ENGINEERING NOTES
 on
 Radio Shack Color Computers

September 1986
Vol. 3 No. 8

PROGRAMS

* DISK FILE UTILITY
* ANTENNA DESIGH
* ML DATA MOVE
* ML ASCII OUTPUT

INSTRUCTIONAL SERIES

* HAM RADIO \& COMPUTERS (Part 2)
* ML PROGRAMMING (Part 5)
* WRITING PROGRAMS (Part 18)
* INTERFACING COMPUTERS (Part 8)

SERV ICES

* NEW PRODUCTS
* PRODUCT REVIEWS
* QUESTIONS \& ANSWERS
* OERATING HINTS

DYNAMIC COLOR NEWS is published monthly by DYNAMIC ELECTRONICS, INC., P.O. Box 896, Hartselle, AL 35640, phone (205) 773-2758. Bill Chapple, BA, BSE President; Dean Chapple, Sec. \& Treas.; John Pearson, Ph. D. Consultant; Bob Morgan, Ph. D., Consultant.
Entire Contents (c) by DYNAMIC ELECTRONICS INC., 1986. DYNAMIC COLOR NEWS is intended for the private use of our subscribers and purchasers. All rights reserved. Contents of this newsletter may not be copied in whole or in part without written permission from DYNAMIC ELECTRONICS INC. Subscriptions are $\$ 15 / \mathrm{yr}$ for U.S.A. \& Canada, $\$ 30$ other foreign.

The purpose of this newsletter is to provide instruction on Basic \& Machine Language programming, Computer theory, operating techniques, computer expansion, plus provide answers to questions from our subscribers.

The submission of questions, operating hints, and solutions to problems to be published in this newsletter are encouraged. All submissions become the property of Dynamic Electronics if the material is used. We reserve the right to edit all material used and not to use material which we determine is unsuited for publication.

We encourage the submission of Basic and Machine Language Programs as well as articles. All Programs must be well documented so the readers can understand how the program works. We will pay for programs and articles based upon their value to the newsletter. Material sent will not be returned unless return postage is included. Basic \& ML programs should be sent on a tape or disk \& comments should be sent as a DAT or BIN file.
$256 K$ \& $512 K$
MEMORY UPGRADES
If you have a 64 K computer with sockets for the SAM and 4164 chips then you can update it to 256 K or 512 K . The ramdisk allows programs to be retain within your computer and loaded as needed. Features include:

* 40 Track Single Disk Swap Can serves as second drive.
* Fast $35 / 4 \varnothing$ Track Ramdisk (2 Ramdisks with 512K).
* 32 K to 200 K printer spooler (40ØK with 512 K RAM).
* More then $3 \varnothing$ PMODE 4 screens at once.
* Pager configures computer for 8 (16 with 512K) 32K pages.
* OS-9 Ram Disk 35-4ø track single sided or 40 track double sided with 512 K .
* Memory is protected when the computer is reset.
* Solderless installation.
* Miniature toggle switch can force computer into 64 K mode.
* Compatible with all software.

Software is supplied on tape or disk execept OS-9 is not available on tape. Specify your choice when ordering. Assemblies are complete ready to install with memories and 64 K mode switch. Order ME-16 for 256 K assembly, ME-14B provides extra 256 K for $\mathrm{ME}-16$. ME-16A for 512 K assembly.

ME-16 - 256K RAM
$\$ 99.95$
ME-14B - Second 256K
for ME-16
79.95

ME-16A - 512K RAM
169.95

$128 K$ UPGRADES

$\begin{aligned} & \text { ME-1øA Upgrades } 64 \mathrm{~K} \\ & \text { Korean }\end{aligned}$
Computers to 128 K . \$49.95
ME-12 - Upgrades all 64 K computers with 4164 memory chips to 128K. $\$ 49.95$

VIDEO REVERSER

An integrated circuit that mounts on the 6847 and reverses the video reducing eye strain. Minor soldering for CC-2. \$9.95

MEMORY SAVER
(Uninterrupted Power Source)
Our UPS saves your programs from being lost due to power failures by providing power to the memories from its battery. The assembly consists of a control circuit, battery, miniature toggle switch and a light emitting diode (LED). The control circuit and battery mount under the keyboard or can be mounted outside. The switch enables the UPS and the LED glows when power is available. For all computers with 5 volt memories. \$59.95

MEMORY MANAGER (New Product)

A complete set of software for managing the second 32 K memory bank for 64 K and larger computers. Run Basic programs in both banks, continue a basic program from one bank to the other, use the second bank for a RAM DISK, configure the computer for the all RAM mode and store programs in the upper memory. \$27.95 cassette, \$29.95 disk.

24 hr phone. Checks, VISA \& MC cards. Add $\$ 3$ ship.

$$
\begin{aligned}
& \text { DYNAMIC ELECTRONICS INC. } \\
& \text { P. O. Box 896 (205) 773-2758 } \\
& \text { HARTSELLE: AL . } 3564 \varnothing
\end{aligned}
$$

MI PROGRAMMING

 (Part 5)In this series we are showing how to write machine language programs and subroutines. Machine language subroutines can be linked to basic with the USR or EXEC commands. The advantages of machine language programs are speed and compactness. Machine language programs make the computer run at its fastest rate. Basic commands have to be converted to machine language instructions which makes it slower. However basic programs are much easier to write and debug than machine language programs. Therefore basic can be used for the program structure and machine language subroutines called when speed is needed.

To write machine language programs an assembler is required. An assembler allows instructions to be written in mnenomics. After the program is written it is converted or assembled into machine language codes. A disassembler displays the mnenomics for machine language instructions.

ADDRESSING MODES

Perhaps the hardest thing about learning machine language programming is understanding addressing modes. Let's take another look at using addressing modes and the number of bytes required for each mode.

First of all let's look at the immediate mode. If you want to load a register with a value then use the immediate mode. The 8 bit registers require one byte for the value and the 16 bit registers require 2 bytes. The format is as follows:

Memory Function

M Immediate instruction (8 bit)

M+1 Value for 8 bit register
M+2 Immediate instruction (16 bit)
M+3 MS for 16 bit register
M+4 LS for 16 bit register
Lets take a couple of examples. Let's load the B register with 195 and load the X register with $\$ C 098$. Remember the $\$$ sign means a hex value. If the memory starts at $\$ 3000$ then the values will be as follows:

Memory	Value	Function
$\$ 3 \varnothing \varnothing \varnothing$	$\$ C 6$	Load B immediate
$3 \varnothing 01$	195	Value to place in B
$3 \varnothing 02$,	$\$ 8 E$	Load X immediate
$3 \varnothing \varnothing 3$	$\$ C \varnothing$	MS byte
$3 \varnothing \varnothing 4$	$\$ 98$	LS byte

DIRECT ADDRESSING

The direct mode allows offset addressing with the value in the direct page register(DP) being the most significant byte. The direct page register is cleared or has a value of \varnothing after basic is initialized. Therefore memory locations in the first 256 locations of the memory map can be addressed using direct addressing with the $D P=\varnothing$. The format is the same as immediate addressing with the op code in the first memory location and the offset or value in the second location. Only two locations are required for either 8 or 16 bit registers. Exceptions are page 1 or page 2 instructions which will be discussed later.

EXTENDED ADDRESSING

This requires an op code plus two bytes for the address. This is similar to the way pointers or vectors are used in basic. For instance the start of basic is defined by the values in lo-
cations 25 and 26 with the most significant being in 25 . So for extended addressing we will have:

M	OP Code
$M+1$	Most significant
$M+2$	Least significant

Extended addressing will require a total of 3 bytes. It covers the whole memory range.

INDEXED ADDRESSING

Perhaps this is the most powerful of the addressing modes. We can use this feature for quickly moving blocks of data or we can access data using a register as a reference and adding an offset. This allows us to write position independent code (PIC). A machine language program that is position independent will work in any free memory area.

USING X \& Y REGISTERS

The X and Y registers can be used as pointers to give the address for loading and storing data. Remember that storing is similar to poking and loading is similar to getting a value by peeking in basic. The 6809 instructions allow a register to be loaded from a memory area designed by either the X or Y register and then to autoincrement the register. For example if X is pointing to $3 \varnothing \varnothing \varnothing \varnothing$, we can load A indexed to X and autoincrement X. From this operation the value in $3 \varnothing \varnothing \varnothing \varnothing$ will go into the A register, and X will increment to $3 \varnothing \varnothing \varnothing 1$.

Also we can store a value indexed to a register and increment the register. If we use the Y register to point to the location in which we want to store A, then $Y=Y+1$ after the operation.

MOVING DATA
This month we want to show how to move data using a machine language subroutine. Let's reserve the following memory locations for our pointers.

$$
\begin{aligned}
& 5 \emptyset \varnothing-5 \emptyset 1 \text { beginning of data } \\
& 5 \emptyset 2-5 \emptyset 3 \text { ending of data } \\
& 5 \varnothing 4-5 \emptyset 5 \text { new beginning }
\end{aligned}
$$

Let's write the step for our program.
(1) We will load the X register with $50 \emptyset$.
(2) Load the Y register with 504.
(3) Load the t register indexed to X and increment X
(4) Store A indexed to Y
(5) Compare X with the value stored in $5 \varnothing 2$ to see if we have finished. If we have not finished then go to (3)
(6) End or Return

MOVING DATA WITH BASIC

Let's show how data can be moved by using basic. We will use the variables A, X, and Y and write the program as similar as possible to the way we would write a machine language program.

$$
\begin{aligned}
& 10 \text { 'PROGRAM 9-1-86 } \\
& 2 \varnothing \text { 'cOPYRIGHT (c) } 1986 \\
& 3 \varnothing \text { 'dYNAMIC eLECTRONICS iNC. } \\
& 4 \varnothing \text { 'DEMONSTRATION PROGRAM FOR } \\
& \text { MOVING DATA USING BASIC } \\
& \text { THE BEGINNING VECTOR IS IN } \\
& \text { 5øØ-5ø1, THE ENDING VECTOR } \\
& \text { IS IN 5ø2-3, AND THE NEW } \\
& \text { BEGINNING LOCATION FOR THE } \\
& \text { DATA IS IN 504-5 } \\
& 50 \text { 'SET UP THE POINTERS X,Y,E } \\
& 6 \varnothing \text { X=256*PEEK (5ØØ) }+\operatorname{PEEK}(501) \\
& \text { 'LDX EXTENDED WITH 5øØ } \\
& 7 \varnothing \text { Y=256 * PEEK (501)+PEEK(502) } \\
& \text { 'LDY EXTENDED WITH } 501 \\
& 8 \emptyset \mathrm{E}=256 \text { * } \operatorname{PEEK}(503)+\operatorname{PEEK}(504) \\
& \text { 'THIS IS THE END OF DATA } \\
& 9 \varnothing \text { A=PEEK (} \mathrm{X} \text {): } \mathrm{X}=\mathrm{X}+1 \text { 'LDDA INDEXE } \\
& \text { D WITH X AND AUTOINCREMENT X } \\
& 100 \text { POKE Y,A: } Y=Y+1 \text { 'STA EXTEND }
\end{aligned}
$$

ED INDEXED TO Y AND AUTOINCR EMENT Y
110 IF X<E THEN 50 'CMPX EXTEND ED WITH THE VECTOR IN 502 \& GO TO 9Ø IF X IS LESS THAN E $12 \varnothing$ END

The preceeding program is given to show how to move data. We will place the machine language subroutine at $51 \varnothing$ as we have done in our previous examples. Let's look at the values and their function in each memory location. The * indicates the beginning of the instruction.

Memory	Value	Function
*510	$19 \varnothing$	LDX Extended
511	1	MS of $5 \varnothing \varnothing$
512	244	LS of 5øØ
*513	16	Page 1 token
514	$19 \varnothing$	LDY Extended
515	1	MS of 504
516	248	LS of 504
*517	166	LDA Indexed to X
518	128	and Increment X
*519	167	STA Indexed to Y
$52 \varnothing$	160	and Incremnt Y
*521	188	CMPX Extended
522	1	MS of 502
523	246	LS of 502
*524	35	Branch if Less than or the same
525	24	to 517
*526	57	RTS

ML DATA MOVE PROGRAM

The following program loads the machine language subroutine from data statements and sets up the vectors to allow block moving of data.

[^0]50Ø, M: POKE 501,L
$7 \varnothing$ INPUT "ENDING OF DATA";EN
8 ($\mathrm{M}=\mathrm{INT}(\mathrm{EN} / 256): \mathrm{L}=\mathrm{EN}-256 * \mathrm{M}$: POKE 502,M: POKE 503,L
$9 \varnothing$ INPUT "NEW LOCATION"; Y
$1 \varnothing \varnothing \mathrm{M}=\mathrm{INT}(\mathrm{Y} / 256): \mathrm{L}=\mathrm{Y}-256 * \mathrm{M}$: POKE 5ø4, M: POKE 5Ø5,L
105 'READ IN THE ML DATA
110 FOR J=51ø TO 526: READ A: PO KE J,A: NEXT J
120 EXEC 510
$13 \varnothing$?"THE DATA IS MOVED
$14 \varnothing$ DATA $190,1,244,16,190,1,248,1$ $66,128,167,160,188,1,246,35,2$ 47,57
Notice the power of this program. With only 17 bytes of machine language instructions, blocks of data can be moved anywhere within the memory map. Next month we will discuss more about indexed addressing and give additional examples.: If you have a disassembler then you can disassemble the ML program after it is loaded.

128K MEMORIES

[^1]Add $\$ 3$ shipping, free catalog

DYNAMIC ELECTRONICS BOX 896 (265) $773-2758$ HARTSELLE, AL 35640

* Programs for business, home management, self-improvement, games, and utilities
* Reviews of Color Computer products
* Tutorials on programming in Assembly, C, Pascal, and Basic
* Contests

As an introductory offer, you can order the first year of SPECTROGRAM Magazine at 40\% off the cover price. For $\$ 18$, you will receive 12 issues of the magazine that could become the most informative addition to your Color Computer system.
We want to establish a line of two-way communication bet ween our staff and our readers as an aid in serving your needs. Please enclose any comments or special requests with your subscription form.

GROUP RATES: \$15 with orders of five or more subscriptions!

PLEASE SEND ME 12 ISSUES OF SPECTROGRAM MAGAZINE FOR $\$ 18$ (40\& OFF THE COVBR PRICE).

Name:
Address:
Cily:
State: \qquad $21 p:$
() Check Enclosed ()Visa ()Mastercard
Card \qquad Exp. Date: \qquad
Hall to: SPECTROGRAM Magazine
P.O. Box 138

Rockford, IL 61105
(815)968-9600

CONNIER ITRE:
() GAR Color Computer
() 32R Color Computer () 16R Color Computer () ar color Cosputer (1) other-spectiy \qquad Langungis: Prognt prefthence:
() Entented basic (|) business
(i)color Basle if games
() Disk Basic () Graphles
i) Basicos if Iutorlals
() pascal i) ulilieles
i ie capller
pinipictal S:
() Printer Ippe \qquad
() Modew igpe
$\overline{(0)(1) ~[2] ~(3)}$
() multi-Pal Interface
() Hulti-pat interfac
() other-spectity \qquad ___
() Hove Ronegement
() Self-Improverent

BEST

WE'VE CHOSEN THE BEST OF OVER 450 PROGRAMS AND PACKAGED THEM FOR YOU! 10 TO 12 PROGRAMS EACH PACKAGE. COLOR COMPUTER ONLY.

THE GREATEST SOFTWARE DEAL ON EARTH

GET 12 DISKS OR TAPES A YEAR CONTAINING OVER 120 QUALITY PROGRAMS. A SUBSCRIPTION TO T \& D SOFTWARE CONSISTS OF 10 READY-TO-LOAD PROGRAMS DELIVERED BY FIRST CLASS MAIL EVERY MONTH.
no, we are not the same as the rainbow on tape. in fact, many SUBSCRIBERS HAVE WRITTEN IN AND SAID THAT WE ARE MUCH BETTER THAN RAINBOW ON TAPE!

- 16k-64k Color Compuler
\star Over 3800 Satısfied Cuslomers
- Back Issues Available From
* July ' 82 (Over 450 Programs)
* THIS MONTH ONLY *

SUBSCRIBE FOR A YEAR AND	
RECEIVE A FREE PACKAGE OF	
YOUA CHOICE. INDICATE WHICH ONE	
1. HomeManl	4. Adventuros
2. Home Manll	5. Games
3. Education	6. Utilities

OUR LATEST ISSUE CONTAINED
1 INCOME PROPERTY MANAGEMENT
2 BILL BOARD 2
3. MOUNTAIN BA TTLE

4 THE TEN ROUND FIGHT
5 COCO KEENO
6 HIGH RESOLUTION HOCKEY
7 LOGIC
B ON SCREEN SCALE
9. LIBERTV SHIP

10 SINGLE STEP RUN
$\begin{gathered}\text { GET ISSUE } \\ \# 45 \text { ABOVE FOR }\end{gathered}$
ONLY 3.00

[^2]
DISK FILE UTILITY

Have you ever wished you had a utility that would print all the information you needed in a chart or table？With this utility program three different tables of information can be printed．

Two directory tables and a file allocation table can be printed．We printed each of these for our disk con－ taining our August files and have reduced and printed them here．The program contains instructions for using it and is provided by T \＆D Software．See their adver－ tisement on page 7.

FILE ALLOCATION TABLE－TRACK 17，SECTOR 2
SIDE 1
AUG 86

FROM GRANULE ＝＝＝ニ＝ニ＝＝＝＝＝	TO GRANULE ＝＝ニ＝＝ス＝＝＝	$\begin{aligned} & \text { TRACK } \\ & ===== \end{aligned}$	FROM GRANULE ＝ニ＝＝ニ＝＝＝＝＝＝＝	TO GRANULE ＝＝ニ＝ニ＝＝ニ＝＝	$\begin{aligned} & \text { TRACK } \\ & ==== \end{aligned}$
0	FF	0	22	23	18
1	FF	0	23	24	18
2	FF	1	24	25	19
3	FF	1	25	C4	19
4	FF	2	26	27	20
5	FF	2	27	C6	20
6	FF	3	28	C8	21
7	FF	3	29	2A	21
8	FF	4	2A	2B	22
9	FF	4	2B	C3	22
A	FF	5	2 C	2D	23
B	FF	5	2D	2 E	23
C	D	6	2 E	C2	24
D	C2	6	2 F	C6	24
E	F	7	30	31	25
F	Cl	7	31	32	25
10	11	8	32	35	26
11	C	8	33	C3	26
12	C2	：	34	FF	27
13	10	9	35	FF	27
14	C3	10	36	FF	28
15	12	10	37	FF	28
16	17	11	38	FF	29
17	14	11	39	FF	29
18	C7	12	3A	FF	30
19	C2	12	3 B	FF	30
1A	C3	13	3 C	FF	31
18	15	13	3D	FF	31
1 C	C3	14	3 E	FF	32
1 D	1A	14	3 F	FF	32
1 E	C 2	15	48	FF	33
1 F	10	15	41	FF	33
20	21	16	42	FF	34
21	C6	16	43	FF	34

DISK DIRECTORY
SIDE 1
AUG 86


```
00-07 = FILENAME (IF 00 IS FIRST CHARACTER, FILE HAS BEEN DELETED.)
08-10 = EXTENSION
    11 = FILE TYPE
        (0=BASIC, 1=BASIC DATA, 2=MACHINE LANGUAGE, 3=TEXT EDITOR SOURCE)
        12 = ASCII FLAG ( }0=\mathrm{ BINARY, FF=ASCII)
        13 = FIRST GRANULE NUMBER OF FILE
14-15 = BYTES USED IN LAST SECTOR
16-31 = UNUSED (FOR FUTURE USE)
```


DISK FILE
 PROGRAM LISTING

1 REM COPYRIGHT (C) T\&D SOFTWARE 1985 * DISK UTIL *
$1 \varnothing$ CLEAR3ØøØ: DIMFA (67):FT\$($)=" B$ AS":FT\$(1)="DAT":FT\$(2)="ML" : FT\$ (3) = "EDT": AF\$(0$)=$ "BIN": AF \$ (1) = "ASC"
$2 \varnothing$ CLS:PRINT@3,"*** DISK FILE UT ILITY ***"
$3 \varnothing$ PRINT@72,"BY STEVE OSTROM"
$4 \varnothing$ PRINT@129,"FOR T\&D SUBSCRIPTI ON SOFTWARE"
50 A\$=INKEY\$
$6 \varnothing$ PRINT@48Ø,"INSTRUCTIONS (Y/N) ?";
$7 \varnothing$ A $=$ INKEY $\$$:IFA $\$="$ "THEN7 \varnothing
8 8 IFA\$="N"THEN25ØELSEIFA\$<>"Y"T HEN2Ø
$9 \varnothing$ CLS:PRINT"THIS PROGRAM WILL A LLOW YOU TO PRODUCE A PRINTE D COPY OF MOST OF THE USEFUL DISK FILE DATA FOREITHER A S INGLE-SIDED DRIVE OR ONE OR TWO DOUBLE-SIDED DRIVES."
$1 \varnothing \varnothing$ PRINT:PRINT"FROM THE MENU YO U CAN CHOOSE ANYOF FIVE OPTIO NS:":PRINT:PRINT"1. SUPER DIR ECTORY
2. DIRECT ORY EXAMINE
3. FIL

E ALLOCATION TABLE EXAMINE4.
REPEAT THESE INSTRUCTIONS
5. QUIT THE PROGRAM"
$11 \varnothing$ PRINT@48Ø, "PRESS 〈ENTER> TO CONTINUE. . ."; : INPUTA\$
120 CLS:PRINT@4,"*** SUPER DIREC TORY ***"
$13 \varnothing$ PRINT@64,"THIS WILL GIVE YOU A PRINTOUT OFTHE DISK DIRECT ORY TO PLACE INSIDE THE D ISK JACKET, AND WILLCONTAIN A LL THE FOLLOWING USEFULINFORM ATION:"
140 PRINT"FILE NAME AND EXTENSIO N, FILE TYPE, FILE FORMAT, THE NUMBER OFGRANULES USED FO R FILE, START, END AND EXECU TE ADDRESSES FOR EACH MACHI NE LANGUAGE FILE, FREEGRANULE S LEFT ON DISK, NUMBER OFPROG RAMS ON DISK, AND A BLANK"
150 PRINT"COLUMN FOR YOUR COMMEN TS."
160 INPUT"PRESS <ENTER> TO CONTI NUE. . ."; A\$
$17 \varnothing$ CLS:PRINT@5́,"*** DIRECTORY E

XAMINE ***"
$18 \varnothing$ PRINT"THIS WILL GIVE YOU, IN TABULAR FORM, A PRINTOUT OF ALL THE DATASTORED ON THE DI RECTORY TRACK, INCLUDING FIL E NAME, EXTENSION, FILE TYPE, ASCII FLAG, NUMBER OFTHE FIR ST DISK GRANULE USED TO STOR E THE PROGRAM AND THE NUMBER" ;
190 PRINT"OF BYTES USED IN THE L AST SECTOROF THE LAST GRANULE USED TO STORE THE PROGRA M. A PREVIOUSLYKILLED DIRECT ORY ENTRY WILL BE SHOWN WITH ALL APPROPRIATE DATA,BUT UNU SED DIRECTORY LOCATIONS WILL NOT BE SHOWN."
200 INPUT"PRESS <ENTER> TO CONTI NUE . . ." ; A\$
210 CLS:PRINT@6,"*** FAT EXAMINE ***"
$22 \varnothing$ PRINT@64,"THIS WILL GIVE YOU A PRINTOUT OFTHE FILE ALLOCA TION TABLE (FAT) FOR THE DISK , FROM WHICH YOU CANTRACE THE LOCATIONS OF ALL THE GRANUL ES USED TO STORE ANY FILE ON THE DISK. THE FIRST COLUMN WILL INDICATE THE GRANULE NUM BER";
$23 \varnothing$ PRINT"AND THE SECOND COLUMN WILL SHOW WHICH GRANULE CONTA INS THE NEXT PART OF THE PROG RAM. THE THIRD COLUMN SHOWS ON WHICH TRACK THE GRANULE WI LL BE LOCATED."
$24 \varnothing$ PRINT@48Ø,"PRESS <ENTER> TO CONTINUE. . '"; : INPUTA\$
250 CLS: PRINT" turn print er on":PRINT:PRINT" inse rt desired disk":A\$=INKEY\$
$26 \varnothing$ PRINT:PRINT"DRIVE NUMBER (Ø3) ?";
$27 \varnothing$ A\$=INKEY\$:IFA\$=""THEN27Ø
280 DR=ASC (A\$):IFDR<48ORDR>51THE N27ø
290 DR=DR-48
$3 \emptyset \emptyset$ CLS: DSKI\$DR, 17,11, X\$,Y\$:TI\$= RIGHT\$(Y\$, 8):PRINT"TITLE OF C URRENT DISK : "TI\$:PRINT"DO YO U WISH TO RENAME (Y/N)":A\$=IN KEY\$
$31 \varnothing$ A $=$ INKEY $: ~ I F A \$=" N " T H E N 34 \varnothing$
$32 \emptyset$ IFA\$<>"Y"THEN31ø
$33 \varnothing$ INPUT"NEW DISK TITLE (1-8 CH ARACTERS) : "; TI\$: FORN=LEN(TI\$) +1TO8:TI\$=TI\$+" ":NEXTN:Y\$=LE

FT\＄（Y\＄，12Ø）＋TI\＄：DSKO\＄DR，17，11
，X\＄，Y\＄：GOTO3øø
$34 \varnothing$ CLS：PRINT＠3，＂＊＊＊DISK FILE U TILITY＊＊＊＂
$35 \varnothing$ PRINT＠11Ø，＂MENU＂
$36 \varnothing$ PRINT＠16Ø，＂1 SUPER DIRECTOR Y＂
$37 \varnothing$ PRINT＂2 DIRECTORY EXAMINE＂
$38 \varnothing$ PRINT＂ 3 FILE ALLOCATION TAB
LE EXAMINE4 INSTRUCTIONS＂
$39 \varnothing$ PRINT＂5 QUIT＂
$4 \emptyset \varnothing$ A $\$=$ INKEY\＄：SOUND1， $1:$ LC＝\varnothing
$41 \varnothing$ PRINT＠49Ø，＂YOUR CHOICE ？＂；
$42 \varnothing$ A\＄＝INKEY\＄：IFA\＄＜＞＂＂THEN47Ø
430 FORX＝1TO100：NEXTX
$44 \varnothing$ PRINT＠49Ø，＂your choice＂；
450 FORX＝1TO1Ø0：NEXTX
460 GOTO410
$47 \varnothing$ PRINT＠49Ø，＂working＂；：0
NVAL（A\＄）GOTO56Ø，91Ø，125Ø，9Ø， 5 50
$48 \varnothing$ GOTO4øØ
$49 \varnothing$ IFDR＜2THENPRINT\＃－2，TAB（3Ø）＂S IDE 1＂ELSEPRINT\＃－2，TAB（30）＂SI DE 2＂
500 PRINT\＃－2：PRINT\＃－2，TAB（26）；
$51 \varnothing$ PRINT\＃－2，CHR\＄（14）；：REM PUT Y OUR PRINTER＇S CODE HERE TO TU RN ON DOUBLE WIDTH PRINTING
520 PRINT\＃－2，TI\＄；
$53 \varnothing$ REM PUT YOUR PRINTER＇S CODE
HERE TO TURN OFF DOUBLE WIDTH PRINTING
540 PRINT\＃－2：PRINT\＃－2：PRINT\＃－2：R ETURN
550 CLS：END
$56 \varnothing$ PRINT\＃－2，TAB（26）＂DISK DIRECT ORY＂：PRINT\＃－2：GOSUB49Ø
$57 \varnothing$ PRINT\＃－2，＂FILENAME／EXT TYPE FMT GR START，END ，EXEC WR ITE IN ANY OF YOUR COMMENTS H ERE＂
58 PRINT\＃－2，＂二＝＝＝＝ニ＝＝＝＝＝＝＝＝＝
＝＝＝＝＝＝＝ニニ＝＝＝＝＝＝＝＝＝＝＝＝
 ＝＝＝＂：PRINT\＃－2
$59 \varnothing$ DSKI\＄DR，17，2，X\＄，Y\＄
$6 \varnothing \varnothing$ FORI $=\varnothing$ TO67：FA（I）＝ASC（MID\＄（X\＄ ，I＋ 1,1 ））：NEXTI
$61 \varnothing$ FORX＝3TO11
$62 \emptyset$ DSKI\＄DR，17，X，X\＄，Y\＄
$630 \mathrm{X} \$=\mathrm{X} \$+\mathrm{LEFT}(\mathrm{Y} \$, 12 \varnothing$ ）
$64 \varnothing$ FORN＝ØTO7
$65 \varnothing \mathrm{NA}=\mathrm{MID}(\mathrm{X} \$, \mathrm{~N} * 32+1,8): \mathrm{EX}=\mathrm{MI}$ $\mathrm{D} \$(\mathrm{X} \$, \mathrm{~N} * 32+9,3): \mathrm{GR}=\mathrm{ASC}(\mathrm{MID} \$(\mathrm{X}$ \＄， $\mathrm{N} * 32+14,1$ ）
660 G1＝GR：A＝ASC（LEFT\＄（NA\＄，1））
$67 \varnothing$ FT\＄$=\mathrm{MID} \$(\mathrm{X} \$, \mathrm{~N} * 32+12,1): \mathrm{AF} \$=\mathrm{M}$

ID\＄（X\＄，N＊32＋13，1）
$68 \varnothing$ IFA＝25．5THENN＝7：X＝11：GOTO86Ø
$69 \varnothing$ IFA＝ØTHEN86Ø
$70 \varnothing$ AF＝ASC（AF\＄）AND1：I＝1
$71 \varnothing$ IFFA（GR）＜ 128 THENSL＝GR： $\mathrm{I}=\mathrm{I}+1$ ： GR＝FA（GR）：GOTO71ø
720 PRINT\＃－2，NA\＄＋＂／＂＋EX\＄；＂＂FT\＄ （ASC（FT\＄））；＂＂AF\＄（AF）；：IFI＞9T HENPRINT\＃－2，I；：ELSEPRINT\＃－2，＂ ＂I；
$73 \varnothing$ IFASC（FT\＄）＜<2 THEN84 0
740 LG＝FA（GR）：LS＝LG AND31：LL＝GR： $\mathrm{LB}=\mathrm{ASC}(\operatorname{MID}(\mathrm{X} \$, \mathrm{~N} * 32+16,1)): \mathrm{IF}$ G1＜34THENTN＝INT（G1／2）ELSETN＝I NT（G1／2）＋1
$75 \emptyset$ SN＝1＋（G1 AND1）＊9：DSKI\＄DR，TN， SN， $\mathrm{A} \$, \mathrm{~B} \$: \mathrm{SA}=\mathrm{ASC}(\mathrm{MID} \$(\mathrm{~A} \$, 4,1)$ ） ＊256＋ASC（MID\＄（A\＄，5，1））：SA\＄＝ST RING\＄（4－LEN（HEX\＄（SA）），＂Ø＂）＋HE X $\$$（SA）
$760 \mathrm{EA}=\mathrm{SA}+\mathrm{ASC}(\mathrm{MID} \$(\mathrm{~A} \$, 2,1)) * 256+$ ASC（MID\＄（A\＄，3，1））$-1: E A \$=S T R I N$ G\＄（4－LEN（HEX\＄（EA）），＂Ø＂）＋HEX\＄（ EA）：IFLL＜34THENTN＝INT（LL／2）EL SETN＝INT（LL／2）+1
$77 \varnothing$ SN＝（LL AND1）＊9＋LS：DSKI $\$ \mathrm{DR}, \mathrm{TN}$ ， $\mathrm{SN}, \mathrm{A} \$, \mathrm{~B} \$: \mathrm{A} \$=\mathrm{A} \$+\mathrm{LEFT}$（ $\mathrm{B} \$, 127$ ） ：IFLB＝1 THEN79øELSEXA＝ASC（MID\＄ $(A \$, L B-1,1)) * 256+A S C(M I D \$(A \$$ ， LB，1））
$78 \varnothing$ XA\＄＝STRING\＄（4－LEN（HEX\＄（XA））， ＂Ø＂）＋HEX\＄（XA）：GOTO83Ø
$79 \emptyset \mathrm{XA}=\mathrm{ASC}(\mathrm{MID} \$(\mathrm{~A} \$, 1,1)): \mathrm{IFLS}=1 \mathrm{~T}$ HEN81Ø
$8 \emptyset \emptyset$ DSKI\＄DR，TN，SN－1，A\＄，B\＄：XA＝ASC （RIGHT\＄（B\＄，1））＊256＋XA：GOTO78Ø

810 IFSL＜34THENTN＝INT（SL／2）ELSET $\mathrm{N}=\mathrm{INT}(\mathrm{SL} / 2)+1$
$82 \varnothing$ SN＝（SL AND1）＊9＋1ø：GOTO8øØ
$83 \varnothing$ PRINT\＃－2，＂\＄＂；SA\＄；＂，\＄＂；EA\＄；＂ ，\＄＂；XA\＄；
840 PRINT\＃－2
850 LC＝LC＋1
860 NEXTN，X
$87 \varnothing$ PRINT\＃－2：PRINT\＃－2，＂FREE GRAN ULES＝＂；FREE（DR）
880 PRINT\＃－2：PRINT\＃－2，＂NUMBER OF PROGRAMS＝＂LC
890 NL＝52：IFLC＞52THENNL＝118
9øØ FORZ＝1TONL－LC：PRINT\＃－2：NEXTZ ：GOTO4ØØ
910 PRINT\＃－2，TAB（17）＂DIRECTORY－ TRACK 17，SECTORS 3－11＂：PRIN T\＃－2：GOSUB49ø
$92 \varnothing$ PRINT\＃－2，＂ENTRY ØØ Ø1 Ø2 $\begin{array}{lllllll}\varnothing 3 & \varnothing 4 & \varnothing 5 & \varnothing 6 & \varnothing 7 & \varnothing 8 & \varnothing 9\end{array}$ $\begin{array}{llllll}10 & 11 & 12 & 13 & 14 & 15 "\end{array}$
1110 NEXTY
112\varnothing PRINT\#-2:LC=LC+1
1130 NEXTZ
1140 NEXTX
1150 PRINT\#-2:PRINT\#-2:PRINT\#-2:
PRINT\#-2,"ØØ-Ø7 = FILENAME (I
F Ø\emptyset IS FIRST CHARACTER, FILE
HAS BEEN DELETED.)"
116\varnothing PRINT\#-2,"Ø8-1\varnothing = EXTENSION
1170 PRINT\#-2," 11 = FILE TYPE
118\varnothing PRINT\#-2," (}|=\mathrm{ BASIC,
1=BASIC DATA, 2=MACHINE LANG
UAGE, 3=TEXT EDITOR SOURCE)"
119\varnothing PRINT\#-2," 12 = ASCII FLA
G (}\varnothing=\mathrm{ BINARY, FF=ASCII)"
12ø\varnothing PRINT\#-2," 13 = FIRST GRA
NULE NUMBER OF FILE"
1210 PRINT\#-2,"14-15 = BYTES USE
D IN LAST SECTOR"
1220 PRINT\#-2,"16-31 = UNUSED (F
OR FUTURE USE)"
1230 NL=45: IFLC>45THENNL=111
1240 FORX=1TONL-LC:PRINT\#-2:NEXT
X:GOTO40\varnothing
1250 PRINT\#-2,TAB(19)"FILE ALLOC
ATION TABLE - TRACK 17, SECTO
R 2":PRINT\#-2:GOSUB490
126\varnothing PRINT\#-2,"FROM GRANULE TO
GRANULE TRACK
ROM GRANULE TO GRANULE TR
ACK"
127\varnothing PRINT\#-2,"==============

```
```

```
930 PRINT#-2,"===== ";
```

```
930 PRINT#-2,"===== ";
940 FORX=ØTO15
940 FORX=ØTO15
950 PRINT#-2," == '';
950 PRINT#-2," == '';
960 NEXTX
960 NEXTX
970 PRINT#-2:PRINT#-2
970 PRINT#-2:PRINT#-2
980 FORX=3TO11
980 FORX=3TO11
99Ø DSKI$DR,17,X,A$,B$
99Ø DSKI$DR,17,X,A$,B$
10ø\emptyset FORZ=1TO8
10ø\emptyset FORZ=1TO8
1010 ZZ=Z
1010 ZZ=Z
1\varnothing2\emptyset IFZ>4THENA$=B$:ZZ=Z-4
1\varnothing2\emptyset IFZ>4THENA$=B$:ZZ=Z-4
1\varnothing3\varnothing W=\varnothing:A=ASC(MID$(A$, (ZZ-1)*32
1\varnothing3\varnothing W=\varnothing:A=ASC(MID$(A$, (ZZ-1)*32
    +1,1)):IFA=255THENZ=8:X=11:GO
    +1,1)):IFA=255THENZ=8:X=11:GO
    TO112\varnothing
    TO112\varnothing
1040 PRINT#-2, Z +(X-3)*8;
1040 PRINT#-2, Z +(X-3)*8;
1\varnothing5\varnothing IFA=\varnothingTHENW=1:PRINT#-2,TAB(8
1\varnothing5\varnothing IFA=\varnothingTHENW=1:PRINT#-2,TAB(8
    )"Ø0";
    )"Ø0";
1060 FORY=W TO1\varnothing
1060 FORY=W TO1\varnothing
1\varnothing7\varnothing PRINT#-2,TAB(Y*4+8);MID$(A$
1\varnothing7\varnothing PRINT#-2,TAB(Y*4+8);MID$(A$
    ,Y+(ZZ-1)*32+1,1);
    ,Y+(ZZ-1)*32+1,1);
108\emptyset NEXTY
108\emptyset NEXTY
1090 FORY=11TO15
1090 FORY=11TO15
110\varnothing PRINT#-2,TAB(Y*4+8);HEX$(AS
110\varnothing PRINT#-2,TAB(Y*4+8);HEX$(AS
    C(MID$(A$,Y+(ZZ-1)*32+1,1)));
```

 C(MID$(A$,Y+(ZZ-1)*32+1,1)));
    ```
```

 GRANULE TRACK
    ```

ニーニニニニニー＝＝ニーニ＝
 ＝＝＂
1280 PRINT\＃－2
\(129 \varnothing\) DSKI\＄DR，17，2，A\＄， \(\mathrm{B} \$\)
\(13 \varnothing 0\) FORX＝ØTO33
1310 PRINT\＃－2，TAB（5）HEX\＄（X）；TAB（ 19）；HEX\＄（ASC（MID\＄（A\＄，X＋1，1）））
；TAB（29）INT（X／2）；TAB（50）HEX\＄（
X＋34）；TAB（64）；HEX\＄（ASC（MID\＄（A \(\$, \mathrm{X}+35,1\) ））） \(\operatorname{TAB}(74) \operatorname{INT}(\mathrm{X} / 2)+1\) 8
1320 NEXTX
1330 FORX＝1TO22：PRINT\＃－2：NEXTX：G OTO4ØØ

DCN PROGRAMS on Tape or DISK
This is our second collec－ tion of programs from Dynam－ ic Color News．This collec－ tion includes：

1．Check book program．
Data in remark statements． Prints to screen or printer．

2．Ball Team Sort Program． with information on sorting．

3．Card Shuffling Program．
（Using Random Numbers）
4．Student Study Program． Randomly picks questions and answers．

5．Address File Program．
Print mailing labels，search for address by name，zip code，city，or state．

Order DCN－2
Tape or Disk \＄11．95
Add \(\$ 2\) shipping，Foreign \(\$ 3\)

\title{
What Happens When You Own A COLORCHESTRA \({ }^{\text {™ }}\) MIDI SEQUENCER?
}

\section*{All Of A Sudden, Synthesized Music Production, And Recording Becomes Very, Very Simple.}

COLORCHESTRA, (irom the author of CoCo MIDI), links together your Tandy 64K Color Computer and MIDI equipped keyboard synthesizer or rhythm drum machine and makes it simple to create masterpieces of music.
By incorporating menus and graphic icons, all there is to recording in real time is pushing a lew keys.
A. Select track recording icon.

C. Simply play keyboard and hit break key when done.


\section*{THAT'S ITI}

Once the track is entered, auto correction, Iransposing. and lillering may be implemented. And COLORCHESTRA'" works with you to record up to \(\mathbf{8 , 0 0 0}\) notes utilizing as many as 16 tracks...awesome.
Bul it doesn't stop here - COLORCHESTRA'" is crammed with a myriad ol other outstanding protessional features...

Solo capabilities on any track
\(\checkmark\) Tempo range from 30-250 beats per minute
Audible and visual metronome
\(\checkmark\) Programmable measure locator
- Sequencer will record Irom aniy MIDI Channel (1-16)
\(\checkmark\) Each track can outpul to any MIDI channel (1-16)
- Records full specirum of MilDI data including program changes. pitch bends. all 128 MIDI controliers (modulation wheel, bitath controlter, sustain pedal. elc )
\(\checkmark\) Will sync to drwin mactines
\(\sigma\) MIDI itiru un mput
- Programmable lifie signalure

Real lime velucity modilicalion
A All 16 tracks can be lilled
S Sutiware lilter rellioves spucilic MIDI parameters from recorded music such ds pitil bund, program change, velocily dald. modulalion wheel. MIDI controlter

Transpusilion ol rutes up or down any number ul uclaves in hiall sleps
- Aulo correct fealure lor liming errors
\(\checkmark\) Stores composed music on tape or disketie
Works wilh any disk uperating syslem (Radıo Shack, JDOS, ADOS. etc)

\section*{THE COLORCHESTRA SYSTEM PACKAGE}
haRDWARE
Encased belween clear plastic pariels and hand linished americin walnut is COLORCHESTRA's sequancer board. Not just the edge connector, bul overy circuit trace is plated in 7 inil gold for optimum interlace connection.


SOFTWARE MEDIA
In addition to the hardware cartridge and cables, the COLORCHESTRA'" System Package includes type sel documentation in its own ring binder for easy relerence and updating.
And for your convenience, both tape and diskelte are supplied-so, if you need a back up it'll be there.

Two dèpendable, heavy duty 8' MIDI cables with metal jacketed end connectors are included.

COLORCHESTRA'". A simple answer to your MIDI music production and HORIZON puts il all logether tor an introductory price of 149.95.


COLORCHESTRA'* system complete - \(\$ 149.95\) Call any day (ex. Sun.) to order We ship same day. We accept check, COD, Visa, Master Card. Shipping add 3.00 , COD add 2.00. Louisiana residents add 78 sales tax. "¿all Ior audio demonstration. COLOACHESTRA Cupyrgint 198, C W Lanusse III

\footnotetext{
318.942-1938 P O Box 289 Opelousas, Loussiana 705\%O
}

\section*{BASIC PROGRAMMING}

A computer without instruc－ tions is not of much use．In this series we are showing how to write useful programs using Microsoft Basic．The methods presented here will work on all computers using Microsoft Basic．

\section*{PROGRAM TRACE}

If a program does not work properly then it is necessary to determine the program steps that are causing the problem．If you have extended basic then you can use the trace commands．To turn the trace on enter the follow－ ing：

\section*{TRON 〈ENTER〉}

With the trace enabled the number of the statement that is being processed will be printed on the screen with a［］sur－ rounding the number．The screen can quickly become filled with numbers as the program goes from one line to the next．However if the computer is hanging up in a loop then this is a convenient way to observe the numbers and determine where the problem is occurring．The program can then be listed and steps taken to correct the problem．

To turn the trace off enter：

\section*{TROFF 〈ENTER＞}

Another method is to put la－ bels in the program and print variables within suspected areas．The following examples demonstrate this：
\[
\begin{aligned}
& 20 ? " 20 \mathrm{X} \$=" \mathrm{X} \$ \\
& 19 \emptyset ? " 19 \emptyset \mathrm{~J}=" \mathrm{~J} ; " \mathrm{~A}(\mathrm{~J})=" \mathrm{~A}(\mathrm{~J})
\end{aligned}
\]

This methd is very useful because the variables are dis－ played along with the statement number．After the bugs are
worked out of the program，lines \(2 \varnothing\) and \(19 \varnothing\) can be eliminated．

\section*{PROGRAM DEVELOPMENT}

We have received many re－ quests for programs for compu－ ters with 256 K or 512 K memo－ ries．What is unique about programs for these computers and why would special programs be needed？Last month we looked at a large address file containing \(50 \emptyset \emptyset\) names．If these were pro－ spective customers and you want－ ed to mail literature to them， then the files would have to be arranged in order of assending or decending zip codes to take advantage of the low bulk mail－ ing rate．

\section*{SETTING UP the FILES}
\begin{tabular}{ll} 
1．James A．Smith & （15） \\
2．1234 First St． & \((15)\) \\
3．Apartment 3A & \((15)\) \\
4．Atlanta & \((12)\) \\
5．GA & \((2)\) \\
6．12345－9876 & \((10)\) \\
7.4047339884 & \((10)\)
\end{tabular}

79 bytes required

\section*{Figure 1}

One way to set up a file would be to allot a fixed number of characters for each entry． An example is shown in Figure 1. This has the advantage of allow－ ing complete files to be inter－ changed quickly．The disadvan－ tage is that the number of bytes reserved has to be equal to the maximum number of characters for each entry．We can call this a fixed byte file．Let＇s take a look at a variable byte file．

Notice in Figure 2 the total amount of space required includ－ ing one byte for a carriage re－ turn is 73．This is not much of a savings over the arrangement in Figure 1.
\begin{tabular}{ll} 
1. James A. Smith & \((15)\) \\
2.1234 First St. & \((15)\) \\
3.Apartment \(3 A\) & \((13)\) \\
4.Atlanta & \((8)\) \\
5.GA & (3) \\
6.12345-9876 & \((11)\) \\
7. 4047339884 & \((11)\)
\end{tabular}

Total bytes including carriage return \(=76\)

\section*{Figure 2}

Now consider the following:
\begin{tabular}{ll} 
1.Bill Jones & \((11)\) \\
2.P. O. Box 123 & \((14)\) \\
3. & \((\varnothing)\) \\
4.Danville & \((9)\) \\
5.AL & \((3)\) \\
6.35660 & \((6)\) \\
\(7.2 \varnothing 55341983\) & \((11)\)
\end{tabular}

\section*{53 Bytes}

\section*{Figure 3}

For short addresses such as post office boxes, the variable byte method would be much shorter. These examples are given to show the differences between a fixed byte file and a variable byte file. The fixed byte file has the advantage of allowing entire files to be quickly moved. This will make it easier to place them into an ordered pattern and will be the method we will use.

Let's again consider the organization of Figure 1 and write equations to determine the relative locations of each entry.
1.Smith, James A. (15) M+Ø
2. 1234 First St. (15) M+14
3.Apartment 3A (15) M+29
4.Atlanta (12) M+41
5.GA (2) M+43
6.12345-9876
(10) M+45
7. 4047339884 (10) M+55

Total bytes required \(=79\)
Figure 4

Consider Figure 4. If M represents the memory location containing the first byte of information, then the equations at the right will allow us to quickly locate information. The numbers to the left will not be in the file but are placed in the figure for our benefit. We can possibly handle \(3 \varnothing \varnothing\) files in a 32 K computer. For \(3 \varnothing \varnothing\) files we would need 300*79= \(237 \varnothing \varnothing\) bytes. This should leave us enough memory for our program plus random memory.

\section*{SORTING DATA}

We have covered the procedure for entering information in our previous file program. How would we go about sorting the files? Suppose we want to do a bulk mailing and need to put the files in ascending zip codes. Let's look at the following collection of zip codes:
1. 32777
2. 98885
3. \(\varnothing \varnothing 225\)
4. \(4888 \emptyset\)
5. 52330
6. 11100
7. 86500
9. \(932 \varnothing \varnothing\)

Since we have a fixed byte file, we can quickly fine the zip codes within the files. How do we find the smallest. Look at the list of numbers and decide how you would make a new list using a pencil and paper. Fortunately we can do more advanced operations with the computer than by hand. Our sort procedure will be as follows:
1. Assume that the first number is the smallest.
2. Compare it with each number. If the first number is smaller then go to the next number. If the first number is larger then exchange the two numbers. So we will assume that 32777 is the smallest and compare it with
98885. 98885 is larger than 32777 so we will go to the next number. 32777 is less than 00225 so we will exchange the two numbers. We will continue this procedure until we reach the end of the file. The first number will be the smallest.

Next we will compare the second number with the rest and exchange them until we reach the end of the file. Then the first number will be the smallest and the second number will be next to the smallest. We will repeat this procedure until the numbers are in assending order.

With machine language subroutines we can quickly exchange the entire files associated with the zip codes. When we finish the sort routine then the files will be in order.

\section*{Files with a Disk or Ramdisk}

For a large number of addresses, it will be necessary to pull files from a disk or ramdisk. We may want to rearrange all of the files on the disk so that the data will be in a desired order. So our control program will have to be oriented toward not only handling the data within the computer, but also merging and modifying other files on disk or ramdisk. We will continue with this next month.

\section*{PREMIUM QUALITY DISKS}

You don't have to pay a lot for QUALITY disks. Our disks are boxed in tens complete with labels, sleeves, and write protect tabs. Don't confuse these with cheaper disks as they carry a lifetime waranty and will be replaced should they become defective.
\(\begin{array}{ll}\text { DSK-1 } & \text { SSDD for CoCo } \$ 7.95 \text { /box } \\ \text { DSK-2 } & \text { DSDD for MSDOS } \$ 8.95 \text { /box }\end{array}\)
Add \(\$ 1.50 \mathrm{~S} / \mathrm{H}\)
DYNAMIC ELECTRONICS BOX 896 (265) 773-2758 HARTSELLE, AL 35640


A TRS-80 Color Computer users magazine

Sell or trade your unwanted programs or hardware in this monthly mazazine. Find great buys. List your Club or BBS. Full of Tips, articles, reviews and programs all for your COCO. A HELP column for you to get quick help with a problem.
Classified ads are only \(\$ .15\) per word, and it will be read by over 8000 new COCO owners.

Yes I would like to subscribe to COCO ADS. 1 Year basic third class mail \$10.00
_ Year First Class
- Mail
\(\$ 16.00\)
Name \(\qquad\)
Addr \(\qquad\)
City \(\qquad\)
Zip
Please send all orders to
P D SOFTWARE
P O BOX 13256
HOUSTON, TX 77256

\title{
HAM RADIO \\ \& COMPUTERS by
}

Bill Chapple W4GQC
Computers are wonderful tools for doing numerous tasks. They can be used for storing data and information and for controlling devices. There are many applications for using computers in ham radio. Most of the ham radio hardware and software is for Comodore computers. The Radio Shack Color Computers are easy to adapt to ham radio applications. Last month we gave a Morse Code program. One of the requirements for obtaining an FCC licence is to be able to copy the International Morse code. There are many other applications that \(I\) want to cover and some involve hardware. For example the computer can be made to receive Morse code and display the characters. This will require a hardware interface and possibly a machine language subroutine. An interface can be built so that the computer can generate Morse code and key the transmitter. This will be coming soon. Interfacing computers is one of our current series and we will be presenting some hardware adapters for these purposes.

\section*{CALCULATING ANTENNAS}

A radio station is no better than its antenna. I have had much experience in building antennas for the frequencies below \(3 \varnothing \mathrm{MHZ}\). Antennas can be cut from formulas, assembled, and installed without test equipment. I have a grid-dip meter which can tell me if an antenna is resonant. I also have an impedance bridge that \(I\) built in 1960. An impedance bridge gives the impedance of the antenna. To get maximum power transferred to the antenna, the transmission lines'
impedance must match the impedance of the antenna.

The impedance of a dipole is around \(5 \varnothing\) ohms. RG-8 or RG-58 cable has an impedance of \(5 \varnothing\) ohms and can be used for the transmission line. For some of our readers who might not be familiar with this cable but are familiar with citizens band radio, RG-58U is the type of cable that runs from the antenna to the CB radio.

The material for the elements can be copper wire or aluminum tubing. The element to which the transmission line connects is called the driven element (DE). Our program will calculate its length. It needs to be cut into 2 pieces and the transmission line fed at the center with the braid or outter conductor connected to one piece and the center conducter connected to the other piece. The longest element is the reflector (RE). The shorter elements are called directors (D1 \& D2). Maximum radiation is from the reflector towards the director(s).

We suggest you refer to an antenna or the ARRL handbook for additional information on antenna fabrication and installation. The equations we are presenting work for CB radio, Television, FM radio, Business radios, etc.

For our program we are reserving the following variables:

\section*{RE=REFLECTOR LENGTH \\ DE=DRIVEN ELEMENT LENGTH \\ D1=FIRST DIRECTOR LENGTH \\ D2=SECOND DIRECTOR LENGTH \\ XR=SPACING FROM DE TO RE \\ X1=SPACING FROM DE TO D1 \\ X2=SPACING FROM D1 TO D2}

A sketch of an antenna up to 4 elements is shown in figure 1. Maximum radiation is from the reflector to the director. The antenna can be mounted either horizontally or vertically. The results are in feet and inches. The inches are in whole inches and decimals. You
can round the decimal up or down to the nearest inch for frequencies below \(3 \varnothing\) MHZ. The decimal can be multiplied by . 8 to give eights of an inch.
\begin{tabular}{l|l}
\multicolumn{2}{c}{ REFLECTOR (R) } \\
\hline XR=SPACING & FROM DE TO R \\
DRIVEN & ELEMENT (DE) \\
\hline X1=SPACING & FROM D1 TO DE \\
FIRST & DIRECTOR (D1) \\
\hline X2=SPACING & FROM D1TO D2 \\
SECOND & DIRECTOR (D2)
\end{tabular}

Antenna Configuration
Figure 1

\section*{ANTENNA \\ DESIGN \\ PROGRAM LISI'ING}
\(1 \varnothing\) CLS:PRINT" ANTENNA DESIGN PROGRAM" ,"cOPYRIGHT (c) 1986 ","dYNAMIC eLECTRONICS iNC.", "PROGRAM 9-2-86
20 PRINT"THIS IS AN ANTENNA PROG RAM THAT","IS DESIGNED FOR UP TO 4 WIDE", "SPACED ELEMENTS. THE RESULTS AREGIVEN IN FEET AND INCHES":GOSUB 170
30 PRINT"THESE ARE WIDE SPACED E LEMENTS","AND LOADING IS NOT A PROBLEM", "WHEN ADDITIONAL E LEMENTS ARE","ADDED. USE THE CALCULATIONS FOR","A DIPOLE, OR ANY COMBINATION OF","ELEME NTS. ADD THE REFLECTOR","AND THEN THE DIRECTORS FOR","LARG ER ARRAYS."
\(4 \varnothing\) GOSUB 17Ø:CLS: INPUT"ENTER FRE QUENCY IN MEGAHERTZ"; F
\(50 \mathrm{DE}=475 / \mathrm{F}: \mathrm{W}=\mathrm{DE} / .47: \mathrm{RE}=.51 * \mathrm{~W}\)
60 D1 \(=.45 * \mathrm{~W}: \mathrm{D} 2=.44 * \mathrm{~W}: \mathrm{XR}=.2 * \mathrm{~W}: \mathrm{X} 1=\) . \(2 * \mathrm{~W}: \mathrm{X} 2=.25 * \mathrm{~W}\)
70 P ="\#\#
\(8 \emptyset\) CLS:PRINT"FREQUENCY="F
\(9 \varnothing\) PRINT"REFLECTOR LENGTH=";:V=R E:GOSUB 180
100 PRINT"DRIVEN ELEMENT=";:V=DE : GOSUB 180
110 PRINT"FIRST DIRECTOR=";:V=D1 :GOSUB 180
120 PRINT"SECOND DIRECTOR=";:V=D 2:GOSUB 180
\(13 \varnothing\) PRINT"DE TO R=";:V=XR:GOSUB 180
140 PRINT"DE TO D1=";:V=X1:GOSUB \(18 \varnothing\)
150 PRINT"D1 TO D2=";:V=X2:GOSUB 180
160 GOTO \(4 \varnothing\)
170 INPUT"PRESS ENTER TO CONTINU E";Q:CLS : RETURN
\(180 \mathrm{Y}=\mathrm{INT}(\mathrm{V}): \mathrm{Z}=(\mathrm{V}-\mathrm{Y}) * 12:\) PRINTY; " FT ";:PRINTUSING "\#\#.\#"; Z;:PR INT" IN": RETURN

DCN PROGRAMS on Tape or DISK
A collection of the programs from May, June, \& July 1985 DCN. The collection includes
1. 64 K All RAM Program
2. 2-Bank address file Pgm.
3. Alarm Clock Program
4. Loan Interest Program
5. Character Generator pgm.
6. Bank Switching Program (Allows full use of other 32 K bank for 64 K comp.)

Order DCN-1
Tape or Disk \(\$ 11.95\)
Add \(\$ 2\) shipping, Foreign \(\$ 3\)

\section*{INTEREACING COMPUTERS (Part 8)}

In this series we are looking at ways of getting information from the computer and putting information into the computer through external devices. Color Computers have 2 joystick ports, a serial ASCII port, and a parallel or expansion port.

For the past few months we have been looking at using the serial ASCII port for sending and receiving characters or data. We have explained in detail how data is formatted for serial use. As a review a logical "1" is on the output until a character is to be sent. Then a start bit which is a " \(\varnothing\) " is sent to indicate the start of the timing sequence. Next the 7 or 8 data bits are sent, followed by a parity bit and one or two stop bits.

We are presenting material for developing a terminal program that will allow a color computer to exchange information with and other device using a RS-232 port. This month we want to develop the machine language portion that allows characters or data to be sent from the computer to another device. The most important part will be the timing subroutine.

\section*{TIMING SUBROUTINE}

Memory locations 149 \& 150 contain the baud rate used for sending data to a printer. We can use this for our machine language timing subroutine. One way to provide a timing delay is to load the A \& B registers with values and decrement them until the values are \(\varnothing\). The following is a position independent routine for a delay:

M LDA Immediate with 3
M+2 LDB Direct with \(15 \varnothing\)
M+4 DECB 'B=B-1
\(M+5\) BNE \(M+4\) 'GO TO \(M+4\) IF \(=\varnothing\)
\(\mathrm{M}+7\) DECA \(\mathrm{A}=\mathrm{A}-1\)
\(M+8\) BNE \(M+2\) 'GO TO \(M+2\) IF \(=\varnothing\)
M+10 RTS

\section*{OUTPUT LOCATION}

To cause the output to change it is necessary to store or poke a value into address location 65312. Poking a \(\varnothing\) into this location causes a \(\varnothing\) to appear on the output. The second least significant bit actually controls the output. We can put the proper bit in this location by using one of the assembly rotate or arithmetic shift commands. The rotate command moves all bits of a byte one location either to the left or right. The shift command also moves the bits to the right or left but retains the bit in the first location. Refer to an assembly language book or the 6809 data sheet for more information. Let's give an example of rotating a byte.

B7 B6 B5 B4 B3 B2 B1 Bø
\(1 \varnothing \varnothing \quad 1 \quad 1 \quad \varnothing \quad \varnothing 1\) Byte
\(\begin{array}{lllllllll}\varnothing & \varnothing & 1 & 1 & \varnothing & \varnothing & 1 & C & \text { Rotate }\end{array}\) left

For rotating a byte the bit in B7 goes to the carry location of the conditional code register and the carry bit goes into \(\mathrm{B} \varnothing\). All of the other bits are shifted left one location.

If we want to output the bit in \(\mathrm{B} \varnothing\) then we can rotate the byte left (ROL) in the A register and store it in 65312.

\section*{REMOVING the BITS from a BYTE}

One approach is to store the byte in a memory location. Then load the A register with the byte and AND A immediate with Ø1. This leaves the least significant bit. Then we can arithmetic shift left the \(A\) register and store the register
in 65312 to output the bit. Next we can rotate right the byte stored in memory so that the next bit will be in the least significant (BØ) location. We also need a bit counter so that we will know when we have finished. This can be stored in a memory location and decremented each time we output a bit until we have finished. We can then output the parity bit and the stop bits to complete the character.

\section*{OUTPUT ML SUBROUTINE}

This collection of subroutines is used on our DYTERM terminal program. We will use it in for our terminal development program here. It is written in position independent code which means that it will work in any memory location. If you have an assembler then you can assemble the program or poke the values into memory and use your disassembler. We used our decimal assembler "DISASM" to disassemble this so all branch locations will be in decimal. We use the following symbols for addressing modes:

\begin{tabular}{|c|c|c|}
\hline \(\varnothing 8\) & 38-26 & BNE \(\varnothing 2\) \\
\hline \(\varnothing 9\) & 248-F8 & \\
\hline 10 & 57-39 & RTS 'RETURN \\
\hline 11 & 182-B6 & LDA E 4005 ' \(\mathrm{A}=\) \\
\hline 12 & \(15-\emptyset F\) & PEEK (4005) \\
\hline 13 & 165-A5 & WORD LENGTH \\
\hline 14 & 183-B7 & STA E 4009 , \\
\hline 15 & \(15-\emptyset \mathrm{F}\) & POKE 4009,A \\
\hline 16 & 169-A9 & \\
\hline 17 & 127-7F & CLR E 65312' \\
\hline 18 & 255-FF & SEND START \\
\hline 19 & 32-20 & BIT \\
\hline \(2 \varnothing\) & 141-8D & BSR \(\varnothing\) 'GO TO \\
\hline 21 & 234-EA & TIME SUB \\
\hline 22 & 79-4F & CLRA \\
\hline 23 & 183-B7 & STA E \(40 \varnothing 7\) \\
\hline 24 & 15-ØF & \\
\hline 25 & 167-A7 & \\
\hline 26 & 182-B6 & LDA E 4ø1ø \\
\hline 27 & 15-ØF & \\
\hline 28 & 170-AA & \\
\hline 29 & 132-84 & ANDA I 1, \\
\hline 30 & 1 & \(\mathrm{A}=\mathrm{A}\) AND 1 \\
\hline 31 & 39-27 & BEQ 36 \\
\hline 32 & 3 & \\
\hline 33 & 124-7C & INC E 40ø7' \\
\hline 34 & \(15-Ø \mathrm{~F}\) & M \(=\) M +1 \\
\hline 35 & 167-A7 & COUNTER \\
\hline 36 & 72-48 & ASLA \\
\hline 37 & 183-B7 & STA E 65312' \\
\hline 38 & 255-FF & OUTPUT BIT \\
\hline 39 & 32-2ø & \\
\hline 40 & 122-7A & DEC E \(40 \emptyset 9\) \\
\hline 41 & 15-ØF & \(\mathrm{M}=\mathrm{M}-1\) \\
\hline 42 & 169-A9 & \\
\hline 43 & 118-76 & ROR E \(401 \varnothing\) \\
\hline 44 & 15-ØF & 'ROTATE RIGHT \\
\hline 45 & 170-AA & 4010 \\
\hline 46 & 141-8D & BSR Ø 'BRANCH \\
\hline 47 & 208-Dø & TO TIME SUB \\
\hline 48 & 125-7D & TST E 40ø9' \\
\hline 49 & 15-ØF & IS 4009=ø? \\
\hline 50 & 169-A9 & \\
\hline 51 & 38-26 & BNE 26 'GET \\
\hline 52 & 229-E5 & NEXT BIT \\
\hline 53 & 246-F6 & LDB E \(40 \varnothing 8\) \\
\hline 54 & \(15-Ø \mathrm{~F}\) & GET PARITY \\
\hline 55 & 168-A8 & \\
\hline 56 & 182-B6 & LDA E 4007 , \\
\hline 57 & \(15-\square \mathrm{F}\) & BIT COUNTER \\
\hline 58 & 167-A7 & \\
\hline 59 & 132-84 & ANDA I \(\varnothing 1\) \\
\hline 60 & 1 & \\
\hline 61 & 93-5D & TST B 'IS \(\mathrm{B}=\varnothing\) ? \\
\hline 62 & 39-27 & BEQ 77 'GO TO \\
\hline 63 & 13-ØD & 77 IF B=ø \\
\hline 64 & 193-C1 & CMPB I 1 \\
\hline
\end{tabular}

\section*{for 2-chip CC-2 (ME-18) \\ 16 K or 64 K to 256 K}

Have you ever wished you could stop what you are doing, load another program, and then return to the original program without loosing anything? This is possible with our new ME-18 expanders. This plug in assembly increases the memory 4 times. The memory assembly is in two modules partitioned as 4-64K memory banks which are hardware selectable by two toggle switches. Features include:
* Powerful Memory Manager Software to allow maximum use of each 64K bank.
* 4-64K memories. You can load any combination of 64 K programs such as word processors, OS-9, terminal programs, or spread sheets. Each bank is entirely independent allowing you to quickly go from one to the other by selecting the bank with the toggle switch.
* Ramdisk in each bank. Basic or machine language programs can be stored in the second 32 K bank for any of the selected 64 K memory banks. You can have special programs in one or two banks and your basic programs in the other banks. The ramdisk quickly loads and runs the programs from the computer's memory.
* Independent banks. Each of the 4 banks is completely indepenlent allowing any combination of programs to be entered. The unselected banks are protected and the data can not be altered until the bank is again selected.

For example one bank can contain a word processor, the second a machine language game program, the third a terminal program, and the fourth a spread sheet. When banks are switched all variables are preserved allowing the program to run or continued when the banks are reselected.
* Plug in installation. For 64K computers, installation involves removing the two memory chips and inserting the assemblies into the empty sockets. Two small holes are required for the switches to complete the installation. For 16 K computers a jumper must be soldered to upgrade the computer to 256 K .
* Low cost. ME-18 \$119.95

\section*{128 K UPGRADES}

ME-10A Similar to the ME-18 except upgrades 2-chip 64 K computers to 128 K for \(2-64 \mathrm{~K}\) bank operation. Kamdisk software is included. \$49.95

ME-12 Upgrades 8-chip 4164 type 64 K computers to 128 K . Ramdisk software is included. \$49.95.

\section*{64K UPGRADE}

ME-10 Upgrades 16 K CC-2 to 64 K . Ramdisk software is included \$34.95.

EXTENDED BASIC
Add extended basic to CC-2 computers \$34.95.

Free Catalog

24 Hour phone. Checks, VISA \& MC cards. Add \$3 ship.
```

DYNAMIC ELECTRONICS INC . Box 896 (205) 773-2758 Hartselle, AL 35640

```
\begin{tabular}{|c|c|c|}
\hline 65 & 1 & IS \(\mathrm{B}=1\) ? \\
\hline 66 & 39-27 & BEQ 69 'GO TO \\
\hline 67 & 3 & 69 IF \(\mathrm{B}=1\) \\
\hline 68 & 67-43 & COMA ' COMPLEMENT \\
\hline 69 & 132-84 & ANDA I 1 ' \(\mathrm{A}=\mathrm{A}\) \\
\hline \(7 \varnothing\) & 1 & AND 1 \\
\hline 71 & 72-48 & ASLA 'SHIFT LEFT \\
\hline 72 & 183-B7 & STA E 65312 \\
\hline 73 & 255-FF & OUTPUT BIT \\
\hline 74 & 32-20 & \\
\hline 75 & 141-8D & BSR Ø 'TIME SUB \\
\hline 76 & 179-B3 & \\
\hline 77 & 182-B6 & LDA E 4005 \\
\hline 78 & 15-ØF & 'GET NUMBER OF \\
\hline 79 & 165-A5 & STOP BITS \\
\hline \(8 \varnothing\) & 183-B7 & STA E 4004 \\
\hline 81 & \(15-\emptyset F\) & 'SAVE NUMBER \\
\hline 82 & 164-A4 & \\
\hline 83 & 134-86 & LDA I 255 \\
\hline 84 & 255-FF & ' \(\mathrm{A}=255\) \\
\hline 85 & 183-B7 & STA E 65312 \\
\hline 86 & 255-FF & 'OUTPUT "1" \\
\hline 87 & 32-2ø & \\
\hline 88 & 141-8D & BSR Ø 'TIME SUB \\
\hline 89 & 166-A6 & \\
\hline \(9 \varnothing\) & 122-7A & DEC E 4004 \\
\hline 91 & 15-ØF & \(\mathrm{M}=\mathrm{M}-1\) \\
\hline 92 & 164-A4 & \\
\hline 93 & 125-7D & TST E 40Ø4 \\
\hline 94 & 15-ØF & 'HAVE WE \\
\hline 95 & 164-A4 & FINISHED? \\
\hline 96 & 38-26 & BNE 83 \\
\hline 97 & 241-F1 & \\
\hline 98 & 57-39 & RTS 'RETURN \\
\hline
\end{tabular}

\section*{EDITOR'S COMMENTS}

We are very excited about the new Color Computer 3. However we have not seen one yet and everytime I check at a Radio Shack Store they say they are being expected any day now. So I guess we will keep checking and they will arrive someday.

While looking back over the articles we have written, I noticed that we are very short on hardware articles. So next month we will have a hardware article. I have thought about many hardware projects and almost all of them involve software. For example in our interfacing series, we are developing software for a terminal program. This can be very useful for interfacing with other devices because no modifications to the computer are required.

A project in which I have been interested for quite some time is a computer controlled sign. With this sign we could list items we have for sale for local customers. We had a T G \& Y department store here which recently closed. They kept reducing prices until everything was sold. I bought two boxes of Christmas tree light bulbs which could be used for my sign. Of course it will take some dedicated electronics to control the bulbs, but a Color Computer could be used to control the messages. I will keep you informed with our progress on this project.

We have had some positive response to our Ham Radio series. Of course we can use the ASCII port for interfacing with radio equipment. One thing that has always facinated me about computers is their adaptability. This month we have a program for calculating antennas.

Next month we will start a series on OS-9. We have had many requests for this so we
will begin next month. If you have a subject you would like for us to cover please let us know.

We also need programs. If you have a program that has not been published send it to us and we will make you an offer. We have received a few but could use more.

We are looking at IBM compatible computers. These are expandable and there is much software available for them. There are some things that are easier to do on a Color Computer and we might make some comparisions in a the future. We have a Radio Shack model \(10 \varnothing\) on which we write many of our editorials. We wrote a program to transfer files from the model \(1 \varnothing \varnothing\) to a Color Computer. Using the ASCII port we can do the same with an IBM compatible or any other computer that has a RS-232 port.

\section*{PRODUCT REVIEWS}

This section is open to all producers and dealers of color computer products. We will review your product free of charge and write an editorial on the product. We do not use a rating system but will explain what the product does, and what can be expected from it. Any comments about the review from the firm submitting the product will be printed in a later issue.

\section*{TX WORD PROCESSOR}

TX is a printer page editor. It requires a 64 K computer and a disk drive. A printer page has \(80 \times 66\) or 5200 locations. The standard \(32 \times 16\) screen is a window that can be moved anywhere within the page.

When the program is run a menu appears. From the menu you can go to the the screen buffer where you can write characters. Other options are erasing the screen, saving a screen or block
buffer, loading a file into the screen or block buffer.

\section*{Text Mode}

In the text mode the cursor indicates the position into which a character will be written. If a character is in the location indicated by the cursor, and a new character is entered, the new character replaces the old character. The cursor can be moved by the 4 arrow keys. Pressing the shift and then an arrow key moves the cursor 8 locations. The number of the row and column is displayed at the bottom of the screen. A shift "." moves all characters starting under the cursor one location to the right. A shift "," moves all characters one location to the left.

\section*{Clear Mode}

This mode provides additional features. Pressing "C" centers the text. A question mark appears and the number of lines to be centered should be entered. Pressing " \(R\) " allows the right margin to be reset to any number between \(4 \varnothing\) and \(8 \varnothing\). A character can be repeated vertically by pressing "V" and entering the number of characters. Pressing "S" allows tabs to be set and "K" kills a line of text.

Blocks of characters can be moved to any location. The beginning and ending of the block is marked. Then it is placed into the block buffer. Move the cursor to a new location, press "CLEAR P" and a copy of the block will be printed at the cursor's location. Blocks can be erased by a similar procedure.

The total for a column of numbers can be calculated. The beginning of the numbers and ending has to be marked. Then pressing "CLEAR T" prints the result under the column. Other
features include inserting printer codes at the beginning of a line and line swapping.

Summary
We found TX to be very useful. Since it is a page editor its greatest use would be for applications that only require one page at a time. The column calculator feature would be handy for applications such as balance sheets or monthly sales reports. The program sells for \(\$ 16.95\) plus \(\$ 2 \mathrm{~S} / \mathrm{H}\). For more information contact Fred Kolesar, 7 Ladd Road, Westfield, PA 16950 (814) 367-5384.
\[
+++ \text { DCN STAFF }+++
\]

\section*{NEW PRODUCTS}

This section is available free for producers and dealers of color computer products. These products have not been reviewed by us but are included for our reader's information.

\section*{NEW 256K MEMORIES}

Dynamic Electronics Inc. has designed a 256 K memory upgrade for the newer CoCO 2's with two memory chips. The memory assembly, designed \(M E=18\), is in two modules partitioned as \(4-64 \mathrm{~K}\) memory banks which are hardware selectable by two toggle switches.

Memory manager software is included to allow maximum use of each 64 K bank. With this software the second 32 K of memory in each 64 K bank can be used for either programs or a ramdisk. If programs are stored in each 32 K bank then any of the 8 programs can be quickly run.

Each of the 4 banks is completely independent allowing any combination of programs to be entered. The unselected banks are protected and the data can not be altered until the bank is
again selected. For example one bank can contain a word processor, the second a machine language game program, the third a terminal program, and the fourth a spread sheet. When banks are switched all variables are preserved allowing the program to run or continue when the banks are reselected.

For 64 K computers, installation involves removing the two memory chips and inserting the assemblies into the empty sockets. Two small holes are required for the switches to complete the installation. For 16 K computers a jumper must bes soldered to upgrade the computer to 256 K .

Features include plug in installation, memory protection for the unselected banks, and memory manager software. Cost \(\$ 119.95+\$ 3\) S/H. For additional information contact Dynamic Electronics Inc., \(P\). O. Box 896, Hartselle, AL 35640.

\section*{OPERATING HINT}

You can print your disk directory to a printer by POKE 111,254:DIR <ENTER>

\section*{OPERATING HINT}

Checking Tape Programs - You can check the programs on a cassette tape by using the SKIPF command. Load the tape and rewind it. Then type SKIPF"X where \(X\) is a file that is not on the tape. The name of each file will be displayed on the screen as they are found on the tape. If there is an error the computer will give an error message and stop the recorder. All files or programs before the recorder stopped are good. If the recorder goes to the end of the tape without indicating an error then all of the files are good. Press the rear reset button to reset the computer.

\section*{QUESTIONS \\ \& ANSWERS}

These are questions that have beenasked us. If you have a computer question please write and we will answer it here. For a quick reply send \(\$ 1 \varnothing\) with your question.

QUESTION: I am using a RS Color Computer with a program for packet radio. The program calls for a CONTROL Function. Is this available on the CoCo?

ANSWER: The Radio Shack Color Computers do not have control keys. A control key subtracts 64 from the ASCII value of the pressed key. You can use a key to set up the control function. The folowing is an example program.
```

10 X$=INKEY$: IF X$="" THEN 10
2\varnothing A=ASC(X$): IF A=94 THEN 9\emptyset
3Ø ? X$;:?#-2,X$;
40 GO TO 10
8\emptyset 'ENTER CONTROL CHARACTER
9\varnothing Y$=INKEY$: IF Y$="" THEN 90
10\varnothing Y=ASC(Y$): Y=Y-64: IF Y<1
THEN Y=\varnothing
110 ?\#-2,CHR\$(Y);:GOTO 10

```


TELEWRITER 64 WORD PROCESSOR

This excellent word processor will handle all of your writing requirements. With its full screen editor, any part of the text can be quickly accessed with the arrow keys. Phrases or paragraphs can be inserted, deleted, or copied to another part of the text. The completed writing can be saved to a cassette or disk or printed on any printer. Features include:

3 display formats of 51, 64 , or 85 columns \(x 24\) lines
True lower case characters
User-friendly full screen editor
Right justification
Drives any printer
Runs in \(16 \mathrm{~K}, 32 \mathrm{~K}\), or 64 K computers
Menu driven disk and cassette I/O

Disk \(\$ 59.95\), Tape \(\$ 49.95\)
TELEPATCH - Telewriter enhancer adds block transfer, autorepeat, plus many other features. \$19.95.

\section*{Add \(\$ 3\) shipping}

\section*{COMMERCIAL PRINTING}

We can fill most printing requirements. We can print Resumes, Brochures, Envelopes, Business Cards, Advertisements, Sales flyers, etc. No sales tax for out of state orders. Send draft of your work and we will call and give a quote and delivery date.

\section*{DISPLAY ADS}
(Rate sheet 2 - March 1986) Closing 1st of preceeding month.

Pages 1 time 2 times 3 times
\begin{tabular}{llll}
\(* 2\) & 25 & 23 & 22 \\
1 & 30 & 27 & 25 \\
\(1 / 2\) & 23 & 20 & 18 \\
\(1 / 3\) & 19 & 17 & 15 \\
\(1 / 4\) & 15 & 13 & 12
\end{tabular}
* We can use colored paper at no extra charge if ads are on both sides.

We can do ads in Red, Blue, or Brown. No all one color ads will be accepted. For color ads send artwork for each color. Add 40\% for each color. Example: One page black and red for 3 times costs \(\$ 25+1 \varnothing . \varnothing \varnothing=\$ 35 . \varnothing \varnothing\) each month.

\section*{DCN PROGRAMS on Tape or DISK}

This is our third collection of programs from Dynamic Color News. This collection includes:
1. RESTORE - Page -1 Program that restores a basic pgm which was lost due to a hard reset or typing NEW.
2. FAST FOOD - This program quickly displays the total for a fast food order.
3. BAR GRAPH - Display results in easy to see bars over a 12 month period.
4. MEMORY PEEK \& POKE - Page -1 program that can be loaded with another pgm.
5. GRAPHICS DRAW. Draw figures on the screen. Save and load drawings.

DCN-3 Tape or Disk \$11.95
Add \$2 shipping, Foreign \$3
*********************************************************************** Please sign me up for one year for the DYNAMIC COLOR NEWS. I want * to receive instruction on programming, Computer Theory, Operating * Techniques, Computer Expansion, plus information on New Products, * and Product Reviews. I understand that there will be no charge * for answers to questions printed in the Newsletter.

Cost \(\$ 15\) USA \& Canada, \(\$ 30\) foreign.
Name \(\qquad\) Mail payment to
Address \(\qquad\) Dynamic Electronics Inc
City
State \& Zip \(\qquad\) Hartselle, AL 35640
* Enclosed is a check charge to VISA __ MC \(\qquad\) Number \(\qquad\) Exp. \(\qquad\) * *```


[^0]:    $1 \varnothing$ ?"BLOCK MOVE ML PROGRAM
    $2 \varnothing$ ?"cOPYRIGHT (c) 1986
    $3 \varnothing$ ?"dYNAMIC eLECTRONICS iNC.
    4Ø ? "PROGRAM 9-2-86
    45 'SET UP THE VECTORS
    $5 \emptyset$ INPUT "ENTER BEGINNING OF DA TA"; X
    $60 \mathrm{M}=\mathrm{INT}(\mathrm{X} / 256): \mathrm{L}=\mathrm{X}-256 * \mathrm{M}:$ POKE

[^1]:    Want more memory for your 64K computer? Most programs are designed for a 3'K computer. We now include bankswitching software at no extra charge so that our 128 K memories will give you access to $4-32 \mathrm{~K}$ memory banks.

    The assemblies consist of a second set of chips with sockets mounted on them. You remove your chips and plug in our assemblies. Your chips are then plugged into the sockets. A miniature toggle switch is included that allows hardware selection of either 64 K bank. The banks are completely independent and you can put any program in either bank.

    Programs can also be placed in the normally unaccessable second 32 K of memory in each 64 K bank. This means you can have use of $4-32 K$ programs.

    We have upgrades for the 8 chip 4164 memories plus the 2 chip 41464 Coco-2 computers. For soldered in chip assemblies, we can install the upgrades. Call for details.
    $\begin{array}{llllll}\text { ME-10 } & 128 K & \text { for } & 8 \text { - chip } & 4164 & \$ 49.95 \\ \text { ME-12 } & 128 K & \text { for } & 2-\operatorname{chip} & 41464 & \$ 49.95\end{array}$

[^2]:    T\&D SUBSCRIPTION SOFTWARE, P.O. BOX 256C, HOLLAND, MI 49423 (616) 396-7577

