Dynamic Color News Radio Shack Color Computer magazine
 $\$ 1.95$

Easter
$105-9$

DYNAMIC COLOR NEWS is published monthly by DYNAMIC ELECTRONICS, INC., P.O. Box 896, Hartselle, AL 35640, phone (205) 773-2758. Bill Chapple, BA, BSE President; Dean Chapple, Sec. \& Treas. ; John Pearson, Ph. D. Consultant.

Entire Contents (c) by DYNAMIC ELECTRONICS INC., 1988. DYNAMIC COLOR NEWS is intended for the private use of our subscribers and purchasers. All rights reserved. Contents of this magazine may not be copied in whole or in part without written permission from DYNAMIC ELECTRONICS INC. Subscriptions are $\$ 18 / y r$ for U.S.A. \$20 Canada \& Mexico, \$30 other foreign.

The purpose of this magazine is to provide instruction on Basic \& Machine Language programming, Computer theory, operating techniques, computer expansion, plus provide answers to questions from our subscribers.

The submission of questions, operating hints, and solutions to problems to be published in this magazine are encouraged. All submissions become the property of Dynamic Electronics if the material is used. We reserve the right to edit all material used and not to use material which we determine is unsuited for publication.

We encourage the submission of Basic and Machine Language Programs as well as articles. All Programs must be well documented so the readers can understand how the program works. We will pay for programs and articles based upon their value to the magazine. Material sent will not be returned unless return postage is included. Basic \& ML programs should be sent on a tape or disk \& comments should be sent as a DAT or TXT file.

CONTENTS

* The Marriage of Machine . . 4 Language \& Basic
* Area Code 11
\# OS-9 \& Basic 09 14
* Editor's Comments 16
* Taking Control (Part 7) . . 17
* Fourth (Part 2) 21
* Fast Dir (program) 29
* Ham Radio \& Computers . . . 34
* Tuning Meter Program . . . 35
* Product Reviews 40
* Questions \& Answers 41
* Atlanta (Picture) 43

Advertizer's Index, Clubs,. 47
Bulletin Boards, Pen Pals

* Included in DCN on Disk or Tape.
\# OS-9 Programs included in DCN on DISK.

by
 John Galus

Basic is an excellent language to use for most computer applications but, sometimes it is just to slow for our programming needs. This is when Machine Language (ML) comes into play. Although, as many of us have discovered, Assembly language is difficult to learn, even if a programmer has a modest knowledge of Assembly language. It's possible to take advantage of the speed of ML by creating useful subroutines and linking them to our Basic programs. The hard part of using this method is understanding how to link the two programs together and executing them using the Basic commands that give us this capacity.

There are two ways that we can execute a ML routine from a Basic program. One is using the EXEC command and the other is the USR command. We use the EXEC when we want to Execute a ML routine or program directly. The routine may return to the calling program or not, depending on the type of program we are running. Usually, after loading a ML program we execute it causing the ML program to take control of the computer. We can also use the EXEC command to "call" a stand alone ML subroutine from Basic that does not require parameters from the calling program.

EXEC 44539

By executing the above ROM routine the computer will wait for a keypress. This call can take the place of the Basic line.

10 IF INKEY\$="" THEN 10

A parameter can be thought of as data or information needed by or obtained from a subroutine. The number, or numbers, needed from a calling program by a subroutine to perform its function will be called the Input parameters and the data that we obtain from this subroutine at the exit of this routine will be known as the Output parameter. The Calling program is simply the Basic program in which the subroutine was called or executed.

The other method of calling ML subroutines in Basic is using the USR instruction. The USR command allows us to have up to ten seperate ML routines in our Basic program. The first thing we must do after creating a ML routine, which we wish to call from our Basic program, is to decide where we want it to reside in memory. Usually we place the subroutine high in memory. Make sure that the routine will fit in memory by testing it using the in memory function of your Editor/Assembler. Once we have a ML routine and have decided where to place it
in memory, we need to reserve a area of memory for it using the CLEAR command so that the routine does not get written over by our Basic program. If our routine were located starting at HEX $\$ 7 \mathrm{FOO}$ then we could do the following using the CLEAR command to protect the program:

1 CLEAR 200,\&H7EFF

Remember to clear at least one memory position less than the address of the start of the ML subroutine. In the above example, the CLEAR specifies that the highest Basic address will be \&H7EFF.

A USR function ML routine can be loaded from cassette or disk using the CLOADM or LOADM commands. We could also place the subroutine into memory by putting the routine into DATA statements and Poking it into memory (See Basic Listing 1). Once the program is in memory we must define its starting location by using the DEFUSR or Define User function. Since we have ten possible subroutines to specify, we place the number, 0-9 after the DEFUSR statement to define the entry address of the subroutine we want to use. For example, if we wished to place a subroutine for the USR function zero in memory starting at HEX $\$ 7 F 00$ we would write the DEFUSR instruction as follows.

DEFUSRO $=\& \mathrm{H} 7000$

Now whenever the USR command is found in our Basic program the ML routine starting at the address specified by the corresponding DEFUSR instruction will be executed. If we wish to return to Basic after executing this routine called by the USR function the subroutine MUST end with a RTS (Return) or jump to a routine that ends with this instruction. The USR function which calls a ML routine takes the following format.

```
Z = USRO(0)
```

OR $\mathrm{Z} \$=\operatorname{USRO}\left({ }^{\prime} \mathrm{A}\right.$ ")
The number after the USR can be any number from 0 to 9 , corresponding to the routine that you are executing. The value held in the () can be either a number or string and is called the "argument". This argument is passed to the ML routine. The result on the exit of this routine is assigned to the variable placed before the equal sign. A numeric argument must be assigned to a numeric variable and a string argument must be assigned to a string variable. If the variable is not the same, a "type mismatch" error will occur. If the Input or Output parameter is not required, then these parameters in the USR function are termed "dummy" arguments, since they are required for the syntax of the USR function but, not needed by the ML. We usually just place a zero in the USR argument when it is not needed (see Listing 1).

Some ML routines requires that one or more parameters are to be passed to it from the Basic calling program. One two byte parameter or argument can be passed with the USR function. This argument can be a numeric or string argument. If the argument is numeric, when a USR function is executed the x register is pointed to the Floating Point Accumulator (FPAC) that holds the numeric argument. This FP (Floating Point) value can be used to perform an arithmetic function, as in Assembly Listing $1 / B a s i c$ Listing 2. Since an Assembly language routine cannot deal directly with FP numbers a numeric argument can be accessed by a routine by calling the ROM subroutine at \$B3ED named INTCNV (see Assembly listing 2). This routine converts the number in the FPAC to an integer and places it in the D register. The numeric argu-

"The UIZARD'S CASILE" is a very special 'IANDY' 'Color Computer' magazine. we devote our entire magazine to the 'CoCo family'. Our articles inclde columns like: "Wizard's Corner", "Letters to the Editor", "Questions for the wizard", "PencilPals","Wizard's Castle Scoreboard", "Word Search", "Post-It-Notes", "Programmers Corner", "Software Reviews", "Hardware Reviews", "Doctor CoCo", "Mardware Modifications", "Adventure Mints", and "BBS UpDates". If you have been looking for a smaller more 'PERSONAL' version of a CoCo 'MAG' then we're 'EXACILY' what you've been looking for. Remember we're exclusively for owners of any of Tandy's Color Computers. We support CoCo's 1, 2, and 3.

\qquad \# \# We now have a 'BBS' devoted to \# \# 'Uploading' articles into our \# \# offices. You can place orders \# \# here also. BBS\# (704) $434-2629$ \# \#

Phone:. (.)

Are you always running out of disks???? Do you dread paying $\$ 1.50$ or more per disk? Now, the answer to all of your disk problems can be answered here at the 'CASILE'. We are offering only premium quality DSDD diskettes at under $\$ 1.00$ each. These are 'IOP QUALITY' guaranteed disks. If you ever get a bad one, just send it back for replacement. We will sell these disks in quantities of 10, 25, 50, or even 100 per pk. Prices each will be cheaper depending upon amount purchased. This brand of disks is one all of our members have used for over four years. We hardly ever find '1' bad disk for every purchase we make. If you are tired of paying top dollar for disks then try just one order from us. You don't have anything to lose and only SSMONEYSS to save.

NOTICE!

\# \# We now have a 'BBS' devoted to \# \# 'Uploading' articles into our \# \# offices. . You can place orders \# \# here also. BBS\# (704) 434-2629 \# \#
ment in the Basic USR command can be a number itself or a Basic variable.
$10 \mathrm{Z}=\mathrm{USRO}(100)$
$10 \mathrm{Z}=\mathrm{USRO}(\mathrm{A})$
Using the INTCNV ROM routine a numeric argument can only be an integer number from $+32,767$ to - 32768 . If it is a string. the argument the x register will point to is a five byte string descriptor block, where the first byte contains the length of the string, the third and fourth byte contains the address that points to the start of the string in memory, and the second and fifth byte are unused.

Z\$=USRO ("DYNAMIC COLOR NEWS")
In Assembly Listing 2, we use the information in the string descriptor block to print a space after each letter of the string sent to the ML routine, so that it is printed on the screen as follows (See Assembly listing 3/Basic listing 3):

D Y N A M I C C OLOR

You cannot use the INTCNV routine if the argument is a string. If we do we will get a type mismatch error.

To return a numeric argument from a machine language routine to Basic, we load the 16 bit D register with the value we want to pass and then call the ROM subroutine located at \$B4F4 called GIVABF. This routine converts the value in the D register to FP format and places it in the FPAC, which is stored into the variable in the USR function before the equals sign (see Basic listing 4, Assembly listing 3).

Sometimes we might need to pass a parameter to a subroutine that is greater then $+32,767$. We do this by tricking the USR function by placing the following lines in our Basic program
before the USR call.

$$
\begin{aligned}
& 100 \quad A=B \\
& 110 \\
& I F B, 32767 \text { THEN } A=A-65536 \\
& 120 \\
& Z=U S R O(A)
\end{aligned}
$$

Parameters can also be sent to a calling routine by poking the values into a memory area reserved for them.

If we need to find the location of a Basic numeric or string variable we use the Extended Basic VARPTR function.

For example:
$A=\operatorname{VARPTR}(B) \quad A=\operatorname{VARPTR}(A \$)$
In the above, the variable A will contain the location of the variable B and the location of the string descriptor block for the string $A \$$. This location can be sent by the USR and used directly by calling the ROM routine INTCNV at \$B3ED. A string variable can be located in the Basic program itself or the string stack. It's important to remember that VARPTR locations can move in memory so, it must be used just before the USR function to work correctly.

We can use this VARPTR function to pass arguments placed in a string. Since any character in a string can be of a value of 0 to 255, using the CHR\$ command we place arguments into a dummy string and then pass the strings descriptor block location to the ML which accesses the parameters in the string. I created a GET/ PUT like routine that passes four parameters within a string in Assembly Listing 4. In the Basic program, Listing 5. I use this routine to animate a simple figure. We can place the ML routine itself within a string and execute it using the VARPTR command. Using this method to place ML routines in strings can save us time and memory since. the program lines that contain the data and required to poke the routine into memory can be
eliminated after it has been placed in the string (see Basic Listing 6 \& 7).

There are a few restrictions when using this method you should keep in mind.
1.) ROUTINES MUST BE UNDER 256-BYTES LONG.
2.) ROUTINE MUST BE ABLE TO RESIDE ANYWHERE IN MEMORY, RELOCATABLE.
3.) ROUTINE MUST NOT USE ZERO, WHICH SIGNIFIES END OF BASIC STATEMENT, 34 QUOTES OR 13 CARRIAGE RETURN.

Be sure to place enough characters in your string to hold the
routine.
Another technique we can use is to place the routine in a REM statement within the first line of your Basic program (see Basic Listing 8). The memory locations 25 and 26 hold the address of the first Basic line in the program. We use this number and add six to skip the line number and the REM instruction. After stuffing a routine into a line using this method you can get rid of the extra lines as we did in the last example.

Examine how these techniques work and see if you can come up with some interesting routines using this method by yourself.

SPECIAL DEAL ON 500 PROGRAMS!

"GET 50 DISKS OR 50 CASSETTE TAPES FULL OF OVER 500 PROGRAMS. HERE IS WHAT YOU'LL RECEIVE:

* Over 250 Utility/Home Application Programs including a Word Processor, DataBase, Spreadsheet, Account Manager, 2 Basic Compilers, Terminal Programs, ROM Copies, Mail List, Machine Language Tutorials, Plus Much More!
* Over 200 exciting games including Warlords, Star Trek, Super Vaders, Solar Conquest, Horse Races, Football, Baseball, Frog Jump, Invader, Plus Much More! (Many machine language games)
* Over 30 adventures including The College Adventure, Dungeon Master, Space Lab, Ice World, Ship Wreck, Zigma Experiment. Plus 32K Graphic Adventures.
EACH INDIVIDUAL ISSUE SOLD FOR s9.00 EACH OR 3450 FOR ALL 50 ISSUES. WE SLASHED THE PRICE TO ONLY 149^{99}

REG. ${ }^{\text {s }} 450$

$\star \star$ THIS MONTH ONLY $\star \star$

Buy this package of 500 programs and receive a tree 6 month subscription. (A ${ }^{\circ} 35$ value)

VISA

THEGREATESTSOFTWAREDEAL ON EARTH JUST GOT BETTER!

THATS RIGHT! THIS MONTH WE'VE DROPPED OUR YEARLY SUBSCRIPTION RATE AN UNBELIEVABLE ${ }^{\circ} 10.0$ TO ENTICE YOU INTO SUBSCRIBING WITH US. GET 12 DISKS OR TAPES A YEAR CONTAINING OVER 120 QUALITY PROGRAMS. A SUBSCRIP. TION TO T \& D SOFTWARE CONSISTS OF 10 READY-TO-LOAD PROGRAMS DELIVERED BY FIRSTCLASS MAIL EVERY MONTH.
no we are not the same as the rainbow on táde. in FACT, MANY SUBSCRIBERS HAVE WRITTEN IN AND SAID THAT WE ARE MUCH BETIER THAN RAINBOW ON IAPE!

- 16K 6AK Color Computer OUR LATEST ISSUE CONTAINED
-Over 4000 SatisfiedCustomers 1. Accounts Recceinable 6. Foot Race - Beckissues Avaiable From
- July' 82 (Over 500 Programs)

Raingow
antukation

cantuckation
cean

2. Work Mate	7. Fipopy the
3. Calendar	8. ScreenCaloulator
4. Invasion	9. AbleBuibers
5. TipAoventre	10. Super Emor2

00010	
00020	,
00030	* ASSEMBLY
00040	* LISTING \#1
00050	
00060	: BY John galus
00070	*
00080	FOR
00090	* DYNAMIC COLOR
00100	NEWS MAGAZINE
00110	:
00120	
00130	-
00140	* SQUARE ROUTINE
00150	* X POINTS TO FPAC THAT
00160	: hold number to multiply
00170	: THIS ROUTINE USED ROM
00180	: MATH ROUTINES
00190	- FPAC1*FPAC2
00200	* RESULT IS LEFT IN FPAC1
00210	\times
00220	MATH JSR \$BC5F :FP1 - FP2
00230	JSR \$ BACC ; FPAC1 ${ }^{\text {² }}$ FPAC2
00240	RTS ; RETURN
00250	END MATH
00260	**:8\%
00270	
00280	* ASSEMBLY
00290	* LISTING \#2
00300	
00310	* BY JOHN GALUS
00320	
00330	* FOR
00340	- DYNAMIC COLOR
00350	* NEWS MAGAZINE
00360	
00370	
00380	
00390	* THIS ROUTINE EXPANDS
00400	* A STRING PASSED BY USR
00410	* FUNCTION
00420	
00430	STR LDB , X ;GET LEN STR\$
00440	TSTB ; TEST FOR ZERO LEN
00450	BEQ FIN : IF O LEN RETURN
00460	LDY 2,X ; POINT TO STRING
00470	LOOP LDA . Y + ;GET A CHAR
00480	JSR \$A282 : PRT IT
00490	LDA \#32 : LOAD A SPACE
00500	JSR \$ ${ }^{\text {a } 282 \text {; PRINT IT }}$
00510	DECB ; LEN=LEN-1
00520	BNE LOOP ; NOT DONE LOOP
00530	FIN RTS ; RETURN
00540	END STR
00550	
00560	:
00570	* ASSEMBLY
00580	* LISTING \#3
00	

00610	
00620	FOR
00630	DYNAMIC COLOR
00640	- MAGAZINE
00650	:
00660	
00670	
00680	* FIND SQUARE ROOT
00690	: USING ROM ROUTINES
00700	: TO PASS ARGUMENTS
00710	
00720	INTCNV EQU \$B3ED ; \# TO D
00730	GIVABF EOU \$B4F4 ; \# BACK
00740	SOR JSR INTCNV ; GET ARG
00750	LDX \#-1 ; INITIAL SQR
00760	LDU \#1 ;START ODD NUMBER
00770	PSHS U ;SAVE IT ON STACK
00780	LOOP LEAX $1, \mathrm{X}$; +1 TO SQR
00790	LDY , S ;GET \# FROM STACK
00800	LEAY -2,Y ; SUBTRACT TWO
00810	STY . S : BACK TO STACK
00820	ADDD , S ; SUBTRACT FROM D
00830	BCS LOOP ; NOT MINUS LOOP
00840	TFR X, D ; PUT SQR IN D
00850	PULS U ;GET \# ON STACK
00860	JMP GIVABF ; RETURN ARG
00870	END SQR
00880	
00890	
00900	: LISTING \#4
00910	
00920	* GET/PUT
00930	- RoUTINES
00940	
00950	* BY John Galus
00960	
00970	
00980	
00990	* GET/PUT ROUTINE
01000	
01010	- 1ST BYTE X POSITION
01020	* 2ND BYTE Y POSITION
01030	* 3RD BYTE PLAYER NUMBER
01040	- 4 TH BYTE GET/PUT FLAG
01050	
01060	ORG \$7000
01070	Par EQU \$b3ED ; GET Value
01080	POS EQU \$9298 ; CAL X/YPOS
01090	GET JSR PAR ; GET STR\$ \#
01100	TFR D.Y ;PUT IN Y
01110	LDB , Y ;GET LENGTH
01120	CMPB \#4 ; FOUR PARAMETERS
01130	BNE FIN; BAD SYNTAX
01140	LDU 2,Y ;GET LOCATION
01150	CHAR LDA .U+ ;GET X/Y POS
01160	STA \$BE ; X POS
01170	LDA .U+ ; Y POS
01180	STA \$CO
01190	PSHS U ;SAVE U

(Reviewed in Oct. 87 RAINBOW) Makes programming sensa-ginonal-looking graphics as easy as moving a joysfickl Converts gorecision orawings into "DRAW' commands which can be standfalone BASIC programs or merged into other programs. Also fincludes "DEMO" and "PAINT" programs. Requires a springgcentered joystick or touch-pad 32k ECB tape or disk $\$ 14.95$

? ENJGMA?

Transform your computer into an ultra-secret code machine capable of enciphering and deciphering in over 12 million virtually undreakable codes' (not simple substitution codes). Print hard copy or store \& retrieve coded data on tape or disk. Only the person who has the password can read ill 32 k ECB tape or disk $\$ 12.95$ GZ Y/riser
Just answer the prompts \& type your message: "EZ WRITER" will put it into perfect letter form and send it to your DMP or DWP. Protessional-quality, single-page letters every time! Do one letter or multiple copies for "personalized" mailings. Saves letters and mailing lists. Even does labels. Menu-driven. Undoubtedly the EZ-est letter writing system available! Free sample on request! 32k ECB tape or disk $\$ 19.95$

EZ MATH PACKAGE

FOUR superior educational "games". "RACEWAY", "GO TO THE TOP" (multiplication sables drill). "WORO PROBLEMS", \& "PYRAMID". Covers addition, subiraction, multiplication, \& division. Different levels of difficulty. Exciling graphics \& sounds. EZ and fun' 32k ECB tape or disk $\$ 19.95$

KEYBOARD COMMANDER

Probably the most exciting typing futor available for your CoCo. You are the commander of a space ship \& it's your job to shoot down alien letters \& words as they speed toward you \& artack your spaeeship-Exciung-Hi-Res acuon' 32x ECB tape or disk $\$ 24.95$ E.Z. FRIENDLY SOFTWARE

HUTTON \& ORCHARD STS - RHINECLIFF. NY 12574 • (914) 876-3935

01200
01210
01220
01230 LDX \#SAVE; TO SAVE AREA
01240 LDA , U+ ;GET PLAYER \# 01250 LDB \#12;12 BYTES HIGH
01260 MUL
01270 ABX ; ADD OFFSET
01280 LDB \#12 ;DO 12 TIMES
01290 LDA , U ; GET OR PUT
01300 CMPA \#1; DET=0/PUT=1
01310 BNE LOOF
01320 BRA PUT ; GOTO PUT
01330 LOOP LDA , Y ;GET A BYTE 01340 STA . X + ; SAVE IN MEMORY
01350 LEAY $32, Y$
01360 DECB ; ONE LESS
01370 BNE LOOP
01380 FIN RTS ; RETURN IF END
01390 PUT LDA , X + ;GET A BYTE
01400 STA , Y ; PUT IT ON SCREEN
01410 LEAY 32,Y ;UP ONE LINE
01420 DECB ; ONE LESS
01430 BNE PUT
01440 RTS
01450 SAVE RMB 100 ; SAVE AREA
01460 END GET

Dynamic Color News April. 1988

This telephone application program can be used to find area codes all over the United States and Canada. A state can be typed in and the major cities with their area codes will be displayed. Also if the 3 digit area code is entered then the state for the code will be printed. This program is provided as a courtesy of T \& D Subscription Software (See their ad on page 8) and is used by permission.

```
1 'AREACODE (C)1988 T&D SOFTWARE
2 CLS:PRINT"WHEN SEARCHING BY ST
    ATE/AREA, INPUT EITHER THE
    WHOLE NAME OF ASTATE OR CANAD
    IAN PROVENCE AND THE PROGRAM
        WILL BREAK IT DOWN INTO SPE
    CIFIC AREAS.
3 PRINT"IF YOU WANT TO SEARCH BY
        AREA CODE, SIMPLY INPUT TH
    E 3-DIGIT NUMBER AND THE PRO
    GRAM WILL TELLYOU WHICH AREA
    IS COVERED.
4 PRINT@484,"HIT ANY KEY TO CONT
```

INUE": : EXEC44E39
5 AA\$="BR3U3ERFDNL3D2
6 CC\$="BR4REGLHU2ERFBD3
7 DD $\$=" B R 3 U 4 R 2 F D 2 G L 2 B R 3$
8 EE\$ $=$ 'BR3NR3U2NR2U2R3BD4
9 OO\$="BR3BUU2ERFD2GLNHBR
10 RR\$ ="BR3U4R2FGL2RF2
11 PMODE4,1:PCLS5:SCREEN1,1:CCLO RO, 1
12 DRAW'BM70.160U100E5R8U9R9D9R5 7U9R9D9R8F5D100L100BM65,45R11 OFRFRFRFRF2D17NR42BD3NR42D10F 2R38E2U10BU3NL42U5HU2HU2HU2HU 2HU2HU2HULHULHULHULHULHUL16OB M65,45GLGLGLGLG2D1 7NL42BD3NL4 2D10G2L38H2U10BU3NR42USEU2EU2 EU2EU2EU2EU2EUREUREUREUREUREU R40
$13 \operatorname{CIRCLE}(120,110), 44,0: \operatorname{CIRCLE}(1$ 50,94), 7,0:CIRCLE $(135,80), 7,0$:CIRCLE(116,75).7,0:CIRCLE(98 ,83).7.0:CIRCLE (87.97), 7.0:CI $\operatorname{RCLE}(86,115), 7,0: \operatorname{CIRCLE}(94,13$ 2), 7,0:CIRCLE $(109,143), 7,0: C I$ RCLE(128,145),7,0:CIRCLE(144. 136), 7, 0:CIRCLE $(120,110), 18,0$

14 DRAW"BM107,106"+AA\$+RR\$+EE\$+A A\$:DRAW"BM107.11~"+CC\$+OO\$+DD \$+EE\$

Dynamic Color News April, 1988

15 DRAW"BM162,115G2L3GL3GL3GDFR3 ER3ER3ER2": PAINT (65.40),0,0:P AINT (40.80),0,0:PAINT (220.80) .0 .0
16 CIRCLE(120.110).48.0:DRAW"BM1 50.92D5BM134.78R3D2L3D3R3BM11 5, 73R3D2NL2D3L3BM96,81D3R4LU2 D4BM85,95NR4D2R4D3L4BM84,112N R3D5R4U3L4BM92,130R4DG3DBM107 , 140R4D3NL4D3L4U6BM126,143ND3 R3D3NL3D3L3BM142.134R3D5L3U5" : PAINT (120,85), 0,0:PAINT (72,1 SB), 0,0
17 DRAW"BM12.80L3GLGD2GD2GD2GD50 FDFDFDF2RFRFR58D3L59LHLHLHLH2 UHUH2UHUS5EUEUEUEUERERER4": PA INT(10.78).0.0
18 FOR X=1TO2000:NEXTX
19 CLS:PRINT@66."AREA CODE - LOC ATION FINDER
20 PRINT@135."FROM T\&D SOFTWARE
21 PRINT@169,"(E16)399-9648
22 PRINT@202."^^^
23 R\$="
H
IT ANY KEY TO CONTINUE
": FOR $Y=1$ TO LEN(RS)-32:PR
INT@484, MIDS(R\$,Y,23);:EXEC 4 3345: NEXT Y:FOR U=1508 TO 153 0: POKE U,PEEK(U)-64: EXEC 4334 5: NEKT U:EXEC 44539
24 GOSUB 63
25 CLS:INPUT"STATE OR AREA:";ST\$
26 PRINT@66."area": POKE1094.32:P RINT@71."codes": PRINT@79,"are as": POKE1108, 32:PRINT@85."cov ered"
27 PRINT"'";
28 FOR Z=1 TO 150
29 READ AC\$,RM\$,PL\$
30 IF AC $\$="{ }^{\prime \prime}$ THEN 34
31 AC=VAL (AC\$)
32 IF ST\$=PL\$ THEN SOUND 191,1:P RINT TAB(B)AC:"-";TAB(15)RM\$
33 NEXT Z
34 RESTORE:SOUND SO. 2
35 GOSUB 63
36 CLS:INPUT"AREA CODE:";AAS
37 PRINT@64,"area": POKE1092,32:P RINT@69,"covered": PRINT@82,"s pecific": POKE1114, 32:PRINT@91 , "area
38 PRINT"';
39 FOR Z=1 TO 150
40 READ AC\$,RM\$,PL\$
41 IF PLS =":"THEN 44
42 IF AAS = AC $\$$ THEN SOUND 191,1:P RINT PL\$;TAB(18)RM\$
43 NEXT 2
44 RESTORE:SOUND 50.2
45 GOSUB 63
46 DATA 201, NEWARK, NEW JERSEY, 20 2., DISTRICT OF COLOMBIA.203.A
2.,DISTRICT OF COLOMBIA,203,A LL, CONNECTICUT, 204, ALL, MANI TO BA, 205, ALL, ALABAMA, 206. SEATTL E.WASHINGTON, 207. ALL, MAINE, 20 8.ALL, IDAHO, 209, FRESNO, CALIFO RNIA. 212. NEW YORK EITY. NEW YO RK,213.LOS ANGELES.CALIFORNIA

47 DATA 214, DALLAS, TEXAS, 215, PHI LADELPHIA, PENNSYLVANIA.216.CL EVELAND,OHIO,217.SPRINGFIELD. ILLINOIS. 218 , DULUTH, MINNESOTA . 219. SOUTH BEND, INDIANA
48 DATA 301.ALL, MARYLAND, 302.ALL . DELAWARE, 303, ALL, COLORADO, 30 4.ALL, WEST VIRGINIA.305.MIAMI , FLORIDA, 306, ALL , SASKATCHEWAN . 307, ALL, WYOMING.308,NORTH PL ATIE, NEBRASKA, 309, PEORIA, ILLI NOIS, 312, CHICAGO, ILLINOIS, 313 , DETROIT, MICHIGAN, 314, JEFFERS ON CITY.MISSOU
49 DATA 315. SYRACUSE.NEW YORK. 31 - W. WICHITA,KANSAS. 317. INDIANAP OLIS. INDIANA, 318 , SHREVEPRRT, L OUISI ANA, 319, DUBUQUE, IOWA , 401 , ALL, RHODE ISLAND
50 DATA 402, LINCOLN, NEBRASKA, 403 , ALL, ALBERTA, 403, ALL, NORTHWES T TERRITORIES, 403. ALL, YUKON, 4 04. ATLANTA, GEORGIA , 405, OKLAHO MA CITY,OKLAHOMA,406, ALL,MONT ANA, 408, SAN JOSE,CALIFORNIA, 4 09. BEAUMONT, TEXAS, 412.PITISBU RGH, PENNSYLVANIA.413.SPRINGFI ELD.MASSACHUSE
51 DATA 414.MILWAUKEE,WISCCINSIN. 415.SAN FRANSISCO.CALIFORNIA. 416. TORONTO.ONTARIO.417.SPRIN GFIELD, MISSOURI. 418, UUEBEC. U EBEC.419.TOLEDO.OHIO
52 DATA 501.ALL,ARK.ANSAS. 502. LOU ISVILLE, KENTUCKY,503,ALL, OREG ON, 504, BATON ROUGE,LOUISIANA. 505.ALL, NEW MEXICO,506.ALL.NE W BRUNSWICK, 507.ROCHESTER.MIN NESOTA, 509, SPOKANE, WASHINGTON .512,SAN ANTONIO,TEXAS,513.CI NCINNATI, OHIO,514, MONTREAL, QU EBEC
53 DATA 515.DES MOINES.IOWA.516. HEMPSTEAD,NEW YORK,517.LANSIN G,MICHIGAN,518, ALBANY,NEW YOR K,519, LONDON, ONTARIO, 601, ALL . MISSISSIPPI, 602, ALL, ARIZONA
54 DATA 603,ALL, NEW HAMPSHIRE. 60 4.ALL,BRITISH COLOMBIA.605,AL L, SOUTH DAKOTA,606, COVINGTON, KENTUCKY,607,BINGHAMPTON, NEW YORK, 608, MADISON,WISCONSIN, 60 9. TRENTON,NEW JERSEY,612,MINN EAPOLIS,MINNESOTA, 613.OTTAWA.

ONTARIO.614, COLUMBUS.OHIO
55 DATA 615.NASHVILLE,TENNESSEE. 616,GRAND RAPIDS,MICHIGAN, 617 , BOSTON,MASSACHUSETTS,619,WES T FRANKFORT,ILLINOIS,619,SAN DIEGO, CALIEORNIA, 701, ALL, NORT H DAKOTA
56 DATA 702,ALL,NEVADA,703.ROANO KE, VIRGINIA, 704, CHARLOTTE, NOR TH CAROLINA, 705,NORTH BAY, ONT ARIO, 707 , EUREKA, CALIFORNIA, 70 9, ALL, NEWFOUNDLAND, 712, COUNCI L BLUFFS, IOWA, 713,HOUSTON, TEX AS, 714, RIVERSIDE, CALIFORNIA, 7 15, EAU CLAIRE, WISCONSIN, 716, B UFFALO, NEW YOR
57 DATA $717, H A R R I S B U R G, P E N N S Y L V A$ NIA,718, NEW YORK CITY, NEW YOR K, 800, ALL, TOLL FREE SERVICE, 8 01, ALL, UTAH, 802. ALL, VERMCNT. 8 03. ALL, SOUTH CAROLINA

58 DATA 804.RICHMCND.VIRGINIA, 80 5, BAKERSFIELD, CALIFORNIA,806. AMARILLO.TEXAS, 807 , THUNDER BA Y,ONTARIO, 808, ALL, HAWAII, 809, ALL, BAHAMAS, 809, ALL, PVERTO RI CO,809, ALL, VIRGIN ISLANDS, 812 , EVANSVILLE, INDIANA, 813, TAMPA , FLORIDA. 814, ERIE, PENNSYLVANI A

59 DATA 815, ROCKFORD, ILLINOIS, 81 6.KANSAS CITY,MISSOURI.817,FT . WORTH, TEXAS, 818, PASADENA, CAL IFORNIA. 819. SHERBROOKE, QUEEEC , 900, ALL, SPECIAL SERVICES
60 DATA $901, M E M P H I S$, TENNESSEE, 90 2.ALL, NOVA SCOTIA, 902, ALL.PRI NCE EDWARD I.,903, ALL, NORTHWE SI MEXICO, 904, JACKSONVILLE,FL ORIDA,905.ALL.MEXICO CITY. 906 , ESCANABA, MICHIGAN, 907. ALL, AL ASKA,912, SAVANNAH,GEORGIA
61 DATA 913. TOPEKA,KANSAS.914,WH ITE PLAINS.NEW YORK, 915, ABILE NE, TEXAS. 916, SACRAMENTO, CALIF ORNIA, 91日, TULSA, OKLAHOMA, 919. RALEIGH, NORTH CAROLINA
G2 DATA ****
63 PRINT@480,'SEARCH: $5 T A T E / A R E A$ OR aREA CODE":
64 A\$=INKEY\$:IF A\$=""THEN 64
65 IF $A \$=" S " T H E N 25$
66 IF $A \$=$ " A "THEN 36
67 GOTO 64
68 RETURN

SR-12®®AS PRINTERS

The superior $5 p-1200 \lambda s$ printer has features found in more expensive printers. They cen operate at 9600 baud and the 10 K buffer allows over two pages of storage within the printer freeing the computer while printing is being comple ted. It has 8 graphics modes and is compatible with COCO MAX and other graphics programs that have EPSON print drivers. It has near latter guality print and user defined charactera s stan oe enerated and downloaded. Compar rfffrisa speclifications before deciding ons sofintem

* Paper-out detection
* Automatic paper loacting
* Automatic paper ejectior
* Character pitch settings Nos switghes or commands)
* Variety of chacter fonts including Near Letter Quality, Propportional, \& Graphic printing.
* Form feed function, provided by switch or command.
* Self-Test printing
* Automatic Printing
* Double-Width Character mode
* Bold Character mode
* Double-Strike Character mode
* Italic Character mode
* Superscript/Subscript Character mode
* Buzzer function
* Internal Ram error detection
* Input data hexadecimal dump
* Download character function (userdefined character) A maximum of 128 domnload characters in Draft mode
* Standard mode/IBM mode, selected by using a dip switch (Epson compatible in standard mode).
* Optional Automatic Cut Sheet Feeder
* 10. 3 K -byte commundcations buffer (8.7 K -byte communications buffer wher using download chacter)
* Baud rates of $1290,2406,4800$, and 9600
* 185 Characters \& Symbols
* 49 International characters
* Print Modes: Pica-10CPI, Elite-12 CPI, Condensed-17CPI, Condensed Elite-20CPI
* 8 graphics modes consisting of s400. $576,840,720,8960,1920,1152$ \& \& or 9 dots vertical
* Select print type with front panel switches
* Cable for color computer is included
* Includes DYPRINT softhare for printing bannera or large graphica pictures

Order SP-1200AS and specify tape or disk softhare for DYPRINT. $\$ 228+\$ 55 / 4$.

Checke VISA or MC Cards
DYNAMIC IELICTRONYCS BOX B9日 (265) 773-2758
HARTSELLE, AL $3564 ®$

05-9 G BASICOS

An operating aybtem ia designed to make operations easier on the computer. The basic that comes with color computers is an operating system that is dedicated to using basic commands. It is "burned" into programmable read only chipe or PROMS and the computer automatically configures itself for basic when power is applied. Only the commands that are contained within the PROM can be executed by the computer when basic is loaded.

If more flexibility is destred a separate operating aystem can be loaded into the computer' в memory. The computer can then be instructed to take the commands given by the operating sybten. IBM compatible computera do not have an operating system. When the computer is turned on, an operating gyatem has to be loaded from a diak. This takes more time but adda the flexibility of uning a number of different operating aystems or programs with their own instructions.

There have been several operating systems for color computera. A very good and popular operating sy日tem ia FLEX which was marketed by Frank Hogg Labr. It has been discontinued. OS-9 is the operating system marketed by Radio Shack and it ia gaining popularity. An operating system generally handles files and input/ output tasks. However a computer's power is in its caiculating ability. 05-9 does not allow calculations and a version of basic or machine language programg must be used with oS-9 for calculationg. Unfortunately the veraion of basic that in in the PROMS is not recognized by OS-9. Because of this BASIC 09 was developed for color computers to be used with OS-9. The marriage of $0 S-9$ and BASIC 09 makes a very good combination. As instructions are written using BASIC. O9, they are compilled into machine language codes. This gives improved speed over Microboft Basic.

BO COLUMN WINDOW

Each month we want to look at some commands for the OS-9 operating syotem and then look at BASIC 09. We are using OS-9 level 2 for the color computer 3. The color computer 3 has many advantages over the earlier versiona. An 80 column display is one of the nicest features. When 05-9 is booted up a 32 character screen appears which is not very pleasing to the eyea. It would be nice to modify the operating aystem so that an 80 column reversed screen 15 available. To do this the startup file on the Basic 09 disk needs to be changed. To change a file we will need to do the following:
2. Create a new file.
3. Merge the new file.

Window 7 gives the 80 column display. To change the background color to black type:
display 1b 3302
33 is the code for the background and 02 is the code for black.

To change the text color to white type:
display 10 3200
32 is the code for text and 00 is the code for white.

To create a black border type:
display ib 3402
34 ia the code for the border and 02 1n the code for black.

Now let'e write the inatructions.
rename startup aa (ENTER)
Now delete startup as follow:
del startup (ENTER)
a will be our temporary file. Now build the new file and call it "xx".

```
build xx
iniz w% (ENTER,
shell i=/w7 <ENTER>
display ib 32 00 1b 32 02 1b 34
    O2 OC )/W7 (ENTER)
(ENTER)
```

Now merge aa with $x x$ and call the new file atartup.

```
merge aa xx , startup sENTERs
```

Ligt startup to make aure the additions are added. Now when DOS is typed from basic the 80 column window will be created. Press the clear key to access this window. If you are using a televiaion then a 32 column window will probably be better. Use the same procedure to customize your window.

EDITING FILES

The 0S-9 editor is different from the Microsoft basic editor. To enter the editor type

0S9: edit $x x$

Dynamic Color News April, 1988

where $x x$ is the name of the file to be edited. The symbols "E:" indicates the editor mode is activated.

LISTING LINES

The lines of the file can be listed by pressing the "l" key and the number of lines to list. Note this is the lowercase "L" key and not a one. To list 5 lines press 15. To move to the end of the buffer press the "/" key. To move to the top of the buffer press the "-*" keys. To move backwards 5 lines enter -5 . To move n characters to the right on the edit line type <n.

Inserting characters in a line is a little confusing. The change command has to be used for this. Suppose we have the following line:

This is atest program.

It is obvious that a space needs to be added between a and t. After the editor is brought up and the editor pointer is pointing to the line to be edited, type in the following:

```
c/at/a t/
```

To move n characters to the left on the edit line type $>n$. Let's list the most useful commands notice these involve the "*":

```
-* moves to top of buffer
+* moves to end of buffer
1* lists all lines
i inserts new line at pointer
    or skip the first space and
    type in the line
c allows character string to
    be changed. c/strl/str2/.
g ends edit mode
```


BASIC 09

To get the 80 column reversed screen modify startup on the OS-9 disk as discussed in the previous section. For a one drive system the following file will create a path for a single drive and load basic09.
$\operatorname{ch} x / d \theta / c m d s$
chd /dø
load basic09
A good name for the loader file is "go". This can be copied to the basic09 disk. To load basic09 just enter go. Then to run basic09 type Basic09 and the B: prompt will quickly appear. Programs written using basic09 are called procedures. As a command line is entered, it is compiled, and if there are any errors, they are displayed.

When writing a procedure it is not necessary to enter numbers for procedure lines. However if it is necessary to do any branching such as GO TO or GO SUB then numbers are required. It would be impossible to GO TO 10 if line 10 were not defined.

Basic09 is not as friendly as Microsoft's color basic. It falls between color basic and assombly. Each line is assembled as it is written. This makes it easy to spot errors. Also the error messages can be brought up from the error files. For a single disk drive enter the following:

OS9: load /d®/cmds/error

Now if an error number appears then enter error $x x$ where $x x$ is the error number. If you are in basic09 then enter Serror xx. Remember the \$ will link the command back to OS-9.

MEMORY PEEK PROGRAM

This month we wrote a memory peek program to demonstrate using the GOTO command. The procedure is called mem. To start the editing procedure enter:

B:edit mem
Next enter the lines as follows:

```
    E: 10 ?"enter memory"
    \(E\) : input m
    \(a=\) peek (m)
    \(a \$=\operatorname{chr} \$(a)\)
    ?"memory=";
    E: ?m
    E: ?"a="; a
    E: ? a\$
    E: goto 10
    E: C
```

After entering the lines they can be listed by typing list from the B: prompt. Also the program can be run from the B: prompt. Notice that the first space is skipped because it is reservod for commands. We used the command " q " to end the procedure. The listing of the program is as follows:

000010	PRINT "enter memory"
0013	INPUT m
0018	$\mathrm{a}=\operatorname{PEEK}(\mathrm{m})$
0023	as=CHR ${ }^{\text {(}} \mathrm{a}$)
002D	PRINT "memory=";
0039	PRINT m
Q03E	PRINT "a="; a
0048	PRINT a\$
604D	GOTO 10 Ready B:

The program only has one label which is 10. It allows memory to be looked at and displays the value in memory and the ASCII character of the value if it is a character that can be displayed on the screen. Remember that the main purpose of the program is to demonstrate the use of GOTO and the label or number 10 for the first line. This program is included on the back side of our DCN on disk.

Next month we will continue with more comrands and programs. Since Basice9 complies euch line as it is entered, its operation is similar to an assembler. Howover it uses basic commands which makes it a very useful programming language.

It is good to see Spring arrive. I am glad to see the warmer weather as we have had enough cold weather here in North Alabama.

Let me give some suggestions to beginners. A computer can be very discouraging if you are not familiar with how it operates. When a command is given, the computer has to know what instructions are associated with the command. It searches its memory and if it finds the command, then it executes the instructions associated with that command. If not, it will give an error message. This is especially confusing with OS-9 because all commands have to be loaded into memorv. With extended basic and disk basic. commands are contained within a read onlv memory (ROM) chip and are available at all times. When an operating system has to be loaded into memory, it may not be feasible to load all commands into memory. This is true with IBM compatible computers using MS-DOS as well as Radio Shack Color computers using OS-9. Os-9 is not for beginners but can be very enjoyable for those wanting a challenge. I did not like OS-9 until I tried Basic 09. With this combination. basic programs can be written and managed with the ©S-9 operating system.

Take things one at a time. A disk drive, printer, and modem all involve special commands. A disk drive has commands that are not required with cassette operation. Disks have to be formatted for the computer in use. Did vou know that IBM XT disks will work on color computers? I use the same disks for both. There are also commands for copying files, creating files, backing up a disk. etc. A printer has special commands too. You can select italics. double size, double strike, emphasized modes, plus graphics. It takes time to learn how to use each of these. For modem use, the baud rate, parity. word lenght, and number of stop bits have to be selected.

Some people want to learn evervthing at the same time which could lead to frustration. I have the same problem because I am involved with manv different things. I can onlv concentrate on one thing at a time and trv to shut out other problems until I have finished the one I am addressing.

I have some very bad news for those of you who are planning to increase your computer's memorv. The price of memorv chips has trippled within the last few months. A couple of vears ago American semiconductor manufacturers filed a suit against Japanese semiconductor manufa=turers. From what I have read, the Japa-
nese were dumping memory chaps on the U.S. market at prices below their cost. This had the effect of driving most U.S. manufacturers out of the memory chip business. Because of the suit, a tarriff was placed on these chife and the result is excessively high priced memory chips for U.S. consumers.

I just purchased chips for a 512 K upgrade for a color computer 3 and paid $\$ 8.40$ for each one. With 16 chips being required the order was in the $\$ 130$ range. We had been selling the complete upgrade for $\$ 89.95$. You can expect to pay in the range of $\$ 200$ for a 512 K upgrade if the trend continues.

Prices will of course drop again but not until this price spiral runs out. Of course the higher prices will slow demand and with United States manufacturers gearing up for production again maybe this crisis will ease soon.

We occasionally sell an IBM clone and have been offering 640 K units. Now we will be offering 256 K units unless our customers are willing to pay for 640 K units. Of course 256 K unite can be upgraded later and will run most programs. A local church is interested in purchasing a computer. They have an Apple but are interested in an IBM compatible computer. It would be hard to beat a color computer for handling their records, letters. and accounting. However many churches use IBM compatible computers and the ability to exchange programs is a great asset. There are numerous public domain programs available for IBM compatible computers which makes them attractive from that etandpoint. However there are also numerous public domain programs for the color computers. We have a growing collection and there are many others. This is a good and inexpensive wav to increase vour eoftware capatility. Sometrmes public domain software is not easy to use because there are no instructions. Instructions are included with some packages as "DOC". "TYT". or "DAT" files. These can be read into a word processor and the instructions printed on a printer. Our "LCADER/BAS" program included with each DCN on disk or tafe will read these files and print them on the ecreen or to a firinter.

We still need names of potential subscribers. I want to thank those of vou who have sent in names or requested copies to pass out at a club. If vou can help with this please let us know. Also if you are a memher of a computer club, own or have access to a bulletin board. or want a pen-pal. please fill out the information on the tear out sheet and eend it.tack. to us.

Thie is a geriee on baeic programming. Each month we cover a few programming commands and then give example programs for using them. Last month we discussed using edit commands. These commands are useful for correcting basic statements with errors or for adding additional commands to a statement. Commands are seperated in a line by using a colon (:). This approach saves memory because only one byte is required to seperate commands. If a seperate line number is used for each command, then 5 bytes are required. A line can contain many statements and if an error is detected then the edit commands can be used to correct the line eliminating the need to retype the line.

Let's suppose we want to edit line 325. Then we would type:

EDIT 325 (ENTER)

Line 325 will appear on the screen with the cursor on the first character. Forward movement of the cursor is accomplished by pressing the space bar or a number and then the space bar. For example to move forward 25 spaces enter:

25 sp where sp means to press
the sprace tuar.
The cursor is moved backwards by pressing a number and the left arrow. By just pressing the left arrow key the cursor moves back one character.

To delete a character just press the "D" key for each character to delete. This is generally easier than counting the characters, entering a number and pressing the "D" kev.

To insert characters, move the cursor to the location for the insertion and press the "I" key. Characters can then be inserted. To terminate this procedure hold down the shift key and press the up arrow key. Then press the "L" kev to list the line.

To extend a line press the "X" key. This moves the cursor to the end of the line and allows characters to be inserted. To exit and remain in the edit mode, hold down the shift kev and press the up arrow. Then press the "L" key to return to the first character and list the line.

Being able to edit basic programs is necessary if a program has a problem. Some people are not interested in programming but a knowlege of editing com-

Dynamic Color news April, 1988

mands can be used by them to correct programs with errors.

An easy way to write or modify basic programs is to. use a word processor that can handle ASCII files. The program to be edited should be loaded into the computer and saved as an ASCII file. To do this add a ",A" after the program name.

SAVE "FIRST",A
The word processor can then read in the program as an ASCII file. Modifications can be made and the program can the be saved with the /BAS extension. Before saving the program make sure that each line number is the beginning of a line. For long lines, the word processor will place commands on the next text line. Basic will only recognize numbers at the beginning of a line. You can usually move from one line to the next with the arrow keys depending upon the word processor. The word processor can also be used to write basic programs. This is a quick way to spot errors.

COMMANDS

The sound command is easy to use and can be used for many purposes. For converting data. a sound can be made to alert the operator when the computer is finished. It can also be used as sound an alarm or to add excitement to games. The sound command requires two parameters which are the tone and duration. An example is SOUND 150,5. The tone is 150 and the duration is 5. The format is:

SOUND tone, duration

Notice that a comma seperates the arguments. The frequency of the sound increases as the first number increases. SOUND 200.1 is higher in pitch than SOUND 50.1. The tone and duration can vary from 1 to 255. Fortunately
sound is a quantity that we can physically hear if we are not deaf. Let's write a simple sound demonstration program.

```
5 'CONT-1
    ?'SOUND DEMONSTRATION PGM
    ?"THIS GENERATES A SOUND AND
    DISPLAYS THE NUMBER FOR THE T
    ONE
30 ?''A FOR-NEXT LOOP WILL BE USE
    D TO CHANGE THE TONE VALUES.
    ?'THE STEPS CAN BE CHANGED
    INPUT'ENTER STEPS':S
    ?"INCREASING THE TONE
    FOR J=1 TO 255 STEP S
    SOUND J. 1
    ?'TONE NUMBER IS "J
    NEXT J
    ?"DECREASING THE TONE
    FOR J=255 TO 1 STEP -S
    SOUND J,1
    ?"TONE NUMBER IS "J
    NEXT J
    ?'NOW INPUT TONE NUMBERS"
    INPUT'TONE NUMBER'; \(N\)
    SOUND N,1
    GOTO 130
60. 130
160
```


USING PEEKS AND POKES

These powerful commands allow us to store values in memory and recover them. The lower memory locations contain vectors or pointers that point to other memory locations. For example the values in 150 and 151 determine the baud rate for a printer. The values in 136 and 137 determine the location of the cursor on the screen. A memory location contains a byte which can only represent a value from 0 to 255. Two bytes are required for numbers greater than 255. The lower byte is called the most significant and its value is multiplied by 256. The upper byte is called the least significant. This value is added to the most significant to determine the value of the two bytes. Let's look at a demonstration program for

Get a REMUSIC demo for $\$ 2.00$

Since the benefits of REMUSIC 1.0 must be heard to be appreciated, CODIS ENTERPRISES offers a diskette containing a sampling of the qúaiity of music of which REMUSIC is capable. Beat of ell, it requires no additional hardware. Ta receive this audition, send $\$ 2.00$ to CODIS ENTERPRISES for the demo disk and a coupon entitiing you to a two-dallar discount on REMUSIC 1.0.

Dynamic Color news April, 1988

determining the value of a two byte pointer.

```
1 MS=PEEK(M): LS=256*PEEK(M+1)
2 V=256*MS+LS
```

To convert a value into the two components it is necessary to do the following:

```
1 MS=INT(V/256):LS=V-256*MS
```

The INT command takes the integer part of the quotient and drops the decimal. The INT(9/2) is 4. Actually $9 / 2$ is 4.5 but the decimal is discarded with the INT command.

There are some very important pointers that should be remembered. A few are as follows:

```
25,26 - Beginning of basic.
27,28 - Ending of basic.
136,137 - COCO 2 cursor.
150,151 - Printer baud rate.
```

The cursor can be moved by changing the values in 136 and 137. The first top left hand location is 1024 and the bottom right hand location is 1534. Let's write a program to display these pointers.

10 PRINT"CONT-2
20 PRINT"POINTER DEMO PROGRAM
30 PRINT"THE MOST SIGNIFICANT IS IN THE
40 PRINT'LOWER BYTE AND THE LEAS T SIG-
50 PRINT'NIFICANT IS THE UPPER B YTE. THE
60 PRINT"MOST SIGNIFICANT IS MUL TIPLIED
70 PRINT"BY 256 AND ADDED TO THE LEAST
80 PRINT"SIGNIFICANT TO FORM THE VALUE
90 PRINT"OF THE POINTER.
100 INPUT"PRESS ENTER TO CONTINU E"; X:CLS
110 BE=256*PEEK (25) $+\operatorname{PEEK}$ (26)
$120 \mathrm{EN}=256 * \operatorname{PEEK}(27)+\operatorname{PEEK}(28)$
$130 \mathrm{PR}=256$ * $\operatorname{PEEK}(150)+\operatorname{PEEK}(151)$
140 PRINT"THIS PGM BEGINS AT"BE
150 PRINT"AND ENDS AT"EN
160 PRINT"PRINTER VALUE="PR
$170 \mathrm{CU}=256 * \operatorname{PEEK}(136)+\operatorname{PEEK}(137)$
180 PRINT"CURSOR VALUE='CU
190^{\prime}
These are just a few examples of using memory peeks and pokes. Locations from about 20 to 400 in lower memory are reserved mainly for vectors that direct various operations to different memory locations. Machine language subroutines can be placed into specified memory areas by using pokes. The values can be read from data statements and poked into memory. They can be poked directly into memory from a program similar to the following:

10 CLS:PRINT"CONT-3
20 PRINT"MEMORY PEEK AND POKE PG $M^{\prime \prime}$
30 INPUT'ENTER MEMORY';M
40 PRINT"1 PEEK MEMORY
50 PRINT"2 POKE VALUES INTO MEMO RY
60 PRINT"3 POKE CHARACTERS INTO MEMORY
70 INPUT"ENTER NUMBER ";X
80 ON X GO TO 100,150,190
90 GOTO 10
100 PRINT"THIS PEEKS MEMORY
$110 \mathrm{~A}=\operatorname{PEEK}(\mathrm{M}): \mathrm{A} \$=\mathrm{CHR} \$(\mathrm{~A})$
120 PRINTM;A;A\$
$130 \mathrm{M}=\mathrm{M}+1$:GOTO 110
140 ,
150 PRINT"THIS POKES VALUES INTO MEMORY
160 PRINT"MEMORY="M;:INPUT'ENTER VALUE"; V
170 POKE M,V:M=M+1:GOTO160
180 •
190 PRINT"THIS POKES CHARACTERS INTO MEMORY
200 A=PEEK(136): B=PEEK(137) 'HOL
D CURSOR VALUES
210 PRINT@O,'MEMORY='M:POKE 136, A: POKE137, B
$220 \mathrm{X} \$=I N K E Y \$: I F \quad X \$=\cdots$ THEN 220
230 X=ASC (X\$) ; POKE M,X:PRINTX\$;
240 M=M+1:GOTO 200
250 '
Next month we will continue with more on PEEKS and POKES.

Dynamic Color news April, 1988

1st 2nd 3rd

By
 Tim Tillman

Welcome Back! This is article two in my introductory series on the language FORTH. FORTH is a high level language like PASCAL, BASIC, C and many others. We will be using Dynamic Electronic's PD-10 Color Computer FORTH. You can get your copy on tape or disk for only $\$ 6.00$. Last month we saw several simple FORTH words, the stack, stack notation, single length numbers, and several math words that operate on them. In this month's article we'll wrap up single length numbers and go on to unsigned and double length numbers. We will also introduce the math words associated with these new types of numbers. Next, we'll look at a series of words that manipulate the order of numbers on the stack. Then, we'll look at two decision word constructions - DO ... LOOP and IF ... ELSE.

In last month's article we saw the words + - \quad and / , the four basic math operators used with single length numbers (-32768 to +32767). These words add, subtract, multiply, or divide the two top numbers on the stack and return the results to the top of the stack. There are four related words that can be used when speed is of the essence. These words are listed below:

WORD STACK PRONUNCIATION

$1+$	$(n 1--n 1+1)$	one-plus
$1-$	$(n 1--n 1-1)$	one-minus
2^{*}	$(n 1--n 1 * 2)$	two-times
$2 /$	$(n 1--n 1 / 2)$	two-slash

Editor's note: In the charts for this article, continuations for a column are in the next line in the same column. Notice in the previous chart STACK NOTATION is the heading for the second column.

These words are excellent for incrementing counters or loops. It is faster to use these words than to write them out because they are part of FORTH's vocabulary defined in machine code. Their operation is simple, but here is an example to get you into FORTH gear.
: COUNTS 4 O DO I $1+$ DUP CR . LOOP ;

Let's review the above word for the elements of a FORTH definition. The first word in the definition, : (COLON) tell's FORTH that a new definition follows. The next word COUNTS is the name of the new word. The next two numbers are elements of the DO ... LOOP construction; we'll discuss the particulars of the DO ... LOOP later in this article. The word I pushes the number of the loop onto the stack. 1+ adds one to the top number on the stack, and DUP duplicates the number on top of
the stack. CR prints a carriage return, and . prints the top number on the stack to the screen. LOOP ends the DO ... LOOP construction, and ; closes the new definition.

This word, COUNT5, prints the numbers 1 through 5. To execute COUNT5, type in the word followed by an (ENTER). Don't worry about the new words, we'll get to them later

There are two final single length words remaining to discuss. These words are */ (STAR-SLASH) and */MOD (STAR-SLASH-MOD). Here are the new words and their stack notations:

WORD	$\begin{gathered} \text { STACK } \\ \text { NOTATION } \end{gathered}$	PRONUNCIATION		
	n1 n2 n3 -	n4)	$\begin{aligned} & \text { STAR- } \\ & \text { SLASH } \end{aligned}$
*/MOD	$(\mathrm{n} 1 \mathrm{n} 2 \mathrm{n} 3$			STAR-
	- n4 n5			-MOD

The difference between */ and */MOD is the difference between / and /MOD. */MOD and /MOD both return the result and remainder, while */ and / return only the result. Another important fact about these two words is that they employ a double length number during the step ($n 1 * n 2$). We will discuss double length numbers later in this article. For now, it is enough to say that we can now exceed our previous range limits of (-32768 to +32767). A good use for */ is to calculate percent. To see */ in action, let's define a word called \% (PERCENT). The definition of $\%$ might look like this:
: \% 100 */ . ; (3Starting
FORTH4, Leo Brodie 1981)
Now we can solve for percent using our new word, \% . Try a few examples, such as:

100030 \% . (ENTER)
293763%. (ENTER)
1050011 \% . 〈ENTER〉
*/ and */MOD are fairly easy to understand; but to get a firm grip on these two words, let's look at unsigned and double length numbers.

As I mentioned in last month's article, Forth recognizes various types of numbers. We have already seen the first type, single length numbers. As you know by now, the range of single length numbers is -32768 to +32767. But, I have not explained why. Well, here goes nothing.

Most people using computers know that on its most basic level the computer operates in binary code, ones and zeros. This is also the way that numbers are stored. We also know that each one or zero is refered to as a bit. With only one bit, the largest number that we can express is one and the smallest is zero. With two bits, and both bits on (or one), the largest number is three. With three bits, the largest number is seven. Refer to the following chart for numbers containing up to 16 bits:

3BIT \#4	3POWER	3VALUE4
	OF TW	

1	0	1
2	1	2
3	2	4
4	3	8
5	4	16
6	5	32
7	6	64
8	7	128
9	8	256
10	9	512
11	10	1024
12	11	1048
13	12	4096

14	13	8192
15	14	16384
16	15	+32768
		if all on

By adding the values of the first fifteen bits, we arrive at a figure of 32767 . This is the largest number that we have known so far. The sixteenth bit is called the sign bit. If the sign bit is one, the number is negative. If the sign bit is zero, the number is positive.

Of course, a computer would not be very useful if its largest number were only 32767. This brings us to the next type of number, unsigned single length numbers. Unsigned implies that the number is positive. Therefore the sixteenth bit is not used to represent the sign of the number. If you add the values of the fifteenth and sixteenth bits, the result will be 65535. We now see, that the range of unsigned single length numbers is 0 - 65535.

Forth calls a group of sixteen bits (2 bytes) a cell. We can say, that single length and unsigned single length numbers both occupy one cell on the stack. Later we'll see words that manipulate the order of the cells of the stack. Of course. at times, we need larger numbers when we work with data.

The double length number has the largest range in the FORTH system. As its name implies. these numbers occupy two cells on the stack. If the double length number is signed it has a range of -1073741824. to 1073741823. If the number is unsigned its range is from 0 . to 2147483648. This is certainly large enough for most coco applications. It is also important to note that in order for FORTH
to recognize a double length number that it must be terminated with a decimal point. And, double length numbers must also be integers. There are no digits to the right of the decimal point. We will see ways of outputing decimal values in the next article. There are special words that manipulate two cells at a time, and we also have math words that operate unsigned and double length numbers. We'll see these words shortly.

But, before we go on, we'll need some additional words for sending numbers from the stack to your CoCo's Screen. Last month we used the word . to print single length numbers. This month, I will give you three more words to handle unsigned and double length numbers. The new words are listed as follows:

3WORD PRONUNCIATION STACK
NOTATION4

U. u-dot	$\left(\begin{array}{ll}\text { u } & - \\ \text { D. } & \text { d-dot }\end{array}\right.$	$(\mathrm{d}--)$

UD. u-d-dot (ud --)
In the preceeding stack notations, we have three new abbreviations. The u stands for unsigned single length numbers. The d stands for double length numbers, and the ud stands for unsigned double length numbers. From the notations, we also see that these new words behave much like . They take the top number from the stack and print it on the CoCo's screen. They do not return a value to the stack. There are several other output words, but we'll learn more about them in future articles. Now let's see some more math words.

PD-10 Color Computer FORTH has a very limited set of words that operate on unsigned and double length numbers. The six words are listed as follows,
along with the output words associated with them:

involving $D+$ might be in order. The word $D+$ takes two double length words from the top of the stack and returns a double length result to the top of the stack. Since there is not a word defined to subtract double length numbers, we can define one using D_{+}and DMINUS :

```
: D- DMINUS D+ ;
```

The stack notation for DMINUS is (d1 -- -d1). To avoid confusion, let's call our new word, D- (d-dash). Here's what happens when D - is executed. DMINUS multiplies the top number on the stack by -1 and returns the negated number to the top of the stack. D+ then does its thing. returning a double length number to the top of the stack. Try using this example with D- :
200000. 100000. D- D.

Superb Soエtwoxac At Iow, Low Prices:: :
PD Pak - \$59.95

Digital Driver - \$18A7
Orer 400 public domaln programs. Features 5-volce music. graphics, utilities, games. Many are better than commercial programs:!! Increase your software library at less than 15 cents per flle!! There's no other deal as good as this one, so don't pass $1 t$ up!

Master Disk Catalog -\$18.76

Catalog up to 14000 (no misprint!) disk files at once:! Features Add, Delete, 5-colum print, and screen print. Excellent for *LARGE* librarles. Req. 16 K CoCo, disk. CoCo 3 Compatiable:

Send check or monep order to:
> * 10 day money back guarantee

Digital Innovations 1859 East 8 th street Mesa, AZ 85203-6649 Please make payment payable to ANDREV BARTELS

QUALITY
is our business!

Dynamic Color News April. 1988

100000. If you forgot a decimal or used . instead of D. or UD., you would have gotten an incorrect response. Now we can go on with stack manipulators.

Many times during the flow of a FORTH word written by a programmer, the order of numbers on the stack will not be what is required at the moment. This is why FORTH has words designed to change the order of numbers on the stack known as stack manipulators. There are two subgroups of manipulators. The first group is designed to operate with single length numbers. The second group is designed to operate on double length numbers or sets of two single length numbers. The first set is listed below:

number on the stack. Dup was used in our example COUNTS earlier in this article. PD-10 provides us with a word related to DUP called -DUP. -DUP will only copy if the top number is not equal to zero.

SWAP, OVER, and ROT are fairly self explainitory by their stack notations. So, we can go on to DROP, ROLL, and PICK. DROP takes the top number on the stack and disgards it with no further action. ROLL can be thought of as an extended ROT. ROLL requires an argument in the stack notation n. An example would help.:

5 ROLL (n1 n2 n3 n4 n5 n6 -- n1 n3 n4 n5 n6 n2)

In the above example, ROLL takes the fifth number from the top of the stack, and places it on top.

The phrase 3 ROLL is the same as ROT. PICK operates somewhat differently as can be seen from this example:

5 PICK (n1 n2 n3 n4 n5 n6 -- n1 n2 n3 n4 n5 n6 n2)

Here PICK copies the fifth number to the top of the stack. This is all of the single length stack mainpulators provided with PD-10. Now we can continue with double length manipulators.

Double length manipulators have two functions. First, they can manipulate double length numbers. Secondly, they can be used to manipulate pairs of single length numbers. PD-10 provides only one double length manipulator, 2DUP (two-dupe). I have defined four others for you: 2DROP, 2SWAP, 2OVER, and 2ROT. These are standard FORTH words explained in 3Starting FORTH4. You may try defining 2PICK and 2ROLL. I would be interested in seeing your defi-
nitions. Since their operations are easy to understand, I will simply present their stack notations below:

And here are the four definitions:

```
: 2DROP DROP DROP ;
: 2SWAP 4 ROLL 4 ROLL :
: 2OVER 2SWAP 2DUP 6 ROLL }
    ROLL 2SWAP ;
: 2ROT 6 ROLL 6 ROLL :
```

If you can come up with different definitions for the above words I would be interested in hearing from you.

Now that we have seen the basics, let's look at two different control structures provided by PD-10 CoCo FORTH. These two structures are IF ... ENDIF and DO ... LOOP . Unlike BASIC, FORTH has no GOTO or GOSUB commands. They require line numbers. which FORTH does not have. GOTOs and GOSUBs can make a program difficult to read, update, and document. It may be tough going for a while, but soon you won't even miss them.

The first control structure, that we'll look at, is IF ... ENDIF. This phrase operates in much the same manner as the IF ... THEN Phrase described in 3Starting FORTH4. Here is an example of a word using IF ... ENDIF :
: ? TWENTY DUP $20=$ IF ."
TWENTY \quad " ELSE
LESS " ELSE

MORE "

ENDIF ENDIF DROP

To execute ?TWENTY type any single length number followed by ?TWENTY and 〈ENTER〉. Here's what happens upon execution. The word IF checks the preceeding condition, $20=$, and if the number on top of the stack makes the condition true, execution proceeds to the phrase following IF. If the condition is not true, then the execution proceeds to the word phrase following ELSE. The word ELSE is not required in all instances. However, each IF does require an ENDIF . If you nest IF ENDIF statements, it is important not to let your definition become too convoluted.

There are a few other condition words included in PD-10. These are:

```
3WORD STACK DESCRIPTION4 NOTATION
```


In the previous stack notations
the r represents a logical result, if true (-1), if false (0).

The DO ... LOOP is the other type of control structure that we will discuss in this article. It is known as a definite loop, because we know exactly how many times it will repeat itself. Below, we can see the basic elements of the DO ... LOOP

```
    : A-LOOP 10 0 DO ." TESTING
" CR LOOP ;
```

The first element after the new word's name is a single length number (+ or -) setting the upper limit of the loop. The next number sets the lower limit. The word DO tells the CoCo where the actual loop begins. Any following words are executed with each pass thruogh the loop. Finally. the word LOOP terminates the looping. Here is a noisy demonstration of a DO ... LOOP in action. First open CoCo's sound port by typing SPORT <ENTER). Then try the following definition.

LOOP : NOISE 5000 O DO RND BIP

Within the DO ... LOOP the word RND places a random unsigned single length number on the stack. The next word, BIP. takes that number and sends it to the sound port. If you had the volume turned up on your monitor, you would have heard 2-3 seconds of static or white noise.

Like IF ... ENDIF , DO
LOOP may be nested as in this example:
: NOISE2 100 O DO I DUP * BIP 50 O DO I SQRT BIP LOOP LOOP :

In this definition, we see two new words. I and SORT. I copies
the current number from the lood counter to the top of the stack, and SQRT takes the square root of the number at the top of the stack. As you might guess, the phrase, DUP * , will square the top number. One final thought, just as in BASIC, you may adjust the incrementation of the loop. Instead of LOOP you can use the phrase n LOOP+ . Where n is the new increment. In a future article I will discuss one final control structure, BEGIN REPEAT.

I had hoped to have a working FORTH program for this month's article, however, I had too much basic information to present. You should keep in mind that this article is only intended to be a brief over view of FORTH. For further information, you should get copies of text books such as 3starting FORTH4 and 3Thinking FORTH4, both by Leo Brodie. These are two excellent books for beginners like ourselves.

Next month I will have a working program to discuss. We will also go over the editor supplied with PD-10. It is a very basic editor, and it has a few bugs in it still. If you would like to use your word processor until then, be sure that all of the text is in capitol letters.

Lastly, here are the answers to last month's problems and a few more for this month. If you have any questions, comments, or criticisms please don't hesitate to call or write. Don't call collect, and if you want a written reply, please SASE. Here's the info:

[^0]These are collections of programs from Dynamic Color News．Number after program is the issue number．

$$
D \subset N-1
$$

＊ 64 K all RAM，＊2－bank address file． Alarm Clock．Loan Interest，Charac＇ter Generator ，＊Bank Switching．
＊CC－2 Memory managers

$$
D C N-2
$$

Check Book Program．，Ball Team Sort Program．．Card Shuffling，Student Study Program，Address File．
DCN-3

Restore－Recover program lost after NEW command，Fast Food，Bar Graph，Memory Peek \＆Poke，Graphics draw．

$$
D C N-4
$$

Address File with Sort up to 100 names， Morse Code Generator，Star Constellations． Dueling Cannons．

DCN－5

COLOR COMPUTER 3 PROGRAMS
CC－3 Memory Manager－Switch 8k blocks \＃38， CC－3 Error Trapping－Program to print error message \＃37．CC－3 Graphics \＃38，CC－3 Graphics Save \＃40

$$
D C N-6
$$

Accounts Payable－Business program \＃38， Dog Race（game）\＃40．Compound Interest－ Figure best investment deal．\＃40．Address File Disk Sort（up to 100 names）\＃40． Invoice Program－Example for writing your own \＃36．

> DCN-

Meteors（game）\＃41．Graphics print－Use regular print for large picture \＄42， Parachute（game）\＃42．Music（Peace）－Hear quality computer music．\＃43，Geneology－ Keep records of your family tree \＃39．

DCN－B

Oware（Game）\＃36，Save the Maiden（Word game）\＃43，Printer Utilities－Print information on screen to printer \＃44． Graphics Screen Dump Program \＃44．

Programs are $\$ 5.95$ each tape or disk．Add $\$ 1$ shipping．Checks，VISA \＆MC．

DYNAMIC ELECTRONICS BOX 896（205）フフ3－2フ58 HARTSELIEF AL 35640

3ANSWERS4

1． 70 EMIT 79 EMIT 82 EMIT 84
EMIT 72 EMIT 33 EMIT＜ENTER〉 FORTH！
2．：DISTANCE ．＂IS THE
DISTANCE TRAVELED＂CR ；
3．：RATE／．＂IS THE SPEED＂ CR ；
4．：P＞D 2700 ／MOD CR ．．＂DO
LLARS AND＂
＂PESOS REMAINING＂；
5．：10SPC 10．SPACES ；
：8＊ 42 EMIT 42 EMIT 42 EMIT
42 EMIT 42 EMIT 42 EMIT 42 EMIT
42 EMIT ；
：＊BLOCK 10SPC 8＊10SPC 8＊ 10 SPC 8＊10SPC 8＊10SPC 8＊10SPC $8^{*} 10$ SPC $8^{*} 10$ SPC 8^{*} ；

3PROBLEMS4

1．Using a DO ．．．LOOP month＇s problem 5

2．Example：Given（ a b c－－） solve $b /(a+c)$

Answer：
：PROB2 ROT＋／；
a．（ a b c de－\quad ） $\left((a+c)^{*}(d+e)\right) / b$
b．（ $a \operatorname{b} c x--) a(a R+b x+c$
c．（ $a b c d e--$ ） $(a+c+e) /(b R+e)$

3．Print a triangle of $15: s$

REIEWHL TIIIE？

IF $4 / 88$ is beside pour name on your address label then your sub－ scription has expired．

PAST DIR

bug Andirew Roortels

Fast Dir is an easy to use Machine Language utility which will provide you with a quick directory of the last drive used when you press SHIFT-RIGHT- ARROW. The BASIC loader for it is listed here. It requires at least 32 K .

The program takes up memory from $\$ 7000$ to $\$ 74 B 5$. Not all of it is code; most is buffer space. The code is entirely relocatable, so you may place it anywhere you like, as long as it is out of the way. DO NOT relocate it after it has been executed, however.

RUN the program and follow the prompts. When it is done executing, press SHIFT- RIGHT
-ARROW. The screen will clear, and the double column directory of the disk in the last used drive will appear. If it is too long to fit on one screen, you may pause the DIR in progress by press any key. Any key will resume after a pause. After the entire DIR has been completed, press any key to return. When you do, the entire 32 column text screen is returned to it's state when you called the DIR, and the cursor is in the same spot as when you left it. Thus, you can be in the middle of editing a line, entering a command, making a backup, copying a file... whatever...and still you are able to get a DIR of the last drive used without messing up
the operation you were in the middle of. The only requirement is that you have the normal flashing cursor at the momement you call Fast Dir.

The program was written in Assembly with the EDTASM editor /assembler.

FAST DIR LISTING

20 (<<FAST DIR))

30 'BY ANDREW B. BARTELS
35 'LICENSED TO DYNAMIC ELECTRON ICS INC.
40 CLS:PRINT'DIGITAL INNOVATIONS PRESENTS:":PRINT"〈<FAST DIR, ,":PRINT"COPYRIGHT (C) 1987": PRINT"BY ANDREW 日. BARTELS": P RINT:PRINT"ONE MOMENT...READI NG DATA..."
50 CLEAR200.\&H6FFF:FORX=\&H7000 T O \&H71B3:READA:POKEX,A:NEXT:S OUND1.1:PRINT@160,STRING\$(32. " ");:FRINT@160."PRESS <ENTER , TO INSTALL...": :LINEINPUTA\$
60 EXEC\&H7000:CLS:PRINT"FAST DIR IS NOW INSTALLED.":PRINT"TO USE IT. PRESS SHIFT-RIGHTARROW...":PRINT:PRINT
70 DATA190,1,107,175,141,0,46,48 ,141,0.4,191,1,107,57,15,112, $52,1,13,111,38,27,50,98,173,1$ $59,160,0,141,34,39,248,129,93$, 38, 9, 141, 16, 52,119,141,77,53 ,119,79,141,7,53,129,53,1,126 $, 0,0,52,4,198,96,231,159,0,13$ $6,53,132,52,7,166$
80 DATA141,1,105,167,159,0,136,1 $06,141,1,98,39,2,53,135,166,1$ $41,1,89,198,128,231,141,1,84$.

Dynamic Color news April, 1988

139,16,129,15,38,2,134,143,16 7,141,1,71,53,135,52,18,166,1 $28,173,159,160,2,77,38,247,53$, 146, 111, 141, 1,54, 23, 0, 167,18 9, 169, 40, 16, 190, 192
90 DATA6,134, 2, 167,164,204,17,3. $167,34,231,35,52,4,48,141,1,3$ $0,175,36,173,159,192,4,109,38$, 38, 100, 166, 132, 39, 91, 76, 39, 1 $00,198,8,141,112,134,47,173,1$ $59,160,2,198,3,141,102,166,14$ $1,0,248,132,1,39,8,134,13,173$,159,160,2,32,11,198
100 DATA4, 134, 32,173,159,160,2.9 $0,38,249,108,141,0,221,48,136$, 21,173,159,160, 0, 39, 2, 141, 12 3,51,141,0,209,51,201,1,0,239 ,141,0,199,51,141,0,195,172,1 $96,38,173,48,141,0,189,108,22$ $8,166,228,167,35,32,153,48,13$ $6,32,32,219,48,141$
110 DATAO,106,23,255,95,127,255. 64, 48, 141, 0, 119, 23, 255, 85, 141 . $60.141,35,53,130.166,128,173$. 159,160.2,90.38, 247,57,142.4 $, 0,49,141,1,136,236,129,237.1$ 61,140.6.0,38.247,158.136.175 . 141, 0, 114, 57,142, 4, 0, 49, 141, 1,113,236,161,237,129
120 DATA $140,6,0,38,247,236,141,0$. $93,221,136,57,173.159 .160 .0$. $39,250,57,52,18,48,141,0,59,2$ $3,255,7,173,159,160,0,39,250$, $48,141,0,55,23,254,250,53,146$ $.13,13,73,78,80,85,84,47,79,8$ $5,84,80,85,84,32,69,82,82,79$. 82, 33, 13, 0, 13, 80, 82
130 DATA69, 83, 83, 32, 65, 78,89.32. $75,69,89,46,46,46,0,60,80,65$. $85,83,69,68,62,0,8,8,8,8,8,8$, $8,8,0,0,0,143,128,0,0$

ASSEMBLY LISTING

TER
00230 LEAXIN, PCRPOINT TO MY ROUT INE
00240 STX $\$ 16$ BINSTALL FAST DIR NO W
00250 RTSRETURN TO BASIC
00260 INCLR\$70CLEAR FLAG
00270 PSHSCCSAVE CC
00280 TST\$6FIS IT KEYBOARD INPUT ?
00290 BNEIDONE2NOPE...THEN SKIP THERE
00300 LEAS2,SLIFT STACK
00310 GETKEYJSR[POLCAT]GET A KEY PRESS
00320 BSRFLASHGO FLASH CURSOR ON CE
00330 BEQGETKEYIF NO KEY, KEEP C HECKING
00340 CMPA\#93IF SO. WAS IT SHFT-RT-ARROW?
00350 BNEIDONENO...RETURN KEY AS NORMAL
00360 BSRERASEGO ERASE CURSOR
00370 PSHSD.CC.X,Y.USAVE EVERYTH ING
00380 BSRDDIRGO DO DIRECTORY
00390 PULSD.CC.X,Y,UGET EVERYTHI NG
00400 CLRADON'T PASS ON THE ARRO W
00410 IDONEBSRERASEGO ERASE CURS OR
00420 PULSCC.PCRETURN
00430 IDONE2PULSCCGET CC BACK
00440 FCB\$7EJMPCODE
00450 IADDRFDBOADDR OF OLD RTN
00460 ERASEPSHSBSAVE B
00470 LDB\#96GET BLANK
00480 STB[\$88]ERASE CURSOR
00490 PULSB.PCRETURN
00500 FLASHPSHSD,CC
00510 LDACURS.PCRGET CURSOR VALU E
00520 STA[\$88] SHOW IT
00530 DECCOUNT.PCRCOUNT DOWN
00540 BEQCHANGEIF TIME TO CHANGE THEN DO IT
00550 PULSD, CC, PCIF NOT, THEN RE TURN
00560 CHANGELDACURS.PCRGET CURSO R VAL
00570 LDB\#128GET CURSOR COUNTER
00580 STBCOUNT.PCRRESET IT
00590 ADDA\#16GO TO NEXT CURS
00600 CMPA\#15DID WE ROLL OVER?
00610 BNEGOONNO...THEN GO ON

Dynamic Color news April, 1988

00620 LDA\#143YES...THEN RESET OV
ER AGAIN
00630 GOONSTACURS.PCRSAVE NEW CU RSOR
00640 PULSD.CC, PCRETURN
00650 PRINTPSHSA, XSAVE REGISTERS
00660 PRINT1LDA. $\mathrm{X}+\mathrm{GET}$ A CHARACTE R
00670 JSR[CHROUT]PRINT IT
00680 TSTAWAS IT A ZERO?
00690 BNEPRINT1NO...THEN PRINT M ORE
00700 PULSA, X, PCRETURN
00710 DDIRCLRSIDE,PCRSET SIDE TO GGLE TO LEFT
00720 LBSRCOPYMOVE TEXT SCREEN T O BUFFER
00730 JSRCLSTO CLEAR SCREEN
00740 LDY\$COO6POINT TO DSKCON PA RAMETERS
00750 LDA\#2A $=2$
00760 STA.YSET TO READ
00770 LDD $\# \$ 1103 A=17$. $B=3$
00780 STA2, YSET TRK $=17$
00790 STB3, YSET SECT $=3$
00800 PSHSBSAVE SECTOR ON STACK
00810 LEAXBUFF, PCRPOINT TO BUFFE R
00820 STX4, YSET BUFFER TO DSKCON
00830 DDIR1JSR[\$C004]CALL DSKCON
00840 TST6, YWAS THERE AN ERROR?
00850 BNEERRORYES. THEN REPORT I T
00860 DDIR2LDA, XCHECK FIRST BYTE 00870 BEQDDIR7IF O, FILE WAS KIL LED...SKIP IT
00880 INCAIF IT WAS 255, IT IS N OW 0
00890 BEQDONEIF IT WAS 255, THEN DIR IS DONE
00900 LDB\#8PRINT FILENAME
00910 BSRNAM
00920 LDA\#47PRINT A "/"
00930 JSR[CHROUT]
00940 LDB\#3PRINT 3 CHARS
00950 BSRNAMPRINT EXTENSION
00960 LDASIDE, PCRGET SIDE TOGGLE
00970 ANDA\#1IS IT ODD?
00980 BEQDDIR3NO, THEN PRINT SPA CES
00990 LDA\#13YES. THEN PRINT <CR» 01000 JSR[CHROUT]
01010 BRADDIRSUNTIE PROGRAM FLOW
01020 DDIR3LDB\#4DO 4 SPACES
01030 LDA\#32
01040 DDIR4JSR[CHROUT]PRINT A SP ACE

01050 DECBDONE?
01060 BNEDDIR4NO...DO MORE
01070 DDIRSINCSIDE,PCRNEXT SIDE
01080 LEAX21. XPOINT TO XNEXT ENT RY
01090 JSR[POLCAT]WAS THERE A PAU SE KEY?
01100 BEQDDIR6NO...THEN KEEP ON
© 1110 BSRPAUSEYES. .THEN PAUSE FO R USER
01120 DDIR6LEAUBUFF, PCRPOINT TO BUFFER START
01130 LEAU256,UPOINT TO BUFFER E ND
01140 STUHOLD1, PCRSAVE
01150 LEAUHOLD1.PCRPOINT TO POIN TER
01160 CMPX,UDONE WITH BUFFER?
01170 BNEDDIR2NO...DO MORE IN TH IS ONE
01180 LEAXBUFF, PCRYES..RESET BUF FER POINTER
01190 INC.SNEXT SECT
01200 LDA, SGET NEXT ONE
01210 STA3, YLET DSKCON KNOW
01220 BRADDIR1GO CALL DSKCON \& D O IT OVER
01230 DDIR7LEAX32.XPOINT TO NEXT ENTRY
01240 BRADDIR6CONTINUE
01250 ERRORLEAXMSG,PCRPOINT TO M ESSAGE
01260 LBSR PRINTPRINT IT ON SCRE EN
01270 DONECLR\$FF4OSTOP DRIVE
01280 LEAXMSG1,PCRPOINT TO MESSA GE\#1
01290 LBSRPRINTGO PRINT IT
01300 BSRWAITWAIT FOR A KEY PRES S
01310 BSRRESTORRESTORE SCREEN TH E WAY IT WAS
01320 PULSA, PCRETURN FOM DIR
01330 NAMLDA,X+GET A CHAR
01340 JSR[CHROUT]PRINT IT
01350 DECBDONE?
01360 BNENAMNO...PRINT MORE
01370 RTSRETURN
01380 COPYLDX\#1024POINT TO TEXT SCREEN
01390 LEAYBUFF2, PCRPOINT TO BUFF ER
01400 COPY1LDD, X++GET TWO BYTES
01410 STD, Y++SAVE IN BUFFER
01420 CMPX\#1536DONE WITH SCREEN?
01430 BNECOPY1NO...COPY MORE
01440 LDX\$88GET CURSOR POSITION

Dynamic Color News April, 1988
01450 STXCADDR, PCRSAVE CURSOR AD
01640 LEAXMSG3, PCRPOINT TO MESSA GE\#3 DRESS
01460 RTSRETURN
01650 LBSRPRINTPRINT IT
01660 PULSA,X, PCRETURN
01470 RESTORLDX\# 1024 POINT TO SCR EEN
01480 LEAYBUFF2, PCRPOINT TO BUFF ER
01490 REST1LDD, $Y++$ GET TWO BYTES
01500 STD, X ++ RESTORE SCREEN
01510 CMPX\#1536DONE WITH SCREEN?
01520 BNERESTINO. . .KEEP ON
01530 LDDCADDR, PCRGETOLD CURSOR
ADDRESS
01540 STD $\$ 88 R E S T O R E$ CURSOR
01550 RTSRETURN
01670 MSGFDB\$DOD2 CHR\$(13)'S
01680 FCC* INPUT/OUTPUT ERROR!*
01690 FDB $\$$ DOO
01700 MSG1FCB\$D
01710 FCC/PRESS ANY KEY.../
01720 FCBO
01730 MSG2FCC//PAUSED)/
01740 FCBO
01750 MSG3FDB\$808
01760 FDB $\$ 808$
01770 FDB 0 BOB
01780 FDE $\$ 808$
01560 WAITJSR[POLCAT]GET A KEY
01570 BEQWAITNONE...KEEP WAITING
01580 RTSRETURN
01790 FCBO
01800 CADDRFDBO
01810 CURSFCB143
01590 PAUSEPSHSA,X
01820 COUNTFCB128
01830 SIDEFCBO
01840 HOLDIFDBO
01850 BUFFRMB256
01860 BUFF2RMB512
01870 ENDBOOT
01600 LEAXMSG2, PCRPOINT TO MESSA GE\#2
01610 LBSRPRINTPRINT IT
01620 PAUSE1JSR[POLCAT]GET A KEY
01630 BEQPAUSE1IF NONE...THEN WA
IT MORE

\#10-24 White/Regular Envelopes
$2 \begin{aligned} & 1,000-\$ 28.50 \\ & 2,500-\$ 26.50 \\ & 5,000-\$ 25.50\end{aligned}$

Camera Ready
Small Additional Change
For Corrections/Additions
6%-Second Color
OPC Printing iStationery
2ty W. Main St, Markedk, AL $356-40$ (205)775.0312/350.6666/539-32C
(10 Reg Env.)
Dosigners and Suppliors of Busionss Jorms and Sychanu

MORE FROM ARK ROYAL!

ACES is a high resolution, completely machine language game of aerial wartare in WWI. Player fles on many missions io bomb enemy largets including aifields. enemy headquarters, anti-arcfall batteries, bridges and factories, but not player's own ar base. He must dodge mountains and dogight with the enemy's best. including. it unlucky. members of the dreaded Flying Circus. Atter the shools down live planes he becomes an ACE and receives special consideration: but the game is far from linished. A C E S averages aboul 82 targels and over $t 00$ enemy arcrah per game.

A C E S plays in real time and displays flighi simulated dash and controls. Operates from the keyboard. Included in the display is a nigh resolution mini-screen leaturing terrain, targets, and player's relative ground position. There are E zones in aach map which changes as player Hies over it. Game Save. (It could take days to winl) In addition. NEWMAP is included to allow tor the creation of a zillion new maps. A C E 5 was created in pan with AGS, developed by Ken Schunk. For all CoCo's.

WAR AT SEA: Wooden Ships simulate ship to ship batiles during the 18in Contury. Player controls a number of sailing ships from different nations and must pit his seamanship against the computer of another player.

RED ALERT: a starship combat simulator. Otject of the game is to deleal the computer controlled enemy vessel by using your ship's capacities, strategic maneuvers, and your own smans.

NEW

ham radio G computers bg bill chapple m4qqc

Each month I present information on computers that can be applied to ham radio operation. Last month I presented a public domain WEFAX program that uses the cassette interface. I have been looking at using this interface for other applications such as packet. The advantage of using the cassette interface is that there are no circuits to build. The only interface being a plug adapter to allow the receiver's audio to be placed on the line that normally goes to the cassette cutput.

Last November I presented a teletype program that uses this interface. I have done much experimentation with this and have concluded that the applications are rather limited. The reason for my conclusion is that this is a one bit port. The only thing that can be measured is frequency. This is fine for RTTY and WEFAX, but for packet and CW or Morse C'ode amplitude is also a requirement.

The problem I have with packet using this port is determining when the packet starts. I need something that will give me a start signal as the packet begins. Also for Morse code, it is necessary to look at amplitude in order to eliminate noise that will cause false data to be printed. I have a solution for these problems that is not expensive. Last year we did editorials on using the joystick ports for various applications. A joystick consists of two petentiometers that divide down 5
volts depending upen the position of the lever. An analog to digital converter inside the computer converts these voltages into numbers from 0 to 63. I have already built an adapter to use one of the joystick ports and will report more on it next month. With amplitude I can do many types of audio processing including voice. Wouldn't it be nice to remove a carrier while trying to copy single side band (ssb)?

This month I have a tuning meter program that consists of 3 sections. In the first position it displays the frequencies from 200 to 3000 hertz. A bar moves across the screen on the top line and positions itself at the closest frequency. The bar moves back and forth as the frequencies change. This can be used for all modes of operation including vaice.

The second position is for tuning high frequency (hf) packet signals. This looks at a narrower spectrum and gives 4 positions for each 100 hertz.

The third position is for hf rtty using narrow frequency shift.

The program is easy to use. A machine language subroutine is used to measure the frequency and erase the first display line. The machine language subroutine is carried with the program as data. This program works on all versions of the color computer with extended basic.

Dynamic Color news April, 1988

TUNING METER PROGRAM

5 FOR J=510 TO 572:READ A.: POKEJ. A:NEXT 'READ IN MACHINE LANGU AGE SUBROUTINE
6 'THE MACHINE LANGUAGE SUBROU TINE TIMES THE AUDIO SIGNAL A ND PUTS THE RESULT IN MEMORY LOCATION 501
7 'IT ALSO CHECKS FOR A ZERO AND PLACES A 1 IN 501 IF THE VAL UE IS 0
8 'IT ALSO ERASES THE FIRST LINE ON THE SCREEN
10 CLS:PRINT"AUDIO TUNING METER
20 PRINT"BY BILL CHAPPLE W4GQC
30 PRINT"cOPYRIGHT (c) 1988
40 PRINT"dYNAMIC eLECTRONIC iNC.
50 PRINT" 1 DISPLAY TOTAL AUDIO s PECTRUM
60 PRINT"2 PACKETT TUNING METER
70 PRINT"3 HF RTTY TUNING METER
so PRINT"ENTER NUMBER
$85 \mathrm{X} \$=\mathrm{INKEY} \$: \mathrm{IF}$ X $\$=$ "'THEN 35
87 X=VAL (X\$)
90 ON X GOTO 500.600.705
500 CLS:PRINT
505 'THIS IS FOR ALL AUDIO FREQU ENCIES FROM 200 TO 3000
510 PRINT
515 PRINT" 246811111122 2223
520 PRINT" 00000246802 4680
525 PRINT" 00000000000 0000
530 PRINT" 0000000 - 00

532 PRINT
535 PRINT" AUDIO FREQUENCIES
537 PRINT"BAR SHOWS LOCATION OF FREQUENCY
540 EXEC 510: D=PEEK(501)
$550 \mathrm{~F}=\mathrm{INT}(740 / \mathrm{D}+.5)$
555 IF F, 31 THEN POKE1055,62:GOT 0540
560 POKE $1024+$ F, 197
565 X\$=INKEY\$:IF X\$()"'" THEN RUN
570 GOTO540
575 END
600 '
605 'PACKET DISPLAY
610 CLS:PRINT
615 PRINT" * *
620 PRINT" $1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$
625 PRINT" $4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$

HAM RADIO FROGRAMS

MORSE - This program allows a key to be prebsed and then sounde the Morae equivalent or let the computer send random characters.

DX - Type in a prefix for a foreign country and have the country displayed.

ANTENNA - An antenna design program that calculates the dimensions for a wide spaced Yagi antenna of up to 4 elements. Order HR-1 (3 programs) $\$ 11.95$

MORSE TERMINAL
When yeed with an interface thia converta your color computer into a Morse Terminal. To transmit just type the Morse characters and the computer keys your transmitter. In the receive mode the computer decodes and displays the Morse characters on the screen. Instructions are included for building an interface with off the shelf parts. HR-2 $\$ 12.95$

STATION LOG
Keep a record of your contacts. Just enter the information as it is requested. Items that are the same such as date, frequency, and type of emission need only be entered once and changed as needed. Save and load records to tape or disk. Add to the 108 and quickly find stations. Print the $10 g$ to a printer. HR-3 $\$ 9.95$

THERMOMETER

Now your computer can give you the temperature in both Fahrenheit and Centigrade. Assembly plugs into a joystick port and consists of a thermistor on a 10^{\prime} cable for the single unit and a second thermistor on a 20° flat cable for the dual unit. The dual unit can be used to measure inside and outside temperature. CC-THERM $\$ 12.95$, CC-THERM $2 \$ 19.95$.

MEMORY SAVER Z

A battery backup for all color compu~ ters. Leave programs in your computer and the Memory Saver will preserve them in case of a power failure. A real time saver for cassette bystems. \$39.95

HAM RTTY TERMINAL
Uses the casaette port. Requires simple interface to connect cassette audio into the Mic jack and receiver audio into the cassette port. Interface instructions are included. 60 WPM Baudot. \$6.95.

See Dynamic Color News on tape or disk index for additional support programs.

All programs are color computer 3 compatible unleas indicated and are on tape or disk. Please specify tape or disk software.

Checks, VISA or MC. Add $\$ 3$ shipping.
DYNAMIC ELECIRONICS BOK \&96 (205) $73=2758$ HARTSELIE, AL 35640

ML SUBROUTME

The assembly listing of the machine language subroutine follows. This was assembled using our DISASM program. All numbers are in decimal.

510	ORCC		80
512	LDA	E	65312
515	ANDA	I	1
517	BEQ		512
519	LDA	E	65312
522	ANDA	A	1
524	BNE		519
526	CLRB		
527	LDA	E	65312
530	INCB		
531	ANDA	I	1
533	BEQ		527
535	BRA		539
537	NOP		
538	NOP		
539	LDA	E	65312
542	INCB		
543	ANDA	I	1
545	BNE		539
547	STB	E	501
550	LDX	I	1024
553	LDA	I	96
555	STA	\times DIR	R R+
557	CMPX	I	1056
560	BL.T		555
562	LDA	E	501
565	TSTA		
566	BNE		569
568	INCA		
569	STA	E	501
572	RTS		

OPERATING HINT

Programs can be stacked by changing vectors in locations 25-28. Do a memory peek and write down the values. Let $V=\operatorname{PEEK}(27)+2$. Poke this value into 25. POKE $256 * V$, D: NEW. The new program can now be loaded. This occupies memory above your first program. You can return to the first program by restoring the original values in 25-28.

Thi：derge coldection of proerans wild adlow you to quickly expand your dibragy．All programs ara on disk and programs ulth a bon bo supplied on tape．Some programa require a joysidck．Instructions ora included in some coldections as DAT or TXT files
－PD－1 GNES

MENU	BAS 0	B
MANDAN	BAS 0	B
STARTHEK	BAS 0	B
TREKINST	BAS 0	B
SEQUENCE	BAS 0	B
ALPHABET	BAS 0	B
GEOGRAPH	BAS 0	E
FLASH	BAS 0	B
BAGELS	BAS 0	B
OREGON	BAS 0	B
HULT】PLY	BAS 0	B

MENU	BAS	0	B	1
PCNO	BIN	2	0	1
SQUASH	B1N	2	B	2
blockade	BIN	2	B	2
GEPM	B1N	2	B	d
WIGHORM	BIN	2	B	2
GRID	BJN	2	B	2
2EFOG	BlN	2	B	2
3DTICTAC	BIN	2	B	7
HOPBOP	B1N	2	B	5
1 CEHAR	BAS	0	B	6
CIVILHAR	BAS	0	B	4
TICTACTO	B1N	2	B	7
－PD－5 GA	HES			
MENU	BAS	0	E	1
Cave	BAS	0	H	4
HAFGAFE	BAS	0	8	2
WAFGNHE	BIN	2	B	1
WARGAKE：＇	BAS	0	B	5
WARFOCH	BIN	2	H	3
NORAD	BAS	0	B	3
ANDKLA	BAS	8	B	5
CUKSE	BAS	0	B	4
GARGOYLE	HAS	0	B	6
K I NGTUT	BAS	0	B	7
TAJPAN	ERS	0	B	6

DSK－C

SPELL FIX－FIND SPELLING ERRORS IN TXT UISK FILES

\section*{| MENU | BAS | 0 | B | 1 |
| :--- | :--- | :--- | :--- | :--- |
| HANUAL | TXT | 1 | A | 12 |
| SPELLFX2 | BAS | 0 | B | 1 |
| SPELLFX2 | BIH | 2 | B | 6 |
| SPELLFIX BAS | 0 | B | 1 | |
| DICT | TXT | 1 | A | 33 |
| COREDICT | TXT | 1 | A | 1 |
| SAHPLE | TXT | 1 | A | 1 |
| BUILD | BAS | 0 | B | 1 |
| LIST | BAS | 0 | B | 1 |
| RESET | BAS | 0 | B | 1 |
| APPEND | BAS | 0 | B | 1 |
| ADDNORDS | BIN | 2 | B | 3 |
 PU－7 DISK UTILITIES}

HENU	BAS	0	B	1
TELETERH	BIN	2	B	3
TELETERH	CAS	2	B	3
TTHELP	DAT	1	A	1
HTEFH	B1N	2	B	6
HTERH	V1P	1	A	19
HTCONFIG	BAS	0	B	3
HTERM＊	BIN	2	B	6
Catatrde	BlN	2	B	3
KERHIT	BAS	1	A	1
KEFM1T	BIN	2	B	2
HAYESAE	BIN	2	B	4
HAYYESAE	DOC	1	A	6
PD－10				
COLOR COMP．FORTH				
HENU	BAS	0	B	1
FORTHMAN	UL！	2	B	7
FORTHEAN	UL2	2	B	7
FORTNHAN	UL3	2	B	1
FORTH	EIN	2	B	3
EDIT	UAT	1	A	3

PD－ 15
GRAFHICON PICTURF：
EISK－3 REOUIRES PIXFILES／BAS FFOH PU－12 \＆JUYSTICK 81CTURES GCM 1 B 68

PD－16
GRAPHICON PICTURE
UISK－4 REOUIRES HIXFILES／BAS FROM アV•12 \＆JOYST」CK

FICTURES GCM 1 B GO

PD－17 D】SK UT】L】T】ES

64KBHW	BAS 0 A 1
AUTOSTRT	BAS 0 B 1
EAKDIR	BAS 0 A 3
81N ${ }^{\text {PAS }}$	BAS 0 A d
CASSLABL	BAS 0 B 1
CURSOR	BAS 0 B 1
CUSTOM	BAS 6 B 3
CUSTOMl 2	BAS 0 B
D1R	BIN 2 B d
D1832	BAS 0 A 2
D）［ij2C	UOC 1 A 3
UJRLISTR	BAK 0 B 1
DJRLISTR	BAS 0 B 1

D18SORT	BAS 0 A 1
D1SK－blR	BAS 0 A 1
DISKLABL	BAS A 1
LOADSOLU	BAS 0 B 1
HENU	BAS 0 B 1
FUIR	BAS 0 A 1
SORT	BAS 0 B 1
SORTPRT	EAS 0 B 1
SORTSAVE	日AS 0 A 1
SUULTION	BIN 2 El
SUPERGAC	DIN 2 H 1
T2L	Blf 2 日 2
TIMEF	BAS B B 1
TrTODSK	BIN 2 Bl
－PD－19	GAMES

3UMAZE	BAS 0 A 2
BOXES	EAS 0 B
CLOSE EN	BAS 0 B 2
CRJTICKL	LAS 48
CAHHON	BAS 6 H 3
COLDMINE	BAS 6 A 3
HOCKEY	EAS 0 A
HOCJOWL	BAS 0 A 8
HOHSERAC	GAS 0 A 3
JUMPINC	BAS 48
JALLIUESC	BAS 0 B
MASTMIHU	8hS 0 H 1
MEMCKY	BAS 4 b
MUONEASE	UAS A B 2
NAMES	BAS 6 B 4
OT＇HELLO	HAS 0 B 4

－PD－2才 GAMES

G	BAS 0 B
FABBIT	GAS 0 B
SAFE	UAS 0 B 2
SAUACER	bAS 08
SHOOTEM	BAS 0 B
SlHHCH	BAS A A
SLITHER	UAS © A
SJACE WA	UAS 8 B
STAK T\＆E	BAS 0 B
SUBCHASE	BAS 0 H 2
SUBDESTR	BAS 0 － 2
SUNDANCE	BAS 0 B 2
TANKS	BAS 0 B
TUWEH	BAC G B
UNJHOVER	BAS B．B

HEN	AnX 2 日 3
5 MAP	max 2 日
buos	HAX 2 B
CFISH	MAX 28
HERO	Max 28
hatap	MAX 2
CSCOIT	MAX 2
States	MAX 2
HORSE	max 2
CROSS	MAX 2
TOODH	MAX 2
RSTOHE	max 2
COCO	MAX 2
ALIEN	max 2
PIXFILES	BAS 0
－PD－46	
Talk and	Munle
（c）loadm	FIL
EXEC．	
talk	BIN 2 日 11
TALK2	BIN 2 日 11
HILLTELL	BIN 2
mUSICBOX	日IN 2
beatles	BIN 2
JUAP	BIN 2
GRELN	BIN 2
chost	BIN 2
JINGLE	BIN 2
WORLD	BIN 2
ctryroad	BIN 2 日 2
－PD－47	
Hracella	neo umpgas
T	BRS 0
SANTEE2	BAS 0
hileage	BAS 0
H	日AS 0
DIOITS	BAS 0
numblist	BAS 0
COUNT	Bas 0
SC	BAS 0
drawtext	BAS 0
SAMPLE	BAS 0
ORSCRHRT	BAS 0 －
HRTEXT2	BAS 0 B
DRAL	bas 0
HRITER	BAS 0
TYPE日ET	BAS 0
HRITEBET	BAS 0
TEXT2	BAS 0
Santer	BAS 0
SHUTILE	Bas 0
AJOCK	BAS 0
PLATPORM	BAS 0
maze	BAS 0
DISKZAPR	BAS 0
2AP	BAS 083
DETHSHIP	BAS 0 － 3
BACXUP35	BAS 0 － 8
BCOT	BAS 0 － 1
SCRNLIST	Bas 0 al
DOSSTART	Bas 0 － 1
label	BAS 0 － 2
DSKDSABL	BAS 0 －${ }^{\text {d }}$
nofreeo	BAS 0 El
formater	Bas 0 Bl
ROHRAM	EIN 2 Bl
SUPDUP	BIN 2 B 1
testiext	BAS 0 81
－PD－4B	
Mis cellen	neous Pras
extbas	Bas 0 －3
dISAPEAR	BAS 0 El
PAINT	BAS 0 gl
data	Bin 2 al
Dataz	日in 2 B1
Scrdata	BIN 2 －1
PILL2	BIN 2 B2
OUADDRAW	BAS 0 －${ }^{\text {d }}$
CELTIC	BAB 0 － 2
alil ram	BAS $0{ }^{\text {a }}$
CMAROEM	BIN 2 bl
ROMRAH	BIN 2 Bl
obstacle	BAS 0 al
GLK RAM	BAS $0{ }^{\text {a }}$
COLORSEL	bas 0 8l
TRIC	bas 0 ab
alorbra	BAS 0 es
play	BAS 0 al
staticap	BAS 0 －${ }^{2}$
HLSOUNDS ROTATION	$\begin{array}{llll}\text { BAS } & 0 & 81 \\ \text { BAS } & 0 & 2\end{array}$

PRODUCT PEVIEWS

This section is open to all producers and dealers of color computer products. We will review your product iree of charge and write an editorial on the product. We do not use a rating system but will explain what the product does, and what can be expected from it. Any comments about the review from the firm subaitting the product will be printed in a later issue.

VIP SPELLER

Last month we reviewed VIP WRITER which is a super word processor by S D Enterprises. VIP Speller is included in the package for the color computer 3. A speller checks the spelling of words in a text file. It uses its own dictionary as a reference and displays words that are not spelled correctly. The file does not have to be a VIP file, but can be any ASCII file.

To start the process type LOADM"SPELLER" (ENTER). It loads and checks the computer's memory. It then displays a menu which contains the following:

S SPELL CHECK FILE
E EXAMINE DICTIONARY
R REMOVE WORDS FROM DICTIONARY
A ADD WORDS TO DICTIONARY

- OUIT

To spell check a file select "S". The computer asks for the file to spell check. Enter the file and its extension if the extension is not VIP. It then asks for the dictionary ille name. If there are several dictionaries then the file name for the degired one should be entered. To use the default dictionary press the enter key and the "DICT.DOC:0" file is selected. It then asks for a dict index table file name. Again preas enter and the default index table will be used. Next the following appears:

WORD DETERMINATION TYPE

W WITH NUMEERS Q OUIT

SELECTION:

Press a letter for the type desired. The program reads in the file and sorts the unique words into alphabetical order. It then requests inserting the spelling disk and begins checking the words against those on the speller. It displays the letters as they are being checked. After this is completed they can be compared against another dictionary. press enter if this is not desired. After a few seconds it asks for the disk with the original file to be inserted. The following options are available:

```
M MARK WORDS IN FILE
C CORRECT WORDS
S SHOW 'WRONG' WORDS
W WRITE WORDS TO NEW FILE
\(P\) LINE PRINT WORDS
A ADD ALL WORDS TO DICT
D DISK COMMANDS
Q QUIT
```

If "M" is selected the present file is renamed using the /BAK extension. A new file is created with each of the spelling errors marked with a \#sign preceeding each one. If " S^{\prime} is selected then the errora are shown on the screen. The words can be written to a new file. Press "W" for this option and enter the name of the file. To print the words to a printer press "P". To correct the words press "C". You can then examine each word and enter the correct spelling. A new file is created with the same name and the /BAK extension. This file has the corrected words in it.

Words can be added to or deleted from a a dictionary. The spelling can be checked against several dictionaries.

We found VIP SPELLER to be a superb spelling checker. The cost of VIP WRITER 1s \$79.95 including VIP Speller. SD Enterprises. P.O. Box 1233, Gresham, OR 97030.

Question \& Answers

Hi Bill
Just thought I should drop you a line and let you know how pleased I am with your Dynamic Color News. I am also a ham W9RKU and am interested in Packet Radio Transmissins on 2 Meter FM.

I especially like your small programs that the average hobbiest can type in the program material even if it's games or utilities or whatever. It's good practice but I would like it typed at 32 line structure.

I have a lot of faith in your publication to be honest with you I like Dynamic News better than Rainbow.

Bill enclosed please find a check for this Months disc programs \#47 Mar 88.

I remain
Paul Flaishaker
ANSWER: Paul thanks for your letter. We list our programs in 32 or 42 characters /line format. We reduce the 42 character listings. We indent each line that is continued to make the programs easier to read. Read my editorial in this issue. I am still working on decoding the packet signals but am going to have to switch to a joystick to get amplitude variations. I will have more on this next month. Thank you for the kind words and for your support.

Dear Bill
I have been reading your ham radio articles for the past year and have just renewed for another year. So far the articles have been very interesting. I hold a general class lic. I am involved with 2 mtrs as well as HF. I work a lot of packet radio using my COCO 2 and a midland 13-510 with a KKPC-2 TNC. I am interested to see how your program will work. I am using the Mickey-term terminal program. The program works quite well. I am using your RTTY program. It seems to work well, however a good filter would help. I am going to work up something to put in line other than the diode system you used. One thing I would like to see is how to send the info received to a printer such as the Dmp10s. I would like to see some articles on WEFAX., I am using a program from Rainbow from Feb. 1985 which, works well but is setup for Epson graphics. This lets me out as far as a printout is concerned. I would like to see what you can come up with that will work with a Dmp105. I would also like to see something on slow scan. I have a tape that I recorded from WOORE on board the SPACE SHUTTLE CHALLANGER a short time before the. accident. that I would like to be able to see.

I ordered a back issue that I have not received yet and also you might check your records on my subscription which should have expired this month $2 / 88$ and when I renewed you show my exp. date of $1 / 89$. I like reading Dynamic Color News and think you are doing a fine job.

Dynamic Color news April, 1988

ANSWER: First of all a filter will help for any type of communications. I am switching to a joystick port so that I can detect amplitude variations and use digital filtering within the software. The cassette port is only 1 bit where the joystick ports are 5 bits each.

The software would have to be modified to use other printers with the RTTY program. I don't have a patch for using Radio Shack printers. I printed a WEFAX: program last month.

Dean has corrected vour subscription and you should have received your back issue by now. If not let us knew. Thanks for your letter.

Dear Bill,
Just a short letter to tell you how thrilled I am with the WEFAX in the March issue of "Dynamic Color News'. I'm watching the Fax program run right now. It only tork a short time to have this typed up and running.

I've been a ham for 4 years and enjoy most of the modes. But I have been always thinking about weather fax, and figued it was out of my league. I purchased a CoCo 2 extended abcut 1 year ago and have been using RTTY and also built your interface to use on CW transmitt. I still use the "old ear" to receive and will keep that going as long as I can.

I've been searching out other FAX stations and have been receiving photos and sometimes just old looking prints in the 17.18,19 MHZ Bands. My rig is a Kenwood $30 S$ and is a full coverage receiver. So there is a lot of searching still ahead. I'm looking forward to your slow
scan programs. But the interfaceless Packet has really got my attention. I've been holding off buving a packet modem as I've been hearing some negative reports on the mode. But your program will be a real cost saver and probably sell a few CoCo's.

My onlv question is "how can the RTTY program be made to change BAUD Rates?" Many of the world press and other broadcasters run 300 WPM \& higher.

Well keep up the great work on a wonderful magazine. I've shown a few hams your publication and hope they see the light.

Also I am interested in a bulletin board type program that would give me a reason to buy a phone modem.

73's Doug Alderton

ANSWER: Doug thanks for your letter. My work on the packet is slower than I had hoped it would be. However I have copied some packet signals that I could piece together. I am changing over to a joystick port so I can get amplitude detection for better decading.

There is a RTTY program in the January 1988 issue of 73 Magazine. We typed in the program but it has some errors. It operated at 3 rates. If anyone has a corrected version of the program we would like to have a copy to print. We will trade a couple of public domain programs for a working copy.

Our PD-44 public domain terminal program will work with the CoCo 3 at 300 baud using the printer port. I use it to transfer files from my model 100 to the CoCo.

Also we have a bulletin board program PD-34. Thanks for your letter and your comments.

This is a picture of Atlanta. If you have never been to Atlanta then this scene will give you an idea of how the city looks. This is a PMODE 4 picture and will work with all color computers. The data is carried in DATA statements as two hex characters for each byte. The program can be typed in as listed. It takes a few minutes for the data to be read and poked into memory. The memory is displayed on the screen in 100 byte increments.

After the data is transferred to memory, a meni diaplaya options which allow the picture to be saved to a cassette or disk, or to be viewed. Innes 60 and 62 allow the picture to be viewed. The picture can be printed on a printer with our graphics print program in our isaua $\# 44$ (December 1987). It can also be used with COCO MAX by renaming it as follows:
rename "atlanta/bin" to "atlanta/max

atlanta program listing

```
PCLEAR 4:CLS
PRINT": = : = ATLANTA : = = =
PRINT
10 PRINT:PRINT"STANDBY WHILE MACHINE LANGU
    AGE PROGRAM IS BEING GENERATED":PRINT
    EN=256*PEEK(25):M=EN-6144:BE=M
    READ X$
    IF X$="(G" THEN 42
    LaLEN(XS)
    FOR J=1 TO & STEP 2
    A$=MIDS(X$,J,2):BaPEEK(M)
    C$=LEFT$(AS,1):D$=RIGHT$(AS,1)
    X=ASC(CS):Y=ASC(DS):X=X-48:Y=Y-48
    IF X)9 THEN X=X-7
    IF Y>9 THEN Y=Y-7
    V=16}\mp@subsup{}{}{=}X+Y:POKE M,
    M=M+1:IF M=EN THEN 42
    NEXT J
    PRINTM
    GOTO14
    PRINT"DATA IS TRANSFERRED":PRINT"1 VIEW
```

PICTURE":PRINT"2 SAVE TO CASSETTE":PRI NT"3 SAVE TO DISK"
44 .
45 INPUT"ENTER NUMBER"; X
50 ON X GO TO 60,70,80
55 END
60 PMODE 4.1:SCREEN 1.1
62 GOTO 60
70 PRINT"SAVING TO THE CASSETTE"
75 CSAVEM"ATLANTA", BE,EN,BE
77 END
80 PRINT"SAVING TO A DISK"
85 SAVEM"ATLANTA", BE,EN,BE
90 END

 fEFFFFFFFFF

 FFEFFFFEFFF

 1FFFFFFFFBF
130 Data faffefeffeffeffiffeffeffeffeffeff

 FFFFFTSFFFFFFFFEFFFFFFFFTFFFC3FFFFFFFFE
 FSEFFFFFFFF
 FFFFFFFOOO37DFFFFFFFOFFFFFFFFFFFFCFFF7F FEFFEFFFFFFFFFFFFFFEFFFFFFFFFFFOOOOOTC7 FFFFFCFFFFEFFFFFFBFFFFFBFEFFFFFFEFEFFFF FFFFFFFFFFEFFFFFCOOOOOTC5FFgFFDFFFFFFFF FFETFFFFFDF
 FFF791FC67FBFFFFFFFFFFFFFFFFFEFFFFFFFFF fFFFEFEFFFEFFFEFFFFFFFOF000175DF3FBFBFF

Dynamic Color news April, 1988

 FFFFFFFF382081745EFFETFFFFFFFFFFFFFFFFF FFTFFFFFFFF
 FFB7FFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFF FFFFFFFFFFFE7F00020175DDFFFDFFFFFFFFFFF FFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFgFF 0082A275DBFFFFFFFFFFFFFFFFFFFFFFFFTFFFF FFFFFFFFFFF
170 DATA FFFFFFFFFFETFF48E03075DFFFFFFFFFF
 FFDFFF4022C175DFFFFFFFFFFFFFFFFFFFFFFFF FDFFFFFFFFFFFFFFFFFFFFFFFFFFFFF40800075 DFFFFFFFFFFFFFFFFFFFFFFFFFE3FFFFFFFFFFF fFFFFFFFFFF
 FFFFFFFFCFFFFFFFFFFFFFFFFFFFFFFFF7FFF49 8284759FFFFFFFFFFFFFFF80000001FFFFTFFFF FFFFFFFFFFFFFFFFFFFTFFF4882807DDFFFFFFF FFFFFFFFB80000007fFFFFFFFFFFFFFFFFFFFFF FFFFFTFFF40
190 DATA 880461DFFFFFFFFFFFFFFFBF8000001FF FFFFFFFFFFFFFFFFFFFFFFFFF7FFF48809075DF FFFFFFFFFFFFFFBFFFFFFFDFFFFFFFFFFFFFFF FFFFFFFFFFFBFFF48000175DFFFFFFFFFFFFFFF BFB8E318DFFFFFFFFFFFFFFFFFFFFFFFFFFFBFF F48009074DF
200 DATA FFFE7FFffrffrfibsB8E318DFFFFfFFFFF FF1FFFFFFFFFFFFFFDFFF00021074DFFFF6FFFF FFFFFFBFB8E318DFFFFFFFFFFF8FFFFFFFFFFFF FFFDFFFO0591274DFFFF9FFFFFFFFFFBFF8E318 DFFFFFFFFFFEGFFFFFFFFFFFFFFFETFF009B917 CDFFFFDFFFF
210 DATA FFFFFFBFBFFFFFDFFFFFFFFFFFFFFFF FFFFFFFFFFFFFS05F117CDFFFFFFFFFFFFFFFBF BFFFFFDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFS OSBA17CDFFFFFFFFFFFFFFFBFB8E318DFFFFFFF fFFffrffrffrffrffrffrffr 403381 TCDFFFFFF fFFFFFFFFBF
 FFFFF0833A17CDFFFFFFFFFFFFFFFBFB8E318DF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFSOBB817CD FFFFFFFFFFFFFFFBFB8E318DFFFC3FFFFFFFFFF FFFFFFFFFFFFFFFF 40 FBBSTCDFFFFFFFFFFFFFF FBFBFFFFFDF
 B81 フCDFFFFFFFFFFFFFFFBFBFFFFFDFFFFETFFF FFFFFFFFFFFFFFFFFFFFFF583F8574DFFFFFFFF FFFFFFFBFB8E318DFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFF483B8574DFFFFFFFFFFFFFFFBFB8E31 8DFFFFFTFFF
240 DATA FFFFFFFFFFFFFFFFFFFFFF58B30174DFF FFFFFFFFFFFFFBFB8E318DFFFFFFFFFFFFFFFFF FFFFFFFFFFFBFF40B3A574DFFFFFFFFFFFFFFFB FB8E318DFFFFFDFFFFFFFFFFFFFFFFFFFFF97FF 52FBA974DFFFFFFFFFFFFFFFBFBFFFFFDFFFFFE fffrffffrff
250 DATA FFFFFFFFFCTFFF4OFB1D7CDFFFFFFFFFF FFFFFBFBFFFFFDFFFFFE7FFFFFFFFFFFFFFFFFF F3FFFF40FB3B7CDFFFFFFFF8000000BFBBE318D FFFFFF7FFFFFFFFFFFFFFFFFFF7FFFFOOFB6D7C DFFFFFFFFAOOOOOOO3B8E318DFFFFFFFFFFFFFF ffffrffrffr

260 DATA F7FFFF40FB897CDFFEFFFFFA640000003 8E318COOOOFFFFFFFFFFFFFFFFFFFFFEFFFFFSO FB097CDFFFFFFFFA667DFFFFF8E318D7FFEFFFF FFFFFFFFFFFFFFFFFEFFFFF50BF017CDF80003F FBE66533323FFFFFD7FFEFFBFFFFFFFFFFFFFFF FFFF7FFFF50
270 DATA BFOD78DF9FFFBFFBFE6533323FFFFFD76 46FFFFFFFFFFFFFFFFFFFFFF7FFFF52BF1D78DF 9FFFBFFB3FE5333238E318D7FFEFFF1FFFFFFFF FFFFFFFFFFBFFFF50BFOD78DF9FFFBFFB33FDFF FFB8E318D7FFEFFFEFFFFFFFFFFFFFFFFFFFFFF F42BF9778DF
280 DATA 9FFFBFFB333D333238E318D4836FFFF7F FFFFFFFFFFFFFFFF9FFFF52BFE378DF9FFFBFFB F335333238E318D7FFEFFFF7FFFFFFFFFFFFFFF FE7FFFF62F7C178DF9FFFBFFBFF3533323FFFFF D7FFEFFFF7FFFFFFFFFFFFFFFF9FFFFF5637C37 8DFBFFFBFFB
290 DATA 3FF533327FFFFFD7FFEFFFFFFFFFFFFFF 1FFFFFFBFFFFF16BFE378DFAFFFBFFB33FDFFFF B8E318D7FFEFFFE7FFFFFFFF003FFFFFFFFFFF1 FB7E378DFAFFFBFFB333D333238E318D7F62FFF EFFFFFFFFCOBOFFFFFFFFFFF5767E778DFAFFFB FFBF3353332
300 DATA 38E318D7642FFFFFFFFFFFF00107FFFFF FFFFF5767C378DFAFFFBFFBFF35333238E318D7
 FAFFFBFFB3FF533323FFFFFD6C3AFFFFFFFFFFF 802102FFFFFFFFFF67F7E178DFAFFFBFFB33FDF FFFBFFFFFD7
310 DATA FFAFFFE1FFFFFF0826807FFFFFFFFF477 7F378DFAFFFBFFB333D333238E318D7FFEFFFBE FFFFFF1560D03FFFFFFFFFOF7FF378DFAFFFBFF BF335333238E318D7FFAFFFFF7FFFFE2569503F FFFFFFFFOF77AB78DFAFFFB003FF35333238E31 8D7ECEFFFFF
320 DATA 73FFFC6C7F521FFFFFCOFF6F278D78DFA FFFB0033FF5333238E318D7FFEFFFFFFFFFF9DE 7F940FFFFFD6FF4F278B78DFAFFFB5FB33FD333 23FFFFFD7FF8FFFFFFEFFFBFD7FD7EFFFFFD6FF 7FBFBB78DFAFFFB5FB333DFFFFBFFFFFD587EFF FFFFFTFF280
330 DATA 510007FFFFD6FF7FFF9178DFAFFFB5FBF 335333238E318D7FFEFFFFFFFBFE7FFFFFF23FF 8001005FF79378DFAFFFB5FBFF35333238E318D 7FFEFFFC7FFDFCFFFFFFFF1FF7FFFFFSFF79378 DFAFFFBSFB3FF5333238E318D7FFEFFE3FFFDF1 FFFFFFFFC7F
340 DATA 7FFFFF1FFFB378DFAFFFB5FB33FD33323 8E318D6C9EFF9BFFFEE7F0000107F7F7AEBAF5F F7B778DFAFFFB5FB333DFFFFBFFFFFD7FFEFFFF FFFEETE4000001F7F7BEFBF5FBF9778DFAFFFB5 FBF33533323FFFFFDTFFEFFFFFFFDE7801F5FF8 77F7BEFBF6F
350 DATA BFB378DFAFFFB5FBFF35333238E318D30 68FFFFFFFDE01F8COO3FOFF7FFFFF6FFFB178DF AFFDB5FB3FF5333:38E318D7FFEFFFFFFFDFA78 70FFCEOFF0000002rFFB378DFAFFDB5FB33FD33 3238E318D7FFEFFFFEFFBF827E000F07FF00001 501BF9178DF
360 DATA AFFDB5FB333DFFFFB8E318[;2008FFFFFF FBFF181EFDOOFFF00000B01BF1178LFAFFDB5FB F33533323FFFFFD7FFEFFFFFFFFFF86F6FDFCFF

Dynamic Color News April, 1988

F00000723BB9374DFAFFDBSFBFF3533323FFFFF D7FFEFFFC001FFFF6F6FSB3FFF00001F23BFB36 4DFAFFDBSFB
370 DATA 3FF5333238E318C41BEFF807C03FFF6B6 FSB7FFF00003F23379164DFAFFDB5FB33FD3332 38E318D7FFEFF1FFiF1FFF6B6FSB7FFFSDC0002 1331164DFAFFDBSFB333DFFFFB8E318D7FFEFF7 FFFEDFFF6B6FSB7FFFSDC8FF25BB1164DFAFFDB 5FBF3353332
380 DATA 38E318D7FFEFF7FFF21FFF6B6FDB7FFFS DD2FE217BB164DFAFFDBSFBFF3533323FFFFFD7 66EFF788221FFF6B7FDB7FFF5DC400047F8164D FAFFDBSFB3FF533323FFFFFD7FFEFF7EFF65FFF 6BFFDB7FFF40007F247B8164DFAFFDB5FB33FD3 33238E318D7
390 DATA FFEFF7FFF65E0000FFFB7FFFSDC03F057 BC164DFAFFDB7FB333DFFFFB8E318D7B32FF643 D65EFFFEFFFB7FFFSDC1002D7BA164DFAFFCF7F BF335333238E318D7A32FF000561EFFFEFFFB7F FF5DC21F255B2164DFAFFB77FBFF35333238E31 8D7FFEFF6CF
400 DATA D69E90FE00007FFF5DC0AF26DB0164DFA FFB77FB3FF533323FFFFFD7FFAC06CFF61EFFF8 00007FFF504100267FA164DFAFF7B7FB33FD333 23FFFFFD6C9ACD6CFDO9EF0F0FFFE7FFFSDCOOF 275FC564DFAFF7B7FB333DFFFFB8E318D7FFEC9 106D49EFFF2
410 DATA 00037FFF5DC1AF017E8964DFAFF7B7FBF 335333238E318D7FFEC96D7009EFFF64FFF7FFF SDC347087F896CDFAFF7B7FBFF35333238E318D 766EC96C6029EFEF1CFFF7FFF5DC340187FC96C DFAFEFD7FB3FF5333238E318D7FFEC9612641E1 EF30FFFTFFF
420 DATA 41036B187ECD6CDFAFE817FB33FD33323 FFFFFD7FFEC9696465EFOFSCFFF7FFFSD836B10 FE816CDFAFE057FB333DFFFFBFFFFFD4836C961 2465EFEF3CFCF7FFFSD8375303E856CDFAFC143 FBF335333238E318D4836C96D2C25EFEF7CFFF7 FFFSD83700B
430 DATA BF8D6CDFBF1100FBFF35333238E318D7F FEC9693405EE0F7CFDF7FFF5DBB7E09BECD6CDF BE11007B3FF5333238E318D7FFEC96DA405EFEF TOFDF7FFF5000000ABE8D6CDFBC01103B33FD33 3238E318D7FFEC96DA08DED1D4CFDF7FFF5DBB7 F02BE8D6CDF
440 DATA B801849B333DFFFFBFFFFFD7B22C96DA4 BDEFDD3CFDF7FFFSDBB7F083A896CDFB009820B F33533323FFFFFD7B22C96DA08DEFDD7CFDF7FF F5DBB6F003A816CDFA090CABBFF35333238E318 D7FFEC96DA589EFDD70FBF7FFF500007083A856 CDFA032C903
450 DATA 3FF5333238E318D641AC96DA589EE5D6C FBFTFFF5DA00709BAC95CDF8252C48333FD3332 38E318D641AC96DEDC9EFDD5CFBF7FFF5D91B31 820495CDF80AAED43333DFFFFB8E318D7FFEC97 DEDC9EFDD7CFBF7FFF5D097D1080495CDF852AA 5C3F3353332
460 DATA 3FFFFFD7FFEC97DEDC9EFFD7CFBF7FFFO 43EFD0800015CDF88EAE2C3FF3533323FFFFFDS O06C9FDEDC9EF0D60FFF7FFF54BF3E0000015CD F89EEEF633FF5333238E318D7FFECAFDEC59EFD DO8FFF7FFF1400014008015CDF97DEF76327FD3 33238E318D7

470 DATA FFECB6DEC69E81D64FFF7FFF57F87F503 0015CDFAFDEF7B3267DFFFFB8E318D0016CB6DE 849EFD95CFFF7FFF67E13F4000015CDFAFDEFFB BE665333238E318D7FFECB6DE849EFD97CFFF7F FF07C25F1C20415CDF9FFFFFBBFE6533323FFFF FD7FFEC36DE
480 DATA 9C9EFD978FFF7FFF7FCO2F1481055CDF8 88FF8233FE533323FFFFFD7FFEC26DE9C9EFD96 4FFFTFFF00000715C1015CDFBFC110FB27FD333 238E318D7FFEC26D2AC9EFFD1CFEF7FFF000001 1751055 CDF807FFFC3267DFFFFB8E318D7646C2 6DE8C9EDFD7
490 DATA CFEF7FFF7FFFFF008B015CDF9FC0003BE 665333238E318D7FFEC27C0889ED7D64FEF7F9F 0000000103415CDF9FD7F5FBFE65333238E318D 7FFEC6FDE889ED7D1CFEF7EGF7C7F3700353DSC DF9CD7359B3FE533323FFFFFD4836C6FDE8C9ED 757CFEFTEEF
500 DATA 739F360077855CDF9856150B27FD33323 FFFFFD7FFEC47DEBO9EF7S7CFEFTEF7OFFC4320 22015 CDF9A56950B267DFFFFB8E318D7FFEC9FD EE09EF7S70FEF7EFB4FEB750202015CDF9CD735 9BE665333238E318D7FFECAFDF809EF714CFEF7 DF93FFEF800
510 DATA OA215CDF9FD7FDFBFE65333238E318D7F FECAFDF829EF717CFEF7DFB3FEEF90203015CDF 98D61DAB3FE5333238E318D7B22CAFDF829EF71 TCFEF7DF34FFC391225215CDF98D61D8B27FD33 323FFFFFD7B22D2FFFABDEF757CFEF7EF97FFF3 C1227415CDF
520 DATA 98D61D8F267DFFFFBFFFFFD7FFED2C000 00000004FEF2CB57FFF59103501SCF118D61D8B E665333338E318D641AC25DB86EED3774FEF783 537FF97002B015COAA8D61D8B7C65333338E318 D641AC25DBB6EEDB774FEF77715FFC38601C010 07E10D6DD80
530 DATA $01 E 5333338 E 318 D 7 F F E C 2400000000004$ FEF4F773FE28800240077FEF5D6DD9A21FD3333 38E31857FFEC2SDBB6EEDB774FEF3FB10000800 OA9380FFEE846DD70247D33333FFFFFB7E46C25 DBB6EEDB774FEF3FFD3FFF07C00003FFFEEA421 4C32465FFFF
540 DATA B8E31F80FFEC2400000000004FEF5FE38 0002FFFFFFFFFFEEB7AOOOF3465333238E31FDF 3FEC25DBB6EEDB774FEF439FFFFFAFFFFFFFFEO 02B7FDFEE35E5333238E31D1F836C25DBB6EEDB 774E2F586BF3FFAFFFFFFEOOTFEB7BDFEE24003 33238E318FF
550 DATA DFECA5DBB6EEDB7749D3706BCDFFAFFFB 000000010000000006EC001E7E002FFE0000000 0000000007FB6EE3DDFFAFF006DBB6EDB000000 0066EEBD418000FFFEC000000000000000FFD1F FEDEFFAF05B6DBB6ED9FFC0003FE6EEBS5079FE 7FFF7FFCOOO
560 DATA 000000000FFD7FFEDF7FACB5B6DBB6ED8 00000000004EB5S50E79FFFF181FFFFE6FE3FDF FFF37FFBBF3FAFB5B6CB0000000084003006000 554F9BFFFFC7E1F8019FDFFEFFFEF3FCOBF7FB1 B5B600000001000400200580055731BFFFFC7FD F2EG7FFFFEF
570 DATA FF9F801FBE7F8E350018000909A426613 3340075578E1FFEE387ECF9CFFFFF9FAD8018FF DF3C7980838186124849207903999C040158E3F

Dynamic Color news April， 1988

FCFF7E3F99FFFFFFFC03FFFFF96A3867C040326 9FFFFFFFFFFFFFFE0582031C7FSFFBEFF67FFFF CCO3FFFFFFF
580 DATA 869F39E700001FE401FC0000000041FC4 03CE7BABFFB3FE9FFFD402FFFFFFFFFCFA4C79F 98DBC3FFFFFFFFFFFFFFFC0001CF38C3FFE67FE DFFF3FFFEFFFFFFFF80333E7E79000000001FFF FFFCOOOO0233F7CFOBFFDCFFF3F8OFFFFFFFFFF FCOE78C39F1
590 DATA E7CF80000000000000002C795CF9F0日8F F3DFFF3B7FFFFFFFFFF08008083日7CF9E3E7F7B F7日0000400F63F0FE71E71E383FBFFFE3FFFFFF F0000C01FF3DOF13E7DF9FCEFEFEFBFDF3CFDC7 C2F9E78F83FBFBFF587FFFFFF1FF802FFFFBB21 E39F7E7F3DF
600 DATA BFDFBFDF9E7EF日FC3E787C17FFFEFFFE3 FFFFFOFBOTFFOFFF3A6C3C3CF9FCFBF7FDFBFEF DFEE3F1F8F99E09BEFFBFFFF9FFFFCFBOFFFE22 FF725DBFBBF7F3F7EFFBFBFF7EFCF9FC7FAA706 CBFFFBFFFFE7FFC387FFFFCFCF9B4DBBOF0104F CF9FF7FBFFB
610 DATA ETETETF480383749FFFBFFFFF日FC3C3FF FFF3FE7ECC9B7B1FFFC03F3FEFFBFFBF3F28001 7FC1日965FFF9FFFFFE73C0FFFFFF7FE3EC9A377 C0807F000040日B0000003FFFFCOOBDB6GFFFDFF FFFF9E37FFFFFEFFFDECB3477DFBFB0FFFFFFFF FFFFFFE0002
620 DATA 3DFDD1A37FFCFFFFFFC9FFFFFEFEFFFFE 5F47BFBFBE7E000202000400201FDFF7EFDC793 7FFD7FFFFFFOFFFFFFFFFFFFF76C9EOBF3EFEFE FF7FFBFFEFF7CFEFFBF7E3859BFFC7FFFFFFF1F FFFFFFFFFFFAEDEIFOF7CFDFDFEFFFBFFEFFTEF FBFCF31E6E9
630 DATA 3FFEBFFFFFFFE3FFFFFFFFFFFCBDEC3F0 7DFDFDFEFFFBFFF7FBE7EDFF7B697767FFF1FFF FFFFFC3FFFFE7FFFFF4BDBC3EB1FDFDFEFFFBFF F7FBF7FC00031BBEDFFFFOFFFFFFFFFC7FFFF8F FFBFF3DBEC7F83BFBFDFFFBFFFBFDFA03FFF8FB DA3FFFC日7FF
640 DATA FFFFFFF8FFFE13FFCFF日日7DFD1BCOFBFD FFFBFFFBFCO9FE0046FDDCFF86BC1FFFFFFFFFF OFF1FFFFFFFCB7DFBE07F041DFFFFFFFC01FF12 FFBF7DE9FEFFFFOTFFFFFFFFFF2OFFFFFFCFFOF

BFBF790FFD0日0000421FFCOFF7FBF7EF7D5FFFF B3FFFFFEFFF
650 DATA FFFFFFFFEFFFETBFTEFF7007BFFFFFFFF FEBEFF7FDFBE4FFFFBFFCOFFFFFFFFFFFFFFFFF FFFFFETF7EFFTFG0089000420017F7FBFDFBOEF FFFC7FE03FFFFFFFFFFFFFFFFFFFFFF4OFDFE7F 7FBFFFBFFFEFFBE7FBFEFCTFFFFEFCFE80FFEFF FFFEFFFFFFF
660 DATA FF87FFFFODFEFF7FBFFFBFFFEFFBFBFDF E日1FFFFFFED2FE03FFFFFFFFFFFFFFFFFFB3CFB FOFEFF7FBFFFBEFEFTEDFBF8003FFFCO3FFC61F 1OFFFFFFFFFFFFFFFFFFFFFODFFOEFEFF7FFFBF FFFTEDFDETFFFBFFFFFFE31DECC3FFFFFFFFFFF FFFFFFFFFFO
670 DATA FFFIFEFFTFFFBFFFFTFEFCIFFEOTFFFFF FDFFEFETOFFFFFFFFFFFFFFFFFFFFFEOFFE0081 S0200082001000FC11FFFFFCIFFF7EFF3C3FFFF FFFFFFFFFFFFFFFFFF03FFFFFFFFFEFFFFFFEFF日3FFFFFC03FFF8F91FC7OFFFFFFFFFFFEFFFFFF FFEFFC3FFFF
680 DATA FFFFFFFFFFFF807FFEFFB3FFFFC774E18 3C7FFFFFFFFFFFFFFFFFFFFFFF80080FFFFFFFF F8007FFFFFFFFFFFFFFFFFFDE371FFFFFFFFFEF FFFFFFFEFFFFFFFFF000000FEO3FEFFFFFFFFFF FFFFFFFFFEBAFCFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFCB1
690 DATA FFFFFFFFFFFFFFFFFFFFFFEBFFFF7023 DCE037FFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFEFFFFF97FFFF1C63C46C71FFFFEFFF FFFFFFFFFFFFFEFFFFFEFFFFFFFFFFFFFFFFFFF FFFFFFE日C63A02C6BFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFF
700 DATA FFFFFFFFFFFFFEFFFFFFECCG3B10C6CFF FFFFFFFFFFFFFFFFEFFFFFFFFFFEFFFFFFFFFFF FFFFFFFFFFFFDCC63718CSCFEFFFFFFFFFFFFFF FFFFFFFFFFFFEEFFEFFFFFFFFFFFFFFFFFFFFCO C6301CC4OFFFFFFFFFFFFFFFEFFFFFFFFFFFFFF EFEFFFFFFFF
710 DATA FFFFFFFFFFFFDCC6071EC5CFFFFFFFFFF EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF00265C000A8722544849532 $049532041204 D 414348494 E 45204 C 414 E 475541$ 474520434F4E56455253494F4E2050524F47524

BULLETIN BOARDS COMPUTER CLUBS $\&$ PEN PALS

If you want a free listing send us the information. These listings will be kept current.

BULIEIIN BOARDS

BBS The Dungeon BBS of Newport NC Supporting IBM, Commodore, CoCo, Apple, Atari, and Tandy Computers. On-Line Special Interest Groups, Forms, Multi Message Bases, Upload and Download areas. On-line shopping and Business services. 300/1200 baud 24 hours. 919-726-9737.
Sysop: Chuck Katsekes Address: 410 Scott Dr Newport, NC 28570 Telephone (voice) 919-726-0018

Dungeon Bulletin Board System North Carolina 919-726-9737 Chuck Katsekes 410 Scott Dr Newport, NC 28570

FAT NEWSLETTER 300/1200 Baud
FAT 1010
Concord Av
Piqua, OH 45356
(513) 778-9624

COLOR COMPUTER
CLUBS

Jan Colucci Editor C'Crier
The Color Computer Club
PO Box 478
Canfield, OH 44406

NEW PRODUCTS

This section is available free for producers and dealers of color computer products. These products have not been reviewed by us but are included for our reader's information.

We did not receive any new product information this month.

If you have not written I would like to hear from you. All of our letters were from ham radio operators. If you are having a problem maybe we can help. If not we will ask our reader's for their help. All replies to letters will be printed in our Question \& Answer column. - Bill

ADPERTISER'S ILDEX

We would appreciate it if you would let these advertisers know that you saw their advertisement in Dynamic Color News
The Wizard's Castle 6T \& D Subscription Software . 8Dynamic Electronics Inc. . 2,13.$28,36,37,38,39$
Z-Friendly 10
oPC Printing 32
Digital Innovations 24
Ark Royal Games 33
Codis Enterprises 19
Seibyte Software. 46
1)YNAMIC

CUPGULATIVE INDKX
dizor's Commenta. Juostions and Answers, and Operating innts are included in 111 issues. Product -oviews are in lasues since 117 . Numbers in 'arentreses indicato the part of a serios.

al Feb 84

Busic Programminge
Programmelng Thoory Multiprogram Manager MPH Program Listing Machino Lang. Frog.

22 Mar 84

Basic Programming
Memory Expansion
Machino Lang. Prog.
WSCII Apr 84
Hasic Programeing
Machino Lang. Proe.
$\$ 4$ May 84
ASCII Part 2
ML Programolne-
Intorrupts
Inatalling an
Intorrupt switch
Ut1llty Program
W5 Juno/July 84
Powerful Ronarks
(Remarks for data)
ASCII Part 3
Uninterruptod Powor
Machine Lang. Prog.

$\$ 6$ Aug 84

Powerful Remarks (2)
Uata in Ramarks
Chock Book Program
Hord Proceasor
Hachino Lang. Prog.

$\| 7$ Sept 84

Machine Lang, Prog.
Writing Position
Independent Code
Poworful Remarks (3)

4 Oct 84

Basic Programing
(Data Handling Toch)
Machine Lang. Prog.
(Morory Soarching)
\# 8 Nov 14
Computar Sound (1)
Basic Programing (Borting)
Ball Teati Sort Pgo
$\$ 10$ Dec 84
Randoin Numbora
Cotnputar Sound (2)
Bound Loarnind Fgm
Bound Damo Program
日j) Jan 85
Rafdom Numbers (2)
Curd Bhuffiling
Computer Sounds (3)
Machlno Languago Subs
Sound Program
Discussion
\& 12 Fob 85
Largo Momory Pgms (1)
Computar Graphics (1)
Video Roverser
(hardware)
$\$ 13$ Mar 85
Lsteg Mamory Pgma (2) Computar Graphics (2) Hriting Programs (1)

a) 4 Apr 85

Largo Momory Fgms (3)
Computer Graphics (3)
Graphics Demo Program
Writing Prograns (2)
Print Uemo Pga
$\$ 15$ May 85
Writing Prograas (3)
Gus Mileago Program
Largo Monory Pgme (4)
Data Move Program
C'omputer Graphics (4)
Graphics Domo Program

$\$ 16$ June 85

Writing Programs (4)
Grade Book Program
Computer Graphics (5)
Charactor Gon. Pgma
Largo Momory Pgas (5)
Addrosa File Program
$\$ 17$ July 85
Largo Memory Pama (6)
64K RAM Program
Writing Programa (5)
Alarm Clock Program
Computar Oraphica (6)
Charactor Gon. Pgm.
CoCo Heat Problem
w 18 Aug 85
Writing Programs (6)
Addroas Filo Program
Largo Monory Pgma (7)
Study Program
Computer Graphics (7)
Lino Demo Provram

$\$ 19$ Sopt 85

Writing Yrograns (7)
Fast Food Program
Computer Graphics (8)
Bar Graph Program
Voctor Corroction Pgm
Largo Memory Pgms (B)
$\$ 20$ Oct 85
Writing Programs (θ)
Word Procossor Pgm
Bar Oraph with
Character Generator Second Port
Page - 1 for $32 \mathrm{~K}+$ HEM Large Memory Pgms (9)
\#21 Nov/Doc 85
Writing Programa (9)
Chack Book Program
Computer Graphica(10)
Circlo Derao PGM
Kecipo Prouram
RAM Disk Program
Eloctric Cost Program

422 Jan 86

Hriting Prourans (10)
liventory Program
Computor Graphica(11)
ARC \& Circlo Deno PGM
Largo Memory Pgws (11)
Ship War (Gamo)
\#23 Feb 86
Writing Programs (11)
File DEMO Program
Basic Basic (1)
Computer Graphics(12)
Dran Domo Program
Intorfacing Comp. (1)
Bouncing Ball (Gamo)

424 Mar 86

Interfacing Comp. (2)
Eloctronic Blllboard
Hriting Programs (12)
Basic Basic (2)
Computer Graphica(13)
Draw Program
(Scalling)
Largo Momory Pgms(12)
Ramdiak Subroutines

D2b Apr 00
Interfacing Comp. (3)
Hrltifis Programs (13)
Basic Basic (3)
Tanks (Gamo)
Large Momory Pgms(13)
Uppor Mamory Program
Computer Graphics(14)
Graphics Programing
(GET \& PUT)
426 May 66
Writing Programs (14)
HL Programming (1)
Intorfacing Comp. (3)
Roulotto (Garo)
Pago - 1 Pgm Dov.
Basic Program Restoro
Largo Momory Pgns (F)
Computor Graphics(14)
Graphica Draw Prograw

- 27 June 86

ML Programmag (2)
ML Program (Addition)
Paso -1
Mom. Pook \& Poko Pgto
Hriting Programs (15)
Invontory Program
Intorfacing Comp. (5)
Chords (Music Pgm)
Computer Graphics(16)
Graphics Draw Program

828 July 86

ML Programming (3)
ML Add with Carry
Graphics 2oom Program
Writing Programs (16)
File Program
Intoriacing Comp. (6)
ASCll Dono Program
Astro Dodgo Game
Computer Graphics (F)

429 Aug 86

ML Programming (4)
ML Subtract Program
Intoriacing Comp. (7)
Organdze VCR Tapas
Ham Radio \& Comp. (1)
Morsa Codo Progran
Disk Disassomblor
Basic Prog (17)
\&30 Sopt 86
ML Programing (5)
ML Data Move Program
Baslc Programing
File Program
Ham Radio \& Comp. (2)
Antonna Design Pgm
Intorfacing Comp. (B)
ML Output Subroutines
日31 Oct 86
Money Chase (Game)
ML Programming (6)
Multiplo Choice Tost
Basic Programing
Addrose File Pgm (1)
Introduction to OS-9
Intorfacing Comp. (9)
Ham Radio \& Comp. (3)
832 Nov 86
Star Constellations
ML Programming (7)
CoCo 3 (1)
Basic Programing
Address Filo (2)
Duolling Cannons
Haw Radjo \& Conp. (4)
DX Program (Ham)
Intorfacing Comp. (10)
Hardware Intorfaco
\&33 Dec 86
ML Programang (θ)
CoCo 3 (2)
05-9
Lucky Monoy (Gane)
Interfacing Comp. (11)
DYTERM Torminal Pgm
Baalc Programming
(Sorting)
Ham Radio Comp. (5)

$$
\text { \&34 Jan } 87
$$

Cassotto Control Sw.
ML Programining (9)
Jungle Adventuro
Interfacing Comp. (12)
Ham Radio \& Comp. (6)
Morso Cudo Koyor PYm
CoCo 3 (3)
Basic Programming
Address Filo \& Sort

a 35 Fob 87

ML Progranming (10)
Interfacing Computers
(Joystlck Voltwotor)
Ham Radio \& Comp. (7)
Scrolling Around
Basic Programing
Addroas Filo

- 36 Mar 87

OHARE (Gamo)
Joystick Ohmetor
EPROMS (1)
ML Programing (11)
CoCo 3 (Lowercaso
Char \& Rev. Video)
Ham Radio \& Comp. (8)
Basic Programoing
Invoico Program
137 Apr 87
Diver (Game)
EPRUMS (2)
ML Programming (12)
Using Joyatick Port
for Measuring Temp.
Ham Radio \& Comp. (9)
CoCo 3 (Error Trap)
Basic Programing

\#38 May 87

Joystick Digital
Thermometer
Accounts Payable
(Buainosa Pgm)
EPROMS (3)
ML Programming (13)
CoCo 3 Momory Managor
Ham Radio \& Comp. (10)
Basic Programing
(Fant Sorting)
:39 June/July 87
Gonoology Program
ML Programping (14)
Moasuring Light with
Joystick Ports
EPROMS (4)
CoCo 3 Graphica Demo
Han Radio \& Comp. (11)
Calendar Program
340 Aug 87
Job Costing Program
ML Programming (16)
Basic Programoing
Ham Radio Comp. (12)
Compound Intereat Pero
CC-3 Hi-Rea Graphics
Savo Prcgram
Dog Race Program
441 Sop 87
Aatro Dodgo Gamo
ML Programming (16)
Roformatting Data (1)
Motoors Program
Computer Torminology
Ham Radio \& Comp. (13)
Relay Interfaco
(Hardwaro Projoct)
*42 Oct 87
Taking Control (1)
(Basic Programming)
ML Programing (17)
Disk Cataloger Pgn
Reformatting Data (2)
Parachute (Game)
Ham Radio \& comp.(14)
ham RTTY Program

\#43 Nov 87

Save the Maidon (G)
Taking Control (2)
ML Programeing (18)
Reformatting Data (2)
Music Program
HAM Radio \& Comp. (15)
(Paokot Radio)
\#44 Dec 87
Kingpode (Gamo)
Taking Control (3)
Printer Utilitioa
Ham Radio \& Comp. (19)
Audio Gonorator PEm
Roformatilng Data (3)
Scroon Dump Program
445 Jan 88
Living Maze (Game)
ML Programming (20)
Ham Radio \& Comp. (17)
Froquency Counter Pgm
Taking Control (4)
Reformatting Data (6)
Fantasyz Music Pgm

Using ROM Routinos
Taking Control (5)
OS-9 (New Serios)
(Card Gamo)
tam Radio \& Comp. (18)

447 Mar 88
Using ROM Rout. (2)
Takins Control (6)
OS-9 \& Basic 09
Coast-Goast (Gaḯo)
Losic (Ed. Gamo)
Lh Pros. Lang
Ham Radio \& Conp. (18)

COCOMAX I I
 (Closoout)

DYPRINT

Now you can print LWRGR signs for spocial occassions such as birthdays. partles. or yard salea. Evon make your own bor SNLE signs whon you nood to soll that old car or lawnowor. gulner uses standard print charactara and is compatible with any printor. Tho charactors aro formed by a 21×27 dot pattorn and aro printod sidoways across the paper. The basic charactor can be oxpanded up to t times for making largo charactors up to a full pago.

MAPRINT allows graphics to bo blown up and rinted on a standard prlator. Any PHODE 4 plcturo can be printed. The program supports all 8 graphlcs pagos for a total of 12288 bytos. MNPRINT prints 8 charactors per byto for a total of 98364 characters. Blow up plctures of frlonds and family genoratod by the DS-69B or othor digitizor or mako postors announcing salos or spoclal ovents.

The DYFRINT packago contalns both BNNTG and MNPRINT. The cost is only 119.95

COLOR COMPUTER 2 KIT (SPECIAL PORCHASE)

Now you can build your own Color Computar 2. Theac kits woro dosignod for a school and aro complote with a stop by stop instruction ananual plus the normal Radio bhack oporating manuala Thoy use 4164 momory chips and sockots aro l^{2} cluded for all intogratod circults. If you have an oldar CC-1 or CC-2 then thls is an oxcollont sourco for spare parts.
cont more than this kit.
CC-2 Rit
859.95.

SOETWARE
Avallable on Tape or Dlak

TERMINAL PROGRAM

DYTARM -Allows a Color Computer to Interface with Modoras, Tosminals, or othor Computors using the ASCII port. 300-2460 baud, 1 or 2 Stop blts 7 or 8 blt words, varlable parlity. 99.95

The bost graphics program for tho Color Com puter 2. Draw a plcturo, label it, rotato it copy it, and shrink 1t. Then print it on graphics printar. Noods a "Y" cablo or multipack oxpandar for disk vorsion.

$$
\begin{array}{lr}
\text { CoComur Il disk vorsion } & 259.95 \\
\text { Y cablo } & 24.95
\end{array}
$$

DS-69B DIGITIZER
Capturo plctures from your VCR or vidoo canora Display thom on the COCO 3's high resolution scroan. Labal thom with COCO MAX and print thom on a graphics printor or savo them on disk. $256 \times$ 256 resolution. 64 lovols of groy, 8 images por second. Plug in ROH pack requires a multipack ox pander. Works with all color computor disk systens. DS-89B 8149.95 .

CC-TERRM 2

CC-THERM 2 ls a dusl digital thomomator for Radio Shack Color Computors. It consfsts of two thermistors wirad to the ond of 10' and 20' flat cablos for moasuring insido and outside tompora turas. The other ond of the cable is wired to a joystick plug. The therwistors can be mounted on a wall. Inside oquipront. or outside for tomporature moasuromonts. Baslc softwaro on tapo or disk conelnuously prints the temporature in both Fahronholt and Contigrada. T or D software. 819.85

CC-LT (now)

Now you can moasuro both temperature and 11 ght . The Joystlck assombly includas a 11 ght and tom perature sensor at the ond of a 20' flat cable. Jses one joystick plug. T or D Software 19.95.

128K RHORRIES For D, E , F, 285, or CC-2 (Homory Hanagor Software lacluded)
MR-10A - Upgrado CoCo-2 Computars wlth two 4464 chlps to 128 K . Spocify T or D Softwaro. 849.95.
HR-12 - Uperado 8-chip 4164 typo 64 K computars to 128K. Specify T or D Softwaro. 249.95.

DKCIHAL ML ASSOMLER

DISASM Is a 6809 Assomblor-Dlsassomblor that allows machina codos to bo assomblod uslne Enalish mnomonics a dacimal arithootic. it upports all 6809 codes and is especially useful or besinnors. 39.95.

VIDIR RIVERSER
for the CC-2
Roduces aye straln by producing bright characters on a dark backeround. Integrated circult mounts on the 6847 chlp . Hinor soldoring raquired. 39.95 .

MRMORY MANAGER

(for the Color Cooputor 2)
Did you know that the 64K Color Computer 2 and oarllor computors havo an oxtra 32 K that is gonerally not used? Our Momory Manager allowa basic or machino language programa to bo run in olthor 32 K bank. Banks aro oxchangod with an Exic olthor command. Also the socond bank can bo used an a ramdlak to store programa. Thls makes cassotte oporation fastor than a disk. A thlrd option configures the computer for the all ram mode allowing data or programs to bo stored in the upper momory. The Komory Managor software 1s avallable on olthor cassotto or disk.
919.95.

MEMORY SAVER II

Havo you over had a power fadlure or brownout to alpe out your program? The Momory Saver II 1s battery backup assombly that provonto loas of programs due to powor falluros. It mounts undor tho koyboard and works with all color computore. Consists of gol rocharagoabla battory, control clrcult, \& miniature togele switch. Will powor a color computor for up to a couple of hours durine a power falluro. Price reduced. 839.95

Add 33 S/H Checks, VISA, \& MC.
Dynamic Electronics Inc., Box 896, Bartselle, AL 35640

[^0]: Tim Tillman
 1479 31st Street NW
 Winter Haven, Fl 33881
 (813) 293-8619

 5:00 to 10:00 EST

