100 PRINT t-l,N
6110 FOR 1=1 TO N-2
6120 PRINT #-l,B$(I)
6130 NEXT I
6140 CLOSE #-l:RETURN
6150 PCLEAR 1:CLEAR 20000:DIM A$(49),B$(
499),M$(19)
6160 OPEN "I",#-l,"DBASE"
6170 FOR 1 = 0 TO 49.-INPUT #-l,A$(I):NEXT
6180 INPUT #-l,N
6190 FOR 1=1 TO N-2
6200 INPUT |-1,B$(I)
6210 NEXT I
6220 CLOSE #-l
6230 LET B$(0)=CHR$(0)+"*"
6240 LET B$(N-1)=CHR$(255) + "''”6250 GOTO 1000

Chapter 1 Storing and Searching

35

clearly labelled functional units. Not only does this make the programs
readable, it increases the likelihood that you will be able to call the same
routine from different parts of the program, eases replacement of
functions that you feel you can improve upon later and, not least, makes it
a great deal easier to lift whole sections of program out for use in other
contexts.

Going further
1) One sophistication that is present on professional database programs is
the ability to order a search for entries containing, say, four out of eight
specified search items. It should not be difficult to include such a provision
in the present program.
2) The developments suggested for Unifile I would be equally applicable
to this program.

34
■
■

CHAPTER 2
Managing your money

Where microcomputers are set to work in the home, it is most often in
handling family finance, and for that reason we turn our attention in
this chapter to three financial programs. Their interest, however is not
limited to those who wish to use their Color Computer to supervise their
finances, for in discussing the programs we shall be examining problems
common to all programs which handle fairly large bodies of numeric data.

2.1 BANKER
This program is a neat tool which allows you to keep your financial
records in much the same form as a bank statement. It deals with
recurring payments, both regular and irregular and inserts them into
each monthly statement on the day on which they occur.

The program is a relatively simple one compared to what has gone
before but it is worth pointing out that it is not as uncomplicated as it
looks at first sight, since in this program, for the first time, we make use
of a considerable proportion of multi-statement lines. Without them the
program would appear considerably longer.

One of the points to watch out for in entering this, or any other program
which uses multi-statement lines is the behavior of IF statements. Such
statements are capable of creating havoc if used improperly in
multi-statement lines, creating program bugs which are extremely diffi
cult to trace. Equally, multi-statement lines can be used to increase the
effectiveness of IF statements by virtue of the fact that if the condition
specified by an IF statement is not met, the program does not simply skip
over that part of the line directly tied to the IF statement, it skips over the
whole of the rest of the line.

In other words, any statements after the IF statement will only be
executed if the IF statement is true. This is so different from the behavior
of single-statement lines that it is easy to be confused by it.

The advantage of all of this is that it provides a form of automatic and
elegant GOTO that you do not even have to specify. If you have a series
of 10 operations that will be performed together provided, say, that
C = 1 at some point, then with single statement lines you would have to
place an IF statement at the beginning of the section to specify a jump
past the 10 operations if C is not equal to 1. It works but at the same

Chap ter 2 Managing your money

MODULE 2.1.1

■-

32*P1+P2,STRING$(LEN(F$)+2,

32*(Pl + 1) + P2,CHR$(15 0)+F$+C

32*(Pl+2)+P2,STRING$(LEN(F$

MODULE 2.1.2

•’WHICH DO YOU REQUIRE:”

35

I

In entering the last two programs, you may have found that the lines
needed to decorate the program titles are a little tedious to enter. This
module is the answer. It creates the same kind of decorative box around a
word or phrase but once entered it can be applied to a variety of different
titles at different points during the execution of the program. All that
needs to be specified before the module is called up is the line on which
the title is to be printed and the title or phrase itself. Clearly the graphics
characters specified in lines 7040—7060 can be altered to taste.

1)NEW PAYMENTS”
2)EXAMINE/DELETE PAYMENTS

IN=0 THEN CLS:PRINT @ 7
INITIALIZED YET.”:FOR I

time it feels messy and it is difficult to read a program in which there are a
lot of such jumps.

With multi-statement lines, however, you could begin a single line with
IF C = 1 and follow it with the 10 operations. Not only would this work and
save memory, it would actually make the program more readable, since it
would be immediately clear that the 10 operations form a logical unit.

3) PRINT STATEMENT”
4) DATA FILES”
5) INITIALIZE"
6) STOP"

1110 PRINT:INPUT
;Z:CLS
1120 IF ZO5 AND
*32,"PROGRAM NOT
=1 TO 5000:NEXT:GOTO 1000
1130 IF PAYMENTS=0 AND (Z = 2 OR Z=3) THEN

CLS .’PRINT @ 7*32, "SORRY, NO DATA YET.":
FOR 1=1 TO 5000:NEXT:GOTO 1000

1000 REM***********************
1010 REM MENU
1020 REM***********************
1030 CLS:LET F$="BANKER”:LET P1=1:GOSUB
7000
1040 PRINT:PRINT "COMMANDS AVAILABLE:"
1050 PRINT.-PRINT "
1060 PRINT "
ii

1070 PRINT "
1080 PRINT "
1090 PRINT "
1100 PRINT "

150)
7050 PRINT @
HR$(150)
7060 PRINT @
)+2,150)
7070 RETURN

7000 REM***********************
7010 REM FORMAT TITLES
7020 rem***********************
7030 LET F2=14-INT(LEN(F$)/2)
7040 PRINT @

The Working TRS-80 Color Computer

MODULE 2.1.3

This module initializes the program variables.

36

A standard menu module but its execution should provide ample proof of
the effectiveness of the previous module in brightening up the presentation
of the program.

Commentary
Line 2030: The variable FLAG is used in an interesting way here — to make
up for the lack of GOSUB.. .RETURN when the memory has been
cleared. Normally this module is called from the main menu but on some
occasions it is called from data file module, before loading data from tape.
In that case, the data file module clears the memory first and then calls this
module from line 2040, first having set FLAG to 1. When program
execution reaches line 2080, FLAG can be easily used to determine whether
the program is to return to the main menu or to the data file module.

Line 2060: DATA statements are not only useful for storing complex facts
and figures. Here READ, DATA and RESTORE are used to simplify the
placing of the names of the months of the year into an array for later use.

Line 2040: This program, like many others, is capable of accepting a few
entries without the variables having been properly initialized. After a few
entries the program stops — a frustrating experience. The variable IN
(initialized) is therefore used in the main menu to determine whether this
module has yet been called. If IN is 1 at line 1120 then all the program
functions are available, otherwise you can only call this module.

1140 ON Z GOSUB 3000,4000,5000,6000,2000
,1160
1150 GOTO 1000
1160 CLS.-LET F$="BANKER":LET P1=1:GOSUB
7000
1170 LET F$="CLOSED FOR BUSINESS”: LET Pl
=7:GOSUB 7000 .-STOP

2000 REM***********************
2010 REM VARIABLES
2020 REM***********************
2030 PCLEAR 1:CLEAR 10000:LET FLAG=0
2040 LET IN=1
2050 DIM A$(99,1),A(99,1) : LET A(0,11 = 999
2060 DIM M0NTH$(12) :RESTORE: FOR 1 = 0 TO 1
0.-READ MONTH$ (I) : NEXT I
2070 DATA "JANUARY" , "FEBRUARY" , "MARCH” , ”
APRIL" , "MAY" , "JUNE" , "JULY" , "AUGUST” , "SEP
TEMBER" , "OCTOBER" , "NOVEMBER" , "DECEMBER"
2080 IF FLAG=0 THEN GOTO 1000 ELSE GOTO
6140

Chapter 2 Managing your money

MODULE 2.1.4
r

DCREDIT",

;:INPUT ’’NAME OF PAY

G .
i» ti

INPUT "DAY OF PAY

H •»

3

37

The purpose of this module is to accept new payment items, whether credit
or debit, and place them into their correct place in the file of payments.

Commentary
Line 3040: The only distinction made between credit items and debit items
is the setting of the variable CD to 0 or 1.

Testing Module 2.1.3
This module can only be properly tested when other modules begin to call
upon the variables it has set up but you might like to check that the months
of the year are stored in MONTHS.

Line 3070-3080: The user is required to input months in which the
particular payment will be made in a continuous string of numbers, two
digits per month. This is simple and fast but, since it can sometimes lead to

;:INPUT "AMOUNT:";Q
INPUT "MONTHS (E.

7*32 , ""

9*32 , ""
11*32,""

3000 rem***********************
3010 REM ENTER NEW LINES
3020 REM***********************
3030 CLS:LET F$="NEW ITEMS":LET P1=0:GOS
UB 7000
3040 PRINT " DCREDIT",," 2)DEBIT":I
NPUT "WHICH DO YOU REQUIRECD:LET CD=C
D-l
3050 PRINT @
MENT: " ,-Q$
3060 PRINT @
3070 PRINT @

01040710):";R$
3080 PRINT @ 11*32+24,"";:FOR 1=1 TO LEN
(R$) STEP 2:PRINT MID$(R$,I,2);:NEXT

I
3090 PRINT @ 13*32,""
MENT:";S
3100 PRINT @ 15*32,"";:INPUT "ARE THESE
CORRECT (Y/N):";T$:IF T$="N" THEN CLS:GO
SUB 3000
3110 LET PAYMENTS=PAYMENTS+1: FOR J=PAYME
NTS-1 TO 0 STEP -1
3120 IF S<A(J,1) THEN FOR K=0 TO 1:LET A
$(J+1 ,K)=A$(J.K) .-LET A(J+l, K)=A(J , K) : NEX
T K:NEXT J
3130 LET J=J+1
3140 LET A$(J,1)=STRING$(12,"0") : FOR 1 = 1
TO LEN(R$) STEP 2:MID$(A$(J,1),VAL(MID$
(R$,I,2)),1)="1":NEXT I
3150 LET A$(J,0)=Q$:LET A(J,0)=Q
3160 LET A(J,1)=S
3170 IF CD=1 THEN LET A(J,0)=A(J,0)*-l
3180 RETURN

The Working TRS-80 Color Computer

MODULE 2.1.5

38

I

mistakes on input, the program reprints the months apparently entered
with a separator between each so that the user can check the input.

Line 3170: If the item is meant to be a debit (i.e. a payment out), then the
amount of the item is multiplied by — 1.

Testing Module 2.1.4
You should now be able to input payment items together with their
associated months and days of payment. Though you cannot yet display
them, you can stop the program and check that the relevant sections of the
arrays A and AS contain the payment details in order of day of payment.
At A (0,PAYMENTS) should be 999, a dummy entry to ensure correct
insertion of the first item.

Lines 3110-3130: The file of payments is kept in order of the day of the
month on which payment is made. In this section the program scans the file
from the highest numbered day downwards. If the day of the current entry
is lower than the day of the item in the file then the whole file from that
point is moved up one place and the next item down the file is examined. In
this way, by the time the program finds the correct position in the file for
the new entry, a place has already been made for it.

Line 3140: The month(s) in which the payment will actually be made are
recorded in a string of 12 characters. The string begins as 12 Os and then the
positions corresponding to the desired months are set to 1. If you wish to
minimize the amount of space taken by the program it is perfectly feasible
to use only two bytes for this, setting individual bits to represent the
desired months — the trade off being that more time is required to trans
late this kind of representation.

5000 rem***********************
5010 REM COMPILE STATEMENT5020 REM***********************
5030 LET SUM=0
5040 LET F$="STATEMENT": LET P1=1:GOSUB 7
000
5050 INPUT "NUMBER OP MONTH FOR STATEMEN
T:";Q
5060 FOR Ql=l TO Q-1:FOR 1 = 0 TO PAYMENTS
-l.-IF MID$(A$(1,1) ,Q1,1)<>"1’’ THEN GOTO
5080
5070 LET SUM=SUM+A(I,0)
5080 NEXT I:NEXT QI5090 CLSsLET F$=MONTH$(Q-1):LET P1=0:GOS
UB 7000

Chapter 2 Managing your money

39

Commentary
Lines 5060-5080: These two loops scan each entry in the file for any
payments occurring in the months prior to the month specified for the
statement. Any such payments are added to the variable SUM. It may
comfort you to know that when this program was first entered the variable
used was named TOTAL and the line gave a syntax error report. After a
long time spent cursing the Color Computer I realized that variable names
which corresponded to the first two letters of Basic words confused the
poor beast.

Lines 5100 — 5110: Unfortunately the Color Computer cannot print text
in different colors, or debit items could be printed in red. To make up for
this a yellow square is used to delineate columns for credit items and a red
square for debit items, this particular item being the balance carried
forward.

This module prints out a statement for any particular month specified. A
balance is carried forward from previous months in the same calendar
year.

Lines 5120-5210: This loop prints the details of day of payment, name of
payment, amount of payment and the running total of the account,
provided that the relevant character in A$(l) is 1 rather than 0. The account
makes use of the PRINT USING command to ensure that pence are
correctly printed (otherwise $10.70 would be rendered 10.7). The presen
tation of the account is in columns and the squares making up the column

1

5100 PRINT "BALANCE C/F";:PRINT TAB(24)”
";:IF SUM<0 THEN PRINT CHR$(191); ELSE P
RINT CHR$(159) ;
5105 IF Q=1 THEN SUM=SUM-SUM
5110 PRINT USING ”####.##”;SUM;
5120 FOR 1=0 TO PAYMENTS-1
5130 IF MID$(A$(I,1),Q,1)<>"1" THEN GOTO
5210

5140 PRINT USING "###";A(I,1);:IF A(I,0)
<0 THEN PRINT CHR$(191); ELSE PRINT CHR$
(159);
5150 PRINT A$(I,0);
5160 PRINT TAB(16);:IF A(I,0)<0 THEN PRI
NT CHR$(191);ELSE PRINT CHR$(159);
5170 PRINT USING "####.##”;A(I,0);
5180 LET SUM=SUM+A(I,0):IF SUM<0 THEN PR
INT CHR$(191); ELSE PRINT CHR$(159);
5190 PRINT USING ”####.##”; SUM ;
5200 IF INKEY$="” THEN GOTO 5200
5210 NEXT I:PRINT:INPUT "enter TO CONTIN
UE” ;X
5220 RETURN

The Working TRS-80 Color Computer

MODULE 2,1.6

40

Testing Module 2.1.5
You should now be able to enter some data and obtain a statement for any
month. In the case of months for which there are no payments registered
the balance carried forward will be printed. After the last item of the
month’s account, pressing ENTER again will return to the menu.

Testing Module 2.1.6
You should now be able to delete items from the file.

This module allows individual payments to be examined, together with
their associated data and, if necessary, to be deleted from the file.

1)'DDD
3)’ENTE

Commentary

Line 4110: An example of the usefulness of IF statements when properly
combined with multi-statement lines. This whole section of eight
consecutive statements is only executed if the user inputs DDD.

are red or yellow according to whether a debit or credit item is being
printed. The colored squares are obtained by reference to the chart in
Appendix B of Getting Started With Color Basic.
Note that items are printed one by one and to obtain the next item it is
necessary to depress ENTER: the purpose of this is to prevent items being
printed and scrolled off the screen before they can be examined if there is
more than one screenful of data.

4000 rem***********************4010 REM DELETE PAYMENTS4020 REM***********************
4030 FOR 1=0 TO PAYMENTS-1:CLS
4040 PRINT: PRINT "PAYMENT:";A$(I , 0)
4050 PRINT:PRINT "AMOUNT:";A(1,0)
4060 PRINT:PRINT "MONTHS:";
4070 FOR J=1 TO 12:1? MID$ (A$ (I , 1) , J , 1) =
"1" THEN PRINT STR$(J);:PRINT "/” ;
4080 NEXT J
4090 PRINT: PRINT: PRINT "DAY OF PAYMENT:**
;A(I,1)
4100 PRINT:PRINT "COMMANDS:",,
* DELETE"," 2)'ZZZ' QUIT",,"
R’ FOR NEXT ITEM"
4110 INPUT Q$: IP Q$=”DDD" THEN FOR J=I T
0 PAYMENTS-1:FOR K=0 TO 1:LET A$(J,K)=A$
(J+1,K):LET A(J , K)=A(J+l, K) : NEXT K:NEXT
J:LET PAYMENTS=PAYMENTS-1:RETURN
4120 IP Q$="" THEN NEXT I
4130 RETURN

Chap ter 2 Managing your money

MODULE 2.1.7

A standard data-file module.

41

Summary
This straightforward program raises some interesting questions about the
degree of sophistication required to make a program useful. Inputting the
months during which a particular payment is to be made is, in some ways,
rather crude compared to specifying whether the payment is to be made
quarterly or annually or whatever and letting the program insert the

Commentary
Line 6130: The use of the variable FLAG has already been discussed but it
is worth pointing out that the only reason that the initialization module is
actually called is the loading of the month names into MONTHS. Other
than this it is often more economical simply to dimension the arrays in the
data-file module itself.

Testing Module 2.1.7
You should now be able to input data, store it on tape and recall it for
subsequent use. If this module functions properly the program is ready for
use.

r
r6000 REM***********************

6010 REM DATA FILES
6020 REM***********************
6030 MOTOR ON:AUDIO ON:PRINT:INPUT "POST
TION TAPE THEN PRESS enter (MOTOR IS ON)";Q$:MOTOR OFF
6040 PRINT:INPUT "PLACE RECORDER IN CORR
ECT MODE THEN PRESS enter";Q$
6050 PRINTrPRINT "FUNCTIONS AVAILABLE:",
"1)SAVE DATA",,"2)LOAD DATA":INPUT "WHIC
H DO YOU REQUIRE:";Q:ON Q GOTO 6070,6130
6060 RETURN
6070 MOTOR ON:FOR 1=1 TO 10000: NEXT I
6080 OPEN"O",#-1,"BANKER"
6090 PRINT#-1,PAYMENTS
6100 FOR 1=0 TO PAYMENTS:PRINT#-1,A$(1,0
),A$(I,1),A(I,0),A(I,1):NEXT I
6110 CLOSE #-l
6120 RETURN
6130 PCLEAR 1:CLEAR 10000:LET FLAG=1:GOT
0 2040
6140 OPEN"I",#-l,"BANKER"

.6150 INPUT#-1,PAYMENTS
6160 FOR 1=0 TO PAYMENTS:INPUT#-1,A$(I,0
),A$(I,1),A(I,0),A(I,1)
6170 NEXT I
6180 CLOSE #-l
6190 GOTO 1000

The Working TRS-80 Color Computer

MODULE 2.2.1

Standard title format module.

42

J

payment in the relevant months. Such an added facility would be easily
possible but it would add considerably to the length of the program and it
would reduce the degree of flexibility inherent in simply typing in the
months. When designing a program you will need to be constantly aware of
this tension between what is worth doing automatically and what it is better
to allow the user to do — the answer may well vary from user to user but
complexity simply for the sake of it can be costly in terms of memory and
can actually reduce the usefulness of a program.

Going Further
1) The deletion module is extremely crude in that it only allows the user to
page through the items one by one. What about adding a facility which
would allow the user to specify a jump backwards or forwards in the file,
thus making it easier to access items towards the end of the file.
2) The program is set up on the basis that the financial year begins in
January. It would be more useful if the user could specify when the
financial year should begin and the program would then scan the entries
from that time to produce the balance carried forward in the printed
account. This would allow the user to keep accounts for the last three
months, say, even in January and February.

2.2 ACCOUNTANT
This program will make your personal accounts easier to keep and present
them in a neat format whenever you wish, with provision for single items,
main headings and sub-headings in the printing of the actual accounts.

7000 REM***********************
7010 REM FORMAT TITLES
7020 REM***********************
7030 LET P2=14-INT(LEN(F$)/2)
7040 PRINT S 32*P1+P2 , STRING$(LEN(P$)+2 ,
CHR$(147))
7050 PRINT 6 32*(P1+1)+P2,CHR$(159) ;
7060 PRINT F$;CHR$(159)
7070 PRINT $ 32*(Pl+2)+P2,STRING$(LEN(F$
)+2,CHR$(156))
7080 RETURN

MODULE 2.2.2
6000 REM***********************
6010 REM DATA FILES
6020 rem***********************
6030 MOTOR ONrAUDIO ON:PRINT:INPUT "POSI
TION TAPE THEN PRESS enter (MOTOR IS ON
)";Q$:MOTOR OFF

Chap ter 2 Managing your money

MODULE 2.2.3

2)CHANGE AMOUNTS/DELETE I

43

This is entered at this point in order to point out that the easiest way of
entering this, and the previous module, is simply to enter a program which
already contains them and then making any necessary changes to the
variables which are to be saved. Since you now have a program, Banker,
with both modules, you can save yourself considerable time by loading that
and deleting up to line 5999 (DEL-5999).

You may also find it an advantage to have entered this particular module
first in that once you have successfully entered the modules which load
data into the main file, you will be in a position to save some data so that
when data is lost with the correction of mistakes or the entry of new lines,
you can simply reload from tape rather than type it all in again.

3) PRINT ACCOUNTS”
4) INITIALIZE ACCOUNTS"
5) DATA FILES
6) STOP"

1000 REM***********************
1010 REM MENU
1020 rem***********************
1030 CLSzLET F$="ACCOUNTANT":LET P1=1:GO
SUB 7000
1040 PRINT:PRINT "COMMANDS AVAILABLE:"

1)INPUT NEW HEADING

6040 PRINT:INPUT "PLACE RECORDER IN CORR
ECT MODE THEN PRESS enter";Q$
6050 PRINT:PRINT "FUNCTIONS AVAILABLE:",
"1)SAVE DATA" ,, ”2) LOAD DATA" .-INPUT "WHIC
H DO YOU REQUIRE:";Q:ON Q GOTO 6070,6140
6060 RETURN
6070 MOTOR ON .-FOR 1 = 1 TO 10000: NEXT I
6080 OPEN"O",#-l,"ACCOUNTS"
6090 FOR 1=0 TO 1
6100 PRINT#-1,C(I)
6110 FOR J=0 TO C(I)-1
6120 PRINT#-1,A$(I,J),A(I,J)
6130 NEXT J,I:CLOSE#-1:RETURN
6140 OPEN"I",#-l,"ACCOUNTS"
6150 FOR 1=0 TO 1
6160 INPUT#-1,C(I)
6170 FOR J=0 TO C(I)-1
6180 INPUT#-1,A$(I,J),A(I,J)
6190 NEXT J,I:CLOSE#-1:RETURN

1050 PRINT:PRINT "
S"
1060 PRINT "
TEMS";
1070 PRINT "
1080 PRINT "
1090 PRINT "
1100 PRINT "
1110 PRINT: INPUT "WHICH DO YOU REQUIRE:"
;Z:CLS
1120 IF Z<4 AND Z>0 THEN GOSUB 2000
1130 CLS
1140 ON Z GOSUB 2500,4000,5000,1500,6000
,1160

The Working TRS-80 Color Computer

Standard menu module.

MODULE 2.2.4

MODULE 2.2.5

MODULE 2.2.6

44

1150 CLS:GOTO 1000
1160 CLS:LET F$="ACCOUNTANT":LET P1=6:GO
SUB 7000
1170 END

Testing Module 2.2.5
Before moving on to the main body of the program you may wish to check
that the modules entered so far are functioning correctly. The menu should
work for the data file option and should call up the present module for any
function from 1 to 3. Menu function 6 should also be available.

Initializes program arrays. Note that this module must be called before
data files can be loaded from tape since the data file module in this
program does not clear the memory and initializes the arrays.

E

I
j

Unlike the previous program, there are a number of functions in this
program which require to know whether the debit or credit side of the
accounts is being addressed. The input which specifies this is therefore
made a separate module.

1500 REM***********************
1510 REM INITIALIZE
1520 REM***********************
1530 PCLEAR1:CLEAR 10000
1540 DIM A$(2,100),A(2,100)
1550 GOTO 1000

2500 REM***********************
2510 REM INPUT ITEMS
2520 REM***********************
2530 LET F$=”NEW ITEMS": LET P1 = 1:GOSUB 7
000
2540 PRINT "IS THE ITEM: 1)A SINGLE ITEM

2000 REM***********************
2010 REM CREDIT/DEBIT
2020 REM***********************
2030 PRINT @ 7*32+3,"DO YOU WANT: 1)CRED
IT"
2040 PRINT TAB(16)"2)DEBIT";
2050 INPUT CD:LET CD=CD-1:RETURN

Chapter 2 Managing your money

MODULE 2.2.7

45

This module accepts the input of two different types of items, main
headings and single items. Main headings are general categories which will
have no amounts attached to them in the accounts, they will serve as
‘paragraph headings’ for a list of items which fall under that particular
heading. In household accounts, a main heading might be CAR and it
might be followed by sub-headings relating to tax, insurance, maintenance
etc. Single items are items which are neither main headings nor items which
fall into the groups which the main headings label — they are ‘one off’
items.

Commentary
Line 3050: Main headings do not have amounts directly attached to them in
the accounts.

Line 3070: If details entered are incorrect, this line clears only that part of
the screen containing those details — otherwise we would have to return to
the previous module to reprint the prompts on the top half of the screen.

2550
2560
2570
2580
2590

3090
3100
3110
3120

IF
r

The input of items to the program is done under three types of heading:
main headings, sub-headings and single items. Their nature will be
explained under the sections that refer to them. The purpose of this module
is simply to have the user specify which is about to be input.

3050
NPUT
3060
RECT
3070
@ 32*1,

3080 IF TYPE=2 THEN LET Q$="*”+Q$ ELSE L
ET Q$=”#”+Q$LET A$(CD,C(CD))=Q$

LET A(CD,C(CD))=Q
LET C(CD)=C(CD)+1
CLS.-GOTO 2520

PRINT TAB(13)”2)A MAIN HEADING”
PRINT TAB(13)”3)A SUB-HEADING”
INPUT’” 0’ TO QUIT FUNCTION”;TYPE
IF TYPE=0 THEN RETURN
IF TYPE=3 THEN GOTO 3500

INPUT ’’NAME OF ITE
:I

3000 rem***********************
3010 REM SINGLE ITEM OR MAIN HEADING
3020 REM***********************
3030 LET Q=0
3040 PRINT @ 9*32,
M:”;Q$

IF TYPEO2 THEN PRINT @ 11*32,
’’AMOUNT FOR ITEM:”;Q
PRINT @ 13*32,”": INPUT "IS THIS COR
(Y/N)”;R$
IF R$O”Y” THEN FOR 1 = 9 TO 13 .-PRINT

*'” : NEXT:GOTO 3040

The Working TRS-80 Color Computer

MODULE 2.2.8

46

3610
3620
3630
3640

Testing Module 2.2.7
You should now be able to input main headings and single items and main
headings. You cannot easily display what you have input but you can check
in direct mode that the item names have been stored, that they have the
correct indicator tag preceding them and that the correct value is attached
to them in the corresponding element of the array A (the correct value for a
main heading is zero).

Line 3080: The three types of item are labelled in the file which contains the
accounts by single characters which are tagged onto the front of the item
names (these characters are never printed, they are there for the program’s
use only). The symbol for a main heading is * and for a single item it is a
space. Note how the use of ELSE saves us another IF statement.

Lines 3090-3110: The names of items (and the identifying tags) are stored
in the array A$, on the credit or the debit side according to the value of CD.
Similarly the value attached to the item is stored in the array A. The
number of items on each side of the arrays is recorded in another array
named C. If you are observant you will have noted that nowhere did we
dimension an array called C. Here we are making use of the fact that
whenever an array is referred to (and the Color Computer can tell an
array is being referred to because a subscript will be tagged onto the end
of the name) the Color Computer assumes until it is told otherwise that
the array has 10 elements. So if you want to use an array with less than 10
elements you don’t need to declare it in a DIM statement.

INPUT ’’NAME OF SU

INPUT" AMOUNT FOR

3500 REM***********************
3510 REM SUB-HEADING
3520 REM***********************
3530 PRINT G 9*32,”’’; : INPUT "NAME OF MAI
N HEADING:";Q$
3540 LET Q$="*"+Q$
3550 FOR 1 = 0 TO C(CD)-1:IF A$(CD,I)OQ$
THEN NEXT I: PRINT "SORRY, NO HEADING OF
THAT NAME.’’.-FOR 1= 1 TO 5000:NEXT:RETURN
3560 LET PLACE=I+1
3570 PRINT e 11*32, B-HEADING:’’;Q$
3580 PRINT 0 13*32,SUB-HEADING:”;Q
3590 PRINT: INPUT "ARE THESE CORRECT (Y/N
3600 IF R$O"Y” THEN FOR 1 = 9 TO 13: PRINT
32*1 NEXT: GOTO 3570

LET Q$="$"+Q$ FOR I=C(CD)+1 TO PLACE+1 STEP -1
LET A$(CD,I)=A$(CD,1-1)
LET A(CD,I)-A(CD,1-1) .

Chapter 2 Managing your money

I

MODULE 2.2.9

47

Line 3560: If the main-heading is found, the variable PLACE is set to the
position following it in the file — this will be the position of the
sub-heading.

3650 NEXT I
3660 LET A$(CD,PLACE)=Q$
3670 LET A(CD,PLACE)=Q
3680 LET C(CD)=C(CD)+l
3690 CLS:GOTO 2520

Lines 3620-3680: The items in the file, from position PLACE upwards,
are shifted by one space to make room for the next item and the new item is
inserted into position PLACE, with the relevant side of C being
incremented to record the new item.

Testing Module 2.2.8
As with the last module, it is difficult to test fully until the display module is
entered, but you should be able to enter sub-headings, check that
main-headings are present and to examine in direct mode that the data has
been placed into the file correctly. If all seems well then it would be
advisable to save a specimen set of accounts onto tape to save time in
testing the display and deletion modules.

Commentary
Lines 3530-3550: In this section the user first inputs the name of the
relevant main-heading and to this is added the identifying tag *, which is
how the main heading will be recorded in the file. The program now works
through the file comparing the specified main heading with those that are
actually stored already. Note that in checking that something is present in
a file it is always easier, in fact, to check that it is not. For this purpose all
that is needed is a one line loop as line 3550. If you remember what was
said earlier about the use of IF statements in multi-statement lines you
will realize that the end of this loop will only be reached if the item being
searched for is not present. If the item is found then the program execu
tion will automatically default to the next line since the condition attached
to the IF statement has not been fulfilled.

5000 rem***********************
5010 REM PRINT ACCOUNTS
5020 REM***********************

This module accepts the third category of item which the program recog
nizes — sub-headings.

The Working TRS-30 Color Computer

V;MID$

THEN GOTO 5200 ELSE NE

48

Commentary
Line 5030: The heading printed depends upon the value of CD.

Line 5070: Throughout the printing of the accounts, a running total of the
sums printed so far is stored in the variable TTOTAL.

Lines 5080-5090: If the item to be printed is a sub-heading (identifying tag
S) then it is inset two spaces before the name of the item is printed. Note the
use of the PRINT USING % formatting command here: this prints the

Most display modules for complex data are themselves complex, and this
one is no exception. The reason for this is that rather than working on an
elegant and simple set of principles which can be easily programmed into
one or two lines, such modules work with a mass of different rules and
qualifications which reflect the way in which you wish to transform the
data into a display — some placed here, some there, some inset, some on a
new line, all according to a variety of different conditions.

5030 IF CD=0 THEN LET F$="CREDIT":LET Pl
=0:GOSUB 7000
5035 IF CD=1 THEN LET F$="DEBIT”:LET Pl =
0:GOSUB 7000
5040 LET TTOTAL=0
5050 LET STOTAL=0
5060 FOR 1=0 TO C(CD)-1
5070 LET TTOTAL=TTOTAL+A(CD,I)
5080 IF LEFT$(A$(CD,I),1) = ’’$’’ THEN PRINT
TAB(2);
5090 PRINT USING
(A$(CD,I),2);: REM 14 SPACES
5100 IF LEFT$(A$(CD,I),1)=”*” THEN PRINT
:GOTO 5150
5110 IF A(CD,I)=0 THEN GOTO 5150
5120 IF LEFT$(A$(CD,I),1)<>’’$’’ THEN PRIN
T TAB(25); ELSE PRINT TAB(18);
5130 PRINT USING "####.##”;A(CD , I) ;
5140 IF LEFT$(A$ (CD, I) , 1) = "$’’ THEN LET S
TOTAL=STOTAL+A(CD,I):PRINT
5150 IF STOTAL=0 OR LEFT$(A$(CD , 1 + 1) , 1) =
”$” THEN GOTO 5200
5160 PRINT TAB(18)STRING$(7,)
5170 PRINT TAB(25);
5180 PRINT USING ’’####.##”;STOTAL ;
5190 LET STOTAL=0
5200 IF INKEY$=””
XT I
5210 PRINT TAB(25)STRING$(7,)
5220 PRINT "TOTAL:”;
5230 PRINT TAB(25);
5240 PRINT USING ”####.##"; TTOTAL
5250 INPUT "PRESS ’ENTER’ TO QUIT:”;Q$
5260 RETURN

Chapter 2 Managing your money

MODULE 2.2.10

49

i
I

I

string specified in a space as long as the total distance from the first % to
the second % (i.e. the number of spaces plus 2). Ifthe string is too long it is
truncated, if it is too short it is padded out with spaces.

Line 5140: If the item being printed is a sub-heading, then the amount
associated with it is added to the variable STOTAL, which serves as a
record of the sum of the items under any one main heading.

Lines 5160-5180: At the end of the group represented by a main heading,
the sub-total is printed in the main column.

Line 5120: The amounts associated with sub-totals are printed at column
18 on the screen, other amounts are printed at column 25.

Line 5200: Items are printed one at a time in response to the pressing of any
key.

Lines 5210-5240: When all items have been printed, the overall total for
the particular side of the accounts in question is printed underneath the
main column.

Testing Module 2.2.9
Recalling the set of data which you stored on tape, you should now be able
to see it presented in the format described above by calling this module.
Don’t forget to initialize the program before trying to load the data!

Line 5130: This PRINT USING command means that dollars will always
be printed but that the program can only handle amounts up to $9,999.99.
Its effect on spacing is similar to the previous PRINT USING command
except that the padding added if the number is too short is added to the
beginning of the number being printed.

Line 5100: If the item is a main heading a spacing line is printed to make it
stand out.

” THEN PRIN

5

4000 rem***********************4010 REM CHANGES AND DELETIONS
4020 REM***********************
4030 FOR 1=0 TO C(CD)-1
4040 LET F$=”CHANGE OR DELETE”:LET P1=0:
GOSUB 7000
4050 IF LEFT$(A$(CD,I),!)<>"$
T 3 96,””
4060 PRINT @ 128
4070 IF LEFT$(A$(CD, I) ,1)0”$” THEN PRIN
T g 96,MID$(A$(CD,I),2);

The Working TRS-80 Color Computer

:NEXT

MODULE 2.2.11

50

Testing Module 2.2.10
You should now be able to display the items in the file one by one and to
amend the amounts associated with each.

Lines 4200-4250: Changes to the amount associated with an item are
simply made by inputting the extra sum to be added (or subtracted) from
the existing amount.

Commentary
Lines 4050-4110: The item is displayed, together with its main heading if it
is a sub-heading.

4500 REM***********************
4510 REM DELETE ITEM
4520 REM***********************
4530 LET PLACE=I:LET GROUP=1
4540 IF LEFT$(A$(CD,PLACE) ,1)0"*" THEN
GOTO 4580
4550 LET GROUP=0
4560 LET GROUP=GROUP+1

The purpose of this module is to allow the user to examine, change or delete
individual items. Once having entered an item, such as ‘mortgage’ in
domestic accounts, this module would be used to add any subsequent
payments (or to reduce the payments) rather than entering the item afresh
for each occurrence.

:NEXT
INPUT "AMOUNT TO

4080 IF LEFT$(A$(CD,I),1)="$" THEN PRINT
£ 128. MID$(A$(CD,I),2) ;

4090 IF A(CD,I)=0 THEN GOTO 4120
4100 PRINT TAB(16);
4110 PRINT USING "####.##”;A(CD, I)
4120 PRINT £ 10*32ENTER'=NEXT ITEM”
4130 PRINT ">’CCC’=CHANGE AMOUNT”
4140 PRINT ">'ZZZ'=QUIT FUNCTION”
4150 PRINT ">'DDD’=DELETE ITEM”
4160 INPUT Q$
4170 IF Q$=”ZZZ” THEN RETURN
4180 IF Q$=”DDD” THEN GOSUB 4500: RETURN
4190 IF Q$=”" THEN GOTO 4270
4200 FOR J=10 TO 14: PRINT £ J*32.
4210 PRINT £ 12*32,
BE ADDED:”;Q
4220 PRINT: INPUT "IS THAT CORRECT (Y/N) :
" ;R$
4230 FOR J=ll TO 14 .-PRINT £ J*32,""
4240 IF R$="N” THEN GOTO 4210
4250 LET A(CD,I)=A(CD,I)+Q
4260 GOTO 4040
4270 NEXT I:RETURN

Chapter? Managing your money

!

!■

51

Going Further
1) One useful extra facility would be a simple module to calculate and
perhaps even print the balance between the two sides of the account.
2) As in the previous program, if you are going to want to store very large
numbers of items in this program then you will also want to change the
module which displays the items one by one, to allow a more rapid
movement through the file.

Commentary
Lines 4530-4620: The reason this module is more complicated than other
deletion modules we have entered is represented by the variable GROUP,
which is needed to record the number of items that have to be deleted at any
one time. The reason that there may be more than one item to be deleted is
that the user may have specified the deletion of a main heading, in which
case all the sub-headings associated with that main heading are also to be
deleted.

Testing Module 2.2.11
If this module is successful in deleting items, including main headings and
all the associated sub-headings, then the program is correctly entered and
ready for use.

4570 IF LEFT$ (CD , PLACE+GROUP), 1) = ”$'’ THE
N GOTO 4560
4580 FOR K=PLACE TO C(CD)-GR0UP-l
4590 LET A(CD,K)=A(CD,K+GROUP)
4600 LET A$(CD,K)=A$(CD,K+GROUP)
4610 NEXT K
4620 LET C(CD)=C(CD)-GROUP
4630 RETURN

Summary
By now you should be becoming familiar with the techniques involved in
adding and deleting items to files without disturbing the overall
orderliness. What may have been new in this program is the sheer fiddliness
of correctly formatting large amounts of data on the screen. It is worth
reviewing the methods used before you continue, since in the next program
we shall be displaying far more complex data than anything met here.

2.3 BUDGET
Finally in this trio of financial programs we turn to the most complex
program you will encounter in this book. Entitled Budget it is a powerful

The function of this module is to carry out the deletion of a particular item
when it is specified in the previous module.

The Working TRS-80 Color Computer

MODULE 2.3.1

52

and flexible financial tool which enables the user to plan finances over a 12
month period and to examine the consequences of ‘what.. .if’ decisions
about income and expenditure. Intelligently used, it can provide some
surprising insights into a family’s finances over the year to come — quite
apart from illustrating the problems of working with large bodies of
numeric data. The arrays used by the program contain some 650 separate
numeric values.

6000 REM***********************6010 REM DATA FILES
6020 REM***********************
6030 MOTOR ON:AUDIO ON:PRINT:INPUT "POSI
TION TAPE THEN PRESS enter (MOTOR IS ON
)";Q$:MOTOR OFF
6040 PRINT: INPUT "PLACE RECORDER IN CORR
ECT MODE THEN PRESS enter";Q$
6050 PRINT: PRINT "FUNCTIONS AVAILABLE:”,
"1)SAVE DATA", ,"2)LOAD DATA": INPUT "WHIC
H DO YOU REQUIRE:";Q:ON Q GOTO 6070,6270
6060 RETURN
6070 MOTOR ON: FOR 1 = 1 TO 10000 .-NEXT I: OP
EN"O",#-1,"BUDGET"
6080 PRINTi-l,M0,Y
6090 FOR 1=0 TO 11
6100 PRINT #-l, INCOME(0,1),INCOME(1,I), S
UPP(0,I),SUPP(1,I)
6110 NEXT I
6120 PRINTI-1,N(0),N(1)
6130 FOR 1=0 TO N(0)-1
6140 PRINTi-l,PAYMENT$(0,I)6150 FOR J=0 TO 11
6160 PRINT#-1,PAYMENT(0,I,J)
6170 NEXT J
6180 NEXT I
6190 FOR 1=0 TO N(l)-1
6200 PRINT#-1,PAYMENT$(1,I)
6210 FOR J=0 TO 11
6220 PRINTI-1,PAYMENTS(1,1,J)
6230 NEXT J
6240 NEXT I
6250 CLOSE #-l
6260 RETURN
6270 CLEAR5000:PCLEAR1:LET FLAG=1:GOTO 1
540
6280 OPEN "I”,#-!,"BUDGET"
6290 INPUT#-1,MO,Y
6300 FOR 1=0 TO 11
6310 INPUT#-!,INCOME(0,1),INCOME(1,1) , SU
PP(0,I),SUPP(1,I)
6320 NEXT I
6330 INPUT#-1,N(0),N(1)
6340 FOR 1=0 TO N(0)-1
6350 INPUT#-1,PAYMENT$(0,I)
6360 FOR J=0 TO 11

Chap ter 2 Managing your money

MODULE 2.3.2

32*P1 + P2 ,STRING$(LEN(F$) + 2 ,

32*(Pl+1)+P2,CHR$(150)+F$+C

32*(Pl+2)+P2,STRING$(LEN(F$

A standard title-formatting module.

MODULE 2.3.3

53

I
i

You may be struck at first sight by the similarity between this module and
the last and indeed the functions of the two are quite similar. This one,
instead of printing a decorative heading at some desired place on the
screen, prints a prompt, allows for its confirmation or otherwise and
returns the resultant input to the main program. Handling almost all of the

6370 INPUT#-1,PAYMENT(0,I,J)
6380 NEXT J
6390 NEXT I
6400 FOR 1=0 TO N(l)-1
6410 INPUT#-1,PAYMENT$(1,I)
6420 FOR J=0 TO 11
6430 INPUT#-1,PAYMENTS(1,1 , J)
6440 NEXT J
6450 NEXT I
6460 CLOSE#-1
6470 FOR H=0 TO IxGOSUB 2500:NEXT
6480 GOTO 1000

The length of this data-file module should be sufficient to convince you of
the complexity of the program. Budget, more than any other program in
this book, benefits from the early saving of some data to tide you over the
innumerable pitfalls of entering a program as long as this.

3500 rem***********************
3510 REM QUESTIONS
3520 REM***********************
3530 PRINT @ Pl*32,STRING$(32," ”)
3540 PRINT @ P1*32+P2,P$;
3550 INPUT Q$
3560 PRINT @ 416 , ;Q$;"<<"
3570 PRINT @ 448INPUT "PRESS enter
TO CONFIRM";R$
3580 PRINT £ 416,STRING$(63,
3590 IF R$<>""
3600 LET P2=0:RETURN

7000 REM***********************
7010 REM FORMAT TITLES
7020 REM***********************
7030 LET P2=14-INT(LEN(F$)/2)
7040 PRINT @
150)
7050 PRINT @
HR$(150)
7060 PRINT @
)+2,150)
7070 LET P2=0
7080 RETURN

• » H)

THEN GOTO 3530

The Working TRS-80 Color Computer

MODULE 2.3.4

3)DISPLAY MONTHLY ANALYST

54

Commentary
Lines 3530-3550: From these three lines it will be clear that three variables
are necessary for the proper functioning of this module: Pl which is the
line on which the prompt is to be printed, P2 which is the position along the
line and PS, which is the actual prompt. The module automatically clears
the line on which the prompt is to be printed. In this program P2 is always
left at zero but there is no reason why this should be so if the module is used
in other programs.

Lines 3560-3590: Whatever is input by the user is redisplayed at the
bottom of the screen with a request for confirmation. Confirmation is
given by pressing ENTER with no character input. Inputting an actual
character is interpreted as meaning that the response to the prompt is not
confirmed, in which case the prompt is printed again.

Testing Module 2.3.3
This module may be tested on its own by defining P1 and PS in direct mode
then entering GOTO 3500. P2 does not need to be defined.

1) INITIALIZE"
2) RESET HYPOTHETICAL FIGU

program’s requests for input by this one module saves scores of lines in the
main program.

4) CHANGES”
5) NEW BUDGET HEADINGS"
6) DELETE BUDGET HEADING"
7) RESET MONTH"
8) DATA FILES"
9) STOP"

1140 PRINT: INPUT "WHICH DO YOU REQUIRE:"
;Z:CLS
1150 IF ZO1 AND ZO2 AND Z<>7 AND Z<>8
AND Z<>9 THEN GOTO 1180
1160 ON Z GOSUB 1510,3010.1000,1000,1000
,1000,4000,6000,1230
1170 GOTO 1000
1180 PRINT:PRINT "1)REAL
1190 INPUT "2)HYPOTHETICAL DATA";H:CLS
1200 LET H=H-1:SCREEN 0,H

1000 REM***********************
1010 REM MENU
1020 REM***********************
1030 CLS:LET F$="HOME BUDGET":LET P1=0:G
OSUB 7000
1040 PRINT: PRINT "FUNCTIONS AVAILABLE:”
1050 PRINT "
1060 PRINT ’’
RES"
1070 PRINT "
S"
1080 PRINT "
1090 PRINT ”
1100 PRINT ”
1110 PRINT "
1120 PRINT "
1130 PRINT "

r,

Chapter 2 Managing your money

MODULE 2.3.5

55

h

This module initializes the various arrays used by the program. It also
loads the array MONTHS with the names of the months of the year.

A standard menu module with the addition of a provision to set a variable
called H according to whether real or hypothetical data is to be referred to.
The data stored by this program is divided into two categories which are
entirely separate from one another, although data in the real side of the
arrays can be copied into the other side. What this means in practice is that
if the user wishes to enter some speculative data, e.g. ‘what would happen
if income were to rise in July by $500 and two new standing orders were
to be entered into from September onwards, plus the purchase of a new TV
in March’, this can be entered into the hypothetical side of the array so that
the interaction of these decisions with existing commitments can be
examined, without corrupting existing data about confirmed plans for the
year ahead.

Commentary
Line 1190: The variable H is the sole indication that will be used by the
program as to whether real or hypothetical data is being worked with, and
is used to indicate either the 0 or 1 elements of the arrays.

Line 1200: Note the use of the value ofH to reset the screen color set as a
reminder of which type of data is being input or displayed.

1210 ON Z-2 GOSUB 2010,5010,3260,5500:GO
TO 1000
1220 GOTO 1030
1230 CLS.’LET F$="HOME BUDGET":LET P1=7:G
OSUB 7000
1240 END

1i

1500 REM***********************
1510 REM SET UP REGULAR PAYMENT
1520 REM***********************
1530 CLEAR5000:PCLEAR1:LET FLAG=0
1540 DIM PAYMENT$(1,19) ,MONTHLY(1,19) , PA
YMENTS(1,19,11) , PTOTALS(1,11) ,BDEFICIT(1
,11),INCOME(1,11) ,SUPP(1,11),BALANCE(1,1
1)1550 DATA " JANUARY", "FEBRUARY","MARCH","
APRIL" , "MAY" , "JUNE" , "JULY" , "AUGUST” , "SEP
TEMBER" , "OCTOBER" , "NOVEMBER" , "DECEMBER”
1560 DIM MONTH$(11):RESTORE
1570 FOR 1 = 0 TO 11:READ MONTH$(I) : NEXT
1580 IF FLAG=1 THEN GOTO 6280
1590 INPUT "NUMBER OF CURRENT MONTH :”;MO
:LET MO=MO-1
1600 LET Y=MO+11
1610 GOSUB 4500.-GOSUB 3260.GOTO 1030

The Working TRS-80 Color Computer

MODULE 2.3.6

56

Line 1600: The variable Y is used to store the end of the current 12 month
period.

Commentary
Line 1580: Once again the variable FLAG is used to determine whether this
module returns program execution to the main menu or to the data-file
module.

Testing Module 2.3.5
Provided that temporary RETURNS are placed at 4500 and 3260 you
should now be able to call up this module from the main menu. Having
initialized the program you should also be able to call up the data file
module to save the empty arrays, stop the program, re-RUN it and reload
the empty arrays. These tests will make use of four of the modules you have
entered so far.

This module accepts inputs for monthly income figures under two
headings, main income and supplementary income.

4500 REM***********************
4510 REM INCOME
4520 REM***********************
4530 CLS
4540 PRINT "INPUT SALARY AS FOLLOWS:"
4550 FOR I=M0 TO Y
4560 LET 11=1:1? I1>11 THEN LET 11 = 11-12
4570 LET P$=MONTH$(Il)+":"
4580 LET Pl=I+l-M0
4590 GOSUB 3500
4600 LET INC0ME(H,Il)=VAL(Q$)
4610 PRINT 6 32*(I+1-MO)+LEN (P$)+1,INCO
ME(H.Il)
4620 NEXT I
4630 CLS
4640 PRINT "OTHER ANTICIPATED INCOME:"
4650 FOR I=M0 TO Y
4660 LET I1=I+12*(I>11)
4670 LET P1=I+1-MO
4680 LET P$=MONTH$(Il)+":"
4690 GOSUB 3500
4700 LET SUPP(H,Il)=VAL(Q$)
4710 PRINT G 32*(I+1-MO)+LEN(P$)+l, SUPP (
H,I1)
4720 NEXT I
4730 GOSUB 2500
4740 CLS
4750 RETURN

Chapter 2 Managing your money

MODULE 2.3.7

57

!1

I
\

Lines 4640-4720: The same process as above, but supplementary income
is input and stored in the array SUPP.

Lines 4570-4590: Note how flexible our use of Module 3 can be. Here the
prompt used is a month name and the line on which the prompt is printed is
determined by the variable II.

3320
3330
3340
3350
3360
3370
3380

i
i

Line 4600: The figure for main income is placed into the array INCOME.
Note that this array, like all the others, has two sides, numbered 0 and 1.
The side into which the data is placed will depend on the value of H. In the
present case, this module is always called by the initialization module and
only real data is input (i.e. the value of H is 0). In subsequent modules H
could be either 0 or 1 depending on whether the user has specified real or
hypothetical data.

Commentary
Line 4560: The purpose of this line is to take the value of the loop variable
I, which can vary from 0 to 22 (since MO can be from 0 to 11) and to convert
that value into something in the range 0 to 11 i.e. something that will point
to an element in one of our arrays. Note that this means that our arrays will
not run from 0 to 11 representing the forthcoming 12 months, they will run
from the number of the current month up to 11 and back via zero to the
number before the current month.

Testing Module 2.3.6
Provided that a temporary return is placed at 2500, you should be able to
enter details of income when the initialization module is called from the
main menu. You may wish to confirm in direct mode that the figures are in
fact stored from INCOME(0,0) to INCOME(0,11) and in the same
positions in SUPP.

REM***********************
REM INPUT OF PAYMENTS
REM***********************
LET F$="INPUT OF BILLS":LET P1=0:GO

3250
3260
3270
3280
SUB 7000
3310 PRINT "PRECEDE NAME OF ITEM WITH A
'*’ IF YOU DO NOT WANT IT BUDGETED."

LET P$="HEADING ('ZZZ' TO QUIT)"
LET Pl=7
GOSUB 3530
IF Q$="ZZZ" THEN GOSUB 2500:RETURN
CLS
PRINT "INPUT UNDER:";Q$
LET N(H)=N(H)+1

The Working TRS-80 Color Computer

MODULE 2.3.8

58

Testing Module 2.3.7
Provided that there is still a temporary line 2500 RETURN, you should
now be able to input payment headings and their associated payments,
verifying in direct mode that they have been placed into the correct
positions in PAYMENTS and PAYMENTS.

This module accepts the input of payment headings and the payments
associated with them for the 12 months to come.

Line 3390: Only 20 payment headings are allowed for, though this is a
completely arbitrary figure and could be increased (within the limits of the
memory) if you wish.

Commentary
Line 3310: This prompt refers to a later stage in the program where average
monthly payments will be calculated for each payment heading and
included in an average monthly budget. Attaching an asterisk to the front
of a payment heading means that it is excluded from this process and
treated as a one-off expenditure.

Line 3400: The name of the payment heading is stored in one or other half
of the array PAYMENTS — which half is determined by the value of H.

Lines 3410-3480: For each payment heading, 12 monthly payments are
requested and placed onto one or the other side of the array PAYMENTS.
You may note that this is a three-dimensional array: the first dimension
determines whether we are dealing with real or hypothetical data, the
second dimension refers to the payment number and the third dimension
refers to the month.

2500 rem***********************
2510 REM UPDATE BUDGET
2520 REM***********************

3390 IF N(H)=20 THEN LET N(H)=N(H)-l : PRI
NT G 8*32, "NO MORE ROOM IN PAYMENTS FILE

: FOR 1=1 TO 5000 .-NEXT: RETURN
3400 LET PAYMENT$(H,N(H)-1)=Q$
3410 FOR I=MO TO Y
3420 LET I1=I:IF I1>11 THEN 11=11-12
3430 LET P$="AM0UNT FOR "+MONTH$ (Il) + " : "3440 LET P1=I+1-MO
3450 GOSUB 3530
3460 LET PAYMENTS(H ,N(H)-1, Il)=VAL(Q$)
3470 PRINT 3 32*(I + 1-MO) + 14 + LEN(M0NTH$(I
1)).Q$
3480 NEXT I
3490 CLS:GOSUB 2500 .’GOTO 3280

Chapter 2 Managing your money

t

59

Lines 2620-2720: Having calculated the budget figures, the module now
proceeds to perform a number of calculations for each month, as follows:

Commentary
Lines 2530-2600: This loop calculates average monthly payments for
every payment heading except for those preceded by an asterisk. The figure
is such that over the year it will be sufficient to cover all payments under
that heading. For regular monthly payments, this figure will be the same as
the payment itself. This budget figure is then stored in the array
MONTHLY, in a position corresponding to that of the payment in the
array PAYMENTS. In addition, the budget figure for each payment
heading is added to what is already contained in one or other of the halves
of the two element array T thus making up a total of the individual budget
figures. If there are no payment headings preceded by an asterisk, the
eventual figure in T will be 1/12 of the total of all payments over the year.

This fairly short module is a difficult one to follow until you have had some
experience of the program in practice. The purpose of the module is to
perform the calculations which the program is designed to provide, on the
basis of the income and expenditure figures supplied by the user. The
functions and the arrays will be described in full but you may wish to return
to them later when you have seen the figures displayed after the entry of the
next module.

2530 LET T(H)=0
2540 FOR 1=0 TO N(H)-1
2550 LET BUDGET=0
2560 IF LEFT$(PAYMENT$(H,I),1)=”*” THEN
GOTO 2600
2570 FOR J=0 TO 11:LET BUDGET=BUDGET+PAY
MENTS(H,I,J):NEXT
2580 LET MONTHLY(H,I)=BUDGET/12
2590 LET T(H)=T(H)+MONTHLY(H,I)
2600 NEXT I
2610 LET TTOTAL=0:LET CUM=0
2620 FOR I=MO TO Y
2630 LET I1=I+12*(I>11)
2640 LET PTOTALS(H,I1)=0
2650 FOR J=0 TO N(H)-1:LET PTOTALS(H , 11)
= PT0TALS(H,I1)+PAYMENTS(H,J,I1):NEXT
2660 LET TTOTAL=TTOTAL+PTOTALS(H, II)
2670 FOR J=0 TO N(H)-1:IF LEFT$(PAYMENT$
(H, J) ,•1) = ”*” THEN TTOTAL=TTOTAL-PAYMENTS
(H,J,I1)
2680 NEXT J
2690 LET BDEFICIT(H , 11)=T(H)*(I-MO+1)-TT
OTAL
2700 LET CUM=CUM+INCOME(H , Il)+SUPP(H , Il)
-PTOTALS(H.Il)
2710 LET BALANCE(H,I1)=CUM
2720 NEXT I:RETURN

The Working TRS-80 Color Computer

MODULE 2.3.9

60

Line 2650: The total of the payments falling during the month is
accumulated in the relevant element of the array PTOTALS.

Line 2660: This total monthly payment is itself accumulated over the 12
months in the variable TTOTAL.

Line 2670: From TTOTAL is subtracted the amount for any payment
which has been marked by the user with an asterisk. TTOTAL now
contains the accumulated total of all payments since the beginning of the
12 month period which were included in the budgeting calculation.

Lines 2700-2710: The relevant element of the array BALANCE is set
equal to the cumulative difference between total income and total
expenditure.

Testing Module 23.8
If you have not already done so, it would be best to save some data before
testing this module. Re-inserting your temporary RETURN at line 2500
will allow you to input data for income and payment headings (one or two
payments are quite sufficient at present). Having done that, the only test
that is really practical at the present time is to allow this module to be called
and to discover any syntax errors that may have crept into what you have
entered. For overall checking of the module’s functions it is probably
better to wait until the next module is entered and the figures can be
displayed.

Line 2690: An element in the array BDEFICIT is now set equal to the
difference between the actual amount set aside in the budget and the total
of payments which the budget is meant to be covering. The element in
BDEFICIT corresponding to any particular month will indicate the extent
to which the average monthly budget is ahead or behind the items included
in the budget. If all the budgeted items are due for payment in the first
month of the period, then the budget will be in deficit until the last month
of the year. If all the budgeted items are not due for payment until the last
month of the period then the budget will be in surplus for every month up
to the last.

2000 rem***********************
2010 REM DISPLAY FIGURES
2020 REM***********************
2030 LET F$=”PAYMENTS":LET P1=1:GOSUB 70
00
2040 LET P$="MONTH TO START”:LET P1=5:GO
SUB 3530

Chapter 2 Managing your money

INPUT
.•NEXT:

V;PAYMENTS(H,

.-NEXT

I

61

2200 PRINT CHR$(159);
2210 NEXT I
2220 PRINT STRING$(32,CHR$(159)) ;
2230 INPUT "PRESS ENTER FOR ANALYSIS";Q$
2240 FOR 1=2 TO 14.-PRINT @ 1*32,""
2250 PRINT @ 64,"TOTAL"2260 PRINT "BUDGET",,"BUDG.BAL.",,"PAY",
,"OTHER INC",,"TOTAL INC",,"CASH BAL.",,
"CUM BAL."
2270 FOR I=M1 TO Ml+3
2280 LET I1=I+12*(I>11)
2290 LET 12=9+4*(I-Ml)
2300 IF PTOTALS(H,Il)<0 THEN PRINT @ 64+
12,CHR$(191);ELSE PRINT @ 64+12,CHR$(159
) ;2310 PRINT USING "###";INT(ABS(PTOTALS(H
,11)))2320 IF T(H)<0 THEN PRINT £ 96+12,CHR$(1
91);ELSE PRINT @ 96+12,CHR$(159);
2330 PRINT USING "###";INT(ABS(T(H)))
2340 IF BDEFICIT(H,I1)<0 THEN PRINT @ 12
8+I2,CHR$(191);ELSE PRINT @ 128+12,CHR$(
159) j2350 PRINT USING "###";INT(ABS(BDEFICIT(
H.Il)))
2360 PRINT @ 160+12,CHR$(159);
2370 PRINT USING "###";INT(INCOME(H , II))
2380 PRINT S 192+12,CHR$(159);
2390 PRINT USING "###";INT(SUPP(H, Il))
2400 PRINT £ 224+I2,CHR$(159);
2410 PRINT USING "###";INT(INCOME(H,Il)+
SUPP(H , II))

"'ENTER' TO

2050 FOR 1=0 TO 11:IF Q$<>MONTH$(I) THEN
NEXT I:GOTO 2040

2060 CLS:LET M1 = I:IF MO-MI-12*(MI>MO-1)<
4 THEN LET Ml=MO-4-12*(MO<5)
2070 PRINT "MONTH "; :FOR J=I TO 1+3: P
RINT CHR$(159);LEFTS(MONTHS(J+12*(J>11))
,3);:NEXT J:PRINT CHR$(159);CHR$(159) ; CH
R$(159);" B ";CHR$(159);
2080 PRINT STRING$(32,CHR$(159));
2090 FOR 1=0 TO N(H)-1
2100 IF IO11 THEN GOTO 2130
2110 PRINT @ 13*32,""
CLS AND CONTINUE";Q$

2120 FOR J=2 TO 14:PRINT @ J*32,""
PRINT @ 2*32,"";
2130 PRINT USING
I);2140 FOR J=M1 TO Ml+3
2150 PRINT CHR$(159);
2160 IF INT(PAYMENTS(H,I,J+12*(J>11)))> =
1000 THEN PRINT "***",-ELSE PRINT USING "
###";INT(PAYMENTS(H,I,J+12*(J>11))) ;
2170 NEXT J
2180 PRINT STRING$(3,CHRS(159)) ;
2190 PRINT USING "###";INT(MONTHLY(H,I))

The Working TRS-80 Color Computer

62

We noted in the last program that display modules for complex data are
themselves likely to be complex, and this, the largest module in the
program, is no exception. Its purpose is to display, in two separate tables,
the details of payments entered so far, the income figures and the analysis
which was performed in the course of running the last module.

Lines 2270-2460: For each of the four months in question, the following
figures are printed in the relevant column:
a) the total payments in each month (2300—2310)
b) the total of budget payments for the month (2320-2330)

Commentary
Line 2060: The desired starting month having been checked, this line
ensures that the table never starts less than three months before the final
month of the 12 month period, since this would render the resulting table
meaningless.

2420 IF INCOME(H,I1)+SUPP(H,I1)-PTOTALS(
H,I1)<0 THEN PRINT @ 256+12,CHR$(191) ; EL
SE PRINT G 256+12,CHR$(159);
2430 PRINT USING "###";INT(ABS(INCOME(H,
I1)+SUPP(H,Il)-PTOTALS(H,II)))
2440 IF BALANCE(H,Il)<0 THEN PRINT @ 288
+ 12 ,CHR$(191);ELSE PRINT £ 288+12,CHR$(1
59);
2450 PRINT USING ”###”;INT(ABS(BALANCE(H
,11)))2460 NEXT I
2470 PRINT STRING$(32,CHR$(159))
2480 INPUT "DO YOU WISH TO SEE FIGURES A
GAIN (Y/N)”;Q$
2490 IF Q$O"Y" THEN RETURN ELSE CLS:GOT
O 2070

Line 2070: The first three letters of the four months to be covered are
printed across the top of the screen.

Lines 2090-2210: In this loop a series of lines are printed, each containing
a payment heading taken from PAYMENTS, the associated payments for
the four months in question taken from PAYMENTS and the monthly
budget figure for that heading, taken from MONTHLY. Note that the
table is formatted on the basis that the highest figure for a monthly
payment will be $999. If this is exceeded, *** is printed to remind the user
that this figure cannot be accurately represented in the table. Note also the
use of a loop to clear a part of the screen in the event that the number of
payments exceeds the capacity of a single screen.

Chapter 2 Managing your money

MODULE 2.3.10

63

Testing Module 2.3.9
Provided that you have recorded a valid set of data, you are now in a
position to test this module by loading the data and calling up this module.
You should be faced with an orderly table of figures as described in the
commentary above. If not, at least you have the recorded data to reduce
the tedium of subsequent tests.

c) the difference between the budget figure and the actual payments it is
meant to cover (2340-2350)
d) main income (2370)
e) supplementary income (2390)
f) the balance of income over expenditure for the month (2420-2430)
g) the cumulative balance of income over expenditure since the beginning
of the 12 month period (2440-2450).

You will note that the position of each item on the line is dictated by the
variable 12, based upon the’value of the loop variable I. This means that in
the case of figures exceeding $999, instead of not being able to print them
without disrupting the orderliness of the table, they are printed with a
preceding % to show that they are truncated, followed by the first two
digits. This flag is automatically provided by the Color Computer as a
result of our employing the PRINT USING “###” format. Note also
that negative balances are indicated by the setting of the square consti
tuting the wall of the column in front of the item to red (CHR$(191))
rather than yellow CHR$(159)).

Having entered what is, to all intents and purposes a working program, we
now go on to add some features which add to the flexibility of our tool.

3000 REM***********************
3010 REM SET UP SHADOW ARRAYS
3020 REM***********************
3030 LET T(1)=T(0)
3040 FOR 1=0 TO N(0)-1
3050 LET PAYMENTS(1,I) = PAYMENT$(0 , I)
3060 LET MONTHLY(1,I)=MONTHLY(0,1)
3070 FOR J=0 TO 11
3080 LET PAYMENTS(1,I , J) = PAYMENTS(0 , I, J)
3090 LET PTOTALS(1,J)=PTOTALS(0,J)
3100 LET BDEFICIT(1,J) = BDEFICIT(0 , J)
3110 LET INCOME(1,J)=INCOME(0,J)
3120 LET SUPP(1,J)=SUPP(0,J)
3130 LET BALANCE(1,J)=BALANCE(0 , J)
3140 NEXT J,I
3150 LET N(1)=N(0)
3160 LET H=1
3170 RETURN

The Working TRS-80 Color Computer

MODULE23.il

MODULE 23.12

64

This straightforward module allows the user to specify a payment heading
which, if it is found to be present in the file of payments, is deleted.

This module, for instance, allows the user to reset the hypothetical side of
the table to the data in the real side. This is simply done by copying from
one side to the other. Note that calling this module results in the loss of any
hypothetical data which is not also present on the real side of the arrays.

Testing Module 2.3.10
Having entered some hypothetical data using menu function 5, you are
now in a position to reset the hypothetical side of the arrays to the parallel
real set of data, regardless of whether there are more or less items in the real
side.

Testing Module 2.3.11
You should now be able to delete an item from either side of the payments
file.

5000 REM***********************
5010 REM CHANGES
5020 REM***********************
5030 LET F$="CHANGES”:G0SUB 7000
5035 IF CD=1 THEN LET F$=”DEBIT”: LET Pl =
0.-GOSUB 7000
5040 PRINT ’’COMMANDS AVAILABLE:”
5050 PRINT " 1)CHANGE EXISTING BUDGET HE
AD”,” 2)CHANGE MAIN INCOME”,” 3)CHANGE A
DDITIONAL INCOME”

5500 REM***********************
5510 REM DELETE BUDGET HEADING
5520 REM***********************
5530 LET P$=”NAME OF ITEM TO BE DELETED”
: LET P1=1:GOSUB 3500
5540 FOR 1=0 TO N(H)-1:IP Q$OPAYMENT$ (H
,1) THEN NEXT I: LET F$="ITEM NOT FOUND”:
LET P1=10:GOSUB 7000:FOR 1 = 1 TO 5000:NEX
T:RETURN
5550 LET N(H)=N(H)-1
5560 FOR J=I TO N(H)-2
5570 LET PAYMENT$(H,J) = PAYMENT$(H, J+l)
5580 FOR K=0 TO 11
5590 LET PAYMENTS(H , J , K) = PAYMENTS(H , J+l ,
K)
5600 NEXT K
5610 NEXT J
5620 GOSUB 2510
5630 RETURN

MODULE23.il

Chapter 2 Managing your money

•Z' TO LEAVE”

’Z’

65

The purpose of this module is to allow the user to specify changes to any
figure input for payments, main income or supplementary income.

5060 LET P$=”WHICH DO YOU REQUIRE":LET P
1 = 8 .-GOSUB 3500
5070 LET H$=Q$
5080 CLS
5090 IF H$="l" THEN GOSUB 5130
5100 IF H$="2” OR H$=”3" THEN GOSUB 5320
5110 GOSUB 2500
5120 RETURN
5130 LET P$="NAME OF BUDGETARY HEADING T
0 BE CHANGED":LET Pl=l:GOSUB 3500
5140 FOR 1=0 TO N(H)-1:IF Q$<>PAYMENT$(H
,1) THEN NEXT I:LET F$=”NO HEADING OF TH

AT NAME" .-LET Pl=12:GOSUB 7000 .-FOR 1 = 1 TO
5000:NEXT:RETURN

5150 LET B=I
5160 CLS
5170 LET P$="NEW FIGURE OR
:LET Pl = 12
5180 FOR I=MO TO Y
5190 LET I1=I+12*(I>11)
5200 PRINT @ 32*(I-MO),MONTH$(Il) ;
5210 PRINT TAB(10)”:";
5220 PRINT USING ”####.##";PAYMENTS(H,B,
II)5230 GOSUB 3500
5240 IF Q$="Z" THEN GOTO 5290
5250 LET PAYMENTS(H,B,I1)=VAL(Q$)
5260 PRINT @ 32*(I-MO)+15,"(”;
5270 PRINT USING ”####.##";PAYMENTS(H , B ,
II);5280 PRINT ")"
5290 NEXT
5300 GOSUB 2500
5310 RETURN
5320 IF H$="2” THEN PRINT "MAIN INCOME”
ELSE PRINT "SUPPLEMENTARY INCOME”
5330 LET P$=”NEW FIGURE OR ’Z’ TO LEAVE"
5340 LET Pl = 13
5350 FOR I=MO TO Y
5360 LET I1=I+12*(I>11)
5370 PRINT 6 32*(I-MO+1),MONTH$(I1);
5380 PRINT TAB(10);
5390 IF H$=”2” THEN PRINT INCOME(H.Il) E
LSE PRINT SUPP(H,I1)
5400 GOSUB 3500
5410 IF Q$=”Z” THEN GOTO 5460
5420 IF H$=”2" THEN LET INCOME(H,Il)=VAL
(Q$) ELSE LET SUPP(H,I1)=VAL(Q$)
5430 PRINT @ 32*(I-MO+1) + 15,” (" ;
5440 PRINT USING ”####.##";VAL(Q$);
5450 PRINT
5460 NEXT I
5470 RETURN

The Working TRS-80 Color Computer

MODULE 2.3.13

66

Commentary
Lines 5180-5290: In this section the payments stored under a particular
payment heading are displayed one by one. To leave a value unchanged,
the user must input Z; to change a value it is only necessary to input the new
value. Note the usefulness of our prompt module here, since the prompt
itself can be defined outside the loop and used for each repetition of the
loop without further definition.

Testing Module 2.3.12
You should now be able to change any of the data which you have
previously input.

Lines 5320-5460: Throughout this section of the program the array to be
addressed (either INCOME or SUPP) is determined by H$ — this saves
considerable space over having a separate section for each income type,
though the section could be even shorter if the two types of income were
contained in separate halves of the same array.

4000 REM***********************
4010 REM REGISTER MONTH
4020 REM***********************
4030 LET F$="HOME BUDGET”:LET P1=0:GOSUB
7000

4040 LET P$="WHAT MONTH IS IT”: LET Pl = 5 :
GOSUB 3500
4050 IF Q$=MONTH$(MO) THEN RETURN
4060 FOR 1 = 0 TO I1:IF Q$OMONTH$ (I) THEN
NEXT I:CLS:PRINT £ 9*32,"THERE MUST BE

SOME MISTAKE. I DON'T KNOW OF A MONT
H CALLED ";Q$;”!”:GOTO 4030
4070 LET M2=I
4080 IF M2<M0 THEN LET M2=M2+12
4090 FOR I=M0 TO M2-1
4100 LET 11=1+12*(I>11)
4110 CLS
4120 LET F$="UPDATE”:LET P1=0:GOSUB 7000
4130 PRINT "PLEASE INPUT AMOUNTS FOR NEX
T,,,MONTH$(I1)
4140 FOR J=0 TO N(0)-1
4150 LET Pl=5
4160 LET P$=PAYMENT$(0,J)+":(”+STR$(PAYM
ENTS(0,J,Il))+"):"
4170 GOSUB 3530
4180 LET PAYMENTS(0,J,Il)=VAL(Q$)
4190 NEXT J
4200 LET P$="MAIN INCOME:(”+STR$(INCOME (
0 , Il)) + ”):”:LET Pl=7:GOSUB 3500
4210 LET INCOME(0,I1)=VAL(Q$)
4220 LET P$="ADDITIONAL INCOME:("+STR$(S
UPP(0,I1))+"):”:LET P1=9:GOSUB 3500
4230 LET SUPP(0,I1)=VAL(Q$)

I

Chapter 2 Managing your money

Lines 4200—4230: Main income and supplementary income are updated.

67

Line 4250: MO is set equal to the current month, reduced so that it falls into
the range 0—11 if necessary.

Testing Module 2.3.13
You should now be able to update the program one or more months and be
prompted to give the necessary information to accomplish this. If this
module functions correctly the program is ready for use.

Lines 4140-4190: In this loop, all the payment headings are presented for
updating. Note that the variable H is not used to define which part of the
arrays since in resetting the data it is only the real side of the arrays which is
addressed. At the end of this module a call is made to the module which
resets the hypothetical arrays — this may be omitted provided that it is
remembered that the hypothetical arrays will now contain out of date
information.

Commentary
Line 4090: This loop represents the months from the previous current
month (MO) to the new month which has just been input, but one year
ahead i.e. if the program has not been used for two months and it is
updated from January to March, it will request inputs for next January
and February.

Our final module is one which allows the user to avoid the necessity to
make piecemeal changes every time the month changes. The function of
the module is to delete the data for any months which the user defines as
past and to request inputs under each payment head and for the two
income types for all the months necessary to make up a 12 month period
from the new current month.

4240 NEXT I
4250 LET M0=M2+12*(M2>11):LET Y=MO+11:LE
T H = 0
4260 GOSUB 2500:GOSUB 3010:RETURN

Summary
This long program is a powerful tool, properly used, although it takes
some practice to get the most out of it. Taken seriously it can give you some
surprising information about the state of your finances throughout the
year — when things will be tight and when there might be a bit to spread
around, how payments could be re-arranged to ensure a little more at
Christmas or for holidays, what might be the effect overall of a new
commitment or of increased income.

The Working TRS-80 Color Computer

68

Remember, however, that this book is intended to set your Color Com
puter to work for you. If you have successfully overcome the problems of
debugging this program then there is no reason why you should not go on
to adapt it to other uses which require the flexible input and manipulation
of data, together with clear presentation and the possibility of running two
parallel sets of information if desired. Simple changes to Module 8 could
lead to a very different type of program using almost the same arrays but
calculating something entirely different. The Color Computer is yours,
and so is the confidence you have gained in entering this program. The
program itself is only a foundation for putting your Color Computer and
your confidence to work.

Going Further
1) The program would be more flexible if the user had the option of
copying the hypothetical data into the real side of the arrays. If you think
about it that should only involve a very small change in the program.
2) As hinted in the commentary on Module 12, real savings in the length of
this program could be made by declaring one more complex array and
inputting data to the various parts of the array according to a small number
of new variables. One place to start might be in combining main and
supplementary income into one array.
3) At the moment, the user has to work through the whole 12 monthly
payments, even if only one is to be changed. How difficult would it be to
add an escape from this process, or even make it possible to access a single
month’s payment on command?

■

r

!

69

CHAPTER 3
Drawing on the Color Computer

REM***********************
REM INITIALIZE
REM***********************
DIM CORNER(3):CLS0:POKE(1024+14*32)
LET X=16:LET Y=8

After the rigors of the last program it is with a sigh of relief that we turn to
the topic of the Color Computer’s excellent graphics capabilities. I should
hasten to add that this chapter is in no way intended to be exhaustive, for
the Color Computer’s capabilities in this field could (and no doubt will) be
the subject of a book in their own right. Nevertheless, in this chapter we
shall tackle such areas as the creation and saving of simple pictures or
maps for use by later programs, the drawing of geometric shapes, the
saving of screen memory on tape and the design of complex patterns up to
10000*10000 pixels.

The programs you will find in this chapter include Artist, a text screen
graphics tool; Tangrams, a program which allows you to play the ancient
Chinese shape game; Doodle, which allows the owners of Color Com
puter joysticks to turn their screen into a sketch pad and Designer, a
sophisticated tool for the drawing of large-scale plans.

3.1 ARTIST
While it is true that the high-resolution graphics capabilities of the Color
Computer are some of the finest to be found in any micro computer on the
market, it should not be forgotten that there is also a useful set of graphics
characters available in the text mode. Indeed, given the difficulty of plac
ing text and high-resolution graphics on the screen at the same time, there
are many tasks which, unless they can be accomplished with the low
resolution graphics characters, are not going to be accomplished at all.

The purpose of the present program, apart from giving you the ability,
for the sheer fun of it, to draw multi-colored pictures on your screen, is to
act as a feeder for two later programs in this book which require designs as
part of their data and indeed, to provide easily recallable designs for
programs of your own which might benefit from the drawing of one or two
simple pictures.

MODULE 3.1.1
1000
1010
1020
1030
,22
1040

The Working TRS-80 Color Computer

This module initializes the screen display for the subsequent modules.

MODULE 3.1.2

70

Line 1040: X and Y represent the co-ordinates of the main cursor on the
32*16 text screen.

Testing Module 3.1.1
The screen should be set to black and a green V should appear on the 15th
line of the display.

The main purpose of this module is to provide a flashing cursor at the
co-ordinates contained in X and Y, until such time as the user inputs a
command.

Commentary
Line 1030: In this program we shall be moving a cursor around the screen
and using a second cursor, on the 15th line of the display, to indicate the
graphics character currently in use. In both cases this is more conveniently
done by POKEing the character into the screen memory than by printing
onto the screen. The POKE command has the effect of placing a number
specified in the command into a specified memory location. In our case the
memory location chosen will be that part of the Color Computer’s mem
ory which is used to store the contents of the screen. Any number POKEd
there will be interpreted as the character having that ASCII code (see
Appendix B of Getting Started With Color Basic). As a result the chosen
character will appear on the screen. All such POKEing will begin al a base
of 1024, which is the first location of the memory for the screen in text
mode and to this base will be added a number between 0 and 511, repre
senting the number of locations on the text screen. In this particular case,
having cleared the screen and set it black, the POKE command places a
white V on the 15th line for later use as a cursor.

1500 REM***********************
1510 REM CURSOR MOVE
1520 REM***********************
1540 FOR 1=0 TO 15:POKE(1024 + 32*15 + 2*I) ,
(128+1):POKE(1024+32*15+2*1+1),175:NEXT
1550 LET T$=INKEY$:IF T$<>”” THEN GOTO 2
030
1560 LET P=PEEK(1024+Y*32+X)
1570 POKE(1024+Y*32+X),106:FOR 1=1 TO 25
:NEXT
1580 POKE(1024+Y*32+X),P:FOR 1=1 TO 25:N
EXT
1590 GOTO 1550

Chapter 3 Drawing on the Color Computer

71

Lines 1550-1590: This short module bears some close study if you have
not come across anything similar before since, in some form or other it is
found in many of the subsequent programs of this book and will find its
way into many of the programs you will go on to write for yourself. Its
purpose is first of all to provide a waiting state, during which time a
flashing cursor will be displayed on the screen.

Lines 1570-1580: These two lines provide a single flash, on and off, of the
cursor. In the first line the code value of an asterisk is POKEd into the
screen location specified by X and Y. After a short pause, the original
character, whose code value is stored in the variable P, is replaced there.

Line 1560: Parallel to the POKE command is PEEK, which simply looks at
a particular memory location and returns the number which is to be found
there. It is used here since when we move our cursor around in the later
stages of the program we do not wish it to obliterate any parts of the design
we have built up which it passes across. Accordingly, the original contents
of the screen location where the cursor is to flash are first placed into the
variable P.

Commentary
Line 1540: Re-examination of Appendix B will serve to remind you that
the Color Computer has a set of 128 low resolution graphics characters,
representing 16 basic characters times the eight possible colors available
in this mode. The purpose of this line is to display across the bottom of the
screen one complete set of the characters in the color green. These will
later be used to select the character to be POKEd onto the screen.

Line 1550: This line uses the extremely useful INKEYS function to detect
whether the user has made any input to the program. Unlike INPUT,
which requires the user to press ENTER before an input is recognized, the
INKEYS function constantly scans the whole of the keyboard to see
whether a key is being depressed and, if it finds one that is, it is labelled as a
string called INKEYS. If no key is being depressed then INKEYS is simply
an empty string or "" in Basic (note that there is no space between these
two quotation marks). It is usual to set another string — I always use T$ —
equal to INKEYS before going on to use it, for the simple reason that by the
time subsequent program lines have been reached it may well be that
INKEYS will have changed due to the finger being lifted from the key.

The Working TRS-80 Color Computer

Line 1590: This cycle is repeated for as long as a key is not depressed.

MODULE 3.1.3

72

The two short loops at the end of the lines are there to make the flashing
slow enough to be visible as a regular on-off rhythm.

Testing Module 3.1.2
A flashing asterisk should appear towards the center of the screen.
Pressing any key should result in an undefined line error.

Commentary
Lines 2030-2040: In order to understand these two lines you must first
know something of the way in which the Color Computer understands the
truth or falsity of conditions — expressions like A = B or X>Y. Try enter
ing the following lines:
9999 INPUT X: IF X THEN PRINT ‘X’
10000 GOTO 9999

Running these two lines will reveal that the Color Computer only con
siders the IF statement to have been fulfilled if the value input for X is not
zero. This is an important lesson — for the Color Computer, true means
simply not equal to zero and false means equal to zero. How does that
apply to a condition such as X = Y?

The answer is that X = Y is interpreted in exactly the same way: if X is
equal to Y then the expression is given a value (actually - 1) and if X is not
equal to Y the expression is given a value of zero. What this means is that
such conditions can actually be used as variables in the course of a

The purpose of this module is to decide what action to take on the basis of
the key which the user has depressed.

2090 IF T$=”OR T$=".” THEN GOSUB 2530
2100 IF T$="S" THEN GOSUB 3060 .-GOTO 1540
2110 IF T$=”M" THEN GOSUB 3500
2120 GOTO 1550

2000 REM***********************
2010 REM EDIT COMMANDS
2020 REM***********************
2030 LET X=X-(T$=CHR$(9))+(T$=CHR$(8)) : L
ET X=X+(X>31)-(X<0)
2040 LET Y=Y-(T$=CHR$(10))+(T$=CHR$(94))
:LET Y=Y+(Y>13)-(Y<0)
2060 IF T$>-"0" AND T$<=”7” THEN POKE (1
024+32*Y+X),128+Yl/2+16*VAL(T$)
2070 IF T$=”8” THEN POKE(1024+32*Y+X) , 12
8
2080 IF T$="t” THEN GOSUB 3000:GOTO 1540

ti it

”S”

Chapter 3 Drawing on the Color Computer

73

Line 2100: Pressing of S will result in a defined area of the screen being
saved to tape.
Line 2110: Pressing M will also result in the screen display being saved, but
in a different format.

Line 2120: If the key depressed is none of the above, the program execution
simply returns to the flashing cursor.

Line 2090: In the event that the key < or > is pressed the second cursor is
moved — this will be explained later.

Line 2080: Pressing ft allows the user to define one corner of a rectangular
area on the screen which can later be saved on tape. This will be explained
later.

Lines 2060-2110: The key depressed need not, of course, have been one of
the arrowed keys, in which case T$ (the key depressed) may activate one of
the lines in this section which either perform a direct act or allocate
program execution to another module.

Line 2060: We have already printed a cursor and a line of graphics
characters at the bottom of the screen. When that cursor is moved the value
of its position on the 15th line of the display will be held in the variable Y1.
Y1 will also be the value of the graphics character pointed to (above a base
of 128). What this line does is to POKE a graphics character in a color
corresponding to one of the color codes between 0 and 7 onto the screen at
a location specified by the position of the cursor. This is done in response
to any input between 0 and 7.

Line 2070: Following from inputs of 0 to 7, input of 8 will result in the
erasure of any character present in the cursor position.

program, even though they can only have two possible values, 0 and - 1.
That is exactly what happens in these two lines. The value of the four-
conditions is used to alter the variables X and Y if, and only if, one of the
arrowed keys on the Color Computer keyboard has been depressed (the
character codes referred to in the four conditions are those of the right,
left, down and up arrows respectively). If one of those keys has been
depressed, then one and only one of these conditions will have a value of
— 1, the others having a value of zero. After this alteration to the values of
one or other of the co-ordinates, the values of the four conditions are again
used to check that neither X nor Y have passed out of the normal bounds
of the 32*14 screen available to the cursor. If X, for instance, is greater
than 31, it will automatically be reduced by 1 by the first condition of the
second statement in line 2030. Remember not to be confused by the
seemingly contradictory + and — signs — a condition is — 1 if it is true,
not 1.

The Working TRS-80 Color Computer

MODULE 3.1.4

MODULE 3.1.5

THEN GOTO

74

Testing Module 3.1.3
You should now be able to move the cursor around the screen, though none
of the other program functions is yet available.

The purpose of this module is to allow the user to select a graphics
character for POKEing onto the screen.

Commentary
Lines 2530-2550: If you have understood the previous cursor move
module then you will see that this is a simplified version (since this second
cursor moves only along the line, not up and down. Notice that here the
value of the conditions employed are multiplied by 2 since the cursor moves
in 2-space steps. As mentioned before, the value of Y1, from 0 to 15, also
corresponds to the value of the graphics character it is pointing to (+ 128).

Testing Module 3.1.4
You should now be able to select a graphics character which can be placed
onto the screen in any one of eight colors by subsequently pressing a key
from 0 to 7. Pressing 8 should erase the character over which the flashing
cursor has been placed. Note that the character placed on the screen will
not be visible until the cursor has been moved from that position.

3000 rem***********************
3010 REM SAVE DESIGN
3020 REM***********************
3030 LET T1$=INKEY$:IF Tl$=”"
3030
3040 IF T1$>"0" AND Tl$<”3” THEN LET COR
NER(VAL(Tl$)*2-2)=X:LET CORNER(VAL(T1$)*
2-l)=Y
3050 RETURN
3060 IF CORNER(0)>CORNER(2)-2 OR CORNER(
1)>CORNER(3)-2 THEN PRINT @ 15*32, "RECT
ANGLE IMPROPERLY DEFINEDFOR 1=1 TO 1
000:NEXT:RETURN
3070 IF (CORNER(2)-CORNER(0)-1)*(CORNER(
3)-CORNER(1)-1)>240 THEN PRINT @ 15*32,"
DESIGN TOO LARGE.":FOR 1=1 TO 1000:NEXT
I:RETURN

2500 REM***********************
2510 REM CHOOSE CHARACTER
2520 REM***********************
2530 POKE 1024+14*32+Y1,128
2540 LET Y1=Y1-2*(T$=".")+2*(T$=",") : LET

Y1=Y1-2*(Y1<0)+2*(Y1>30)
2550 POKE(1024+14*32+Y1),22
2560 RETURN

Chapter 3 Drawing on the Color Computer

THEN GOTO 31

75

This program is not solely intended to permit the user to doodle on the
screen in text mode. Its other purpose is to act as a feeder for later
programs which need some pictorial output. This module is one of two
which saves the design that you have created for later use. In this
particular case the design is saved in such a way that only that part of the
screen which actually has the design on it needs to be remembered.

Commentary
Lines 3030-3050: Having pressed ft while the cursor was flashing, the
user can now input I or 2 to designate two opposite corners of the
rectangular areas of screen to be saved later.

3080 FOR 1=1 TO 2:POKE (1024+32*CORNER(I
*2-1) + CORNER(1*2-2)), 175:NEXT I
3090 PRINT © 15*32,’’THESE POINTS OK (Y/N
).?”;
3100 LET Q$=INKEY$:IF Q$=""
00
3110 IF Q$O"Y" THEN FOR 1 = 1 TO 2:POKE(1
024+32*CORNER(1*2-1)+CORNER(1*2-2)),128:
NEXT I.RETURN
3120 LET DESIGN$=STRING$(9," ”):MID$(DES
IGN$,1)=STR$(CORNER(1)+l):MID$(DESIGN$,4
) = STR$(CORNER(0) + l) :MID$(DESIGN$,7) = STR$
(CORNER(2)-CORNER(0)-1)
3130 FOR I=CORNER(1)+1 TO CORNER(3)-1
3140 FOR J=CORNER(0)+l TO CORNER(2)-1
3150 LET DESIGN$=DESIGN$+CHR$(PEEK (1024+
32*I+J))
3160 POKE(1024+32*I+J),106
3170 NEXT J
3180 NEXT I
3190 CLS0
3200 LET Y=VAL(LEFT$(DESIGN$,3))
3210 LET X=VAL(MID$(DESIGN$,4,3))
3220 LET Z=VAL(MID$(DESIGN$,7,3))
3230 FOR I=Y TO Y+(LEN(DESIGN$)-9)/Z-l
3240 FOR J=X TO X+Z-l
3250 POKE (1024+32*I+J),ASC(MID$(DESIGN$
,10+(I-Y)*Z+J-X,1))
3260 NEXT J,I
3270 PRINT © 15*32,’’THIS IS WHAT IS BEIN
G SAVED.”
3280 FOR 1 = 1 TO 1000.-NEXT
3290 MOTOR ON.-AUDIO ON: INPUT "POSITION T
APE THEN PRESS enter (MOTOR IS ON):";Q$
3300 MOTOR OFF:INPUT "PLACE RECORDER INT
O RECORD MODE";Q$
3310 MOTOR ON:FOR 1=1 TO 10000:NEXT
3320 OPEN "0",#-l,"ARTIST"
3330 PRINT #-l,DESIGN$:FOR 1=10 TO LEN(D
ESIGN$):PRINT#-1,ASC(MID$(DESIGN$,I,1)) :
NEXT I
3340 CLOSE #-l
3350 STOP

The Working TRS-80 Color Computer

76

Line 3060: The main part of this module, called by pressing the S key,
begins here with a check that the two corners defined by the user do in
fact describe a valid rectangle. For the rectangle to be acceptable, all that
is necessary is for the corner numbered 1 to be above and to the left of
the corner numbered 2.

Lines 3080-3100: The points defined as the corners of the rectangle to
be saved are marked on the screen for the user to confirm. Note that the
two points so marked are actually immediately outside the rectangle to be
saved.

Line 3120: In this line begins the process of building up the string which will
be used to recreate the design at a later date. The first nine places of the
string are given over to recording the co-ordinates of the top left-hand
corner of the specified rectangle, followed by the width. They are placed
into the string using the STR$ function which translates a number into a
string. Note that we do not use LET in placing these figures into the string.
That is because when defining a part of a string using the format
MID$(A$,l) = “xxx” the inclusion of LET at the beginning of the
command actually results in a syntax error. This is a quirk of Color
Computer Basic which can confuse anyone new to the machine.

Lines 3200-3260: These lines ape the process which will be carried out by
later programs which reprint the design stored in this format. Their effect
is first of all to extract the co-ordinates of the top left hand corner of the
specified rectangle, together with the width. These starting points are then
used, in conjunction with the loop variables to replace the characters in
DESIGNS in the original screen locations from which they were taken. The
sole purpose of this is to give an example of the method of recalling such a
design and to reassure the user that the design has been properly recorded.

Lines 3130-3180: These two loops scan through the screen positions
falling within the defined rectangle and store the characters found there in
DESIGNS. To show the progress of the loops an asterisk is placed in each
location as it is dealt with, but this line is unnecessary if you feel that you do
not need such reassurance.

Line 3070: This particular format for saving a design is intended for
small scale designs and a string will eventually be used for storing the
design in the program which later picks up the design from tape. Since
the maximum length of a string in Color Computer Basic is 255 charac
ters, a check is made that the size of the design will not make it impossible
to store it in one string.

Chapter 3 Drawing on the Color Computer

MODULE 3.1.6

INPUT "

77

Lines 3280-3340: Having come this far in the cunning construction of a
string to store the design, further progress is barred by an irritating limi
tation in the Color Computer’s Basic. All that should really be necessary
to store the design on tape should be the instruction PRINT # — 1,
DESIGNS. Unfortunately, the Color Computer steadfastly refuses to
recognize the existence of the graphics characters, which are not standard
to the ASCII (American Standard Codes for Information Interchange)
character set, when saving and loading data. Consequently, while we can
save the first nine characters of DESIGNS (i.e. the numbers representing
co-ordinates and width) all the graphics characters themselves have to be
transformed into their code values and saved as numbers. This limitation
is one of the most disappointing on the Color Computer, since quite apart
from present uses, the ability to store numbers in the range 0 to 225 in
single characters and save them in that form is one of the commonest ways
of reducing the amount of memory used for data storage on home micros.

Testing Module 3.1.5
This module can only really be tested when we have entered a subsequent
program which will pick up the design from tape and reprint it. Provided
that the method of defining the desired rectangle works satisfactorily,
together with the associated error-checks, and that once the screen has
been cleared the design is reprinted in its original form, you can be fairly
confident that the whole of the module is working properly. The only way
to be absolutely sure would be to enter the relevant parts of the later
program Words which would recall the design from tape and reprint it.

For applications which need the use of a larger design, one which would be
too big to store in a single string, this method of storing a design stores the
whole of the screen display, again in the form of the code values of the
individual characters. The first 14 lines are stored.

3500 REM***********************
3510 REM SAVE MAP
3520 rem***********************
3530 PRINT @ 14*32,""; :MOTOR ONrAUDIO ON
tINPUT "POSITION TAPE (enter):”;Q$
3540 MOTOR OFF.-PRINT @ 14*32,""
START RECORDER (enter):";Q$
3550 MOTOR ON:FOR 1=1 TO 10000:NEXT
3560 OPEN "0",#-l,"MAP"
3570 FOR 1=1 TO 14*32:PRINT #-l,PEEK(102
3+1).-NEXT I
3580 CLOSE #-l
3590 STOP

The Working TRS-80 Color Computer

78

Testing Module 3.1.6
Once again, this module can only be effectively tested when a later
program, Where, has been entered.

Summary
A great deal of space has been devoted to the commentary on this program
for the simple reason that the techniques used here will be found to have
applications far beyond the present program — or indeed only graphics
applications. In the programs that follow we shall be moving cursors
around screens and inputting one-key commands by means of INKEY$
with gay abandon, so do ensure that you have understood what you have
entered. Apart from the techniques, however, the program is a good
example of the way in which a program with an interesting function
(drawing pictures) can be made into a useful tool with a little thought. A
major point in building up a library of programs is not that there should be
a wide variety of totally self-contained programs, but that the programs
should all contribute to each other’s usefulness by the ability to exchange
data where appropriate.

Going Further
1) The program might be more useful if, instead of simply stopping once a
design has been saved, it were to clear the screen and reprint the design,
then return to the cursor module so that the design can be further
developed if desired.
2) A one key instruction for clearing the screen might be another useful
addition.

1
2

, or .
S
M

8

ARTIST: Summary of one-key functions
With flashing cursor:
0 to 7 prints graphics characters specified by bottom cursor, in color in

dicated by key value.
erases character over which cursor is positioned.
moves to program section which allows definition of rectangle to be
saved.
moves bottom cursor to indicate a different graphics character.
saves specified rectangle.
saves first 14 lines of display.

Without flashing cursor: i.e. after input of ft.
defines top left-hand corner of rectangle to be saved.
defines bottom right-hand corner of rectangle to be saved.

Chapter 3 Drawing on the Color Computer

MODULE 3.2.1

79

3.2 DOODLE
We turn our attention now to a short program which is mainly for fun but
which also contains a useful lesson when it comes to the saving of graphics
displays. The name of the program is Doodle, and the intention is to allow
you to do just that, employing the joysticks that can be cheaply purchased
as accessories to your Color Computer.

You should immediately recognize this as a variety of the cursor move
module which you came across in the last program. Its purpose is to allow
the user to move a small dot around the screen, inking in or deleting lines
along the way. In this module apart from the simple techniques necessary
to use the joysticks, we also make use of the PMODE and SCREEN
commands for the first time.

These commands seem quite awesome at first sight but their use is really
quite simple. The plain fact is that the more individual dots a computer is
capable of placing on the same sized screen, the more memory must be
devoted to remembering just where those dots actually are. For most
applications, the kind of memory necessary to create and sustain a display
of up to 256*192 pixels is simply an expensive luxury. We noted in the
course of entering the Unifile program that 4,500 memory spaces could be
saved by cutting down the amount of memory devoted to the screen. All
that PMODE really does is specify how many dots the Color Computer
will be capable of drawing on the screen and consequently their size, since
however many dots may be printed they will always end up filling the
screen if they are all of them present at the same time. The number of dots
and their size is shown in the table on page 21 of Going Ahead With
Extended Color Basic. PMODE also sets, by the way, the place in the
memory where the image on the screen is to be stored but this need not
concern us at the moment. The second figure in our PMODE commands
will be 1.

1000 REM***********************
1010 REM EXECUTE DRAWING
1020 REM***********************
1030 PMODE 0,1:PCLS:SCREEN 1,1
1040 LET X=2:LET Y=2
1050 FOR 1=0 TO 3:LET J(I)=J0YSTK(I):NEX
T
1060 IF INKEY$="S" THEN GOSUB 6000
1070 LET X=X-2*(J(2)>56)+2*(J(2)<6):LET
X=X+2*(X>254)-2*(X<2)
1080 LET Y=Y-2*(J(3)>56)+2*(J(3)<6):LET
Y=Y+2*(Y>190)-2*(Y<2)
1090 PSET(X.Y.l)
1100 PSET(X,Y,(l+(PEEK(65280) 0255)))
1110 IF INKEY$="C" THEN PCLS
1120 GOTO 1050

The Working TRS-80 Color Computer

80

Commentary
Line 1030: Bearing in mind what has been said above, you should have no
difficulty interpreting this line. All that happens is that we choose a
PMODE where the number of pixels that can be set is 128 across by 96
down. We clear the area of memory that will store this screen (try not
clearing it to see the necessity for this) then we look through the window
that points to this part of the memory — before running the program the
Color Computer was showing the view through SCREEN 0, as it always
does when not instructed otherwise.

To satisfy yourself that SCREEN has no other function but to look at a
part of the memory, you might like to try the experiment of removing this
instruction, running the module (when you have debugged it) and playing
with the joystick, stopping the program and then inserting temporary line

In this program we have chosen to use PMODE 0,1. We could equally
have chosen to use PMODE 1,1 which would have made available more
colors but increased the amount of memory necessary, since the more
colors a particular point of the screen may be set, the more there is to
remember about that point. The smallest dot (or pixel) which we shall be
able to draw in this PMODE is actually composed of four of the pixels
which would be available in PMODE 4 which is the highest resolution
available.

Having set the PMODE and cleared the area of memory which will be
used (with PCLS) it only now remains to set the SCREEN. It is probably
easier to remember the function of SCREEN if you actually think of it as
WINDOW, for that is the function that it performs.

At any time you have at least two windows available to you called
SCREEN 1 and SCREEN 0. SCREEN 0 looks out onto the area of memory
which stores what is displayed on the text screen (that is the type of display
we have been using up to now), while SCREEN 1 looks out onto the area of
memory used to store any displays created when one of the PMODEs is in
operation. The only other complication is that our window can be set to
two colors, that is to say that it can look at a design in two ways and,
though the same design will be seen, a different set of colors will come
through. Thus, SCREEN 1,0 means ‘look through the window at that part
of the memory which PMODE says is in use and interpret what is there
using color set zero’. Depending on the PMODE in use, color set zero will
either consist of black and green or of green, yellow, blue and red. There
is another color set, 1, which will either be black and buff or buff, cyan,
magenta and orange.

With that brief introduction in mind we turn to examine the program
lines that actually use these commands.

Chapter 3 Drawing on the Color Computer

Line 1110: Pressing C will result in the screen being cleared.

81

Testing Module 3.2.1
Using the module as it stands you should be able to doodle a design on the
screen, inking in lines or erasing them at will.

Line 1050: This line reads the four joystick inputs, each of which provides a
value between 0 and 63, depending on the position of the joystick handle.
Due to some strange quirk, although only one joystick is connected (in the
case of this program the left) all the values for the two possible joysticks
must be read or the result is nonsense.

Lines 1090—1100: When the moving dot arrives in a particular position
that position is PSET, that is, switched on to show color 1 (green). The next
line then reads the memory location which registers whether the button on
the joysticks is being pressed, and uses the value obtained in a condition,
whose value is subtracted from the color. If the button is being pressed, the
value PEEKed will not be 255 and the condition will be true — the
condition is actually PEEK (65280) < > 255 — and the point will be
recolored in color zero (black) and will disappear. In this manner lines can
be erased.

9999 SCREEN 1,1 :GOTO 9999. Now GOTO 9999 (not RUN) and you will
see the design you were creating in the memory but which was invisible
because you were looking through the wrong screen.

Lines 1070-1080: Here the X and Y co-ordinates of the left-hand joystick
are used to move the dot with which a line is drawn. Note that the move is
two positions at a time. This is necessary because no matter what the size of
the smallest point is in the current PMODE, the screen is always defined
as being 255* 192 when it comes to specifying addresses. Since our pixel is
actually 2*2, a single move involves a move of 2 spaces in terms of its
address.

MODULE 3.2.2
6000 rem***********************
6010 REM DATA FILES
6020 REM***********************
6030 MOTOR ONrAUDIO ON:CLS:INPUT "POSITI
ON TAPE THEN PRESS enter (MOTOR IS ON):
”;Q$
6040 MOTOR OFF:INPUT "PLACE RECORDER INT
O CORRECT MODETHEN PRESS enter:";Q$
6050 PRINT "FUNCTIONS AVAILABLE:","1)SAV
E DESIGN",,"2)LOAD DESIGN": INPUT "WHICH
DO YOU REQUIRE:";Q:ON Q GOTO 6070,6100

The Working TRS-80 Color Computer

82

Commentary

Line 6070: The CSAVEM command only requires that you specify the
memory address to start saving, the memory address to finish and the total
number of bytes (or memory locations) involved. The video memory for
high resolution begins at 1536 and, in the highest resolution PMODE,
continues up to address 7679. Although we do not need all that space for
PMODE 0, it was actually reserved when we switched the Color Com
puter on and we have not reduced the amount by use of PCLEAR, so it is
safe to save it without interfering with any of the memory used by the
actual program. This routine, with these figures, is therefore good for
any PMODE where video memory is set to start in the first possible
locationi.e. upto PMODE 4,1.

Line 6100: The reverse of CSAVEM is CLOADM, which loads from tape
some data and places it into a specific area of memory specified by the user.
The position into which the data is loaded is specified by the offset figure in
the CLOADM command. In our case we want to load the data back into
screen memory, so the offset is zero, which results in anything loaded being
placed into exactly the same place as it originally came from.

Line 6110: To emphasize the point about SCREEN, notice how the re
loaded picture appears instantaneously when this command is reached.

Whether or not this module will be of much use to you will depend on
whether you wish to save high resolution designs, created by this program
or some other of your own devising. It is included with this program purely
because it uses a facility which is shamefully neglected in the manual
supplied with the Color Computer (it’s not the only thing to receive that
treatment as you’ll no doubt have found to your cost.) The facility I refer
to in this case is known as CSAVEM, which is actually meant to enable a
user to store machine-code programs onto tape but whose function is
simply to save a chunk of memory straight onto tape. Since the design that
has been created using this program is merely a chunk of memory, we can
save it and reload it whenever we wish — and the same process can be
applied to any other design produced in high resolution modes.

6060 RETURN
6070 MOTOR ON:FOR 1=1 TO 10000:NEXT:CSAV
EM "PIC",1536,7679,6144
6080 SCREEN 1»0:AUDIO OFF
6090 RETURN
6100 PCLS:CLOADM "PIC",0
6110 AUDIO OFF.-SCREEN 1,0:RETURN

Chapter 3 Drawing on the Color Computer

MODULE 3.3.1

83

Summary
This program is an indication of the benefit to be gained from keeping an
eye out for simple techniques to accomplish tasks that you have set yourself
— even if they do sometimes arise from unusual sources. Machine-code
programs, and the techniques associated with them are completely outside
the scope of this book, and yet the simplest method of storing a picture that
you will find comes straight out of the set of commands provided for use
with machine code. The moral is that almost anything you can learn about
your Color Computer, no matter how obscure it may seem at the time,
may well come in useful at some future date.

S
C

Testing Module 3.2.2
You should now be able to create a design using the first part of the
program and then to save it to tape. Stop the program then RUN it again
and call up this module to reload the data you have just saved. You should
find that your original design appears on the screen immediately after
loading has ceased.

DOODLE: Summary of one-key commands
execution of program is diverted to data file module,
screen is cleared.

1000 rem***********************
1010 REM INITIALIZE
1020 REM***********************
1030 CLEAR 15000:PCLEAR 4:PMODE 4,1:PCLS
:SCREEN 1,0
1040 LET ANGLE$=”UERFDGLHUERFDGLH":LET R
0=1:LET F=1
1050 DIM PATTERN$(6):LET S=2
1060 LET X=129:LET Y=96
1070 G0SUB 4000

3.3 TANGRAMS
This program will both serve to allow you to play the ancient Chinese
shape game of Tangrams and to introduce the subject of the Color Com
puter’s outstandingly useful DRAW command. Using this command we
shall take a potentially long and complex program on most other home
micros and reduce its length dramatically since almost all arduous cal
culation about angles is performed automatically.

If you are not familiar with the basic idea behind DRAW, you will find
it described in Chapter? of Going Ahead With Extended Color Basic and it
would be a good idea to refer back to that before attempting to enter this
program.

The Working TRS-80 Color Computer

MODULE 3.3.2

84

Nothing in this initialization module should now be beyond you. The
function of the variables will be explained during the next module.

I’m afraid that there is no getting away from the fact that this is a dense and
complex module, and one which is quite difficult to enter without errors.
Fortunately, by its very nature, the error messages it will generate will give
a very good clue as to where the errors lie. The function of the module is to
calculate certain variables and then, on the basis of these to construct
strings which can be used to draw the three types of geometrical shapes
used in Tangrams: triangles, parallelograms and squares.

Commentary
Line 4030: The variable F will be used to store the type of figure to be
drawn. 1 means a triangle, 2 and 3 mean parallelograms (two types to take
account of the fact that a parallelogram is not symmetrical and thus is a

4000 REM***********************
4010 REM ROTATION
4020 REM***********************
4030 IF FO1 THEN LET S=1
4040 LET SHORT=INT(10*(SQR(2)"(S))+.5) : L
ET LONG=SHORT
4050 IF R0TATE/2OINT(ROTATE/2) THEN LET
LONG=INT(LONG*SQR(2)+.5):LET SHORT=LONG

/2
4060 LET LONG=2*INT(LONG/2):LET SHORT=2*
INT(SHORT/2)
4070 IF F=1 THEN LET D$=”B”+MID$(ANGLES,
RO , 1)+STR$(SH/2) + ";”+MID$(ANGLES,3+RO,1)
+STR$(SH)+”;”+MID$(ANGLES , 6+RO , 1)+STR$(L
O) + ” ;"+MID$(ANGLES,1 + RO,1)+STR$(SH) + ” ; B”
+MI0$(ANGLES,4+RO,1)+STR$(SH/2) .-RETURN
4080 IF F=2 THEN LET D$='’B”+MID$(ANGLES ,
RO , 1)+STR$ (SH/2) + *’; ”+MI D$ (ANGLES , 3+RO , 1)
+STR$ (SH) + ”; “+MID$ (ANGLES , 6+RO , 1)+STR$ (L
O) + " ; ”+MID$(ANGLES,7+RO,1)+STR$(SH) + ”;” +
MID$(ANGLES,2+RO,1)+STR$(LO)+";B"+MID$(A
NGLE$,4+RO,1)+STR$(SH/2):RETURN
4090 IF F=3 THEN LET D$="B”+MID$(ANGLES ,
RO , 1)+STR$(SH/2) + ";”+MID$(ANGLES,5+RO , 1)
+STR$(SH)+”;”+MID$(ANGLES,6+RO,1)+STR$(L
0) + ”;"+MID$(ANGLES,1+RO,1) + STR$(SH)+ ” ;" +
MID$(ANGLE$,2+RO,1)+STR$(LO)+”;B”+MID$(A
NGLE$,RO,1)+STR$(SH/2):RETURN
4100 IF F=4 THEN LET D$=”B"+MID$(ANG$, RO
, 1)+STR$(SH)+”;"+MID$(ANG$,2+RO,1) + STR$(
SH) + ";”+MID$(ANG$,4+RO,1)+STR$(LO) + " ;”+M
ID$(ANG$,6+RO,1)+STR$(LO) + ”;"+MID$(ANG$,
RO , 1) + STR$(LO) + ";”+MID$(ANG$,2+RO,1) +STR
$(SH) + ";B"+MID$(ANG$,4+RO,1) + STR$(SH) : RE
TURN

Chapter 3 Drawing on the Color Computer

85

Line 4060: This line ensures that there are an even number of pixels in the
side to be printed, which in turn ensures that the drawing position ends up
at the same place that it started when the figure is finished.

Lines 4040—4050: These two lines are necessary to cope with the fact that
the triangles in Tangrams are of three sizes, each twice the area of the next
size down and also the problem that arises out of the fact that lines
DRAWn the same length take on different lengths according to the angle at
which they are placed on the screen. Consider the example of a triangle
drawn according to the following instruction U10;F10;L10. According to
the instructions given in the string it would appear that all the sides should
be the same length and yet examination of the directions specified will
show that what would be DRAWn is a right angled triangle, where clearly
the hypotenuse is longer than the other two sides.

The solution to this apparent paradox is that all three sides of the triangle
do contain the same number of pixels, but that the pixels themselves,
because they are laid out on a rectangular grid on the screen, are further
apart diagonally than they are up or across. The upshot of this is that to
DRAW even a simple figure like a triangle on the screen and then to rotate
it through 45 degrees, as this program is capable of doing, the length of the
sides in pixels must be recalculated each time.

These two lines begin by calculating the length of the short side of a
triangle when DRAWn with the hypotenuse diagonal on the screen — the
lengths of the sides of each size of triangle are SQR(2) * the length of the
sides of the next size down. The hypotenuse (LONG) is the same length in
pixels.

In the second line, account is taken of the effect of drawing the triangle
at an orientation which makes the hypotenuse vertical or horizontal. In this
case, the length of the hypotenuse must be again multiplied by SQR(2) to
achieve a sensible result (i.e. a triangle with the same area).

Since the square’s sides and the long side of the parallelogram are the
same length as the hypotenuse of the smallest triangle, these two lines have
also dealt with them.

Lines 4070-4100: These lines appear very daunting but all they in fact do
is:

1) specify a blank move from the current draw position to the perimeter of
the figure to be drawn.
2) alternating between short and long sides, as defined by lines 4040 and

different shape when it is turned over) while 4 indicates a square. The
variable S refers to size and will be explained in relation to the following
lines.

The Working TRS-80 Color Computer

MODULE 3.3.3

THEN GOTO 20

86

Testing Module 3.3.2
To test the module it will be necessary to enter line 2030 of the program and
then to enter a temporary line 2040 GOTO 2040. Running the program
should now result in the drawing of a small triangle. To test the drawing of
the other figures, the value of F can be altered to any figure from 2 to 4.
Rotation can be checked by altering RO to read anywhere from 1 to 8. Size
of the triangles should be capable of ranging from 1 to 3 as represented by
the variable S.

4050, add the necessary figures and the directions for each side to the string
which is being built up.
3) specify a blank move back to the initial drawing position once the figure
is completed.

You will note that the actual directions are not specified, they are letters
taken from the string ANGLES on the basis of the variable RO, which as
can be seen from the earlier part of the module, is short for ROTATE. For
any given figure, the relative positions of the letters in ANGLES which
indicate the directions of the sides will always remain the same but the
starting point, that is the direction of the first side, will differ according to
the degree of rotation. Thus at the end of whichever of these lines is
executed a string called D$ will have been created, capable of drawing one
of the figures at a size specified by S and at an orientation specified by RO.
Nothing in the string will indicate where the figure is to be drawn, or the
color.

2000 REM***********************
2010 REM DRAWING ROUTINE
2020 REM***********************
2030 DRAW "Cl;BM"+STR$(X)+",” + STR$(Y) + ” ;
"+D$
2040 LET T$=INKEY$:IF T$=""
40
2050 LET D$=”C0;BM"+STR$(X)+","+STR$(Y)+
";"+D$:DRAW D$
2060 LET X=X-(T$=CHR$(9))+(T$=CHR$(8))-l
0*(T$=".")+10*(T$=",:IF X>225 THEN LET
X=225
2070 IF X<29 THEN LET X=29
2080 LET Y=Y-(T$=CHR$(10)) + (T$=CHR$(94))
-10*(T$="A")+10*(T$="Q"):IF Y>162 THEN L
ET Y=162
2090 IP Y<29 THEN LET X=29
2100 IF T$="R" THEN LET R0TATE=R0TATE+l+
8*(ROTATE>8)
2110 IF F=1 THEN LET S=S-(T$="S"):IF S>4
THEN LET S=S—3

2120 IF T$>"0" AND T$<"5" THEN LET F=VAL
(T$)

Chapter 3 Drawing on the Color Computer

Line 2100: Input of R rotates the figure through 45 degrees clockwise.

Line 2130: Input of D or C or ENTER will result in calling the next module.

MODULE 3.3.4

87

Testing Module 3.3.3
You should now be able to move, rotate, exchange or, in the case of
triangles, to change the size of your figure at will.

Line 2120: Input of a number in the range 1 to 4 will select the
corresponding figure.

Line 2110: If the current figure is a triangle, input of S will shuttle the
variable S through the range 1-3.

Lines 2060-2090: The limits to movement expressed in these four lines
express the need to ensure space for the largest possible figure to be drawn.

Commentary
Line 2030: A section is tagged onto D$ specifying that drawing will start at
the position indicated by the co-ordinates X and Y and that the color in
which it shall be drawn is 1 or green.

Line 2040: A waiting state until a key is pressed.

This is the main loop of the program and you will recognize some features
shared with a cursor move module. The function of the module is to allow
the current shape to be moved around the screen, rotated, printed
permanently and recorded, or for another figure to replace the current one.

2130 IP T$="D” OR T$="C" OR T$=CHR$(13)
THEN GOSUB 3000
2140 GOSUB 4000:GOTO 2030

3000 REM***********************
3010 REM REDRAW CURRENT PATTERN
3020 REM***********************
3030 IF NN<7 AND T$=CHR$(13) THEN MID$(D
$,2) = ’’l" : LET PATTERNS(NN)=D$:LET NN=NN+1
:RETURN
3040 PCLS:FOR 1=0 TO NN-1
3050 DRAW PATTERNS(I)
3060 IF T$=”D" THEN LET T1$=INKEY$:IF T1
$ = "" THEN GOTO 30603070 IF T$=”D” AND T1$=”D” THEN FOR J=1
TO NN-1 .-LET PATTERNS (J) = PATTERN$(J+1) :NE
XT J:LET NN=NN-1:LET T$=””:G0T0 3040 3080 NEXT I.-RETURN

The Working TRS-80 Color Computer

88

The purpose of this module is to allow shapes to be permanently stored in
an array so that if they are erased by another shape being moved across
them, they can be redrawn. The module also accomplishes such a
redrawing of all permanently entered figures and allows their deletion.

Commentary
Line 3030: The actual Tangram game is played with seven pieces — two
small triangles, one medium, two large, one square and one parallelogram.
This line enters the current figure, including its position, into the string
array PATTERNS, provided that seven pieces have not already been used.

Lines 3040-3080: In this loop, each figure contained in PATTERNS is
redrawn on the cleared screen. If C has been input, that is all that is done. If
D has been input then the user is given the opportunity to delete the figure
just drawn by inputting D again. Pressing any other key leaves the figure in
the array.

Testing Module 3.3.4
You should now be able to enter figures permanently into the array, to
redraw the pattern if it is corrupted by the movement of figures and to
delete figures from the design built up so far.

Going Further
1) This program could easily be expanded to make allowance for other
types of shape — a few more lines in Module 2 is all that it would take.
2) More complex designs could be built up if the size of PATTERNS were
to be increased.
3) No check is made, if you do want to play Tangrams, that the correct
pieces are being used — only that no more than seven are in the design.
Could you add such a check?
4) Ifyou are proud of the designs you have created, or of your solutions to
Tangram problems, you may well want to add a data file module to the
program.

Summary
The speed and simplicity of this program are a tribute to the Color Com
puter’s abilities. Very few other home micros would be able to cram so
many functions into a program of this size. The program is also an indi
cation of the sheer flexibility of the DRAW command when applied to
strings which are created in the program rather than having to be specified
before the program is run.

Chapter 3 Drawing on the Color Computer

*—and ,

D

MODULE 3.4.1

89

move current figure 1 and 10 pixels upwards respectively,
move the current figure 1 and 10 pixels down respectively,
move the current figure 1 and 10 spaces to the right
respectively.
move the current figure 1 and 10 spaces to the left
respectively.
rotates the current figure on the screen.
alters the size of the current figure if it is a triangle.
specifies the type of figure to be drawn.
redraws the total design so far.
places the current figure, at its current position, into the
array of pieces.
calls up the deletion function: pieces are displayed one by
one with the opportunity to delete them by further input of
D. Any other key leaves a piece in permanent array.

R
S
1-4
C
ENTER

TANGRAMS: Summary of one-key commands
J and Q
j and A
—»and .

3.4 DESIGNER
I have a special fondness for this program simply because the ideas on
which it is based are not my own: they were taken from an excellent book,
The Principles of Interactive Computer Graphics by William M. Newman
and Robert F. Sproull. The reason that I say fondness is that the program
serves as a reminder to me of how much there is always to learn about the
principles of programming and how many fields lie waiting to be opened
up for no more cost than the price of a few books. Based on two simple
procedures from that book, this program will allow you to define a design
of up to 10,000 by 10,000 pixels in size, to examine that design at various
scales and to rotate all or part of it on the screen. Once its use is mastered it
is capable of being used in a variety of applications where it is desirable to
be able to change and manipulate designs quickly and easily.

6000 rem***********************
6010 REM DATA FILES
6020 REM***********************
6030 MOTOR ON:AUDIO ON:CLS:INPUT”POSITIO
N TAPE THEN PRESS enter (MOTOR IS ON):"
;Q$
6040 MOTOR OFF: INPUT ’’PLACE RECORDER IN
CORRECT MODE THEN enter:";Q$
6050 PRINT: PRINT ’’FUNCTIONS AVAILABLE:”,
”1)SAVE DESIGN”,,”2)LOAD DESIGN”:INPUT ”
WHICH DO YOU REQUIRE:”;Q:ON Q GOTO 6070,
6130
6060 RETURN
6070 MOTOR ON:FOR 1=1 TO 10000.-NEXT
6080 OPEN ”O”,#-1,"DESIGN”

The Working TRS-80 Color Computer

A standard data file module.

MODULE 3.4.2

MODULE 3.4.3

90

The initialization module — the variables will be explained as they are
used.

Testing Module 3.4.2
This module cannot be properly tested until other modules have been
entered.

Commentary
Lines 1070-1080: This is our first use of the Color Computer’s GET
command, which allows a specified area of the screen to be read into an
array and later replaced anywhere on the screen by the use of PUT. In this
case what is read from the screen is a small x which will be used later as a
cursor but this process cannot be seen because SCREEN has not yet been
set to point to the graphics area of memory.

6090 PRINT 1-1,LL
6100 FOR 1=0 TO LL-1:FOR J=0 TO 3:PRINT#
-1 , COORDS(I,J):NEXT J,I
6110 CLOSE #-l
6120 RETURN
6130 OPEN "I”,#-l,’’DESIGN”
6140 INPUT 1-1,LL
6150 FOR 1=0 TO LL-1:FOR J=0 TO 3:INPUT
1-1, COORDS (I, J) .-NEXT J,I
6160 CLOSE #-l
6170 RETURN

2000 REM***********************
2010 REM MAIN PROGRAM
2020 REM***********************
2030 LET X=LEPT+128:LET Y=UPPER+96:LET R
IGHT=LEPT+255:LET LOWER=UPPER+191
2040 SCREEN 1,0
2050 LET L1=X-LEFT:LET U1=Y-UPPER

1000 REM***********************
1010 REM INITIALIZE
1020 REM***********************
1030 PCLEAR4:PCLS:PMODE 4,1
1040 LET UPPER=0:LET LOWER=191:LET LEFT=
0.-LET RIGHT=255
1050 DIM COORDS(200,4)
1060 LET Tl=-1
1070 DIM X1(4,4):DIM X2(4,4)
1080 DRAW ”BM0,0;F4;BU4;G4”:GET (0,0)-(4
,4),X1,G:PCLS

Chapter 3 Drawing on the Color Computer

THEN GOTO 2

91

Commentary
Line 2030: X and Y ^re the co-ordinates of the flashing cursor. UPPER,

2340
2350
2360
2370
2380
2390

This main program module allows a flashing cursor to be moved around
the screen, the area of the design to which the screen points to be moved,
lines to be defined and later modules to be called.

2060 FOR 1=0 TO LL-1
2070 LET X1=COORDS(I,0)
2080 LET Y1=COORDS(I,1)
2090 LET X2=COORDS(I,2)
2100 LET Y2=C00RDS(I,3)
2110 GOSUB 4000
2120 NEXT I
2130 IF T1O-1 AND Tl>=LEFT+2 AND TKLEF
T+254 AND T2>=UPPER+2 AND T2<UPPER+190 T
HEN CIRCLE(Tl-LEFT,T2-UPPER),2
2140 LET T$=INKEY$:IF T$<>””
210
2150 GET (Ll-2,Ul-2)-(Ll+2,Ul+2),X2,G
2160 FOR 1=1 TO 25:NEXT I
2170 PUT (Ll-2,Ul-2)-(Ll+2,Ul + 2),XI,OR
2180 FOR 1=1 TO 25:NEXT I
2190 PUT (Ll-2,Ul-2)-(Ll+2,Ul+2),X2,PSET
2200 GOTO 2140
2210 IF T$>="0" AND T$<*’4” THEN LET POWE
R=VAL(T$)
2220 IF T$=”M” THEN LET MO=1
2230 IF T$=”X” THEN LET MO=0
2240 LET TEMP=0
2250 LET TEMP=TEMP-10~POWER*(T$=CHR$(9))
+ 10 * POWER*(T$=CHR$(8))
2260 IF MO=1 THEN LET LEFT=LEFT+TEMP ELS
E LET X=X+TEMP
2270 IF LEFT<0 THEN LET LEFT=0
2280 IF LEFT>9745 THEN LET LEFT=9745
2290 IF X-LEFT>253 THEN LET X=LEFT+253
2300 IF X-LEFT<2 THEN LET X=LEFT+2
2310 LET TEMP=0
2320 LET TEMP=TEMP-10'‘POWER*(T$=CHR$(10)
)+10~POWER*(T$=CHR$(94))
2330 IF MO=1 THEN LET UPPER=UPPER+TEMP E
LSE LET Y=Y+TEMP

IF UPPER<0 THEN LET UPPER=0
IF UPPER>9745 THEN LET UPPER=9745
IF Y-UPPER>189 THEN LET Y=UPPER+189
IF Y-UPPER<2 THEN LET Y=UPPER+2
IF T$=,,F" THEN LET T1=X:LET T2=Y
IF T$=”T” AND T1O-1 THEN LET COORD

S(LL,0)=T1:LET COORDS(LL.1)=T2:LET COORD
S (LL,2)=X:LET COORDS(LL,3)=Y:LET T1=-1:L
ET LL=LL+1
2400 IF T$=”R” OR T$=”D” THEN GOSUB 3000
2410 IF T$="S” THEN GOSUB 6000
2420 PCLS
2430 IF MO=1 THEN GOTO 2030 ELSE GOTO 20
40

The Working TRS-80 Color Computer

Line 2050: LI and U1 are the co-ordinates of the cursor on the screen.

92

Line 2380: Input of F defines the beginning of a line to be drawn at the
point currently occupied by the cursor.

LOWER, LEFT and RIGHT are the addresses of the boundaries of the
screen, expressed in terms of the overall 10000*10000 pixel space available
for the design. The screen area starts in the upper right-hand corner of the
total area available.

Lines 2060-2120: As the program progresses, the lines entered into the
design will be stored in the array COORDS. This loop will print out each
line entered so far, when necessary, calling up a later module to do the
actual drawing of lines.

Line 2130: T1 and T2 represent the address of the start of a line that is
currently being defined. If T1 is set to - 1 it means that no line is currently
being defined. If T1 is not equal to - 1 and the co-ordinates represented by
T1 and T2 fall within the boundaries of the screen, then a small circle is
printed at the location.

Lines 2140-2200: This section again makes use of GET to save what is on
the screen in the place where the cursor is to be printed. The cursor is now
PUT onto the screen with the OR attribute set — in other words its printing
will not erase anything that is already there on the screen in that position.
Then the original contents of the location are restored by PLJTting back
what was saved in line 2150. Note that because both GET instructions
terminated with G, meaning ‘store full graphic detail’, the PUT
instructions have also to have an attribute specified, such as OR or PSET
— even though the latter only means ‘put what is in the array on the
screen’.

Line 2210: Input of a number in the range zero to three, sets a variable
called POWER which will later be used to determine the move to be made
by cursor or screen. The move will be 10 to the power of POWER pixels
(i.e. 1 to 1000).

Line 2220: Input of M is stored in the variable MO (for move) is interpreted
as meaning that any move specified will be a move of the screen across the
design.

Line 2230: Conversely, input of X is interpreted as meaning that any move
will be a move of the cursor across the screen.

Lines 2240-2370: The cursor co-ordinates or the screen co-ordinates are
changed according to the above rules if one of the arrowed keys is input.

Chapter 3 Drawing on the Color Computer

MODULE 3.4.4

93

Testing Module 3.4.3
You should now be able to move the cursor around the screen, but not
many more meaningful tests are possible until the later modules are
entered. You may at least satisfy yourself that the co-ordinates of lines are
being entered by defining some starts and finishes and checking that the
addresses have been placed in the array COORDS. Note that a temporary
line 4000 RETURN will be necessary.

Line 2390: Input of T defines the destination of a line, provided that the
co-ordinates of the origin of the line have already been entered.
Line 2400: Inputs of R or D specify rotation or deletion of parts of the
design and require the calling of other modules.
Line 2410: Input of S results in the calling of the data file module.
Line 2430: The design is redrawn, with the cursor reset in the middle of the
screen if MO indicates that the screen move mode is set.

IF X1>RIGHT THEN LET EDGE=RIGHT
IF XKLEFT THEN LET EDGE=LEFT
IF XKLEFT OR X1>RIGHT THEN LET Yl =

Yl+(Y2-Y1)*(EDGE-XI)/(X2-Xl):LET X1=EDGE
4140 IF X2>RIGHT THEN LET EDGE=RIGHT
4150 IF X2<LEFT THEN LET EDGE=LEFT
4160 IF X2>RIGHT OR X2<LEFT THEN LET Y2=
Y2+(Y1-Y2)*(EDGE-X2)/(X1-X2):LET X2=EDGE
4170 IF X1-LEFT>=0 AND X2-LEFT>=0 AND XI
-LEFT <=255 AND X2-LEFT<=255 AND Yl-UPPE
R>=0 AND Y2-UPPER>=0 AND Y1-UPPER<=191 A
ND Y2-UPPER<=255 THEN LINE(Xl-LEFT,Yl-UP
PER)-(X2-LEFT,Y2-UPPER),PSET
4180 RETURN

IF Y2<UPPER THEN LET EDGE=UPPER
IF Y2>LOWER THEN LET EDGE=LOWER
IF Y2<UPPER OR Y2>L0WER THEN LET X2

=X2+(X1-X2)*(EDGE-Y2)/(Y1-Y2):LET Y2=EDG
E
4110
4120
4130

4000 REM***********************
4010 REM DRAW LINES
4020 REM***********************
4030 LET LOWER=UPPER+191:LET RIGHT=LEFT+
255
4040 IF (XKLEFT AND X2<LEFT) OR (X1>RIG
HT AND X2>RIGHT) OR (Y1>LOWER AND Y2>LOW
ER) OR (YKUPPER AND Y2<UPPER) THEN LET
OUT=1 .-RETURN
4050 IF YKUPPER THEN LET EDGE=UPPER
4060 IF Y1>LOWER THEN LET EDGE=LOWER
4070 IF YKUPPER OR Y1>LOWER THEN LET XI
=X1+(X2-X1)*(EDGE-Y1)/(Y2-Y1):LET Y1=EDG
E
4080
4090
4100

The Working TRS-80 Color Computer

I

MODULE 3.4.5

94

The purpose of this module is to take two sets of co-ordinates, X1 /Y1 and
X2/Y2 and to decide whether any part of a line drawn between the two
points so defined would pass across the screen as it is now placed. If any
part of the line would fall upon the screen it is drawn, otherwise it is
ignored.

Commentary
Line 4040: If both XI and X2 or both Y1 and Y2 are off the screen in the
same direction then no part of the line can fall onto the screen.

Lines 4050-4060: If a line starts above or below the area covered by the
screen, these two lines reset the variable EDGE to coincide with the top or
bottom of the screen.

Line 4070: For lines which begin above or below the screen, this line
calculates the horizontal position at which the line will pass through the top
or bottom edge. The formula in the first half of the line says nothing more
complex than that if, for instance, the line in question passes through the
top edge of the screen halfway through its vertical component, it will also
be halfway through its horizontal component. Clearly this will only hold
true for straight lines.

Lines 4080-4160: The same kind of process is carried out with regard to
variables Y2, XI and X2.

Line 4170: Since it’s possible for a line not to lie entirely above, below or to
one side of the screen and yet still not pass across the screen itself, this line
makes one final check that the co-ordinates calculated do in fact lie entirely
on the screen and, if they do, draws the line indicated.

Testing Module 3.4.4
You should now be in a position to define lines and see them drawn on the
screen and also to move the screen over the design. You could do that
before, it’s simply that you couldn’t see it happening.

3000 REM***********************
3010 REM SCALE/ROTATE/DELETE
3020 rem***********************
3030 CLS:PCLS:SCREEN 0,1
3040 INPUT "ANGLE THROUGH WHICH DESIGN I
S TOBE ROTATED:";ANGLE:LET ANGLE=ANGLE*3
.1415926/180

Chapter 3 Drawing on the Color Computer

THEN GOTO

THEN GOTO 3230

95

Commentary
Line 3040: Rotation is input in degrees and translated into radians.

Lines 3080-3110: The co-ordinates of the start and finish of each line are
recalculated in terms of their distance from the cursor position and simply
divided by the scale specified. Note that it is perfectly possible for the scale
to be less than one, thereby magnifying the design.

Lines 3170-3230: If this module has been called by the input of D during
the course of the previous module, then the lines are drawn one by one,

Lines 3120-3150: The procedure for moving a point with, for instance,
co-ordinates of X and Y through angle A, is to apply the formula
X2 = X*COS A + Y* SIN A and Y2 = X*SIN A + Y*COS A. This is
applied in these lines to X3, Y3, X4 and Y4, which are the co-ordinates in
terms of the cursor position. When these altered variables are added to XI
and Yl, they define a scaled and rotated pattern.

The purpose of this module is to reproduce the design on a smaller or larger
scale, as specified, and to rotate it around the current cursor position. The
module is much less complex than it looks at first sight.

3050 PRINT: INPUT ’’SCALE FACTOR TO DIVIDE
DIMENSIONS BY:”;SCALE:IF SCALE

=0 THEN LET SCALE=1
3060 SCREEN 1,0
3070 FOR 1=0 TO LL-1
3080 LET X3=(COORDS(I,0)-X)/SCALE
3090 LET Y3=(COORDS(I,1)-Y)/SCALE
3100 LET X4=(COORDS(I,2)-X)/SCALE
3110 LET Y4=(COORDS(I,3)-Y)/SCALE
3120 LET X1 = X+I NT(X3*COS(ANGLE)+Y3*SIN(A
NGLE))
3130 LET Y1=Y+INT(Y3*COS(ANGLE)-X3*SIN(A
NGLE))
3140 LET X2=X+INT(X4*COS(ANGLE)+Y4*SIN(A
NGLE))
3150 LET Y2=Y+INT(Y4*COS(ANGLE)+X4*SIN(A
NGLE))
3160 GOSUB 4000
3170 IF T$O"D” THEN GOTO 3220
3180 LET T1$=INKEY$:IF Tl$=
3180
3190 IF T1$=”D” THEN FOR J=I TO LL-1: FOR
K=0 TO 3:LET COORDS(J,K) = COORDS(J+l , K) :

NEXT K.-NEXT J: LET LL=LL-1
3200 IF T1$=”D” THEN LET 1=1-1
3210 IF T1$=”Q” THEN RETURN
3220 NEXT I
3230 IF INKEY$=””
3240 RETURN

The Working TRS-80 Color Computer

96

giving the user the opportunity to input D against any which are to be
deleted. Input of Q at any time, returns to the main module. When the
scaled and rotated design is finished on the screen, it remains until a key is
depressed before returning to the main module.

Testing Module 3.4.5
You should now be able to reproduce any lines entered to a specified scale
and rotated through any desired angle. You should also be able to call up
this module for the purpose of deletions.

Summary
Given a little imagination, this program can be a useful tool in a variety of
applications. You can plan layouts, draw maps or simply mess about. In
fact, with a program like this one loaded you can make your Color Com
puter simulate many of the capabilities of far more expensive graphics
computers beloved of engineers and scientists in many fields.

The program is also a reminder of the wealth of ideas that lie waiting to
be translated into action from the wide variety of books on computing that
are available today.

0-3
M
X
F
T
S
R
D

D
Q

Going Further
1) The end of Module 3 has been left a little messy. It works properly but it
is cumbersome in that it requires the redrawing of all the lines on each move
of the cursor. What are the conditions that would have to be satisfied in
order to make it practical to skip the redrawing of the lines? It’s not as
straightforward as it looks at first.

DESIGNER: Summary of one-key commands
With flashing cursor:

sets cursor move to equivalent power of 10.
next move specified will be move of screen over design.
next move specified will be of cursor within screen limits,
line to be drawn starting from cursor position.
line to be drawn to this position (only after F).
call data file module.
call module which scales or rotates design.
as above but with option to delete individual lines.

Arrowed keys — appropriate move of cursor or screen.
After initial input of D:

delete line just drawn.
return to main module.

97

CHAPTER 4
Easy education

4.1 MULTIQ
This program is a favorite of mine. When I wrote it I was satisfied that it
was a competent piece of work that would do the job that it was designed
for. It was not until I entered a mass of questions and answers and tried it
out on people that I realized that such programs make learning as addic
tive as any game.

Like Unifile, this program is a chameleon, designed to change its color
to suit your need. At one moment you may wish it to be a French tutor,
offering a variety of French words as possible translations for an English
word. Later on you may have it asking fairly complex questions on 19th
century history, giving a series of dates as possible answers. The aim of the
program is to enable you to do all these and more without having to make
changes in the program itself.

In this chapter we shall consider three programs which enable the Color
Computer to make its contribution in the field of home education. The
first of these, MultiQ, is a program designed to allow the user to input a
series of questions and answers, which are then used as the basis of ran
domly generated multiple choice tests. The second program is Words, a
basic reading tutor and, lastly, Where? teaches the locations of cities in
any country in the world you care to program in.

The object of the programs is to give you some idea of what can be
accomplished in the field without too much effort. Even so, unless you
intend to buy a range of software on cassette, with specialist programs
dedicated to individual subjects and coming complete with their own files
of data, the usefulness of your educational data will always depend on the
amount of work you are prepared to put into them. The best multiple
choice question program in the world is not much use unless at some stage
you are prepared to sit down and feed in enough questions to make it
interesting.

If you are prepared to give such programs the data to work with, they can
often be spectacularly successful for the simple reason that they work at the
pace of the student, show no signs of impatience, give no reward for short
cuts or cheating and are always ready for just one more try at any time of
day or night.

The Working TRS-80 Color Computer

MODULE 4.1.1

A standard data file module.

MODULE 4.1.2

A standard title formatting module.

98

7000 rem***********************
7010 REM FORMAT TITLES
7020 REM***********************
7030 LET P2=14-INT(LEN(F$)/2)
7040 PRINT £ 32*P1 + P2,STRINGS(LEN(F$)+2 ,
CHR$(185))
7050 PRINT £ 32*(Pl+1)+P2,CHR$(185)+F$+C
HR$(185)
7060 PRINT 6 32*(Pl+2)+P2,STRINGS(LEN(F$
)+2,CHR$(185))
7070 RETURN

6000 REM***********************
6010 REM DATA FILES
6020 REM***********************
6030 AUDIO ON:MOTOR ON:PRINT:INPUT "POSI
TION TAPE THEN PRESS enter (MOTOR IS ON
)";Q$:MOTOR OFF
6040 PRINT:INPUT "PLACE RECORDER IN CORR
ECT MODE THEN PRESS enter";Q$
6050 PRINT:PRINT "FUNCTIONS AVAILABLE:",
"1)SAVE DATA",,”2)LOAD DATA" .-INPUT "WHIC
H DO YOU REQU IRE:";Q:ON Q GOTO 6070,6150
6060 RETURN
6070 MOTOR ON:FOR 1=1 TO 10000:NEXT I
6080 OPEN"O",#-l,"MULTIQ”
6090 PRINTi-l,ITEMS
6100 FOR 1 = 1 TO ITEMS-2:PRINT#-!,A$(I), B
$(I):NEXT I
6110 FOR 1 = 0 TO 9:PRINT#-!,D$(I),D(0,I),
D(1,I):NEXT I
6120 PRINT#-1,NAMES(0),NAMES(1)
6130 CLOSE #-l
6140 RETURN
6150 RUN 6160
6160 PCLEAR 1:CLEAR 18000:DIM A$(499):DI
M B$(499):DIM D(1,9):DIM D$(9):DIM NAMES
(1)
6170 OPEN"I",#-!,"MULTIQ"
6180 INPUT#-!,ITEMS
6190 FOR 1 = 1 TO ITEMS-2:INPUT#-!,A$(I) ,B
$(I):NEXT I
6200 FOR 1 = 0 TO 9:INPUT#-!,D$(I),D(0 , I) ,
D(1,I):NEXT I
6210 INPUT#-!,NAMES(0),NAMES(1)
6220 CLOSE #-l
6230 LET A$(ITEMS-1)=CHR$(255):LET A$(0)
=CHR$(0)
6240 GOTO 1000

Chap ter 4 Easy educa tion

MODULE 4.1.3

A standard menu module.

MODULE 4.1.4

99

1) INPUT NEW ITEMS”
2) SEARCH/DELETE”
3) ENTER NEW TYPES”
4) GENERATE QUESTIONS”
5) DISPLAY OR RESET SCORE
6) DATA FILES”
7) INITIALIZE”
8) STOP”

1000 rem***********************
1010 REM MENU
1020 REM***********************
1030 CLS:LET F$="MULTIQ":LET P1=1:GOSUB
7000
1040 PRINT:PRINT "COMMANDS AVAILABLE:"
1050 PRINT "
1060 PRINT "
1070 PRINT "
1080 PRINT ”
1090 PRINT ’’
1100 PRINT "
1110 PRINT "
1120 PRINT "
1130 PRINT:INPUT "WHICH DO YOU REQUIRE:"
;Z:CLS
1140 ON Z GOSUB 2000,3000,1640,3500,4000
,6000,1500,1160
1150 GOTO 1000
1160 LET F$="MULTIQ":LET P1=6:GOSUB 7000
1170 STOP

1500 REM***********************
1510 REM INITIALIZE
1520 rem***********************
1530 PCLEAR 1:CLEAR 18000
1540 DIM NAME$(1),Q(5)
1550 DIM A$(499):DIM B$(499)
1560 LET A$(0) = CHR$(0):LET A$(1)=CHR$(25
5)
1570 DIM D$(9),D(1,9)
1580 LET ITEMS=2
1590 LET F$="TEST STRUCTURE":LET P1=1:GO
SUB 7000
160 0 PRINT. INPUT "NAME FOR ANSWERNAME
$(0)
1610 PRINT:INPUT "NAME FOR QUESTION:";NA
ME$(1)
1620 PRINT:INPUT "ARE THESE CORRECT (Y/N
):";Q$:CLS
1630 IF Q$O"Y" THEN GOTO 1500
1640 LET F$ = "TYPES" : LET P1 = 0 .-GOSUB 7000
1650 PRINT TAB(19)"’ZZZ' TO QUIT";
1660 PRINT "TYPES INPUT SO FAR:-";
1670 IF TYPESO0 THEN PRINT: FOR 1 = 0 TO T
YPES-l.-PRINT I + 1;")";D$(I):NEXT I : ELSE P
RINT "NONE":PRINT
1680 IF TYPES<10 THEN INPUT "INPUT NEW T
YPE:";Q$:ELSE PRINT "ONLY 10 TYPES ALLOW
ED":FOR 1=1 TO 2000:NEXT I:GOTO 1000

The Working TRS-80 Color Computer

MODULE 4.1.5

100

You may notice the similarity between this module and the equivalent one
in Unifile, since the object of both is to initialize variables and to store
certain user- defined prompts for later use in the program. The use of the
variables will be discussed in the course of the commentary on the
program.

Testing Module 4.1.4
You should now be able to input a format for the program, including the
names of up to ten types.

1690 IF Q$="ZZZ” THEN GOTO 1000 ELSE LET
D$ (TYPES)=Q$:LET TYPES=TYPES+1:CLS:GOTO
1640

1700 GOTO 1000

Commentary

Lines 1640-1690: Each answer may, if the user wishes, be given one of ten
types whose names are user-defined. These types may be used later on to
make the tests generated more difficult. The types input should reflect
natural groupings into which the questions and answers fall. Types do not
have to be input and, if they are not, no reference is made to types when
inputting data.

”)”;□$

2000 REM***********************
2010 REM INPUT OF NEW ITEMS
2020 REM***********************
2030 LET F$="NEW ITEMS”:LET P1=1:GOSUB 7
000
2040 PRINTzPRINT ”'ZZZ’ TO QUIT.”
2050 PRINTzPRINT NAMES(0:INPUT Tl$
2060 IF ITEMS>=500 THEN PRINTzPRINT ”NO
ROOM FOR MORE ITEMS.”:GOTO 2230
2070 IF T1$=”ZZZ” THEN GOTO 2230
2080 PRINTzPRINT NAMES(1INPUT T2$
2090 IF D$(0)=”” THEN LET T=0zGOTO 2180
2100 CLS:LET F$=”TYPE”:LET P1=0:GOSUB 70
00
2110 FOR 1=0 TO TYPES-1:PRINT 1+1;'
(I)zNEXT I
2120 PRINT NAMES(0;T1$
2130 PRINT NAMES(1T2$
2140 INPUT ’’TYPE FOR THIS ITEM:";T
2150 CLS.-LET F$=”NEW ITEM":LET P1=1:GOSU
B 7000
2160 PRINTzPRINT NAMES(0T1$
2170 PRINTzPRINT NAMES(1;T2$
2180 IP D$(0)<>"” THEN PRINTzPRINT ’’TYPE
:”;D$(T-1)
2190 PRINT:INPUT "ARE THESE CORRECT (Y/N
):”;Q$:CLS:IF Q$O”Y” THEN GOTO 2000

Chapter 4 Easy education

MODULE 4.1.6

101

Lines 2230-2270: When the user quits the module, the second half of the
array D is updated. This holds the start positions of each type group. This is
arrived at by simply successively adding the number of items in each type
group to the variable SUM.

Commentary
Line 2200: The array D is used to store two sets of figures. In D(0,etc) is
stored the number of items in each of the types defined by the user. The
type of the answer is attached to the answer by means of a single character
flag which is a number from 0 to 9. Note the use of the CHR$ function to
achieve this — using STR$ would mean having to deal with the space that
this function tags onto the front of numbers.

Testing Module 4.1.5
Insertion of a temporary line 2500 RETURN should enable you to input
items to the program under your specified headings, though these will not
be stored anywhere.

Once again the similarities between this module and the equivalent one in
Unifile should be obvious. Prompts already defined by the user are used to
structure what is input.

2500 REM***********************
2510 REM BINARY SEARCH
2520 REM***********************
2530 LET POWER=INT(LOG(ITEMS-1)/L0G (2))
2540 LET SEARCH=2* POWER
2550 FOR I=POWER-1 TO 0 STEP -1
2560 IF A$ (SEARCH) <T1 $ THEN LET SEARCH=S
EARCH+2*!
2570 IF A$(SEARCH)>T1$ THEN LET SEARCH=S
EARCH-2''I
2580 IF SEARCH<1 THEN LET SEARCH=1
2590 IF SEARCH>ITEMS-1 THEN LET SEARCH=I
TEMS-1
2600 NEXT I
2610 IF A$(SEARCH)<T1$ THEN LET SEARCH=S
EARCH+1

2200 IF D$(0)<>"" THEN LET D(0,T-1)=D(0,
T-1)+1:LET T1$=CHR$(48+T-l)+Tl$:ELSE LETTl$=” ”+Tl$
2210 GOSUB 2500
2220 LET ITEMS=ITEMS+1:GOTO 2000
2230 LET SUM=1
2240 FOR 1=0 TO 9
2250 LET D(1,I)=SUM
2260 LET SUM=SUM+D(0,I)
2270 NEXT I
2280 RETURN

The Working TRS-80 Color Computer

MODULE 4.1.7

FOR NEXT IT

TO DELETE ITEM”

102

A standard binary search module. Note that items are stored in
alphabetical order of answers and that, since the type of the item is
attached to the front of the answer as a single character, the items are in
fact stored in order of type. If you do not enter any types, the items will be
stored in straight alphabetical order of answer.

Testing Module 4.1.6
You should now be able to input answers which will be properly inserted
into the main arrays, A$ and B$.

2620 FOR I=ITEMS TO INT(SEARCH)+l STEP -
1:LET A$(I)=A$(I-l):LET B$(I)=B$(I-1):NE
XT I
2630 LET A$ (SEARCH)=T1$:LET B$(SEARCH)=T
2$
2640 RETURN

3000 REM***********************
3010 REM USER SEARCH
3020 REM***********************
3030 LET F$="SEARCH":LET P1=1:GOSUB 7000
3040 PRINT g 15*32,’’TOTAL ITEMSITEMS-
2
3050 PRINT @ 3*32," >’ENTER'
EM”
3060 PRINT " >POSITIVE OR NEGATIVE NUMBE
R TO MOVE POINTER”
3070 PRINT ” >’DDD'
3080 PRINT " >'ZZZ’ TO QUIT FUNCTION”
3090 PRINT STRING$(32,CHR$(156))
3100 LET SEARCH=1
3110 PRINT G 9*32,"ENTRY NO:-”;SEARCH
3120 PRINT MID$(A$(SEARCH),2)
3130 PRINT B$(SEARCH)
3140 LET TEMP=VAL(LEFT$(A$(SEARCH) ,1))
3150 IF LEFT$(A$(SEARCH) ,1)0” ” THEN PR
INT D$(TEMP)
3160 INPUT "WHICH DO YOU REQUIRE:";S$
3170 IF S$=’’DDD" THEN LET D(0,TEMP)=D(0 ,
TEMP)-1:FOR I=SEARCH TO ITEMS-2:LET A$(I
)=A$(1+1):LET B$(I)=B$(1+1):NEXT I:LET I
TEMS=ITEMS-1:GOSUB 2230:RETURN
3180 IF S$="ZZZ" THEN RETURN
3190 IP S$<>"" THEN GOTO 3230
3200 LET SEARCH=SEARCH+1
3210 IF SEARCH=ITEMS-1 THEN RETURN
3220 GOTO 3110
3230 LET SEARCH=SEARCH+VAL(S$)
3240 IF SEARCH>ITEMS-2 THEN LET SEARCH=I
TEMS-2
3250 IF SEARCH<1 THEN LET SEARCH=1
3260 GOTO 3110

Chapter 4 Easy education

MODULE 4.1.8

103

Testing Module 4.1.7
You should now be able to page through the items you enter, jumping
backwards or forwards in the file and to delete items.

A simple search on the lines of previous programs, but with the added
facility that the user is able to specify a forward or backward leap through
the file.

3500 REM***********************
3510 REM RANDOM QUESTIONS
3520 REM***********************
3530 LET QUESTION=0
3540 LET F$="QUESTIONS":LET P1=1:GOSUB 7
000
3550 PRINT:INPUT "DO YOU WISH POSSIBLE A
NSWERS TO BE DRAWN ONLY FROM THE SAME
ANSWER TYPE (Y/N):";Q$:CLS

3560 IF Q$="Y" THEN LET QUESTIONS
3570 LET Q1=RND(ITEMS-2)
3580 LET Q2=RND(5)-1
3590 LET Q(Q2)=Q1
3600 IF QUESTIONS OR D(0,VAL(LEFT$ (A$ (Q
1),1)))<5 THEN LET START=0:LET NUMBER=IT
EMS-2:ELSE LET START=D(1,VAL(LEFT$(A$(QI
),!)))-!:LET NUMBER=D(0,VAL(LEFT$(A$(QI)
.1)))
3610 FOR 1=0 TO 4
3620 IF I=Q2 THEN GOTO 3690
3630 LET PLACE=START+RND(NUMBER)
3640 IF PLACE=Q(Q2) THEN GOTO 3630
3650 FOR J=0 TO I
3660 IF PLACE=Q(J) THEN GOTO 3630
3670 NEXT J
3680 LET Q(I)=PLACE
3690 NEXT I
3700 PRINT NAME$(1)
3710 PRINT B$(Q(Q2))
3720 PRINT STRING$(32,CHR$(181)) ;
3730 PRINT NAME$(0)
3740 FOR 1=1 TO 5
3750 PRINT I;") ";MID$(A$(Q(1-1)) ,2)
3760 NEXT I
3770 PRINT "WHICH DO YOU THINK IS THE RI
GHT ANSWER?":INPUT"TYPE IN THE NUMBER:";
ANSWER
3780 LET QTOTAL=QTOTAL+1
3790 IF ANSWEROQ2 + 1 THEN PRINT "INCORRE
CT. THE RIGHT ANSWER WAS:";Q2+1;") ";MID
$(A$(Q(Q2)),2):GOTO 3820
3800 PRINT "cor rect" PLAY "T5O4L3C;P20;L
2C;L4O3A#;A;04L2C;O3L4A;O4C;O3L2A#"
3810 LET RIGHT=RIGHT+1
3820 INPUT "'ENTER' FOR NEW QUESTION

’ZZZ’ TO QUIT FUNCTIONQ$:CLS:IP Q
$="ZZZ" THEN RETURN ELSE GOTO 3570

The Working TRS-80 Color Computer

MODULE 4.1.9

104

This module is the core of the program. Its function is to generate the
random tests according to instructions laid down by the user.

Commentary
Line 3550: Tests can take two forms. Potential answers can be drawn from
the whole file of possible answers, in which case the test is likely to be fairly
easy, for the simple reason that a fair number of absurd answers may be
generated if the questions and answers cover a wide range. Answers may,
however, be drawn only from the same type if the user so specifies. In this
case, answers are likely to be more similar and the tests accordingly more
difficult.

Lines 3570—3590: These three lines generate a random number which is the
address of an item in the file, then a random place for it in the array Q. Note
that RND(5)-1 is not quite as silly as it sounds — it is not equal to RND(4),
since RND(4) can never equal zero.

Lines 3610-3690: The rest of the array Q is filled with the addresses of
answers randomly chosen from the area of the file indicated by START
and NUMBER, with checks to see that answers are not duplicated.

Lines 3700-3770: The question and the five possible answers are printed
on the screen, with a prompt to input the number of the correct answer.

Testing Module 4.1.8
If you have previously saved some data, you should now be in a position to
generate some tests, either hard or easy.

Line 3600: This line determines whether the user has asked for the harder
type of test and whether there are in fact five items in the group from which
the first random question has been chosen. If both conditions are met then
the variable START is set to the first item in the group and the variable
NUMBER is set to equal the number of items within the group. If the user
has not specified the harder test, or if there are not five items in the group,
then START is set to the beginning of the file and NUMBER to the total
number of items within the file.

Lines 3790-3800: Depending on whether the right answer is given, the user
is either simply informed of the right answer or is rewarded with a cheery
tune to indicate success.

4000 rem***********************
4010 REM SCORE
4020 rem***********************

Chapter 4 Easy education

105

Going further
1) As presently constituted, the program checks to see that the same
answer is not displayed twice for a question, but not that two answers from
different positions in the file are actually identical. Could you insert a
check into Module 7 to ensure that identical answers are not printed?
2) The question of rewards for success is an interesting one — adults seem
to find success its own reward when playing with, I mean using, this
program. For children, however, all manner of rewards are possible. What
about tagging a short game onto the program which would be accessed for
three minutes every time 10 right answers had been supplied?

Summary
This is actually quite a powerful program, but remember that you will only
confirm that for yourself by entering enough data to make it enjoyable.
The program is also a reminder that wherever possible, if you are going to
write a complex program, you may as well go a little further and make it a
general purpose one, thus saving yourself a great deal of work in the
future.

During the course of the previous module the variables QTOTAL and
RIGHT were updated for each question and for each right answer
respectively. They are now used to make an assessment of the user’s
performance, with allowance made for the 20% correct answers that could
be obtained by simply pressing the same button each time.

Testing Module 4.1.9
You should now be able to obtain an assessment of your performance in a
test and to reset your score if you wish. If this module functions correctly
then the program is ready for use.

4.2 WORDS
Once you have a program that works well, you soon find that it suggests
other uses to you. Such was the case with MultiQ and the result was this
simple aid to learning to read which, with the help of an adult, can be fun
and a step forward for kids in the earliest stages of reading. The only real
difference between this program and MultiQ is that the questions take the

5

4030 LET F$="SCORE":LET P1=1:GOSUB 7000
4040 PRINT .-PRINT "TOTAL QUESTIONSQTOT
AL
4050 PRINT "CORRECT ANSWERSRIGHT
4060 PRINT: PRINT "SCOREINT(((RIGHT-Q
TOTAL/5)/(QTOTAL*.8))*100);
4070 PRINT:INPUT "DO YOU WISH TO ZERO SC
ORE (Y/N) : " ;Q$: IF Q$O"Y" THEN RETURN EL
SE LET QTOTAL=0:LET RIGHT=0:RETURN

The Working TRS-80 Color Computer

MODULE 4.2.1

A standard data-file module.

MODULE 4.2.2

106

form of simple pictures and the answers are possible words to go with the
pictures.

The pictures are no more than the output of another program we have
already discussed, Artist, picked up from tape and loaded into this
program’s dictionary. The capacity of the program as presented here is 100
words, though another set could be picked up from tape if so desired.

Designs meant to be used by this program need to use only the bottom 10
lines of the screen, since the top six are used to set the questions.

7000 REM***********************
7010 REM FORMAT TITLES
7020 rem***********************

6000 REM***********************
6010 REM DATA FILES
6020 REM***********************
6030 AUDIO 0N:M0T0R ON:PRINT:INPUT "POSI
TION TAPE THEN PRESS enter (MOTOR IS ON
)”;Q$:MOTOR OFF
6040 PRINT: INPUT ’’PLACE RECORDER IN CORR
ECT MODE THEN PRESS enter”;Q$
6050 PRINT: PRINT ’’FUNCTIONS AVAILABLE:”,
”1)SAVE DATA”,,”2)LOAD DATA”:INPUT ”WHIC
H DO YOU REQUIRE:”;Q:ON Q GOTO 6070,6180
6060 RETURN
6070 MOTOR ON:FOR 1=1 TO 10000:NEXT I
6080 OPEN”O”,#-l,"WORDS"
6090 PRINT#-1,ITEMS
6100 FOR 1 = 0 TO ITEMS-1:PRINT#-1,A$(I ,2)
, A$ (I,1),LEN(A$(I,1))
6110 FOR J=10 TO LEN(A$(I,1))
6120 PRINT#-1,NAME$(0),NAME$(1)
6130 PRINT#-1,ASC(MID$(A$(I,1))
6140 NEXT J
6150 NEXT I
6160 CLOSE#-1
6170 RETURN
6180 PCLEAR 1:CLEAR 20000:LET FLAG=1:GOT
0 1540
6190 OPEN ”I",#-l,"WORDS"
6200 INPUT#-1,ITEMS
6210 FOR 1=0 TO ITEMS-1
6220 INPUT#-1,A$(I,2),A$(I,1),NN:IF LEN(
A$(I,1)) = 8 THEN LET A$ (I , 1)=A$ (I , 1) + " ’’
6230 FOR J=10 TO NN
6240 INPUT #-l,C:LET A$(I,1)=A$(I,1)+CHR
$(C)
6250 NEXT J,I
6260 CLOSE |-1
6270 GOTO 1000

Chapter 4 Easy education

A standard title-formatting module.

MODULE 4.2.3

A standard menu module.
MODULE 4.2.4

MODULE 4.2.5

107

3000 REM***********************
3010 REM PRINT DESIGN
3020 REM***********************

This module initializes the program variables, including the main array
AS. You may note in relation to the use of this array that I have committed
the cardinal crime of ignoring the zero element.

1500 rem***********************
1510 REM INITIALIZE
1520 REM***********************
1530 PCLEAR 1.-CLEAR 20000:LET FLAG=0
1540 DIM Q(4)
1550 LET LAST=1
1560 DIM A$(100,2)
1570 IF FLAG=0 THEN GOTO 1000 ELSE GOTO
6190

1100 PRINT " 5)DATA FILES”
1110 PRINT ” 6)INITIALIZE"
1120 PRINT " 7)STOP"
1130 PRINT: INPUT "WHICH DO YOU REQUIRE:"
;Z:CLS
1140 IF Z<6 THEN ON Z GOSUB 2000,2500,35
00,4000,6000:GOTO 1000
1145 ON Z-5 GOTO 1500,1160
1150 GOTO 1000
1160 LET F$="WORDS":LET P1=6:GOSUB 7000
1170 STOP

1000 REM***********************
1010 REM MENU
1020 REM***********************
1030 CLS.-LET F$="WORDS": LET P1=1:GOSUB 7
000
1040 PRINT:PRINT "COMMANDS AVAILABLE:"
1050 PRINT " 1)INPUT NEW ITEMS"
1060 PRINT " 2)SEARCH/DELETE"
1080 PRINT " 3)GENERATE QUESTIONS"
1090 PRINT " 4)DISPLAY OR RESET SCORE

7030 LET P2=14-INT(LEN(F$)/2)
7040 PRINT @ 32*P1+P2,STRING$(LEN(F$)+2,
CHR$(185))
7050 PRINT @ 32*(Pl + 1) + P2,CHR$(185)+F$+C
HR$(185)
7060 PRINT @ 32*(Pl+2)+P2,STRING$(LEN(F$
)+2,CHR$(185))
7070 RETURN

The Working TRS-80 Color Computer

MODULE 4.2.6

108

Commentary
Lines 2080-2120: You may note something new here, the use of IF

If you remember the Artist program then you will also remember the
function of this module, since it is the same as the program section in the
earlier program which reassures the user that the correct design has been
stored in a string. For commentary refer to Artist.

The purpose of this module is to load individual designs created by the
Artist program and to allow them to be labelled with a word and then
stored in the main array. Note that there is no sort —items are inserted one
after another.

3030 LET Y=VAL(LEFTS(DESIGNS,3))
3040 LET X=VAL(MID$(DESIGN$,4,3))
3050 LET Z=VAL(MID$(DESIGNS,7,3))
3060 FOR I=Y TO Y+(LEN(DESIGNS)-9)/Z-l
3070 FOR J=X TO X+Z-l
3080 POKE(1024+32*1+3) ,ASC(MID$ (DESIGNS ,
10+(I-Y)*Z+3-X,1))
3090 NEXT J,I
3100 RETURN

INPUT "DO YOU WANT TH

2000 REM***********************
2010 REM INPUT OF NEW ITEMS
2020 REM***********************
2030 LET F$="NEW ITEMS":LET P1=0:GOSUB 7
000
2040 MOTOR ON:AUDIO ON:INPUT "POSITION T
APE THEN PRESS enter (MOTOR IS ON):";Q$
2050 MOTOR OFF:INPUT "PUT RECORDER INTO
PLAY MODE THENPRESS enter";Q$
2060 OPEN"I",#-l,"ARTIST"
2070 INPUT#-1,DESIGNS:IF LEN(DESIGN$) = 8
THEN LET DESIGN$=DESIGN$+" "
2080 IF EOF(-l) THEN GOTO 2120
2090 INPUT #-l,N
2100 LET DESIGN$=DESIGN$+CHR$(N)
2110 GOTO 2080
2120 CLOSE #-l
2130 CLS0
2140 GOSUB 3000
2150 PRINT @ 0,
IS (Y/N) : " ;Q$: IF Q$O"Y" THEN RETURN
2160 INPUT "WORD TO GO WITH THIS PICTURE
: ”;W$
2170 INPUT "IS THIS CORRECT (Y/N):";Q$:I
F Q$O"Y" THEN GOTO 2160
2180 LET A$(ITEMS,1)=DESIGN$:LET A$(ITEM
S,2)=W$:LET ITEMS=ITEMS+1
2190 INPUT "ANOTHER PICTURE (Y/N):";Q$:I
F Q$O”Y" THEN RETURN
2200 GOTO 2030

Chapter 4 Easy education

MODULE 4.2.7

OR NEG.

A simple user search module.

MODULE 4.2.8

109

Testing Module 4.2.7
You should now be able to page through any items you load and delete at
will.

Testing Module 4.2.6
We have come a long way into the program without testing anything but
most of the material has been familiar, so there should be no major
problems. You should now be in a position, having initialized the pro
gram. to pick up designs from tape which were created earlier using Artist
and to supply a name to go with them, though you cannot yet display the
file into which they are placed except in direct mode.

EOF(- 1). All this means is that instead of reading a variable from tape
which tells the programs how many characters are to be read and added to
DESIGNS, we simply go on reading until the End of File marker is found,
then stop.

TO DELETE ITEM.”
TO QUIT FUNCTION”

3500 rem***********************
3510 REM RANDOM QUESTIONS
3520 REM***********************
3530 LET Q1=RND(ITEMS)-l
3540 LET Q2=RND(5)-1
3550 LET Q(Q2)=Q1
356-0 FOR 1 = 0 TO 4

2500 REM***********************
2510 REM USER SEARCH
2520 REM***********************
2530 IF ITEMS=0 THEN RETURN
2540 LET S=0
2550 CLS0:LET DESIGN$=A$(S,1):GOSUB 3000
:PRINT @ 15*32,A$(S,2);
2560 PRINT @ 0,”>>enter FOR NEXT ITEM”
2570 PRINT ”>>POS. OR NEG. NUMBER TO MOV
E . ”
2580 PRINT ”>>’DDD*
2590 PRINT ”>>’ZZZ’
2600 INPUT Q$
2610 IF Q$=”DDD” THEN FOR I = S TO ITEMS-1
:LET A$(I,1)=A$(1+1,1):LET AS(I,2)=A$(1+
1,2):NEXT:LET ITEMS=ITEMS-1
2620 IF Q$=”ZZZ” THEN RETURN
2630 IF Q$=”” THEN LET S=S+1
2640 LET S=S+VAL(Q$):IF S>ITEMS-1 THEN L
ET S=ITEMS-1
2650 IF S<0 THEN LET S=0
2660 GOTO 2550

The Working TRS-80 Color Computer

MODULE 4.2.9

The score-keeping module, as in the previous program.

110

Equivalent to the random question module in MultiQ, except that there is
no provision for the harder type of test, so the module is simpler. The
module also says a rainbow goodbye when the user quits — it does not
return to the main menu so that there is a smaller chance of someone
inadvertently wiping out the data.

Testing Module 4.2.8
The program should now choose a random design and print it at the
bottom of the screen, then print five words to choose from, one of which
must be input.

4000 REM***********************
4010 REM SCORE
4020 REM***********************
4025 IF QSUM=0 THEN RETURN
4030 LET F$="SCORE":LET P1=1:GOSUB 7000
4040 PRINT:PRINT "TOTAL QUESTIONSQSUM
4050 PRINT "CORRECT ANSWERS:";RIGHT
4060 PRINT: PRINT "SCOREINT(((RIGHT-Q
SUM/5)/(QSUM*.8))*10 0);" V’
4070 PRINT:INPUT "DO YOU WISH TO ZERO SC
ORE (Y/N):";Q$:IF Q$O"Y" THEN RETURN EL
SE LET QSUM=0:LET RIGHT=0:RETURN

3570 IF I=Q2 THEN GOTO 3640
3580 LET PLACE=RND(ITEMS)-1
3590 IF PLACE=Q(Q2) THEN GOTO 3580
3600 FOR J=0 TO I
3610 IF PLACE=Q(J) THEN GOTO 3580
3620 NEXT J
3630 LET Q(I)=PLACE
3640 NEXT I
3650 LET DESIGN$=A$(QI , 1) : CLS0 : GOSUB 300
0
3660 FOR 1 = 0 TO 4:PRINT @ 1*32,A$(Q(I),2
) ; :NEXT
3670 PRINT G 5*32,"";:INPUT "WHICH ONE (
Z=STOP):";C$:IF C$="Z" THEN CLS:FOR 1=0
TO 479:PRINT @ I, CHR$(RND(128)+127):NEX
T:PRINT g 8*32+10."goodbye"FOR 1=1 TO
5000:NEXT:CLS:STOP
3680 LET QSUM=QSUM+1
3690 IF COA(Q1,2) THEN CLS0.-PRINT @ 0
, "WRONG" : FOR 1 = 1 TO 1000 : NEXT : GOTO 3500
3700 PRINT "correct":PLAY "T5O4L3C;P20 ; L
2C ; L4O3A# ; A ; L2A ; L4G# ; A ; L2A ; Pl 0 ; L4G# ;A;L2
A;L4G#;A;O4L2C;O3L4A;O4C;O3L2A#"
3710 LET RIGHT=RIGHT+1
3720 GOTO 3500

Chap ter 4 Easy educa tion

\

MODULE 4.3.1

A standard title formatting module.

MODULE 4.3.2

111

Testing Module 4.2.9
You should now be able to receive a score for any tests undertaken.

Summary
This again is a program which requires some work if it is to be of any use
since the small designs it uses do take some time to create. In creating the
designs it is especially important to prepare them properly in advance
before sitting down with the Artist program. Use of squared paper can save
a lot of frustration when it comes to actually creating the designs before
they are entered.

If you don’t have any children the right age, then why not design some
crude representations of electrical symbols, and have the program set some
tests about them?

Going further
1) Your children may be more familiar with lower-case letters. Could you
alter the program so that the output is in lower-case?
2) The question of rewards rears its head even more pronouncedly in
relation to this program. Try to think how winning could be made a bit
more of a thrill.

4.3 WHERE?
This is an uncomplicated program which quite effectively tests your
knowledge of geography, or at least of the location of cities in a range of
countries. The program makes use of the second format of design output
by the Artist program, the map save.

6000 REM***********************
6010 REM DATA FILES
6020 rem***********************

7000 rem***********************
7010 REM FORMAT TITLES
7020 REM***********************
7030 LET P2=l4-INT(LEN(F$)/2)
7040 PRINT @ 32*P1+P2,STRING$(LEN(F$) + 2 .
CHR$(185))
7050 PRINT @ 32*(Pl+1)+P2,CHR$(185)+F$+C
HR$(185)
7060 PRINT @ 32*(Pl+2)+P2,STRING$(LEN(F$
) + 2,CHR$(185))
7070 RETURN

The Working TRS-80 Color Computer

A standard data-file module.

MODULE 4.3.3

H

■

= •

A standard menu module.

112

1) LOAD NEW COUNTRY”
2) RECORD NEW CITIES”
3) SET QUESTIONS”
4) DATA FILES"
5) INITIALIZE”
6) STOP”

6030 AUDIO ON:MOTOR ON:PRINT:INPUT "POSI
TION TAPE THEN PRESS enter (MOTOR IS ON
)”;Q$:MOTOR OFF
6040 PRINT:INPUT "PLACE RECORDER IN CORR
ECT MODE THEN PRESS enter";Q$
6050 PRINT:PRINT "FUNCTIONS AVAILABLE:”,
"1)SAVE DATA" ,, ”2) LOAD DATA" .-INPUT "WHIC
H DO YOU REQUIRE:";Q:ON Q GOTO 6070,6150
6060 RETURN
6070 MOTOR ON:FOR 1=1 TO 10000:NEXT I
6080 OPEN”O”,#-l,"WHERE"
6090 PRINTK-l,CTOTAL
6100 FOR 1=0 TO CTOTAL-1:FOR J=0 TO 13
6110 FOR K=1 TO 32
6120 PRINT #-l,ASC(MID$(B$(I,J),K,1))
6130 NEXT K,J,I
6140 CLOSE #-1:RETURN
6150 PCLEAR1:CLEAR 18000:LET FLAG=1:GOTO
1540

6160 OPEN "I",#-l,"WHERE"
6170 INPUT #-l,CTOTAL
6180 FOR 1 = 0 TO CTOTAL-1:FOR J=0 TO 13
6190 LET B$(I,J)="":FOR K=1 TO 32
6200 IF EOF(-l) THEN GOTO 6230
6210 INPUT #-l,C:LET B$(I,J)=B$(I,J)+CHR
$(C)
6220 NEXT K.J.I
6230 CLOSE#-1:GOTO 1000

1000 REM***********************
1010 REM MENU
1020 REM***********************
1030 CLS:LET F$="WHERE":LET P1=1:GOSUB 7
000
1040 PRINT:PRINT "COMMANDS AVAILABLE:
1050 PRINT "
1060 PRINT "
1080 PRINT "
1090 PRINT "
1100 PRINT "
1110 PRINT "
1130 PRINT:INPUT "WHICH DO YOU REQUIRE:”
;Z:CLS
1140 ON Z GOSUB 2000,2500,3000,6000,1500
,1160
1150 GOTO 1000
1160 CLS:LET F$="WHERE":LET Pl=l:GOSUB 7
000
1170 LET F$="PROGRAM TERMINATED”:LET Pl=
10:GOSUB 7000

Chapter 4 Easy education

MODULE 4.3.4

MODULE 4.3.5

: FO

113

The country maps generated by Artist will be stored in the array B$, each of
its 21 elements holding 14 lines of an individual map.

Testing Module 4.3.5
You should now be in a position to load into the program some maps
created with the aid of Artist. The first of these should be loaded at one.
You should also be prompted to supply a country name to correspond with
the map.

This module picks up the maps designed with the use of Artist and loads
them into the array B$. Note that the user is asked to specify the position at
which the map is to be loaded — there is no automatic mechanism for
allocating it a place.

NEXT
INPUT ’’ACCEPTABLE

" THEN LET CTOTAL=C

1500 REM***********************
1510 REM INITIALIZE
1520 REM***********************
1530 PCLEAR 1: CLEAR 22000.-LET FLAG=0
1540 DIM B$(20,13-)
1550 IF FLAG=1 THEN GOTO 6160 ELSE GOTO
1000

2000 REM***********************
2010 REM LOAD NEW COUNTRY
2020 REM***********************
2030 LET F$="NEW COUNTRIES”:LET P1=1:GOS
UB 7000
2035 PRINT: INPUT ’’PLACE TO LOAD THIS COU
NTRY:";PLACE:LET PLACE=PLACE-1
2040 MOTOR ON.-AUDIO ON: INPUT ’’POSITION T
APE THEN PRESS enter (MOTOR IS ON):”;Q$
2050 MOTOR OFF:INPUT "PUT RECORDER INTO
PLAY MODE THENPRESS enter";Q$
2060 OPEN" I1 , "MAP"
2080 FOR 1 = 0 TO 13:LET B$(PLACE,I)=""
R J = 0 TO 31
2090 IF EOF(-l) THEN GOTO 2120
2100 INPUT #-l,CC:LET B$(PLACE,I)=B$(PLA
CE,I)+CHR$(CC)
2110 NEXT J,I
2120 CLOSE#-1
2130 CLS0 : FOR 1 = 0 TO 13.-PRINT @ 1*32, B$(
PLACE,I);:NEXT
2140 FOR 1=1 TO 5000:
2150 PRINT @ 15*32,""

(Y/N):";Q$: IF Q$=’’Y
TOTAL+1
2160 RETURN

The Working TRS-80 Color Computer

MODULE 4.3.6

THEN GOTO 2

i

Y=";Y;" »»

114

II

*

I
i >

The purpose of this module is to move a flashing cursor around any of the
maps stored by the program and to display the co-ordinates of the cursor.
On the input of ENTER, the user is given instructions as to the manner in
which details of countries and cities are to be recorded in DATA
statements. Note that the best use is made of this module by first ensuring
that the maps currently available are all loaded into the program and saved
using the data-file module.

Then use this module to record the co-ordinates of any cities you wish to
enter, keeping the co-ordinates and names on a piece of paper until you
have completed them all. Entering the DATA statements referred to every
time you have established the co-ordinates of a new city will mean that you
will lose all the program data and it will have to be loaded from tape each
time.

I

!I
1|

2500 rem***********************
2510 REM RECORD CITIES
2520 REM***********************
2530 INPUT ’’NUMBER OF COUNTRYCOUNTRY:
LET COUNTRY=COUNTRY-1
2540 CLS0 : FOR 1 = 0 TO 13:PRINT B$(COUNTRY
, I);:NEXT:LET X=0:LET Y=0
2550 LET T$=INKEY$:IF T$<>””
600
2560 LET P=PEEK(1024+Y*32+X)
2570 POKE(1024+Y*32+X),106:FOR 1 = 1 TO 25
:NEXT
2530 POKE(1024+Y*32+X),P:FOR 1 = 1 TO 25:N
EXT
2590 GOTO 2550
2600 LET X=X-(T$=CHR$(9)) +(T$=CHR$(8)) : L
ET X=X+32*(X>31)-32*(X<0)
2610 LET Y=Y-(T$=CHR$ (10)) + (T$=CHR$ (94))
: LET Y=Y+14*(Y>13)-14*(Y<0)
2620 PRINT S 15*32,”X=”;X;”
2630 IF T$OCHR$(13) THEN GOTO 2550
2640 CLS: PRINT "RECORD THE FOLLOWING DET
AILS IN A data STATEMENT IN THE SECTION
BEGINNING AT LINE ”;10000 + (COUNTRY+1)*10
0;’’:’’
2650 PRINT "CITY NAME,X CO-ORDINATE,Y CO
-ORDINATE"
2660 PRINT: PRINT "THE NUMBER IN THE DATA

STATEMENTAT ’’; 10000+(COUNTRY+1)*100 ; ” S
HOULD BE INCREASED BY 1."
2670 PRINT "THE SECOND ITEM IN THAT LINE

SHOULD BE THE COUNTRY NAME E.G.
2680 PRINT "5,FRANCE"
2690 PRINT "THIS WOULD MEAN THAT 5 CITIE
S HAD BEEN RECORDED FOR FRANCE."
2700 PRINT:PRINT "X=";X;”//Y=";YINPUT
"(enter TO CONT.)’’ ;Q$
2710 RETURN

Chapter 4 Easy education

MODULE 4.3.7

3090

"W

115

The DATA about countries is recorded in a section at the end of the
program which, for the sake of clarity you are instructed to begin at 10000.
Each country has a space of 100 lines, beginning at 10100 for thecountry in
file space zero, 10200 for the country in file space one and so on. A typical
entry for a country would look like this:

3000
3010
3020
3030
3040
3050
3060
3070
3080

Testing Module 4.3.6
You should now be able to specify a map that is contained within the file
and move a flashing cursor around it. Pressing ENTER should lead to
instructions being displayed about the necessary DATA statements.

10200 DATA 5,NEVERLAND
10202 DATA CITY1,12,8
10204 DATA CITY2,5,7
10206 DATA CITY3,6,10
10208 DATA CITY4,11,3
10210 DATA CITY5,15,27

What this means is that the country is called Neverland, that it has five
cities and that their names and X,Y co-ordinates (as determined by using
this module) are as shown in the next five lines.

By employing DATA statements we do away with the need for modules
to insert and delete data or to page through it— the work is done by the
user. DATA statements can be abused, and often are, but where data is not
expected to have to be entered frequently, they can be a time saver in terms
of programming and a space saver in terms of the program functions that
can be dispensed with.

REM***********************
REM GENERATE QUESTIONS
REM***********************
LET COUNTRY=RND(CTOTAL)-l
GOSUB 3170
CLS0:FOR 1=0 TO 13:PRINT B$(COUNTRY

,I);:NEXT
POKE(1024 + 32*Y+X),106
FOR 1=1 TO 3
PRINT @ 14*32, STRI NG$ (63 , CHR$ (128))

LET QTOTAL=QTOTAL+1:PRINT @ 14*32,"
INPUT "NAME OF CITY:";Q$:IF Q$=M$ THE

N GOTO 3130
3100 LET WRONG=WRONG+1:PRINT @ 15*32,
RONG";:FOR J=1 TO 1000:NEXT
3110 NEXT I
3120 PRINT @ 15*32,"CITY WAS ";M$;:INPUT
" (enterQ$:GOTO 3140

3130 PRINT @ 0,M$CORRECT";:FOR 1=1 TO
1000:NEXT

The Working TRS-80 Color Computer

116

Commentary
Lines 3170-3180: Note that to extract data from the middle of a section of
DATA statements it is necessary to READ the data from the beginning. In
this case the two loops in line 3170 read all the country and city data up to
the country specified in randomly generated number COUNTRY and
then, on the basis of the number of cities specified for that country, line
3180 reads a random number of cities to arrive at the chosen city.

Testing Module 4.3.7
The program should now generate questions, allowing three attempts
before supplying the answer. The user should be given the opportunity to
specify whether the next question should be drawn from the same country
— if not, the random function may well pick up the same country again
anyway — this is not an error.

This module selects a random country and, within that country a random
city. A marker is placed at this point and the user is requested to supply the
appropriate name.

■

!

■
-
i
=

3140 PRINT @ 15*32, ; (QTOTAL-WRONG)/Q
TOTAL*10 0;’’ ”
3150 INPUT ’’ANOTHER GO (Y/N):";Q$:IF Q$<
>”Y” THEN RETURN
3160 INPUT "SAME COUNTRY (Y/N):";Q$:IF Q
$<>’’Y” THEN GOTO 3030 ELSE GOTO 3040
3170 RESTORE: FOR 1 = 0 TO COUNTRY: READ N.N
$:IF I<COUNTRY THEN FOR J=1 TO N:READ N$
,N,N:NEXT J,I
3180 FOR 1 = 1 TO RND(N):READ M$,X,Y:NEXT:
RETURN

Summary
This program raises the interesting question of how far it is desirable to go
in building all the necessary functions into the program rather than
allowing the user to do some of the work. Would the program have been
better with extra modules to cope with the addition, display and deletion of
c^ata for city names and locations? Well in many ways it would have been
better, but would the improvement have been worth the extra time and the
loss of enough memory for two country maps? If you think so, you have
enough examples to work on to insert your own extra modules.

CHAPTER 5
High resolution text

117

5.1. CHARACTERS
The purpose of this program is to allow you to build up any character you
wish which is capable of being fitted into an area on the screen of 32*32
pixels. The actual size of the character when printed on the screen will
depend upon the PMODE and the scale in use when it is DRAWn.

Having examined some of the Color Computer’s very real capabilities in
the fields of both high and low resolution graphics, we turn our attention
to an area where the machine’s performance is somewhat lacking com
pared to some other popular micro-computers — the mixing of text (that
is, letters and numbers) and high resolution graphics on the screen at the
same time.

Many of you may be aware that one solution to this irritating limitation
is to use the flexible DRAW command to literally draw letters on the screen
in the high resolution PMODEs. The real disadvantage of this method is
the necessity to go through the painfully slow process of building up the
fairly complex strings that will be drawn and writing them into each new
program which requires some text. In the two programs which follow we
shall attempt to overcome this drawback by providing a simple method of
creating the desired characters, of storing them for subsequent use and of
compiling them into character sets for subsequent use by other programs.
In other words we shall attempt to substantially extend the Color Com
puter’s capabilities.

MODULE 5.1.1
1000 REM***********************
1010 REM INITIALIZE

ptg^*********«*************
1030 PMODE0,1:PCLEAR 2.-CLEAR 1000:PMODE
1,1:SCREEN 1,0:PCLS4
1040 DIM A(31,31):DIM 8(31,31)
1050 DIM C(127,7)
1060 DRAW "BM0.0"
1070 FOR 1= 1 TO 2
1080 FOR J=1 TO 16:DRAW "Cl;R3;BRI;C2;R3
;BRI":NEXT J

The Working TRS-80 Color Computer

MODULE 5.1.2

118

The purpose of this module is to initialize the program variables and to set
up an array which will be used later in the program to reduce the time
taken to print a 32*32 checkerboard design by use of GET and PUT.

Commentary

Line 1030: Since we shall be working with strings we shall need to set aside
more than the basic minimum of string space. The remaining commands
merely set aside sufficient memory space to work in PMODE 1 using the
first color set.

The sole purpose of this module is to define a short string which draws an
inked in square at an appropriate position in the array as defined by the
variables X and Y.

Testing Module 5.1.1
The functions of the various arrays can only be checked later in the process
of entering the program but at this stage the module should visibly draw the
first two lines of a checkerboard on the screen and then clear the screen.

1090 DRAW "BM-128,+2”:NEXT I
1100 FOR 1 = 1 TO 2: FOR J=1 TO 16: DRAW ”C2
;R3;BRI;Cl;R3;BR1":NEXT J
1110 DRAW "BM-128,+2":NEXT I
1120 GET (0,0)-(127,7),C
1130 PCLS4

Lines 1060-1110: These lines initialize the DRAWing position to the top
left hand corner of the screen and then DRAW the first two lines of a
checkerboard, one square at a time. You will note once again how a series
of DRAW commands placed on different lines are executed as if they
were part of the same string.

5000 REM***********************
5010 REM FUNCTIONAL SUBROUTINES
5020 REM***********************
5030 LET D$=”BM"+STR$(X) + ",”+STR$(Y) + ” ; ”
+”D3;R1;U3;R1;D3;R1;U3”:RETURN

Line 1120: The area of the screen DRAWn upon is 128*8 pixels and this
rectangle is now stored in the array C using the GET command. It would
not be possible to store the whole 32*32 matrix in such an array since even
to store only 1 /16th of it requires over 5,000 bytes of memory.

The heavy memory demand involved in the use of GET is the main
drawback to an otherwise useful feature of the Color Computer.

I

Chapter 5 High resolution text

MODULE 5.1.3

119

Testing Module 5.1.2
The line can be tested after the entry of the next module.

Lines 2550-2570: Using two loops to increment the values of X and Y, the
array A is examined to see if the array element corresponding with each
element in the grid contains something other than a zero. If it does, then
Module 2 is called up and the current values of X and Y incorporated into
D$, which then DRAWs an inked in square at the appropriate point.

Commentary
Line 2530: Using the array C, which holds two lines of the checkerboard
design, this line prints the 32*32 grid by PUTting the contents of the array
onto the screen in 16 consecutive locations. This is considerably faster than
DRAWing the grid.

This module places on the screen the whole 32*32 grid that will be used to
define characters. When later modules have been entered it will also ink in
the squares which define a character.

Commentary
Line 5030: This line serves as a useful reminder that the strings used to
control the DRAW command do not have to be cut and dried before
running the program. All the string handling capabilities of the Color
Computer can be brought to bear. In this case, values for X and Y are
inserted into the string using the STR$ function. The line is included as a
separate one-line subroutine simply because it is called out more than
once in the program and it saves space if it is not spelled out in several
places.

2500 REM***********************
2510 REM DRAW GRID
2520 REM***********************
2530 PCLS2:FOR 1=0 TO 120 STEP 8: PUT (0,
I)-(127,1 + 7),C:NEXT I
2540 DRAW ”C1;BM128,0;D128;L128"
2550 FOR Y=0 TO 124 STEP 4: FOR X=0 TO 12
4 STEP 4
2560 IF A(Y/4,X/4)<>0 THEN G0SUB 5030:DR
AW ”C0;"+D$
2570 NEXT X,Y:LET X=0:LET Y=0:RETURN

The Working TRS-80 Color Computer

MODULE 5.1.4

THEN GOTO 1

4
ii

120

=? Commentary
Lines 1550-1610: A variation of our standard flashing cursor routine. The

Testing Module 5.1.3
The program should now be capable of placing the 32*32 element grid on
the screen, then stopping with the RETURN without GOSUB error. If you
wish, you can feed some ones into the array A in direct mode, then GOTO
2500. The corresponding squares on the grid should have been inked in.
Note that it takes time to examine the whole array — some 20 seconds — so
that a pause does not mean that the program is malfunctioning.

2
3
1
i

s

*
I

-

I

This module is designed to allow the user to move a flashing cursor around
the grid printed by the last module, inking in or erasing squares at will.
Having satisfactorily designed a character, a variety of other program
functions can be called up by the use of single-key codes. The
cursor-moving techniques employed will be familiar from previous
programs in this book.

1500 REM***********************
1510 REM CREATE DESIGN
1520 REM***********************
1530 GOSUB 2500
1540 LET X=0:LET Y=0
1550 LET T$=INKEY$:IF T$<>'”'
620
1560 GOSUB 5030
1570 DRAW "C0;"+D$
1530 FOR 1=1 TO 25:NEXT
1590 DRAW ”C" + STR$ (1-((X+Y)/8 <> I NT ((X+Y)
/8)))+D$
1600 FOR 1=1 TO 25:NEXT
1610 GOTO 1550
1620 IF A(Y/4,X/4)=1 THEN DRAW ,’C0;”-f-D$
1630 LET X=X-4*(T$=CHR$(9)) + 4*(T$=CHR$(8
)):IF X>124 THEN LET X=124
1640 IF X<0 THEN LET X=0
1650 LET Y=Y-4*(T$=CHR$(10))+4*(T$=CHR$ (
94)):IF Y>124 THEN LET Y=124
1660 IF Y<0 THEN LET Y=0
1670 IF T$=”0" THEN DRAW ”C”+STR$(1-((X+
Y)/8<>INT((X+Y)/8)))+D$:LET A(Y/4,X/4)=0
1680 IF T$="l” THEN DRAW ”C0 ; ”+D$: LET A(
Y/4,X/4)=1
1690 IF T$=”R” THEN GOSUB 2030
1700 IF T$=,’M” THEN GOSUB 5030: DRAW ”C4"
+D$:GOSUB 2070
1710 IF T$=”I” THEN GOSUB 2200
1720 IF T$=”E" THEN GOSUB 3000
1730 IF T$="S” THEN GOSUB 6000:SCREEN 1,
0
1740 GOTO 1550

Chapter 5 High resolution text

I

■

Line 1710: Input of I transforms the design into its mirror-image.

121

Testing Module 5.1.4
At this point you should be able to move the flashing cursor around the
grid, inking in or erasing squares at will. None of the other functions are yet
available and their use will result in an error report undefined line.

Line 1730: Input of S results in the string created being saved to tape. Note
that because this will involve instructions being printed using the text
screen, the SCREEN command must be used on return to retrieve the high
resolution display.

Line 1690: Input of R rotates the whole grid 90 degrees counter-clockwise
when the next module has been entered.

Line 1680: Pressing 1 inks in the square and sets the corresponding element
in the array A.

Line 1620: Having left the flashing cursor routine at the touch of a key, this
line checks that the element which has just been redrawn to the background
color does not have to be inked in according to the information stored in
the array A.

cursor is first drawn and then redrawn to the background color of the
square it occupies. The whole process cries out for the use of GET and PUT
but unfortunately the smallest rectangle which can be PUT back onto the
screen in this PMODE is twice as long horizontally as one of our grid
elements.

Line 1720: Input of E extracts the string necessary to DRAW the character
which has been created.

Line 1700: Input of M will later allow the design to be moved around in the
grid.

Lines 1630-1660: These lines, as will be recognized from previous
programs, move the cursor around the screen. In this case the cursor moves
in four pixel steps, anywhere within the limits of the grid. As usual, logical
conditions are used to control the movement and the required input is one
or the other of the arrowed keys on the keyboard.

Line 1670: The 0 key is used to erase any inked-in element over which the
cursor is currently flashing. This is done by simply redrawing it in the
background color. The relevant element in the array A must also be reset
to zero, otherwise the square will be inked in again every time Module 3 is
called up.

The Working TRS-80 Color Computer

MODULE 5.1.5

THEN GOTO

1

122

Commentary
Lines 2030-2050: Examination of the subscripts for the arrays A and B in
the first line will reveal that those three lines accomplish the rotation of the
data stored in the array A by 90 degrees, that is to say that element 0,0 is

This module performs three of the functions called from the previous
module, namely rotation, inversion and movement of the design within the
grid. All the manipulations are performed by employing a second array, B,
to which is transferred the data from the array A, suitably modified. The
array B is then copied back into A.

i

!

2000 rem***********************
2010 REM ARRAY MANIPULATIONS
2020 REM************************
2030 FOR 1 = 0 TO 31: FOR J = 0 TO 31: LET B(J
. 31-1) = A(I:NEXT J.I
2040 FOR 1 = 0 TO 31: FOR J=0 TO 31: LET A(I
, J)=B(I,J):LET B(I,J)=0:NEXT J,I
2050 GOSUB 2500:RETURN
2060 REM***********************
2070 DRAW "C3;BM150,40;U12;F6;E6;D12” : FO
R 1=1 TO 100:NEXT
2080 LET MX=0:LET MY=0:LET X1=0.LET X2=0
: LET Y1=0:LET Y2=0
2090 LET T1$=INKEY$:IF Tl$=””
2090
2100 IF Tl$="l” THEN LET MY=Y*-1:LET MX =
X*-1:LET X1=X:LET X2=124:LET Y1=Y:LET Y2
= 124: DRAW "BM150,64 ; R5 ; BL3 ; U12 ; G1’*
2110 IF Tl$="2" THEN LET MY=Y*-1 : LET MX =
124-X:LET Y1=Y:LET Y2=124:LET X1=0:LET X
2=X:DRAW "BMl62,60;L12;U6;R12;U6;L12"
2120 IF Tl$="3" THEN LET MY=124-Y:LET MX
=X*-1:LET X1=X:LET X2=124:LET Y1=0:LET Y
2=Y:DRAW "BM150,60;R12;U6;L8;R8 ;U6;L12”
2130 IF Tl$=”4” THEN LET MY=124-Y:LET MX
=124-X:LET X1 = 0:LET X2=X:LET Y1 = 0 : LET Y2
=Y:DRAW ”BM162,60;L6;U3;D6;U3;L6;U12M
2140 IF T1$<"1" OR Tl$>”4" THEN FOR 1 = 25

TO 65:DRAW "C4 ; BM150 , ”+STR$ (I) + " ; R12” : N
EXT I:RETURN
2150 LET X1=X1/4:LET X2=X2/4:LET Yl=Yl/4
:LET Y2=Y2/4:LET MX=MX/4:LET MY=MY/4
2160 FOR I=Y1 TO Y2: FOR J=X1 TO X2:LET B
(I+MY,J+MX)=A(I,J):NEXT J,I
2170 FOR 1 = 0 TO 31: FOR J=0 TO 31: LET A(I
,J)=B(I,J):LET B(I,J)=0:NEXT J,I
2180 GOSUB 2500:RETURN
2190 REM***********************
2200 FOR 1 = 0 TO 31:FOR J=0 TO 31:LET B(I
,J)=A(I,31-J):NEXT J,I
2210 FOR 1=0 TO 31:FOR J=0 TO 31:LET A(I
,J)=B(I,J):LET BCI,J)=0:NEXT J,I
2220 GOSUB 2500:RETURN

Chapter 5 High resolution text

123

Line 2140: If an erroneous input is made when the program is expecting a
corner to be specified, the M is erased and control is returned to Module 4.

Lines 2150-2170: Having established the size of the rectangle to be moved
and the amount of movement necessary, these values are divided by four so
that they can be applied to the array A and the transformation
accomplished in transferring the c.ontents to the array B.

Lines 2100-2130: These variables are set according to the corner specified
as the destination of the move and the current position of the cursor. Again
for no particular reason, the number of the corner chosen as a destination
is drawn next to the grid.

Lines 2070: This line draws a large M next to the grid to show that the move
function has been called — it seemed like a good idea at the time. The
empty loop in this line serves the important function of separating the
input named T$ in the previous module and one called Tl$ which is about
to be called for. Without this delaying loop there is a danger that if the
user’s finger lingers on the M key when calling up this function, the
INKEYS function at line 2090 will define T1S as M too. This delay is
necessary whenever using a succession of INKEYS inputs.

Line 2080: MX and MY are the variables which will be used to record the
distance the defined rectangle must be moved. X1,Y1,X2 and Y2 will
record the opposite corners of the defined rectangle.

moved to position 31,0 and so on. Having redefined the array A, Module 3
is recalled to draw the modified grid.

1
3

2
4

On calling up this section by the use of the M key in the previous module,
the user is asked to specify a corner. If corner 4 is specified, then a rectangle
is defined with two opposite corners consisting of grid corner 1 (the corner
opposite to 4) and the current position of the cursor. This rectangle is then
moved so that the corner defined by the cursor is relocated in grid corner 4.
This may sound complex but a little experimentation will show that it is in
fact a neat and simple means of moving the contents of the grid around. It
is important to remember that if the design is to be moved down two lines,
the bottom two lines of the design will be lost and similarly for moves in
other directions.

Lines 2060-2180: This subsection accomplishes the movement of the
design within the grid. In order to understand this function it is first of all
necessary to visualize the comers of the grid numbered in the following
manner:

The Working TRS-80 Color Computer

-•

124

i
■

Testing Module 5.1.5
The three functions specified in the commentary should now be available.

Having established the functions necessary to define and manipulate a
character on the grid, we come to the heart of the program, the module
which takes the design which the user has created and transforms it into a

1
I
■
i

|
i

MODULE 5.1.6
3000 R EM* *■*-*♦* 4**#*****44*4#4*#
3010 REM EXTRACT STRING
3020 REM***********************
3030 FOR 1 = 0 TO 31: FOR J = 0 TO 31: LET B(I
, J)=A(I,J):NEXT J,I
3040 LET DI$=”HUELRGDF”:LET E$=n”
3050 LET X=0: LET Y=0:LET Dl-;0 : LET 02 = 0:
LET DIR=0
3060 FOR 1 = 0 TO 31: FOR J = 0 TO 31: IF B(I,
J)=0 THEN GOTO 3250
3070 LET E$=E$+”BM”:IF J-X;0 THEN LET E$
=ES+”+” ELSE LET £$=£$+•'-”
3080 LET E$=ES+MI D$ (STRS (ABS(J-X)) , 2)+ ” ,
it

3090 IF I-Y>0 THEN LET E$=E$+"+" ELSE LE
T E$=E$+”-"
3100 LET E$=E$+MI D$ (STR$ (ABS (I - Y)) , 2) + ” ;
R0 ; ”
3110 LET X=J:LET Y=I
3120 LET B(Y,X)=0
3130 IF Y+D1>=0 AND Y+DK-31 AND X+D2>=0
AND X+D2<=31 THEN IF B(Y+D1,X+D2)<>0 TH EN GOTO 3190
3140 FOR K=-l TO 1:FOR L=-l TO 1
3150 IF X+L>31 OR X+L<0 OR Y+K>31 OR Y+K
<0 THEN GOTO 3170
3160 IF B(Y+K,X+L)<>0 THEN LET D1=K:LET
D2=L:G0T0 3190
3170 NEXT L,K:IF DIRO0 THEN LET E$=E$+M
IDS (DI $, DIR , 1)+MID$ (STR$ (NN+1) ,2)+”
3180 LET DIR=0.-LET D1=0:LET D2 = 0:LET NN=
0:GOTO 3250
3190 LET Tl = 3*(Dl+l) + D2+2 : IF Tl>4 THEN L ET T1=T1-1
3200 IF T1=DIR THEN LET NN=NN+1
3210 IF T1ODIR AND DIRO0 THEN LET E$=E
S+MIDS (DI$, DIR , 1)+MID$ (STR$ (NN+1) ,2) + ";’’ :LET NN=0
3220 LET DIR=T1
3230 LET X=X+D2:LET Y=Y+D1
3240 GOTO 3120
3250 NEXT J,I
3260 IF NNO0 AND DIRO0 THEN LET E$ = E$+
MID$(DI$,DIR,1)+MID$(STR$(NN+1),2)
3270 DRAW "S8;C3;BM150,60;"+E$
3280 IF INKEY$="" THEN GOTO 3280
3290 FOR 1=0 TO 63:DRAW ”C2;BM150,”+STR$
(60+I)+";R64”:NEXT I
3300 LET X=0:LET Y=0:DRAW "S4”:RETURN

Chapter 5 High resolution text

125

!;
r

I1
!-Lines 3190-3200: If it is possible to draw from the current square, the

direction is checked to see if it is the direction of a line currently being
drawn, if so the variable NN is incremented. If it is a new direction, the
direction and length of the previously traced line are added to E$. The
value attached to any particular direction is calculated by the formula at

i

Commentary
Line 3030: Since elements in the design will be erased from the array as they
are incorporated into the string, the process is actually carried out on a
copy of the main array.

Line 3040: The letters contained in DIS are the eight directions which can
be handled by the DRAW command. E$ will contain the string defining the
design or character.

string which, when DRAWn, will reproduce the desired character or
design.

Line 3050: X and Y are used to register co-ordinates on the grid. DI and D2
are used to record the vertical and horizontal elements of the direction in
which a line is currently being DRAWn.

Lines 3060 and 3250: The loop defined by these two lines scans through the
grid, ignoring empty squares.

Lines 3070-3120: For reasons that will be seen later, the fact that program
execution has arrived at this point shows that the square currently defined
by I and J is inked in but that it does not follow on in a continuous line from
any part of the design previously recorded in E$. The location of thesquare
is therefore recorded in the form of a B(lank) M(ove) within the string. The
first square to be recorded in this fashion will always be the top left hand
square in the design and its position will be defined in relation to the top left
hand corner. Other squares to be recorded in the BM format will be defined
in relation to wherever DRAWing last left off. The drawing position is
updated to the current square and the square is erased so that it cannot
figure twice in the design.

Line 3130: If the element at Y + D1,X + D2 is not zero, then since DI and
D2 contain the direction in which a line is currently being drawn, the loop
examining surrounding squares is jumped around.

Lines 3140—3170: If a current direction cannot be continued, this loop
examines surrounding squares to see if there is any direction in which
DRAWing may continue. If no such continuation is found then to E$ is
added the direction and length of the line which has been traced in the
design.

The Working TRS-80 Color Computer

126

1
4
6

3
5
8

The function of this module is to allow the design which the user has
created to be saved on tape in the form of a string. You will note that the

line 3190 and this value corresponds to the position of the relevant letter in
DIS (defined at line 3040). It may be worth noting in passing that this
formula can come in useful in a variety of circumstances where a direction
on a rectangular grid requires to be recorded. The values which the line will
produce for the eight possible directions are as follows:

2
*
7

Compare this with the letters specified in DIS and you will see why they are
arranged as they are. The variables DI and D2 are vertical and horizontal
elements of the direction and range between - 1 and + 1.

Line 3260: This line simply ensures that any DRAWing left unfinished at
the end of the loop is completed.

Line 3270: The design is now DRAWn next to the grid, using the new E$
which has been created. DRAWing it at scale 8 ensures that its proportions,
though not its size, are the same as the design created on the grid.

Lines 3280-3300: The design is displayed until a key is pressed, then
control is returned to Module 4. Note that the scale for DRAWing must be
returned to the normal 4 before a RETURN is made, otherwise subsequent
use of the DRAW command will produce oversized results.

Testing Module 5.1.6
Having defined a design on the grid, you should now be able to call up this
module by pressing key E and, after a lengthy pause, see it displayed at f
scale. Stopping the program will allow you to examine the E$ which the
module has created. Note that no check is made that your design is not too
complex to be drawn by a string of up to 255 characters, so that too full a
grid might result in an error, though this is unlikely to happen.

MODULE 5.1.7

6000 REM***********************
6010 REM SAVE CHARACTERS TO TAPE
6020 REM***********************
6030 MOTOR ON:AUDIO ON:CLS:INPUT "POSITI
ON TAPE THEN PRESS enter (MOTOR IS ON):
”;QS
6040 MOTOR OFF: INPUT ’’START RECORDING TH
EN enter:”;Q$
6050 MOTOR ON:FOR 1=1 TO 10000:NEXT
6060 OPEN ”0” , #-l,’’CHAR”
6070 PRINT #-l,E$
6080 CLOSE #-l
6090 RETURN

Chapter 5 High resolution text

=

127

0
1
R
M
I
E
S

module is more simple than many of the data file modules of earlier
programs, this is because its sole purpose is to save a single string.

Testing Module 5.1.7
You should now be able to save E$ on tape. This can be verified by calling
up this module, then stopping the program and clearing the variables.
Insert at 8888 a single line instruction to open an input file by the name of
CHAR and input E$, not forgetting to close the file. You may then print
out E$ in direct mode, or DRAW it to check that it has been satisfactorily
recorded and reclaimed. If this is successful then the program is complete
and you are ready to proceed to the second half of the high resolution text
section.

CHARACTERS: Summary of single key functions
With cursor flashing:

erases square on grid where cursor is situated.
inks in square on grid where cursor is situated.
rotates design within grid by 90 degrees counter-clockwise,
calls subroutine which moves design within grid.
transforms design within grid into its mirror image,
creates string which will duplicate design if DRAWn.
saves design on tape.

With large M drawn to the right of the grid:
1,2,3 or 4 specifies the corner towards which the design is to be moved.

Going Further
1) A character creator is hardly much use unless you are prepared to sit
down and define some characters. Though this may seen an incredibly
difficult and boring task at first glance, a moment’s reflection will suffice
to realize that a complete set of characters, already defined in pixels, is
laid out before you input the listings given in this book. Alternative styles
of lettering can be found in the program listings in any computer maga
zine. With such examples to work from, you really should have no diffi
culty in building up a collection of worthwhile characters.

Summary
This program is an odd one in that, as it stands, it is almost completely
useless. That is to say, all it accomplishes is to store strings defining small
scale designs or characters onto tape, hardly a stunning feat. In
combination with other programs, however, which will pick up the
characters created and compile them into usable character sets, and
modules which will allow you to use such character sets easily in high
resolution PMODEs, the program becomes an indispensable tool which
enables the Color Computer to exceed its normal capabilities.

The Working TRS-80 Color Computer

MODULE 5.2.1

A standard menu module.

MODULE 5.2.2

128

2) The program as given does not necessarily always make the best use of
the 255 characters of string space available for E$. This is because a blank
move always uses the BM notation, which requires at least seven characters
(BM + 2,-2) and possibly nine. An interesting challenge wouid be to insert
a routine to test whether such a blank move could be covered by one of the
single-letter DRAW instructions. The blank move given above for instance
could just as easily have been defined by BE2, which would result in a
considerable saving.

■

5.2 DICTIONARY
Having created characters it now only remains for them to be combined in
such a way as to be useful for subsequent programs. The program which
follows is designed to accomplish this by holding in memory up to 100
characters at one time, with the possibility of more being picked up from
tape in batches of one hundred. The characters so stored can then be
combined into collections such as ABCDEFGHI... etc to provide
material for high resolution programs which require text. In later
programs we shall examine practical modules for using such character sets
without constantly having to specify DRAW commands in the program.

1500 REM***********************
1510 REM INITIALIZE
1520 REM***********************
1530 PCLEAR 4:CLEAR 15000
1540 DIM DI$(128):DIM CHAR$(40)
1550 LET CI=0:LET DI=0
1560 GOTO 1000

i

11DISPLAY DICTIONARY”
2)DISPLAY CHARACTER SET”
3H0AD/SAVE DATA”
4) INITIAL I ZE”
51STOP"

1000 REM***********************
1010 REM MENU
1020 REM***********************
1030 CLS:PRINT @ 42,"dictionary”
1040 PRINT:PRINT "FUNCTIONS AVAILABLE:”
1050 PRINT "
1060 PRINT ”
1070 PRINT "
1080 PRINT "
1090 PRINT "
1100 PRINT: INPUT "WHICH DO YOU REQUIRE:”
;Z:CLS
1110 IF Z<4 THEN ON Z GOSUB 2000,2500,60
00:GOTO 1000
1120 ON Z-3 GOTO 1500,1140
1130 GOTO 1000
1140 CLS:PRINT @ 7*32 + 10,”dictionary” : PR
INT:PRINT " PROGRAM TERMINATED"
1150 STOP

Chapter 5 High resolution text

MODULE 5.2.3

129

I
I

Line 1550: CI and DI record the number of characters stored in the
character set and the dictionary.

Commentary
Line 1540: The main dictionary of characters will be held in the string array
DIS. The number of elements which this array will be capable of holding
will depend on the complexity of the characters and, therefore, the length
of the strings required to DRAW them. The character set currently being
compiled will be held in the string array CHARS.

This module sets aside sufficient memory for the necessary PMODE and
reserves the rest of the available memory for strings as well as setting up the
necessary variables.

The purpose of this module is to display the dictionary of characters page
by page and to move a cursor around the page allowing the user to specify
characters for a number of simple operations.

2000 REM***********************
2010 REM DISPLAY DICTIONARY
2020 REM***********************
2030 LET S=0
2040 PMODE 4,1:PCLS:SCREEN 1,0
2050 FOR I=S TO S+31
2060 DRAW ”BM” + STR$ (32*((I-S)-8*INT((I-S
)/8))) + ” , ”+STR$ (45* I NT((I-S)/8)) + ” ; "+DI $
(I)
2070 NEXT I
2080 LET S1=S-32*INT(S/32)
2090 LET T$=INKEY$:IF T$<>
150
2100 FOR 1=1 TO 2
2110 DRAW ”C” + STR$(I) + ’';BM"+STR$(32*(S1-
8*INT(Sl/8)) + 8) + ” , ”+STR$(45*INT(Sl/8) + 40
)+”;E3;F3"
2120 FOR J=1 TO 25.-NEXT J
2130 NEXT I
2140 GOTO 2090
2150 LET S1 = S1-(T$=CHR$ (9)) + (T$=CHR$(8))
:LET S1=S1-(Sl<0)+(SI>31)
2160 IF T$=',D” THEN FOR I=S+S1 TO DI-JL:L
ET DI$(I) = DI$(1 + 1):NEXT I : LET DI=DI-1:GO
TO 2040
2170 IF T$=”C" THEN IF CI<=40 THEN LET C
HAR$(CI) = DI $(S+Sl):LET CI = CI + 1
2180 IF T$ = CHR$(10) THEN LET S=S-32*(S<1
28) .-GOTO 2040
2190 IF T$=CHR$(94) THEN LET S=S+32*(S>3
1):GOTO 2040
2200 IF T$=”Q" THEN RETURN
2210 GOTO 2090

”” THEN GOTO 2

The Working TRS-80 Color Computer

Line 2150: The cursor move line, based on the left and right arrowed keys.

!.

130

Commentary
Line 2060: The fairly involved figures which are to be included in the string
to be DRAWn simply specify that each character to be drawn will be placed
32 pixels to the right of the last, or at the start of the screen and 45 pixels
down if the end of a line has been reached. This allows for the full 32*32
grid on which the character was designed plus room for a moving cursor.

Line 2080: While the variable S records the absolute position of the
character currently pointed to within the dictionary, SI is used to indicate
the position, of the cursor on the screen.

Line 2100-2130: A flashing cursor routine which uses the value of the loop
variable I to set the color with which the cursor is DRAWn and thus needs
only the one line to DRAW and reDRAW to invisibility.

Line 2160: Input of D will result in the deletion of the character to which
the cursor is pointing from the dictionary.

Line 2170: Input of C adds the character to which the cursor is pointing to
the current character set.

Lines 2180-2190: The up and down arrows are used to move to the
previous or following page of the dictionary.

Line 2200: Input of Q returns program execution to the menu.

Testing Module 5.2.3
Since no characters have yet been loaded from tape, it is difficult to test this
module but since there are almost bound to be errors in entering it we shall
adopt the temporary expedient of entering some simple specimen
characters with the following line:
8888 LET D$ = “BM + 1,+ 0;R0;“:FOR H = 0 TO 7:LET E$ = “”:FOR
1 = 0 TO 13:LET E$ = E$ + D$:LET DI$(H* 14 +1) = E$:NEXT I:NEXT
H:LET DI = 110

This line, provided that the program has been initialized, can be called
in direct mode or even called as a subroutine from the initialization
module and will load the dictionary with 112 characters which are actu
ally sets of 14 lines of increasing length traversing the 32*32 pixel space
diagonally from the top left corner.

Having run line 8888, calling up this module should display the first page
of the dictionary and allow the full range of functions specified in the
commentary.

Chapter 5 High resolution text

MODULE 5.2.4

THEN GOTO 25

MODULE 5.2.5

131

Commentary
Line 2580: Input of D while the character set is being displayed will result in
the character set being deleted. Note that this is achieved simply by setting
CI to zero. There is no need to physically wipe out the character set.
Pressing any key other than D will return to the menu.

Testing Module 5.2.4
You should now be able to create a character set from the main dictionary
and display that character set.

!

I
Having begun to build up a character set from the main dictionary, this
module allows the user to display the current state of the character set.

2500 REM***********************
2510 REM DISPLAY CHARACTER SET
2520 REM***********************
2530 PMODE 4,1:PCLS:SCREEN 1,0
2540 FOR 1=0 TO CI
2550 DRAW "BM" + STR$(32*(I-8*INT(1/8))) + "
,"+STR$(32*INT(I/8)) + " ;"+CHAR$(I)
2560 NEXT I
2570 LET T$=INKEY$:IF T$=""
70
2580 IF T$=”D" THEN LET CI=0
2590 RETURN

6000 REM***********************
6010 REM DATA FILES
6020 REM***********************
6030 MOTOR ON;AUDIO ON:CLS:INPUT "POSITI
ON TAPE THEN PRESS enter (MOTOR IS ON):
”;Q$
6040 MOTOR OFF: INPUT ’’PLACE RECORDER INT
0 CORRECT MODETHEN PRESS enter";Q$
6050 PRINT: PRINT "FUNCTIONS AVAILABLE:”,
"1)SAVE CHARACTER SET","2)LOAD NEW CHARA
CTER","3)SAVE DICTIONARY",”4)LOAD DICTIO
NARY": INPUT "WHICH DO YOU REQUIREQ:ON

Q GOTO 6070,6150,6210,6280
6060 RETURN
6070 MOTOR ON:FOR 1=1 TO 10000:NEXT
6080 OPEN "O",#-l,"CHARSET"
6090 PRINT #-l,CI
6100 FOR 1=0 TO CI-1
6110 PRINT #-l,CHAR$(I)
6120 NEXT I
6130 CLOSE #-l
6140 RETURN
6150 IF DI=100 THEN RETURN

The Working TRS-80 Color Computer

Lines 6210-6270: This section stores the current dictionary onto tape.

132

Commentary

Lines 6070-6140: This section saves the current character set to tape,
together with the variable CI, which indicates how many characters it
contains.

Testing Module 5.2,5
You should now be able to pick up characters created by the previous
program, compile them into a dictionary or dictionaries and, using these

This is our standard data file handling module expanded to take account of
the fact that we now wish to load or save four different sets of data —
individual characters from tape, character sets to tape, the dictionary from
tape and the dictionary to tape.

Lines 6150-6200: This section loads
stores it in the dictionary.

Lines 6280-6340: This section loads a dictionary from tape. Note that a
new dictionary can be loaded during the creation of a character set, thus
allowing the character set to draw upon a wider range of characters than
can be contained within one dictionary.

a single character from tape and

6160 OPEN ”1”, 1-1,’’CHAR”
6170 INPUT #-l,D$
6180 CLOSE #-l
6190 LET DI $(DI) = D$:LET DI = DI + 1
6200 RETURN
6210 MOTOR ON: FOR 1 = 1 TO 10000:NEXT I:OP
EN ”0”,t-l,”DICT”
6220 PRINT |-1,DI
6230 FOR 1=0 TO DI-1
6240 PRINT |-1,DI$(I)
6250 NEXT I
6260 CLOSE #-l
6270 RETURN
6230 OPEN ”1”,#-l,"DICT”
6290 INPUT#-!.DI
6300 FOR 1=0 TO DI-1
6310 INPUT #-l,DI$(I)
6320 NEXT I
6330 CLOSE #-l
6340 GOTO 1000
6350 LET D$=" BM+1 ,+0 ; R0 ; " : FOR H = 0 TO 2:L
ET E$="’’:FOR 1 = 0 TO 13: LET E$=E$+D$:LET
DI$(H*14 + I) = E$:NEXT I :NEXT H:LET DI = 40
6360 RETURN

Chapter 5 High resolution text

133

dictionaries compile your own character sets and save them on tape. If
these functions are all available, the program is correctly entered and ready
for use.

Summary
This is an uncomplicated program for the simple reason that it is designed
to leave the maximum amount of space for the strings containing the actual
characters themselves. Once entered you are ready to embark on the task of
creating and compiling sets of characters for use in high resolution mode.
As previously mentioned, later programs will take you further by showing
some practical ways to use such character sets without having to specify the
DRAWing of each character separately.

Going further
1) As with the character creator itself, this program will only come into its
own when you get around to compiling a dictionary or two.
2) Text is not the only area where the programmer might benefit from
having a set of characters available in high resolution modes. What about
developing sets of symbols for electronic diagrams, for instance.
Remember that, using the DRAW command such symbols can be rotated,
so that a single symbol is all that will be necessary for each component, no
matter what its orientation may be. You could, perhaps, add the ability to
DRAW such characters to a program such as Designer thus allowing
symbols and text to be made an integral part of the designs created using
that program.

i

DICTIONARY: Summary of single-key functions
With flashing cursor:
Left and right arrows move cursor.
Up and down arrows move display to new page of dictionary,

deletes character above cursor from dictionary,
adds character above cursor to current character set.
returns control to menu.

D
C
Q
No flashing cursor (character set display):
D deletes current character set.
Any other key returns to menu.

CHAPTER 6
Handy programs

MODULE 6.1.1

134

In this chapter we turn our attention to a collection of programs under the
general heading of ‘utilities’, designed to display a few of the wide ranging
uses to which the Color Computer can be put around the home.

In most of these programs we shall be employing techniques which we
have already come across and, apart from such explanation as is necessary
to understand the functioning of the program, comments will be
accordingly brief.

6.1 NAME AND NUMBER
Once again a general purpose tool which enables a dictionary to be built up
of items together with the units in which they are usually measured and an
associated quantity. Current working lists can be constructed out of the
dictionary items. At first sight this might not be a very inspiring prospect,
but on reflection you may find that there are already a number of areas
where such a program could come in useful. One might be the field of
calorie control, where the Color Computer is capable of storing a diction
ary of up to 500 foods, together with the units in which they are usually
measured and the calories per unit. A day’s calorific intake can be easily
calculated by using the current list facility to construct a list of the day’s or
the week’s food and automatically calculate the number of calories in
volved. The program is also useful in calculating total prices for orders
where the total stock of items does not exceed 500 types.

6000 REM***********************
6010 REM DATA FILES
6020 REM***********************
6030 AUDIO ON:MOTOR ON:PRINT:INPUT "POSI
TION TAPE THEN PRESS enter (MOTOR IS ON
)”;Q$:MOTOR OFF
6040 PRINT:INPUT "PLACE RECORDER IN CORR
ECT MODE THEN PRESS enter";Q$
6050 PRINT:PRINT "FUNCTIONS AVAILABLE:’’,
"1)SAVE DATA",,”2) LOAD DATA":INPUT "WHIC
H DO YOU REQU IRE:";Q:ON Q GOTO 6070,6140
6060 RETURN
6070 MOTOR ON:FOR 1=1 TO 10000:NEXT I

Chap ter 6 Handy programs

A standard data-file module.

MODULE 6.1.2

A standard title-formatting module.

MODULE 6.1.3

H

135

5) EXTEND DICTIONARY”
6) DISPLAY DICTIONARY”
7) DATA FILES
8) INITIAL I ZE”
9) STOP”

6080 OPEN"O",#-l,"NNUMBER"
6090 PRINT #-l,NAMES,QUANTITY$
6100 PRINT #-1 , CURR : FOR 1 = 0 TO CURR-l.-PR
INT #-l,T$(I,0),T$(I,1),T(I):NEXT
6110 PRINT #-l,ITEMS:FOR 1 = 0 TO ITEMS-1:
PRINT #-l,A$(I,0),A$(I ,1),C(I):NEXT
6120 CLOSE #-l
6130 RETURN
6140 CLEAR 10000:LET FLAG=1:GOTO 1540
6150 OPEN”I”,#-l,"NNUMBER"
6160 INPUT #-l,NAMES,QUANTITYS
6170 INPUT #-l, CURR .-FOR 1 = 0 TO CURR-1:IN
PUT #-1,T$(I ,0),T$(I,1) ,T(I):NEXT
6180 INPUT #-l,ITEMS:FOR 1 = 0 TO ITEMS-1:
INPUT #-l ,A$(I ,0) ,A$(I ,1),C(I):NEXT
6190 CLOSE #-l
6200 GOTO 1000

1) DISPLAY CURRENT LIST”
2) INPUT TO CURRENT LIST”
3) START FRESH LIST”
4) DELETE FROM CURRENT LIS

150)
7050 PRINT @ 32* (Pl+1) + P2 , CHR$(150)+F$+C
HRSQ50)
7060 PRINT @ 32*(Pl + 2) + P2 ,STRING$(LEN(FS
)+2,150)
7070 RETURN

7000 REM***********************
7010 REM FORMAT TITLES
7020 REM***********************
7030 LET P2 = l4-I NT(LEN(F$)/2)
7040 PRINT N 32*P1 + P2»STRINGS(LEN(F$)+2,

1000 REM***********************
1010 REM MENU
1020 REM***********************
1030 CLS:LET F$="NAME AND NUMBER”: LET Pl
=0:GOSUB 7000
1040 PR I NT: PR I NT "COMMANDS AVAILABLE^”
1050 PRINT "
1060 PRINT ”
1070 PRINT ”
1080 PRINT
1090 PRINT ”
1100 PRINT ”
1110 PRINT ”
1120 PRINT "
1130 PRINT "
1140 INPUT "WHICH DO YOU REQUIRE Z : CLS
1150 ON Z GOSUB 2000,2500,3000,5500,3500
,5000,6000,1500,1170
1160 CLS:GOTO 1000

The Working TRS-80 Color Computer

A standard menu module.

MODULE 6.1.4

MODULE 6.1.5

136

The purpose of this module, apart from initializing the variables to be
used, is to allow the user to specify the type of item the program is to be
applied to (e.g. FOOD) and a general name for the units of measurement
(e.g. weight unit). The actual unit of measurement will be specified
alongside the item as it is entered and can differ from item to item. Thus,
in the case of food, some items may be measured in ounces, some in pints,
etc. You may like to note in passing that in line 1550 a variable is declared
with a value of zero. This does not need to be done since the first time the
Color Computer encounters the variable name it will assume the value to
be zero anyway. The question is, however, is a program easier to under
stand if all the major variables are listed in the initialization module or is
this a waste of space?

1170 CLS:LET F$="NAME AND NUMBER”:LET Pl
=5:GOSUB 7000
1180 LET F$=”PR0GRAM NOW STOPPED”: LET Pl
=10:GOSUB 7000
1190 END

”:LET A$ (1,0) = "ZZZZZZ

1500 REM***********************
1510 REM VARIABLES
1520 REM***********************
1530 CLEAR 10000:LET FLAG=0
1540 DIM A$(500,1),C(500),T$(50,1) ,T(50)
1550 LET CURR=0:LET ITEMS=2
1560 LET A$(0,0)=”!
ZZZZZZ”
1570 IF FLAG=1 THEN GOTO 6150
1580 PRINT: INPUT "NAME FOR ITEMS";NAMES
1590 PRINT: INPUT "NAME FOR ASSOCIATED UN
ITS”;QUANTITY$
1600 GOTO 1000

3500 REM***********************
3510 REM EXTEND DICTIONARY
3520 REM***********************
3530 IF ITEMS=500 THEN PRINT "NO MORE RO
OM IN DICTIONARY.":FOR 1=1 TO 5000:NEXT:
RETURN
3540 CLS:LET F$="NEW ITEMS FOR DICTIONAR Y":LET P1=0:GOSUB 7000
3550 PRINT:PRINT NAMESNAME OR ’ZZ
Z’ TO QUIT):":INPUT F$:IF F$="ZZZ" THEN
RETURN
3560 PRINT.-PRINT QUANTITYS ; ” : " : I NPUT G$
3570 PRINT.-PRINT "QUANTITY PER ”;G$:INPU
T NN

Chap ter 6 Handy programs

MODULE 6.1.7

!

This module actually inserts the new items into the main dictionary.

I

137

I
I

Testing Module 6.1.7
You should now be able to insert items and find them stored in the main
arrays.

Testing Module 6.1.5
You should now be able to input items under your specified prompts,
though they will not be stored in the main arrays.

3580 PRINT: INPUT "ARE THESE CORRECT (Y/N
):";Q$:IF Q$="N" THEN GOTO 3540
3590 CLS.-GOSUB 4000.-GOSUB 4500
3600 LET ITEMS=ITEMS+1:GOTO 3540

This module accepts inputs to the main dictionary of foods and calls up
later modules to actually insert the items. In the case of the food example,
the prompts for this module would be “FOOD:”, “WEIGHT UNIT:”
and QUANTITY PER (whatever is input under weight unit)”.

’d

I

4500 REM***********************
4510 REM INSERT ITEM
4520 REM***********************
4530 FOR I = ITEMS TO INTfSEARCH)+l STEP -
1:LET A$ (I,0)=A$(I-1,0) :LET A$(I , 1)=A$(I
-1,1):LET C(I)=C(1-1):NEXT I
4540 LET A$(SEARCH,0)=F$:LET A$(SEARCH,1
)=G$:LET C(SEARCH)=NN
4550 RETURN

MODULE 6.1.6
4000 REM***********************
4010 REM BINARY SEARCH
4020 REM***********************
4030 LET POWER=(INT(LOG(ITEMS-1)/LOG(2))
)
4040 LET SEARCH=2*POWER
4050 FOR I=POWER-1 TO 0 STEP -1
4060 IF A$(SEARCH,0)<F$ THEN LET SEARCH=
SEARCH+2*!
4070 IF A$ (SEARCH , 0)>F$ THEN LET SEARCH=
SEARCH-2*I
4080 IF SEARCH<1 THEN LET SEARCH=1
4090 IF SEARCH>ITEMS-1 THEN LET SEARCH=I
TEMS-1
4100 NEXT I
4110 IF A$(SEARCH , 0) <F$ THEN LET SEARCH=
SEARCH+1
4120 RETURN

A standard binary search module, less the section which actually inserts
items into the file. This is held separately because the binary search module
is used by several modules, not all of which require an item to be inserted.

The Working TRS-80 Color Computer

MODULE 6.1.8

FOR NEXT ITE

MODULE 6.1.9

138

A standard user search module with the one difference that an actual
search for a specified item is carried out using the Binary Search module.

Testing Module 6.1.8
You should now be able to display data entered, to page through the
dictionary, to jump backwards and forwards, to discover a named item
and to delete items at will.

TO DELETE ITEM”
TO QUIT FUNCTION”

2500 REM***********************
2510 REM EXTEND CURRENT LIST
2520 rem***********************
2530 IF CURR=50 THEN PRINT “CURRENT LIST
FULL.":FOR 1= 1 TO 5000:NEXT:RETURN

2540 LET F$="EXTEND CURRENT LIST";LET Pl
=0:GOSUB 7000

5000 REM***********************
5010 REM USER SEARCH
5020 REM***********************
5030 LET SEARCH=1
5040 CLS:PRINT:PRINT "ON APPEARANCE OF I
TEM, INPUT:"
5050 PRINT £ 15*32, "TOTAL ITEMSITEMS-
2
5060 PRINT £ 1*32,">'ENTER’
M"
5070 PRINT ”>ITEM TO BE SEARCHED FOR"
5080 PRINT ”>POSITIVE OR NEGATIVE NUMBER
, PRECEDED BY TO MOVE POINTER"
5090 PRINT ”>’DDD'
5100 PRINT ”>’ZZZ’
5110 PRINT STRING$(32,;
5120 PRINT "ENTRY NOINT(SEARCH)
5130 PRINT NAMEA(SEARCH,0)
5140 PRINT QUANTITY$;A$(SEARCH,1)
5150 PRINT "QUANTITY PER A$(SEARCH,1);

;C(SEARCH)
5160 INPUT "WHICH DO YOU REQUIRE:";F$
5170 IF F$="DDD" THEN FOR I=SEARCH TO IT
EMS-2:LET A$ (I,0)=A$(1 + 1,0):LET A$(I,1)=
A$(1+1,1):LET C(I)=C(1+1):NEXT I:LET ITE
MS=ITEMS-1:GOTO 5040
5180 IF F$="ZZZ" THEN RETURN
5190 IF F$=“" THEN LET SEARCH=SEARCH+1:I
F SEARCH>ITEMS-2 THEN RETURN ELSE GOTO 5
040
5200 IF LEFT$(F$, 1) <>"#" THEN GOSUB 4000
:GOTO 5040
5210 LET SEARCH=SEARCH+VAL(MID$(F$, 2))
5220 IF SEARCH>ITEMS-2 THEN LET SEARCH=I
TEMS-2
5230 IF SEARCH<1 THEN LET SEARCH=1
5240 GOTO 5040

Chapter 6 Handy programs

i

139

!

MODULE 6.1.11
3000 rem***********************
3010 REM INITIALIZE CURRENT LIST
3020 REM***********************

i
i

!

Testing Module 6.1.10
You should now be able to load items from the main dictionary into the
current list and to display that list.

"" THEN GOTO 2090

MODULE 6.1.10
2000 REM***********************
2010 REM DISPLAY CURRENT LIST
2020 REM***********************
2030 IF CURR=0 THEN RETURN
2040 LET SUM=0 ■ FOR 1 = 0 TO CURR-1
2050 PRINT NAMES;":";T$(I,0)
2060 PRINT QUANTITY$;":";T$(1,1)
2070 PRINT "QUANTITY:";T(I)
2080 PRINT STRINGS(32;
2090 IF INKEY$=
2100 LET SUM=SUM+T(I)
2110 NEXT I
2120 PRINT "TOTAL QUANTITY:";SUM
2130 PRINT: INPUT "PRESS enter TO CONTINU
E";Q$
2140 RETURN

This module displays the current list, item by item, and totals the quantities
involved (calories in the case of the food example). The user is required to
press any key to display the next item in order to prevent the list scrolling up
the page too fast to be read.

2550 PRINT: PRINT NAMES;: INPUT F$
2560 GOSUB 4000:IF A$(SEARCH,0)<>F$ THEN
PRINT @ 10*32, NAMES;" UNKNOWN--PLEASE C
HECK.":FOR 1 = 1 TO 5000 .-NEXT I: RETURN
2570 PRINT: PRINT QUANTITY$;A$ (SEARCH
,1)
2580 PRINT:INPUT "QUANTITY:";Q
2590 PRINT: INPUT "ARE THESE CORRECT (Y/N
):";Q$:CLS: IF Q$="N" THEN GOTO 2500
2600 LET T$(CURR,0)=A$(SEARCH,0): LET T$(
CURR,1) = STR$(Q) + " "+A$(SEARCH,1);LET T(C
URR)=Q*C(SEARCH):LET CURR=CURR+1
2610 PRINT; INPUT "ANY MORE ITEMS (Y/N):’’
;Q$:CLS:IF Q$="Y" THEN GOTO 2500
2620 RETURN

This module inputs items for inclusion in the current list, that is a working
list of items contained in the main dictionary, which can be manipulated
without corrupting the data contained in the main dictionary. In the case of
the food example, the user would be required to supply the food type, the
program would then supply the unit of measurement and the user would
specify how many of those units were to be included.

The Working TRS-80 Color Computer

140

3030 FOR 1=0 TO 50:LET T$(I,0)=
I)=0:NEXT I:LET CURR=0:RETURN

This module initializes the current list only.

Testing Module 6.1.12
You should now be able to delete items from the current list or to initialize
it.

Summary
The program is yet another good example of the power of modular
programming since most of the modules have been lifted, with very little
modification, from other programs in this book.

From this you may draw the valuable lesson that, provided you clearly
distinguish the functional units of a program, it is always methods that are
more important to your progress as a programmer than the actual number
of programs you have written. A good library bf programs will stand you
in good stead until a totally new application comes along. A good
collection of methods, contained in clearly identifiable modules, will never
let you down. So don’t limit yourself to methods which you need for only
present day applications. If you see an interesting way of doing things in a
magazine or book, write a simple program to use it, just for the hell of it.
Within a week or two you may well find that it is just what you are looking
for, for that new program that is giving you so much trouble

6.2 TYPIST
I have to confess that I am inordinately fond of this program. Its presence
here proves that a program doesn’t have to be long to be useful — this one
is short, neat and outstandingly good at what it does.... and what it does is
help you to learn to touch type.

”":LET T(

MODULE 6.1.12
5500 REM***********************
5510 REM CURRENT LIST DELETIONS
5520 REM***********************
5530 FOR 1 = 0 TO CURR-1:PRINT T$(I,0)
5540 PRINT T$(I,1)
5550 INPUT ”ddd=DELETE/enter=NEXT/zzz=QU
IT”;Q$:IF Q$=”ZZZ" THEN RETURN
5560 IF Q$=”” THEN NEXT I : RETURN
5570 FOR J=I TO CURR-1
5580 LET T$(J,0)=T$(J+l,0)
5590 LET T$(J,1)=T$(J+l,0)
5600 LET T(J)=T(J+1)
5610 NEXT J
5620 LET CURR=CURR-1
5630 RETURN

This module accomplishes deletions from the current list.

Chap ter 6 Handy programs

!

141

2150 INPUT ’’MORE (Y/N):";Q$: IF T
HEN GOTO 2040

!

”” OR T$=CHR$(8

MODULE 6.2.1
1000 REM***********************
1010 REM PRINT KEY BOARD
1020 REM***********************
1025 DIM 1(20)
1030 CLSzPRINT @ 33, CHR$(138);STRINGS(2
7,163);CHR$(133)
1040 LET A$ = ”1234567890 -b” : PRINT CHR$(1
42);CHR$(136) ; :FOR 1 = 1 TO 13:PRINT CHR$(
175) ;MID$(A$, I , 1) ; : NEXT I:PRINT CHR$(175
);CHR$(132);CHR$(141)
1050 LET A$=”~QWERTYUIOP@”+CHR$(95) + CHR$
(95):PRINT CHR$(138);:FOR 1 = 1 TO 14:PRIN
T CHRS(175);MID$(A$,I,1);:NEXT I:PRINT C
HR$(175);CHR$(132);CHR$(141);
1060 LET A$=” "ASDFGHJKL PRINT CHR$(139
);CHR$(130) ; : FOR 1 = 1 TO 11:PRINT CHR$(17
5);MID$(A$, I ,1) ; .-NEXT I:PRINT CHR$(175);
"eee" ;CHR$(175) ; ”c” ;CHR$(175) ;CHR$(133);
1070 LET A$= " ZXCVBNM , .: PRI NT " ”;CHR$(
138);CHR$(175) ;"SS” ; :FOR 1 = 1 TO 10:PRINT
CHR$(175);MID$(A$,I,1);:NEXT I: PRINT CH

R$(175) ;’’ss ” ; CHR$ (1 75) ; CHR$ (129) ; CHR$(13
1) + CHR$(135);
1080 PRINT " ”;CHR$(138) ; STRINGS (27,172)
;CHR$(133)

All that this module does is to print a fairly crude-looking representation of
the keyboard at the top of the screen. You will note that the down arrow
and the right arrow are not represented properly because they are not
available in the character set.
MODULE 6.2.2

2000 REM***********************
2010 REM ACCEPT INPUT
2020 REM***********************
2030 LET SUM=0 : LET RIGHT=0 : RESTORE
2040 READ A$: I F A$=”STOP” THEN RESTORE.-R
EAD AS
2050 IF LEN(A$)>31 THEN PRINT "STRING TO
0 LONG”:STOP
2060 PRINT @ 8*32 ,A$: PRINT @ 9*32,STRING
$(32," ’’) : PRINT @ 9*32,”"
2070 FOR 1=1 TO LEN(A$)
2080 LET T$=INKEY$:IF T$=
) THEN GOTO 2080
2090 LET SUM=SUM+1:SOUND 150,1
2100 IF T$=MID$(A$, I ,1) THEN GOTO 2120 E
LSE PRINT T$;CHR$(95);
2110 LET T$=INKEY$:IF T$="" OR T$=CHR$(8
) THEN GOTO 2110 ELSE PRINT CHR$(8);CHR$
(8);:GOTO 2090
2120 LET RIGHT=RIGHT+1 : IF T$<>" " THEN P
RINT T$; ELSE PRINT CHR$(159);
2130 NEXT I
2140 PRINT @ 12*32 , INT(RIGHT/SUM*100);

The Working TRS-80 Color Computer

Line 2060: The next line is cleared for the user’s input.

MODULE 6.2.3

142

This module displays a line of text on the screen underneath the keyboard
for the user to copy.

Commentary
Lines 2040-2050: Text to be copied is entered in the form of DATA
statements after line 3000. Text must be no more than 32 characters long
for any one unit.

Lines 2070-2180: The INKEYS function is used to obtain any character
which the user inputs. The character is displayed on the screen underneath
the line to be copied. If it corresponds to the next character to be typed in
the text to be copied, then the program moves onto the next position. If the
input is incorrect an arrow is placed next to it and the program stays with
that position until the correct character is entered. Correct keystrokes are
recorded along with the total number of keystrokes, and the percentage
success rate is displayed at the end of the line.

6.3 TEXTED
Another useful and none too lengthy contribution in the text field, this one
thinks that it’s a word processor. Indeed it is capable of apeing many of the
abilities of more expensive systems. Built into it are some features of
special interest to those who own, or hope to own, a printer to go with their
Color Computer.

"STOP"

This is included as an example of what may be entered. Note that the text
must end with a DATA statement with STOP in it — this will redirect the
program to the beginning of the material again.

Going Further
1) What about including some reference to the Color Computer’s timing
function, so that an assessment of speed can be made?
2) Perhaps when a wrong key is depressed it could flash, thus giving the
user a better indication of where he or she is going wrong.
3) Far better than random sentences would be to enter some exercises from
a good typing tutor.

3000 REM***********************
3010 REM DATA FOR TESTS
3020 REM***********************
3030 DATA ’’THIS IS A COCO TYPING TEST”
3040 DATA "JUST TYPE WHAT YOU SEE”
3050 DATA "DON’T LOOK DOWN AT THE KEYBOA
RD"
3060 DATA

Chapter 6 Handy programs

I

143

I
i

ij

I
I

MODULE 6.3.1
1000 rem***********************
1010 REM INITIALIZE
1020 rem***********************
1030 CLS
1040 PCLEAR 1:CLEAR 20000
1050 DIM TEXT$(500)
1060 LET LL = 1.-LET PLACE=1
1070 LET TEXTS (0) = STRING$ (32 , CHR$(118))
1080 LET TEXTS (1)=STRING$ (32 , CHR$(126))
1090 GOSUB 2120

This module initializes the main array TEXTS, which is used to hold the
text input by the user. The two strings stored in positions zero and one are
simply visual markers of the beginning and end of the text.
MODULE 6.3.2

1500 REM***********************
1510 REM EDIT LINE
1520 REM***********************
1530 LET A$=" ”
1540 LET P=0:PRINT @ 12*32,AS
1550 LET T$=INKEY$: IF ?$=’•" THEN POKE 10
24+12*32+P,175 : POKE 1024+12*32+P,ASC(MID
$(A$,P+1)):GOTO 1550
1560 IF LEN(A$)=65 OR T$=CHR$(13) THEN G
OSUB 2000
1570 IF T$=CHR$(94) THEN GOSUB 2500
1580 IF P<LEN(A$)-1 AND T$=CHR$(12) THEN
LET A$=LEFT$ (AS , P)+MID$ (A$, P+2) : GOTO 16

10
1590 IF T$OCHR$(8) AND T$OCHR$(9) AND
(ASC(T$)<32 OR ASC(T$)>90) THEN GOTO 154
0
1600 IF T$<>"” AND T$OCHR$(8) AND T$<>C
HRS(9) THEN LET A$=LEFT$(A$, P)+T$+MID$(A
$, P+1):LET P=P+1
1610 PRINT @ 12*32,A$
1620 IF T$ = CHR$(9) AND P<LEN(A$)-1 THEN
LET P=P+1
1630 IF T$ = CHR$(8) AND P>0 THEN LET P=P-
1
1640 GOTO 1550

The function of this module is to allow the user to build up two lines of text
at the bottom of the screen, including the ability to edit them, before they
are placed into the main body of text at a specified point.
Commentary
Line 1550: The purpose of this line is to Hash a cursor over the letter of the
string AS pointed to by the variable P.
Line 1560: A string is entered into the main body of text either when the
user presses ENTER or when the length of the string reaches two lines of
display.
Line 1570: Pressing the up arrow key calls up another part of the editing
mode which will be discussed later.

The Working TRS-80 Color Computer

j

144

i

Line 1580: Pressing the CLEAR key results in the deletion of the letter over
which the cursor is currently flashing.
Line 1600: If an input falls into the group of normal text characters, then it
is added to the string being built up.
Lines 1620-1630: The left and right arrowed keys move the flashing cursor
along the line in the desired direction.

Commentary
Lines 2030-2050: Depending on whether one or two lines of text were
entered onto the lower part of the screen, a space is made for it (them) in the
main array at the point indicated by the variable LL.
Lines 2060-2080: The newly entered lines are stripped of any trailing
spaces which take up memory unnecessarily.

i
i

i

Testing Module 6.3.2
Entering a temporary line 2120 RETURN should allow you to build up two
lines of text in the lower part of the display. You should be able to move the
cursor backwards and forwards over the string, to delete letters or words
and to insert letters or words, either at the end or into the middle of the
string.
MODULE 6.3.3

2000 REM***********************
2010 REM INSERT LINE
2020 REM***********************
2030 IF LEN(A$)>33 THEN LET X=2 ELSE LET

X=1
2040 FOR I=LL+X TO PLACE+X STEP -1:LET T
EXT$(I)=TEXT$(I-X):NEXT I
2050 IF LEN(A$)>33 THEN LET TEXT$(PLACE)
=LEFT$(A$,32):LET TEXT$(PLACE+1)=MID$(A$
, 33,LEN(A$)-33):ELSE LET TEXT$(PLACE)=LE
FT$(A$,LEN(A$))
2060 FOR 1=0 TO X-l
2070 IF RIGHT$(TEXT$(PLACE+I),1) = ” " THE
N LET TEXT$(PLACE+I) = LEFT$(TEXT$(PLACE+I
) , LEN(TEXT$(PLACE+I))-l) : GOTO 2070
2080 NEXT I
2090 LET A$=“ LET P=0: PRINT @ 13*32,'”’
:PRINT $ 12*32,A$
2100 PRINT 0 14*32,A$
2110 LET LL=LL+X:LET PLACE=PLACE+X
2120 IF PLACE<5 THEN LET START=0 ELSE LE
T START=PLACE-5
2130 CLS:FOR I=START TO START+9: PRINT TE
XT$(I);:IF LEN(TEXT$(I))<32 THEN PRINT
2140 IF I=PLACE-1 THEN PRINT CHR$(62)
2150 NEXT I:PRINT STRING$(32,CHR$(175))
2160 RETURN

This module inserts the line of text built up in the lower half of the screen
into the main body of the text and prints a part of the main body of text in
the top half of the screen.

Chapter 6 Handy programs

145

Commentary
Lines 2550-2580: The cursor can be moved by means of the up or down
arrows (one space) or the Q and A keys (10 spaces).

Lines 2090-2100: A$ is reset equal to one space (note that here and in line
1530 A$ is not an empty string — it is made up of one space). And both of
the lines used in the lower half of the screen are cleared.
Lines 2120-2150: The portion of text around the newly inserted lines is
reprinted on the upper half of the screen to include them.
Testing Module 6.3.3
You should now be able to enter your text onto the upper half of the
screen by pressing ENTER when you have built up a satisfactory string at
the bottom of the screen.

MODULE 6.3.4
2500 REM***********************
2510 REM MOVE EDIT LINE
2520 REM***********************
2530 IF PLACE<5 THEN LET P2=PLACE ELSE L
ET P2=5
2540 LET T1$=INKEY$:IF Tl$="" THEN PRINT

3 P2*32," ".-PRINT 3 P2*32 , : GOTO 2540
2550 IF PLACE>1 AND T1$=CHR$(94) THEN LE
T PLACE=PLACE-1:GOSUB 2120
2560 IF PLACE>10 AND T1$ = ”Q" THEN LET PL
ACE=PLACE-10:GOSUB 2120
2570 IF PLACE<LL AND T1$=CHR$(10) THEN L
ET PLACE=PLACE+1:GOSUB 2120
2580 IF PLACE<LL-9 AND T1$="A" THEN LET
PLACE=PLACE+10:GOSUB 2120
2590 IF T1$=CHR$(13) THEN RETURN
2600 IF PLACE<LL AND T1$="D" THEN LET LL
=LL-1:FOR I=PLACE TO LL:LET TEXT$(I)=TEX
T$(I + 1):NEXT I: LET TEXT$ (LL+1) = GOSUB
2120
2610 IF PLACE<LL AND T1$="C" THEN FOR 1 =
32 TO 1 STEP -1:IF MID$(TEXT$(PLACE) , 1,1
) = " " THEN NEXT I : ELSE LET A$=LEFT$(TEXT
$(PLACE),I)+" ":RETURN
2620 IF T1$="F" THEN GOSUB 3000
2630 IF T1$="P" THEN GOSUB 3500:CLOSE #-
2
2640 IF T1$=”S” THEN GOSUB 6000
2650 GOTO 2530

Apart from calling up three more edit functions which have not yet been
entered, the purpose of this module is to move a flashing > cursor up or
down through the main body of text. The position of the cursor indicates
either where new lines are to be inserted or where other edit functions are
to be carried out.

The module is called by entering the up arrow in the course of Module
2.

The Working TRS-80 Color Computer

THE

146

OR TEXT$(1+1)=”"

Line 2600: Input of D results in the deletion of the line immediately below
the cursor.
Line 2610: Input of C results in the line immediately below the cursor
being recalled to the bottom of the screen, although it is not deleted from
the main body of text.

Line 2620: Input of F calls up the text formatting module.

Line 2630: Input of P results in the current text being printed on a printer if
connected.
Line 2640: Input of S calls up the data file module.

Testing Module 6.3.4
Having entered some text you should now be in a position to move the
flashing cursor, to delete lines and to recopy to the bottom of the screen
lines previously entered.
MODULE 6.3.5

3000 REM***********************
3010 REM FORMAT LINE
3020 REM***********************
3030 FOR 1=1 TO LL-2
3040 IF LEFT$(TEXT$(I) , 1)=CHR$(126) THEN
GOTO 3120
3050 IF TEXT$(I)=”"
N GOTO 3110
3060 LET SPACE=32-LEN(TEXT$(I))
3080 LET ITEM=INSTR(TEXT$(I + 1) ")
3090 IF SPACE>=ITEM AND ITEM>0 THEN LET
TEXT$(I)=TEXT$ (I)+" ”+LEFT$ (TEXT$ (1 + 1) , I
TEM-1):LET TEXT$(1+1)=MID$(TEXT$ (1 + 1) , IT
EM+1):GOTO 3060
3100 IF LEN(TEXT$ (1 + 1)) <SPACE THEN LET T
EXT$(I)=TEXT$(I)+” ”+TEXT$ (1 + 1) : FOR J=I +
1 TO LL:LET TEXT$ (J)=TEXT$ (J+l) : NEXT J:L
ET LL=LL-1:LET PLACE=PLACE-1: GOTO 3060
3110 NEXT I
3120 GOSUB 2120
3130 RETURN

The effect of this module is to examine each line in the main body of text,
together with its following line, and to determine whether the transfer of
the first word from the following line would make the first line longer than
32 characters. If it is possible to transfer the first word, then this is done. If
it is possible to transfer the whole of the following line into the first line
without exceeding 32 characters, then this is done. Only in the case of an
empty line will the program not attempt to run together the two lines of
text. Empty lines are therefore used to separate paragraphs and the like.

Although not perfectly right-justified, text which has been processed
with this module will be quite tidy. The module therefore allows the user to
enter text without too much regard for appearances, knowing that the
module can be used to tidy up the text later.

Chapter6 Handy programs

147

Testing Module 6.3.5
You should now be able to input a series of individual words on separate
lines, call up this module and see them formatted into a single line. Single
words on separate lines can be inserted into the main body of text or lines
modified to include a word overlapping onto the next line and this module
used to reformat the text. No formatting should take place for the lines
immediately before or after an empty line entered into the array.
MODULE 6.3.6

3500 REM***********************
3510 REM OUTPUT TO PRINTER
3520 REM***********************
3530 OPEN "0",#-2,"TEXTED"
3540 LET X=1
3550 IF X=LL THEN PRINT #-2RETURN
3560 IF TEXT$(X)="" THEN PRINT #-2,"":LE
T X=X+1:GOTO 3550:ELSE PRINT #-2,TEXT$(X
); " " ;3570 IF X+1=LL THEN PRINT #-2RETURN
3580 IF TEXT$ (X+l) = "" THEN PRINT #-2,'”':
PRINT #-2,"":ELSE PRINT #-2,TEXT$(X+1)
3590 LET X=X+2:G0T0 3550
3600 PRINT #-2,”"
3610 RETURN

Input of P from Module 4 will call up this module, which will in turn print
the main body of text on a printer. Note that since the width of text on a
printer is usually at least double that of the Color Computer screen’s 32
characters, two array lines are run together for each line printed (except
where one of the two is a blank line).

MODULE 6 3.7
6000 REM***********************
6010 REM DATA FILES
6020 rem***********************
6030 CLS:M0T0R ON:AUDIO ON: INPUT "POSITI
ON TAPE (MOTOR IS ON) THEN PRESS ent
er:";Q$
6040 MOTOR OFF:AUDIO OFF:INPUT "PLACE RE
CORDER IN CORRECT MODE THEN PRESS enter
”;Q$
6050 INPUT "1)SAVE////2)RECALL:" ;Q : ON Q
GOTO 6070,6130
6060 GOTO 6050
6070 MOTOR ON: FOR 1 = 1 TO 10000.-NEXT I:OP
EN "0",#-l,"TEXTED"
6080 PRINT #-l,PLACE,LL
6090 FOR 1 = 1 TO LL-1: PRINT #-l, TEXT$ (I) :
NEXT I
6100 CLOSE #-l
6110 GOSUB 2130
6120 RETURN
6130 OPEN "I",#-1,"TEXTED"
6140 INPUT #-l,PLACE,LL
6150 FOR 1 = 1 TO LL-1:INPUT #-l,TEXT$ (I):
NEXT I

The Working TRS‘80 Color Computer

148

6160 GOSUB 2120
6170 CLOSE #-l
6180 LET TEXTS(LL)=STRING$(32,CHR$(126))
6190 RETURN

A standard data-file module.

F
P
S
ENTER

move cursor up and down through main body of text,
deletes line immediately below cursor.
copies line below cursor to lower part of screen (original is
not deleted).
formats text.
prints text if printer is connected.
calls up data-file module.
returns control to lower screen cursor.

TEXTED: Summary of one-key instructions:
With flashing cursor at bottom of screen:
Text characters may be entered at position of flashing cursor.
Left and right arrows move cursor over string.
Up arrow calls up remaining editing command modules.
ENTER places current string into main body of text at position indicated
by >.
CLEAR key erases letter immediately under cursor.
With flashing > at top of screen:
J, Q and A
D
C

Summary

This program is a tribute to the speed of the Color Computer, without
which many of the processes involved, including editing on the screen,
with its resultant constant reprinting of the string, would be painfully
slow. The techniques of on-screen editing bear some study, since altering
something while you look at it is by far the easiest way of making changes
to almost anything and could be incorporated into a wide variety of
programs where strings have to be changed — including most of the
programs in this book.

6.4 MUSIC
All work and no play, etc., so this program does just that — plays. Like the
DRAW function that we have used in several places, Color Computer
Data have built a flexible string driven music command called PLAY. In
this program we take advantage of the Color Computer’s ability to play
about with strings, to literally edit music.

Before entering this program it would be a good idea to go back to
Chapter 9 of Going Ahead With Extended Color Basic to check up on the
basics of PLAY.

Chapter 6 Handy programs

149

i

MOVED TO RELEVANT PART OF THE
Y USE OF THE KEYS l,o,v,n.”
7060 PRINT: INPUT ’’PRESS enter FOR MORE:”
; Q$ 7070 CLS: PRINT ”A pause CAN BE INSERTED
BY PRESSING p WHEN OPPOSITE THE
RELEVANT ENTRY. HAVING ENTERED APAUSE IT
CANNOT BE CHANGED BACK BUT MUST BE DELE

TED. "
7080 PRINT; PRINT "PRESSING d WILL RESULT
IN THE DELETION OF THE NOTE NEXT TO T

HECURSOR."
7090 PRINT: PRINT "PRESSING i WILL ALLOW
A NEW NOTETO BE INSERTED IMMEDIATELY

BEFORE THE CURRENT NOTE.”

MODULE 6.4.2
7000 REM***********************
7010 REM HELP
7020 REM***********************
7030 CLS .-PRINT "THE FOLLOWING FUNCTIONS
ARE AVAILABLE:”
7040 PRINT: PRINT "THE CURSOR MAY BE MOVE
D BY MEANSOF THE 4 CURSOR ARROWS. THE

NOTE DISPLAYED CAN BE MOVED 10 FORWAR
DS OR BACKWARDS BY USE OF THE a AND q KE
YS. ’’
7050 PRINT .-PRINT "WHEN THE CURSOR IS OPP
OSITE THE REQUIRED NOTE IT CAN ALSO BE

NOTE B

MODULE 6.4.1
6000 REM***********************
6010 REM DATA FILES
6020 REM***********************
6030 MOTOR ON’AUDIO ON .-CLS .-INPUT "POSITI ON TAPE THEN PRESS enter (MOTOR IS ON):
”;Q$
6040 MOTOR OFF.-INPUT "PLACE RECORDER IN
CORRECT MODE, THEN PRESS enter: ",-Q$
6050 PRINT:PRINT ” 1) SAVE " , , ”2)RECALL" : IN
PUT "WHICH DO YOU REQUIRE:",-Q
6060 ON Q GOTO 6080,6160
6070 GOTO 6050
6080 MOTOR ON: FOR 1 = 1 TO 10000:NEXT I
6090 OPEN "0",#-l,"MUSIC"
6100 PRINT #-l,N
6110 FOR 1=0 TO N
6120 PRINT #-l,TUNE$(I)
6130 NEXT I
6140 CLOSE #-l
6150 RETURN
6160 OPEN "I",#-l,"MUSIC"
6170 INPUT #-l,N
6180 FOR 1=0 TO N
6190 INPUT #-l,TUNE$(I)
6200 NEXT I
6210 CLOSE #-l
6220 RETURN

A standard data file module.

The Working TRS-80 Color Computer

STORED

150

MODULE 6.4.3
1000 REM***********************
1010 REM INITIALIZE
1020 REM***********************
1030 CLEAR 5000
1040 DIM TUNE$(500)
1050 LET N=11060 LET TUNE$(1)="L000;O0;V00;00”

7100 PRINT: INPUT "PRESS enter FOR MORE.-”
;Q$7110 CLS: PRINT "TO CHANGE THE DURATION O
F A NOTETO A DOTTED VALUE, PRESS THE
FULL STOP. TO CHANGE BACK TO A NORMAL V
ALUE, PRESS THE SEMI- COLON KEY.”
7120 PRINT: PRINT "TO DETERMINE THE TEMPO
, PRESS t AND ENTER THE DESIRED VALUE WH
ENPROMPTED.”
7130 PRINT: PRINT "TO PLAY THE TUNE PRESS
m THEN SPECIFY THE START AND FINISH
POINTS."

7150 CLS: PRINT: PRINT "IF THE TUNE HAS NO
T BEEN FINISHED, IT CAN BE SAVED
IN ITSDEVELOPING FORM BY PRESSING S.
THIS SAME KEY WILL ALSO ALLOWTHE RECALL
OF A PREVIOUS TUNE WHICH HAS BEEN STO
RED BY THIS METHOD."
7160 PRINT: PRINT "A FINISHED TUNE CAN BE

ON TAPE BY PRESSING c.”
7170 PRINT:INPUT "PRESS enter FOR MORE:"
;Q$7180 CLS: PRINT "REMEMBER THAT YOU DO NOT
HAVE TOENTER A VALUE FOR EVERY ITEM

THAT MAKES UP THE NOTE. IF YOU DO NOT S
PECIFY A VALUE, THE ONE GOVERNING THE PR
EVIOUS NOTE WILLBE INSERTED. PRESSING en
ter RESULTS IN ANY CHANGES BEING
RECORDED."
7190 PRINT: PRINT "ONCE THE CURSOR IS MOV
ED OVER THE NOTE, IT CAN ONLY BE MOVED

OFF AGAIN BY THE USE OF enter."
7200 PRINT:INPUT "PRESS enter TO RETURN
TO MAIN PROGRAM:";Q$
7210 RETURN

This is the only program in this book to contain such a module as this,
known as a Help function. Its aim is to present the rules of the program on
command. It is included here partly because this number has more one-key
commands than any other in the book, and partly because I felt you should
have an example of such a module anyway. Some people have no trouble
with one-key commands, after a couple of tries of the program with the
instructions in front of them they never look back. Others do not find them
so easy — in which case all they have to do is to press H during the main
program section and they can page through these instructions. Such a
module could easily be added to many of the programs in this book where
memory space is not the prime consideration.

Chap ter 6 Handy programs

151

I

i
!

I

I

i

IF T$="L" THEN LET P=32*P2+6
IF T$="0" THEN LET P=32*P2+11
IF T$="V” THEN LET P=32*P2+14
IF T$=”N" THEN LET P=32*P2+17
IF T$="P“ THEN MID$(TUNE$(NN+P2),1)

:LET TUNE$ (NN+P2)=LEFT$ (TUNE$ (NN+P2)
,5) . PRINT (3 32*P2+5,TUNE$(NN+P2):LET P=3
2*P2+6
1740 IF T$=,,M’’ THEN GOSUB 2500.-GOTO 1570
1750 IF T$O”T” THEN GOTO 1770.-ELSE PRIN
T @ 14*32 INPUT “TEMPOTEMPO:IF TE
MPO<1 OR TEMPO>255 THEN GOTO 1750
1760 LET TUNE$ (0)=“T“+STR$ (TEMPO)

1070 DIM LAST$(4):LET LAST$(1)=“004;”:LE
T LAST$(2)=“2” : LET LAST$(3) = “15":LET LAS
T$(4)=“01“
1080 DIM TEMP$(3) .-DIM STORE$(20)

Initializes the program. The arrays will be discussed later.
MODULE 6.4.4

1500 REM***********************
1510 REM PRINT NOTED FOR EDITING
1520 REM***********************
1530 IF NN>N THEN LET NN=N
1540 IF NN<1 THEN LET NN=1
1550 LET P=0:LET P2=0
1560 LET N2=13:IF N2+NN>N THEN LET N2=N-
NN
1570 CLSrFOR 1 = 0 TO N2:PRINT USING "####
”;NN+I PRINT ") ” ; TUNE$ (NN+I) : NEXT I
1580 LET T$=INKEY$:IF T$=”“ THEN LET T=P
EEK(1024 + P):POKE 1024+P,175:POKE 1024+P,
T:GOTO 1580
159# IF Ti=CHR^(13) THEN GOSUB 2000:LET
P=P2*32:GOTO 1560
1600 IF T$=CHR$(94) AND P2>0 THEN LET P=
P-32
1610 IF T$=CHR$(10) AND P2<N2 THEN LET P
-P+32
1620 IF T$=CHR$(9) AND P-32*P2<18 THEN L
ET P=P+1
1630 IF T$=CHR$(8) AND P-32*P2<>5 THEN L
ET P=P-1
1640 IF T$=”A“ AND P-32*P2=0 THEN LET NN
=NN+10:GOTO 1530
1650 IF T$="Q“ AND P-32*P2=0 THEN LET NN
=NN-10:GOTO 1530
1660 IF T$="I" THEN FOR I=N TO NN+P2 STE
P -1:LET TUNE$(1 + 1)=TUNE$(I) : NEXT I: LET
TUNE$ (NN+P2) = “L000 ;O0 ; V00 ; 00" : LET N=N+1 :
GOSUB 2000:GOTO 1560
1670 IF T$="D" THEN FOR I=NN+P2 TO N:LET

TUNE$ (I)=TUNE$ (1 + 1) : NEXT I: LET N=N-1:GO
TO 1560
1680 IF PEEK(1024 + P)>111 AND PEEK(1024+P
)<122 AND T$>"/“ AND T$<":" THEN MID$(TU
NE$ (NN+P2), P-32*P2-4)=T$.-PRINT @ P2*32+5
,TUNE$(NN+P2) : IF P-32*P2<18 THEN LET P=P
+ 1
1690
1700
1710
1720
1730
-npit

The Working TRS-80 Color Computer

152

Commentary
Line 1530: N is the number of notes so far entered. NN is the position of the
cursor in the list of notes.
Line 1550: P represents the position of the cursor on the line. P2 represents
the position of the pointer down the page.
Line 1560-1570: N2istheendofthedisplay — if N2is50then the 14notes
up to note 50 will be displayed.
Line 1580: The same type of flashing cursor as found in Texted.
Line 1590: Pressing ENTER results in a note being registered — you
cannot yet do this.
Lines 1600-1610: Up and down arrows move cursor.
Lines 1620-1630: Left and right arrows move cursor.
Lines 1640-1650: As in Texted, the A and Q keys are used to specify a
move of 10 places for the cursor.
Line 1660: Pressing I results in a new note being inserted immediately
before the note the cursor is currently opposite.
Line 1670: Pressing D deletes the note the cursor is currently opposite.
Line 1680: If the input is in the range 0-9, it replaces the character under the
flashing cursor.
Lines 1690-1720: The format of the notes when they are displayed is
shown in line 1060. The first four characters will store the length, the next
two the octave, the next three the volume and the final two the note — the
notation is the one using figures rather than letters to represent notes.
Input of L,O,V or N moves the cursor immediately to the first figure (not
letter) of the corresponding note. This saves a great deal of button pushing.
Line 1730: Inputting P results in the note being transformed into a pause.
The length of the pause can be edited but it cannot be edited back to a note.
Line 1740: Inputting M calls up the module which plays the tune as
developed so far.
Lines 1750-1760: Inputting T allows the user to specify the tempo.
Line 1770: Pressing . results in the note length becoming a dotted value.

1770 IF T$»M." THEN MID$(TUNE$(NN+P2),5)
=T$:G0T0 1570
1780 IF T$=H;” THEN MID$(TUNE$(NN+P2),5)
=T$:G0T0 1570
1790 IF T$=”C” THEN GOSUB 3000:GOTO 1560
1800 IF T$=,,S” THEN GOSUB 6000:GOTO 1550
1810 IF T$="H" THEN GOSUB 7000:GOTO 1560
1820 LET P2=INT(P/32)
1830 GOTO 1580

Believe it or not, there is hardly anything to this module. All it really
consists of is a cursor move module with a series of simple operations
revolving around moving the cursor or editing the contents of the screen.

Chapters Handy programs

=

153

I
I

Testing Module 6.4.5
You should now be able to perform all of the functions described so far
except for those of playing the tune and compiling it for permanent
storage.

MODULE 6.4.6
2500 rem***********************
2510 REM PLAY TUNE
2520 rem***********************
2530 PRINT @ 32*14 INPUT "START POIN
T:”;START
2540 INPUT "FINISH POINTFINISH:IF FIN
ISH>N-1 THEN LET FINISH=N-1

Line 1780: Inputting ; removes a dotted value, if present.
Line 1790: Inputting C (for compile) leads to the tune being processed into
the form of string under which it will eventually be saved and the user given
the option of saving it.
Line 1800: Inputting S allows the current tune to be saved in its multi-line
form or a tune saved in this form to be picked up and worked upon. Tunes
saved in the C format cannot be re-edited by this program.
Line 1820: Inputting H calls up the help function.
Testing Module 6.4.4
Sorry, but you can’t yet.
MODULE 6.4.5

2000 REM***********************
2010 REM INSERT DEFAULT VALUES
2020 REM***********************
2030 IF LEFT$(TUNE$(P2+NN) ,1)="P" THEN L
ET TUNE$ (P2+NN) = LEFT$ (TUNE$ (P2+NN) , 5) : GO
TO 2080
2040 RESTORE:FOR 1=1 TO 4
2050 READ PL.LL
2060 IF VAL(MID$(TUNE$(P2+NN) ,PL,LL)) = 0
THEN MI D$ (TUNE$ (P2+NN) , PL) = LAST$ (I) ELSE

LET LASTS (I)=MID$(TUNE$(P2+NN) , PL.LL)
2070 NEXT I
2080 IF P2+NN=N THEN LET N=N+1:LET TUNES
(N)="L000;00;V00;00":LET P2=P2+1
2090 RETURN
2100 DATA 2,4,7.1,10,2,13,2

If the thought of entering all the data necessary to fill the format shown in
line 1060 has you daunted, then don’t worry because for most tunes this
module will do the work for you. What it does is to allow you to specify
only those values that are different from the previous not entered. Any that
are not specified are given a default value equal to their value in the
previous note. Default values are set initially by line 1070. Values are
inserted by reading the positions of the various sections of each note from
the DATA statement.

The Working TRS-80 Color Computer

: NEXT

(MOTOR IS ON):

154

Testing Module 6.4.6
You should now be able to play part of any tune you have entered.

2550 FOR I=START TO FINISH
2560 INPUT "DISPLAY NOTES (Y/N):”;Q$
2570 FOR I=START TO FINISH
2580 IF Q$="Y" THEN PRINT USING
; :PRINT ”)";TUNE$(I)
2590 PLAY TUNE$(I)
2600 NEXT I
2610 RETURN

A straightforward module which plays lines of the array TUNES between
points specified by the user. Displaying notes as they are played makes the
music sound slightly stacatto.

MODULE 6.4.7
3000 REM***********************
3010 REM STORE TUNE
3020 REM***********************
3030 LET TEMPS(0)=LEFT$(TUNES(1) ,5)
3040 LET TEMPS(1)=MID$(TUNES(1) ,6.3)
3050 LET TEMP$(2)=MID$(TUNE$(1),9,4)
3060 CLS: INPUT "NAME FOR THIS TUNE:";Q$:
LET STORE$(0)=Q$
3070 LET ROWS=1
3080 FOR 1=1 TO 20:LET STORES(I) = ”"
3090 LET STORE$(ROWS)=TUNE$(0)+";"+TUNES
(1)+";”3100 FOR 1=2 TO N-l
3110 IF LEFTS (TUNE$ (I) , 5) OTEMPS (0) THEN
LET STORES (ROWS) = STORE$ (ROWS) + LEFT$ (TUN
ES$(I),5):LET TEMPS(0) = LEFT$(TUNES (I) ,5)
3120 IF MID$(TUNES(I) , 6,3) OTEMPS (1) THE
N LET STORE$(ROWS)=STORE$(ROWS)+MID$(TUN
E$(I) , 6,3):LET TEMPS(1)=MID$(TUNES(I) ,6 ,
3)
3130 IF MID$(TUNES(I) , 9,4) OTEMPS (2) THE
N LET STORE$(ROWS)=STORE$(ROWS)+MID$(TUN
E$(I),9,4):LET TEMPS(2)=MID$(TUNES (I) ,9 ,
4)
3140 LET STORE$(ROWS)=STORE$(ROWS)+MID$(
TUNE$(I),13,2)+";"
3150 IF LEN(STORE$(ROWS))>200 THEN LET R
OWS=ROWS+1
3160 NEXT I
3170 FOR 1=1 TO ROWS:PLAY STORES(I):NEXT
I

3180 CLS:INPUT "DO YOU WANT TO SAVE (Y/N
):”;Q$:IF Q$O"Y" THEN RETURN
3190 CLS:MOTOR ON:AUDIO ON:INPUT "POSTIO
N TAPE THEN PRESS enter
”;Q$3200 MOTOR OFF:AUDIO OFF:INPUT "PLACE RE
CORDER IN record MODE THEN PRESS enter
; " ;Q$3210 MOTOR ON:FOR 1=1 TO 10000:NEXT I
3220 OPEN "0", #-l,"PLAY"

Chapter 6 Handy programs

155

3230 PRINT #-l,R0WS
3240 FOR 1=0 TO ROWS
3250 PRINT #-l,STORE$(I)
3260 NEXT I
3270 CLOSE #-l
3280 RETURN

This module compiles the tunes into an economical format for storage on
tape.

Commentary
Lines 3030—3050: The three lines of TEMPS are used to store the last
values of length, octave and volume (in this case those of the first note).
Line 3090: The name of the tune and the first note are stored in STORES.
Lines 3100-3160: The contents of TUNES are added to STORES. Note
values are always added, but other details of a note are only added if they
differ from the last value specified, since PLAY works on a default basis —
the last value for length, volume and octave governing all following notes
until another value is specified.
Lines 3170-3280: The resultant string is PLAYed and the user is given the
option of saving it if it is satisfactory.

Testing Module 6.4.7
The module should, after a pause, play the desired tune and give the option
of saving it.

MODULE 6.4.8
8000 REM***********************
8010 REM PICK UP TAPE
8020 REM***********************
8030 CLEAR 3000.-OPEN ” I” , #-l, "PLAY”
8040 INPUT #-l,R0WS
8050 FOR 1=0 TO ROWS
8060 IF EOF(-l) THEN GOTO 8090
8070 INPUT #-l,STORE$(I)
8080 NEXT I
8090 CLOSE #-l
8100 FOR 1 = 1 TO ROWS: PLAY ST0RE$ (I) : NEXT

I
This module serves no purpose whatsoever in this program but is placed
here to give you an example of the kind of module that would be needed
to pick a tune from tape and play it. If you have compiled and saved a
tune, you can test this module and the last by stopping the program,
re-RUNning it to initialize the variables, stopping it again and then en
tering GOTO 8000 (don’t forget to position the tape). The original tune
should be played again when loading has finished.

Summary
This program well illustrates the world of difference between a
screen-editing approach to data and one relying on response to prompts.

The Working TRS-80 Color Computer

P

■

156

H
ENTER

M
T
. and ;
C
s

6.5 GRAPH
Earlier on, in the chapter on high resolution text, you were promised an
example of a program using such text in an efficient manner. This is it.

Apart from that not inconsiderable feature the program is a graph
drawing tool, enabling the user to draw line graphs of a variety of data,
specifying the units and the set-up of the axes.

Imagine the length of this program if each possibility had to be spelled out
in a menu at various stages.

Going Further
1) This program will only really come into its own when, like Artist, it is
integrated into your program library as the supplier of material for other
programs to work on. Most programs could benefit from the addition of a
bit of sound now and then and the memory cost should not be high.

MUSIC: Summary of single-key commands:
Up and Down arrows, A and Q move cursor up and down.
I places new line before line indicated by cursor.
D deletes line indicated by cursor.
0-9 changes value of any number cursor is placed over.
L,O,V or N move cursor immediately to relevant section of note.

changes note to pause — it cannot be edited back, only
deleted.
plays all or part of tune.
allows setting of tempo.
change to dotted note value and back.
compiles tune and gives option of saving.
saves tune in form such that it can be reloaded by this
program.
calls up help function.
registers note on the same line as cursor. N.B. when cursor
has been moved over a note it can only be removed by
pressing ENTER.

MODULE 6.5.1
6000 rem***********************
6010 REM DATA FILES
6020 REM***********************
6030 MOTOR ON:AUDIO ON.-CLS: INPUT "POSITI
ON TAPE THEN PRESS enter (MOTOR IS ON):
”;Q$6040 MOTOR OFF:INPUT "PLACE RECORDER IN
CORRECT MODE, THEN PRESS enter:";Q$
6050 PRINT:PRINT "FUNCTIONS AVAILABLE:”,
"1)SAVE DATA",,"2)LOAD DATA",,"3)LOAD CH
ARACTER SET" .-INPUT "WHICH DO YOU REQUIRE
:";Q:ON Q GOTO 6070,6200,6270

Chapter 6 Handy programs

157

MODULE 6.5.3
1000 REM***********************
1010 REM MENU
1020 REM***********************
1030 CLS:LET F$="GRAPH": LET P1=»1:GOSUB 7
000

6060 GOTO 1000
6070 MOTOR ON: FOR 1 = 1 TO 10000 .-NEXT I
6080 OPEN "0" , #-l, "GRAPHS"
6090 PRINT #-l,HOR,VER,LH,LV.HM,VM,HO$,V
E$,BASE,LIMIT,VV
6100 FOR 1=0 TO HOR-1
6110 PRINT #-l,G(I)
6120 NEXT I
6130 CLOSE #-l:OPEN "0",#-l,"CHARSET"
6140 PRINT #-l,CI
6150 FOR 1=0 TO CI-1
6160 PRINT #-l.CHAR$(I)
6170 NEXT I
6180 CLOSE #-l
6190 GOTO 1000
6200 PCLEAR4 : CLEAR 10000 : PCLS : PMODE 4,1
6210 OPEN "I",#-l,"GRAPHS"
6220 INPUT #-l,HOR,VER.LH.LV,HMIVM,HO$,V
E$,BASE,LIMIT,VV:DIM G(HOR-1):DIM CHAR$(
39)
6230 FOR 1=0 TO HOR-1
6240 INPUT #-l,G(I)
6250 NEXT I
6260 CLOSE #-l
6270 OPEN "I",#-l,"CHARSET"
6280 INPUT #-l,CI
6290 FOR 1=0 TO CI-1
6300 INPUT #-l,CHAR$(I)
6310 NEXT I
6320 CLOSE #-l
6330 GOTO 1000

A standard data file module with the slight addition that it is also capable
of loading a character set created by the Dictionary program. Having
loaded that character set it is then saved and loaded with any data that is
stored on tape subsequently.

MODULE 6.5.2
7000 REM***********************
7010 REM FORMAT TITLES
7020 REM***********************
7030 LET P2=l4-I NT(LEN(F$)/2)
7040 PRINT £ 32*P1+P2,STRINGS(LEN(F$)+2,
CHR$(185))
7050 PRINT £ 32*(Pl+1)+P2,CHR$(185)+F$+C
HR$(185)
7060 PRINT £ 32*(Pl+2)+P2,STRINGS(LEN(F$
)+2,CHR$(185))
7070 RETURN

A standard title formatting module.

The Working TRS-80 Color Computer

MODULE 6.5.4

THEN GOTO 2080

158

1) SET UP FRAMEWORK”
2) INPUT VALUES"
3) DRAW GRAPH”
4) DATA FILES”
5) STOP”

1040 PRINT "COMMANDS AVAILABLE:”
1050 PRINT ”
1060 PRINT "
1070 PRINT "
1080 PRINT "
1090 PRINT "
1100 PRINT:INPUT "WHICH DO YOU REQUIRE:"
;Z:CLS
1110 ON Z GOSUB 2000,3000,5000,6000,1140
1130 GOTO 1000
1140 CLS:LET F$="GRAPH":LET P1=1:GOSUB 7
000
1150 LET F$="PROGRAM TERMINATED”: LET Pl =
8:GOSUB 7000
1160 END

A standard menu module.

2000 rem***********************
2010 REM SET UP AXES
2020 REM***********************
2030 PCLEAR 4:PMODE 4,1:PCLS:CLEAR 10000
:LET VM=999:LET HM=999:DIM CHAR$(39)
2040 CLS: INPUT "HOW MANY INTERVALS ON TH
E HORIZONTAL AXIS:”;HOR:LET LH=INT
(236/HOR)
2050 INPUT "HOW MANY INTERVALS ON THE

VERTICAL AXIS:”;VER:LET LV=INT(168/V
ER)
2060 PRINT:INPUT "PRESS enter TO VIEW AX
ES, THEN enter TO RETURN:";Q$
2070 GOSUB 4000
2080 IF INKEY$=””
2090 CLS:PRINT "MARKERS AT REGULAR INTER
VALS AREHIGHLIGHTED:"
2100 INPUT "PLEASE INPUT GAP FOR HORIZON
TAL HIGHLIGHTINGHM
2110 INPUT "PLEASE INPUT GAP FOR VERTICA
L HIGHLIGHTING:”;VM
2120 PRINT:INPUT "PRESS enter TO VIEW AX
ES, THEN enter TO RETURN:”;Q$
2130 GOSUB 4000
2140 IF INKEY$=”" THEN GOTO 2140
2150 CLS:INPUT "IS THAT SATISFACTORY (Y/
N):";Q$:IF Q$="N" THEN GOTO 2000
2160 INPUT "NAME FOR UNITS ON HORIZONTAL

AXIS:";HO$
2170 PRINT:INPUT "NAME FOR UNITS ON VERT
ICAL AXIS:”;VE$
2180 PRINT:INPUT "MINIMUM VALUE ON THE V
ERTICAL AXIS:";BASE
2190 PRINT:PRINT "MAXIMUM VALUE REPRESEN
TED BY", VER; .-INPUT " UNITS VERTICALLY:";
LIMIT
2200 LET VV=(LIMIT-BASE)/VER
2205 PRINT ”VV= ”;VV
2210 DIM G(HOR-1):FOR 1=0 TO HOR-1:LET G
(I)=-9999.9:NEXT I:GOTO 1000

Chapter 6 Handy programs

159

Testing Module 6.5.5
You should now be able to specify the form of the axes and see them
displayed.

The function of this module is to allow the user to specify the kind of axes
desired and the units to be represented.

Commentary
Line 2030: The two variables VM and HM will ultimately store the pixel
interval between highlighting marks to be placed on the axes. They are set
to 999 so that the marks are not printed initially.
Lines 2040-2050: LV and LH are the pixel lengths of the units on the axes.
Line 2200: VV will be used to plot the vertical position on the axis of any
data later entered.
Line 2210: The array G is filled with - 9999.9 simply because it is a value
unlikely to be in much demand in the entry of data — unlike zero.

MODULE 6.5.5
4000 REM***********************
4010 REM DRAW AXES
4020 REM***********************
4030 PCLS:SCREEN 1,1
4050 FOR I = LH TO 236 STEP LH: DRAW "BM"+S
TR$ (13+1) + " , 176 ; D2 ; L"+STR$ (LH) + " ; DI ; R"+S
TR$(LH)
4060 IF (I/LH)/HM=INT((I/LH)/HM) THEN DR
AW "U6"
4070 NEXT I
4080 FOR I = LV TO 172 STEP LV:DRAW "BM15,
"+STR$(177-1) + ”; L2 ; D”+STR$ (LV+2) + "Ll ;U"+
STR$(LV+2)
4090 IF (I/LV)/VM=INT((I/LV)/VM) THEN DR
AW ”R6”
4100 NEXT I
4110 RETURN

This simple module draws the axes with divisions and highlighting marks
specified.

MODULE 6.5.6
3000 REM***********************
3010 REM INPUT DATA
3020 REM***********************
3030 CLS:PRINT "POSITION IN ";HO$;:INPUT
Hl: IF H1>HOR THEN PRINT: PRINT "VALUE 0U

TSIDE RANGE SPECIFIED FOR HORIZONTAL A
XIS.":FOR 1 = 1 TO 5000 : NEXT : GOTO 3000
3040 PRINT:PRINT "QUANTITY IN ";VE$;:INP
UT VI: IF V1>LIMIT THEN PRINT: PRINT "VALU
E OUTSIDE RANGE SPECIFIED FOR VERTICAL
AXIS.":FOR 1 = 1 TO 5000 : NEXT : GOTO 3000

3050 PRINT: INPUT "ARE THESE CORRECT: ";Q$
: IF Q$="N" THEN GOTO 3000

The Working TRS-80 Color Computer

THEN GOTO 5120

160

Testing Module 6.5.7
Lines 5030, 5060 and 5070 should be edited so that REM is inserted at the
beginning of each. After this you should be able to input specifications and
data and then see a graph drawn onto the axes.
MODULE 6.5.8

8000 rem***********************
8010 REM HIGH RESOLUTION TEXT
8020 rem***********************
8030 LET GR$="ABCDEFGHIJKLMNOPQRSTUVWXYZ
12345678900”

8040 FOR 1=1 TO LEN(T$)

3060 IF G(H1-1) 0-9999.9 THEN PRINT.-PRIN
T “THAT POSTION IS ALREADY FILLED BY THE
VALUE";G(H1—1)
3070 IF G (Hl-1) 0-9999.9 THEN PRINT.-PRIN
T "DO YOU WISH TO REPLACE";G(Hl-1INPU
T Q$:IF Q$="N" THEN GOTO 3000
3080 LET G(H1-1)=V1
3090 CLSrPRINT @ 7*32INPUT "ANOTHER

VALUE Q$: IF Q$="Y" THEN GOTO 3000
3100 RETURN

This module accepts data under the headings supplied by the user relating
to the vertical and horizontal axes. If the data input would overwrite an
existing item of data, the user is informed and has the option to cancel the
input.
MODULE 6.5.7

5000 REM***********************
5010 REM DRAW GRAPH
5020 REM***********************
5030 IF CHAR$(0)="" THEN CLSrPRINT @ 7*3
2, "CHARACTER SET NOT LOADEDFOR J=1 TO
5000:NEXT:RETURN

5040 GOSUB 4000
5050 FOR L=0 TO HOR-1:IF G(L)=-9999.9 TH
EN NEXT L:CLSrPRINT @ 7*32,"************
*N0 DATA************'' • FOR 1 = 1 TO 5000 rNE
XT .-RETURN
5060 LET T$=HO$.-LET Pl = 80rLET P2=182rGOS
UB 8000
5070 LET T$=VE$+" (UNIT"+STR$(INT(VV)
)+")"rLET P1=22:LET P2=lrG0SUB 8000
5080 DRAW "BM"+STR$(13+(L+l)*LH) + " , " + STR
$(INT(177-(G(L)-BASE)/VV*LV))
5090 FOR J=L TO HOR-1
5100 IF G(J)0-9999.9 THEN DRAW "M"+STR$
(13+(J+1)*LH) + ","+STR$(INT(177-(G(J)-BAS
E)/VV*LV))
5110 NEXT J
5120 IF INKEY$=""
5130 RETURN

Based on the data contained in the array G and the scaling calculated in
Module 4, this module draws a simple line graph onto the axes specified by
the user.

Chapter 6 Handy programs

■

161

9050 FOR J=1 TO LEN(GR$)
9060 IF MI D$(T$,I,1)=MID$(GR$,J,1)THEN GOTO 8090
9070 NEXT J
8090 CLS: PRINT "GRAPHICS SYMBOL NOT CATE
RED FOR : ” ; MI D$ (T$, I , 1) : FOR J=1 TO 5000.N
EXT .-STOP
9090 DRAW ,,BM”+STR$ (Pl + 6*(1-1)) + " , ”+STR$
(P2)+CHAR$(J-l)
9100 NEXT I
9110 RETURN

Apart from the extra data file requirement, this module is all that is
necessary for practical handling of text in high resolution graphics modes.
The printing of the text is not as fast as normal printing but it is acceptable
for labelling and other limited text purposes. The quality of the lettering
will depend on the quality of what you have created with the high
resolution text programs.
Commentary
Line 8030: This string is a list of text characters in the same order as they are
to be found in the character set contained in the array CHARS.
Line 8040: TS is the name of a string which is declared when the module is
called up and which is to be printed.
Lines 8050-8070: This loop compares letters in TS with those in GRS and,
when they are discovered in GRS, executes the DRAWing of the
corresponding character from CHARS. It does not actually matter that the
characters in GRS are the same as the characters in CHARS, as long as the
user knows what the GRS characters are meant to indicate e.g. if the first
character in CHARS were a * then specifying A in TS would result in the
printing of an asterisk.
Line 8090: Pl and P2 are the X and Y co-ordinates to start drawing.
Testing Module 6.5.8
All that should be necessary to unveil high resolution text on your Color
Computer is to remove the temporary REMs from the beginning of lines
5030, 5060, and 5070. Note that you must first enter your data and then
call up the character set from tape. In a program with a separate initiali
zation module, this would not be necessary, it is just that in this program
the variables are all reset when a new framework is specified for a graph.

Summary
One day there will no doubt be a version of the Color Computer which
will not need to go to these ridiculous lengths to provide such a desirable
facility as high resolution text. Even when it comes, however, it will lack
something else that you would have liked to see. Perhaps with applica
tions like this one behind you, you will be emboldened to believe that if
the Color Computer hasn’t provided it there’s no reason why you shouldn’t
do it yourself!

CHAPTER 7
Fun and Games

"THE QUA

162

You will, perhaps, already have gathered from the overall form of this
book that I do not consider games the be-all and end-all of home
computing. My suspicion is that games are often the fall-back of those who
have discovered the fascination of computing but not yet explored the ways
in which the power of the micro can enhance their daily living.

Nevertheless, games have their place, depending on the games
themselves. Too many magazines and books contain examples of
extremely boring games which no one would ever think of playing for
pleasure were it not for the fact that they have now been put onto a
computer. Personally, 1 like computer games that are irritatingly difficult
and that never let you leave the machine with the feeling that you have
absolutely conquered them. Here are three of my favorites.

7.1 TRACKER
This game is infuriating. It will have you questioning the correct func
tioning of either the program or of your Color Computer in next to no
time. I am so sure of this that I have even included a line in the game
which gives away the answer, so that you can play a couple of times and
prove that the whole thing is working properly!

MODULE 7.1.1
8000 REM***********************
8010 REM INSTRUCTIONS
8020 REM***********************
8030 CLS:PRINT £ 10,"instructions"
8040 PRINT:PRINT "THIS IS A HUNTING GAME

ii

8050 PRINT:PRINT "THE HUNTING GROUND IS
A 12 BY","30 GRID.":PRINT:PRINT
RRY IS INVISIBLE."
8060 PRINT .-PRINT "EACH TURN, THE QUARRY
MAKES A SECRET MOVE. THIS MOVE DOES NO
T CHANGE DURING A PARTICULAR HUNT."
8070 PRINT "THE MOVE CAN BE UP TO SIX SP
ACESUP OR DOWN AND SIX SPACES LEFT OR R
IGHTINPUT " enter FOR MORE";Q$
8080 CLS:PRINT "EACH TURN CONSISTS OF:"
8090 PRINT:PRINT ”1) AN INVITATION TO IN
PUT YOUR ESTIMATE OF THE POSITION OF TH
E QUARRY."

Chapter 7 Fun and Games

PRINT .-PRINT ”3) THE QUARRY WILL MOV

Instructions for the game.

163

1050
1060
1070
1080
1090
1100

PRINT .-INPUT "enter FOR MORE";Q$
CLS: PRINT "AT THE START OF EACH TUR

HAVE THE OPPORTUNITY TO REVIEW

REM***********************
REM INITIALIZE
REM***********************
CLS:PRINT g 8*32+12,"tracker"
PRINT: INPUT "DO YOU WANT INSTRUCTIO

";Q$.-IF Q$="Y" THEN GOSUB 8000

MODULE 7.1.2
9000
9010
9020
9030

MODULE 7.1.3
1000
1010
1020
1030
1040
NS (Y/N):

CLS:GOSUB 9000
DIM M(99,3)
LET R1=7-RND(13)
LET R2=7-RND(13)
LET P1=RND(12)
LET P2=RND(30)

REM***********************
REM SET DIFFICULTY
REM***********************
PRINT "THERE IS A DIFFICULTY FACTOR

BUILT INTO THE GAME."
9040 PRINT .-PRINT "THIS CONSISTS OF A RAN
DOM MOVE OF UP TO 6 DOWN AND 6 RIGHT

EVERY SO OFTEN. YOU ARE NOTIFIEDWHEN A
RANDOM MOVE TAKES PLACE."
9050 PRINT: PRINT "THE DIFFICULTY FACTOR
RANGES 0 TO 10."
9060 PRINT .-PRINT "'0' MEANS NO RANDOM MO
VES. "
9070 PRINT:INPUT "PLEASE INPUT YOUR DESI
RED DIFFICULTY FACTOR:";E
9080 LET E= (11-E)*2+2-l00*(E=0).-RETURN

This module sets a difficulty factor as explained in the module itself.

8100 PRINT: PRINT ”2) AN 'O' WILL APPEAR
IN YOUR CHOSEN SQUARE. A ’+' IN AN
ADJACENT SQUARE WILL INDICATE THE DI

RECTION OF THE QUARRY."
8110
E. "
8120
8130
N YOU
THE HUNT SO FAR."
8140 PRINT: PRINT "THIS IS DONE BY ENTERI
NG ZERO WHEN THE DOWN CO-ORDINATE IS

CALLED FOR."
8150 PRINT: PRINT "YOU CAN START THE REV I
EW AT ANY PREVIOUS MOVE BUT YOU ARE

LIMITED TO REVIEWING 20 MOVES INANY ON
E HUNT."
816# PRINT’PRINT "THE 20 REVIEWS CAN BE
TAKEN ALL AT ONCE OR IN BATCHESINPUT
" enter";Q$

8170 RETURN

The Working TRS-80 Color Computer

” ; P2 ;

164

Commentary
Lines 1070-1080: R1 and R2 are the vertical and horizontal components
of the quarry’s secret move each turn.

Lines 1090-1100: The vertical and horizontal co-ordinates of the quarry’s
initial position.
Lines 1110-1120: This sets up two lines of red and yellow checkerboard to
speed later printing.

Commentary
Line 4060: This line pokes the 0 into the position guessed by the player and,
using the value of conditions, a + in the direction of the quarry. Note the
way the ASC value of a character is poked directly to the screen though
since the chip which controls the display works on a slightly different
character set than the Color Computer’s Basic the + is inverted.

MODULE 7.1.4
2000 REM***********************
2010 REM INITIAL BOARD
2020 REM***********************
2030 CLS
2040 LET A$="123456789012345678901234567
890”:PRINT " ";A$
2050 FOR 1=1 TO 12:PRINT @ 1*32,MID$(A$,
1,1): NEXT :GOSUB 4000.-IF A=1 THEN RETURN

This module simply prints a grid of numbers on the edge of the checker
board (which has not yet been printed).
MODULE 7.1.5

4000 REM***********************
4010 REM PRINT BOARD AND MOVE
4020 REM***********************
4030 FOR 1=1 TO 6:PRINT @ (1*2-1)*32+l, B
$:PRINT @ 1*2*32+1,0$:NEXT I
4040 FOR 1=13 TO 15:PRINT @ I*32,STRING$
(31," ”) ;:NEXT
4050 IF T=0 THEN RETURN
4060 POKE 1024+32*M1+M2,ASC("O"):POKE 10
24+32*(Ml-(P1>M1)+(Pl<M1))+(M2-(P2>M2)+(
P2<M2)),ASC("+")
4070 PRINT @ 15*32,Pl;"
4080 IF AO1 THEN RETURN
4090 RETURN

This module prints the board itself.

1110 LET B$="":LET T$=CHR$(159)+CHR$(191
) :FOR 1 = 1 TO 15:LET B$=B$+T$:NEXT
1120 LET C$="":LET T$=CHR$(191)+CHR$(159
) :FOR 1 = 1 TO 15:LET C$=C$ + T$:NEXT
1130 LET T=0:LET C1=0

This module sets up the program variables.

Chapter 7 Fun and Games

!

I

i

PRINT © 15*32+150’ FOR REVIEW)”

-

165

Line 4070: This line actually tells the player where the quarry was when the
0+ clue was formulated. It should be removed when you begin to play
seriously.

MODULE 7.1.8
6000 REM***********************
6010 REM SUCCESS AT LAST
6020 REM***********************

REM***********************
REM INPUT AND DIRECTIONS
REM***********************
LET T=T+1:IF T>100 THEN CLS:PRINT ©

ii

f
IF M2>30 OR M2<1 THEN PRINT ">OUT 0

"".-GOTO 3110
PRINT © 15*32,STRING$(31 ,’’ ”);
IF M1 = P1 AND M2=P2 THEN GOTO 6000
LET M(T-1,0)=M1:LET M(T-1,1)=M2
LET M(T-1,2)=P1:LET M(T-1,3)=P2
GOSUB 4000:GOSUB 5000.-GOTO 3030

This module accepts the player’s guess as to the current position of the
quarry and stores it, together with the quarry’s co-ordinates, in the array
M. It obviously also checks to determine whether the player has actually
caught the quarry.

MODULE 7.1.6
5000
5010
5020
5030
5040

3070
3080
F RANGE”:PRINT © 13*32,
3090
3100
3110
2
3120
F RANGE”; .-PRINT © 14*32,
3130
3140
3150
3160
3170

REM***********************
REM MOVE INCREMENT
REM***********************
LET P1=P1+R1:LET P2=P2+R2
IF T/E=INT(T/E) THEN LET P1 = P1+RND(

6):LET P2=P2+RND (6): PRINT © 15*32, ”rando
m move”
5050 LET P1=P1-12*(PKl) + 12*(Pl>12)
5060 LET P2=P2-30* (P2<1)+30*(P2>30)
5070 RETURN

This module adds the secret move and calculates whether the quarry has
moved off one side of the board or the other. Depending on the difficulty
factor, the module also assesses whether it is time for a random move.
MODULE 7.1.7

3000
3010
3020
3030
7*32 , "SORRY-CAN'T TAKE ANY MORE MOVES.
,,"YOU’RE JUST SO BAD IT’S PAINFUL!”: END
3040 LET Q$=””
3050 LET M$=”MOVE”+STR$(T): FOR 1=1 TO LE
N(M$):PRINT © (1+2)*32+31 ,MID$ (M$, 1,1) ; :
NEXT
3060

PRINT @ 13*32,””; :INPUT ”DOWN:’’;M1
IF Ml>12 OR M1<0 THEN PRINT ”>OUT 0

’’".-GOTO 3050
IF M1 = 0 THEN GOSUB 7000:GOTO 3050
PRINT © 15*32,STRING$(31,” ”);
PRINT © 14*32,””;:INPUT "ACROSS:”;M

The Working TRS-80 Color Computer

166

Going Further
1) One definite improvement would be a facility which, at the end of the
game — either successful or otherwise, allowed the player not only to
review the moves made but also to see the actual position of the quarry.
Since this information is stored in the array M, there should be little
difficulty in adding such a module.

7.2 HEADLONG
If you thought that one was bad enough, this one is absolutely impossible

6030 PRINT e 7*32,STRING$(31”);:PRINT
S 7*32+10, “GOT IT!”:FOR 1 = 1 TO 5000.-NEX

T
6040 PRINT $ 7*32+6INPUT ’’ANOTHER G
AME (Y/N):”;Q$:IF Q$=”Y" THEN GOTO 1070
6050 END

This module informs the player that the game is won and allows a restart if
desired.

MODULE 7.1.9
7000 REM***********************
7010 REM REVIEW OF GAME
7020 REM***********************
7030 LET A=1:IF Cl>20 THEN GOTO 7110
7040 CLS-.PRINT @ 4*32+10 , "reveiw”
7050 PRINT: PRINT ’’REVIEW ALLOWANCE 20 MO
VES. ”
7060 PRINT:PRINT "YOU HAVE USED”;Cl
7070 PRINT: PRINT ’’LAST MOVE WAS NO.”;MID
$(STR$(T),2)
7080 PRINT: INPUT ’’INPUT FIRST MOVE FOR R
EVIEW:”;T1:IF T1<1 THEN GOTO 7080
7090 CLS
7100 FOR J=T1-1 TO T-2:LET C1=C1+1
7110 IF Cl>20 THEN CLS:PRINT @ 10*32+4,”
review right exhausted”:FOR 1=1 TO 3000:
NEXT:GOTO 7190
7120 LET M1=M(J,0):LET M2=M(J,1):LET Pl =
M(J,2):LET P2=M(J,3)
7130 GOSUB 2000
7140 PRINT @ 13*32,’’REVIEW OF MOVE”;J+l
7150 IF (J+l)/E=INT((J+l)/E) THEN PRINT
@ 15*32 ,’’random move followed”;
7160 PRINT @ 14*32,””;:INPUT ”enter=NEXT
MOVE//’0’=QUIT:”;Q$
7170 FOR 1=13 TO 15:PRINT @ I*32,STRING$
(31,” ”); :NEXT
7180 IF Q$<>”0” THEN NEXT J
7190 LET Ml=M(T-2,0):LET M2=M(T-2,1) : LET
Pl=M(T-2,2):LET P2=M(T-2,3)

7200 GOSUB 2000:LET A=0:RETURN
This is the module which allows the player to review previous moves. It
uses previous modules to draw the board but sets the indicator variable A
to zero so that moves will not be input.

Chapter 7 Fun and Games

167

-

— at least on the higher levels of difficulty. The object of the game is to
steer a moving dot around a cluttered screen without crashing into
anything, including the trail left by the dot itself. As an added incentive
there is a large white block which rushes across the screen mindlessly and if
it collides with you then that is the end of the game. The basis of the game is
the Doodle program you were given earlier and two versions are given —
one for joysticks (which is the better of the two) and one using only the
arrowed keys.
MODULE 7.2.1

1000 REM***********************
1010 REM INITIALIZE
1020 REM***********************
1030 CLS: INPUT "PLEASE INPUT DIFFICULTY
LEVEL FROM 1 TO 10:";DIFF
1035 IF DIFF<1 OR DIFP>10 THEN GOTO 1030
1040 LET P1=100:LET P2=100
1050 PM0DE 0,1:PCLS3:SCREEN 1,1
1060 DIM G(15,15) , H(15,15)
1070 GET (0,0)-(15,15) ,G,G
1080 PCLS
1090 DRAW "BM0,0 ;R255 ;D191; L255 ;U191"
1100 DRAW "BM20,0;D100"
1110 DRAW "BM50,191;U75"
1120 DRAW "BM0,60;R15"
1130 DRAW "BM0,120;R40"
1140 DRAW "BM255,97;L100"
1150 DRAW "BM75,150;E100"
1160 DRAW "BM125,191; U75"
1170 DRAW "BM30,40;R120"
1180 DRAW "BM200,0;D80"
1190 DRAW "BM220,191;U80"
1200 DRAW "BM140,150;R65"
1210 LET SC=0

Sets up program variables and draws obstacles on the screen. The moving
block is taken, using GET, from the empty screen in line 1070 and stored in
the array G.

MODULE 7.2.2 (Joystick Version)
2000 rem***********************
2010 REM EXECUTE DRAWING
2020 REM***********************
2030 LET X=2:LET Y=2
2040 FOR 1 = 0 TO 3:LET J (I) =JOYSTK(I): NEX
T
2050 LET X1=X.LET Y1=Y
2060 X=X-2*(J (2)> 63-DI FF*3)+2*(J(2) <0+DI
FF*3)
2070 Y=Y-2*(J(3)>63-DIFF*3)+2*(J(3)<0+DI
FF*3)
2075 FOR 1=1 TO D2:NEXT
2080 IF Pl>240 THEN LET P1=0
2090 IF P2>176 THEN LET P2=0
2100 GET (Pl , P2)-(Pl + 15 , P2+15), H ,G: PUT(P
1 ,P2)-(Pl+15,P2+15) ,G,PSET

The Working TRS-80 Color Computer

Confirms the end of the game and gives the score.

THEN LET D$

Joystick functions are here replaced with INKEYS. The dot is never

168

Commentary
Line 2050: These variables are used to determine whether the user’s dot has
moved in this pass through the module (keeping the joystick straight allows
the dot to be stationary). If the dot has not moved then no attempt is made
to see whether there is an obstacle where the dot is about to be printed.
Lines 2080-2110: These lines move the white block across the screen
diagonally.
Line 2130: If the screen point where the dot is about to be printed is set then
the game ends.

2120 IF X1OX OR Y1OY THEN IF PP0INT(X,
Y)<>0 THEN GOTO 2230
2130 IF X1OX OR Y1OY THEN LET SC=SC+1
2140 PUT (Pl,P2)-(Pl+15,P2+15),H,PSET
2150 LET Pl=Pl+8:LET P2=P2+8
2160 PSET(X,Y,3)
2190 GOTO 2040

Most of the module will be familiar from the Doodle program.

MODULE 7.2.3
2200 rem***********************
2210 REM GAME ENDS
2220 REM***********************
2230 CLS:PRINT @ 7*32+10,"SCORE=";SC:PRI
NT @ 8*32+10,"DIFFICULTY=";DIFF:END

ALTERNATIVE MODULE 7.2.2 (Non-Joystick Version)
2000 REM***********************
2010 REM EXECUTE DRAWING
2020 REM***********************
2030 LET X=2:LET Y=2:LET D2=50-DIFF*5
2040 LET T$=INKEY$:IF T$<>’”’
=T$
2060 LET X=X-2*(D$=CHR$(9)) + 2*(D$=CHR$(8
))2070 LET Y=Y-2*(D$=CHR$(10))+2*(D$=CHR$(
94))
2075 FOR 1=1 TO D2:NEXT
2080 IF Pl>240 THEN LET P1=0
2090 IF P2>176 THEN LET P2=0
2100 GET (Pl,P2)-(Pl+15,P2+15),H,G:PUT(P
1,P2)-(Pl+15,P2+15),G,PSET
2120 IF PPOINT(X,Y)<>0 THEN GOTO 2230
2130 LET SC=SC+1
2140 PUT (Pl,P2)-(Pl+15,P2+15),H,PSET
2150 LET P1=P1+8:LET P2=P2+8
2160 PSET(X,Y,3)
2190 GOTO 2040

Chapter 7 Fun and Games

MODULE 7.3.1

enter TO CONTINUE";Q

enter TO CONTINUE";

enter TO CONTINUE";

169

7.3 QUOITS
A game of judgment and reactions and also a program that well displays
some of the strengths and weaknesses of the GET and PUT commands.

Going Further
Enjoyable though it certainly is, the simple structure of this game gives
ample scope for all kinds of added features — not the least of which might
be a two player version.

stationary but continues moving until a new direction is input at one of the
arrowed keys.

IT IS ALSO A LINE B
THE FU

HARDER YOUR TH

REM***********************
REM INSTRUCTIONS
REM***********************
CLS .-PRINT "YOU ARE INVITED TO JOIN

OF THREE DIMENSIONAL QUOITS."

A LINE
WHICH YOU PLAY. PRESSING A KEY WILL STO
P IT AND WHEREVER IT STOPS, THAT IS T
HE DIRECTION IN WHICH YOUR QUOIT WILL TR
AVEL YOUR PLATFORM IN THE CENTER OF
THE GRID."
9120 PRINT: PRINT "THE SECOND INSTRUMENT
IS A POWERINDICATOR.
UTACROSS THE TOP OF THE SCREEN.
RTHER YOU LET IT GO, THE
ROW. "
9130 PRINT:INPUT "
Q$

9000
9010
9020
9030
A GAME
9040 PRINT:PRINT "IT’S CALLED THREE DIME
NSIONAL BECAUSE THE QUOITS HAVE TO BE

THROWN FROM A HEIGHT ONTO PEDEST
ALS THAT VARY IN HEIGHT FROM ONE TO FI
VE FEET."
9050 PRINT: PRINT "YOU HAVE FORTY QUOITS
AND YOUR OBJECT IS TO GET ONTO AS MANY
OFTHE LOW PEDESTALS AS POSSIBLE.”
9060 PRINT:INPUT "
$ 9070 CLS: PRINT "THE HEIGHT OF THE PEDEST
ALS IS INDICATED BY A NUMBER AS ON THE
FACE OF A DICE."
9080 PRINT: PRINT "EACH TIME YOU LAND ON
A PEDESTALYOU SCORE SIX MINUS THE HEIGHT
— PROVIDED THAT YOU HAVEN'T HIT THAT 0
NE BEFORE."
9090 PRINT: PRINT "THE GAME IS ENTIRELY W
ITHOUT TEXT. YOUR ONLY AIDS ARE TWO

INSTRUMENT DISPLAYS."
9100 PRINT:INPUT "
Q$ 9110 CLS: PRINT "THE FIRST INSTRUMENT IS

WHICH RACES ROUND THE SQUARE ON
PRESSING A KEY

The Working TRS-80 Color Computer

enter TO CONTINUE”;

enter T

170

MODULE 7.3.2
2000 REM***********************
2010 REM INITIALIZE
2020 REM***********************
2030 CLEAR:PCLEAR 4
2040 DIM A(8,10)
2050 FOR 1=0 TO 8:FOR J=0 TO 10
2060 LET A(I , J)=RND(5)
2070 NEXT J,I
2080 LET X2=6:LET Y2=5
2090 LET SCORE=0:LET A(4,5)=0
2100 GOTO 1060

This module sets up the program variables, especially the values in the
array A which determine the heights of the pedestals.

9140 CLS: PRINT ’’AFTER YOU HAVE THROWN TH
E QUOIT IT STARTS TO FALL. YOU CAN TRACK
ITS FALL ON THE HEIGHT LINE AT THE RIGH
T OF THE SCREEN—IT ALS0INDICATES THE HE
IGHTS OF THE FIVE TYPES OF PEDESTAL.
9150 PRINT:PRINT "IF IT'S TOO LOW WHEN I
T GETS TO A PEDESTAL, THE QUOIT IS WASTE
D.”
9160 PRINT:INPUT "
Q$ 9170 CLS:PRINT "ONE FINAL PROBLEM. YOUR
PLATFORMIS CONSTANTLY DESCENDING, MAKING
IT INCREASINGLY DIFFICULT TO HITTHE LOWE
R PEDESTALS. GOOD LU
CK! ”
9180 PRINT:PRINT:PRINT:INPUT”
0 START GAME:";Q$
9190 RETURN

Instructions for the game.

MODULE 7.3.3
6000 REM***********************
6010 REM CHIMNEY SQUARES
6020 REM***********************
6030 PCLS:PM0DE4
6040 DIM Bl(15,15):DIM B2(15,15):DIM B3(
15,1S):DIM B4(15,15):DIM B5(15,15)
6050 DIM B$(3):LET A$=”BM1,1;R15;D15;L15 ;U15;”
6060 LET B$(1)=A$+"BR7;BD7;R1;DI;LI"
6070 LET B$(2)=A$+"BR3;BD3;R1;Dl;LI;BD7;BR8;R1;D1;L1"
6080 LET B$(3)=A$+”BR11;BD3;R1;Dl;LI;BD7 ;BL8;R1;D1;L1"
6090 DRAW B$(1):GET (1,1)-(16,16) , Bl,G
6100 DRAW B$(2):GET (1,1)-(16,16),B3,G
6110 DRAW B$(3):GET (1,1)-(16,16),B5 ,G
6120 PCLS.’DRAW B$(2):GET (1,1)-(16,16) , B
2,G
6130 DRAW B$(3):GET (1,1)-(16,16),B4,G
6140 RETURN

Chapter 7 Fun and Games

171

Testing Module 7.3.4
Temporarily removing line 1060 and line 6140 should result in a program
which will create the display described, before giving an error RETURN
WITHOUT GOSUB.

MODULE 7.3.5
1000 rem***********************
1010 REM MAIN PROGRAM
1020 REM***********************
1030 CLS:PRINT @2*32+12,"quoits"
1040 PRINT: INPUT "DO YOU WANT INSTRUCTIO
NS (Y/N):";Q$:IF Q$="Y" THEN GOSUB 9000

Commentary
Lines 7040-7090: These loops work through the array A, using the values
contained in it to call up the one line sub-routines at line 7140-7180.
Line 7100: This draws the marks which indicate the height of the pedestals
on the right of the screen.
Line 7110: The remaining quoits are displayed visually at the bottom of the
screen.

Using DRAW instructions which provide a 1,2 and 3 this module DRAWs
the five dice faces and then GETs them into the 5 arrays B1-B5.
Unfortunately a three-dimensional array such as B(4,15,15) cannot be
used since GET and PUT will not work with such an array.

MODULE 7.3.4
7000 REM***********************
7010 REM PRINT CHIMNEYS
7020 REM***********************
7030 PMODE4:PCLS:SCREEN 1,1
7040 FOR 1 = 24 TO 152 STEP 16:FOR J=32 TO
192 STEP 16

7050 IF 1=88 AND J=88 THEN GOTO 7090
7060 LET I1=(1-24)/16:LET Jl=(J-32)/16
7070 ON ABS(A(I1,JI)) GOSUB 7140,7150,71
60,7170,7180
7080 IF A(I1,J1)<0 THEN PUT(J,I)-(J+15,I
+15),Bl,NOT
7090 NEXT J,I
7100 DRAW "BM250,191":FOR 1 = 1 TO 6:DRAW
"R5;U1;L5;BM+0,-10":NEXT I
7110 DRAW "BM5,186" : FOR 1 = 1 TO (H-100)/5
+ 3-G:DRAW "D2 ; R2 ; U2 ; L2 ; BM+5 ,+0 " : NEXT I
7120 DRAW "BM8,0 ; D5 ;R1 ; U5 ; BM240,0 ; D5 ;R1;
U5"
7130 RETURN
714 0 PUT (J , I)-(J+15,1 + 15) , Bl, PSET: RETURN
715 0 PUT(J , I)-(J+15,1 + 15) ,B2, PSET:RETURN
7160 PUT(J , I)-(J+15,1 + 15), B3, PSET: RETURN
7170 PUT(J , I)-(J+15,1 + 15) ,B4 , PSET:RETURN
718 0 PUT (J , I)-(J+15,1 + 15), B5 , PSET: RETURN

This module DRAWs the display on which the game is played.

The Working TRS-80 Color Computer

THEN GOTO 1090

it it THEN GOTO 4000

ii ii THEN GOTO 4000

THEN GOTO 4000

THEN GOTO

172

Based on the coordinates at which the direction indicator stopped, this
module calculates a direction for the throw from the center of the grid.

MODULE 7.3.6
3000 REM***********************
3010 REM DIRECTION
3020 REM***********************
3030 PMODE 4:SCREEN 1,1
3040 LET S1=119:LET S2=96
3050 LET X=16:FOR Y=175 TO 17 STEP -1
3060 PSET (X.Y)
3070 IF INKEY$<>
3080 NEXT Y
3090 FOR X=16 TO 222
3100 PSET (X.Y)
3110 IF INKEY$<>
3120 NEXT X
3130 FOR Y=16 TO 174
3140 PSET (X.Y)
3150 IF INKEY$<>
3160 NEXT Y
3170 FOR X=223 TO 16 STEP -1
3180 PSET (X.Y)
3190 IF INKEY$<>'”' THEN GOTO 4000
3200 NEXT X

This module draws the direction indicator line around the screen. Stopping
it supplies two co-ordinates, X and Y to the next module.

MOt)ULE 7.3.7
4000 REM***********************
4010 REM ANGLE AND VELOCITY
4020 REM***********************
4030 FOR 1=1 TO 500:NEXT I
4040 H1=X-S1:V1=Y-S2
4050 IF ABS(VI)>=ABS(Hl) THEN LET V2=SGN
(V1):LET H2=ABS(H1/V1)*SGN(H1)
4060 IF ABS(H1)>ABS(V1) THEN LET H2=SGN(
H1):LET V2=ABS(Vl/Hl)*SGN(VI)
4070 FOR V=8 TO 240
4080 PSET (V,3):IF INKEY$<>”"
5000
4090 NEXT V
4100 RETURN

1050 CLS:GOTO 2000
1060 GOSUB 6000
1070 FOR H=300 TO 100 STEP -10:FOR G=1 T
0 2
1080 GOSUB 7000:GOSUB 3000
1090 IF INKEY$=”"
1100 CLS.-NEXT G,H
1110 CLS: PRINT @ 2*32+12,’’quoits”
1120 PRINT:PRINT ”YOUR SCORE WAS SCORE
: END

The main loop of the program, which allocates work among the other
modules.

Chapter 7 Fun and Games

Lines 4070-4090: This draws the strength indicator.

Line 5090: This formula describes a falling trajectory.

173

Line 5100: This line ensures that if the quoit enters a square for which it
does not have sufficient height, it is not registered as a landing, nor if the
square has been landed on before — only if it is a fresh square and it is
entered from above is a landing registered.

Line 5130: This line draws the height indicator — a downward line, on the
right of the screen.

Commentary
Line 5070: The pixel over which the quoit is currently passing is reversed,
no matter whether set or not.

Commentary
Lines 4050—4060: These two lines serve to ensure that the path of the quoit,
when it is plotted on the grid, will be a continuous line rather than spaced
pixels. It does this by determining which is the greater, the horizontal or the
vertical component of the direction and then using that component as the
basis for the line, with adjustments up, down, left or right for the other
component.

MODULE 7.3.8
5000 rem***********************
5010 REM PLOT COURSE
5020 rem***********************
5030 LET T=(255-V)/1000
5040 FOR 1=1 TO 100
5050 LET X=INT(S1+INT(I*H2)):LET Y=INT(S
2+INT(I*V2))
5060 IF Y<0 OR Y>191 THEN RETURN
5070 IF PPOINT(X,Y)<>0 THEN PRESET(X,Y)
ELSE PSET(X.Y)
5080 GOSUB 80005090 LET H3=H-5*(T*I)~2:IF H3<=0 THEN RE
TURN
5100 IF X1=X2 AND Y1=Y2 AND X1O999 AND
Y1O999 THEN IF H3<ABS(A(Y1 , XI))*20 AND
A(Y1,X1)>0 THEN LET SC0RE=SC0RE+6-A(Y1,X
1):LET A(Y1,XI)=A(Y1,XI)*-l
5110 IF X1O999 AND Y1O999 THEN IF H3<A
BS(A(Y1,XI))*20 THEN RETURN
5120 LET Y2=Y1:LET X2=X1
5130 IF H3/2< = 191 THEN LINE(252,0)-(252,
191-(H3/2)),PSET
5140 NEXT I .-RETURN

This module calculates the track of the quoit across the grid and the height
of the quoit as it falls.

The Working TRS-80 Color Computer

174

MODULE 7.3.9
8000 REM***********************
8010 REM LANDING?
8020 REM***********************
8030 LET X1=INT((X-31)/16)
8040 LET Y1=INT((Y-23)/16)
8050 IF Xl>10 OR X1<0 THEN LET Xl=999
8060 IF Yl>8 OR Y1<0 THEN LET Yl=999
8070 RETURN

This module transforms the pixel co-ordinates of the quoit into
co-ordinates on the 11*9 grid. If the quoit has passed beyond the grid the
value of the relevant co-ordinate is set to 999 as an indicator for the
previous module.

I hope that it has not escaped your notice, now that you have come to the
end of this book, that you are now the possessor of a library of programs.
True, it is not the most extensive library in the history of computing, but it
contains the tools to tackle a variety of tasks if you are prepared to adapt
the programs to your own specific needs. In addition the collection as a
whole may have given you a glimpse of what the Color Computer is
waiting to achieve with and for you.

Like the simplest camera, the simplest computer is far better than its
programmers, always capable of more than has yet been done with it. The
Color Computer is a highly powered tool and it waits only for you to take
programs like these and make them your own, cannibalize them for
spares, discard them on the path to better things.

In other words the Color Computer waits only to be put to work.

I

I

::

omputers/TRS-80 Color Computer $9.95

ISBN 0-916688-65-8

i

>

■M CREATIVE
COMPUTING ■■ riirn

------- — ©JU©

WORKING
© ©©©

W IL. ..J
his book contains a wide variety of prddugms in data

» ?
DAV 1L LAWRENCE

T storage, finance, household management, and

games for the TRS-80 Color Computer (with Extended
Basic) and the Color Computer II. Ready-to-run pro
grams include:

• A rudimentary but useful text editor that has many
of the features of a real word processor.

• Two versions of a flexible mini-database from
which items can be recalled, searched, amended,
and deleted.

• Graphics programs for the creation, manipula
tion, and storage of shapes and multi-colored
patterns.

• Home education programs such as a typing tutor,
a program that can be used to computerize multi
ple-choice tests, and a geography test.

Each program in this book is accompanied by detailed
line-by-line explanations. The program listings are also
presented in easily manageable modules, and through
out the book, the author suggests ways in which users of
the Color Computer can use these routines to enhance
their own programs.

D

