The diskette for FILTER KIT #2 contains the following:

directory of . 15:50:56

Owner Last modified attributes sector bytecount name

0 84,/07/02 1542 d-ewrewr
0 84,/07/02 1541 d-ewrewr

directory of CMDS 15:51:06

Owner Last modified attributes sector bytecount name

0 84,/07/02 1542 --e-rewr
0 84/07/02 1542 --e-rewr
0 84/07/02 1542 --e-rewr
0 84,/07/02 1543 =~-e-rewr
0 84,/07/02 1543 --e-rewr
0 84/07/02 1543 ----rewr
0 84/07/02 1543 --e-rewr
0 84/07/02 1543 --e-rewr
0 84/07/02 1543 ~-e-rewr
0 84,/07/02 1543 --e-rewr

1C 11A append

1F FB confirm
21 36 ff

23 6B forcerror
25 5C4 macgen

2C 4C nuldevice
2E 198 rep

31 2F3 size

35 1E9 touch

38 B0 unload

directory of MACROS 15:51:17

Owner Last modified attributes sector bytecount name

0 84,/06/26 1317 --=--r-wr
0 84/06/27 2154 ~---r-wr
0 84/06/26 1317 =--—--r-wr

The CMDS directory contains
the documention with this
probably want to copy these
your system disk.

The MACROS directory contains
given in the printed text for

3A 45 cat
3C DA ed
3E A8 namebak

only executable programs, refer to
package for their use. You will
to your working CMDS directory on

macro text files for example macros
macgen.

If your diskette contains a DOC directory, this will contain text
files with documentation updates that may not be in the printed

documentation.

ABOUT YOUR ORDER

Before you open the diskette package, examine the documentation
to confirm you have received what you ordered. You should also
determine from the documentation if the software you ordered will
meet your needs. If you have received the wrong item, return the
unopened disk package with all documentation and a note stating
the problem and we will send you the correct item. If after
looking at the documentation you feel there was a
misunderstanding as to the function of the software, and it won’'t
meet your needs you may return the UNOPENED disk package and
documentation for a refund. No refunds will be given after the
diskette package 1is opened (except for media that is defective
according to the terms on the disk package}.

ABOUT DOCUMENTATION

No amount of documentation will do you any good if you don’t read
it. The documentation included with this software assumes you
have a basic knowledge of using your system and does not explain
in depth information that is covered elsewhere (in your system
manuals). We have tried to use terminology consistent with that
used in the 0S-9 system documentation. If you have not at least
read through your 0S-9 documentation that was included with your
system we strongly urge you to do so. If you do not understand
something about our documentation, first see if there 1is some
word you skipped over that you did not understand (like "pipes",
"device descriptor", "I/0 redirection", etc.) that is explained
in the 0S-9 COMMANDS or 0S-9 TECHNICAL MANUAL, study that manual
then reread our documentation, if it still does not make any
sense then try giving us a call.

DISKETTES

If you have difficulty reading the diskette supplied try it 1in
more than one drive if you have more than one. If that doesn’t
work use the test program supplied with the RS 0S-9 BOOT diskette
to check your drives rotational speed. If the diskette has been
exposed to temperature and humidity extremes it may need to sit
for a day in your environment after you receive it to achive
dimensional stability. Another factor affecting diskette
compatability 1is the track alignment on the disk drives (yours
and ours), if they are off a disk becomes unreadable. If after
these attempts you can still not read the disk return it for a
replacement.

D. P. Johnson
7655 S.W. Cedarcrest St.
Portland, OR 97223
(503) 244-8152

FILTER KIT #2

Filter kit #2 provides an extension of the capabilities of Filter
kit #1. Most of the programs in this package are not used as
filters however. The two that are, SIZE, and TOUCH are used 1in

the same manner as programs in Kit #1, i.e. usually with a 1list
of names piped from LS.

One generally useful utility provided is the UNLOAD command which
does the inverse of the LOAD function, in other words it removes
modules from memory.

The NULDEVICE driver provided creates a "bit-bucket" device that
can be useful when you want to discard the output of a program.

The REP command provides a means of using any 0S9 command that
was made to operate on a single file (the ident command for

example) with a list of files the way the programs in Filter Kit
#1 function.

The most complex and versatile command in this package is MACGEN.
It provides the ability to create new executable commands by
combining any existing 0OS9 programs (commands) that you have. Its
function 1is similar to a procedure file with the addition of
parameter substitution and conditional control. The "MACRO" you

generate with macgen however is an executable module that may be
loaded in memory.

Many of the examples in this documentation show use of the
programs in conjunction with programs contained in FILTER KIT #1.
If you do not have these then of course you can not execute the
examples as shown. Just for your reference in this case the

programs contained 1in Filter Kit #1 are: LS, INFO, CP, DL, MV,
BUF, PAG, FLIST, REMOVE, SELL, SETAT, SORT.

DOCUMENTATION OF PROGRAMS IS ARRANGED IN ALPHABETICAL ORDER

USER INPUT IN EXAMPLES IS SHOWN UNDERLINED

TR g TR W L R NS TS SR RPN L B

Copyright (c) 1984 - D. P. Johnson Page 1

APPEND
SYNTAX: APPEND [-opts] dest-path source-path [source-path..]
or
APPEND -i dest-path [source-path]
Append extends the destination file by copying the source file(s)
to the end of the destination file. When the -i option is wused
the standard input is appended to the destination file after any

optional source files listed.

Options have form -A or -An where n 1is a decimal number
associated with that option. Options are single 1letters A
through 2 (upper or lower case). Multiple options can be written
as -A -B-C or -ABC .

OPTIONS: -I The standard input 1is appended to the

destination file after any source filel(s)
given on the command line.

EXAMPLES:

0S9: append textl text2 text3

The files text2 and text3 are appended to textl, i.e.
file textl is expanded by seeking to the end of textl
and writing the contents of text2 followed by the
contents of text3.

0S9 date ! append -i textl

The output of the "date" command is appended to textl.

Copyright (c) 1984 - D. P. Johnson Page 2

CONFIRM
SYNTAX: CONFIRM [-opts] [text message]

Confirm writes any text _message given to the standard output then
waits for a key to be typed on the standard input. If the “y’ or
‘Y’ key is typed then confirm exits without error. If any other
key 1is typed then confirm exits with an error status of 1 or as
given by the -e options. Confirm is useful in a macro generated
with the macgen command to provide conditional control.

Options have form -A or -An where n 1is a decimal number
associated with that option. Options are single letters A
through 2 (upper or lower case). Multiple options can be written
as -A -B-C or -ABC “

OPTIONS: -En The error number issued by confirm in response to
negative confirmation (Y’ not typed) is set to
n.

-N The error issuing logic is inverted, i.e. an error

is issued upon exit if “y” or ‘Y® WAS typed.
EXAMPLE:
Using confirm within a macro:

0S9: macgen formatit

MAC: .repeat

MAC: format /dl r "0S9 Data Disk"

MAC: confirm Format another disk on /dl ?
MAC: .until

MAC: .clear

MAC:

Copyright (c) 1984 - D. P. Johnson Page 3

FF

Sends a form feed character to specified device.

syntax: FF devname

Example: FF /Pl
Sends a single form feed (hex 0C) to printer Pl

Copyright (c) 1984 - D. P. Johnson Page 4

FORCERROR

SYNTAX: FORCERROR error_number

Causes the error error_number (decimal) to be returned to the
shell that invoked the forcerror command. This may be useful in
some circumstances inside a macro generated by macgen to control

macro flow.
EXAMPLE:

0S9: forcerror 211
Error #211

Copyright (c) 1984 - D. P. Johnson Page 5

MACGEN

SYNTAX: MACGEN [-opts] macro name

MACGEN 1is a command macro generator that allows building new

commands out of combinations of any old commands (executable
program modules).

Options have form -A or -An where n 1is a decimal number
associated with that option. Options are single 1letters A

through Z (upper or lower case). Multiple options can be written
as -A -B-C or -ABC

OPTIONS:

-En The e option sets the edition number of the
macro generated to n.

-L The 1 option causes the macro command to be
loaded 1into memory after it is saved to the
execution directory.

-M The m option causes the macro generated to be
memory resident only. (The macro is first saved
to the execution directory, then it is loaded

into memory, then its file in the execution
directory is deleted.

-Rn The r option sets the revision number of the
macro command generated to n.

-T The T option will cause the macro generated by
macgen to display each of the commands it 1is
executing on the standard output in a similar
manner as the "t" shell option displays lines
being executed from a batch file.

USING MACGEN:

When macgen 1is invoked it will create a macro with the module
name of "macro_name" supplied on the command line which will be
saved in a file of the same name in the current execution
directory. When macgen is invoked it will send the prompt "MAC:"
to the standard output and wait for a macro text line to be input
on the standard input after each prompt. Entering a blank 1line
after the prompt (typing only the return key) will end the macro
and cause it to be saved to an executable file. (This function is
similar to the way the build command works.) Each macro line may
contain any valid shell line with optional string parameter
substitution symbols $0, $1, $2 ... $9. When the macro is later
invoked as a command the actual command line text words will be
substituted for the $ parameters in order that they appear on the

line. If there are more $parameter numbers present in the macro
than on the command line when it is invoked the unused numbers
will have a null string value (no characters). A macro line may

contain any of the special control words { .iferr .ifnul .else

Copyright (c) 1984 - D. P. Johnson Page 6

.endif .for .next .repeat .until .clear }in place of shell
commands to conditionally execute depending on the error status
of the previous line. Control words must be on a line without any
other text (any text after the control word is ignored to the end
of 1line). Macro lines may also contain the parameter setting

conditionals {.onnul, .onset} which will be explained in more
detail later.

EXAMPLES:

0S9: macgen cat

MAC: LS $0 ! SORT ! PAG ~-C6 S1 S$2 $3 $4
MAC:

The above example will create the executable file "CAT" 1in
the current execution directory. CAT can be used as follows;

CAT *.bak current directory

(In this example "*.bak" will be substituted for the "$0" in
the macro text and "current" and "directory" substituted for

$1, and $2 respectively. Since there were no other words on

the command 1line $3 and $4 in the macro text will be null

strings, so in this example the macro will execute as:

LS *.bak ! SORT ! PAG -C6 current directory

which will give a sorted paginated directory listing of all
files 1in the current directory ending with ".bak". The page
heading line will contain the heading "current directory".)

We can also invoke just:

CAT

Which will give a sorted paginated list of ALL files in the
current directory, or

cat -t

Which will 1list all of todays files (the "-t" gets
substituted for the $0 and becomes an option to "LS".)

A more complicated example using the .iferr .else .endif control
structure follows:

Copyright (c) 1984 - D. P. Johnson Page 7

0S9: macgen ed

MAC: del S$0.bak

MAC: rename $0 S$0.bak

MAC: .iferr

MAC: edit $0 #20k

MAC: .else

MAC: edit SO0.bak SO #20k
MAC: .endif

MAC:

This macro creates a command "ed" to edit a file and maintain a
backup file with the suffix ".bak" on the filename. The first
line will delete the old backup file ($0.bak , remember the
filename vyou give on the ed command line will be substituted for
the $0). The current versions of the del command print a message
if the file does not exist and do not return an error, So© no
error handling 1is required after the del operation. The next
line will attempt to rename the current file being edited to the
same name with a ".bak" suffix. If the file does not exist then
the rename command will return an error in which case the
command(s) between the ".iferr" and the ".else" will be executed
to edit a new file. 1If the rename succeeds then the file did
exist in which case the statements between ".else" and ".endif"

will be executed which will edit the backup file to a new file of

the desired name. An example of using the ed macro command is
shown below:

0S9: ed junkfile

In this example if junkfile did not already exist it would be
created by edit. If it did already exist however, then the file
junkfile.bak would be deleted (if it existed), then Jjunkfile
would be renamed to junkfile.bak, and then the command: edit
junkfile.bak junkfile #20k would be performed which would edit
junkfile.bak to junkfile, and preserve the .bak file.

It must be kept in mind that when you execute a macro you have
generated, the commands composing the macro will be called at run
time wvia shell and must either be present in memory or the
current execution directory for the macro to function. The code
in the executable macro file you generate will only call the
other commands it is composed of, these commands are not included
in the macro file automatically. 1In some cases it might be
useful to merge the commands the macro is built of into the same
file with the macro so they will all be loaded into memory at
once when the macro is run. To do this for the CAT macro in the
first example you could do the following:

0S9: chx /d0/cmds Assuming this directory contains cat and the
other commands used

0S9: rename cat cat.temp
0S9: merge cat.temp ls sort pag >cat

Copyright (c) 1984 - D. P. Johnson Page 8

0S9: attr cat e set execute permission after merge
0S9: del cat.temp

Merging all these commands into the same file will result in
faster execution of cat in the case where ls, sort, and pag are
not already resident in memory. In some cases it is better not
to merge the commands into the same file with the macro. For
example suppose you create a macro to do a compile and 1link
operation where you need to run a compiler on the source file,
then run an assembler, then a linker. If the compiler, assembler,
and linker are all merged with the macro, then when you execute
the macro all three will be loaded into memory at once perhaps
leaving insufficient memory available for any of them to operate!
If they are not merged with the macro they will each be loaded
and run as needed, and when finished their memory will be
released making room for the next command.

SPECIAL MACGEN PARAMETERS

The following words and symbols have special meaning to MacGen:

SO : substitute string 0 from command line
S1 substitute string 1 from command line
$2 substitute string 2 from command line
$3 substitute string 3 from command line
$4 substitute string 4 from command line
$5 substitute string 5 from command line
$6 substitute string 6 from command line
$7 substitute string 7 from command line
$8 substitute string 8 from command line
$9 substitute string 9 from command line
$s Read 1line from standard input into command

line at this location (the carriage return
from the 1line read 1is not inserted into
command line wunder construction. $9 is set
equal to the first word on the line read. If
eof 1is hit on input the current command 1line
being constructed will not be executed, and
the status will = 211 (eof error).

.IFERR [number] Start of conditional section which is executed
if error status from previous command equals
number given. NOTE: Number is optional, if not
given or zero the .IFERR evaluates as true for
any error (any non zero value returned from
command.

.IFNUL Sparameter Starts a conditional section which is executed

if the associated S$parameter ($0 ..$9) 1is
null.

Copyright (c) 1984 - D. P. Johnson Page 9

.ELSE

Optional clause that may appear between .Iferr

or .Ifnul and Endif statements. When the
. IFERR statement associated with .ELSE
evaluates false (no error or not the error

number specified) then the statements between
.ELSE and the next .ENDIF are executed

.ENDIF Closes the scope of the last .IFERR or .IFNUL
statement.

.FOR {literal number | $parameter}

Starts a loop for fixed number of repetitions
given by literal number or $parameter.

. NEXT Decrements the loop count associated with the
last .FOR statement, 1if count is not zero
control flow branches back to the first
statement after the .FOR statement.

.REPEAT Marks the beginning of a .REPEAT loop.

.UNTIL [error number]

.CLEAR

Tests the current status (from last command
executed). If status 1is NOT equal to
error_number, control will branch back to the
last .REPEAT statement, otherwise control flow
will continue with statement(s) after .UNTIL .
If no error number is given (or if 0) then any
error status (status <> 0) will terminate the
loop.

Clears the current status (sets it to zero).
This statement is useful after the .UNTIL
statement to clear the error status before
exiting the macro (otherwise the error number
will Dbe reported if macro L.UNTIL 1is last
statement in the macro.)

.ONNUL $x Sy string

Conditional parameter string set statement.
The parameter $x {x=0..9} is tested to see if
it 1s null (no characters). If so then the
value of parameter $y is set to "string".

.ONSET $x $y string

Conditional parameter string set statement.
The parameter $x i1s tested to see if it is set
(not null). If so then the value of parameter
Sy 1s set to "string".

.CHD {pathname | Sparameter}

Copyright (c)

1984

Performs the same function as the shell "chd"
parameter except that it’'s scope extends to
the end of the macro.

- D. P. Johnson Page 10

.CHX {pathname | Sparameter}
Performs the same function as the shell "chx"
except that it’s scope extends to the end of
the macro.

NOTE: *“string" value in .onnul and .onset statement is any group
of non-space characters terminated by the first space or end of
line. If no nonspace characters are present then the string 1is
"null".

Words delimited by space characters on the command line when a
macro is invoked are assigned to the $ string parameters in order
of appearance on the line, i.e. $0 will have the value of the
first word on the command line after the macro name, $1 the next
and so on. When there are no more words on the command line then
any remaining § parameters are assigned a null value. The
Sparameters can appear in any order and any number of times 1in
the macro text when you build a macro.

NOTE: the characters # ! > < & ; can not be passed as §
parameters since these are intercepted and interpreted by shell
as having special meaning. These characters can however be used
in the string set by .ONNUL and .ONSET so you can get around this
restriction with those statements.

Below we will show a different way of writing the "ed" macro in

the previous example so that an optional memory size for the edit
operation can be specified.

0S9: macgen ed
MAC: .onset $1 S$2 #

MAC: del $0.bak

MAC: rename $0 $0.bak

MAC: .iferr

MAC: edit $0 $281

MAC: .else

MAC: edit $0.bak S0 $281
MAC: .endif

MAC:

This "ed" macro will function the same as the first example with
the exception you can specify a memory size parameter on the
command line when you invoke it e.gq.

0S9: ed junkfile 12k

When the ed macro is executed "12K" becomes parameter $1, since
$1 1is now not null, the value of $2 is set to "#", so when the
edit command is <called by the macro the $2$1 combination 1is
replaced by "#12k".

If you had invoked ed with 0S9: ed junkfile #12k you would not
get the desired result because shell when invoking the ed macro
would strip the "#12k" from the command line and give ed itself
the 12k of memory (which is wasted), when ed is run in this case

Copyright (c) 1984 - D. P. Johnson Page 11

it would not find any $1 parameter on the command line! When you
are trying to figure out a complicated macro it is useful to
define it with the -t option which will cause it to print the
actual shell command lines it is using when it later executes.

Example: 0S9: macgen -t ed (input to MAC: same as before)

CONTROL NESTING

All control structures may be nested, i.e. .FOR, .NEXT, .REPEAT,
.UNTIL, .IFERR, .IFNUL, .ELSE, .ENDIF. If you forget the .next,
or .until, or .endif statements to match the opening statement
macgen will issue error 69 (Unmatched control structure) when you
try to exit. If you try an illegal nesting (such as two .ELSE
clauses inside an .iferr statement) macgen will immediately issue
error 68, (illegal control structure). The Else clause is
optional. If the Else clause is present it always belongs to the
last L.IFERR statement encountered. Endif is required to close
the scope of an .IFERR statement. One .ENDIF is required for
each (IFERR. Endif always closes the last open .IFERR statement.
If you indent nested .IFERR statements and keep the associated
.ELSE and .ENDIF statements aligned vertically it will be very

easy to see the proper syntax. (Syntax is the same as for the
Basic09 IF statement).

SPECIAL NOTES:

Macros <can call other macros. The only limiting factor to how
much you can put in a macro, or how many levels of macros can be
called from within a macro, is memory usage. Each successive

level macro call nested within a macro is guaranteed to use up at
least 1k of memory.

You can redirect the input of macgen to a textfile containing the
macro text. This will allow you to use EDIT or BUILD commands to
create and edit the macro text and also maintain a 1listing of
what 1s in the macro in case you forget. Macgen will still send
the prompt "MAC:" to the standard output for each line in the
file when the input is redirected.

Any macro text line beginning with an asterisk (*) is considered
a comment only line.

If you are using the LS command to pipe filenames to the $$
parameter in a macro, do not use the -e or -f options with LS.

If you use any of the built in shell commands (called parameters
in the shell documentation), i.e. chd, chx, kill, setpr ..etc. on
a line alone 1in a macro, that line of the macro will have the
effect of invoking a new shell. The word "shell” will print on
the screen and the 0S9: prompt will appear and the rest of the
macro will appear not to function. If you do a "procs" at this
time you will see the the macro is waiting for the new shell to
die. 1If vyou hit the "eof" character (escape or shift/break on
coco) then the macro will continue. The correct way to use the

Copyright (c) 1984 - D. P. Johnson Page 12

built in shell commands in a macro is to follow them with the ;
separator and then the next line of macro text:

e.qg. MAC: chd $0 WRONG

MAC: dir

MAC: chd $0;dir CORRECT

When using the chd command as shown above with the ; separator
and other commands on the same line, the scope of the chd will be
only that one line. That means that the directory you do the chd
to will be in effect for that line only and the next line will
have a default directory of what ever was in effect before the
chd. This is the reason for the ".chd" and ".chx" macro commands,
these function the same as the built in chd, chx shell parameters
except that their scope extends to the end of the macro.

MORE EXAMPLES

Macro to print a variable number of return address labels:

0S89: BUILD labels.mac
? .for SO

? ECHO D. P. Johnson

? ECHO 7655 S.W. Cedarcrest St.

? ECHO Portland, OR 97223

? .next

? * Lines beginning with "*" are comment only lines.
? * space three lines to line up with next label

?2 .for 3

? echo

? .NEXT

?

0S9: macgen -m <labels.mac
MAC: MAC: MAC: MAC: MAC: MAC: MAC: MAC: MAC: MAC: MAC:

This creates the macro in memory only (-m) using the text in
"labels.mac" is the input.

0S9: labels 12

This will run the macro (12 is substituted for $0, so labels will
print 12 labels (on the std output).

0S9: LABELS 12 >/P

Same thing except labels are directed to /p (printer).

Macro to rename a list of files to "name".bak :

Copyright (c) 1984 - D. P. Johnson Page 13

0S9: MACGEN NAMEBAK
MAC: .REPEAT

MAC: RENAME $$ $9.bak
MAC: .UNTIL

MAC: .CLEAR

MAC:

Example of use:

0S9: 1s co* ! namebak

The 1s command will 1list filename in the current directory
beginning with "co" and pipe this list to namebak which will do a
rename to the same name with an extension of ".bak".

You might want to rewrite the "namebak" macro above so it shows
the filenames being operated on. E.g.:

0S9: macgen namebak

MAC: .repeat
MAC: rename $$ $9.bak

MAC: .iferr
MAC: .else
MAC: echo $9 renamed to: $9.bak
MAC: .endif

MAC: .until
MAC: .iferr 211

MAC: .clear
MAC: .endif
MAC:

This rewrite illustrates several details you should be aware of;
first the purpose of the ".iferr .else" after the rename command
is so that the echo command will only execute if no error has
occurred on the rename command. The $$ will read a name from the
standard input. When end of file is encountered on this input we
want to end the macro, and are depending on the eof error (#211)
to terminate the .repeat .until loop. If we allow the echo
command to be executed after eof is hit, the status that the

.until statement will be checking will be that of the echo
command which will not have an error and we will get an endless
loop. Remember also that $9 will have the same value that was
read in by $$, so we use this for all successive references to
this name since if we repeated the $$ in the macro it would cause
another name to be read from the standard input at that point.
Finally, the .iferr 211, is used to «clear the status (.clear)
after the loop terminates at input eof. We are clearing only this
code so that if the loop terminated for some other reason
(file not found for instance) we will get a report of the error
number.

Copyright (c) 1984 - D. P. Johnson Page 14

NULDEVICE
The file "nuldevice" contains the device descriptor "nul" and
device driver "nuldrv" to implement a nul device or "bit bucket"”
as it is sometimes called.

TO USE:

0S9: Load nuldevice

Output that you wish to discard may now be directed to the path
/nul . (i.e. compiler or assembler output, etc.).

EXAMPLE: dir >/nul

Will cause the output of the dir command to go down the
proverbial drain, (nowhere, discarded).

You may add the nuldevice to your bootfile with OS9GEN,

e.g.

0S9: chd /40

0S9: os9gen /dl
0s9boot
/d0/cmds/nuldevice

Copyright (c) 1984 - D. P. Johnson Page 15

REP
SYNTAX: REP [-opts] command text [$S]
The REP command is a way of making any 0S-9 command repetitive in
the way that the commands in Filter Kit #1 are repetitive. This

1s best shown by an example:

0S9: 1ls ! rep ident -s §

In this example rep will repetitively invoke the "ident -s"
command for each filename passed to it by the 1ls command. The $
tells 1rep to read 1 line from the standard input and insert the
text at that point (there can be more than one $ on the line if
you can think of a use for it, a new line will be read and
inserted from path 0 for each $).

Options have form =-A or -An where n 1s a decimal number
associated with that option. Options are single letters A
through Z (upper or lower case). Multiple options can be written
as -A -B-C or -ABC .

OPTIONS: -Cn The C option causes rep to repeat the command n
times where n is between 1 and 65535. If 0 is
specified the command will repeat 65536 times
(or until aborted).

-T Causes rep to display each expanded command
before it 1is executed in a similar fashion as
the shell "T" option in a procedure file.

EXAMPLE:

0S9: rep -c4 list textfile >/p

This command line will 1list the file "textfile" to the printer
"/p", four times.

NOTES: Rep will work properly with single commands. If you try
to rep two or more programs directly that communicate with pipes
something funny will probably result. You can rep a macro
generated with macgen. If you need to repeat a process that
consists of more than one command, use macgen to build a macro
then rep the macro.

Don 't confuse the "$$" used in macgen for this purpose with the
"$" in the rep command. The rep substitution parameter is a
single dollar sign, so using $$ with the rep command, will cause
two lines to be read in from the standard input.

Copyright (c) 1984 - D. P. Johnson _ Page 16

Example: The following shows usage of macgen and rep to run off
return address labels on printer /p :

0S9: MACGEN LABEL

MAC: ECHO >/P D. P. Johnson

MAC: ECHO >/P 7655 S.W. Cedarcrest St.
MAC: ECHO >/P Portland, OR 97223

MAC: ECHO >/P

MAC: ECHO >/P

MAC: ECHO >/P

MAC:

0S9: REP -C50 LABEL

Copyright (c) 1984 - D. P. Johnson Page 17

SIZE
SYNTAX: SIZE [-opts]

Reads a list of filenames through the standard input and reports
total size of the list of files in number of files, number of
bytes and number of sectors. This is useful to find the storage
requirements for a group of files you intend to copy to another
device to determine if they will fit, also useful to determine
how much storage will be freed up by deleting a group of files.
The number of sectors reported includes the "fds" file descriptor
sector required for each file by RBF, but does not take 1into
account directory space required for the name of each file. (Each
file will consume 1/8 sector of directory space in the directory
in which it resides.

Options have form -A or -An where n 1is a decimal number
associated with that option. Options are single letters A
through Z (upper or lower case). Multiple options can be written
as -A -B-C or -ABC .

OPTIONS: -h Report numbers in hexidecimal instead of the
default of decimal.

EXAMPLE: 0S9: LS -E ! SIZE
64 Files
117,381 Total bytes
555 Total sectors

NOTE: When using the LS command to supply the file list to SIZE
the use of the -e option with 1ls will speed up operation by as
much as a factor of 10.

Copyright (c) 1984 - D. P. Johnson Page 18

TOUCH
SYNTAX: TOUCH [-opts]

Reads a list of filenames through the standard input and sets the
modification date and time of each file to the current date and
time.

Options have form -A or -An where n 1is a decimal number
associated with that option. Options are single letters A
through Z (upper or lower case). Multiple options can be written
as -A -B-C or -ABC .

OPTIONS: -L List each pathname to the standard output as
it is touched.

EXAMPLE: 0S9: 1s ~-e *,co ! touch -1

The wuse of the -e or -f switches with the 1ls command will speed
up operation of touch.

NOTE: User 0 may touch any file that has owner or public write

permission. All other users may only touch a file owned by
another user if the file has public write permission.

Copyright (c) 1984 - D. P. Johnson Page 19

UNLOAD

SYNTAX: UNLOAD module_name [module name ..]

UNLOAD repeatedly unlinks modules in memory until their 1link
count reaches zero, which will cause their memory to be freed.

EXAMPLE: unload dir copy mdir

Removes "dir" "copy" and "mdir" from memory.

Copyright (c) 1984 - D. P. Johnson Page 20

