
•••••••• ••••• ••••••• 

Documentation 

Copyright (C) 1991 

JWT Enterprises 
5755 Lockwood Blvd. 

Youngstown, OH 44512 

... •••••••• 



I 

Optimize TlJtllfty3 
A Product of J147 Enterprises 

INTRODUCTION 

t a 

Efficient operation of the OS-9 operating system's disk routines rests upon the 
amount of fragmentation in a disk's files and the amount of blank entries in a disk's 
directories. The two utilities contained in this optimize set, optimize and trig, both 
deal with fragmentation and the "padding" of directories with blank entries (see 
the Background section for more information about padding). This manual assumes 
a basic familiarity with the OS-9 Operating System. For more help, see the Getting 
Started section at the end of the manual for additional information. 

COPYRIGHT NOTICE 

All rights reserved. This manual and accompanying software may not be distributed, 
copied, or transmitted in part or in whole without the express written permission 
of J147 Enterprises. 

DISCLAIMER 

Every effort has been made to insure the reliability and accuracy of this manual and 
the accompanying software. JWT Enterprises does not assume any liability for any 
damage incurred though the use of the documentation or software. The product is 
sold on an as-is basis, and JWT Enterprises is not responsible for any damage done 
to the product except that which is covered in the limited warranty. 

LIMITED WARRANTY 

The user must be a registered owner of the product in order to take advantage of 
the warranty. MT Enterprises warrants the product from defects in production or 
damage due to transportation for a period of sixty (60) days after the date of 
purchase. This warranty is limited to the replacement of the product at the 
expense of JWT Enterprises during this period at the discretion of J1,177' 
Enterprises. This warranty excludes software defects and defects caused by 
tampering, negligence, and abuse of the product. 



2 

BACKGROUND INFORMATION 

The following information is a more detailed description of directory structures, 
file structures, and file fragmentation. For further reference, the RBF Manager 
section of the OS-9 Technical Reference manual contains the actual tables and 
technical data for the more advanced user. This information intends to familiarize 
the user with the basics of these topics. 

Directory Structures: 

Each OS-9 directory can actually be thought of as a file with 32-byte entries for 
each file and sub-directory contained in the directory. The directory has a file 
descriptor sector and segments just as a regular file has, and directory entries and 
file entries are stored the same way in a directory. The only difference between a 
file and a directory is that the "D" attribute is set in the directory's attributes. 

Each 32-byte entry is divided into two parts; the first 29 bytes contain the name of 
the file or directory, and the last 3 bytes contain the disk sector number of the file 
or directory's descriptor sector'. The last character of the filename always has the 
value 128 added to it—in other words, the most significant bit of the last character 
is always set. 

The first two entries in any directory are always ".." and ".". The first entry, "..", 
refers to the parent directory. This parent directory is the directory that contains 
the entry for the directory in question. By keeping a record of how to backtrack 
though a directory tree, OS-9 can easily let you use pathlists such as ".../CMDS" and 
"../SYS", where OS-9 would move up two directories from your current location 
and then search for the CMDS directory. The "." entry refers back to the same 
directory and exists so that the current directory's descriptor sector can be found 
easily. 

If an entry has a value of zero in the first character, that entry is unused. Whenever 
a new file is created, the first unused entry is filled. Likewise, when a file entry is 
being searched for, OS-9 begins with the first entry and continues to the last unless 
the entry is found. If there are a large number of empty, "padded" entries at the 
beginning of the directory, OS-9 must look through each of those, taking up extra 
time whenever the directory is searched. 

File Structures: 

Each file on the system consists of two parts: the file descriptor sector and the 
file's data segments. The file descriptor sector holds information such as the file's 
attributes (directory, single-user, public read, write, and execute, owner read 
write, and execute), user ID of owner, last modification date, link count, size, 
creation date, and segment list. The segment list can contain a maximum of 48 5-
byte entries. Each entry has two parts: the beginning sector number of the file—the 
first 3 bytes, and the size of the segment in sectors—the last 2 bytes. 

1 I see File Structures for more information about the descriptor sector 



3 

When a file is stored on a disk, it need not be stored in a contiguous, or unbroken 
sequence of sectors. The first part of a file may reside at one location on a disk, and 
the last part may be on a totally different part of the disk. Each of these "parts" is 
called a segment, and each segment is recorded, in order, in the files's segment 
list. As noted above, each entry in the list contains the start location of the segment 
and the length of the segment. A new segment may be created whenever OS-9 
attempts to write past the end of the file. OS-9 first attempts to extend the last 
segment, if at all possible; otherwise, a new segment is created. When a file has 
more than one segment, OS-9 takes longer to access the file. Whenever a read is 
done from a different segment, OS-9 must refer back to the segment list to find 
the location of the new segment. It also takes time to move the disk drive's head to 
the file descriptor sector to examine the segment list and then to the new 
segment. 

Theory of Operation: 

The optimize program attempts to speed disk accesses in three ways: first, to 
convert each file into a single-segment file, to move unused directory entries to the 
bottom of the directory, and to "float" directories above files in each directory. 

As mentioned above, single-segment files are accessed much quicker than multi-
segment files because the disk head will always be near the file's contents. By 
moving the unused directory entries to the bottom of the directory, they will never 
be searched before a file is found. The last option, moving directories to the top of 
a directory, aids during pathlist searches. Whenever OS-9 receives a pathlist that 
does not refer to a file in the current directory (i.e. ".../CMDS/PROG/testprog" 
versus "testprog"), OS-9 must move through the directory structure to get to the 
file. If directory entries are at the top of a directory, OS-9 will not have to search 
through normal files before it finds the directory. Since directories are searched 
for more often than files, is makes sense to keep the sub-directories at the top of 
each directory. 

Optimize will keep each file's status information (attributes, times, owner ID, etc.) 
intact while defragmenting. Note that optimize will not defragment directories. 
Another small quirk in the operating system is the fact the OS-9 allocates segments 
in multiples of 512K. If a file is larger than 512K, an optimize run will still leave 
the file with more than one segment. 



OPTIMIZE UTILITY 

1 

Usage and Options: 

The optimize utility actually modifies any disk or hard disk in order to speed disk 
accesses. Note that any RBF device, such as floppy disk drives, hard drives, and 
RAM disks, may be used with optimize. Any of the three optimization options 
outlined above may be performed in part or combination. In addition, only a 
particular directory's files and/or sub-directories may be optimized rather than the 
entire disk. Following is the optimize help display: 

OPTIMIZE - optimize disk storage 

Usage - optimize [opts] [dirname] 

opt=-? Help text • 
-c Don't compact directories 
-d Do float directories 
-f Don't defragment files 
-1=n Set fragmentation limit to n 
-s Suppress status messages 
-x Don't check subdirectories 

Options may be used in any combination, either individually (ex. "-s -x -d") or 
together (ex. "-sxd"). The directory name may appear anywhere: before, between, 
or at the end of the options. Note that when an entire disk it to be specified, 
simply use the root directory (ex. /d0, /r0, /h0, /c11). For instance, if an entire disk 
in drive /c10 is to be optimized, the command would look something like this: 

0S9: optimize /d0 

To only optimize the CMDS directory in /d0, use: 

0S9: optimize /dO/CMDS 

By default, files are defragmented and directories are compacted. In fact, it is 
necessary to compact the directories in order for the defragmentation algorithm to 
work; therefore, it is not possible to defragment files and not compact directories. 
Note that the compacting of a directory will not be visible to the user in any way 
and is highly advised whenever a directory is optimized. 

Normally, directories are not floated to the top so that directory order will not be 
changed. Sometimes it is not desirable to have directories at the top of a directory, 
so it is left up to the user to decide when and where directories will be floated. 

The fragmentation limit option controls which files, if any, will be defragmented. 
This option sets the number of segments a file can have and not be defragmented. 
If, for example, the fragmentation limit is set to 3, only files with more than 3 
segments will be defragmented. Normally, the limit is set to 1; however, a user may 
set this to any reasonable value in order to perform a partial defragmentation run or 
for other technical reasons. For most optimize runs, it is a good idea to leave the 
limit at 1. Note that a fragmentation limit of 0 is possible—in this case, every file, 



5 

even files that already have only one segment, will be defragmented. Note that this 
is an extremely time consuming and unnecessary process and could increase the 
time of an average run by a factor of 15 or more. 

Throughout an optimize run, many status messages are displayed for the user's 
convenience. Certain situations, such as background execution, may require that 
these messages not be displayed. The suppress status message option will eliminate 
all messages which are normally sent to the standard output path, but will still send 
error messages which are output to the standard error path. Note that it is 
recommended that optimize has exclusive access to the directory and sub-
directories begin used. Since optimize directly modifies the directories and files, it 
could conflict with other programs with a resultant loss of data. 

The last option, don't check subdirectories, will scan only the files in a directory 
for optimization and ignore any subdirectories. Note that the initial directory will 
still be compacted and/or floated. 

Note that optimize should not be used while running another process which might 
use any files on the disk that you are optimizing. A program reading or writing a file 
might interfere with the defragmentation process resulting in loss of data. 

Warnings and Errors: 

The following errors may be encountered while using the optimize module: 

Initial Directory Error could not open directory specified by the user 
Device Name Error could not determine device name for specified directory 
Device Error could not open device for specified directory 
Disk Error could not read device for specified directory 
Directory Error - could not open sub-directory 
I/O Error - disk input/output error 
Deleting Error trouble deleting temporary file 

In addition, two warnings may be seen which will not cause the operation of 
optimize to terminate but should be known to the user: 

Could not defrag file' due to lack of disk space - in order to defragment a file, a 
duplicate, unfragmented copy is formed on the disk. If there is not enough free 
space to accommodate the entire file, the file is not defragmented. 

Could not defrag file' due to existence of 'Q.' in directory - A temporary file, 'o_', 
is repeatedly created during the defragmentation process. If a file with the name of 
'o_' already exists in a directory, no files can be defragmented in that directory. 



6 

INQ UTILITY 

Usage and Options: 

The inq utility will allow you to determine the extent of fragmentation on your disk. 
The utility will recognize files and directories with no segments (empty files), one 
segment, and more than one segment. Other information is also collected and is 
explained below. There are no options available for the utility, and the only 
parameter needed is a pathlist to a directory or disk. To check an entire disk, use 
the root directory of the disk that you want to inspect (such as MO, /h0, etc.). You 
may also use a subdirectory on a disk: if you do, only the files and directories in that 
directory will be included in the search. To check a disk in drive /d0, use: 

0S9: inq /d0 

To check only the CMDS directory in /d0, use: 

0S9: inq /dO/CMDS 

Here is an example listing of an inquiry executed on a hard disk: 

INQ: (dir idd) 

Total files: 2310 
Files with no segments: 10 (0.43%) 
Files with one segment: 2300 (99.57%) 
Files with multi-segments: 0 (0.00%) 
Average segments per file: 1.00 
Maximum segments per file: 1 

Total directories: 320 (8 sublevels) 
Dirs with no segments: 0 (0.00%) 
Dirs with one segment: 319 (99.69%) 
Dirs with multi-segments: 1 (0.31%) 
Average segments per dir: 1.00 
Maximum segments per dir: 2 

Average segments per unit: 1.00 

Average padding per dir: 0.00 

In addition to the number of non-, one-, and multi-segmented files and directories, 
the total number of files and directories is given, as well as average segments and 
the maximum segments per file or directory. Note that the average does not 
include files and directories that do not have any segments. Average segments per 
unit describes the average segments for files and directories together. Average 
padding per directory describes the average number of blank entries before the last 
valid entry in each directory. 



Warnings and Errors: 

The following errors may be encountered while using the int] module: 

Initial Directory Error could not open directory specified by the user 
Device Name Error could not determine device name for specified directory 
Device Error could not open device for specified directory 
Directory Error could not open sub-directory 

Performance: 

The optimize module uses an efficient algorithm to speed the defragmentation 
process. The following figures were obtained while optimizing a hard drive 
containing 12 megabytes of data contained in approximately 2,400 files. 

Type 
No defragmentation' 
Minimal defragmentation3
Complete defragmentation4

Time reference 
12 minutes 
19 minutes 
5 hours, 43 minutes 

Using the same hard drive containing 12 megabytes of data contained in 2,400 
files, it took approximately 6 minutes to complete an ing check. 

Optimization run with defragmentation disabled. Only directory compaction was active. 
'Approximately twenty to forty files required defragmentation. 
Forced with a fragmentation limit of zero. Highly unusual under normal conditions. 



8 

BURKE & BURKE REPACK UTILITY 

Overview: 

The Burke & Burke repack utility is also a disk optimization utility but functions 
differently than the optimize utility. Repack takes each file's descriptor and 
segments and attempts to "pack" them as close to the beginning of the disk as 
possible. This increases disk performance because the drive head does not have to 
move as far between different files. Unfortunately, the repacking process frequently 
takes from twelve to twenty-four hours or more, which puts a significant strain on a 
hard drive. This is due to the fact that repack must scan the entire disk's contents 
between each pass. 

Comparison: 

Repack and optimize both attempt to optimize a disk but use two different 
methods, each of which is good alone or when used together. The first difference is 
that repack does not actually defragment files, but only attempts to pack all 
segments together as close as possible to shorten the physical distance that the 
drive head has to move between files. Optimize will actually defragment files into 
one segment, although it does not try to cram all of the files into any particular 
portion of the disk. Another small difference is the fact that repack will only work 
on drives formatted as one sector per cluster; optimize will work on any type of 
disk drive. 

Suggestions: 

If you own both repack and optimize, it would be beneficial to use them both 
together. However, it would be even better if you would use them as follows: 

The first time that you use optimize, you will probably have many files that will be 
defragmented. Because of this, it may be best to execute optimize first, then use 
repack to consolidate the files near the beginning of the disk, and then re-optimize 
the disk. The reason for the second optimization is that often the repack utility will 
actually split a file into two segments in order to pack it with the other files. 
Running optimize a second time will allow repack to move the files together but 
still eliminate any segmented files afterwards. 

On subsequent optimizations, it should only be necessary to run optimize, and will 
only take around fifteen minutes on a hard drive. It might be a good idea to 
optimize your hard disk every week if you use it often or do a lot of programming or 
disk-intensive work, or every month for an occasional user. A repack will only be 
necessary every few months, in which case you should run repack and then 
optimize to get the best results. 



9 

GETTING STARTED 

EkuAraln 

The first thing you should do when you receive any new program is to make a 
backup copy. By working with a backup, the original can be stored in a safe place in 
case anything happens to the backup. To make a complete backup of the Optimize 
Utility Set 1 package, it is only necessary to copy the optimize and ing modules 
contained on the original disk. One common procedure for making backups is to 
format a new disk and then use the OS-9 backup command to copy the entire 
master disk to the new disk. The only problem with this method is that the new 
disk must be formatted identically to the master disk (i.e. If the master disk is a 
40-track double sided disk, the new disk must be formatted identically, not, for 
example, as an 80-track single sided disk). The optimize modules come on a 40-
track single sided disk, and this backup method may be used to make a copy. 
However, it is much easier to simply format a new disk and then copy each file to 
the new disk. To format a disk, insert a new disk into drive /d0, and type: 

0S9: format /d0 

OS-9 will automatically complete the format, asking you only for a disk name at one 
point. After this disk is formatted, you can then copy the files. If you have a two 
drive system, put the master disk in drive MO, and the new disk in drive /d1. Type 
the following to copy both files: 

0S9: copy /dO/optimize /dl/optimize 
0S9: copy /d0/inq idliinq 

If you have only one drive, use the single-drive modifier with the copy command: 

0S9: copy /dO/optimize /dO/optimize -s #32k 
0S9: copy /d0/inq /d0/inq -s #32k 

You can then put away your master disk in a safe place and use your new backup. 

Use: 

To actually use the modules, you must either load them into memory or have them 
in your current execution directory. Loading them into memory is convenient if you 
are going to optimize a large number of disks, but they will remain in memory until 
unlinked, taking up valuable memory space from anything else that you might be 
doing. 

If you have a hard drive, it might be wise to copy both modules into your hard 
drive's CMDS directory. In this way, they will always be instantly available. If you use 
a floppy-drive only system, it might be easiest to simply insert your backup copy 
into drive /d0 when you need it and change the execution directory to drive /d0: 

059: chx /d0 

The other alternative is to type a complete pathlist to the optimize program 



10 

instead of changing the execution directory. Simply type: 

0S9: /dO/optimize idd 

If you have a single drive system, you will have to load the module into memory 
before using it. This is because OS-9 reads the module into memory from disk 
every time you use it. If the module must be read from the program disk, you 
cannot optimize or check another disk. Type: 

0S9: load /dO/optimize /d0/inq 

while the program disk is in drive /d0. Now the programs will remain in memory 
for your use until you unlink them: 

0S9: unlink optimize; unlink inq 

If you have any problems or errors, try consulting your OS-9 manual.. An error will 
usually provide you with enough information to quickly correct the problem. If you 
have any problems that you cannot find a solution to, do not hesitate to write to 
JVVT Enterprises with your problem. Be sure to include a description of your setup 
and conditions of your setup at the time that the problem occurred. 

THANK You 

Thank you for purchasing the Optimize Utility Set 1 package. We hope that it will 
help to improve the performance of your disks. Its companion package, the 
Optimize Utility Set 2, contains two other utilities to assure that the file structure 
of your disks in intact. The first will check all directories and subdirectories to 
make sure that the hierarchal structure is intact. It is possible for child directories 
to not point back to the parents or even themselves, and this directory utility will 
recognize and correct any problems. The other utility will check the disk to make 
sure that the disk allocation map is intact, that no space is reserved for nonexistent 
files, and that all files are correctly registered in the map. If a file is not registered, 
it is possible and probably that OS-9 will write over parts of the file, destroying the 
information in the file. And, space reserved for nonexistent files cannot be used for 
other files, even though there is nothing stored in that area. To solve any problems, 
the utility will recognize and correct any discrepancies in the disk allocation map. 
It is recommended but not necessary that these utilities both be used on a disk 
before an optimization run. If there are any problems with the directories or disk 
structure, it is possible that optimize might write over files or become caught in a 
loop because of invalid directory pointers. Though these kinds of errors are very 
infrequent, it is a good idea to keep these problems in check. 

1 



. ... 

• • • ,,V• 

Documentation 

Copyright (C) 1991 

JWT Enterprises 
5755 Lockwood Blvd. 

Youngstown, OH 44512 



I 

Optimize Utility Set 2 
A Product of JWT Enterprises 

INTRODUCTION 

This Utility Set is designed to compliment the Optimize Utility Set 1 by verifying a 
disk's integrity to avoid problems with the Optimize Utility Set 1 and the normal 
operation of the disk. Two utilities are contained in this package: dircheck and 
damcheck. Dircheck will check and correct any problems with the directory 
structure on a disk. Damcheck is similar in operation to dircheck, except that it 
works with the disk's disk allocation map to account for every file on the disk. This 
manual assumes a basic familiarity with the OS-9 Operating System. For more help, 
see the Getting Started section at the end of the manual for additional information. 

COPYRIGHT NOTICE 

All rights reserved. This manual and accompanying software may not be distributed, 
copied, or transmitted in part or in whole without the express written permission 
of (MT Enterprises. 

DISCLAIMER 

Every effort has been made to insure the reliability and accuracy of this manual and 
the accompanying software. (MT Enterprises does not assume any liability for any 
damage incurred though the use of the documentation or software. The product is 
sold on an as-is basis, and JWT Enterprises is not responsible for any damage done 
to the product except that which is covered in the limited warranty. 

LIMITED WARRANTY 

The user must be a registered owner of the product in order to take advantage of 
the warranty. MT Enterprises warrants the product from defects in production or 
damage due to transportation for a period of sixty (60) days after the date of 
purchase. This warranty is limited to the replacement of the product at the 
expense of JWT Enterprises during this period at the discretion of JWT 
Enterprises. This warranty excludes software defects and defects caused by 
tampering, negligence, and abuse of the product. 



2 

BACKGROUND INFORMATION 

The following information is a more detailed description of directory structures, 
file structures, and file fragmentation. For further reference, the RBF Manager 
section of the OS-9 Technical Reference manual contains the actual tables and 
technical data for the more advanced user. This information intends to familiarize 
the user with the basics of the above mentioned topics. 

Directory Structures: 

Each OS-9 directory can actually be thought of as a file with 32-byte entries for 
each file and sub-directory contained in the directory. The directory has a file 
descriptor sector and segments just as a regular file has, and directory entries and 
file entries are stored the same way in a directory. The only difference between a 
file and a directory is that the "D" attribute is set in the directory's attributes. 

Each 32-byte entry is divided into two parts; the first 29 bytes contain the name of 
the file or directory, and the last 3 bytes contain the disk sector number of the file 
or directory's descriptor sector'. The last character of the filename always has the 
value 128 added to it—in other words, the most significant bit of the last character 
is always set. 

The first two entries in any directory are always ".." and ".". The first entry, "..", 
refers to the parent directory. This parent directory is the directory that contains 
the entry for the directory in question. By keeping a record of how to backtrack 
though a directory tree, OS-9 can easily let you use pathlists such as ".../CMDS" and 
"../SYS", where OS-9 would move up a directory from your current location and 
then search for the CMDS directory. The "." entry refers back to the same 
directory and exists so that the current directory's descriptor sector can be found 
easily. 

If an entry has a value of zero in the first character, that entry is unused. Whenever 
a new file is created, the first unused entry is filled. Likewise, when a file entry is 
being searched for, OS-9 begins with the first entry and continues to the last unless 
the entry is found. If there are a large number of empty, "padded" entries at the 
beginning of the directory, OS-9 must look through each of those, taking up extra 
time each time the directory is searched. 

File Structures: 

Each file on the system consists of two parts: the file descriptor sector and the 
file's data segments. The file descriptor sector holds information such as the file's 
attributes (directory, single-user, public read, write, and execute, owner read 
write, and execute), user ID of owner, last modification date, link count, size, 
creation date, and segment list. The segment list can contain a maximum of 48 5-
byte entries. Each entry has two parts: the beginning sector number of the file—the 
first 3 bytes, and the size of the segment in sectors—the last 2 bytes. 

1 see File Structures for more information about the descriptor sector 



3 

When a file is stored on a disk, it need not be stored in a contiguous, or unbroken 
sequence of sectors. The first part of a file may reside at one location on a disk, and 
the last part may be on a totally different part of the disk. Each of these "parts" is 
called a segment, and each segment is recorded, in order, in the file's segment list. 
As noted above, each entry in the list contains the start location of the segment and 
the length of the segment. A new segment may be created whenever OS-9 attempts 
to write past the end of the file. OS-9 first attempts to extend the last segment, if 
at all possible; otherwise, a new segment is created. When a file has more than one 
segment, OS-9 takes longer to access the file. Whenever a read is done from a 
different segment, OS-9 must refer back to the segment list to find the location of 
the new segment. It also takes time to move the disk drive's head to the file 
descriptor sector to examine the segment list and then to the new segment. 

Disk Allocation Map: 

The Disk Allocation Map consists of one or more sectors starting at Logical Sector 
Number one on each disk that record which portions of the disk contain data and 
which parts are empty. Each bit in the map corresponds to one cluster, starting at 
Logical Sector Number zero. Except for large hard disks, each cluster is equal in 
size to a sector. If the bit is on, that sector is used; likewise, if the bit is off, the 
sector is unused and available. The length of the map is dictated by the total 
number of sectors on the device and is established when the disk is formatted. 

Normally OS-9 takes care of maintaining the DAM, although it is possible to destroy 
the integrity of the map by turning off the computer while files are open. Using the 
file descriptor sectors of every file on the disk, it is possible to reconstruct a map 
by scanning each file and setting the appropriate bits in the map. 

Problems: 

Both the directory structure and the DAM can become corrupted due to a number 
of things including system lock-ups, power failures, rampant programs, and many 
other errors. These do not occur often, but can cause serious problems that get 
progressively worse as time goes on and more accesses and changes are made. 
Directory tree errors will most often show up as Error 214 or 253 or an 
unexpected directory being accessed. DAM errors can range from areas of the disk 
becoming unusable to files being overwritten because the DAM indicates that the 
space containing the file is supposedly free space. OS-9 cannot automatically detect 
these problems and they will not show up (especially in the case of the DAM) until 
damage is done. Whenever a problem such as those outlined above occurs, it is a 
good idea to run dircheck and damcheck on any device that was being used at the 
time. Catching a problem as quickly as possible will prevent widespread damage to 
your data. 



DIRCHECK UTILITY 

1 

Usage and Options: 

The dircheck utility allows you to check the integrity of the directory structure on 
any device or portion of a device. Basically, dircheck will make sure that the parent 
and current pointers in each directory point to the correct directory and correct 
any problems as an option. The dircheck help display is as follows: 

DIRCHECK - check directory structure 

Usage - dircheck [opts] [dirname] 

opt.-? Help text 
-c Correct any errors 
-1 Don't list errors 
-r Include root directory 

Options may be specified in any combination, either individually (ex. "-c -1 -r") or 
together (ex. "-clr"). The directory name may appear anywhere: before, between, 
or at the end of the options. Note that when an entire disk it to be specified, 
simply use the root directory (ex. /c10, /r0, /h0, /d1). For instance, if an entire 
directory structure on drive /d0 is to be checked, the command would look 
something like this: 

dircheck /d0 

By default, dircheck will only report any errors that it finds, but will not correct 
them. By using the '-c' modifier, every error found will be corrected. If error 
reports are not required, the '-1' modifier will disable the output. Note that '-c' and 
'-1' in combination effectively do nothing, even though dircheck will still scan the 
entire directory structure. 

The one loophole in the directory structure is the root directory of each disk. 
Normally, the and entries both point to the root directory. OS-9 knows where 
this directory is by keeping its starting sector number in a special area of the first 
sector on the disk. By default, dircheck does not check the validity of the root 
directory's pointers because the algorithm scans only the directory structure and 
not the first sector of the disk. However, the '-r' option will invoke another routine 
that will check the root directory's pointers. Note that if the '-r' option is used 
with a directory that is not the root directory, errors will be reported because the 
specified directory's pointers will not match up with the root directory's pointers. 
In conclusion, use the '-r' option whenever you are specifying the root directory of 
a disk. 



5 

Warnings and Errors: 

The following errors may be encountered while using the dirc heck module: 

Initial Directory Error could not open directory specified by the user 
Device Name Error could not determine device name for specified directory 
Device Error could not open device for specified directory 

In addition, non-fatal errors are reported which will not cause the operation of 
dircheck to terminate: 

Directory Error 'directory' - if there is an error opening or accessing a 
directory, that particular directory will not be checked and/or fixed. All other 
directories will be processed except for any subdirectories in the directory 
with the error. 

Root Directory Error - if there is an error opening or accessing the root 
directory, it will not be checked and/or fixed. However, this utility is isolated 
from the main check and other subdirectories may be processed unless a 
regular Directory Error is reported. 

The following errors are reported due to flaws in the directory structure and are 
fixed if the option is used with dircheck: 

Parent Link Error 'directory' - the directory does not properly point to its 
parent directory. For example, a 'cd while in this directory will not return 
you to the proper parent. 

Self Link Error 'directory' - the directory does not properly point to itself. For 
example, a 'dir will not give a directory of the current directory. 

Root Parent Link Error - The root directory's entry should point to itself; 
however, it does not. 

Root Sett' Link Error The root directory's entry does not point to itself. 



6 

DAMCHECK UTILITY 

Usage and Options: 

The damcheck utility compares the disk allocation map with the current file 
structure on the disk to make sure that all files in the file structure are properly 
logged in the disk allocation map and that all sectors that are allocated in the map 
are also in the file structure. In addition, media errors (I/O errors) on the disk can 
be found and compensated for during the process. Other options include listing any 
files that are located in questionable sectors. The help command for the 
damcheck utility is as follows: 

DAMCHECK - disk allocation integrity check 

Usage - damcheck [opts] devname 

1 

opt=-? Help text 
-c Correct DAM 
-e Don't check/account for bad sector errors 
-1 Don't list damcheck messages 
-p List pathlists of any questionable files 
-s List numbers of any questionable sectors 
-w=dir Specify workfile directory 

By default, damcheck does not correct the disk allocation map of the device unless 
the '-c' option is specified. This insures that the disk will not be modified in any 
way unless the user explicitly specifies it. 

Another default is the checking for bad media errors. Any sector that is unreadable 
due to a disk aberration should normally be mapped out of the allocation map so 
that there is no attempt to write a file to the damaged sector. If for some reason 
you do not wish to account for media errors, specify the '-e' option. 

Unless the '-1' option is given, damcheck will periodically report about what it is 
doing. These stages are: "Initializing check files", explained below; "Cross-
referencing files", formulating a correct allocation map; "Checking for media 
errors", checking and recording bad sectors; "Writing corrections to DAM", if 
appropriate; "Questionable sectors", if applicable and explained below; 
"Questionable files", if applicable and also explained below. Note that all error 
messages are sent to the standard error path regardless. 

The '-p' and '-s' options allow damcheck to report exactly what structure errors 
and warnings it has detected. The '-s' option will list any sector that is in question 
and report the problem next to the sector number. Note that this information, as 
well as that for the '-p' option, will be displayed even if the '-1' option is given. The 
'-p' option will display the filepath for every sector that has been found to be in 
error (except for the first error listed below). By using the sector numbers obtained 
by the '-s' and '-p' options, it is possible to link the problems with the proper files 
in case the files need to be checked for damage and/or copied to a safe location. 
Note that the '-s' option can substantially increase the running time and the '-p' 
option can double it. 



There are ten possible errors/warnings, each with different meanings: 

Mapped out but not in file structure - This sector is mapped out of the disk 
allocation map, so that it cannot be written over by another file. However, no file 
on the disk uses this sector and no media error has been detected. There is 
nothing threatening about this particular error, but it can be fixed easily using 
the '-c' option as it is simply taking up space that could otherwise be used. 

Used in a file, not mapped out of disk - This is almost the opposite of the above 
problem, in that this sector contains part of a file but is not marked as being in 
use. This means that any disk write could possible use this sector and destroy 
the original contents of the file. If this condition has occurred while writes were 
made, it is possible that the file may already be corrupted. It would be a good 
idea to use the '-p' option and match this sector number with the file it belongs 
to, and check this file for any damage. If there is any damage, it is irreversible 
and the file should either be deleted if it is executable code or salvaged if it is 
text. Note that the '-c' option will repair this problem and can be done before 
the file is checked. 

Used in multiple files - This presents a very bad problem, in that it indicates that 
two separate files claim ownership of the same sector. The best method to 
follow is finding the two (or more) files' pathlists using the '-p' options and 
matching the sector error to any file corresponding to the same sector. Copy 
each of these files to a safe location (it can even be on the same disk as long as 
no other errors are present or all errors have been fixed with the '-c' option). 
Delete both of the affected files, and the disk will be back to normal (the sector 
will be "deleted" twice, but it will still be cleared in the allocation map). Note 
that it is important to check the two files, as there is a very good probability that 
one or both of the file files is corrupted, although there is a possibility that both 
files may be unharmed. 

Used in multiple files, not mapped out of disk - This is basically a combination of 
the above two problems. Follow the procedure for "Used in multiple files", but 
keep in mind that the sector may have been overwritten and corrupted both 
files. 

Bad sector, not mapped out of disk - This sector has been found to have a media 
error, making it unusable. However, it is not mapped out of the disk, and a write 
operation may try to use this sector as storage. There is no damage to any files; 
however, the '-c' option should be used to map this sector out of the disk so that 
no attempts will be made to use this sector in the future. 

NOTE: Bad sector mapped out of disk - This sector has a media error, is not used 
in any files, and is properly mapped out of disk. Rather than an error, this is a 
simple warning to inform you of the disk error. The '-c' option would not apply 
here, as the sector is already mapped out of the disk. 



8 

Bad sector, used in a file - This sector has been found to be bad and used in a file. 
This could be caused by a sector being corrupted in storage or due to age. To be 
completely effective, the file should first be deleted, then damcheck should be 
run with the '-c' option to map this sector off of the disk. Note that it might not 
be possible to reconstruct the file because the error may be encountered in the 
middle of the file, although the error may be beyond the end of the file. 

Bad sector; used in a file, not mapped out of disk - This is essentially the same as 
the last error, although the possibility of it being overwritten is of no 
consequence, because the sector is bad. However, this should be mapped out of 
the disk so future writes will not use the sector. Follow the last error's 
procedure for possible recovery of the file. 

Bad sector, used in multiple files - Again, follow the procedure for multiple file 
allocation errors, taking into account that the error may be in the middle of the 
files making recovery impossible. After following the procedure for multiple 
files, use the '-c' option to correct the disk allocation map. 

Bad sector, used in multiple files, not mapped out of disk - Again, follow the bad 
sector, multiple files procedure. 

The last option is the '-w' option. Four or five workfiles, or checkfiles, are created 
in the default data directory unless the '-w' option specifies a replacement. It is 
okay to locate these files on the disk being checked, but in any case, there should 
be enough space for the check files, or an error will result. 

It is essential that damcheck is the only process using the disk while the check is 
completed. If any file is modified on the disk, the check files will no longer be 
accurate and random errors may be reported. 

In the event that there is a major problem with the file structure, it is possible that 
the program may take longer that normal and you may wish to terminate it 
prematurely. The program may be stopped at any time with the BREAK key unless 
damcheck is writing to the DAM. 

Damcheck should not be used on boot disks due to the fact that there are certain 
sectors that are intentionally mapped out of the disk. Although it is possible to 
check the disk, there will be approximately eighteen sectors that are "allocated but 
not in file structure" and should not be corrected. 



9 

Warnings and Errors: 

The following errors may be encountered while using the damcheck module: 

No Device Specified - damcheck needs a device in order to operate 
Initial Directory Error could not open directory specified by the user 
Device Name Error could not determine device name for specified directory 
Device Error could not open device for specified directory 
Not 1 sector per cluster - damcheck only works on one s.p.c. disks 
Clearfile Error the clear checkfile could not be created 
NAftle Error the n/a checkfile could not be created 
Duptile Error the duplicate checkfile could not be created 
Errfile Error the error checkfile could not be created 
Workfile Error the work checkfile could not be created 
Checkfile Write Error - a checkfile had a write fault, possibly media full 
Checkfile Read Error - a checkfile had a read fault 
Error Reading DAM error while reading DAM off of disk 
Error Writing DAM error while writing corrected DAM to disk 
Directory Error 'directory' - could not open/access sub-directory; note that this 

error will not halt execution of the program and could result in "sector 
allocated but not in file structure" because the files in this directory could 
not be checked. 

Performance: 

The following figures were obtained while optimizing a 30-megabyte hard drive 
containing 14 megabytes of data contained in approximately 2,800 files and 400 
directories. 

Type 

Dircheck 

Damcheck2

Damcheck w/media check 

Damcheck w/media check, 
questionable sectors 

Damcheck w/media check, 
questionable sectors, 
questionable files 

Time reference 

11 minutes 

37 minutes 

1 hour, 3 minutes 

1 hour, 45 minutes 

2 hours, 45 minutes 

2 All damchecktests were conducted with the work files on a ramdisk 



1 10 

1 

GETTING STARTED 

Backup: 

The first thing you should do when you receive any new program is to make a 
backup copy. By working with a backup, the original can be stored in a safe place in 
case anything happens to the backup. To make a complete backup of the Optimize 
Utility Set 2 package, it is only necessary to copy the dircheck and damcheck 
modules contained on the original disk. One common procedure for making 
backups is to format a new disk and then use the OS-9 backup command to copy 
the entire master disk to the new disk. The only problem with this method is that 
the new disk must be formatted identically to the master disk (i.e. If the master 
disk is a 40-track double sided disk, the new disk must be formatted identically, 
not, for example, as an 80-track single sided disk). The optimize modules come on 
a 40-track single sided disk, and this backup method may be used to make a copy. 
However, it is much easier to simply format a new disk and then copy each file to 
the new disk. To format a disk, insert a new disk into drive /do, and type: 

0S9: format /d0 

OS-9 will automatically complete the format, asking you only for a disk name at one 
point. After this disk is formatted, you can then copy the files. If you have a two 
drive system, put the master disk in drive /do, and the new disk in drive /d1. Type 
the following to copy both files: 

0S9: copy /dO/dircheck idlidircheck 
0S9: copy /dOidamcheck idlidamcheck 

If you have only one drive, use the single-drive modifier with the copy command: 

0S9: copy /dO/dircheck /dl/dircheck -s #32k 
On: copy /dO/damcheck idlidamcheck -s #32k 

You can then put away your master disk in a safe place and use your new backup. 

Use: 

To actually use the modules, you must either load them into memory or have them 
in your current execution dimIory. Loading them into memory is convenient if you 
are going to optimize a large number of disks, but they will remain in memory until 
unlinked, taking up valuable memory space from anything else that you might be 
doing. 

If you have a hArcl drive, it Inieit be wise to copy both modules into your hard 
drive's CMDS directory. In this way, they will always be instantly available. If you use 
a floppy-drive only system, it might be easiest to simply insert your backup copy 
into chive /d0 when you need it and change the execution directory to drive /d0: 

0S9: chx /d0 

The other alternative is to type a complete pathlist to the program instead of 



11 

changing the execution directory. Simply type: 

/dO/dircheck /cid 

If you have a single drive system, you will have to load the module into memory 
before using it. This is because OS-9 reads the module into memory from disk 
every time you use it. If the module must be read from the program disk, you 
cannot optimize or check another disk. Type: 

On: load /dO/dircheck /dO/damcheck 

while the program disk is in drive /c10. Now the programs will remain in memory 
for your use until you unlink them: 

On: unlink dircheck; unlink damcheck 

If you have any problems or errors, try consulting your OS-9 manual. An error will 
usually provide you with enough information to quickly correct the problem. If you 
have any problems that you cannot find a solution to, do not hesitate to write to 
JIVT Enterprises with your problem. Be sure to include a description of your setup 
and conditions of your setup at the time that the problem occurred. 

THANK You 

Thank you for purchasing the Optimize Utility Set 2 package. We hope that it will 
help to improve the performance of your disks. Its companion package, the 
Optimize Utility Set 1, contains the actual optimization utility and any inquiry utility 
that can determine the extent of fragmentation on a disk. Using the two sets 
together provides a unique package that will maintain the integrity of your file 
system and improve performance at the same time. 


