AUSTRALIAN OS9 NEWSLETTER

sides ‘No. of cylinders’ (in decimal) :Interleave value: (in decimal) @FREE Syntax: §
| Free [devname] Usage : Displays number of free sectors on a device @GFX
Syntax: RUN GEFX(dunct<args>) Usage : Graphics interface package for
§ BASICO9 to do compatible VDG graphics commands @GFX2 Syntax: RUN §
: GFXZ([path]<funct><args>) Usage : Gr aphics inter face package for BASIC09 to ¥
i handle B 5

| aingow] EDITOR Gordon Bentzen ~ (07) 344-3881

’;{g& SUB-EDITOR Bob Devries (07) 372-7816
| from O3 TREASURER Don Berrie (07) 375-1284

| single lin
' é;r&:fgg LIBRARIAN Jean-Pierre Jacquet (07) 372-4675

Fax Messages (07) 372-8325

:5 Egutp?c) SUPPORT Brisbane OS9 Users Group

memor

text files @ik 3 : i :
f memory @MAKDIR SyntaX’ Makdir <pathname> USdoe : Creates a new |
§ directory file @MDIR Syntax: Mdir [e] Usage : stpldys the present memory §
§ module directory Opts : e = print extended module dlrectorv @MERGE Syntax: g
§ Merge <pathy “ndard output g
| @MFREE Syn A :
t @MODPATCH] LEditori i ¥a module in §
| memory from Gordon Bentzen rnings -C = §
 compare modu 8 Odin Street name = link §

1 to module C SUNNYBANK Qld 4109 V = verify
§ module M = md

I Usage : Set myg -
| monochrome Jean-Pierre Jacquet

and links an OS 27 Hampton Street
| Procs [e] Usagd
| display all prod

Usage Gives the ﬁle or dlrectory a new name @RU\B bymaX' Runb «i- code '_'f
i modulex_sase + BASICO9 mn time packase @SETIMFE Svntax: ‘ae’ume
! [vy/mm
Syntax:] Volume S December 1991 Number 11

| the operatig parameters of the terminal @TUNEPORT Tuneport <tl1 or /p»
| [value] Adjust the baud value for the serial port @UNLINK Syntax: Unlink
| <modname> Usage : Unlinks module(s) from memory @WCREATE Syntax: §

AUSTRALIAN 0S9 NEWSLETTER
Newsletter of the National 0S9 User Group
Volume 5 Number 11

EDITOR : Gordon Bentzen
SUBEDITOR : Bob Devries
SUPPORT :

CHRISTMAS GREETINGS

Bob, Don, Jean-Pierre and nmyself would like to wich all
members a merry Christmas and trust that you and your
family enjoy a safe and happy nev year. We would also
like to thack you for your continued support of the 089
Usergrotp and we look forward to your active
participation In the new year

We koow just how easy it is to leave the work to somebody
else especially when we all seem to be governed by the
higher priorities of Iife. [am sure that if every
memher made a commitment to submit just one small articl
during the coning year, our newsletter would be enjoyed
far more by all. You don't have te be =z technical gure
to present something of interest to others. How about
telling us what you use your computer for.

PUBLIC DOMAIN LIBRARY

Qur PD library continges to grow at a steady rate thanks
nainly to our overseas connections. Our CSF material has
recently been enlarged by materiz! from the FEurcpean
Usergroup. We know that the majerity of our members run
6809 059 but for the OSK'ers here is some news.

The first 15 OSE-PD disks have now been entered into our
PD-collection. It is the full T0P-cellection collected by
Wolfgang Qcker in Munich.

T0P stands for The 0s9 Project and contains & lot of
programmes ported from UNIX to 059/68000. The TOP-disks
will be of no use to 6809 users unless you'd be willing
to (try to} port them to 05-9/6809 yourself. OSK users
should note that some files might have to be recompiled.
We do have some reports of trouble with some of the games
which put too many linefeeds out. Alsc, the DU (Disk
Usage) command assumes that all devices have 256-Dhyte
sectors, which was true for all OSK versions up to 2.3
The new version 2.4 allows any size secters.

Anyhor, here s the list:

T0P #1 Programs |
TOP #2 Programs 2
TCP #3 Programs 3

TOP #4 ¢ UUCP I
T0P #5 . UUCP 2

TOF #6 Documentaticn
T0P #7 Sources 1
TP #8 Sources 2

Page 2

TREASURER :
LIBRARIAN :

[on Berrie
Jean-Pierre Jacquet

Brishane 089 Level 2 Users Group.

TOP #9 Sources 3
TOP #10 Sources 4
T0P #1! Sources 5

TOP #12 : Games |
TOP #13 . Capes ?
TCP #14 - Games 3
TOP #15 . Geames ¢

We'd recommend that you get all 15 disks, as the Sources,
Docs and executable modules of any one vprogramme are not
necessarily on the same disk. We need to do a fair bit
of sorting to achieve this, but that will take tipe. The
disks are availzble oniy in Atari OSE 3.5" format at this
stage.

I§ THIS EDITION

We present a further chapter of the 'C* Turorial series
and have some further discussion rotes dewnloaded from
Bitnet by Bon Berrie which we think may be of interest

This December edition will have to ¥eep you going uwntil
February next vear as we will not produce one for January
1997, as has been the prartice in pravious vyears, We
like to tzke & holiday to

TIPS

We had 2 letter from 2 member in Sydnmey ecently ¥hich
posed a number of questions. We did get to reply even
though 1t tock a few wnexs, sorry about that, ay fault.
hoyway, a couple of items may be of general interest.

Question:-

I know that the utility ®error™ wiil report the meaning
of the errer number, but I want this message to come up
without having to type "error #xxx*, can you help.
Answer:-

We are using a patched version of the Level 1 command
"printerr® which works just fine. DPrinterr needs to be
in your 059Boot file and called from the "startup® script
file. It looks for the text file "errmsg™ in the /dd/SYS
directory and reports the meaning of every error number
(provided that the error rnumber and text ig ip the
*errnsq® file. The patch file is available in the PO
Tibrary,

uuuuu

December 1991

AUSTRALIAN 0S9 NEWSLETTER

Is there any way of telling if a VEF picture file is in
squashed format?

Answer:-

The first character in a Standard VEF file is 00 while
the first character in a squashed (compressed) file is

80. Info from M.V.Canvas version 2 manual

fuestion:-
Is there any way of telling the size of a single file?
Avsver:-

¥hile the "dir -e"

cormand will report the size [in hex)

of every file in the current directory, we are not aware
of a utility to report the size of an individual file.
Perhaps somebody can help with this one. (Bob Devries
wrote a utility named *fileinfo® which reports a lot of
info about the file as well as checking the file
integrity; perhaps we cap persuade hip to produce a
simplified version for “filesize® 77

Until next year, Happy computing and Happy holiday.
Gordoen.

0000000050000000000000600060000

Using Fevin D

by Bob D

Fevin Darling, the somewhat famous gquru of the
American 059 community, has written a replacement GFY2
rodule for users of Basic09. The wversicn I have, which
alsoc appears in our PD library, is some 122 bytes longer
than the original module, but has quite a few extra
cornands. when IDENTed, this new GFX2 qives & CRC of
qu'lCCE and a length of $949, whereas the old version has
a CBC of $C940AD and a length of S8CA. It has only ore
‘aii‘ng_ the FILL command is missing! If anvone has a
later edition of this programee, please don't keep us Ip

V

K';r‘ uu
@

dar

I have written a little Basic09 progranme to show vou
how to use the puildown menus and mouse controls with
kevin'e GFYZ. It ic really simple to use, and does not
reguire the use of complex variable types (structures).
The oprogragme opens a window {on /w ag usual}, which it
then makes into & 40 ¥ 24 graphics window using the DWSET
call. After turning the cursor off, and selecting the
vindow, the pulldown menu calls are used.

First, the maip menu bar at the top of the wirdow.
This information is rarely seen, unless another window is
opezed on top of ours. Then the ‘two titles for the
pulldown menus are passed to the window mapager, along
¥ith the numbers which they are tc be identified by (33
Nezt come the items in the tvo menu pulldowns,
with their identifiers, ané whether they are enabled or
pot. You'll notice that the Format choice is carefully
disabled, so you can't accidentally format something
important! After all the information has been pzssed to
the window manager (Windint), we issue the call 'WoSet!
to tell it to drav the screen. Next, we set up the mouse
handler with the 'SetMouse' call, and pass it values of
3,1, which are the scanrate, the timeout, and the
autofollow values.

.
ané 14,

e programme onext selects the polnter type using
. end it chopses a3 arrow. KNow we get to a loop
ellows the selection of the pulldown. MNotice, that

~1 L_r

mi
il
'5C%r!
hich

December 1991

the window manager does the actual pulldown for you and
gives back to the programme the menu id and menu item of
the selected item, On the basis of that, the programme
goes to the appropriate subroutine and does what the
pulldown sugqests. Note, I have not included any error
trapping, so if any of the commands {on the lines
starting with 'Shell') are not either in memory or in the
current execution directory, the programme will quit,

So vou can see that it Is really easy to meke your
t pulldown wicdow system. Note that you do not need to
un this from MultiVue', but you must have ‘windint' in
cur 0S9Bcot file. If you don't, it will not work,

Regards, Bob Nevries
PROCEDURE pulldown

0000 DIM path:BYTE

b0o7 LIN wd{3):STRING

0013 DIM ml{3);STRING

DOLF DIM m2(2):STRING

0028 DIN winstr:STRING[3Z]

2037 DIN ¥Td Disk MIQ Mem:INTEGER

0042 DIM Disable,Enable: INTEGER

004D DIM a:STRING[1]

0059 DI¥ valid,fire,mx,ny,area,sy,sy: INTEGER

0078 DI¥ renu ld nenu item: THTEGER

0082 ¥Td Disk=33

0084 HId Nem=34

009! DisEb?e‘O

(058 Enable=l

0098 UPEN fpath,”/w": UPDATE

004cC RUN getdevname({path,winstr)

0088 RUN gfx2(path,"DWSet®,8,0,0,40,24,0,1,11

HOES RUK qfx2(path,®select")
00F8 RUN gfx2(path,"curoff")

G108 RUN gfxl(path, "Title" wd,"Tools", 34,10,2}

0133 FU gfxz{path, "¥enu" wd,1,"Disk" NId Disk,
g,4,n0 Erakle

0188 AUF ofxilpath ®Iten®,n!l,1,"0ir * Enable)
018F EUH gfx2{path,"Iten",nl,2,"Free " Enable)
0186 RUR ofyl(path,"Iten®,nl,3,"PYD " Enable)

Page 3

AUSTRALIAN 0S9 NEWSLETTER

010D
0204

0238
0261
0287
02A1
02BF
0208
02D4
f2F1
area,sx,sy)
0326
8349
5D
0369
f3gl
f36F
0378
037F
0281
(38D
0391
0393
0395
399 160
034D
1383

300

400

500

RUN qfx2(path,®Iten® ml,4,"Format® Disable)
RUN qfx2(path,"Henu®,wd,Z,"Menory" MId Nem,
6,2,m2,Enable)
RUN qfx2(path,®Iten® m2,1,"MFree®, Enable)
RUY afx2(path,®Iten*,nZ,2,*Procs®, Enable)

RUN ofx2(path,"¥nSet® 1, wd)
RUY gfx2(path,"setmovse®,3 1, 1)
RUN ofx2(path,®qcset®,$CA, 1)
LOQP

RUN ofx2(path,"onmouse”,()

RUN ¢fx2(path,®nouse® valid, fire, ry,my,

IF valid(>0 EKD fire=l LD areazl THER
RUN ofxl(path, "geteel” peny id,mer

IF menu 1422 THEN
GOTC 100
ENDTF
IF menu id=33 TREN
GOSUR 200
ENDIF
IF menu 1d=34 THEK
GOSUB 300
ERDIF
ENDIF
ENDLOOP
RUK ¢fx2(1,"select™)
CLOSE #path
END
ON menu iter GQSUB 400,500,608,
RETURN
ON meny item GOSUB 80¢, 900
RETURN
PRIRT #path,CERS(12}
CHELL "dir®+™)"+wingtr
GOSUR 1000
RETURN
PRINT #path,CERS(12)
SHELL "free®+®)"+ginstr
GOSUB 1000
RETURN

CUR FIRST USER DEFINED FUNCTION

Load and examine the file SUMSCRES.C

of a C progrem with functions.
function we have

first

program we

have

uoitand

790

0424 600 DPRINT #path, CERG(12)

0437 SHELL "pwd®+®)*+winstr
0ddp GOSUB 1000

0444 RETURN

044C 700 PRINT #path,CHRS(12)
0459 RETURN

0458 800 PRINT #path,CER§{12)

0468 SHELL "mfree"+™>"tyinctr
(479 GOSUR 1000
47D RETURY
047F 900 PRINT fpath,CHESILZ!
043¢
044D
fdg:
4y
(437
Bell
pacs
PRCCEDURE getdsvname
GO0 TYPE registers=cc,a,b,dp:BYTE; %,y v INTEGER
bo2% DI¥ regsiregisters
0028 PARRY wparh:BYTE
0 PLREY winnam:STRING[32]
nodl JIM 1 IKTEGER
hids DIN calleode:BYTE
iLr recs.atyparth
frsk reg $re
(887 re¢z. x=ADBR wirnan!
8075 calicode=580
§070 RUK syscall({callcode,regsi
fogc FOR i=1 10 32
b09c EXITIF KIDS{winnam,i,1))CHRS(128) THEW
004F pnan=*/"+LEFTSwinnan,i-
TieCHRSIASCIMIDS twinnan, i, 1})-128)
ol ¥
005 i
4080

B C Tetorial
Chapter & - Functions and veriables

for an example

Actually this is not the
encountered because the "main’
beer using all along is technically &

fusction, as is the ‘"printf" function. The ‘priptf®
function 1is a library fupction that wes supplied with
your compiler. MNotice the executable part of this
pregran. [t begies with 2 lize that simply says
"header ()", which Is the way to call apy function. The

parentheses are required hecause the C compiler uses thenm

Page 4

to determine that it is a function call and pot simply a
nisplaced variahle.

¥hen the program comes to this line of code, the
function npamed ‘“header® is called, ite statements ere
executed, and control returns te the statement following
this call. Continuing on e come to & "for" loop which
¥ill be executed 7 times and which calls apother function
named "square" each time through the loop, and finally a
fanction named ®ending® will be called and evecuted. For
the moment 1igacre the "index" in the parentheses of the
tall to ‘"square”. We have seen that this program
therefore calls a header, 7 square calls, and an ending.

December 1991

AUSTRALTIAN OS9 NEWSLETTER

Now we need to define the functions.
DEFINING TEE FUNCTIONS

Following the main program you will see another
progran that follows all of the rules set forth so far
for a *main® program except that it is named *header{)".
This is the function which is called from within the main
progran, Each of these statements are executed, and when
they are all complete, control returns to the main
prograr, The first statement sets the variable "sum®
equal to zero because we will use it to accumulate a sum
of squares. Since the variable "sum® is defined as an
integer type variable prior to the main program, it is
available to be used in any of the following functions,
It is called a "giobal" variable, and it's scope 1is the
extire srogram and all functions.

¥ore will be said about the scope of variables at the
end of this chapter. The neyt-statement outputs a header
message to the monitor. Program control then returns to
the main progran since there are no additional statements
to execute in this function. It should be clear to you
that the two executable lines from this function could be
moved to the main program, replacing the header call, and
the program would do exactly the same thing that it does
as it is now written. This does not minimize the value
of functions, it merely illustrates the operation of this
simple function in e simple way, You will find functions
to be very valuable in C programming.

PASSING A VALUE TO A FUNCTION

Going back to the main program, and the "for" loop
specifically, we find the new construct from the end of
the Iast lesson vsed in the last part of the for loop,
pamely the °*index++'. You should get used to seeing
thiz, as yvou will see it a lot in C programs. In the
call to the function "square®, we have ap added feature,
narely the variable "index" within the parentheses. This
iz ap iadication to the compiler that when you go to the
fuactior, vou wish tc take along the value of indexr to
use in the execution of that function. Looking ahead at
the function "square®, we find that another variable name
ie enclosed in 1its parentheses, namely the variable
*aumber®. This 1is the name we prefer to call the
variable passed to the function when we are Iin the
function. We can call it anything we wish as long as it
follows the rules of naming an identifier.

Since the function must know what type the variable
g, it is defined following the function name but before
the opening brace of the function itself. Thus, the line
containing "int number;" tells the function that the
value passed to it will be an integer tvpe variable.
With all of that ocut of the way, we now have the value of
index frem the main program passed to the function
*square®, but renamed ‘"number®, and available for use
vithin the function. Following the opening brace of the

December 1991

function, we define another variable 'numsq" for use only
vithin the function itself, (more about that later) and
proceed with the required calculations. We set ®numsq®
equal to the square of number, then add numsqg to the
current total stored in *sum®, Remember that "sum 4=
pumsq" is the same as "sum = sum + numsq® from the last
lesson. We print the number and its square, and return
to the main progran.

¥ORE ABOUT PASSING A VALUE TO & FUNCTION

When we passed the value of "index" to the function,
a little more happened than meets the eye. We did pot
actually pass the value of index to the function, we
actually passed a copy of the value. In this way the
original value is protected from accidental corruption by
a called function. We could have modified the variable
"number® ip any wav we wished in the function "square®,
and when we returned to the main program, "“index® would
not have been modified. We thus protect the value of 2
variable in the main program from Deing accidentally
corrupted, but we cannot return a value to the main
progran from a function using this technique. We will
find a well defiped method of returning values to the
main program or to any calling function when we get to
arrays and apother method when we get to pointers.

Until then the only way you will be able to
communicate hack to the calling function will be with
¢lobal wvariables. We have already bhinted at global
variables ebove, and will discuss them in detail later in
this chapter. Continuing in the main program, we come to
the last function call, the call to ®ending®. This call
simply calls the last function which has no local
variables defined. It prints out a message with the
value of "sum® contained in it to end the program. The
prograr ends by returning to the main program and finding
nothing else to do. Compile and run this program and
observe the output.

T teid you & short time agoe that the only way to get
a value back to the main program was through use of a
global wariable, but there is another way which we will
discuss after you load and display the file named
SOUARES.C. o this file we will see that it is simple to
return @ single value from a called function to the
calling function. But once again, it is true that to
return more than one value, we will need to study either
arrays or pointers. In the main program, we define two
integers and beqin a “for" loop which will be executed 8
times. The first statement of the for loop is *y =
squ{x};", which is a new and rather strange looking
construct. From past experience, we should have no
trovhle understandine that the ‘"squ{x)" portion of the
statement 1is a call to the "squ" function taking along
the value of "x" as a variable. Looking ahead to the

Page 5

AUSTRALIAN 0S9 NEWSLETTER

function itself we find that the function prefers to call
the variable "in® and it proceeds to square the value of
*in" and call the result "square®

Finally, a nev kind of a statement appears, the
*return® statement. The value within the parentheses is
assigned to the function itself and is returned as a
usable value in the main program. Thus, the function
call ‘"squ(x}® s assigned the value of the square and
returned to the main program such that "y® is then zet
equal to that value. If "x" were therefore assioned the
value 4 prior to this cell, 'vy* would then be cet to 1§
ag & result of this line of code. Another way to think
of this 1is to consider the grouwping of characters
*squi{x)" as another variable with a value that is the
square of 'y, and this nex varizble can variables be
ueed any place it is legal to use a variable of irs type.
The values of "¢" and "y" are then printed out.

To illustrate that the grOLplng of "squix)® can be
thought of as just acother variahle, another “for" loop
is introduced in which the function call is placed in the
print statepent rather than assiening it to 2 new
variable. Opne last point must be made, the type of
varizble returned must be defined in order to make sense
of the data, but the compiler will default the type to
integer if none is specified. If any other tvpe Is
desired, it must De explicitly defized, How to do this
will be demonstrated in the next exzample progran.
Corplle and run this progranm.

FLOATING POINT FUNCTIONS

Load the program FLOATSG.C for an exampie of &
function with a floating point type of return, It begins
by defining & global floating point variable we will use
fater. Then in the ‘"main®™ part of the program, an
integer is defined, followed by twe floating point
variables, and then by two strange looking definitions.
The expressions "sqr{)" and “qlsqr{}® look like function
calls and they are. This is the proper way in € to
defipe that a functien will return a value that is not of
the type r"int", but of some ather type, in this case
"float®. This tells the compiler that wher a value ie
returned from either of these two furctieps, it will be
of type "float®. Kow refer to the function "sqr® near
the center of the listing and vou will see thet the

function name 1s preceded by the name "float®. This is
an indication to the compiler that this fupction will
return & value of type "float" to anv program that calls

it.
The function is now compatible with the call to it

The lize folloving the function name contalne "float
inval;", which indicates to the compiler that the
variahle passed to this function from the calling program
will be of type "float" The next function, namely
*elsgr®, will also return & "float" type variable, but it
uses a global variazble far ipput. Tt also dees the
squaring right within the returns statement and therefore

Page 6

has no need to define a separate variable to store the
product. The overall structure of this program should
pose no problem and will not be discussed in any further
detail. As is customary with all example prograss,
compile and run this program. There will be times that
you will bhave a need for a function to return a pointer
as a result of some calculation. There is a way to
define a function so that it does just that. We haven't
studied pointers yet, but we will soon. This is just a

short preview of things to come.

SCOPE OF VARIABLES
Load the next program, SCOPE.C, and display it for a
LSSIOH of the scope of variables in a program. The
iable defined is a global variable "count® which
va l‘fULe to any function in the program since it is
defined before any of the functions. In additicn, it is
always available because it does not core and go as the
progran is executed. {That will make sense shortly.)
Farther down in the vprogram, another giobal variable
pamed "counter" is defined which is also global but is
not available to the main program since it is defined
following the main program, A global variable is any
variable that is defined outside of any function. Note
that both of these varizbles are sometimes referred to as
external variables because they are external to any
functions.

Retuyrn to the maln procram and you will see the
variable "index" defized as an integer. Iqnore the word
"register” for the nmoment. This variable is only
availabie within the main program because that is where
it is defined. In addition, it {5 an ‘"actomatic"
variable, which means that it only comes into existence
when the function 1in which it is contained is invoked,
and ceases to eyist when the function is finished. This
really means nothing here because the main program is
al¥ays in operation, even when it gives control to
another function. Acother integer is defined within the
"for® braces, namely fstuff®. RAny pairing of bhraces can
contain a variable definition which will be valid and
available only while the proeram iz evecuting statements
vithin those braces. The variable will be an Tautomatic"
varighle and will cease to exist when execution leaves
the braces. This is convenient to use for a loop couvnter
or some other very localized variable.

L I
—
=1 rn «

KORE OR "AUTOMATIC" VARIABLES

{Observe the function named "headl™. It contains a
variable named "index®, which has nothing te do with the
*index® of the main program, except that both are
automatic variables. When the program is not actually
executing staterents in this function, this variable
named ‘"index" does not even exist. When ‘"headl® is
called, the variable is generated, and when "headl®
conpletes its task, the variable “index" is eliminated

December 1991

AUSTRALIAN OS9 NEWSLETTER

completely from existence. Keep in mind however that
this does not affect the variable of the same name in the
rain program, since it is a completely separate entity.
Automatic variables therefore, are automatically
generated and disposed of when needed. The important
thing to remember is that from one call to a functien to
the next call, the value of an automatic variable is not
preserved and must therefore be reinitialized.

WHAT ARE STATIC VARTABLES?

An additional variable type must be mentioned at this
point, the 'static" variable. By putting the reserved
word ®static® in front of a variable declaration within a
function, the variable or variables in that declaration
are static variables and will stay in existence from call
to call of the particular function. By putting the same
reserved word 1In froot of an external variable, one
outside of any function, 1t makes the variable private
and not accessible to use in any other file. This
izplies that it 1is possible to refer to external
variables in other separately compiled files, and that is
true. Examples of this usage will be given in chapter 14
of this tutorial

USING THE SAME NAME AGAIN

Refer to the function pamed "head2'. It contains
another definition of the variable named "count®. Even
though ‘"count® has already been defined as a global
variable, it is perfectly all right to reuse the name in
this function. It is a completely new veriable that has
nothing to do with the global variable of the same naze,
and causes the giobal variable to be unzvailable 1 this
function. This &llows you to write programs using
existing functions without worrying about what names were
used for variables in the functions because there can be
ro conflict. You only need to worry about the variables
that interface with the functions.

WEAT IS A REGISTER VARTABLE?

Kow to fulfill a promise made earlier about what a
register variable is. A computer c¢an keep datza in a
register or in memory, A register is much faster 1in
operaticn than memory hut there are very few registers
available for the programmer to use. If there are
certain variables that are used extensively in a progran,
you can designate that those variables are to be stored
in a register if pessible 1in order to speed up the
execution of the program. Depending on the cemputer and
the compiler, a small number of register variables may be
allowed and are designated by putting the word *register®
iv front of the desired variable.

Check wvour compiler documentztion for the
availability of this feature and the number of register
variables. Most compilers that de not have any register

December 1991

variables available, will simply iguore the word
*register® and run vpormally, keeping all variables in
pemory. Register variables are only available for use
with integer and character type variables. This may or
may not include some of the other integer-like variables
such as upsigned, long, or short. Check the
documentation for your compiler.

WHERE DO I DEFINE VARIABLES?

Now for a refinement on a general rule stated
earlier. When you have variables brought to a function
as argquments to the function, they are defiped
inmediately after the function name and prior to the
cpening brace for the program. Qther variables used in
the functior are defined at the beginning of the
function, immediately following the cpening brace of the
function, and before any executable statements.

STAKDARD FUKCTIOK LIBRARIES

Every compiler comes #ith some standard predefined
functions which are available for your use. These are
postly input/output functions, character and string
manipulation functions, and rpath functions. We will
cover most of these in subsequent chapters. In addition,
most compilers have additional functions predefined that
are not standard but allow the programmer to get the most
cut of his particular computer. In the case of the IBY-
PC and compatibles, most of these functions allow the
programeer to use the BICS services availzhle in th
operating system, or to write directly to the video
monitor or to any vplace in memory. These will not be
cavered in any detail as you will be sable to study the
unigue aspects of your compiler on your own. Xany of
these kinds of functions are used in the example programs
in chapter 14,

WEAT IS RECURSION?

Becursion iz another of those programming
that seem very intimidating the first time you come
across it, but if you will load and dispiay the example
program named RECURSON.C, we will take all of the nvustery
out of it. This is probably the simplest recursive
progranm that it is pessiblie to write and it is therefore
a stupid program in actual practice, but for purposes of
illustration, it iz excellent. ZRecursicn is mothing more
than a function that calls itself. It is therefore 1in a
locp which must have a way of terminating. In the
prograw on your monitor, the variable "index" is set to
8, and is wused as the arqument to the function
"count dn". The function simply decrements the variable,
prints it out in 2 message, and if the variable is not
zero, it calls 1itself, where it decrements it again,
prints it, etc. etc, etc.

Finally, the variable w%ill reach zero, and the

techniques

Page 7

AUSTRALIAN 059 NEWSLETTER

function will not call itself again. Instead, it will
return to the prior time it called itself, and return
again, until finally it will return to the main program
and will return to DOS. For purposes of understanding
you can think of it as having § copies of the function
"count dn® available and it simply called all of them one
at a time, keeping track of which copy it was in at any
given time. That is pot what actually happened, but it
is 2 reasonable illustration for you teo begin
understanding what it was really doing.

predefined point to terminate the loop. If not, you will
have an infinite loop, and the stack will fill wup and
overflov, giving you an error and stopping the program
rather abruptly.

ANOTHER EXAMPLE OF RECURSION

The program named BACEWARD.C is another example of
recursion, so lead it and display it on your screen.
This progran is similar to the last one except that it
uses & character array. Fach successive call to the
function named "forvard and backward" causes one
character of the nmessage to be printed. Additionally,

b better explanation of what actually happened is in each rime the function ends, one of the characters is
oréer. When you called the function from itself, it printed again, this time backwards as the string of
stored all of the variables and all of the Internal flage recursive function calls is retraced. Don't worry about
it needs to complete the function in a block somewhere. the character array defined in I1ine 3 or the other new
The peyt time it called itcelf, 1t did the same thing, raterial presented here.
creating and storing another block of everything it Ater you complete chapter 7 of this tutorial, this
needed to complete that function call. It continued progran ¥ill make sense. It was felt that introducing a
making these blocks a2nd storing them awav until it second example of recursion was important so this file is
reached the last functicn when it started retrieving the included here. (Cne additional feature is built into this
blocks of data, and using them to complete each function program. If vou observe the two calls to the function,
call. The blocks were stored on an internal vpart of the and the function itself, you will see that the functicn
computer called the "stack®. This is a part of memory nam is spelled three different ways in the last few
carefully orcanized rto store data just as described aracters. The compiler doesn't care how they are
zhove, =wexled becayse 1t only uses the first & characters of

It 1s heyond the scope of this tutorial to describe the functiocn name =so as far as it is concerned, the
the stack in detail, bhut it would he good for your fepction 15 nemed "forward ®. The remaining characters
procramming experience to rea¢ some paterial describing are simply igrored. If your compiler uses more that ¢
the stack. & stack is wused in cvearly all modern characters as being significant, vou will need to change
copputers for internal housekeeping chores. In using t¥o of the names so that all three names are identical
recursion, you wmay desire to write a program with Compile aud run this progoram and observe the results.
indirect recursicn as cpposed to the direct recursion
described zhove. Indirect recursion would be when & PROGEAMMING EXERCISES
functiop "A" calls the function "8°, which in turn calls
*i% etc. This is entirely oermlsaxhle, the systen will 1. Rewrite TEMPCONV.C, from an earlier chapter, and move
take care of putting the necessary things on the stack the temperature calculaticn to a function.
and retrievipg them when needed again. There is ne
regson ¥4y vou could not have three functions calling 2. Write & program that writes your name on the meniter
each other in a c¢ircle, or four, or five, etc. The C 10 times Dy calling a function o do the writine.
corpiler will take care of all of the details fer you. Move the called function ahead of the *main" function

The thing vou must remember about recursion ig that to gee if your compiler will allow it.
gt some DOLGU, somethine must go to 7ere, o reach some

000000000000000000000000c0000¢
in Index of Rainbow 059 Articles
compiled by Bob Devriec
January - December '§7
Tanuary 1987 page 16§ FISSahle 0SY9 - Debunking some 0S9 myths,
Get Comfortable with 0S89 - Tutorial. 4 good introduction Dale L. Puckett
for beginmers.
Hancy Ewaret Fehruary 1987 page 26
Murder at the Hotel CoCo - Game A Rainbow staff impester
January 1987 rage 193 is beat on mayhen'

Page 8

December 1991

AUSTRALIAN 0S9 NEWSLETTER

Dale Lear Basic09,
Rick Adams
February 1987 page 190

KISSable 089 - & level II report. July 1987 page 100

Dale L. Puckett A Computer's Ancient Native Language - Tutorial. A look
at some profound magic for the Colo.

February 1987 page 204 Peter Dibble

Pipes and Filters - Tutorial. The misunderstood features.

Bruce N. Warner July 1987 page 163
Bits and Bytes of Basic - Basic09 and Level II: Focusing

March 1987 page l8¢ o modules.

Barden's Buffer - Sailing off to C. Kichard White

Williar Barden, Jr. .
July 1987 page 167

March 1987 page 1% FISSable 0S9 - An (S9 convert speaks out.

KISSahle 059 - Bootstrzpping many systems. Dale L. Puckett

Dale L. Puckett

bugust 1987 page 157
Karch 1687 page 194 FISSable 0S9 - Controller attacks halt live problen,
05§ level IT - 0S9 programming. Finding your way in the Dale L. Puckett
1e¥ Systen.

Peter Dibble kugust 1987 page 163
The Problem with Basic09 - 0S9 Memory. Improving the
Bpril 1987 page 197 Editor procedure.
TISSahle GS9 - Rack to the beginning. Pater Dibble
Dale L. Puckett
Septenmber 1987 page léﬂ
April 1987 page 197 FISSahle 0S9 - Pripmitive drawing tools.
Menory Management - Understanding 0SY's memory systenm. Jale L. Puckett

Peter Dithle
September 1987 page 170
Basic09 isn' fast enough - 0S9 Programming. Assembly

¥ay 1987 pace 194
F1SSable 0S¢ - Setting the stage for 059 Level IT, lanquage can be fur,
Tele L. Puckett Peter Dibble
fay 1987 page 184 October 1387 page 176
Pause for Thought - Avoid mistake locrups with a handy FISSable 0S9 - Unlock graphice potential.
pause cenmpand, Dale L. Puckett
Paul Ladoucer ;
Octoher 1987 page 1ol
May 1987 page 191 099 Programming - Using compressed files.
The Advantage of Processes - 'Siicing' programs for Peter Dibble
greater memerv,
Peter Dibble Hovember 1997 page 1410
FIS5ahle 089 - The evolution continues,
Jupe 1987 page 14§ Dale L. Puckett
Fieh or Pheigh? - Zducation. Basich® helpe with phoneme
recogaition. Decenber 1987 page 180
Del Turzer FISSable 089 - DPutting data structures on the drawing
board.
June 1987 page 167 Dale L. Puckett

SSable 059 - Sheoting for & stzodard.
Dal L. Puckett Decenber 1987 page 168
089 Pragramming - Saving and restoring qraphics screens.
Jupe 1987 page 154 Peter Dibble
l

Exploring lLevel I

- & looke at new features fronm

December 1991 Page 9

AUSTRALIAN 059 NEWSLETTER

CoCo-Link
CoCo-Link is an excellent magazine to help you with the RSDOS side of the Colour Computer. It is 2 bi-menthly magazige

published by Mr. Robbie Dalzell. Send your subscriptions to:

CoCo-Link
31 Nedlands Crescent
Pt. Noarlunga Sth.
South Australia

Phone:

(08) 3861647

Things we'd like to have for Christmas

Tn recent times, we have talked about "wish-lists® for
our favourite computer. Here, we present one such list
fron Tim Fientzle, ome of the more erudite of the
contributers to the Internet 089 List

I have a few ideas for programs I'd like to see writtes.
Not sure how many of these, if any, I might write myself,
but all seem like useful things. They aren't necessarily
flashy programs with sophisticated graphics and sound,
etc, but they're selid useful programs that would help
nake life a lot more convenient

- Interactive Disassembler. A& friend of mine wrote a
disassembler for his Atari ST that had some really qood
ideas. Tt displayed a disassembly on the screen, and you
could scroll wup znd down through it. You could press a
key cn soze line, and everything from there down would be
displayed in a different format, such as hex, ASCII, etc.
By going through and interactively inserting these
markers, you could fairly quickly eet & fairly good
disassembly of an area. Add iz the ability to name
labels interactivelv, and to attach comments to any line,
and vou'd have one amazingly convenient disassembler,

- Termcap/Curses library. Some are flozting around 2D,
but a “good® library would bhe very useful. Adding
support for things like overlays, menus, etc, on any
terminal would make lots of programe a lot easier.

- File picker, editor widgets. A "good" file picker
dizlogue takes a lomg time to do well. Ditto for a small
editor f{say, up to 32k max). Bundled intc a library
{maybe even with the above Termcap/Curses?), 1t would be
extremely useful,

- Memory allocation library. A handle-based memory
nanager which can do heap compaction, and can later be
extended to support virtual memory concepts would be a
great project for some of vou CS types. <{qrin) Basic
handle-based memory management is easy to do, but there
are tricks when you consider locking blocks of memory
ete. malloc{) just isa't enough somedays.

- Binary Editor. A qood binary file editor would show
your file in hex and/or ASCII, or even a combination of

Page 10

several, Should allow insertions and/or deletions, even
vithin a module f{automatically wupdatin ng. the module size
and such), as well as the standard operaticns

Disk Fditor. A fgood" disk editor would de more than
just display sectors. It ¢ let you walk throueh the
dlrectory heirarchy, let vou examine and modify file
descriptor sectors {not as a hey demp, either), LSHNO,
mark sectors as allocated/unalliecated in the bitmap,
nove, rename, delete files, etc.

otfile editor. Should allow convenient mouse-driven
tion and deletion of mocule= and cev1t°s (1, I
t a device, the EQL or adds
roand ranager, 1if
ng of xmode and tmode
ay pot include abil
ividual modules.

Y <3 (D (b X2

o o e
[TR & S,

P
(133

-

- Spreadsheet. Lotus and the like 3
easy to use, easy tc program, W
oriented features.

messy. Semething
some pice user-

- Graphimg, datz analvsis. Somec ueing Lotus
corplained to me the other day that there should be a way
to grab a point on the graph and have the number in the
spreadsheet change to match. This same person was trying
to do some curve-fitting as well, which Lotus does not
bave any convenient facilities for. & nice progranm which
can read in tables of data and displav gqraphs and/or
lists of numbers, which are easily changed, graphed in
different fashions, etc, could be guite vseful some days.
If it could alsc graph equations, etc, that could be even
better.

- Mail Agents. I've seen several different programs
that attempt to do things iike log on to CIS, dowaload
il your mail, and log off immediately, leaving the mail
in & file where yov can read it at your leisure
Tdeally, this should of course feed into the existing
mail system. i.e. I should be able to send mail on my
computer to *7227¢,11358compuserve’, and have it bDe
spocled to a special directory. Once a weer or so, some
progran is run by "cron” which automatically logs into
(IS, mails all mv messages, downloads nessages to ne,

December 1991

AUSTRALIAN 0OS9 NEWSLETTER

etc. The net effect 1is that ny mail system on my home
computer gateways onto CIS, Delphi, UUCP, the Unix system
at school etc, etc. Add in full support for the CIS,
Delphi forums, and you've got some customers. This would
require a lot of work, some sort of sophisticated
scripting lanquage, etc, etc

- "Spart® mail filters. Especially on those days I log
in to find 80 messages from the mailing list, along with
10 other messages, [really wish this Uniy system
supported several mailboxes for each user, with some
prograg which could avtomatically do some filterine for

, putting all sailing list messeges into an 1inbox

p.r

cailed "Cclo®, ete, etc

- ¥ail reader. 4 nice, movee-driven mail reader world
he so convenient, easpecially with the =

gggoceoact

vindows: one showing a list of messages, another showing

the messages.
buttons/menus to
folder, etc, If

Click on & message to read it,
reply to the message, move it to a mail
"news® were available through the same

program, it would be even better: T see three types of

messages: priv

ate person-to-person nessages (mail),

forum messages available to 2 narrow group of subscribers

[i.e. I don't wa
respond to Deiph

public-distributio

through cne prog
ks new pachines

¥ith Cola winde
¥hat prograns do

400000000000000c00¢

¥PShel Product Description

The Australian 059 User Group does not normally publish
advertising material, and this article seems remarkably
like just that! However, ir the interests of making
relevant information available to our readers, here iz a
product description of WPShe! from CelorSystems, in the
st

WPShel is a Graphics Shell fo
Cotor Cemputer 3 (CoCod). It
Graphics Shell most of you a
Vee's GShell, in that the ¥ain
across the top of the window.
tions 1§ accomplished by pointi
Menu Bar "Menu HName® and clicking the left
. There are four Meny Names on the ¥enr Bar,
endv Menu Icon. The MExit Proeram® icom, a

GShe!l, 1is alse present.

16 the mouse curs

= Bl

Whez vou click on a Menu Name, & "pull down" menu is
displayed under the Menu Hame. To select one of the pull
down "Menu Items", you pull down the nouse cursor to the
item vou want and click the left mouse button. Var*cuc
actions then accur, hesed on the specific Menu [tem veo
selected, Cverlay windows are used frequentiy, with 1nput
pornally either via keyboard entry or mouse click. Most
of the more comnonly used functions are also accessible
via an ALT-key command sequence.

WPShel got it's name because all Menu Names and their
associated Menu Ttems are all Word Processing oriented.
There are four Menu HNames, "Document®, "Print",

"Speller®, and "Utility". Virteally all basic Sheil
functions are available via the Menu Items, and just in
case there is an 059 command you need to ezecute shich is
not & Menu Item, there is a facility to fork the standard

December 1991

Shell in either

Since ¥PShe! is
be cumbersone
gccess (89 3
desigued WPCh
Users who wigh
and for anv 0
*Turnkey® Werd

O v

can't even gpell

WPShel was the

One VERY importa
It is .2 SHE
Prncescc' The

process 3ig rea
is that

1) Most people
HATE to use a
whichever editor
was tested wit

ot anybody on my machine to be able to
1 Forum messages through my account), and

1 f(nevs)., Having all three available
ren interface would be guite convenient.

come out, and more folks have experience

we, the need for interesting ideas grovs.
vou think would make your life easier?

aporher window or in an overlay window,

a Graphical User Interface (GUI], it will

for experianced 0S9 Users who prefer to
the Command Lire level. I originally
te pe pri v oneefyl vice 059
te use 0 ocessing,
§9 use up 3
Proces ¥ho
1 "080" Byt since the .nspr1=*10n far

bfgh y cuccessful DECE based word

er TW-128 users mpay find WPShel
In fact v revievers of ¥PShel have
it 23 ap "059 clone of TH-128",

ot thing to reslize about WPShel is that
It 1s not an all encompassing Word
ator functions such as the Editer and the
re not performed directly by WBShel. They
to an extercal module in a “forked®
sons why I desiqned ¥PShel in this manner
are already familiar with an edit and

ny other editor, WPShel ailows you to use
you alreadv have and like to use. It
h VED, ED, SLED, EDIT, T/S Edit and

DYNASTAR, with VED being the author's editor of choice

since it will
vindow size,

2} There are al
formatters avai
Shareware

ren in any window type and almost any

excellant editors and text

rezdy several
ilable for 059, wmaov Public Domain or

Page 11

AUSTRALIAN 0S9 NEWSLETTER

3) 059 is structured such that one program is limited to
a 84K address space, but the concept of forking a chiid
process to perform work is simple and easy to do.

WbShel is a strong competitor to DynaStar and an even
stronger competitor to T/S Word. The only advantage
DynaStar has over WPShel is that it has its own builtin
editor. It also comes with an external text formatter,
df, which will work as WPShel's text formatter, by the
way. WPShel's advantages over DynaStar are that it has
both a mouse and keyboard interface {DynaStar has no
rouse interface] and WPShel 1includes other user
custorizable functions like a text file previewer and
various spelling checker functions. DynaStar can, in
fact, be used 8§ ¥PShel's editor, but in my opinion, that
would be overkill,

WPShel runs rings around T/ Word. WPShel wmuch easier to
set up and get going with than T/S Word is. T/S Edit
works ok as ¥PShel's editer {though not as well as some
others, VED ip particular). T/S Word's text formatter
TSFMT doesn't work as a pull down menu option, but can be
ysed iv a Shell overlay window. T/S Spell, on the other
hend works very well with WPShel, ip fact, WPShel's
spelling checker functions were explicitly desiqned to
wort exceptionally well with T/9 Spell.

and speliing checkers along with current prices and

availability, which I recommend.

Also, since WPShel uses the Multi-Vue Menu Bar interface
and auto-follow mouse, the WindInt module from your
Multi-Vue disk is required in your bootlist. While WPShel
can Dbe run as a GShell application {an AIF an Icon are
included for that purpose), it doesn't have to be. It
¥ill run perfectly fine in any window type from a Shell
command. It also runs fine as an ‘tautoex" system
function, and included on the WPShel disk is a bootlist
for creating & "turnkey" Word Processing Boot Disk, and
the documentation contains step by step instructions .op
how to create this disk.

Else, since overlay windows are used heavily, the *f
gfx" patches to GRFDRV by FRevin Darling and Fent Myer
nakes the flow of execution much faster and smaother.

WhShel will HOT run on a 128K CoCod. Since the next
Increment of memory available for the Colod is the Z56F
"Ouarter-Mee® vupgrade from BurkekiBurke, the minimem
anount of HAM required for ¥PShel is 256K,

¥bShel is ready for deliverv now. So, if after reading
this, you are still interested ir WPShel, ie, want to
vurchase & copy, send me a checy or money order for §22
{7 pay all chipping and handling costs) o me. Or if you
S-

simply want 2 catalog of my current offerings of (§-§

Level 2 and OSE-MM/1 software write tc me at:
(clorSystens
F.0. Box 5490
{astle Hayne, HC 2842¢
sk
{411 software available on 5,257 SSDD, or 3.5% DSDD

disk.)

Zack Sessions

000000000000000000000000000000

T have Invested a great deal of time end effort into the
desion, development, and testing of ¥PShel, and for this
reascn, I have decided to release it only as a commercial
product. The price i inexpensive, though, only $27.
To use ¥PShel to it's full extent, you will need an
editor, = text formatter, a text file previewer utility,
gzt a Spelling Checker. In an appendix in the
docuzentation I mention that I heve several Public Domain
and Sharewars editors, formatters, and text file preview
utilities which I can send te you lf vou zsk me for them.
For legal reasons I canzot include them with ¥PShel. I
alzc reference several commercial editers, formatters,
File
hs gorden wmentioned In his editorial, someone asked

how you find the size of a fils. Of course, everyone
answers, use DIR F {or dir -e if you use the newer dir
copmand), but when I looked at the question again, I was
struck by the possibility that maybe the question should
have been read as 'how do you find the size of ONE file?!
Well, the dir command gives you a whole directory full,
of course, and in HEXADECIMAL to boot, which may be more
than you bhargained for. If the file is a {single)
nodule, you covld use T[DENT. Again, more information
than you rezily needed. So, OF then, how DO you find it?
Well, of course, use Bob Devries' magical FileSize

Page 12

Size?

What's that? Never heard of 1t? Well that's
prising really, seeing as I dust wrote it.

programme.
p0t too sur
How does it work? Well, it is not too complicated.
First it tries to open the file you asked for as a FILE,
if that fails, it tries to open it as a DIRECTORY (you
never know...). Then it tses an (undocumented) 059
TSGETSTT system call SS FD, which reads the file
descriptor, and stores it into & memory area (structure)
When that is done, 1t reads the necessary hytes, four cof
them actually, to fiad the length of tne fll . The nemes
in the structure ‘fildes' which T used are defined in the

December 1991

AUSTRALIAN

059 NEWSLETTER

which is on the C compiler disk
Then it uses the C printf call to
in DECIMAL.

header file 'direct.h!,
in the DEFS directory.
print both the filename and the length,

Hote the second version of the readfd{} function.
This is provided for two reasons, 1. to show an alternate
/¥ FileSize */

/¥ Get the size of a file */

/* by Bob Devries 16 Nov 91 */

tinclude (stdio.h

finclude (direct.h)

tinclude €089.h)

FILE *fp, *fopen{]; /* declare file pointer etc */
struct fildes desc; {* declare file descriptor struct

main{argc,arqv)
int arge;

char *arqvl}:

{

pflinit(); /* we will be printing lomgs */
if {arge 1= 2} | /* not two compand line zrgs? */
puts|{"Usace; filesize (filed®}; /¥ tel] user
exit({0}; /* znd exit picely */
;
if {{fp = fopenfargv{l],"r"}} == ROLLY ! /¥
if {{fp = fopenfargv(l], ®d"}) =z NULL} L It
printfi"Can't open %z.\pt,argvill); it
exitierrno}; It
)
|
readfd(); /* qo away and read the file desc
/* and report size. That's what ¥
priotf("File %5 is %1d bvtes long.'n",argv{l] desc.fd

}

J

readfd()

{
struct registers regs; /¥ set up temp struct t
regs.rg a = filenolfp); /* & = path number ¥/
regs.rg b = S Fh; [t 8= alue for §§ FD
regs.rq x = hdesc: /* ¥ = pointer to struc
regs.rg y = sizeof(desc); /Y = len ath of struyct
regs.rg u = {;
_0s9(T GETSIT, bregs); '* uge I$GETSTT to do 1

December 1991

pethod of doing the
portability to other 059

See, simple isn't it

ure ¥/

he erred */

open read */

or open read dir ¥/
n0? s0 say sg¢ */
quit with error #/

into structure */
g're here for ¥/

fsizel;

to contain (PU regs ¥/

systen call */
ture */
Ly

t ¥/

sape thing, and 2. to provide

systems (e.g. 0SK)

Rere's the C source code.
Regards, Bob Devries

Page 13

AUSTRALIAN 0S9 NEWSLETTER -~

alternate readfd() function
if you have Carl Ereider's C Library

readfd()
{

getstat{SS FD fileno(fp),bdesc,sizeof(desc));

000000000000000000000000000000

/,5 @g Sy S (:;; _ i .

7S
o~ 4

| /\/dffcnd 05 i? QS/'@L‘{ éfou
o W ¢

Page 14 December 1991

