KEY COLOR SOFTWARE'S

KEY-—264K

L L

USER’S GUIDE

*5 COPYRIGHT (C) 1983 BY NEIL CAPELESS
KEY COLOR SOFTWARE
P.O. BOX 360
HARVARD, MA. 014351

Lo

The information in this manual is subject to change without
notice and should not be construed as a commitment by KEY COLOR
SOFTWARE. KEY COLOR SOFTWARE assumes no responsibility for any
omissions or errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used in accordance with the terms of
such license.

COPYRIGHT (C) 1883 BY NEIL CAPELESS
KEY COLOR SOFTWARE
P.O. BOX 360
HARVARD, MA. 014351

Printed in the United States of America. All rights reserved.
No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of KEY COLOR SOFTWARE.

TRS-80 COLOR COMPUTER and TDP-100 ARE TRADEMARKS OF RADIO
SHACK, A DIVISION OF TANDY CORPORATION.

WARRANTY INFORMATION

THIS SOFTWARE IS PROVIDED “AS_IS" WITHOUT ANY WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED.

KEY COLOR SOFTWARE shall have no liability or respomnsibility to
customer or any other person or entity with respect to any
liability, damage, or loss caused by, or alleged to be caused,
either directly or indirectly, by software sold by KEY COLOR
SOFTWARE, including but not limited to any loss of business or
profits, interruption of service, or consequential damages
resulting from the use of such software.

SOFTWARE ILICENSE

KEY COLOR SOFTWARE grants to CUSTOMER a license to use the
software in accordance with the following terms:

1. CUSTOMER uses the software only on the single computer for
which the software was purchased.

2. CUSTOMER shall not reproduce copies of the software.

3. CUSTOMER may transfer this license and the software to a
third party provided that third party agrees to all terms of
this agreement, and that CUSTOMER purchased one copy of this
software for each one transferred.

NTEN

INTRODUCTION. s cccseeacsacesasssssssssosansssssoncnnssssassnss 1
HOW IT WORKS. .o essessscocsssssacsossassscscsssssossessssssscasas £
ABOUT THIS MANUAL...cccccosooocesssasssscsnosssarssassscnnsss 3
KEYBOARD LEARNING GUIDE »

1.0 Loading the KEY-264K cassette..cccceccsscsccccssssss 3
Getting started with keyboard commands....ccccee0ee0ss 6
Switching sides from the keyboard....ceveecessesesss b
Multi-tasking from the keyboard....ccoecceevevesceees 9
Effect of the “BREAK" key while multi-tasking....... 12
Special keyboard “"BREAK" command....ccccerccoersseeces 12
Effects of the “RESET" switch on the KEY-264K....... 13
Special keyboard “RESET" command.....seccscsecescoaese 14
Cold starts/Warm StarbtS..ccsecsosscsoscsscscescssossense 14
Cold starts from the keyboard....cceeeeeesoscesscees 13
Special EXTENDED BASIC cold start for DISK users....
Cold start the opposite side....cccvescecctcccarsnss
Keyboard duplicate command....cococicesssccccosacsssss 18
Summlng-up..
LEARNING GUIDE
Getting started with BASIC commands.cccoeecosnsccas
The PUSH and PULL commandS....cccesssssccccsssasscaas
The CPEEK function and CPOKE command....ccocreocsans
The SWITCH command...cceecessoscsccassosccossossssscscae
The SWITCHL command...ccesorroncrscrcsscssscrsrsansass
The SWITCH command with a line numbeY...ecceessvoosns
SWITCH command SUMMABYY .. eocvsorossoacsossssosssnsrssns
The CRUN (Cross RUN) command..:ecccecescaccccsccceces 30

[+2)
>

CUVLYWVLWONNOUND LSS LPWNRPNULDIIIINIOONUULEWN

The SCOLOR (Switch COLOR) command...eccceeeecscsnarnnn
The MTON (Multi-tasking ON) command...cccccocccocss
MTON command option®:..cceececesorsccscncecssscscnana
The MTPAUSE command.ccceesscecossosssncsscscncsnssssscs
The VIEW command..ceccececeasoosssossosocasnnsosacssss
The VIEWR command. .cceeeecscocsncsssccscsncsosrsnccsasss
The special user mode VIEW command..cccesevccacrocss 37
Notes on the special display mod@..cssceccescescseas 40
VIEW command SUMMAYY.seosceesorscsssnsssssassssrsscccce &0
The “\" (BACKSLASH) command...escescasscssssasssscsss 41
11.0 The WAIT command..coceseocccoccsossccsssscscssssssasecs 43
12.0 The DUP (Duplicate) command...ccccccossscssccsssascss 44
13.0 The LCOPY (Line COPY) command..::ceesoevocaassnssassncse 45
14.0 The MCOPY (Memory COPY) command..cccoceoceccccsssscsee 47
15.0 The CMCOPY (Cross Memory COPY) commandS..c.ccccoccse¢ 49
16.0 General notes, comments apd cautionSecececcsssscsses 31

o e ®© 8 ® & - ® ®=-m & ® ® = ®w ©®© o © @ (P48 s s o © = s o & s s = =

OB WNHFOOFROOOWNRFROOOOAQOOWNHOPOKHOOOO

oY

NTEN

KEYBOARD REFERENCE SECTION.....................;.......... 56

BASIC

[

owoNONUuUdbwWNH
[] * @ L] - e = & e 8
0O0O0O0O0O00D00O0O

-
W=
oo O

14.0
15.0
16.0

REFERENCE SECTION

BASIC COMMAND FORMAT NOTATIONS..
BACKSLASH “\".ccevsoasonnens ceens
CMCOPY (Cross Memory COPY)......
CPEEK (Crxross PEEK)...:ecees. cees
CPOKE (Cross POKE):ieeeoseasnnans
CRUN (Cxross RUN).veevrrenacacses
DUP (DUPlicabt@).:ccerveoeeseesoacnane
LCOPY (Line COPY).vsecercccnssasns
MCOPY (Memory COPY).vsveessannns
MTON (Multi-Tasking ON)..uoosos..e
MTPAUSE (Multi-tasking PAUSE)...
PULL (a variable)...eccescecocss
PUSH (a variable)...voesioesesnrs

" g8 8 0 0 002 s 00800 e e 58

s "o 880 o o8 08 s s 0008080 59
llllllllllll.llllllll 60

@ @ " » 8008055008088 008080808 61

® ¢ 0050008388800 62

s s 0 5 85800 a8 0088800080080 63

® 9 0 & 8 0 0 00 8 0 00080 00000 64
tecsesecscsssssssssss BS
A -1 -
tecessssessscnssssss B7
sessssssessssssssess BB
tesescccccsssssrsssss B9

e o5 5 88208 8300080098000 70

SCOLOR (Switch text screen COLOR).ecsveosscsccsccoas 71

SNITCH..ll'lllllll.lll.ll.lllll.
VIEN (a display)l e o 8 8 % 05 8 0 0 0 0 0
WAIT (for multi-tasking to end).

® 0 8 8 08 0 08048008080 02 72

L A N A A B 73

" 8 08 8 2800020000888 00 080 75

NTRODUCTION

Congratulations on your purchase of the KEY-264K. The
KEY-264K is a powerful software utility developed by KEY
COLOR SOFTWARE that will unlock the hidden potential of your

COLOR COMPUTER, allowing you to utilitize your computer in ways

that no comparable computer can match.

The KEY-264K allows users of standard 32K TRS-80 COLOR
COMPUTERS to utilize the full 64K ram memory from BASIC.

AND ABSOLUTELY NO HARDWARE MODIFICATIONS ARE REQUIRED!!

The KEY-264K requires EXTENDED or DISK BASIC and GOOD 64K
MEMORY CHIPS. Piggy back 32K or systems with half good 64K
memory chips (rumored to be in earlier 32K versions) WILL NOT
WORK!!{! The KEY-264K does not require the Frank Hogg
modification, necessary on earlier models to access 64K, and
will operate with or without it. The KEY-264K will work omn
32K systems with “E", "F", or even modified "D" boards.

The KEY-2€64K functions by switching two 32K memory banks (or
sides) of the available 64K, in and ocut of the BASIC memory
space. The software occupies the upper 3225 bytes of each bank
and manages all bank switching and inter-bank communications.
The KEY-264K also includes powerful new GRAPHICS VIEWING,
BLOCK MEMORY MOVE, and FOREGROUND/BACKGROUND MULTI-TASKING
commands thru extensions to the BASIC interpreter.

The KEY-264K expands the BASIC command set by implementinq
the following 15 additional statements and 1 additional
function into either EXTENDED oy DISK BAEIC:

CMCOPY, CPOKE, CRUN, DUP, LCOPY,
MCOPY, MPAUSE, MTON, PULL, PUSH,
SCOLOR, SHIFT/CLEAR(BACKSLASH),
SWITCH, VIEW, WAIT, and CPEEK.

The KEY-264K also includes B keyboard commands, independent
of BASIC, to allow switching sides, multi-tasking, break,
reset, cold starts, and duplicating sides, all with simple
keystrokes from the keyboard.

g —

) | - -
. ¢

L9

HOW IT WORKS

This section contains a brief technical overview of the COLOR
COMPUTER’S addressing scheme, and the techniques utilized by
the KEY-264K to access 64K. So if you are not technically
inclined or simply don’t care how it works, then skip this
section, go on to the KEYBOARD LEARNING section and start using

the KEY-264K.

The following is in no way intended to fully describe the inner
workings of the COLOR COMPUTER. For a more complete
description, please refer to the COLOR COMPUTER TECHNICAL
REFERENCE MANUAL (#26-3193) available from Radio Shack, or the
MOTOROLA MICROPROCESSORS DATA MANUAL available from Motorola.

The standard 32K EXTENDED BASIC COLOR COMPUTER contains 5 major
functional blocks:

* The 6809E Central Processiang Unit (CPU).

% 2 - BK by B bit Read Only Memorys (ROM)
- containing both COLOR BASIC and
EXTENDED BASIC.

X The 6847 Video Display Generator (VDG).
* 2 - 6B21 Peripheral Interface Adapters (PIA).

* 64K of read/write memory in the form of B
64K by 1 bit dynamic Random Access Memory
(RAM) chips.

Tying these functional blocks together is the 6883 Synchronous
Address Multiplexer, or SAM. The job of the 6883 SAM is to
synchronize and control all timing among these functional
blocks, provide transparent refresh to the dynamic RAM, and
video display (VDG), and provide "device select” signals to
select either the RAMs, ROMs, PIAs, or the external cartridge
slot, depending on the 16 bit address presented to it by the
6809E CPU. It is important to note that the 6809E CPU presents
the desired 16 bit memory address to the SAM, and the SAM
determines what memory device to select and what address to
actually use.

The 6883 SAM also provides other important functions such as
controlling the location of the video page in RAM (VDG offset)
and how it is presented to the 6847 VDG (MODE), CPU clock speed
(vitamin E poke), and RAM memory size (4, 16, or 64K). But the
two most important features to users of 64K are the "MAP TYPE®
control and the "PAGE" switch.

OW WO

The “"MAP TYPE" control allows the SAM to reconfigure the memory
map layout of the COLOR COMPUTER. Normally in "MAP TYPE" *“0",
the upper 32K memory is reserved for built in and cartridge
ROMs, and the lower 32K addresses one half of the 64K
read/write RAM memory. Setting the "MAP TYPE" control to “"1°*
(writing to location FFDF hex) will cause the SAM to turn off,
or disable, the COLOR COMPUTER ROMs and allow the 68B03E CPU
access to the full 64K read/write RAM pemory. This is how the
FLEX operating system and most other pyograms that access 64K
work. Writing to location FFDE hex wil]l reset the "MAP TYPE" to
.0..

The "PAGE” switch can also be used to reconfigure the memory
map but in a different way. Useful only in “MAP TYPE" “0", the
"PAGE" switch allows the 64K RAM to be treated as two 3ZK banks
(upper and lower) of read/write RAM. The "PAGE" switch is
actually the high order bit of the 16 address bits used by the
SAM to address the read/write RAM.

For example, if the E808SE CPU were to access address 0000 and
the "PAGE" switch was set to “0" (write to location FFD4 hex),
then the SAM would access the first location of the lower 32K
bank (location 0000) of the read/write RAM. However if the
"PAGE" switch were set to "1" (write to location FFDS hex) then
the SAM would access the first location of the upper 3ZK bank
(location 8000 hex of the 64K) of the read/write RAM,

As far as the memory map is concerned, the upper 32K is still
reserved for built in and cartridge ROMs, while the lower 32K
is switched or "PAGED" between the upper and lower 32K banks of
the 64K read/write RAM, depending on the setting of the “PAGE"
switch. In effect this allows the COLOR COMPUTER to access a
total of 80K with EXTENDED BASIC and 88K with DISK BASIC and a
theoretical maximum of 396K!!!

The KEY-264K makes use of this "PAGE"™ switch in it’s commands
to both pass information and to switch between banks, or sides.
It also makes use of the 1/60th second interrupts (generated by
the VDG) which are utilized by BASIC for the TIMER and SOUND
commands and to time out the disk drive motors in DISK BASIC.

Upon loading, the KEY-264K causes both 32K banks to be
initalized independently by BASIC, determines whether EXTENDED
or DISK BASIC is present, and patches itself into BASIC
accordingly, in both banks. The KEY-264K commands become part
of the BASIC command set and can be used like any other BASIC
command. The 1/60th second interrupts are used to check for
special keyboard commands, and to automatically switch banks,
or sides when in the foreground/background multi-tasking mode.

OuUT 19)

The remainder of this manual 1s'divided into four sections:

KEYBOARD LEARNING GUIDE

BASIC LEARNING GUIDE

KEYBOARD REFERENCE SECTION

BASIC REFERENCE SECTION
The LEARNING GUIDES are designed to be used as an aid in
understanding the features of the KEY-264K and are meant to

be used from beginning to end, in a “sit down" session at the
computer.

The KEYBOARD LEARNING GUIDE will describe the overall
concepts of the KEY-264K and then take you step by step
through each keyboard command, explaining it’s purpose, how
it works, and how to use 1it.

Likewise, the BASIC LEARNING GUIDE will explain each new
BASIC command, what it does, and how to use it. Examples
are used throughout the guides.

The REFERENCE SECTIONS should be used as you become more
familiar with the operation of the KEY-264K and need to
occasionally refresh your memory about how a particular feature
works.

The KEYBOARD REFERENCE SECTION will give a brief
description of the function of a@ach keyboard command.

The BASIC REFERENCE SECTION listes each BASIC command in
alphabetical order on a separate page, showing the command.
syntax, purpose, and any applicable comments.

This manual is not intended to teach you BASIC or the operation
of your COLOR COMPUTER. Previous knowledge of either EXTENDED
or DISK BASIC and experience in the use of your computer is
required.

o e—— - ——

KEYBOARD LEARNING CUIDE

1.0 Loading the KEY-2654K cassette
Follow these 4 simple steps to load and start the KEY- H

1. If you have a DISK system, make sure the disk controller is
plugged into the cartridge slot befor applying power. Turn on
power to your COLOR COMPUTER.

2. IF you have a non Radio Shack printer connected to your
system that does not provide an automatic line feed with each
carriage return, then type “POKE 155,0". This will cause the
KEY-264K to include an automatic line feed/carriage return
routine for the printer. Note that this must be done before

loading the KEY-2643K.

3. Place the KEY-264K cassette in your cassette recorder and
make sure it is fully rewound.

4. Type CLOADM and depress the play button on your cassette
recorder. The screen will clear and the familiar "S" in the
upper left hand corner will appear. In 5-10 seconds the "S"
will change to "F" and the KEY-264K filename will appear, to
indicate that the program is loading. After 10-20 seconds, the
screen will begin to display the KEY-264K COPYRIGHT NOTICE by
"painting® the display from top to bottom. Once the COPYRIGHT
NOTICE screen is complete, it will take an additional 20-30
seconds for the KEY-264K to finish loading. When the

KEY-264K has completed loading, the screen will clear and the
normal BASIC COPYRIGHT NOTICE (either EXTENDED oxr DISK) sign-on
message will appear just as it does when you first power up
your computer. The KEY-264K is now ready to go.

If a read error should occur or if the “"RESET" switch is pushed
during the loading process, the screen will clear, and an I/O
error message will appear. There are 3 copies of the KEY-264K
on each side of the cassette separated by the musical scale, so
if you have trouble loading the program then try the following:

.Power down, wait 20 seconds and power up again. Type

AUDIO ON:MOTOR ON and hit [ENTER], then type CLOADM but do not
hit [ENTER] yet. Listen for the musical scale (do, re, mi....)
that will follow each program. The scale will go up and then go
down again (....mi, re, do). At the point after the "do" on the
downward scale, you will be positioneq about 10 seconds pefore
the start of the next program copy, s9 hit [ENTER] and the
loading prpcess should hegin. '

The KEY-264K cassette is "auto loading". If it should become
defective, it will be replaced if you send the original
cassette along with your sales receipt and a check or money
order for $5.95 ($3.95 + $2.00 shipping + handling) to:
KEY COLOR SOFTWARE
N P.0. Box 360
HARVARD, MA. 01451,

5

KEYBOARD LEARNING GUIDE

.0 tti tarted with keyboard comman

In order to familarize yourself with the operation of the
KEY~-264K you should first locate the following keys on the
COLOR COMPUTER keyboard:

The DOWN ARROW key is the leftmost white key

in the third row down from the top. From here on
in the [4] symbol will be used to represent the
DOWN ARROW key. .

The RIGHT ARROW key is the rightmost white key
in the second row down from the top. From here
on in the [2]) symbol will be used to represent
the RIGHT ARROW key.

The ENTER key is the long white key, second
from the right in the third row down from the
top. From here on in the [ENTER]) symbol will be
used to represent the ENTER key.

Also locate the gray [Bl, [C]l, [D], [E]1, [R], and
[C] keys plus the "SPACE BAR".

3.0 Switching sides from the keyboard

At this point your screen should show the normal BASIC
copyright notice sign-on screen for either EXTENDED or DISK
BASIC, as if you had just turned the computer on. Type in the
following:

PRINT 1/3

The computer responds:

, 333333333
So what’s the big deal? Read onl

Hold down the [ENTER) key and hit the [+] key. You should have
immediately noticed two things; first, the screen color changed’
from green to orange, and second, the command you just typed in
has disappeared! This is because you have switched banks or
sides. For ease of explanation, the two 32K memory banks will
be referred to from now on as the "A" side (with the greean
display) and the “B" side (with the orange display). What you
have just done by hitting the [ENTER] and [+] keys was to
switch from the "A" side to the "B" side.

EY RD LEARNIN

Now type in the following:!

PRINT 1/9

The computer responds:
111111

Hold down the [ENTER) key and hit the [-] key. You should now
have a green screen, the PRINT 1/9 command is gone, and your
original PRINT 1/3 command should have reappeared. You have
just switched from the "B" side back to the "A" side. Try
switching back and forth a few times to get the feel of it.

The KEY-Z64K uses the [+) and [2] keys as control keys. They
are used to initiate all keyboard commands. The [+] is the
control key for the "A" side, and will be used in conjunction
with other keys to perform specific "A" side commands, such as
[ENTER], for switching. Likewise, the [2]) is the control key
for the "B" side and must be used if you are performing
keyboard commands in side "B“. The [+)] and [-] keys were chosen
because they normally do not echo on the screen, and usually
have no effect on a BASIC progran.

In normal operation, each 1/60th of a second the COLOR COMPUTER
is interrupted by a sigpnal from the Video Display Generator
(VDG). For those of you unfamiliar with the term, an
“interrupt® is an electrical signal that causes the normal
processing of a computer to be interrupted, and control
switched to a specific routine stored in memory to process a
specialized function. At the conclusion of this specialized
processing, control is returned to the point at which the
computer was interrupted, and normal processing continues.

BASIC makes use of these 1/60th second interrupts to time the
SOUND command and increment the TIMER, among other things. The
KEY-264K also makes use of these interrupts to check the
keyboard to see if a control key has been pressed. If in the
“A" side when the interrupt occured, then a check is make for
the [+) key, and if in the "B" side then the [-*) key is
checked. If the proper control key for this side is being
pressed then the KEY-264K will check the keyboard to see if
any "command" keys (such as [ENTER]) are being used. If so,
then the KEY-264K will execute the appropriate command,
otherwise no action will be taken 'and normal processing will
continue.

To demonstrate, try holding down the [ENTER), [+), and [-] keys
at the same time. The screen should flicker and show both the
“A®* (green) and “B" (orange) displays superimposed on each
other. The computer is rapidly switching sides in time with the
1/60th second ipterrupts generated by the Video Display
Generator (VDG).

D ARNI

Note that because of this dependency on the 1/60th second
interrupts, there will be times when it appears that the
control keys are not working. This is because whenever BASIC
does any I/0 functions such as reading or writing to cassette
or disk, it first disables interrupts. This is necessary
because of the exact timings required when interfacing with
external devices, and the fact that these timings could be
thrown off by interrupt processing. At the completion of the
I1/0 processing, BASIC will re-enable the interrupts, and the
control keys will again function normally.

Back to the keyboard switch command. So far you have learned
how to switch back and forth between the "A" and “B" sides
using the [+], [+]), and [ENTER] keys, but both sides have been
at the BASIC command level. You can also switch sides even if
the programs are running. Trxy the following:

Switch to the “B" side (orange screen, remember) if you are notb
already there, and type in the following program;

10 FOR X=1 TO 10000
20 PRINT * SIDE B*;X
30 NEXT X

Now type RUN and then quickly hit [43,[ENTERJ. The program
should have started printing to the screen, and then switched
to the "A" side. Type the following program in the "A" side;

10 FOR ¥=1 TO 10000
20 PRINT “SIDE A“;Y
30 NEXT ¥

Type “RUN” and then try switching back and forth between sides.
Note that the programs are not both running at the same time.
The “A" side program runs only when you switch to the "A" side,
and the "B" side program runs only when you switch to the “B"
side.

In summary then, to switch from side "“A" (with the green
screen) to side "B" (with the orange screen) you hold down both
the [+]) and [ENTER) keys. To switch from side "B" to side "“A”"
you hold down the [+] and [ENTER] keys. It makes no difference
when switching whether a side is in the BASIC command mode, or
in the process of running a BASIC program.

Note also that you could be displaying graphics in either orx
both sides and the KEY-264K will maintain the proper display
as you switch back and forth between sides (There can be
exceptions to this that will be discussed later in the BASIC
LEARNING GUIDE).

EY D LEARNING

4.0 Mylti—-tasking from the kevbpoar

The programs from above should still be running (if not, start
them), so try holding down the [+], [-+], and [ENTER] keys at
the game time. You should now see both program’s displays
superimposed on the screep, and both programs appear to be
running at the same time, but at half speed. What is really
happening is that the computer runs side "A" for 1/60th of a
second, and then switches to side "B"” when the 1/60th second
interrupt occurs. It then runs side “B" for 1/60th of a second,
switching back to side “"A" at the next interrupt. This
switching back and forth will continue for as long as the keys
are held down, giving the appearance that both programs are
running simultaneously, and for all practical purposes, they
are.

This is basically how timesharing and multi-tasking are
accomplished on larger machines (except with many more “sides"
or users and a much more complex operating enviroanment). This
is also how Foreground/Background Multi-tasking works in the
KEY~264K. (No, you’re not going to have to sit there and hold
down those keys in order to do multi-tasking! you will soon
learn how to initiate it, so read on.)

While the KEY-264K may have succeeded in dividing the 64K RAM
memory into two independent 32K sides, and found a way to©o run
programs in both sides at the same time, it remains limited to
only one video display (and only one keyboard, cassette,
printer, disk etc.). Since allowing each side to use the video
display during multi-tasking would result in a highly confusing
and probably unreadable display (to say nothing of the
headaches), the KEY-264K assigns the display to side “A",

The "BY side can continue to output text or graphics as it
runs, but the output will not be displayed on the T.V. screen.
Since you do not see any video output from the program
operating in the "B" side, you can consider that program to be
running in the “Background". If the "B" side is the
"Background" side, then the "A" side which controls the video
display, can be considered the "Foreground" side. Hence the
term “Foreground/Background multi-tasking®.

OARD ARNING GUI

If the “A" and "B" side programs you enterad earlier are still
running, switch to the "B" side and hit the red [BREAK) key to
*BREAK"” the program, then switch to the “A" side and "BREAK"
that program also. Now either EDIT or retype line 10 to read:

10 FOR ¥=1 TO 2000
Switch to side "B" and change it’s line 10 to read:

10 FOR X=1 TO 1500

Now type "RUN" to start the "B" side program running and then
quickly hold down the SPACE BAR while at the same time pressing
the [2)] and [ENTER) keys.

You are now multi-tasking! Notice that control has switched
over to the “A" or "Foreground” side with the green display
screen. Type SOUND 100,10 and listen to the guaver in the tone.
This is due to the rapid switching of sides that is occuring as
the SOUND statement is being executed. This is a tell-tale sign
that you are multi-tasking, so if you ever have doubts about
whether you’re multi-tasking or not, try the SOUND command.

Notice also that the duration of the generated sound is about
twice as long as usual. This is due to the fact that the 1/€0th
second interrupt is used by BASIC to time the sound’s duration,
but instead of counting down on every interrupt as it normally
does, BASIC will only count down on every other interrupt.

This is. because if you are on the "A" side, and switch sides at
each interrupt, then the next, and every other interrupt will
occur on the “B" side, and will not be counted. This also
causes the value of the TIMER on each side to be half of what .
it would normally be, if you are multi-tasking.

Try switching sides. As you can see, nothing happened! Since
multi-tasking automatically switches sides every 1/60th of a
second and since the "A" or "Foreground” side must keep control
of the display, then manually switching sides cannot be
allowud. The KEY-264K disables the ability to manually

switch sides from the keyboard during multi-tasking. This is
another way you can verify that multi-tasking is occuring.

Now type "RUN", sit back and watch the "A" side display go by.
After a few minutes the display will suddenly switch from the
“"A" to the "B" €ide. Notice that the program in the "B" side
has ended and that it’s display that was hidden from view
during multi-tasking is now on the screen. This is because the

KEY-264K will automatically halt multi-tasking when the "B"

or "Background” side program requests input fxom the keyboarxd.

10

RNIN U

This means that any INPUT or LINE INPUT statement executed in
the "Background" program, or a return to BASIC’S command mode
for any reason will cause an end to multi-tasking and trigger
an automatic switch to the "B" or "Background" side. This is

‘necessary because the "Background" side screen is not visible

during multi-tasking and there would be no way to know that the
program was either finished or requesting keyboard input. This
could cause the "Background" program to "hang" waiting for
input, or worse, accept keys typed in the "Foreground" side as
either commands or data. Note that the INKEY$ command is an
exception to the “stop multi-tasking™ rule because it gets it’s
data from a look-ahead buffer and not directly from the
keyboard. The INKEY$ command should be avoided if possible in
programs that will be multi-tasked in the Background side.

If you now switch to the "A" side, you will see that the "A"
side program is s&till in the "RUN" mode and has not been
affected by the end of multi-tasking.

Let the "A" side program run to completion and then restore
line 10 by typing:

10 FOR ¥=1 TO 10000
Bwitch to side "B* and change it‘s line 10 to read:
10 FOR X=1 TO 10000

To summarize, To initiate multi-tasking from the keyboard, you
must be in the "B" or "Background"” side, and hold down the
space bar, [-]), and [ENTER] keys at the same time. Control will
always switch to the "A" or foreground side while
multi-tasking, and will automatically switch to the "B" side
when the “B" side program is finished, or requests keyboard
input, or returns to command mode for any reason.

Note that you cannot initiate multi-tasking from the keyboard
if you are in the "A" or “Foreground” side. Also note that you
cannot manually switch sides from the keyboard while you are
multi-tasking.

You may note a delay in keyboard response and the occasional
loss of § character oy two while typing in the "Foreground"
side if youy are doing J/0 in the "Background” side when
multi-tasking. This is due tq the fact that interrupts aye shut
off for the duration of the I/0 command, causing a delay in
switching from the “Background” to the “Foreground” side.

A note of caution is irn order here. Since you only have one
cassette, one printer, and one disk controller, any attempts to
access the same device from both sides simultaneously during
multi-tasking will cause unpredictable results.

by

11

OAR EARNI GUI

3.0 Effect of the "BREAK" key while multi-tasking

You should still be in side "B", so type "RUN" and initiate
multi-tasking. You should now be back in the "A" side. Try the
SOUND command to insure that you are multi-tasking and then
type RUN to get the "A" side program running. Now hold down the
red [BREAK) key. You should have immediately stopped
multi-tasking and switched to the “B" side.

What has happened is this; since you only have one keyboard,

the programs on both sides sensed the BREAK key being down and
executed a "BREAK", causing each to return to command mode, and
as you learned earlier, a return to command mode in the "B"

side will cause an end to multi-tasking and an automatic switch
to the “B" side. Switch back to the "A" side and you will see
that a "BREAK" has occured on that side also.

.1 Special kevyboard "BREAK" command

So what do you do if you are multi-tasking and want to "BREAK"
one side without affecting the other side? Try this; you should
still be in the "A" side if you were following the text, so
type "RUN" and switch to the “B" side. Type "RUN" on this side,
and then initiate multi-tasking. Back again on the "A" side,
try switching sides (you shouldn’t be able to) to make sure you
are multi-tasking. Now hold down the [+] and the gray [B] key.

The program should “BREAK". Notice that you did not switch to
the “B" side, You have executed a “BREAK", but only in the "A"
side. Verify that you are still multi-tasking with the SOUND
command. Now txry to continue the “A" side program with a “CONT"
command. You: more than likely got a "CN" (can’t continup) or
some othey type of eyyor (probably an "NF" ngxt/for errpy in
this case).

BASIC always executes it‘s "BREAK" (with the red [BREAK] key)
between BASIC statements, making it possible to restart at the
next statement with a "CONT” command from the keyboard.

With the KEY-264K, using the [+] and [B] keys will cause a
“BREAK™ to occur at the next interrupt, and this will more than
likely be in the middle of processing a BASIC statement, and
not at the beginning.

Since the "CONT" statement will only work if you are restarting
at the beginning of a statement, then unless you were lucky
enough to “BREAK" between statements, you should get either the
“"CN" or some other type of error.

Although you can’t always continue after this type of "“BREAK",
it will only "BREAK" one side and will also leave the display
intact (as opposed to a "RESET"). Note that in many cases you
could effect a restart by doing a “GOTO" the line number
displayed at the “BREAK".

12

EYBOARD LEARNI IDE

Type "RUN" to again start the “A" side program running, and
then try switching sides to verify that you are multi-tasking.
Now hold down the [2) and gray [B) key. Just as with the red
[BREAK] key, you should have stopped multi-tasking and switched
to the "B" side. If you now switch back to the “A" side you
will see that unlike the “BREAK" with the red key, the “A" side
is still in the “RUN" mode and did not execute a “BREAK". The
“BREAK" occured on the “B" side only.

In summary, to execute a “BREAK" on both sides during
multi-tasking, use the red [BREAK] key.

To execute a "BREAK" on only one side, use the corresponding
control key for that side ([+) for the "A" side, and [-] for
the "B" side) in conjunction with the gray [B] key.

Note that you can still use this type of “BREAK" even if you

are not multi-tasking (although use of the red [BREAK] key is
preferred) as long as you use the proper control key for the

side you are on.

Also remember that you can not always continue thh a "CONT*™
command after a control key type "BREAK".

.0 Effects of the “RESET" gwitch on the KEY~-264K

Indiscriminate use of the "RESET" switch can have a disastrous
effect on the operation of the KEY-Z264K. Pushing the “RESET*
switch causes the COLOR COMPUTER to immediately stop what it is
doing and transfer control to an initalization routine in
BASIC. This initalization routine will always reset the
computer to the "A" side regardless of what side it was in at
the time of “RESET".

This means that if you are in side "A" a normal "RESET" will
occur, but if you are in side “B" and you hit the "RESET“

switch, you will be forced to side "A" and the XEY-264K will

lose all information about whare you were and what you were

doing in side "B". A subsegquent switch to side “B"” under these
circumstances will result in the COLOR COMPUTER going off on -
it‘’s own, possibly wiping out part of the KEY-2F4K program

itself, and probably causing the system to lock-up or “hang".

Also, remember that you are in side "B* one half of the time
when you are multi-tasking, so avoid the temptation to reach
for the "“RESET" switch when something doesn’t look quite right.
In fact it might be a good idea to tape a thimble or a similar
small plastic cap over the “RESET" switch, for as you will see,
you will not be naeding it.

13

KEYBOARD RNI

A special note about "RESET". Some programs outside of BASIC
will jump to the BASIC “RESET" vector (40999 dec. or A027 hex)
when returning to BASIC. If this should occur from side "B", it
will have the same disastrous effect as hitting the "RESET”"
switch while in side "B" as described earlier. If possible
these programs should be modified to jump to 40974 dec. or AOOQOE
hex. This will still cause a BASIC "RESET" but it will remain
in the current side and will not force a switch to side "A".

6.1 Special keyboard “RESET" command

Try the following; you should still be in side “A" so hold down
the [+] and the gray [R) key. You should have exscuted a
®RESET" just as if you had hit the “RESET" switch. Do a "LIST"
to insure your program is still there. Now switch to side "B*
and you will see that the “RESET" has qccured only on side “A".

While you are still in side "B" type "RUN" and then initiate
multi-tasking. Back to side “A", verify that you are
multi-tasking with a SOUND command. Type “RUN" to get the "A"
side program running.

Now hold down the [2®] and the gray [R] key. As with the “BREAK"
command, you should have stopped multi-tasking and switched to
the "B” side. Notice that a “RESET" has now occured on the "B"
side, and the resultant return to command mode is what caused
multi-tasking to end. Switch to the “A" side and you will see
that the “A" side program is still in the "RUN" mode.

Switch back to the "B" side, type "RUN” and again initiate
multi-tasking. Now do an “A" side keyboard "RESET". Notice that
resetting the "A" side in this manner had no effect on
multi-tasking. Try the SOUND command to verify that you are
still multi-tasking.

In summary, NEVER USE THE "RESET" SWITCH AT THE BACK OF THE

COMPUTER when using the KEY-264K. Instead use the control

key corresponding to the side you are on (or the side you wish

to "RESET" if you are multi-tasking), in conjunction with the

gray [R] key. Note that resetting the "A" side has no effect on "‘
multi-tasking, while resetting the "B" side causes an end to
multi-tasking and a switch to side "B".

7.0 Cold starts/Warm starts

For those of you who don’t know, a "cold start® means to
perform a complete initalization of a program or system (BASIC
in our case) from the start, resetting all controls, pointers,
etc. In the COLOR COMPUTER a "cold start" occurs when you first
turn on powexr to the computer with the ON/OFF switch.

14

EYBOAR EARNING IDE

A "cold start™ will also occur if memory location 113 dec. (71
hex) contains something other than a decimal 85 (55 hex), and
either the “RESET" switch at the back of the computer is
pushed, or an "EXEC 40999" (A027 hex) is executed. This is
another reason why you should use the keyboard “RESET" instead
of the "RESET"” switch, since a "RESET"” switch type of "cold
start” will wipe out the KEY—-264K program. Note that a
keyboard "RESET” will not result in a “cold start" regardless
of the contents of memory location 113 dec. (71 hex).

A "warm start” means to perform a partial initalization of a
program or system, resetting some controls or pointers, but
leaving others intact. Pushing the "RESET" switch or executing
a keyboard “RESET" command results in a “warm start" of the
COLOR COMPUTER.

7.1 Cold starts from the keyboard

As you may have guessed by now, you can perform a “cold start”
from the keyboard. You should still be multi-tasking from the
"keyboard RESET" exercises above (if not switch to side "B",
type "RUN", then initiate multi-tasking) so try the following;
hold down the [+] and [C] keys. You have executed an "A" side
*cold start”, Jjust like when you first turn on power to your
system.

The BASIC copyright notice sign-on screen should have appeared

for whichever level of BASIC you have, either EXTENDED or DISK.
Now try the SOUND command and you will find that you are still

multi-tasking. Cold starting the "A" side has had no effect on

multi-tasking. If you do & list command, you will see that your
"A" side program is no longer in memory, so type it back in as

follows:

10 FOR ¥=1 TO 10000
20 PRINT"SIDE A™“;Y
30 NEXT Y

Now do a RUN command so both sides are running under
multi-tasking. Hold down the [-2] and [C] keys. You should have
stopped multi-tasking and switched to side "B". You should see
the BASIC copyright sign-on notice agaian. This time the “B*
side has executed a "cold start”, and the resultant return to
command mode has caused multi-tasking to end, and a switch to
side "B".

Now switch back to side "A" and you will see that the "A" side

program is still in the “RUN* mode, and has been unaffected by
the "B" side "cold start”.

15

’

D ING 1D

7.2 Special EXTENDED BASIC cold start forxr DISK use

Using the [+),[C]) or [-],[C) "colds starts” from section 7.1
above will always cause the corresponding side to “cold start"
in whatever level of BASIC (EXTENDED or DISK) that you
physically have in your computer. However, if you are lucky (or
rich) enough to have DISK BASIC in your system, then it’s
possible for you to "cold start" either (or both) sides in
EXTENDED BASIC without pulling your disk controller from the
cartridge slot.

Bo for you DISK BASIC users (the rest of you can skip to
section 7.3), you should still be in side "A" so try holding
down the [+) and [E) keys. You should have executed an “A" side
“cold start” but this time in EXTENDED BASIC even though DISK
BASIC is still physically present in your computer. Now switch
to side "B" and notice the sign-on message. Side “B" is still
in DISK BASIC.

Try a “DRIVE 0" command (used in DISK BASIC to set the default
drive). It should process o.k. Now switch back to side "A" and
try the "DRIVE 0" command on this side. Since side "A" is in
EXTENDED BASIC and "DRIVE 0" is not a legal EXTENDED BASIC
command, you should have gotten an “SN* (syntax) error.

Switch to side "B" again and hold down the [-#) and [E) keys.
You should have now "cold started" side "B" in EXTENDED BASIC.
Now hold down the [+#) and [C) keys. You just executed the
regular "cold start" command which caused side "B" to “cold
start" in DISK BASIC. As you can see, you can change a side
from DISK BASIC to EXTENDED BASIC and back again by your choice
of "cold start" commands.

Now "cold start” one side in DISK BASIC and the other side in
EXTENDED BASIC, then type in the same "B" and “"A" side programs
fxom page 8 that you had typed in earlier:

SIDE "B" = 10 FOR ¥X=1 TO 10000
20 PRINT * SIDE B";X
30 NEXT X
SIDE "A" = 10 FOR Y=1 TO 10000
20 PRINT “SIDE A*“;Y
30 NEXT Y

Now switch to side "B*, type RUN, and initiate multi-tasking.
Back in side "A", type RUN to get the "A" side program running.
You arxe now multi-tasking even though the program on one side
is xunning in EXTENDED BASIC and the program on the other side
is xunning in DISK BASIC.

i6

YBOARD LEARNI

7.3 Cold start the opposite gide

This is a special keyboard command and is included mainly to
try and recover when a side “hangs" or gets "locked up" for

‘some reason. This command is disabled during multi-tasking, so

hold down the red [BREAK] key to insure that multi-tasking is
halted.

You should now be in side "B" (if you’‘re not, switch there.),
s0 hold down the [-+) and [®)] keys. You should have switched to
side "A"™ and executed a “cold start”. You have "cold started"
the opposite side. Unlike the [+]),[C) or [=]),[C] “cold starts"”,
a [+]),[C]) ox [-]),[®) opposite side “cold start” will "cold
start” a side in the level of BASIC that it was already in at
the time of the “cold start”.

For example, if side "A" was in EXTENDED BASIC and you did an
opposite side “cold start" from side “"B", then you would switch
to side “A" and do a "cold start”™ in EXTENDED BASIC. If in the
above example, side "A" was instead in DISK BASIC, then it
would have been Ycold started” in DISK BASIC by the opposite
side "cold start" command.

Try this; switch to side "B", uncover and press the “RESET"

switch at the back of the computer (you did cover it earlier,
didn’t you?). You should have been forced into side "A™, and
now side "B" is no longer usable (see section £.0 -~ page 13).

Now hold down the [+] and [@] keys. You have caused side "B” to
be "colgd started” from side "A" and you are no longer in
trouble. Although you will lose whatever you were doing on side
*B" due to the “cold start", at least side “B" is now usable
and the KEY-264K can again function normally.

To summarize, you can “cold start* a side from the keyboard by
holding down the control key for the side you wish to "cold
start” ([+] for side “"A", and [=+] for side "B") along with the
[C]) key to "cold start" in whatever level of BASIC (EXTENDED orxr
DISK) is physically in your computer, or with the [E)] key to
*cold start” in EXTENDED BASIC, even if your computer
physically has DISK BASIC present. Note that these “cold
starts" can be performed at any time, even if you are
multi-tasking.

To "cold start” the opposite side, yoy hold down the coantrol
key corresponding to the side yqu are on, along with the [@]
kay, and the opposite sida will pe "cold started” in whatever
level of BASIC it was in prior to it’s "cold start”. Note that
this opposite side "cold start™, unlike the others, is disabled
during multi-tasking.

17

EYBOARD LEARNING D

8.0 Keyboard duplicate command

This is a special command that can be used when debugging a
BASIC program, or when you want to make a temporary backup of a
BASIC program, or if you are playing a graphics game in BASIC
and have to leave the computer for some reason. You would like
to come back later and pick up where you left off, but don’'t
want to hit "BREAK" because you could lose your graphics
display.

Both sides should be recently “cold started” from the exercises
above, so get into the "A" side and key in the following
program:

10 FOR ¥Y=1 TO 500
20 PRINT Y
30 NEXT Y

Switch over to side “B" and do a "LIST" command to make sure
there is no program on this side. Now switch back to side “A"
and type "RUN". The program should start printing the
increasing values of variable "Y" on the screen. Nhen it gets
to about 250, hold down the [+] and [D) keys.

You should notice a pause as the KEY-264K copies or
duplicates side "A" to side "B"”. Let the "A" side program run
to completion. You should now be in command mode on side “A“.

Switch to side "B" ([+),[ENTER) remember?). You should have
immediately picked up and started running at exactly the point
you were at when you hit the [+),(D) keys (around 250 on the
screen).

As you can see, the duplicate command did more than simply copy
your program from the "A" side to the "B" side. It also copied
your BASJC variables apd other statug information such as where
you were in the program. It also placed the "B" sidg in the RUN
mode, exactly the same way the “A" side was.

You of course can also use the duplicate command to duplicate
side “B" to side "A" by holding down the (=) and [DJ keys while
in the "B" side.

In summary, to make a duplicate, or copy of one side onto the
other side, hold down the control key for the side you are on
({+) for side "A", [+) for side "B") along with the [D) key.
The duplicated side will be an exact copy of the orjginal
(except for the side it is on) in all respects, as it was at
the time the duplicate command was executed.

is

EYBOARD LEARNIN UIDE

DISK BASIC users note, the duplicate command will even
duplicate the level of BASIC you arxe in. That means that if you
have one side in EXTENDED BASIC and the other side in DISK
BASIC, and execute the duplicate command, then the duplicated
side will end up in whichever level of BASIC the original side
was in,

Note that since the duplicate command also copies memory, any
machine language program or other data residing in memory on
the original side will automatically be copied to the duplicate
side. '

Also note that the duplicate command is disabled during
multi-tasking.

S.0 Summing-up

You should now be somewhat familiar with the operation of the
KEY-264K and what each of the keyboard commands do. Try
different things. Load different programs in each side and
switch back and forth as they run. Multi-task them. Load a
program that uses graphics on one side, and one that uses text
on the other. Switch back and forth., Use the duplicate command.
Multi-task programs that create sounds or music. Try a PLAY
command on both sides as you are multi-tasking. Try LLISTing a
long program listing jn the “Background" side during
multi-tasking (don‘’t forget to POKE the proper baud rate in the
side you are printing from) as you type from the keyboard, or
run another program in the “Foreground"” side. Try the “BREAKs",
"RESETs"” and "“COLD STARTS". Use you imagination, experiment!!!
If you’re not completly sure about how a command works, go back
and review that section of the LEARNING GUIDE. Go through the
whole LEARNING GUIDE again if necessary. Become familiar with
the keyboard commands and the BASIC commands that follow in the
BASIC LEARNING GUIDE and you will have computing power that no
comparable computer can come close to matching!!

19

BASIC LEARNING GUIDE

. tting started with BASIC command

By now you should have completed the "Keyboard learning Guide"
section of this manual and are familiar with some of the
concepts and capabilities of the KEY-264K such as the "A" and
B sides, switching sides, multi-tasking, and "cold starting”
(if you’re not, you better go back and re-read it). So now
you‘’re going to learn how to use these concepts and
capabilities from within BASIC.

Note that in the following examples whatever you type into the
computer will be in UPPER CASE or caps, and the computer’s
response, also in caps, wil be underlined. For brevity, the
normal basic "OK" prompt will not be shown.

2.0 The PUSH and PULL commands
L. U 1:-4 and

First, “cold start” both sides from the keyboard, then get in
side "A" and type the fpllowing:

X=12345678
then type:

PRINT X
12345678

You have lcaded the variable X on side "A" with the value
12345678. Now switch to side “B" and type:

PRINT X°
0

As you can see, the variable X on side "B" has never been
loaded and is thus equal to zero. Type the following:

PULL X
and now try:

~ PRINT X
12345678

The contents of the variable ¥ on the opposite, or "A" side has
been “PULLed” or copied to the variable ¥ on the “B" side.
Switch to side “A" and print the variable X and you will see it
has not been affected by the PULL command.

20

il

1C RNIN U

Now while you’re still in side “A" type the following:

X=11223344

-PRINT X

11223344
PUSH X

What you have done is to change the value of the variable X on
the "A" side to 11223344 and “PUSHed" or copied it to the
variable X on the "B", or opposite side. Switch to side "B" and
type:

PRINT X
112233449

As you can see, the value of variable X has been changed and is
now equal to the value "PUSHed" to it from the variable X on
side "A".

Still in side “B", type in the following program:

10 FOR X=1 TO 10000
20 PRINT X
30 NEXT X

Type RUN to start the program running, then quickly held down
the space bar, [-), and [ENTER) keys to ipnitiate multi-tasking.
Back on side "A" try the SOUND command to make sure you are
multi-tasking.

Now try the following:

PULL X
PRINT X

At this point, you will get a printout of what the “B" side’s
value of X was, at the instant you exscuted the PULL X command.

Remember that because you are multi-taskiné{ the "B" side
program is continuing to run in the "Background" and increasing
the value of X as it runs.

Try the PULL X command again, followed by a PRINT X command.
You should have displayed a larger number this time because the
“B* side value of X has increased since you typed the first
PULL X command. Try the PULL X, PRINT X commands a few more
times and watch the value of variable X increase as the "B"
side or “Background" program continues to run.

Note that "PULLing” the variable from the "B" side has had no
effect on the operation of the “B" side program.

21

—

ASIC LEAR I

Now type the following:

X=10001
PUSH X

You should have immediatly stopped multi-tasking and switched
to the "B" side (if you didn’t, try the PUSH X command again)
What you have done is to "PUSH" the value 10001 from the
variable X on the "A" side to the variable X on the "B" side,
causing the "B" side FOR-NEXT loop, and the program, to end.
The resultant return to command mode caused multi-tasking to
end, with control switched to the "B" side.

Note that is some instances, when running programs on both
sides (whether you’re multi-tasking or not), it may appear that
the PUSH command does not work. This can only occur if you are
YPUSHing" a value into a variable at the same time the other
gide’s program is also placing a value into that same variable.
What happens is that the “PUSH" command actually works, but
it’s value is immediately replaced by whatever value the other
side’s program was loading into that same variable.

In summary, to copy, or PUSH a variable from the curreat side
to the opposite side, you use the “PUSH" command. To copy, or
PULL a variable from the opposite side to the current side, you
use the "PULL" command. The "PUSHing" or “"PULLing" of variables
has no effect on the operation of the program in the opposite
side (other than the effect that changing the variable can
have), and can be used even when multi-tasking.

The "PUSH" and "PULL" command works with all types of variables
(numeric, numeric subscripted, string, and string subscripted).
Note however, that when "PUSHing" a string variable, the BASIC
“garbage collect” routine (this is the routine BASIC uses to
delete unused strings when it is low on string space) will
nevar be called. This is because it would most likely disrupt
the opposite side’s processing.

Because "garbage collect"” cannot be called, the KEY-264K _
attempts, when doing a string variable “PUSH", to re-use the
opposite side variable’s string space.

If the new length of the “PUSHed” string variable is less than
or equal to it’s present length, then the string variable space
will be re-used. Otherwise, the usual BASIC method of
discarding the current string variable (resulting in an unused
"garbage” string) and setting up a new string variable will be
used.

Note that "PULLing” a string variable does not have this
restriction, s0 normal string processing will occur when using
the "PULL" command. Because “garbage collect” may be called
when "PULLing” a string variable, this command is preferrad
over the "PUSH" command when working with strings.

22

e e v

SI ARNI D

Variable types can be intermixed, and more than one variable
may be used in a "PUSH" or “PULL" command line as long as they
are separated by a comma (,). The only restriction on a "PUSH*
or "PULL" command is that the total length of the command line
cannot exceed 128 characters. If the “PUSH"” or "PULL" command
line does exceed 128 characters you will get a "SL" (Statement
too Long) error. The following are examples of legal "PUSH" and
“PULL" commands: :

PUSH X,As,G1(1),TR$(3,2),Y,HIs,NU(1,1,1)
PULL NAMES$(3),T1,LAST,L$,W(2,4)
PUSH X1,Y$,A(1,2):PULL Z,Bs,HIs$(3,4),L1

Note that you can also use the “PUSH" and "PULL" commands to
allow variables to be passed between programs running
sequentially on the same side. First "PUSH" to the opposite
side any variables you want passed on at the completion of one
program. Then load the next program and “PULL" those same
variables at the beginning of that program.

3.0 The CPEEK function and CPOKE command

The “CPEEK" or cross-peek function is exactly like the normal
BASIC "PEEK" function, except that the memory location "PEEKed"
will be on the opposite side.

Likewise, the "CPOKE" or cross—poke command is exactly like the

normal BASIC "POKE” command, except that the memory location
“POKEd" will be on the opposite side.

You should still be in the "B" side if you were following the
text, so try the following:

POKE 29700,88
CPOKE 29700, 44

What you have done is to "POKE® the value 8B into memory
location 29700 (7404 hex) on the current, or "B" side, followed
by a “CPOKE"” or cross-poke to "POKE" the value 44 into memory
location 29700 (7404 hex) on the opposite, or “A" side. To
verify that it worked, type the following:

PRINT PEEK(239700)
88 (should be the "B" side value)

PRINT CPEEK(29700)
44 (should be the "A" side value)

BASIC LEARNING GUIDE

Now switch to the "A" side, and type:

PRINT PEEK(29700)
34

As you can see the "A” side value of memory location 29700
(7404 hex) is indeed 44. Now type:

PRINT CPEEK(29700)
88

A look at memory location 29700 (7404 hex) on the opposite side
(which is now side “B") shows the correct value of B8B.

In summary, you can PEEK at memory locations on the opposite
side by using the “CPEEK" function, and POKE values into memory
locations on the opposite side through the use of the "CPOKE"
command. In all other respects these statements will function
exactly the same as their BASIC counterparts “PEEK" and "POKE",.

Note that "CPEEK" and “CPOKE" can be used at any time, even
when you are multi-tasking.

Also note that since the KEY-264K functions only with the

lower two 32K memory banks, or sides, any "CPEEK" or "CPOKE"
references to memory locations above 32767 (32K) will give the
same results as if a regular BASIC "PEEK" or “POKE" command had
been used (Remember there are no banks, or sides, in the upper
32K of memory).

4.0 The SWITECH command.

Now that the KEY-ZE84K has opened up an additional 32K of
memory for your use, and provided commands which allow you to
communicate between sides, it only makes sense to also include
a command to let you switch sides from within a BASIC program.

¥You should presently be ip side "A" (green screen) so type;
SWITCH -

You should have immediately switched to side "B" (orange
screen) just as if you had executed the keyboard switch command
(C+],[ENTER]).

While you are in side "B", key in the following short program:

10 FOR X=1 TO 400
20 PRINT X
30 NEXT X

24

NP U1 = PRI

ASIC LEARNING IDE

Now type RUN and then initiate multi-tasking from the keyboard
by holding down the space barxr, [-<], and [ENTER] keys.

Back in side "A", try a SOUND command to make sure you are
multi-tasking, then type:

SWITCH
2MU ERROR

Just as with the keyboard switch command, switching sides
cannot be allowed during multi-tasking. The KEY-264K actually
disables the keyboard switch feature during multi-tasking, but
since it cannot simply ignore a BASIC statement, it forces an
*MU" (MUlti-tasking) error condition to occur.

*MU" (MUlti-tasking) errors occur whenever you attempt to use a
BASIC command that would have 2 detrimental effect on
multi-tasking .

Now either hit the red [BREAK) key, or let the "B" side program
run to completion, to end multi-tasking and switch to side "B".
Add the following line to your "B" side program:

25 IF INT(X/8)=X/8 THEN SWITCH

This will cause the SWITCH statement to be executed for values
of X that are multiples of B (8,16,24, etc.).

Now LIST your "B" side program and it should look as follows:

10 FOR X=1 TO 400

20 PRINT X

25 IF INT(X/8)=X/8 THEN SWITCH
30 NEXT X

Type RUN and the screen should quickly display the numberxrs 1 to
8 and you should then automatically switch to the opposite, orx
“A" side.

Now in the "A" side, type in the following program:

10 FOR ¥Y=1 TO 400

20 PRINT Y

30 IF INT(Y/8)=Y/8 THEN SWITCH
40 NEXT Y

Type RUN and watch as the programs switch back and forth
between side as they run (note that they are not
multi-tasking), resulting in a confusing display. The "B" side
program should end first, so when it does, type SHITCH to get
to side "A" and let the "A" side program finish.

hs

25

BASIC LEARNING GUID

The SWITCHL mman

Although you are now able to switch sides with a BASIC
statement, each time you do, the display changes both color and
content. This will usually cause the screen to flash when
changing color, and will require a carefully coordinated
display on both sides to prevent the text (or graphics) from
being unreadable.

Still in side "A", type the following:
SWITCHL

Notice that the display has not changed, but the flashing
cursor has disappeared. What has happened is that the switch to
side “B" has occurred, and you are actually in side “B", but
the display for side "A" has been left on the screen. The "L"
at the end of the SWITCH command means to “Leave” the current
display on the screen when you switch sides. Carefully type:

SOUND 100,10

You will not see the SOUND command appear on the screen as you
type it because you are actually in side "B", even though the
side "A"'’ display is on the screen. You should however, hear
the tone if you typed the SOUND command correctly (if you don’t
hear the tone, hit [ENTER) a couple of times and then carefully
type the SOUND command again).

Now switch back to side "A" using the "B" side keyboard switch
command ([-),[ENTER]). The cursor should have reappeared,.
Switch to side “B" again, also using the keyboard switch
command ([+],[ENTER]).

Notice that when you use the keyboard switch commands after a
“SWITCHL" that the display will remain unchanged as you switch
sides. This is beacuse the "B" side (in our example) display
was disabled by the "A" side SWITCHL command and can be
re—-enabled only be a SWITCH command without an “L*, a CRUN
command (cross rxrun - to be discussed later) without an "L", a
view reset command (VIEWR - to be covered later) or when
multi-tasking ends (note that although this command canot be
used while multi-tasking, it is possible to execute a SWITCHL
command and then initiate multi-tasking).

Once again switch to side "A" usiﬁg the keyboard switch command
and type SWITCH.

As you can see, the regular SWITCH command (without the "L")
has caused the "B" side display to be restored and a normal
switch has occurred. Using the keyboard switch commands, switch
sides a few times to insure that both displays are now working
properly. ~

26

BASIC LEARNING GUIDE

Now switch to side “B" if you are not already there and change
line 25 to include an "L" at the end of the SWITCH command as
follow:

25 IF INT(X/8)=X/8 THEN SWITCHL
Your program should now look like this:

10 FOR X=1 TO 400

20 PRINT X

25 IF INT(X/8)=X/8 THEN SWITCHL
30 NEXT X

Now type RUN and the screen should display the numbers 1 to 8
and then appear to “freeze". The flashing cursor will be
missing from the screen.

What has happened is that the "B" side program started to run,
displayed the numbers 1 through 8 and then executed the SWITCHL
command. The SWITCHL command caused a switch to side "A" but
left the side “B" display on the screen. You are actually in
side “A" even though the side “B" display is on the screen, and
since side "A" is in the BASIC command mode, no activity will
take place until you type a command.

Carefully type RUN (note that the RUN command will not appear
on the screen), and the "A" side program will begin, resulting
in the programs on both sides switching back and forth as they
run.

Notice that the switching of sides will not be visible to you
as only the "B" side display will appear on the screen,
repeatedly displaying the next 8 numbers, then pausing while
the "A" side program runs.

Note that the regular SWITCH command (without the “L") in the
"A" side program will restore both displays, but since you are
switching to side “B" when it is executed, the display is
unaffected.

Let the programs rum to completion. The "B" side program which
controls the display will finish first, so when it does, type
SWITCH to let the "A" side program finish. Notice that both
displays are now restored.

27

SIC LEARNING GUIDE

4.2 The SWITCH command with a4 line number

The SWITCH or SWITCHL command followed by a line number can be

used to switch sides, place the opposite side in the “"RUN" mode
(but without clearing any variables as a RUN command would do),
and start execution at the specified line number.

Switch back to side "B", type NEW, then key in the following
program!

10 PRINT 10
20 PRINT 20
30 PRINT 30
40 PRINT 40
50 PRINT S50
60 SWITCH

Now switch back to side "A" and type SWITCH 10.

The "SWITCH 10" command has caused you to switch to side “B",
placed the "B" side in the "RUN" mode (it was previously in
command mode) and started execution at line number 10,

The program should have printed the numbers 10 through 50,
corresponding to the line number of each line, and then
switched back to side "A" at line 60. This probably happened
much to fast for you to see, so switch back to side "B" with a
regular SWITCH command and look at the display. You should see
the numbers 10 through 50 displayed there.

Now while still in the “B" side, type:
A=87654321
switch back to side “A" and type “SWITCH 30".

You should have again switched to side "B" and placed it in the
"RUN" mode, but this time you should have started execution at
line number 30. Switch to side "B" and verify that only the
numbers 30 through 50 are displayed there. Print out the
variable A that you set to 87654321 and you will see that it
has not been affected by the SWITCH command.

Again switch to side "A" and type “SWITCH 25".

This time you should have switched to side "B", placed it in
the "RUN" mode, and attempted to execute line 25. Since there
is no line 25 in your “B" side program, you should have gotten
a "2UL ERROR" (undefined line number). Note that since you

did not successfully start the “B* side program, line B0 with
the SWITCH command was never executed, so you remain in side
“B" after the "UL" errxor.

hY

28

BASIC LEARNING GUIDE

4.3 SWITCH command summary

In summary, the BASIC SWITCH command without a line number will
cause you to switch to the opposite side and pick up processing
at precisely the point at which you last executed a SWITCH
command in that (opposite) side (This is equivalent to the
keyboard SWITCH command, but without the dependency on the
1/60th second interrupts). This means that if you were in the
"command®” mode before switching sides, that you will remain in
the "command"” mode when you switch back. Likewise, if you were
in the "run" mode prior to switching sides, then you will be in
the “run" mode when you switch back to this side.

The BASIC SWITCH command followed by a line number will cause
you to switch to the opposite side, put the opposite side in
the "run* mode, and attempt to begin execution starting at the
specified line number. If the program on the opposite side is
already in the "run" mode, but at a different line number,
processing will be immediately re-directed to the line number
specified in the SWITCH command.

If the line number specified in the SWITCH command does not
exist in the opposite side program, a switch to the opposite
side will still take place, but a "UL"™ (undefined line number)
error will then occur as you attempt to execute a non-existent
line number.

Note that you can use the SWITCH command followed by a line
number to “call" subroutines (similar in operation to a
GOSUB/RETURN) that reside on the opposite side. Just switch to
the first line number of the opposite side subroutine, and make
sure that the subroutine ends with a regular SWITCH command
(without a line number) to return control to the "calling"®
side. Variables can be passed between the main program and the
subroutine by using the PUSH or PULL commands.

The SWITCHL command can be used in place of a regular SWITCH
command whenever you want to switch sides and leave the current
display on the screen. The SWITCHL command will disable the
opposite side’s display until restored by a regular SWITCH
command with no “L", a CRUN command (cross run - to be covered
later) with no “L", a VIEWR command (view reset - to be
discussed later), or an end to multi-tasking. Note that
switching sides from the keyboard will not have any effect on
the display after the execution of a SWITCHL command.

On the subject of switching sides from the keyboard, a word of
caution is in ordexr. You shoyld never manually switch sides
from the keyboard if yoy are running BASIC programs that
contains SWITCH commands. This is because you could change

the processing sequence of the programs, or in some cases
change the expected processing results of one or both side’s
programs.

29

BASIC LEARNING GUIDE

For example, if you were running a program in side “A" that
switched to a subroutine in side “B" and you were to manually
switch back to side "A" before the “B" side’s subroutine was
completed, then the "A" side program could continue with
incomplete or erroneous data, thinking that the "B" side
subroutine had run to completion.

5.0 The CRUN (Cross RUN) command

The CRUN (Cross RUN) command functions like a combination of
the SWITCH and RUN commands.

You should still be in the "B" side if you were following the
text, so type LIST to make sure that the "B" side program is
still there (if not, refer to section 4.2 and type it in
again). Switch to side "A" and type CRUN.

You should have switched to the “B" side, started execution at
the first line of the program, printed the numbexrs 10 through
50 and then switched back to side "A" at line 60. Manually
switch to side “B" and verify that the numbers 10 through 50

are displayed there.

The CRUN command has functioned just like the SWITCH 10 command
you tried earlier with this same program, but with two
important differences. First, with no line number specified, it
placed the opposite side in the “run" mode and began execution
at the first line number in the program. Second, it initialized
all variables on the opposite side before starting execution,
just as a regular RUN command would have done.

Now while still in side "B" type:

A=12345678

switch back to side “A" and type CRUN 30.

You should have again switched to side “B"” and initialized all
variables, but this time started execution at line numbey 30.
Switch to side "B" and verify that this has indeed happeped.
Print out the variable "A" that you set to 12345678 and you
will see that it has now been initialized to zero.

Switch again to side "A" and this time type CRUN 35.

Like with the SWITCH command, you switched to the opposite
side, put it in the “ruan" mode, and attempted execution at line

35. Since there is no line 35, you got a “UL" erxrror (undefined
line number).

30

ASIC RNING GUIDE

In summary, the CRUN command functions much like the SWITCH
command. A CRUN with no line number will switch to the opposite
side, initialize variables, and begin execution at the first
line number in the opposite side program. A CRUN followed by a
line number will function as above, but will start execution at
the line number specified. If the specified line number does
not exist, the switch to the opposite side will still take
place but a “UL" error (undefined line number) will then occur.

Also note that like the SWITCH command, you can also use an "L"
at the end of the CRUN command to leave the current display on
the screen. Also like the SWITCHL command, the CRUNL command
will disable the opposite side’s display until restored by a
regular SWITCH, CRUN, VIEWR (view reset - to be discussed
later) or an end to multi-tasking.

Attempting to execute a CRUN or CRUNL command while
multi-tasking will result in &n “MU" (MUlti-tqskinq) YXor.

6.0 The SCOLOR (Switch COLOR) command

As you learned in section 4.1 (The SWITCHL command), switching
sides with the regular SWITCH command can cause flashing in the
display as the screen changes colors. However, there may be
times when you wish to use the text display on both sides as
you switch back and forth between two programs, but you would
like to do so without any distracting screen flashes.

Stil]l in side "B" from the exercises above (if you’re not,
switch tharel), type SCOLOR.

The screen color should have changed from ORANGE to GREEN! Yqu
are still in side "B" but you now have a green display just
like side “A". Now manually switch sides from the keyboard a
few times. Notice that there is no screen flashing as you
switch sides. In fact, except for the content of the screen
changing, you would never know that you were switching sides.
There is one problem however, you can no longer tell which side
you‘re on by looking at the screen.

Switch to side "B" if you’‘re not already there. If you’‘re noy
sure where you are, hold down the [+) and [ENTER) keys. Now
again type SCOLOR. This time the screen went from GREEN back to
ORANGE.

Switch to side "A" and type SCOLOR. the “A" side display shouyld
now be orange also. Manually switch sides from the keyboard a
few times. Both screens are now orange, and as before, there is
no screen flashing as you switch sides. Now make sure that you
are in side "A" by holding down the [-) and [ENTER] keys, and
type SCOLOR to restore the normal "A" side green display.

s

31

BASIC ARNING ID

In summary, the SCOLOR (Screen COLOR) command toggles the
screen color from ORANGE to GREEN, or from GREEN to ORANGE. So
if you want to switch sides and use the text displays on both
sides but don‘t want the screen flashes as you switch sides,
then do an SCOLOR command on one (either) side so that both
side’s text displays are the same color (GREEN or ORANGE, it
doesn’t matter). Note that this command can be used while
multi-tasking.

7,0 The MTON (Multi-Tasking QN) command

You should still be in the "A" side so do a keyboard *“"cold
start” and switch to side “B". Do a “"cold start" on this side
also, and then key in the following program:

10 FOR ¥=1 TO 10000
20 PRINT X
30 NEXT X

Type RUN to get the "B" side program running and then manually
switch to side "A". Then type “MTON" (Multi-Tasking ON). ¥You
are now multi-tasking. Now try manually switching sides.
Nothing happened because as you learned earlier, the keyboard
switch commands are disabled during multi-tasking. Try a SWITCH
command and You should get a "MU* (MUlti-tasking) error. Try a
SOUND command and notice the tell-tale quaver of multi-tasking
in the generated tone. The “MTON" command works just like the
keyboard multi-tasking command, but can be executed from either
side,

As you have learned so far, when you are multi-tasking from the
keyboard and the "B" or "background® side either regquests input
from the keyboard or returns to command mode, then
multi-tasking will end and you will automatically switch to the
“B" or "Background® side.

7.1 MTON command options

WHith the “MTON" command you have a total of 3 options on how to
handle the end of multi-tasking: _

1. A regular “MTON" command by itself will automatically
switch to side "B" at the end of multi-tasking.
(just like the keyboard multi-tasking command.)

2. An "MTON" command followed by an "@" (“MTONG@") will, at
the end of multi-tasking, give 5 short tones as an
audio indicator that multi-tasking has ended, and
remain in side "AY (no switching sides).

3. An "MTON" command followed by a period ("MTON.") will

simply remain in side “A®" at the end of multi-tasking.
(no audio indicator and no switching sides)

32

BASIC LEARNING GUIDE

Hit the red [BREAK] key to stop multi-tasking. Since you had
typed a regular "MTON" command, you should have automatically
switched to side "B". Type RUN to get the "B" side program
running, and then switch back to side “A". ‘

This time type "MTON@", and verify that you are multvi-tasking
with a SOUND command. Now again hit the red [BREAK) key to end
multi-tasking. You should have heard 3 short tones as
multi-tasking ended but this time you remained in side “A"
instead of switching to side "B". Now switch to side “B" and
you will see that a “BREAK" has occured and you are now in
command mode. Type RUN again and then switch back to side "A",

Now try the "MTON." command, and again verify that you are
multi-tasking. Once again hit the red [BREAK] key to end
multi-tasking. This time, although multi-tasking has indeed
ended, you remained in side "A" and received no indication that
it had ended. Switch to side “B" and you will see that you are
now in command mode and that a "BREAK" has occured.

In summary, you can initiate multi-tasking from either side by
issuing an "MTON" command. Just as with the keybcard command,
multi-tasking will begin, and control will switch to (or remain
in) the "A" or "Foreground" side. You have 3 options on how to
handle the end of multi-tasking; Switch to side "B" (with a
regular "MTON"), or give an audio indicator of 3 short tones
and remain in side "A" (with a "MTON@"), or simply remain in
side "A" with no indication of any kind that multi-tasking has
ended (with- an "MTON."). Note that if you attempt to execute an
YMTON" command when you are already multi-tasking, the command
will be ignored, and will not change the previously set “end of
multi-tasking" option.

B8.0 The MTPAUSE command

This command was included so that you could perform commands
that would otherwise be illegal or would just not work properly
while multi-tasking, such as doing disk I/0 from both sides, or
using the "PLAY" or "SOUND" commands. The MTPAUSE command is
used to provide only a temporary halt to multi-tasking and

will normally be followed at some point by another MTON
command. The MTPAUSE command will cause multi-tasking to stop,
with control remaining in the same side that executed the
MTPAUSE command. It will not affect the current screen display.
Also, it will not automatically cause one of the "end of
multi-tasking" options to occur unless the statement following
the MTPAUSE requires keyboard input (remember that the INKEYS$
function is not in this category), or causes a return to
command mode.

33

BASIC LEARNING GUIDE

You should still be in side "B" at this point so add the
following line to your program:

25 IF X=100 THEN MTPAUSE:PLAY “ABCDEFG":MTON
Your "B*" side program should now look like this:

10 FOR X=1 TO 10000

20 PRINT X

25 IF X=100 THEN MTPAUSE:PLAY "ABCDEFG":MTON
30 NEXT X

Now type RUN to get your "B" side program started and quickly
switch to side "A". Type MTON to start multi-tasking and sit
back and wait a few moments and you will eventually hear the
seven notes from the PLAY command. Notice that the tell-tale
quaver of multi-taskirg is missing from the tones. Also notice
that although multi-tasking was stopped during the PLAY
command, that the screen display was not affected. Hit the red
[BREAK] key to end multi-tasking and switch you to side “B".

In summary, if you want to generate music, or access disk from
programs in both sides, or need to speed up processing for a
particular routine while you are multi-tasking, then
temporarily suspend multi-tasking with an MTPAUSE command, and
then turn multi-tasking back on when you are through (with an
MTON command). Note that control remains in the side that
executed the MTPAUSE command, and that the screen display will
not be affected. Also note that the MTON command used to turn
multi-tasking back on after the MTPAUSE must contain the
desired "end:of multi-tasking" option. If you execute a MTPAUSE
command when you are not multi-tasking, the command will be
ignored.

9.0 The VIEW command

The VIEW command can be used to control what appears on your
T.V. screen. Normally a BASIC program can be in one of two
display types, either TEXT or GRAPHICS. There is only one kind
of TEXT display but a GRAPHICS display can be in one of five
modes. The modes are selected through the use of the PMODE
command (PMODE 0 through PMODE 4) and select varying degraees of
resolution and color.

BASIC is usually in the TEXT mode and can be changed to
GRAPHICS mode by using the SCREEN 1,N command where the first
digit (1) indicates GRAPHICS mode and the second digit (N,
where N=1 to 8) indicates which GRAPHICS page to display and is
dependent on what PMODE you are in. (see GOING AHEAD WITH
EXTENDED COLOR BASIC for more information on graphics modaes) A
SCREEN 0 command will return you to TEXT mode. You will also
switch back to TEXT mode whenever you try to print something on

the text screen, which is always the case when you returnm to
command mode.

34

ASIC LEARNING

Now that you have established that a BASIC program can have
either a TEXT or GRAPHICS display, and you know that the
KEY-264K has two BASIC sides ("A" and "B"), let’'s try a few
examples using the VIEW command.

You should still be in command mode in side "B" if you were
following the text, so first type 25 to delete line 25 with the
PLAY command, then type the following commands:

PMODE 4,1
PCLS
CIRCLE (128,96),50

Although you did not see it take place, the above commands set
side “B"‘s graphics mode to the highest resolution (black and
green) and set the starting graphics page to 1. Cleared the
hi-res graphic pages to all black, and drew a large green
circle right in the center of the screen.

Now switch to side "A" and type these commands:

PMODE 4,1
- PCLS
LINE (78,46)-(178,146) ,PSET,B

These commands performed the same functions as those on the “"RB"
side except that instead of a green circle, a large green box
was drawn. Now, still in side "A" type VIEWBT (VIEW the “B"
side Text display). The text display from side "B" should now
be on the screen. Notice however, that the flashing cursor is
missing from the screen. This is because you are still in side
*A" even though the side "B" text display is on the screen.

Carefully type (because it will not appear on the screen)
VIEWBG (VIEW the "B" side Graphic display). You should now see
the side “B" hi-res graphic screen with the green circle on a
black background. When displaying graphics with the VIEW
command, the then current PMODE and GRAPHICS PAGE settings for
the side being displayed will be used.

Now carefully type VIEWAG (VIEW the “A" side Graphics display).
The "A" side hi-res graphic display with the green box on the
black background should now be on the screen.

By now you have the idea, so let’s get back to the "A" side
text display by typing VIEWAT (VIEW the "A" side Text display).
You should now see all those VIEW commands that you have been
typing, but not seeing.

35

ASIC LEARNING E

But what if you want to be able to run your program on either
side without having to know if you‘re on side “A" or side "B" ?
Try this, type VIEWCG (VIEW the Current side Graphics display)
and notice that the hi-res display with the green box on the
black background is now on the screen. Since you are in side
"A", you displayed the side "A" hi-res screen. No matter which
side you are in, using the VIEWCG or VIEWCT (VIEW the Current
side Text display) commands will display the graphics or text
screen from that side.

Try a VIEWOG (VIEW the Opposite side Graphics display). You
should now see the hi-res display with the green circle on the
black background. Since you are still in side “A", you
displayed the "B" or opposite side hi-res screen. Again, no
matter which side you are in, the VIEWOG or VIEWOT (VIEW the
Opposite side Text display) commands will display the graphics
or text screens from the opposite side. Now type VIEWAT to qet
the text display back.

Now type SWITCH to get to side "B", then type RUN to get the
"B" side program running. Switch to side "“A" and type MTON to
initiate multi-tasking and verify with a SOUND command. Type
VIEWOT or VIEWBT to view the side "B" text screen. Now for the
first time, you are able to see the "B" or "background"” side as
it is running during multi-tasking.

Try a VIEWOG or VIEWBG command and you should again see the
side "B" hi-res graphic display with the green circle on the
black background. As you can see, the view command is fully
functional whether you are multi-tasking or not.

Now hit the red [BREAK) key to force an end to multi-tasking
and an automatic switch to side "B" (you started multi-tasking
with a regular MTON command, remember?). Type VIEWBT. Since you
were already displaying the "B” side text screen, it appears as
if nothing happened. Now manually switch to side "A". Notice
that the "B" side display remained on the screen. The VIEW
command will disable both side’s displays prior to puttipg the
selected display on the screan.

Disabling a djsplay in this case means to prevent it from being
put on the scyeen from a keyboard switch command. It alsp has
the effect of not automatically returning from graphics mode to
text mode when you attempt to print something to the text
gcreen. You can now put whatever display you want on the screen
and if you then switch sides with an SWITCHL, CRUNL or keyboard
switch command, the display will remain on the screen. The
displays will remain disabled after a VIEW command until
restored by a regular SWITCH or CRUN command (without the “L"),
an end to multi-tasking, or by the command we will discuss
next, the VIEWR or view reset command.

by

36

BASIC LEARNING GUIDE

9.1 The VIEWR command

The VIEWR (VIEW Reset) command will restore both displays and
the screen will then display either the TEXT or GRAPHICS
display (depending on what mode you are in) of the side that
executed the VIEWR command.

Manually switch back to side “B" and type VIEWR to reset the
displays. Now type RUN to get the "“B" side program running and
manually switch to side "A". Type MTON to get multi-tasking
started and then try a VIEWR command. You should now see both
the "A" and "B" side displays superimposed on the screen. This
is because multi-tasking, when initiated will always disable
the "B" or “Background" side’s display, leaving the "A" or
"Foreground" side’s display intact so that you will only sea
the “A" gide’s display during multi-tasking. Since the VIEWR
command restores both the “A® and “B" side displays, they will
each be displayed for 1/60th of a second as multi-tasking
switches sides at each interrupt. Type VIEWAT to get the *"A"
side text display back.

Now hit the red [BREAK] key to force multi-tasking to end with
an automatic switch to side “B". Notice that the "B" gide
display is now on the screen. Try manually switching sides a
few times. Notice that both side’s displays appear as you
switch sides. This is because the end of multi-tasking has
restored both displays just as if you had executed a VIEWR
command.

Using the VIEW (as well as the SWITCHL or CRUNL) commands can
at times be very complicated and you may find yourself confuseg
as to where you are and what display is op the screen. Whenevey
this occurs hit the red [BREAK] key and then do a VIEWR ’
command. Thig should restore the KEY-264K displays to the
normal operating mode.

9.2 The special user mode VIEW command

. This is a special version of the VIEW command that will allow
you to set up and use displays modes (and graphics pages) not
normally available from BASIC such as the various semi-graphics
modes. It requires a fairly high level technical understanding
of how the different display modes work and how the €883 (SAM)
and 6847 (VDG) function together. So if you’re interested, read
on, otherwise skip to section 9.4 (VIEW command summary) and go
on from there.

37

ASIC LEARNING GUI

The KEY-264K has four memory locations set aside on both the

“A" and “B" sides for special

display modes. These memory

locations should be used as follows:

Location 32592 (7F50 hex) - should contain the high order

Location 32593 (7F51 hex) -

Location 32594 (7F52 hex) -

location 32595 (7FS53 hex) -

seven bits of the sixteen bit
video display address in the

form XXXXHXXX0 where the low order
bit is always zero. These seven
bits will be set into 6BB3 (S5AM)
registers F6-F0 and will set

the video page to any desired
1/2K boundary in the 64K memory.

should contain the three mode
control bits for determining

how the video memory is addressed
by the 6883 (S5AM). These are in
the form 00000XXX and will be set
into €883 (SAM) registers V2-VO0.

should contain the five control
line bits that determine the
various modes and color sets

of the 6847 (VDG) in the form
XXXXX000. This location (all
eight bits) will be written to
the I/0 port at memory location
65314 (FF22 hex).

This location is used as a flag
to indicate that the special
display mode setup locations are
to be used in determining the
screen display. If this location
contains something other than
zeros, then the special display
mode will be used. Note that the
special VIEW command will set

and reset this flag location
automatically, so DO NOT SET this
location unless you know what you
are doing. (see discussion below
in section 9.3 on using these
memory locations with the SWITCH
command)

38

BASIC LEARNING E

Once you have set the desired values into locations 32592,
32593, and 32584 (7F50, 7F51, and 7F52 hex) you can then use
the VIEW command by typing VIEWAU (VIEW the “A" side User
display), VIEWBU (VIEW the "B" side User display), or use the
other variations of the VIEW command, VIEWCU (VIEW the Current
side User display) or VIEWOU (VIEW the Opposite side User
display). Note that these commands can be used while
multi-tasking.

Let’s try an example, get into side "A" if you are not there
already and type the following:

PMODE 4,1

POKE 32592,PEEK(186)+12
POKE 32593,6

POKE 32594,240

The PMODE command sets side "A" to the highest resolution mode
with a starting graphics page of 1, The POKE commands set the
6883 (SAM) video page to the current page (which is in location
186) plus 3072 (which is 1/2 a hi-res page), set the EB83 (SAM)
video addressing mode to 6 (hi-res graphics) and sets the 6847
control bits to hex FO (240 decimal) for graphics mode G6R, or
the highest resolution black and green graphics mode.

Type VIEWAG and you should see the green box on the black
background that we set up earlier. Notice that the green box is
in the center of the screen. Now type VIEWAU. You should see
only the lower half of the green box and it is now at the top
of the screen and there may be “garbage" displayed from the
center of the. screen down. What you have done is to set up the
special VIEW display mode to equal the BASIC display mode
except that the starting graphics page has been set to page 3
(that is why the garbage is there, pages 5-8 have not been
PCLSed). You could not have done this through BASIC unless you
had done a PCLEAR B first. Type VIEWR to get the text screen
back and then type:

POKE 32592,PEEK(186)+2
VIEWAU

You should again see the green box on the black background, but
this time the box is only slightly above the center of the
screen and there is only a little "garbage" displayed on the
very bottom of the screen. What you have done is to keep the
graphics display in the same mode as before, but this time the
starting page has been moved only 512 bytes (1/2K) or 1/12 of a
hi-res graphics page (which is 6144 bytes). There is no way to
duplicate this using BASIC’s graphics commands. It is beyond
the scope of this manual to explore all the modes possible
using the special VIEW display mode, but as you can see, many
different modes can be set, plus you have the ability to vary
the location of the graphics video page to anywhere in memory
in increments of 512 bytes. Now type VIEWR to get text back.

39

ASIC LEARNING DE

9.3 Notes on the special display mode

Note that although it was not mentioned before, this special
display mode can also be used to control the scr=en display
when you are switching sides. By poking the desired values into
the special setup locations and then poking something other
than geros into the flag location 325385 (7F53 hex) you will
cause the special display mode to be used whenever you switch
into that side. The special display mode can be used on either,
or both sides and each side can be set up independently of the
other side. To exit from the special display mode and get back
into the current BASIC display mode, simply poke a zero into
the flag location 32585 (7F53 hex) on that particular side, and
it will take effect the next time you switch into that side.
Note that like a screen command, you will return to text mode
the next time you try to print something to the text screen.

S.4 VIEW command summary

In summary, the VIEW command can be used to control which
display is on the screen and to keep that display on the screen
when you switch sides. It can be used to view text or graphics
displays from the current or opposite side, even if you are
multi-tasking. The VIEWed command will stay on the screen until
reset by a VIEWR (VIEW Reset), SWITCH or CRUN without an “L*,
or an end to multi-tasking. The VIEW command also has a special
user display mode that allows you to use graphics modes and
graphics pages that are not available in BASIC. A listing of
the VIEW command options follows:

VIEWR - Reétore‘both side’s displays.
VIEWAT - View the "A" side text screen.

VIEWAG - View the "A" side graphics screen - uses current
BASIC settings to determine mode and page.

VIEWAU - View special “A" side user display mode - mode and
graphics page data is taken from user locations.

VIEWBT - View the "B* side text screen.

VIEWBG - View the "B" side graphics screen - uses currsnt
BASIC setting to determine mode and page.

VIEWBU - View special "B" side user display mode - mode and
graphics page data is taken from usexr locations.

VIEWCT - View current side text screen.
VIEWCG - View curxent side graphics screen (see VIEWAG above).

VIEWCU - View current side special user display mode
(see VIEWAU above)..

40

.._._._

——— et pee—

BASIC LEARNING GUIDE

VIEWOT - View opposite side text screen.

VIEWOG - View opposite side graphics screen
(see VIEWAG above).

VIEWOU - View opposite side special user display mode
(see VIEWAU above).

10.0 The "\" (BACKSLASH) command

This may well be the most powerful of the KEY-264K commands

and is probably the one you will use the most. Legal only in
the “A" side, a BASIC command preceded by a “\" (Backslash)
will switch to the “B" or *Background" side, copy the remainder
of the BASIC command line following the backslash from the "A"
eide to the "B" side, Cause the "B" side to begin executing the
just copied BASIC line, initiate multi-~tasking and switch back
to the "A" or “Foreground" side. Multiple statement lines
separated by a colon (":") are allowed, as the BACKSLASH
command will copy everything on the line up to the ending
carriage return or [ENTER]. '

Note that the backslash ("\") character is created in BASIC by
holding down the [SHIFT] and [CLEAR] keys.

Type the following command:
\FOR X=1 TO 400:PRINT X:NEXT X

It appears as if nothing happened, but the command you just
typed in side “A" is now executing in the "B" or “Background"
eide. Try the SOUND command to verify that you are
multi-tasking. Wait a few moments for the "Background" program
toc end and switch you to side "“B".

Just like with the MTON command, the BACKSLASH command has 3
“end of multi-tasking" options. You have just used the first
option. IF the backslash character is not immediately followed
by eithexr a "@" character or a *." (period), then an end to
multi-tasking will cause an automatic switch to side “B".

Option two is when you immediately follow the backslash
character with an "@" character. An end to multi-tasking with
this option will result in an audio indicator of 5 short tones,
with control remaining in the "A" or "Foreground" side.

Switch back to side "A®" and type this command:

\@FOR ¥=1 TO 400:PRINT XiINEXT X

Again, wait for the "Background” program to finish. You should
havae heard 5 short tones as multi—-tasking ended, and as you can

se®, you remained in side "A". Manually switch to side "B" and
verify that the copied BASIC command has finished.

41

A ARNING I

The third option is when you immediately follow the backslash
with a "." (period). This option will alsc cause control to
remain in the "A" or "Foreground"” side when multi-tasking ends,
but will give you no indication that multi-tasking has ended.

Switch back to side "A" and type the following command:
\.FOR X=1 TO 400:PRINT X:NEXT X

Immediately try a SOUND command and you should hear the
tell-tale quaver in the tone that results from multi-tasking.
Wait a while and try the SOUND command again. Keep trying the
SOUND command until the generated tone is back to normal (clean
tone with no quaver). Switch to side "B" and you will see that
the copied BASIC command has finished. Multi-tasking has ended
but unlike the other two options, you had no indication that it
had ended.

In summary, the BACKSLASH (“\") command can be used to initiate
tasks (BASIC command lines) in the “B" or "Background" side
while you continue to operate in the "A" or "Foreground" side.
It does this by switching to the "B" or "“Background" side and
copying the command line from side "A" to side “B" starting at
the first character following the **, “\@", or “\.", depending
on which "end of multi-tasking" option you are using, and
ending with it encounters the carriage return or [ENTER]. Once
the line is copied, it begings execution of the copied command
line in side *"B", initiates multi-tasking, and switches back to
side “A",

The BACKSLASH ("\") command gives you complete "Foreground"
side control over what is to be run in the "Background" side
without ever having to switch there. For instance, if you had a
disk system you could type \@RUN “PROGRAM/BAS" and the
“Background" side would then load and run the program
"PROGRAM/BAS" from disk and signal you with 5 short tones when
it either needed keyboard input, emcountered an error, or
finished running (end of multi-tasking). If you wanted to
occasionally check the status of the "Background" program as it
was running, you could use the VIEW command.

Note that the BACKSLASH ("\") command can only be executed from
the "A" or "Foreground" side. Attempting to execute a BACKSLASH
{"\") command in the “B" or "Background" side will result in an
*SD" (SiDe) error being generated to indicate that you are in
the wrong side. Also note that an attempt to expcute this
command when you are already multx-taskxng will result in an
*"MU" (MUlti-tasking) error.

42

ASIC ARNING IDE

11.0 The WAIT command

Since you now know how to use the BACKSLASH (“\") command to
start the “Background" side running under multi-tasking, it
might have occured to you that you could write a program to run
in the "A" of “Foreground"” side that will cause the
"Background®” side to execute a series of sequential commands.
This is similar to the “COMMAND" file, or "BATCH" techniques
used on other computers to execute a series of command without
sitting there and typing them in from the keyboard.

For instance if you had a disk system and wanted to run two
programs in sequence in the "Background” side and give an audio
indication when the second program finished, you could type (in
the "A" side, of course) the following two commands:

\.RUN "PROG-ONE*"
\@RUN *“PROG-TWO"

There is one major problem with this. Although the first
command would work properly, the second command would attempt
to execute while you were still multi-tasking from the first
command. This would result in an "MU" (MUlti-tasking) erxor and
the second command would not be executed. '

By now you have probably figured out the function of the WAIT
command. The WAIT command will cause execution of the “A" side
program to pause or wait until multi-tasking ends, or is
temporarily turned off with the MTPAUSE command. Now you can
set up an operating command file in the "A" side by separating
the BACKSLATH commands with WAIT commands to insure that the
previous command is finished before attempting to start the
next command. The example from above would now look like this:

\RUN. “PROG-ONE"
WAIT
\RUN@ *®PROG-TWO"
WAIT

Note that the WAIT comand is not on the same line as the "\"
({Backslash), as this would cause it to be executed on the
opposite or “B" side where it is illegal.

Get into side "A"™ and try this example:

\@FOR X=1 TO 400:PRINT X:NEXT
WAIT:PRINT 1/3

Notice that the PRINT 1/3 command did not execute until the $
short tones indicated that multi-tasking had ended.

43

BASIC LEARNING GUIDE

In summary, the WAIT command should be used whenever the "A"
side program needs to know that the “B" side program has
completed some particular processing, or requires keyboard
input. Note that the WAIT command can only be used in the "A"
or “Foreground" side. Any attempts to use it in the "B" or
"Background” side will result in a "SD" (SiDe) error. If you
axecute a WAIT command and you are not multi-tasking at the
time, the command will be ignored.

12.0 The DUP (Duplicate) command

The DUP or duplicate command functions exactly the same as the
keyboard duplicate command, allowing you to make a temporary
backup of a BASIC program. Unlike the keyboard duplicate
command however, the BASIC DUP command lets you determine
exactly at what point the duplicate copy will be made as a
program is running (remember, with the keyboard command you
determined when to duplicate by manually hitting the keys).

Get into side “A", manually “cold start" the side from the
keyboard, and type in the following programi

10 FOR X=1 TO 500

20 PRINT X

30 IF X 300 THEN DUP
40 NEXT X

Type RUN and you should see the program display the numbers
from 1 to 300 and then pause as it duplicates the program on
the other side. After the DUP, the program should display
numbers starting at 301 and then run to completion.

Now switch to side "B" and you should immediately start
processing at exactly the point where the DUP command occured.
It should start displaying numbers beginning at 301 and rum to
completion. Now LIST the program. It should be the same as the
one you just typed in on the “A" side. In fact, the only
difference in the programs is the side they are on.

In summary, the DUP command will make an exact duplicate of one
side onto the other side including status information as to
where you were and whether you were in “run” mode, etc. Any
BASIC oxr machine language programs residing there will also be
duplicated. Note that the DUP command will also duplicate the
level of BASIC you are in. If one side is in DISK BASIC and the
other side is in EXTENDED BASIC before the DUP command, then
after the DUP command, the duplicated side will end up in the
same level of BASIC as the side that executed the DUP command.

Note that attempting the DUP command while multi-tasking will
result in an “MU* (MUlti-tasking) error.

hl

44

ASI EARNING GUIDE

13.0 The LCOPY (Line COPY) command

The easiest way of describing the LCOPY or line copy command is
to say that it functions just like the BASIC LIST command,
except that instead of listing program lines on the screen, it
will copy the program lines to the opposite side.

You should still be in side "B" so type NEW to clear the
existing program and then type in the following:

10 PRINT 10
20 PRINT 20
30 PRINT 30
40 PRINT 40
S0 PRINT 50

Now switch to side "A" and do a LIST. The DUP example program
should still be there so0 type NEW to0 clear it. Switch back to
side "B" and type LCOPY. Again switch to side “A" and do a LIST
command. This time a copy of the “B" side program is there. The
LCOPY command copied all 5 lines just as a LIST command would
have listed all 5 lines.

Type NEW to clear the "A" side program and switch to side “B".
Type LCOPY 40, then switch to side "A" and do a LIST command.

This time only line 40 was copied, again similar to a LIST 40

command. '

Once more type NEW and then switch to side "B". This time type
LCOPY 20-40. Now switch to side "A" and do a LIST command. Just
like a LIST -20-40 command, only lines 20 through 40 were copied
from side “B" to side "A". Note that also like a LIST command,
if you specify non-existent line numbers when copying a group
of lines, it will copy the line numbers between the
non-existent lines without giving you an error. For instance in
the example above if you had typed LCOPY 15-45, it still would
have copied lines 20 through 40.

Now type NEW to clear the "A" side program and key in the
following lines: -

17 PRINT 17
20 REM THIS IS SIDE A LINE 20
24 PRINT 24
30 REM THIS IS SIDE A LINE 30
92 PRINT 52

45

ASIC LEARNING G

Switch to side “B" and type LCOPY, then switch back to side "A*“
and do a LIST command. The "A" side program should now look
like this:

10 PRINT 210
17 PRINT 17
20 PRINT 20
24 PRINT 24
30 PRINT 30
40 PRINT 40
30 PRINT 50
52 PRINT 52

What has happened is that the LCOPY command copied each line
from the "B" to the “A“ side just as if you had typed it in
from the keyboard. In other words it performed a “MERGE". If
the same line number already exists in the "A" side, then it
will be replaced by the line from the “B" side. If a given line
number does not already exist on tha “A" side, then the “B*
side line will be inserted in it’s proper numerical place. Note
that the lines in side “A" that did not have a corraspondzng
line number in side “B* were left undisturbed.

Now switch back to side "B" and type LCOPYN. Switch back to
side “A" again and do a LIST command. Thisg time only the S
lines, 10 through 50, from side "B" appeared. But what happened
to lines 17, 24, and 52 ?

Following the LCOPY command with an “N" will cause a NEW
command to be executed in the cpposite before any lines are
copied. -

Note that the LCOPY command can be used to "MERGE" two BASIC
programs. Just load the two BASIC programs into the two sides -
(A" and "B*) and perform an LCOPY command from either side.
The opposite side will then contain the “"MERGED" program.

The LCOPY command can also be used to copy a group of BAESIC
lines (routines) from one part of a program to amother. Just
switch to the side that the main program resides in, and do an
LCOPYN XXX-YYY, where XXH{ is the starting line number and YYY
is the ending line number of the group of lines you want
copied. Now switch to the opposite side and do a RENUM 222
(renumber a program), where 22Z is the starting line number of
where you want to copy this group of lines. Then do an LCOPY
command from this side, and switch back to the main program
side. A LIST command should show that the renumbered group of
lines has now been copied and inserted in their proper
numerical orderx.

To move a group of BASIC lines, follow the same procedure used

to copy a group of lines, and when finished, dnletn the
original lines. -~

46

ASIC LEARNING GUID

In summary, The LCOPY command can be used to copy one line, a
group of lines, or a whole program from one side to the other
side. The form and syntax of the LCOPY command is similar to
the BASIC LIST command. Non-existent lines in an LCOPY command
will be treated the same as non-existent lines in a LIST
command. The LCOPY command (without an "N") will “MERGE" the
copied program lines with any program lines already existing on
the opposite side, replacing any opposite side lines that have
the same line number as a copied line, with the copied line. If
the LCOPY command is followed by an "N" (LCOPYN), then a NEW
command will be performed in the opposite side before copying
any lines. Note that this command copies only BASIC lines,
unlike the DUP command which duplicates the whole side.
Attempting an LCOPY command while multi-tasking will result in
an “MU" (multi-tasking) error.

Please note that copying BASIC lines when one side is in
EXTENDED BASIC and the other side is in DISK BASIC can result
in illegal commands being generated due to conflicts in BASIC’s
“tokens" (see Notes section 16.0, #7 for more informatiom).

14.0 The MCOPY (Memoxy COPY) command

The MCOPY or memory copy command can be used to copy the
contents of a group of specified memory locations from one part
of memoxy to another, on the same side. A word of caution
before using this command. You should first be thoroughly
familiar with the memory layout (memory map) of the COLOR
COMPUTER since the MCOPY command has the capability of
overlaying or changing some of BASIC'’s control locations, or
the KEY-264K program itself.

If you are familiar with the concepts and locations of the
graphics video memory pages, then the MCOPY command can be very
useful to you. If you are not, then you may want to skip to the
MCOPY summary, as the following discussion will be fairly
technical.

In BASIC, graphics page 1 starts at memory location 1536 (0600
hex) for EXTENDED or location 3584 (0OEO0O hex) for DISK.
Graphics page 5 starts at memory location 7680 (1E00 hex) for
EXTENDED or location 9728 (2600 hex) for DISK. For hi-res
(PMODE 3 or 4) displays you require 4 graphics pages to display
a full graphics screen (1 hi-res page = 4 graphics pages). If
you are doing any serious animation, then you will need 2
hi-res pages (8B graphics pages) and will switch between them
with the PMODE and VIEW or SCREEN commands (don’t forget to
PCLEAR 8 first). If order to copy graphics information from one
hi-res page to another, you would normally use the PCOPY
command. But the PCOPY command only lets you copy one graphics
pPage at a time, requiring you to do 4 PCOPY commands in order
to copy one full hi-res (4 graphics pages) page to the other.
With the MCOPY command you can quickly copy one full hi-res
page (4 graphics pages) to the other with one command.

47

AS RNING

Just in case your hi-res display from an earlier example is
gone, lets create another. You should still be in side "A" (if
not, switch there) so type the following:

NEW

PCLEAR 8

PMODE 4,1

PCLS

LINE (78,46)-(178,146),PSET,B
VIEWAG

At this point you should see the hi-res display with the green
-box on the black background. Type VIEWR to get back to the text
screen, and type:

PMODE 4,5
VIEWAG

At this peint you should see a hi-res display of "garbage"
since you never PCLSed this hi-res page. Type VIEWR to get the
text screen back, then do the following:

In EXTENDED BASIC type:

MCOPY 1536,7679 TO 7680 ox MCO?Y &HO0600,&HIDFF TO &H1EQO
In DISK BASIC type:

MCOPY 3584,8727 TO 9728 ox MCOPY &HOEOQO,&HZSFF TO &H2600

Now again t{pe VIEWAG, and this time you should see the
familiar green box on a black background. The MCOPY command has
copied the full first hi-res page to the second.

Note that the MCOPY command can also be used to directly copy
portions of a graphics page to either another graphics page, ox
to a different location on the same graphics page, without
using PUT and GET commands.

Type VIEWR to again return to the text screen. —

In summary, the MCOPY command can be used to copy the contents
of a block of memory from one location to another in the same
side. The MCOPY command uses the formats

MCOPY ssss,eeee TO dddd

Khere ssss is the starting or source lJocation of a block of
memory, eeee is the ending location of the block of memory, and
dddd is the destination starting location to which you want the
block of memory copied.

Y

48

BASIC LEARNING GUIDE

Note that from as little as 1 bjte up to the limits of memory
(be careful!!) can be copied in a single command. The copied
locations can overlap each other. Try this, type:

CLS
MCOPY 1024,1533 TO 1026 or MCOPY &HO0400,&HSFD TO &H0402

Because of the overlapping memory locations (1024 and 1026),
the pattern of the first Z characters is repeated and the
screen is filled with the BASIC prompt “OK" (except for the
cursor location). '

The MCOPY command can also be used to move machine language
programs around in memory if desired (although they will not
necessarily run in another location). Note that attempting to
use this command during multi-tasking will result in an *“MU"
(MUlti-tasking) errxor. Also note that the specified starting
location must be less than or equal to the ending location or
an “SN" (SyNtax) error will occur.

15.0 The CMCOPY (Cross Memory COPY) commands

The CMCOPY or cross memory copy can be used to copy a block of
memory either to or from the opposite side. The CMCOPYT (Cross
Memory COPY To) command performs exactly the same function as
the MCOPY command except that the source locations are on the
current side, and the destination locations will be on the
opposite side. Likewise, the CMCOPYF (Cross Memory COPY From)
command functions like the MCOPY command except that the source
locations are on the opposite side and the destination
locations are on the current side.

As with the MCOPY command, caution should be used when using
the CMCOPY commands as they can wipe out BASIC control
locations or parts of the KEY-264K program. In fact, all the
same comments about being familiar with the COLOR COMPUTER’s
memory map, etc. when using the MCOPY command, alsoc apply to
the CMCOPY command.

Like the MCOPY command, the CMCOPY commands have the following
format: '

CMCOPYT ssss,eeee TO dddd
or
CMCOPYF ssss,eeee TO dddd

Where ssss is the starting or source location of a block of
memory, eeaee is the ending location of the block of memory, and
dddd is the destination starting location (remembexr that the
source and destination locations will not be on the same side).

49

ASIC LEARNING GUI

Still in side "A", type the following:
CMCOPYT 1024,153% T0 1024 or CMCOPYT &HO400,&HSFF TO &HO0400

Now switch to side “B" and you will see that the “A" or
current side’s text screen has been copied to the "B" or
opposite side’s text screen. Note that the flashing cursor may
not be in the same position on the "B" side’s screen. This is
because all you did was to change the contents of the "B*
side’s text screen, you did not alter the “B" side’s processing
(such as cursor location) in any way. While you are still in
gide “B", type:

FOR X=1 TO 200:PRINT X;:NEXT X

This will fill the “B* side screen with anumbers. Switch to side
"A" and type:

CMCOPYF 1024,1535 to 1024 or CMCOPYF &HO0400,&HSFF TO &HO0400

The screen should immediately fill with the numbers from the
“B" side’s screen (with the exception of the cursor location).
You have just copied memory from the "B" or opposite side’s
text screen to the "A" or current side’s text screen.

In summary, the CMCOPY (Cross Memory COPY) commands can be used
to copy the contents of a specified block of memory either to
or from a specified block of memory locations on the opposite
side.

Note that you could create hi-res graphic displays in memory on
the "A" side and then CMCOPYT them to 1 of 4 hi-res graphics
pages (16 graphics pages) on the “B" side and display any of
the 4 by setting up and using the VIEWBU command (VIEW the “B"
side User display). Or you could simply CPOKE the desired PMODE
(0-4) into memory location 182 (B6 hex), then CPOKE the high
order 8 bits of the "B” side graphics page you wanted to
display into memory location 186 (BA hex) and then use the
VIEWBG (VIEW the "B" side Graphics 'display) Never attempt to
switch to the "B" side, initiate multi-tasking, etc. when using
these techniques, as you will be using most of the available
memory on that side as graphic pages. Also do not attempt to
get 5 hi-res graphics pages on the "B" side or you will wipe
out the KEY-264K program on that side. Again, in order to use
extra graphics pages, you must have knowledge of where the
graphics pages are located for the level of BASIC you are in,
atc. as described under the VIEW command.

30

ASIC LEARNING G E

The CMCOPY commands can also be used to move machine language
programs to either the same or a different locatiom in memory
on the opposite side. Although they may not run when moved to a
different location in memory, they should function properly if
moved to the same location on the opposite side. Note that
attempting to use the CMCOPY commands while multi-tasking will
result in an "MU" (MUlti-tasking) error. Also note that the
specified starting location must be equal to or less than the
ending location or a "SN" (SyNtax) error will occur.

16.0 General notes, comments and cautions

This section contains some random notes about the operation of
the KEY-264K.

1 - Note that both side’s BASICs have had the equivalent of a
CLEAR 200,29543 performed at start-up to protect the KEY-264K
program. any attempt to set "high memory"™ higher than this
number with a CLEAR command will cause an exrror.

2 - Unlike programs that use map type 1 to access 64K, you can
use the vitamin "E" poke (POKE 65485,0 if your system can
handle it) with the KEY-264K to speed up processing. Note

that both sides will be affected by the speed-up. Don’t forget
to reset it (POKE 65494,0) before doing any I/0.

3 - If your system "hangs" or “locks up"” and you can’t seem 0o
get out of it with keyboard commands, try the following:

Push -the RESET switch at the back of the computer. If you
don‘t end up in side “A" with the cursor on the screen, then
try holding down the [+), and [C) keys while you hit the
RESET switch. Many times this will get you back to the
KEY-264K with side "A" "cold started". Always hold down

the [+] and [@] keys to “cold start" the opposite ("B") side
after pushing the RESET switch. 1If the opposite side “cold
start” doesn’t clear side "B", then follow the above
procedures, but this time try to DUP (or push the [+] and
[D] keys) the "A" side to side "B". If this should fail to
clear side "B", you will have to power down and reload the
KEY-264K.

4 - Note that in DISK BASIC the 1/60th second interrupts are
used to "timeout" (delay a few seconds after the last disk
access) the disk drive motors before turning them off. If you
are not multi-tasking and you initiate a disk command in one
side and then switch to the other side before the disk drive
motor has “timed out", then the motor will remain on until you
switch back to the original side and stay there long enough for
the “timeout" to occur, which will then shut the motors off.
You can however shut off the disk drive motors from either side
by POKEing a zexro into location 65344 (FF40 hex).

31

BASIC LEARNING GUIDE

5 -~ When using the VIEW commands, note that there is only one
Video Display Generator (6847 VDG) and it doesn’t know about
the “PAGE" switch. This affects the KEY-264K in two ways;
First, a SCREEN command will override a VIEW command, in that
it can change what is displayed on the screen. all other
aspects of the VIEW command will remain in effect however,
until reset. Second, a screen command issued on side “B" will
cause the corrxesponding "A" side display to appear on the
screen. This is because the SCREEN command is executed by BASIC
and not by the KEY-264K.

6 - Machine language programs that maintain the integrity of
BASIC (leave the interrupts on, use the BASIC I/0 routines, and
don‘t modify any BASIC hooks) can usually be rum with the
KEY-Z264K as long as they are loaded and run below memory
location 29542 (7366 hex) and don’t use “MAP TYPE" "1, The
keyboard switch, duplicate, and multi-tasking commands should
work, but you will still have to try each program on an
individual basis to make sure that it functions properly.

7 - If you have a DISK system you may run into a problem when
loading programs from cassette that were not saved in ASCII
mode. The problem is this; BASIC replaces ®#ach command keyword
in a BASIC line with a single byte "token" or number so that
each line takes less memory, and to speed up processed when the
line is executed. As you upgrade from EXTENDED to DISK BASIC,
additional (higher numberx) tokens are added for the DISK basic
commands. You have the capability with the KEY-264K to be in
eithexr EXTENDED or DISK BASIC and the KEY-264K will
automatically add it’s "tokens" to the highest existing “token"
for either EXTENDED or DISK BASIC. Now if you CSAVE a program
to cassette in EXTENDED BASIC that contains some KEY-264K
commands, and subsequently CLOAD it into DISK BASIC, the
KEY-264K commands will appear as DISK commands. This is due

to the fact that the "token" numbers added to EXTENDED BASIC by
the KEY-264K arxe numerically the same as those added to
EXTENDED BASIC by DISK BASIC. This is unavoidable and can be
remedied by either CSAVEing the program in ASCII format or
making sure that you always CLOAD in the same level of BASIC
that you CSAVed from. Note that the reverse of this can be true
also, CSAVEing in DISK BASIC and CLOADing in EXTENDED BASIC
will cause DISK commands (which by the way are illegal in
EXTENDED BASIC anyway) to appear as KEY-264K commands, and

the KEY-264K commands will be invalid. Note that this problem
also occurs when LCOPYing BASIC lines and one side is in
EXTENDED BASIC and the other side is in DISK BASIC.

B - Here’'s a way for you COLOR COMPUTER owners who are not able
to write to the upper 32K memory in the 64K “MAP TYPE" "1" mode
because of a ROM enable conflict, to copy BASIC from ROM to
RAM, and modify it if you want. Or you can load a machine
language program into the upper 6K (10K minus 4K for the
KEY-264K) of unused space from D800 to FO00 hex. The

following example will give you an idea of what to doi

52

o 2t

BASIC LEARNING GUIDE

A - "Cold start"” both sides, then get into side “"A" and type

the following:

CMCOPYT &HBOOO,&HD7FF TO 0000

This will copy the BASIC ROMS to the page 1 (side "B"“) RAM,
(Note that at this point, if you load a machine language
program into memory locations between &H5B800 to &H7000 in
side “B", it will later appear in locations between &HDBOO
to &HF000) :

CPOKE &HZA7B,&H4F

9 -

This will change the “I* in BASIC’s “PRINT" command word
located in ROM location AA7B hex, to an "0". Notice that we
CPOKED the "0" (4F hex) into location ZA7B hex, because we
have moved the ROMs to RAM and offset the locations by a
minus 8000 hex.

Now POKE &H71,0 and hit the "RESET" switch at the back of
the computer to create a "cold start" and get you out of
the KEY-264K (Do not powexr down your computer or you will
lose everything that you have bheen doing).

POKE &HFFDF,0 to get into "MAP TYPE® *“1". This will turn
off your BASIC ROMS and turn on the upper 32K bank of ram
(side "B") in it’s place. Since we have copied the BASIC
ROMs to their corresponding locations in side "B" (ROM
location, minus 32K or 8000 hex), then when we go into “MAP
TYPE" “1", side “B" becomes the upper 32k bank and the
copied BASIC code is in it‘s correct place. Note that you
still cannot write to the upper 32K in the " MAP TYPE" "“1*
mode, so if you want to make changes or load maching
language programs in the upper part of memory, you must
first do so in side "B" under control of the KEY-Z264K.

Now try a PRINT 1/3 command. You should have gottem a "“SN"
or syntax erxor. Try a PRONT 1/3 command (remember, you
changed the "I" in PRINT to an “0O") and it should work OK.
This proves that you are using the modified copy of BASIC
in ram.

To get back to ROM BASIC, simply POKE &HFFDE,0 and this
will switch you back to “MAP TYPE" “0“. Now try a PRINT

1/3 command and it should work properly. You can now switch
between “MAP TYPEs® "“0" and "1" (ROM and RAM) as you wish,
with the proper POKE commands.

Note that you should be able to rumn programs that use disk

on both sides during multi-tasking if you temporarily turn off
multi-tasking with an MTPAUSE, do your disk command, and then
turn multi-tasking back on with an MTON command. Don‘t forget
to set the “end of multi-tasking”™ option with the MTON command.

3

ASIC LEARNING IDE

10 - If you find you need additional space for your program on
one side, there is a way to keep most of you variables on the
opposite side until needed. This is accomplished by first
“PUSHing" any necessary variables to the opposide side and the
executing a "CLEAR" statement to reclaim the variable space.

Any variables necessary for program control such as counters,
flags, constants, etc. would be "PULLed"” back immediately, but
the remainder of the variables could remain safely tucked away
on the opposite side until needed, and then retrieved with a
YPULL" command.

The process of “PUSH", “CLEAR", and "PULL when needed” can be
repeated any number of times during the execution of a program.
Note that you could use the "DUP" command instead of pushing
each variable, but only the first time. After that you would
have to “PUSH" whichever variables you wanted to save.

This technique would be most effective when processing large
arrays of data. The following example should give you an idea
of how it would work:

10 DIM A(255)

20 FOR X=0 TO 255:REM FILL ARRAY WITH NUMBERS 0-2355

30 A(X)=X

40 NEXT X

S0 PRINT MEM:REM PRINT SPACE LEFT

60 \.DIM A(255):REM DIM ARRAY ON THE OPPOSITE SIDE

70 WAIT

BO FOR X=0 TO 255

90 PUSH X:REM VALUE OF X MUST BE THE SAME ON BOTH SIDES
100 PUSH A(X):REM PUSH ARRAY TO THE OPPOSITE SIDE

110 NEXT X

120 CLEAR

130 PRINT MEM:REM SHOULD HAVE RECLAIMED ARRAY + VARIABLE SPACE
140 REM AT THIS POINT NEW ARRAYS COULD BE DECLARED

150 REM OR NEW VARIABLES USED, AND THEN "“CLEARed" IF NECESSARY
160 DIM A(255):REM DIM ARRAY BEFORE PULLING IT BACK

170 FOR X=0TO 255 :

180 PUSH X:REM VALUE OF X MUST BE THE SAME ON BOTH SIDES
190 PULL A(X):REM PULL ARRAY BACK TO ORIGINAL SIDE

200 NEXT X

210 FOR X=0 TO 255

220 PRINT A(X):REM PRINT OUT ARRAY TO SHOW IT IS THERE
230 NEXT X

240 END

54

S ARNIN

Note the "PUSH X" statements in lines 90 and 180. These are
necessary because when “PUSHing"” or "PULLing" a subscripted
variable that has a variable as a subscript ("X" in our case),
then the value of the variable used as a subscript will be
taken from each side as the location of the “PUSHed" or
“PULLed" subscripted variable is determined for that side.
(whaw!)

In other words, if variable "X" was equal to 1 on side "A" and
the same variable "X" was equal to 4 on side "B", then the "“A"
side statement “PUSH A(X)" would copy oxr “"PUSH" the
subscripted variable "A{(1l)" on side "A" to the subscripted
variable "A{(4)" on side "B".

There are many times that we can use this fact to our
advantage, such as re-ordering an array as we "“PUSH* oxr "PULL"
it from one side to the other. However, failing to take this
into account when "PUSHing" or “PULLing" subscripted variables
can cause unexpected results.

Note that you can freely "PUSH" or “PULL" subscripted variables
that have a numeric constant as the subscript (ie A(3)) with no
problems.

11 - AS you probably know, you can gain extra memory space by
doing a “"PCLEAR 1" command. This frees up 3 of the 4 graphics
pages set aside by BASIC.

There is also a technique known as "PCLEAR 0" (POKE 25,6:NEW)
That will free up the 4th or last graphics page, but this
dosen’t appfar to work with the KEY-264K.

The problem stems from the fact that BASIC expects to find a
zexo in the byte immediately preceeding the "start of BASIC"
location, in this case 0600 hex. This space is usually cleared
on cold start by the COLOR BASIC (not EXTENDED) ROM since this
is where the "start of BASIC" is for non-extended BASIC. The

KEY-264K does not clear this area since it requires at least
EXTENDED BASIC to operate.

The solution is simple, just poke a zero into location 0600 hex
before doing the “PCLEAR 0":

POKE &H0600,0:POKE25,6:NENW
If you do a "PRINT MEM" you will see that there is no space

reserved for graphics. (make sure you don‘t use graphics
commands or you may clobber your program.)

33

KEYBOARD REFERENCE SECTIOM

KEYSTROKES

[+]), [ENTER)

[»), [ENTER)

SPACE BAR, [-<), [ENTER)

[+, [B)

[+), [B]

[+1, [R)

(1, [R]

[+, [C)

[»3, [C)

FUNCTION

Switch from side "A" to side "B",
Either side can be in command or
run mode. This command is disabled
during multi-tasking.

Switch from side "B" to side "A%,
Either side can be in command or
run mode. This command is disabled
during multi-tasking.

Initiate multi-tasking and switch
to side "A", Multi-tasking will
remain in effect until ended by a
“B" side request for keyboard input
(with the exception of the INKEYS
function) or a return to command
mode for any reason. This command
must be initiated from side “B".

"BREAK" the "A" side. Note that you
cannot usually CONT from this type
of "BREAK". Does not affect side

"B" and will not end multi-tasking.

"BREAK" the "B" side. Note that you

cannot usually CONT from this type

of "BREAK". Does not affect side

*A" but the return to command mode

in side "B" will end multi-tasking. |

“RESET" the "A" side. Does not
affect the "B" side and will not
halt multi-tasking.

"RESET" the “"B" side. Does not

affect the "A" side, but the -
return to command mode on side *“B*"

will end multi-tasking.

“COLD START" side “A"™ in whatever
level of BASIC is physically in
your computer. Does not affect side
"B" and will not end multi-~-tasking.

“COLD START" side "B" in whatever
level of BASIC is physically in
your computer. Does not affect side
*A” but the return to command mode
in side "B” will end multi-tasking.

KEYSTROKES

(+1, (E]

(-»J), [E]

[(+2, [@)]

(=»]). [@)]

[+, [D]

(»), [D]

KEYBOARD REFERENCE SECTION

FUNCTION

“COLD START" side "A" in EXTENDED
BASIC. Does not affect side "B" and
will not end multi-tasking.

“COLD START" side "B" in EXTENDED
BASIC. Does not affect side "“A"“
but the return to command mode in
side “B" will end multi—tasking.

SWITCH to, and *“COLD START" side
"B" from side "A". You must be in
side "A" when you execute this
command. This command is disabled
during multi-tasking.

SWHITCH to, and "COLD START" side
A" from side "B". You must be in
side "B" when you execute this
command. This command is disabled
during multi-tasking.

Duplicate side "A" to side "B".
The level of BASIC in side "A"
will be also be copied to side “B".
This command is disabled during
multi-tasking.

‘Duplicate side "B" to side “A",

The level of BASIC in side “B"
will also be copied to side “AY“.
This command is disabled during
multi-tasking.

57

ASIC REFERENCE N

BASIC COMMAND FORMAT NOTATIONS

The following format rules apply to the BASIC commands
described in this reference section.

1.

Items in capital letters must by typed as they appear.

The user will supply items show in lower case letters
within the angle brackets < and »>.

Any items appearing between the square brackets
[and] are optional.

All commas, colons, and parentheses must be entered as
shown. '

Items that end with an ellipsis (......) can be
repeated to the maximum length of the line.

S8

ASIC REFERENCE SECTIO

1.0 BACKSLASH “*"

Format:

Purpose:

Comments:

Example:

\[<option)] <(basic command)> [:<basic command)......]

where <(option> = The character "@" or “." (period)
that is used to control how the end
of multi-tasking will be handled.

Used to initiate tasks (BASIC command lines) in the
"Background"” or "B* side in the multi-tasking mode
from the "Foreground® or "A" side.

This command will switch to the "B" or "Background"
side, copy the remainder of the command line
following the backslash "\" (or option character if
present) to side "B", initiate multi-tasking, and
start the “B" side executing the copied command
line. Multiple statements/line are allowed.
Multi-tasking will end when the "B" side requires
keyboard input (with the exception of the INKEYS
function) or returns to command mode for any reason.

There are 3 "end of multi-tasking® options:

1. If no special character follows the backslash "\"
then multi-tasking will end with a switch to the
"B" or "“Background" side.

2. If an "@" character follows the backslash "\"
then multi-tasking will end with an audio
‘indicator of 5 short tones and control will

remain in the “A" or “foreground" side.

3. If a "." (period) follows the backslash "\" then
multi-tasking will give no indication that it has
ended and control will remain in the “A" side.

Issusing a Backslash command during multi-tasking
will cause a multi-tasking error “MU"™ to occur.

This command is legal only in the "Foreground*

or “A" side. Attempting to execute a backslash "*
command in the “Background"” or “B" side will cause a
side error "SD" to occur.

\PRINT 1/3
\.CLOAD "PROGRAM" .
\@FOR X=1 TO 1000:PRINT X:NEXT X

59

BASIC REFERENCE SECTION

2.0 CMCOPY (Cross Memory COPY)

Format:

Purpose:

Comments:

Example:

CMCOPY<option)> <(ssss), {eeee> TO <dddd>

where <option) =

{option) =
{sssS8) =
{eeee) =
<{dddad> =

T (copy To) to copy from the
current side to the opposite side.
F (copy From) to copy from the
oppoeite side to the current side.
Starting or source location of a
block of memory.

Ending location of the block of
memoYy.

Destination’s starting memory
location.

To copy the contents of a block of specified memory

locations either
locations in the

to or from specified memory
opposite side.

Attempting to use the CMCOPY commands while you are
multi-tasking will result in a “"MU" multi-tasking

exrrxor.

The specified source starting location must be laess

then or equal to

the ending location or a “SN"

syntax error will occur.

As few as 1 byte

up to the limits of memory can be

copied in a single command.

‘Caution should be used with these commands since

they have the capability of overlaying or changing
some of BASIC’s control locations, or the KEY-264K

program itself,

CMCOPYF &H0400,&HOSFF TO &H0400
CMCOPYT &HB000,&HD7FF TO 0000

60

R RENCE

3.0 CPEEK (Cross PEEK)

Format:

Purpose:

Comments:

Example:

CPEEK(<{nnnn>)

where {(nnnn> = A numeric constant, numeric varlable,
or a BASIC formula in the range
0-65535 representing the desired
memory address.

To return the single byte integer value contents
(0-255) of a memory location on the opposite side.

Operates exactly like the normal BASIC PEEK function
except that the memory location PEEKed will be on
the opposite side.

Since there are no banks or sides in the upper 32K
of memory, a CPEEK of a memory location greater than

32767 will give the same results as a regular BASIC
PEEK function. .

Note that this is a function and not a command.

A=CPEEK (X)
IF BS-STRS(CPEEK(&H4000)) THEN 100
PRINT CHR$(CPEEK(B#7))

61

BASIC REFERENCE SECTION

4.0 CPOKE (Cross POKE)

Format:

Purpose:

Comments:

Example:

CPOKE <aaaa),<nnn)>

where {aaaa)> = a numeric constant, numeric variable
or BASIC formula in the range
0-65535 representing the desired
memory address.

{nnn) = a numexric constant, numeric variable
or BASIC formula representing the
desired integer value (0-255) you
wish to CPOKE into memory.

To change the contents of a memory location on the
opposite side.

Functions exactly like the normal BASIC POKE command
except that the memory location POKEd will be on the
opposite side. -

Since there are no banks or sides in the upper 32K
of memory, a CPOKE of a memory location greater than
32767 will give the same results as a regular BASIC
POKE command.

CPOKE &H71,0

CPOKE X#x7+Y,ASC(A€)
CPOKE M, INT(R%x9/S)

62

O P

ASIC REFERENCE CTION

3.0 CRUN (Cross RUN)

Format:

Purpose:

Comments:

Example:

CRUN[L]) [<line number>)

where L = If present, leaves the current
display on the screen when switching
sides.

{line number)> = A numeric constant representing an
opposite side BASIC line number.

To switch to the opposite side, and put the opposite
side in the "run" mode.

If the CRUN command is followed by an "L", the
current screen display will remain on the screen
when you switch sides. This option disables the
opposite side’s display until restored by a SWITCH
or CRUN command without an "L", a VIEWR command

or an end to multi-tasking.

If the CRUN command has an optional line number then
after switching to the opposite side, execution will
be attempted at that line number, otherwise
execution will begin at the first line number in the
BASIC program.

Note that like the BASIC RUN command, all opposite
side variables will be cleared before beginning
execution of the opposite side program.

‘If an optional line number is specified but does not
exist in the opposite side’s BASIC program, then a
switch to the opposite side will still take place
but & "UL” undefined line number error will then
occur.

Attempting to execute a CRUN command while
multi-tasking will result in a "MU"™ multi-tasking
error.

CRUN

IF X=7 THEN CRUNL
CRUN 100:CRUN 200
CRUNL 750

63

AN A

BASIC REFERENCE SECTION

6.0 DUP (DUPligate)

Format:

Purpose:

comments:

Example:

DUP

To make an exact duplicate of the current side onto
the opposite side.

Functions the same as the keyboard duplicate command
except undexr program control.

Duplicates all memory areas plus information such as
BASIC programs, variables, status, whether you were
in "command® or “run”" mode , and all BASIC control
locations. A subsequent switch to the opposite side
will cause you to begin execution of the duplicated
program at exactly the point at which the DUP
command took place.

Any machine language programs residing in the
current side will also be copied to the opposite
side.

Note that the level of BASIC (EXTENDED or DISK) on
the current side will also be copied to the opposite
side.

Attempting to execute a DUP command while

multi-tasking will result in a "MU"” multi-tasking
error.

DUP
IF X=100 THEN DUP

64

BASIC REFERENCE SECTION

7.0 LCOPY (Line COPY)

Format:

Purpose:

comments:

Example:

LCOPY[N) [<line number> [- [<line numbexr>]]]

where N = If present, a BASIC NEW command will
be executed on the opposite side
before copying any lines.

{line number> = line numbers in the current side’s
BASIC program.

To copy one or more BASIC program lines from the
current side to the opposite side.

Works like the BASIC LIST command except instead of
listing BASIC program lines on the screen, They will
be copied to the opposite side.

Non—-existent line numbers are also handled in the
same mannery as the BASIC LIST command.

If the LCOPY command is not followed by an “N", then
the program lines on the current side will be merged
with any program lines that already exist on the
opposite side. Note that if a current side line
number is the same as an opposite side line number,
then the current side line will overlay the opposite
side program line. Also, any program lines that
exist in the opposite side which do not have
corresponding line numbers in the current side, will
be left undisturbed. all other program lines will be
copied to the opposite side.

An LCOPY or LCOPYN command without a line number
will copy all BASIC program lines in the current
side’s program to the opposite side.

Attempting to execute an LCOPY command while
multi~tasking will result in a "MU" multi-tasking
error.

LCOPY 100
LCOPYN 50-75
LCOPY

LCOPYN 3000~
LCOPY =210

65

BASIC REFERENCE SECTION

8.0 MCOPY (Memory COPY)

Format:

Purpose:

Conments:

Example:

MCOPY (ssss),{eeee)> TO <ddda>
where <(ssss)> = Starting or source location of a
block of memory.
{eeee> = Ending location of the block of
memory.
{dddd> = Destination’s starting memory
location. :

To copy the contents of a block of memory from one
set of memory locations to another set of memory
locations on the same side.

Attempting to use the MCOPY commands while you are
multi-tasking will result in a "MU" multi-tasking
error.

The specified source starting location must be less
then or egqual to the ending location or a “SN*
syntax error will occur.

As few as 1 byte up to the limits of memory can be
copied in a single command.

Caution should be used with this command since

it has the capability of overlaying or changing
some of BASIC’s control locations, or the KEY-2£4K
program itself.

MCOPY &HO600,&H1IDFF TO &H1EOO
MCOPY 1024,1534 TO 1025

€6

ASIC REFERENC I0ON

.0 MTON (Multi-Taskin N

Format:

Purpose:

Comments:

Example:

MTON[<option>]

where <option> = The character "@" or "." (period)
that is used to control how the end
of multi-tasking will be handled.

To turn on multi-tasking and set an "end of
multi-tasking"” option from either the "A" or "“B"
side.

There are 3 "end of multi-tasking" options:

1. If no special character follows the MTON command
then multi-tasking will end with a switch to the
"B" or “Background" side.

2. 1f an "@" character follows the MTON command
then multi-tasking will end with an audio
indicator of 5 short tones and control will
remain in the "“A" or "foreground” side.

3. 1If a ¥." (period) follows the MTON command then
multi-vasking will give no indication that it has
ended and control will remain in the "A" side.

Note that attempting to execute an MTON command
while multi-tasking will cause the command to be
ignored and will not change the previously set
"end of multi-tasking" option.

MTON
IF X=250 THEN MTON@
MTON.

67

ASIC REFERENCE CTION

10.0 MTPAUSE (Multi-Tasking PAUSE)

Format:
Purpose:

comments:

Example:

MTPAUSE

To provide a temporary halt to multi-tasking.

The MTPAUSE command will cause multi-tasking to halt
with control remaining in the side that executed the

command. The current screen display will not be
affected.

The MTPAUSE command will not automatically cause the
"end of multi-tasking” options to occur. This means
you can continue to process normally without
multi-tasking, until the "B" or "Background" side
regquests input from the keyboard or returns to
command mode for any reason.

The MTPAUSE command can be used when you need to
perform a command that would be illegal if you werxe
multi-tasking, or you want to access the same I/0
device from programs in both sides, or you need to
speed up processing of a routine for some reason
(like a PLAY or SOUND command).

You will usually feollow an MTPAUSE command at some
point with an MTON command to again turn on
multi-tasking (don’'t forget the "end multi-tasking

optiom).

Executing an MTPAUSE command when you are not
multi-tasking will cause the command to be ignored.

MTPAUSE
IF X=50 THEN MTPAUSE
MTPAUSE: PLAY “O3CDEFGABO4C":MTONG@

68

1 EFERENC E N

1.0 PULL (a variable)

Format:

Purpoée:

Comments:

Example:

PULL <{variable)[,<variable),<{variabled......]

To copy the contents of a variable from the opposite
side to the current side. More than one variable can
be PULLed with the same command line as long as thay
are separated by a coma (","). Variable types
(string and numeric) may be intermixed on the same
command line.

The total length of the command line must not exceed
1289 characters or an "SL" statement too long error
will occur.

If the variable does not exist on the current side
it will be created before the copy takes place.

If the variable does not exist on the opposite side
then it will be created and assigned a value of zero
before the copy takes place.

When PULLing a dimensioned variable and the variable
does not exist (on either or both sides - see above)
then a default dimensioning of size 10 takes place
before the copy occurs. Note that if the dimensioned
variable is greater than the default size, then the
variable must be dimensioned to it’s proper size on
both sides before attempting the PULL command or a
"BS" bad subscript error will occur.

Normal BASIC “garbage” collect routines will be
called as required when PULLing string variables.

PULL A, ,X$,Z2(2,3),H$(9)

IF X=99 THEN PULL X
PULL Z(1,2,2),NAMES,Y

69

Py

Pt

ma—e

BASIC REFERENCE SECTION

12.0 PUSH (a variable)

Format:

Purpose:

Comments:

Example:

PUSH <variable)>[,<{variable),<{variable)......]

To copy the contents of a variable from the current
side to the opposite side. More than one variable
can be PUSHed with the same command line as long as
they are separated by a coma (","). Variable types
(string and numeric) may be intermixed on the same
command line.

The total length of the command line must not exceed
128 characters or an "SL" statement too long error
will occur.

If the variable does not exist on the opposite side
it will be created before the copy takes place.

If the variable does not exist on the current side
then it will be created and assigned a value of zero
before the copy takes place.

When PUSHing a dimensioned variable and the variable
does not exist (on either or both sides - see above)
then a default dimensioning of size 10 takes place
before the copy occurs. Note that if the dimensioned
variable is greater than the default size, then the
variable must be dimensioned to it‘’s proper size on
both sides before attempting the PULL command or a
*“BS" bad subscript error will occur.

When PUSHing a string variable and the same named
string variable already exists on the opposite side,
then an attempt will be made to reuse that
variable’s string space on the opposite side as
follows:

A - If the length of the current side’s string
variable is less than or equal to the size of
the opposite side’s string variable, then the
opposite side string variable is reused.

B - If the length of the current side’‘s string
variable is greater than the langth of the
opposite side‘s string variable, then the
string variable will not be reused and the
normal BASIC string processing will occur. Note
that when this occurs, BASIC’s "garbage collect"
routines will not be called, and previously used
string spaces will not be reclaimed.

PUSH A,Bs,C(1),D%(2,3)
IF X=101 THEN PUSH Y¥(2,3,4),TESTs,Z,Us,P$(1)

70

BASIC REFERENCE SECTION

13.0 SCOLOR (Switch text screen COLOR)

Format:

Purpose:

Comments:

Example:

SCOLOR

To switch the text screen color on either side from
GREEN to ORANGE or from ORANGE to GREEN.

Can be used to make the text screen color the same
on both sides. This eliminates the flashing that
can occur when you are switching sides (and
displays) and using the text displays on both sides.

SCOLOR
IF X=35 THEN SCOLOR

71

— MR e

WI

Format:

Purpose:

comments:

Example:

c

BASIC REFERENCE SECTION

SWITCHI{L] [<line number>]

where L = If present, leaves the current
display on the screen when switching
sides.

{line number> = A numeric constant representing an
opposite side line number.

To switch to the opposite side.

If the SWITCH command is followed by an "L", the
current screen display will remain on the screen
when you switch sides. This option disables the
opposite side’s display until restored by a SWITCH
or CRUN command without an “"L", a VIEWR command,
or an end to multi-tasking.

If the SWITCH command is followed by an optional
line number, then after switching sides, the
opposite side will be placed in the "run" mode

and execution will start at the specified line
number (but unlike the CRUN command, variables will
not be cleared), otherwise the SWITCH command will
switch to the opposite side and continue processing
at the point where the last SWITCH command on that
(opposite) side occured (can be in either “run" or
"command" mode).

‘If an optional line number is specified but does not

exist in the opposite side’s BASIC program, then a
switch to the opposite side will still take place,
but a "UL" undefined line number errxror will then
occur.

An attempt to execute a SWITCH command while
multi~tasking will result in a “MU" multi-tasking
error.

SWITCH

IF X=1 THEN SWITCHL 100
SWITCH 10:SWITCH 20:SWITCH 30
SWITCHL

72

9.0 VIENW

Format:

Purpose:

Comments:

BASIC REFERENCE N

a displa

VIEW<side)><type>

where <(side)> = A - View the "A" side.

- View the “B" side.

- View the current side.

- View the opposite side.
Restore both side’s displays.
- Text screen display mode.

- Graphics screen display mode,.
- Special User display mode.

{type’> =

ca3aonNw
|

To provide new display capabilities in BASIC to
allow maximum use of the KEY-264K’'s additional
memory and "“A" and "B" side concepts. Allows you to
display either text, graphics, or a special user
defined mode of either side, from either side.

Once a display is put up on the screen by a VIEW
command (both side’s displays will be disabled), it
will remain on the screen until restored by a VIEWR
command, a SWITCH or CRUN command without an “L*,
or an end to multi-tasking.

When displaying graphics with the VIEW command, the
current BASIC PMODE and graphics page settings will
be used from whichever side’s graphics you are
displaying.

The special USER display mode makes use of the

following memory locations on both sides, to
determine what should be displayed on the screen
(see BASIC learning guide, page 37 for more
information):

32382 (7F50 hex) - Should contain the high order 7
bits of the 16 bit video display

address (page) in the form
b19:9:9:9,9.9. {08

32593 (7F51 hex) - Should contain the 3 mode
control bits that determine how
the video memory is addressed
in the form 00000XXX.

32594 (7FS52 hex) - Should contain the 5 control
line bits that determine the
various display modes and
color sets in the form XXXXX000.

73

——— P

e ——

BASIC REFERENCE GUIDE

5.0 VIEW (a display) continued

—

Comments:

Example:

The following is & list of the various view command
options and their functions.

VIEWR
VIEWAT

VIEWAG

VIEWAU

VIEWBT

VIEWBG

VIEWBU

VIEWCT

‘VIEWCG

VIEWCU

VIEWOT

VIEWOG

VIEWOU

Restore both side’s displays.

View the “A" side text screen.

View the "A" side graphics screen - uses
current BASIC settings to determine mode,
color set, and page.

View special "A" side user display mode -
mode, color set, and page data is taken
from special user memory locations.

View the "B" side text screen.

View the "B" side graphics screen - uses
current BASIC settings to determine mode,
color set, and page. :

View special “B" side user display mode -
mode, color set, and page data is taken
from special user memory locations.

View the current side text screen.

View the current side graphics screen (see
VIEWAG above).

View the current side special user display
mode (see VIEWAU above).

View the opposite side text screen.

View the opposite side graphics screen (see
VIEWAG above).

View the opposite side special user display
mode (see VIEWAU above).

IF X=3% THEN VIEWAT ELSE VIEWBT
VIEWAG:VIENWBG
VIEWAU:VIEWBU

74

~

WA

Format:

Purpose:

Comments:

Example:

WAIT

To provide a pause in "Foreground” or "A" side
processing until the "Background” or "B* side
program either ends or requests keyboard iaput
(with the exception of the INKEY$ command) which
will cause multi-tasking to end.

This command is used whenever the "A" side program
needs to know, before proceeding, that the "B" side
program has paused, completed processing or is
awaiting keyboard input.

Note that this command is legal only in side "A".
If you try to execute a WAIT command in side "B" you
will get a "SD" illegal side error.

Attempting to execute a WAIT command if you are not
multi-tasking will cause the command to be ignored.

\.FOR ¥X=1 to 1000:PRINT X:NEXT X

WAIT
IF X=6 THEN WAIT

73

