
TRS-80 Coco disk attachment
TRS-80 Coco

J

rviPI VIP Disk-ZAP
TM

- Diskette Repair Utility

Operator's Manual

For the TRS-80 Color and TDP System 100 Personal Computer

IVWIVIP Disk-ZAP™

tiB Diskette Repair Utility

Operator's Manual

For the TRS-80 Color and TOP System 100 Personal Computer

VIP Disk-ZAP
C.Opyright (0 1983
by Softlaw C.Orporation
Written by Tllll Nelson

VIP Disk-ZAP Operators Manual
Copyright (0 1983
by Softlaw C.Orporation
Written by Tom Nelson

All Rights Reserved

Software and Operators Manual C.Opyright Notice

nus software and manual are intended for the personal
use and pleasure of the purchaser. Both have been
copyrighted by Sof~law corporation, and reproduction of
the software or this manual or any part thereof by any
means is forbidden without express written permission
from Softlaw C.Orporation.

VIP Disk-ZAP, VIP Library
VIP Terminal, VIP Cale
VIP Writerh VIP Database
& VIP Spe er
Are Traaemarks of Softlaw C.Orporation,

Softlaw C.Orporation 9072 Lyndale Ave. So.

Minneapolis, Minnesota 55420 612/881-2777

TABLE OF CONTENTS

Section Page

PART I: How the VIP Disk-ZAP Works........... 1

About 1hi s ~nual 1

Loading 1he VIP Disk-ZAP FromDiskette,,,, 2

System Requirem.ents 2

Getting Started 2

Toggle Comnands: X-Late, Base, and ASCII 4

<BREAK> : Ex i t ••••••••••••••••••••••••••• 6

Fi 1e De t e rmina t ion 7

<F> Fi 1enaIIle • . • • • • 7

<A> Di r e c t or y . 8

Fi 1e and Disk Access ••••• ·• • • • • • • • • • • • • • • • • 10

<V> Verify Disk........................ 10

<R>, <YV> Read Sectors;Write Sectors ••• 11

<F> Fi 1e Zap . 12

File Access C.Onrnands ••.•..•••••••••.. 15

..•••.••••••• 17

1he Screen Display .••••••••.•....• 16

1he ASCII System••.••
<N> Name•.....•. 20

<A> Directory 21

<E> Last Granule ..••..•.••..•.••• 21

<F> First Granule .•••....•..••••• 21

<R> Read Sector ••..••••••.•.•.•.• 22

Left/Right Arrow; Up,IDown Arrow ••. 22

~ ~dif y Sector •••.•.••••..•.•• 23

1he Screen Display •.•..••..• 23

~vement In 1he Display .•.•• 24

Zapping 1he Sector •..••••..• 25

Writing 1he Sector To Disk .• 26

Printing Functions •..•••..•...•...... 27

<P> Print Sector .••••..•••......• 27

 Set Baud Rate 29

1

Table of Contents (cont.)

SECTICN PAGE

<D> 	 Disk Zap 30

Disk Access 32

<T> Enter Track • ..•••....•.•••••• 32

<T> Enter Drive 33

<E> Last Track .•.••.•••. • .••. • .•• 34

<F> First Track 34

Pl.r row c.armand s 34

<L> Locate 35

Disk Repair Conmands •.••••••.••.•••.. 36

Pr int c.armands 36

Killing Files ••..• 37

<K> Ki 11 	 37

Part II: Zapping Techniques •••••••••••••••••• 38

Introduction 38

Disk St rue ture 39

1he ~erating System..••....••.••.•.•••.•• 46

Disk Repair••... ••....... 48

Introduction 48

Erro r s - Types, Causes And Repairability 48

Error PrOIDpt s • •........•.•..•••.. 49

Er ror Messages During A Read •••••. 50

Error Messages During A Write •••.• 51

1heFixes 51

AutOIIla tic Repairs • .•.. , ••••••••.••••. 52

Minor Repairs And .Moditications •••••• 53

Reallocating A Granule •••.••.•••.• 53

Backup 1he Unbackupable ...•••••.•• 55

Fixing A Tokenized BASIC File •.••• 55

Rebuilding Files, Tracks, Etc ••••••.. 60

Retrieving Killed Files.............. 63

APPENDICES

Standard ASCII Character Set ••••.••••••••••••• 65

Decimal-Hexidecimal Conversion Chart ••.•••••.• 68

BASIC Keyword Token Codes ••••••••••••••••••••• 70

Using Other VIP Library Programs ..•••••.••••.• 71

11

VIP Disk-ZAP

Disk repair is something_ that each of us needs.
Sooner or later we droJ> a disk, or our operating system
fails, leading to disk failure. Up on the screen pops a
dreaded message such as "1/0 ERROR". 1he file is lost.
It could be a grocery list or the only copy of a
valuable customer oraer database. Now, with the
VIP Disk-ZAP, anybody from non-programmer to
expe.rienced. assembly f!lngi;age programmer, can fix
reQau:able disk errors m minutes and return to work
with the fixed disk.

1he VIP Disk-ZAP is a fast machine-code pro_gram for
use with the standard Color Computer disk operating
system. It was designed with the non-programmer in
mind. 1he user is guided through every step with
easy-to-use menus and full message prompting. An
attractive and well organized screen display makes the
program even simpler to use. It features a split
screen, dual cursor format which allows total control
and monitoring of every step. Commands are all single
ker. nmemonics which are easy to use and remember. Every
moOification to be made to die disk or file is verified
with you before being finally made so you don't have to
worry about making careless mistakes.

1he many features of the VIP Disk-ZAP make it the
only disk repau: utility you'll ever need for your Color
Computer. You can:

• Fix - simply - all repairable disk errors.

• 	 Verify to find all errors throughout the entire
disk and obtain a description of any error
found.

• 	 Move easily through the file or disk by sector
or trade.

• 	 Repair individual files or the entire disk at
once.

• 	 Address any disk drive; work on any granule,
track or sector.

* Modify textf:ile or disk using ASOI or
hexidecimal input.

* Copy sectors to any drive and track.

• 	 Locate specific numeric or ASOI strings for
modification.

* Print sectors to any RS-232 device at any of six
different baud rates.

ll1

PART I: How the VIP Disk-ZAP Works

About 1his Manual

Disk repair requires two things: a good repair
utility and knowledge. 1he first we have provided with
the VIP Disk-ZAP program. 1he second you will obtain
from experience, from reading reference works, and from
this manual. 1here is no general work on the market
which deals with data recovery; nor is there any book or
article dealing with data recovery with the Color
Computer. 1his manual cannot pretend to teach you any
but the most simple concepts. Until there is some work
devoted to the subject you will have to depend on your
disk manual, technical reference manuals, and on the
rudiments taught in this manual. Still, most disk
errors are easily fixed, so don't despair.

1his Manual is divided into two sections. 1he
first part tells you how the VIP Disk-ZAP works,
detailing its menus, commands and screen displays.
After the loading instructions are explained, the
commands of the Master Menu are discussed in a logical
order. Some of these commands present a separate menu
with sub-commands which are also fully discussed. Since
an understanding of the basics of disk structure is
required before learning how to use this program, it is
highly recommended that you read the section on disk
structure in Part 11 before learning how to use this
program.

1he second part of this Manual gives a general
beginner's explanation of how to use the VIP Disk-ZAP to
fix your disks. It includes a discussion of the
structure of the disk, the basic concepts of disk
repair, a summary of conunon errors which can affect disk
access and their causes, fixes for those errors, and
instructions on how to rebuild files and the directory,
manually backup a disk, and allocate a granule
containing an unrepairable sector.

1

This manual assumes that you are familiar with the
hexidecimal number system, For your convenience a
cross-reference chart between decimal and hexidecimal
numbers is provided in the Appendix, On thing you
should be aware of is that in many computer usages,
items are counted beginning with the number zero, 1hus,
there are 35 tracks on each disk, numbering from 0 to
3 4, VVben referring to items numbered beginning with
zero, the convention is to call the number assigned
"relative". 1hus, the 35th track is relative track 34;
the first track is relative track 0, 1his can be awful
confusing at times, so be careful.

Loading the VlP Disk-ZAP from the Diskette

UNPLUG YOUR JOYSTICKS!

Mount the VlP Disk-ZAP master diskette in Drive 0,
type LOADM''ZAP" and press <ENIER>. 1he program will
automatically load and execute, A billboard will be
displayed while the program is loading and prior to
execution, When the program has executed, the Master
Menu will appear.

System Requirements

1he VlP Disk-ZAP program is only designed to be
used with the standard Color Computer Tandy operating
system, It will not work on other operating systems for
the Color Computer such as FLEX or OS-9, or on files
created using such operating systems,

Getting Started

Now that you have read the section in Part Il

explaining disk structure, put a disk which you don't

care about ruining (or write protect a disk) and place

2

it in drive zero and let's get started. After the
program has executed, the Master Menu will appear
displaying a selection of single key entry commands.
The following is a list of the commands avail.able as
they appear on the Master Menu with a brief description
of their functions:

Directory <A>: Pressing this key will elicit the
directory for the drive specified.

Disk Zap <D>: This command allows repairs to be
made to the disk as a whole. A separate menu
controls Disk Zap access.

Exit 	Program <BREAK>: Press this key to exit the
program and return to BASIC.

File Name <N>: With this command you are told the
name of the last file accessed.

File Zap <F>: This command allows access to
particular files for repair. A separate menu
appears to prompt the user in File Zap access.

Kill <K>: This command allows you to kill any
file on the disk.

Read Sectors <R>: With this command you can load
several sectors into memory for copying.

Toggle X-Late <X>: This command toggles between
the true ASOI and original Color Computer
display.

Toggle Base <s-DFT><@>: With this command you
toggle between the hexidecimal and decimal
number systems for selecting drive, track and
sector numbers.

3

Toggle ASOI <a.EAR>: 1his key toggles input in
the Modi£y and Locate functions between ASOI
and hexidecimal.

Verify Disk <V>: 1his command causes the program
to verify the entire disk, stopping
sequentially at any errors found.

Write Sectors <W>: 1his command is used to Write
the sectors read into the memory with the Read
Sectors command to another location.

At the bottom of the screen on a Command line is
the prompt "REQJEST?" which asks for input of one of the
letter commands. All commands must be entered in the
_ppercase mode (discussed below).

Toggle Commands : X-Lat e, Base, and ASOI

Toggle Base. At the right of the screen is the
flag ''UXDEC'. "DEC' is the "Toggle Base" flag which,
when "DEC', stands for "decimal" and indicates that
numeric input into the system when indicating the drive,
track or sector to be accessed must be in the decimal
number system (base 10). Decimal may not be used to
input in the modi£y functions. Input is restricted to
hexidecimal numbers. (See Modify, discussed in the File
Zap section.) You may change your input to hexidecimal
by pressing <~<@> to Toggle the Base. When
hexidecimal has been toggled the "DEC' flag will change
to "HEX'. Pressing it again toggles back to decimal.
1he number base may CNLY be toggled from the Master
Menu.

When in either base, you have the option of forcing
input to be in the alternative base by preceding the
number by a character code. If you are in the DEC base,
you may input hexidecimal numbers by preceding each
number with a "W' symbol. When in the HEX base you may
input decimal numbers by preceding each number with the

4

"&" symbol. lhe following example shows use of these
symbols with the Enter Track connnand from the Disk Zap
menu (see below):

EXAMPLE: TRACK, SECIDR? & 17, 0 3

lhe above example assumes that you are in the HEX base
and want to input the drive and track numbers in dec:imal
for the directory track (see Part Il). Track number 17
is preceded by the "&" symbol to allow decimal input.
lhere is no need to precede the sector number 03 with
the ampersand since the hexidecimal and decimal numbers
for 03 are the same.

When in the dec:imal base, the numbers displayed in
the ORV, TRK and SEC indicators, the GRAN indicator when
accessing sectors (discussed below) and the relative
BYTE indicator in the Modify functions discussed below),
will be in the decimal base. Otherwise they will be in
the hexidec:imal base.

Toggle X-Late. lhe "X'' of the ''l.D<DEC' £1.ag is the
"Toggle X-Late" ("translate") £1.ag which is either
present or not present. Its presence is toggled by
pressing <X> from the Master Menu CNLY. When present,
as it is when the program is first executed, it
indicates that the ASOI display of files will be
translated into the Standard ASOI Character Set (see
Appendix and the discussion of the screen display
below); when it has been toggled to ''U DEC' without the
"X'', this indicates that the ASOI display will show the
file in the character set used by the C.Olor C.Omputer
display generator chip.

Toggle ASaI. Sometimes, you will be required or
you will desire to input ASaI characters (i.e., words
and characters) instead of numbers. CNLY the Modify
(see Disk and File Zap commands) and Locate (see Disk
Zap commands) allow ASaI input. hi the Modify function
you must choose specifically between making
modifications in ASOI or in hexidecimal (never

5

dedmaU). 1he system begins with ASOI input being
enabled. Hexidecimal input is enabled by using the
Toggle ASOI command, <a.EAR>, which may be done at any
time. When ASOI is enabled, as it is when the progr am
is first entered, it is indicated on the screen by the
presence of the flag "ASC' at the far right of the
screen next to the ''LD<DEC' flag. Even when the ASOI
option has been disabled, the system will accept all
command letters.

Toggling Upper/Lower Case. When the program is
first executed all keyboard entry is in upper case. To
input both lower and upper case press <SHIFT><O>. 1his
toggles case status just as in BASIC. Case status may
'.:l e toggled at any time when using the program. A case
mode indicator is placed in the first position of the
11UXDEC1 flag. 1he ''U' indicates that the uppercase mode
is in use. VV'hen the case status is toggled to
lower/upper cas e the ''U' changes to an "L". N01E that
all commands must be input in upper case .

<BREAK>: Exit

1he <BREAK> key is the general exit command and has
two distinct uses: exiting from a command to the Master
Menu and exiting from the Master Menu out of the program
altogether returning to BASIC. While using the commands
and sub-commands of the VIP Disk-ZAP, you may exit to
the Master Menu at any time by pressing <BREAK>.

However, pressing <BREAK> while in the Master Menu
will initiate an exit from the VIP Disk-ZAP. It is very
convenient to exit from a utility program to either test
your handiwork or get back to work with what you have
fixed. You may only exit this program from the Master
Menu. When you press <BREAK> to initiate the exit the
system will prompt on the command line "Do you really
wish to exit?" Press <Y> to exit to BASIC; if you press
any other key the exit will be aborted and the

6

"Request:" prompt will reappear awaiting your further
command.

The remammg commands on the Master Menu will be
discussed in logical divisions. The first section,
entitled "File Determination," will be devoted to
calling up the disk directory and determining which
files are accessible. This section includes the
Directory and File Name commands. The second section,
entitled "File and Disk Access," consists of the
commands used for actual file and disk access, error
checking and modification. This section includes the
Verify, Read and Write Sectors, and the File Zap and
Disk Zap commands. The File Zap and Disk Zap commands
each call up a separate menu for manipulation of the
individual files and the disk as a whole. A final
section will discuss the KILL command.

File Determination

The following sections deal with determining which
files to access. It includes the Filename and Directory
commands.

<F> Filename

The Filename command may be used from the Master
Menu to determine the last filename used. When you
press <N> the screen will clear and at the bottom will
appear the drive, track and sector numbers of the last
file accessed. Below that will appear the prompt
"Filename:" followed by the name of the last diskfil.e
accessed, including its extension and drive number.
Press <BREAK> to exit to the Master Menu for further
work on that or another file.

7

<A> Directory

1his command directs the system to display the
directory of the disk to be repaired. After you press
<A> the Master Menu disappears and you are prompted with
"Drive:", a request for the drive number of the drive
containing the disk whose directory is to be displayed.
Upon entering the number (0, 1, 2, or 3), or <ENIER> for
the last drive accessed, the system will automatically
display a directory of the disk requested. 1he
directory for the specified drive will be displayed in a
two-column format with the drive number and number of
free granules on the disk shown on the top line of the
display. Each entry in the directory will be followed
by a number indicating the number of granules allocated
\:O the file on the disk, and the letter "A" for ASCil or
"B" for binary to indicate the nature of the file.

Occasionally an asterisk or an "R" may also appear
in the directory after the filename. 1hese characters
indicate that there is an error in the granule
allocation of the file which will prohibit access of
that file. 1he errors are of two types. In one
instance the granule allocation table contains a number
other than the allowed (in hex) 00-43, FF, or CO-C9.
1his error elicits an asterisk by the bad file name.
1he second error is caused by a granule allocation byte
referring to itself as the next granule in the file,
causing the system to repeatedly load that granule,
believing that the file has over 68 granules. Because
of this repeated access of the same granule, this error
is assigned an "R" in the directory. Whenever you
encounter either of these errors when Verifying the disk
a BAD Fil.E error prompt will be displayed. 1he system
will not allow you to load any such damaged sector for
repair until the directory is repaired. (To effect
repair see the discussion of the structure of the
directory and the discussion of errors in Part II.)

8

From this directory you may obtain the names of the
files you wish to access for repair in the File Zap
function (see the next section) . lf the directory
consists of more than one page the system will prompt
"1here's more - press any key" and await entry of any
key except <BREAK> to display the remaining pages. To
exit to the Master Menu from any but the last directory
page press <BREAK>. When you reach the last directory
page the system will prompt with "Last page, hit any
key." Press any key to exit to the Master Menu.

9

File and Disk Access

The follow.ing sections cover accessing a diskfile
or the disk as a whole to make repairs. The first
command, Vedfy, lets you determine which sectors are
faulty, and what the errors are. The Read and Write
Sectors commands together allow you to copy your disk by
reading many sectors into memory and writing them to
whatever disk or portion of the disk you desire. File
Zap lets you access particular files for repair; Disk
Zap lets you access the disk as a whole for repair.

<V> Verify Disk

When you encounter a disk error when using one of
your disks which prohibits disk access, you will want to
locate the error and find out its nature. The Verify
Disk command performs this function. Upon pressing <V>
from the Master Menu the VIP Disk-ZAP searches through
the entire disk, through each sector of each track,
looking for errors. When it finds an error it attempts
several times to read the faulty sector, and then stops
so that you may note the location (drive, track and
sector) of the error. It also gives a description of
the error on the CDMMAND LINE at the bottom of the
screen (see Part Il) and prompts "SKIP SECIDR OR EXIT?"
Do not be alarmed when, as the system tries to read the
same sector, it changes the contents of the sector.
This indicates that it has encountered a faulty sector
and cannot read it correctly,

.Alter you have noted the location and nature of the
error, press <S> to skip the faulty sector and continue
to verify until it encounters the next error, if any.
Of you press <BREAK> you will exit the Verify Disk
function and return to the Master Menu.) Continue with
this process until the entire disk has been verified.
The VIP Disk-ZAP allows you to read sectors on tracks
beyond the standard 35th track of the Color Computer
operating system for systems which have an extended

10

35-plus track format. When the system reaches the end
of the 35th track it will prompt: "Continue or exit?"
If you have a 35-plus track format, press <C> to
continue; if you have the standard 35 track format,
press <E> to exit. Once you have located the errors and
found out their sources, you may then proceed to repair
the disk through either the File Zap or Disk Zap menu
commands.

<R>, <W> Read Sectors/Write Sectors

1hese two commands are a matched pair used to copy
or manually backup portions of your disk to another
location, either another disk or another portion of the
same disk. 'Ibis copy function is useful if you wish to
copy your entire disk to another diskette, if you wish
to save a copy of your directory track before you
operate on the original, or for any other of your copy
needs.

To begin, you must Read the sectors to be copied
into computer memory. A 32K computer will hold 92
sectors (5 tracks, 2 sectors); a 16K will hold
considerably less, and a 64K will hold considerably
more. To Read the sectors to be copied press <R> from
the Master Menu. The system will prompt at the bottom
of the screen ''Drive, Track, Sector?." and await your
entry of the starting point of the sectors to be read.
Recall that the drive, track and sector numbers may be
input either in the hexidecimal or decimal number
system. 1he base used is toggled with the Toggle Base
command by pressing <9-RFT><@>; you may also force input
of either base while in the other base (see discussion
of Toggle Base above).

After you have entered the drive, track and sector
numbers and pressed <ENIER>, the system will prompt
"Sector Count?" 1he system will. then await the number
of sectors you desire to be read into memory. Below
this prompt will. be a reminder, in the base you have

11

toggled, of the maximum number of sectors which will
fit in your computer buffer, reading "C.ount Limit:(#)."
When you have input the number of sectors to be read
into memory, beginning with the specified sector, and
pressed <ENIER>, the system will read the designated
sectors.

:NOIE: The VlP Disk-ZAP allows you to read sectors on
tracks above the standard 35th track of the C.olor
C.omputer operating system for systems with extended
35-plus track formats.

Once these sectors are in memory the system will
prompt "Request?" You then may Write the sectors to a
new location. The procedure is the same as for the Read
command, including the prompts, except that it is
initiated by pressing <W>, and after entry of the number
of sectors to be written, the system will prompt with
''Do you really wish to write?" A <Y> response will
cause the sectors to be written to the designated
location; any other response will abort the Write. All
writes are verified after being written to assure
accurate transfer of data.

:NOIE: that the Read Sectors command in the Master Menu
is not the same as the Read Sector command in the File
Zap menu. The latter command only allows one sector,
the current one, to be read into memory. See the
relevant section under File Zap.

<F> File Zap

When you press <F> for File Zep from the Master
Menu the system clears the Master Menu and sets out the
following prompts:

ORV: 00 TRK> 00 SEC: 00 UXDEC ASC

File Name: <Flashing Ousor>

12

File Name: (Last filename used)/(last extension,
initially VIP):(last drive number)

The system awaits your entry of the name of the file
which you wish to inspect or repair. You must enter the
filename, the extension used and the drive in which the
disk containing the file is located, The extension is
necessary when you are changing extensions; thus, if you
are accessing an ASCll file with the extension "BAS"
right after loading the program you must include the
extension BAS or the system will apply the default
extension "VIP". The correct name and extension may be
obtained by using the directory command (see section
<A> Directory above) . The filename must be separated
from the extension by a slash ("/") or a period (" .");
the drive number must follow the extension and must be
preceded by a colon.

EXAMPI.E: File Name: 1ESIFILE/VIP: 0

The above example responds to the prompt with the
filename "1ESIFil.E", with the extension "VIP", located
m Drive 0.

The VIP Disk-ZAP stores the name of the last
diskfile accessed in a buffer to eliminate the need to
repeatedly type in the same filename, Below the
filename request line is a listing of the last accessed
filename. 1f you desire to access the same file you may
press <ENTER> instead of retyping the filename.

Upon entry of the filename, or pressing of <ENTER>,
the system will attempt to access that file. Jf the
file is not found, a prompt "Fll.E NOT Fa.ND" will appear
on the command line. Perhaps you forgot the extension?
Try again. 1f the file is found, it will be accessed,
on the command line will appear the prompt "FilE Fa.ND",
and the screen will change to display the File Zap menu
giving the commands which may be used to access, modify
and transmit the file. The menu lists:

13

File Name <N>: Gives the name of the last file
accessed.

Directory <A>: Supplies a directory of the disk
in the drive specified.

Last Granule <E>: Accesses and displays the first
sector of the last granule of the named file.

First Granule <F>: Accesses and displays the
first sector of the first granule of the named
file.

Read Sector <R>: Commands the system to read the
current sector.

Modify Sector <M>: Enters the modify mode to
modify the sector displayed on the screen.

Print Sector <P>: Allows the current sector to be
sent to a printer or any other RS-232 device.

Set 	Baud Rate : Elicits a menu for selection
of the proper baud rate for transmission of
data.

Minus 1 Sector <LEFT ARRON>: Moves back one
sector in the diskfile.

Add 1 Sector <RIG-IT ARRON>: Moves ahead one
sector in the diskfile.

Minus 1 Gran <UP ARRON>: Moves back a single
granule in the diskfile.

Add 1 Gran <DONN ARROW>: Moves ahead a single
granule in the diskfile.

Exit File Zap <BREAK>: Exits from File Zap to the
Master Menu.

14

Below the menu is a listing of drive, track and
sector numbers, listing the numbers of the last file
accessed (in the base selected), the hex or decimal and
ASCll flags and the prompt "File Request?" asking for a
command from the File Zap menu.

1he commands in the menu will be discussed in a
logical order below. 1he first set of related commands
are those used to access the file. 1hese
include: 1) the File Name and Directory commands which
allow you to call up a particular diskfil.e and to keep
track of which file you are working on; 2) the First and
Last Granule commands used for easy movement to the
beginning or end of the file called up; 3) the Read
command used to peruse your file sequentially; and
4) the arrow commands which allow sequential access back
and forward of sectors and tracks when accessing a file.

1he second set of commands allow manipulation of
the diskfil.e to be repaired. 1hese commands are all
used in the Moclify function, and include the ASCll;HEX
input option, the arrow keys used to move the cursor
about the sector being moclified, and the commands used
to save the zapped sector to the disk. 1he third set of
commands relate to Printing or transmitting a sector.
1his set includes the Print and Set Baud Rate commands.
1he final function is controlled by the <BREAK> command
which allows exit from the File Zap function.

File Access Commands

1he Name and Directory commands allow you to call
up the file which requires repair. 1he Read command
allows you to peruse the file. 1he First and Last
Granule commands provide an easy means to get to a
convenient place to begin inspecting a file. Once the
file has been displayed, you may use the arrow keys to
move back and ahead in the file.

15

The Screen Display

Before going on to a discussion of how to access a
file, an explanation of the screen display of an
accessed file is in order. When the VIP Disk-ZAP
accesses a file it calls in one sector of the file at a
time for display. The screen is split to display the
sector being accessed. The top half of the screen
contains an ASCJI representation of the entire sector.
The bottom half contains the usual indicators and flags.
Provided the sector contains an ASCJI file and you have
retained the ASCJI option with the lOGGLE X-LA1E option
from the Master Menu, the sector will appear just as it
did when you created it - in its ASCJI format with upper
and lowercase letters, etc.

Many of you are experienced programmers and may not
be used to seeing a pure ASCJI display; instead, you are
used to seeing the display presented by your monitor
program. To accomodate such users we have included an
option to allow them to select to see the accustomed
non-ASCJI display. To select that option press <X> to
Toggle X-Late (see the discussion under Getting
Started). 'When <X> is pressed from the Master Menu, the
''UXDEC' flag will change to ''U DEC' and the heretofore
readable sector displayed will change to skads of
gobbledygook - punctuation marks, parentheses, numbers
and uppercase characters. These are all representations
of the same sector, but using a different system than
the standard ASCJI display used in the ASCJI option.

Although many of you will never choose other than
the ASCll option, you should be aware that if you
accidentally press <X> while in the Master Menu, you
will get a very different screen display of the sector
accessed. The following discussion of the ASCll system
is included to help you understand the reason for this
different display and to help you understand how to read
and change the ASCll or non-ASCll display when it
becomes necessary to repair or modify your disk.

16

The AS(][System

AS(][is a standard for symbols used in
connnunications. "ASOI'' is an acronym for "American
Standard C.Ode for Information Interchange". 1he Asar
standard potentially contains 256 symbols which are
represented by numeric values from 0 to 25 5 decimal (0
to FF hexidecimal). 1he first 128 AS(][symbols
constitute the Standard Asar Oiaracter Set and are
absolute standards for connnunication symbols, such as
the letters of the alphabet, punctuation and control
codes. The final 128 symbols (from 128 to 255)
constitute the Extended ASar Oiaracter Set, which will
be discussed later.

Before going on with this discussion you should
become familiar with the Standard ASar Oiaracter Set
chart in the Appendix. 1he standard Asar character set
is comprised of the 128 ASar symbols from decimal O
through 127. 1he first column gives the first 1Z8 Asar
symbols in order; the second column gives the display of
those symbols using the non-ASCD: option; the third
column gives the display of those symbols using the
ASCD: option; the fourth column gives the decimal
numeric equivalent of the ASar symbol; column five
gives the hexidecimal equivalent; and the final column
explains how to generate the ASar symbol and its screen
display equivalent through your C.Olor C.Omputer keyboard
while modifying a sector using the AS(][input option.
1hus, from the Appendix you can see that to generate the
ASar symbol capital "A", and its screen display capital
"A" (in either the Asar or non-Asar option) you either
place the hex number 41 in the appropriate location m
the hex display in the hex option or, in the ASar
option, input a capital "A" from the keyboard in the
proper location in the ASar display.

The first 32 ASCD: symbols, with numeric values
from O to 31 decimal, are control characters. They were
specifically devised to be used to control functions of

17

devices which accept ASCll data. 'Ute next 96 ASCll
symbols, from 32 to 127 decimal, are the alphabet, in
upper and lower case form, the numbers, and the
conventional symbols seen on the typewriter keyboard
such as the colon, the ampersand, the dollar sign, etc.
In every system adhering to ASCll the ASCll symbols
represented by the numbers from 32 to 127 decimal will
be the same.

'Ute Extended ASCll symbols from decimal 128 to 25 5
are different. Uiere is no standard symbolic equivalent
for them. Each system (computer, printer, etc.) may use
these decimal numeric equivalents to produce different
symbols. Because of this lack of standard ASCll
symbols, monitor display for the numeric equivalents
from decimal 128 through 255 are not uniform; every
system assigns different symbols to the numbers from 128
to 255. 'ilierefore the Appendix does not show anything
for those decimal equivalents. Uie Color Computer
represents these numeric equivalents as graphics blocks
of various colors (see your BASIC manuals). Cards are
available commercially listing the numeric equivalents
and the corresponding pixel displayed.

'Ute VIP Disk-ZAP is totally compatible with ASCll.
Uiis means that all functions of this program requiring
modification of a disk allow modification in the ASCll
mode, and the memory contents holding the diskfil.e or
sector are in the ASCll format. 'Ute screen display in
the ASCll option is also ASCll compatible. 'Ute
non-ASCll option display, however, IS NOil If you call
up a file using the non-ASCll option, you will
immediately see that the screen display is not ASCll
compatible. What you put in your file as normal looking
words with real letters have become real gobbledygook,
the letters being replaced by numbers, punctuation marks
and whatever odd doohickey. Uiis aberration is due to
the construction of your Color Computer, sine e the VIP
Disk-Zap non-ASCll option merely uses the display that
the Color Computer generates. As you can see, the
character generation component of the Color Computer

18

which displays the characters on the screen is not ASCil
compatible.

Let me explam this further. As was said, ASCil is
just a set of numbers assigned to some connnunication
symbols so that manufacturers of termmals, prmters,
etc., could create uniform products. lb.ere is no
particular reason the number 97 decimal (61 hex) has to
be assigned to the letter "a"; it was just the numeric
equivalent chosen for the ASCil system. Every system
adhermg to ASCil will have the number 97 decimal equal
the letter "a".

Why all this concern about numbers? Because your
computer stores mformation in numeric form mstead of
as characters. When you press a key on the keyboard,
what you are really doing is putting a number into
memory, that number bemg the numeric equivalent of the
ASCil symbol you have generated. It just so happens
that the letters of the alphabet and other standard
symbols on your keyboard ARE the ASCil symbols
themselves, and thus, when you press a key the
correspondllig numeric equivalent for that ASCil symbol
is put m memory. Jn a totally ASCil compatible system,
when you press the "a" key, you have generated the ASCil
symbol "a". How is "a" represented m your memory? By
lookmg m the Appendix you can see that the numeric
equivalent for the ASCil symbol for "a" is decimal 97
(61 hex). (Actually the memory contams the binary
equivalent of the decimal number 97. For convenience we
will refer to decimal numbers when referrmg to memory
contents.) When you press "a", your memory receives a
decimal 97 m the appropriate memory location.

1he monitor (your 1V) which displays your memory is
controlled by a device which generates characters from
the ASCil numeric equivalents m the memory. If the
character generator is ASCil compatible, the decimal 97
from the memory, generated when you pressed the "a" key,
will go to the character generator, which in turn will
tell the monitor to show an "a" on the screen. But what

19

if the character generator is not ASOI compatible?
lhis means that it may assign a different symbol to the
ASOI numeric equivalent.

1his is exactly what causes the wierd screen
display of your ASOI files in the VIP Disk-ZAP when
using the non-ASOI display option. 1he Color
Computer's character generator assigns different symbols
to many ·of the ASOI numeric equivalents. Most notably,
the ASOI symbols for the lower case alphabet have been
exchanged, in the character generator, with the control
symbols CI'RL A to CI'RL Z with their screen display. 1he
Appendix shows this. As was shown, in an ASOI
compatible system, a decimal 97 will generate the letter
"a". Jn the Color Computer screen display, however,
decimal 97 generates an inverse exclamation point, By
glancing at the screen display of the Color Computer for
the ASOI lower case alphabet (from decimal 97 thru 122)
you can understand why your wonderful file has been
turned into garbage in the non-ASOI display option.

1his display difference should have absolutely no
effect on you. You can choose to use either the pure
ASOI display or the Color Computer non-ASOI display,
whichever you are most used to or like the best. 1he
information on numeric equivalents of ASOI symbols will
prove very useful once you begin making modifications to
your files. 1his concept is crucial to proper Zapping.

Now that you understand the display choices and the
ASOI system, we can return to the discussion of the
File Access commands in the File Zap menu.

<N> Name

1his command was described above in explaining the
prompting resulting from pressing <F> to enter the File
Zap mode. See that discussion. 1he same command is
also available from the Master Menu. Note that the Disk
Zap mode lacks this command since that mode deals with

20

the disk as a whole instead of with individual files on
the disk.

<A> Directory

This command is also identical in function and
execution to that described for the same command m the
Master Menu. The Directory command is also not
available in the Disk Zap mode, as that mode does not
call up individual files listed in the disk directory.

<E> Last Granule

This command is used to access the fust sector of
the last (or only) granule of the designated disk file.
When it is selected, that sector will be displayed on
the screen, and you will be prompted with
"FllE REQ.EST:". You may move through the file for
inspection using the arrow keys (see discussion below).
You may press <ENIER> to return to the File Zap menu,
<BREAK> to return to the Master Menu, or any File Zap
command key to execute a command.

Whenever a sector is actually accessed from the
File Access or Disk Access commands, along with the
other indicators for drive, track, sector, Asen, number
base and upper or lower case will appear a GRAN
indicator. This indicator tells you the granule number
of the sector accessed in the number base you have
selected from the Master Menu. This number will prove
useful when it becomes necessary to repair a disk (see
the section on Disk Structure in Part II).

<F> First Granule

This command is used to access the first sector of
the fust (or only) granule of the designated disk file.
When it is selected, that sector will be displayed on

21

'
the screen, and you will be prompted with "File
Request:". You may move through the file for inspection
using the arrow keys (see discussion below). You may
press <ENIER> to return to the File Zap menu, <BREAK> to
return to the Master Menu, or any File Zap command key
to execute a command.

<R> Read Sector

1his command is used to load the current sector of
a designated disk file, i.e., the last one accessed,
into memory and display it on the screen for inspection.
When it is selected; that sector will be displayed on
the screen, and you will be prompted with
"Fll.E REQ_ESf:". You may move through the file for
inspection using the arrow keys (see discussion below).
You may press <ENIER> to return to the File Zap menu,
<BREAK> to return to the Master Menu, or any File Zap
command key to execute a command.

Left/Right Arrow; l{>/Down Arrow

In normal file access functions, used to locate the
sector to be zapped, the arrow keys move you through
sectors and granules of data. 1he left and right arrow
keys move you back or ahead one sector in the
file - thus the menu descriptions "Minus 1 Sector" and
"Add 1 Sector". 1he up and down arrows move you back or
ahead one granule in the file - thus the menu
descriptions "Minus 1 Gran" and "Add 1 Gran". In using
any of these arrow commands, if you reach the boundaries
of the file a prompt will appear at the bottom of the
screen telling you that you have reached "First sector
of file", "First Granule of file", "Last sector of file"
or "Last granule of file".

KJIE that the arrow keys perform different functions
when in the Modify function.

22

<M> Modify Sector

The moclify function is the heart of VlP Disk-ZAP.
It is primarily with this function that you will repair
the disk - or ZAP it (see Part m.

Modification is done one sector at a time. The
first task before modification is to determine what
modification is necessary to make a repair by usln.g the
Verify command or by ln.spectln.g the diskfiles or the
disk as a whole. Once you have determined what sectors
need modification, you then must locate the sector usln.g
the Read, First and Last Granule commands and the arrow
key commands. The Moclify command will access the first
sector of your diskfil.e or the last sector accessed for
Zappln.g.

When you locate the sector to be modified, on the
Command Line at the bottom of the screen will be the
prompt "File Request". Press <M> to begln. modification.
The screen will go blank, and then a new screen display
will appear (the screen display ln. the modify function
is described below). The cursor rests at the first byte
of the sector (relative byte zero), awaitln.g your
action.

To return back to the File Zap menu press <BREAK>
and then <E> for Exit. Press <BREAK> twice to return to
the Master Menu.

The Screen Display

When the modify function is called, the screen
display is split ID.to two parts. On the top half of the
screen is the ASOI display of the sector of the disk to
be repaired. The display contaln.s one sector from the
disk, displayed ln. eight lines of text, each contalnln.g
32 bytes of data, for the total 256 bytes per sector.
The bottom half of the screen contaln.s a hex display,
the Gran, Drive, Track and Sector ln.dicators, the UXDEC

23

and ASCll flags and a command line for prompts from the
system and input from the user. 1he hex display is
comprised of a relative byte counter and four lines of
eight bytes each of numbers which correspond to the
ASCll display characters. 1he 32 bytes of the hex
display are equivalent to the single sector ASCll
display (i.e., 1/8 sector); thus the eight lines of the
ASCll display will be represented by eight consecutive
hex displays.

A double cursor indicates the current position in
both the displays. 1he hex number indicated by the
cursor in the hex display is the numeric equivalent for
the ASen symbol at the position of the cursor in the
ASCll display (see the discussion of the ASCll system
above). 1he relative byte counter indicates the byte
number, in the base chosen from the Master Menu with the
Toggle Base command, at the position of the cursor.
1his helps you keep track of where you are in the split
display, especially in the eight consecutive 32 byte hex
displays per sector.

1he hex display provides the numeric equivalent, in
hexidecimal, of the ASCll symbol at the position of the
corresponding cursor in the ASCll display. Numeric
equivalents of ASen symbols are given in the Appendix.
1hus, the symbol "A" in the ASCll display will
correspond to the number 41 hexidecimal in the hex
display. (Note that the screen display may differ from
the Asen symbol that the numeric equivalent represents
when the non-ASCll option is chosen - see the discussion
of the screen display above.)

Movement in the Display

Movement through the ASCll and hex displays is done
via the arrow keys. 1he arrow commands have a different
effect in the modify function than in other f:ile access
functions (see discussion above). When in the modify
function the arrow keys are used instead to move you

24

about within the sector . "Ole left and right arrows now
move the cursor one byte back or forward in the sector.
"Ole shift key plus the up or down arrow now moves the
cursor left or right eight bytes in the ASClI display
and simultaneously up or down one line (eight bytes) in
the hex display. Th.e up and down arrow keys alone move
the cursor up or down one line in the ASCil display (32
bytes) and simultaneously up or down four lines (one 32
byte display block) in the hex display.

Zapping the Sector

Changes to the sector may be made through
alteration of the altered sector displayed and writing
of the sector back onto the disk. Alteration may be
done either by inputting numbers into the hex display at
the position of the cursor or by inputting ASCil symbols
into the ASCil display. "Ole input options are toggled
by pressing <a.EAR>. When the ASCil option is selected,
both the number flag and the ASC flag will be displayed
on the screen; when the hex option is chosen, only the
number flag will be displayed.

When in the hel input option, you may CNLY input in
the hexidecimal number system. Uilike when entering the
drive, track and sector numbers (see the discussion of
Toggle Base above), input into the hex display may not
be done in decimal, but only in hex. "Oierefore, even if
you have elected to be in the decimal base by pressing
<9-IlFT><@> to toggle the number input from hex to
decimal from the Master Menu, the system will interpret
all numbers input as hexidedmal. "Ole proper
hexidecimal number to bg entered is chosen by looking at
the Appendix and determining the ASCil equivalent you
desire to generate, or by otherwise detevmining the
number which will affect the desired result to the
operation codes of the disk sector such as BASIC line
pointers (see gene r ally Part Il on disk repair). When a
number change is made t o the hex display, the
corresponding ASCil symbol will be alte r ed at the

25

position of the cursor in the ASOI display. If an
operation code is being generated, its corresponding
screen display symbol will be displayed in the ASOI
display as well (if the ASOI numeric equivalent is

above 127 decimal, a graphics symbol will be
displayed - see you BASIC manual).

When selecting the ASOI option, you may directly
enter ASClI symbols into the ASClI display at the
position of the cursor by pressing the key indicated by
the fifth column of the Standard ASClI Cllaracter Set in
the Appendix. When the ASOI symbol is generated, the
symbol's he:xidecimal numeric equivalent (see Appendix)
will be displayed at the corresponding cursor position
in the hex display. Note that some symbols may only be
generated by selecting the number option and entering
the numeric equivalent into the hex display. 1his is
because the keyboard is not able to generate these
characters. 1hese instances are indicated by the phrase
Hex Input Only in the fifth column of the Appendix.

When inputting data, you may repeat the last byte
entered by pressing <EN1ER>. 1his is handy for filling
or clearing sectors.

Writing the Zapped Sector Back to Disk

Once you have made the changes necessary to fix the
disk, you may write the sector back to the disk. To
write, press the <BREAK> key. On the command line will
appear the prompt: "Write or return?" By pressing <R>
you will exit the write command and return to the
pre-write screen display in the Moclify mode. If you
press <W> the system will prompt "Drive, track, sector?"
awaiting input of the location to which you wish to
write the sector. If you press <BREAK> again you will
exit back to the File Zap menu.

You may input in decimal or he:xidecimal and you may
specify any drive, track and sector. Once you have

26

input the numbers and pressed <ENIER> the system w:il1
prompt ''Do you really wish to write?" Press <Y> to
write the sector; press any other key to abort the write
and return to the modify function with the same sector.
Whenever the system writes to the disk, it verifies tbe
write to make sure no errors were made in the transfer.

Once you have written a sector to the disk you may
return to the File Zap menu, or back to the Master Menu
to call up another sector for moclification.

Printing Functions

The VlP Disk-ZAP provides the opportunity to print
the contents of your diskfile or transfer the contents
to another RS-232 compatible device. This is referred
to as "Printing" a sector, and may be done both from the
File Zap and the Disk Zap menus. This can be very
useful for obtaining a hard copy of corrections or data
you have entered into a disk for inspection, as well as
for transferring a file to another system for future
manipulation, such as by using the VJP Terminal.

<P> Print Sector

Printing a sector refers both to sending a sector
to a printer and to transmitting a sector to any other
RS-232 compatible device. The data w:il1 be sent to the
printer or modem at a default baud rate of 600 baud; you
may select a different baud rate by using the Set Baud
Rate function accessible from the File Zap menu. 1f a
baud rate different from the default rate is to be
selected, it must be done before selecting the Print
Sector function.

Before you may select the Print Sector option you
must have a sector file resident in memory. When you
are ready to Print, press <P>. \\hen you press the <P>
key the command line w:il1 give the prompt "Output to
printer or modem?" If you press <P> in response to this

27

prompt, the system will present prompts for sending the
sector to the printer. If you press <M> the system will.
prompt you to send the sector to a modem or other RS-232
device.

If you pressed <P> a second time to send the sector
to a printer, the system will. allow you to choose
between sending a forty or an eighty character line.
The system prompts: "40 or 80 characters per line," and
awaits your input of a <4> or an <8>. The display will.
be sent to the printer when you input either of these.
Your selection depends on the capabilities of your
printer (see your printer manual). The printer will.
print the hex display on the left side of the paper
followed by the ASCil equivalents on the right side of
the page. Non-printable ASCil graphics or control code
symbols are printed as periods. You may pause printing
at any time by holding the space bar. Resume printing
by pressing any key except <BREAK>. Pressing <BREAK> at
any time will. end printing.

If you pressed <M> to send the sector to a modem or --
other RS-232 compatible device, you will. be given two
options. Your first option is between sending the
sector in its binary object code or sending it in its
hex-ASCil format. The system will prompt with "Binary
or hex ASCil output," to which you may respond with a
 for binary or <H> for hex-ASCil. The binary form is
that which would control the computer or is a tokenized
form of a BASIC program; the hex ASCil form is that
which could be used to inspect the contents of the
sector.

If you choose to send a binary file, one e you have
pressed the file will be sent. If you have chosen
the hex-ASCil format, the system will again allow you to
choose whether you desire the hex output in 40 or 80
character lines. To choose either, press <4> or <8>
after the prompt "40 or 80 characters per line." When
you press your selection the system will send the sector
to the modem.

28

 Set Baud Rate

1his function allows you to select the proper baud
rate to use while using the Print Sector function. 1he
default baud rate is 600; this feature need only be
accessed if you desire a different baud rate. 1he
VlP Disk-ZAP allows you to choose six clifferent baud
rates: 110, 300, 600, 1200, 2400 and 4800. \\hen you
press a menu will appear showing the clifferent rates
and the corresponding key to press, from <1> to <6>.
After you have selected the desired baud rate by
pressing the appropriate key (<ENTER> will select 600
baud), the system will return to the File Zap menu for
further work.

29

<D> Disk ZAP

1he alternative method for disk repair, other than
the File Zap function, is the Disk Zap function. 'niis
alternative allows you to view the disk as a whole and
make repairs throughout the disk. 1his alternative is

particularly helpful for making repairs to the
directory, which may not be called up as a diskfile
using File Zap, or for repairing a crashed directory or
other sector. Disk Zap is selected from the Master Menu
by pressing <D>. Once selected the Disk Zap menu
appears awaiting your selection of the appropriate
command. 1he Disk Zap menu has the following commands:

Last Track <E>: Accesses and displays the last
track of the disk.

First Track <F>: Accesses and displays the first
track of the disk.

Modify Sector <M>: Enters the modify mode to
modify the sector displayed on the screen.

Enter Drive <J>: Allows you to specify a
particular Drive, Track and Sector for
manipulation.

Enter Track <T>: Allows you to specify a
particular Track and Sector on the existing
Drive for manipulation.

Locate <L>: Will allow you to find all
occurrences of an ASClI or numeric string on
your disk.

Print Sector <P>: Allows the current sector to be
sent to any RS-232 device.

Set 	Baud Rate : Elicits a menu for selection
of the proper baud rate for transmission.

30

Minus 1 Sector <Left Arrow>: Moves back one
sector in the disk.

Add 1 Sector <Right Arrow>: Moves ahead one
sector in the disk.

Minus 1 Track <Up Arrow>: Moves back a single
track in the disk.

Add 1 Track <Down Arrow>: Moves ahead one track
in the disk.

Exit Disk Zap <BREAK>: Exits from Disk Zap to the
Master Menu.

Below the menu is a listing of drive, track and
sector numbers, listing the numbers of the last sector
accessed, the l.IDEC and ASaI indicators and the prompt
''Disk Request?" asking for a command from the Disk Zap
menu.

Many of the commands in the menu are the same as
those available from the File Z.ap menu. 1his w.ill be
noted as each is discussed below. 1he commands in the
menu w.ill be discussed in a logical order below.

1he first set of related commands are those used to
access the disk. 1hese include: 1) the Enter Drive and
Enter Track commands which allow you to call up a
particular drive, track and sector· of a disk and to keep
track of which track and sector you are working on;
2) the First and Last Track commands used for easy
movement to the beginnir1g or end of the disk; 3) the
Locate command used to find all occurrences of a
particular string sequentially in the disk; and 4) the
arrow commands which allow sequential access backward
and forward of sectors and tracks when accessing a
sector.

1he second set of commands allow manipulation of
the disk to be repaired. 1hese commands are all used in

31

the Modify function, and include the ASOI/hex input
option, the arrow keys used to move the cursor about the
sector being modified, and the Write command used to
save the Zapped fil.e to the disk.

1he third set of commands relate to Printing or
transnnttmg a sector. 1his set includes the Print and
Set Baud Rate commands. 1he final function is
controlled by the <BREAK> command which allows exit from
the Disk Zap function.

Disk Access

Initial disk access is made by using the Enter
Drive and Enter Track conunands. For those with only one
disk drive or with a desire to use only one disk drive,
there will be no need to use the Enter Drive command.
1he First Granule and Last Granule commands as well as
the Locate command will take you to a place to begin
work. Once the area has been located, you may move
easily about the disk from that point by using the First
and Last Track commands and the Left and Right Arrow and ~
Up and Down Arrow commands.

<T> Enter Track

1his command is initiated by pressing <T>. Upon
pressing <T> the prompt "Track, Sector?" appears below
the menu on the command line. You may specify the track
and sector in either the hexidec:imal or the decimal
number system. See the Toggle Base command in the
discussion of the Master Menu. To access a particular
track and sector, enter the desired numbers, separated
by a comma, after the prompt and press <ENIER>. If you
desire to access thellast track and sector called up,
press <ENIER>; if you desire to access a different
sector in the same track, you need only input a comma to
indicate the same track and then the sector number.

32

EXAMPLE 1: 1RA<X, SECICR? 5,6<ENIER>
EXAMPLE 2: 1RAcX, SECICR? ,8<ENIER>

In the first example sector six of track five will. be
accessed. In the second example, sector eight of the
last accessed track, here track five, will. be accessed.

NOIE: It is only when entering the (drive+, track and
sector number or when using the Locate conunand that the
decimal number system may be used for input.. .

When you have entered the numbers of the track and
sector you desire and pressed <ENIER>, the system will.
locate that sector and display it on the screen. By the
ASOI display will. be the GRAN, ORV, TRK and SEC
indicators giving your present location, the UXDEC flag,
and below that a prompt ''Disk Request." You may enter
another command from the Disk Zap menu or you may move
from there by using the left, right, up and down arrows
to move around the disk by sector and by track (see the
discussion of the arrow key functions above in the File
Zap section). Pressing <ENTER> at any time will. exit to
the Disk Zap menu; pressing <BREAK> will. exit to the
Master Menu.

<J > Enter Drive

1hi.s command is initiated by pressing <J>. t:pon

pressing <J> the prompt ''Drive, Track, Sector?" will.

appear below the menu on the command line. You may

specify the drive, track and sector in either the

hexidecimal or the decimal number system.

As with the Enter Track command, you must enter the
number of the desired drive, track and sector to be
accessed, separated by commas, and press <ENIER>.
Replacing the drive or track number with the comma will.
specify that the same drive and track number as last
accessed is desired. To access the identical drive,
track and sector as last accessed press <ENIER>. When

33

you have entered the numbers of the drive, track and
sector you desire, the system will locate that sector
and display it on the screen. By the ASCil display will
be the GRAN, ORV, TRK and SEC indicators giving your
present location, the l.IDEC flag, and below that a
prompt ''Disk Request." You may enter another command
from the Disk Zap menu or you may move from there by
using the arrows keys to move around by sector and by
track. Pressing <ENIER> at any time will exit to the
Disk Zap menu; pressing <BREAK> will exit you to the
Master Menu.

<E> Last Track

1his command will cause the system to call up the
first sector of the last track of the disk. Press <E>
for execution. You may use the Locate and arrow
commands to continue from there. Press <ENIER> to
return to the Disk Zap menu.

<F> First Track

1his command will cause the system to call up the
first sector of the first track on the disk. Press <F>
for execution. You may use the Locate and arrow
commands to continue from there. Press <ENIER> to
return to the Disk Zap menu.

Auow C.Ommands

These commands are the same as those in the File
Zap function. Refer to that section for a discussion of
them.

34

<L> Locate

1his command can be of great use to those who wish
to use the VJP Disk-ZAP to correct just one or two
mistakes in an assembly language source program, or find
any occurrence of an ASOI string or a number in a disk
for that matter. When you press <L> to execute this
command, the prompt "Locate:" appears on the command
line below the menu awaiting your input. Input may be
either in numbers or ASOI, toggled by pressing <0.EAR>.

When locating numbers, the ASCll flag must be off
(by pressing <a.EAR>), and if a string of numbers is
being located, each number in the string to be located
must be separated by a comma. For example, if you
wished to locate a string with two numbers, 88 and 135,
you would enter 88,135<ENIER>.

ASOI strings may be input in uppercase only, or in
both upper and lower case. Case is originally uppercase
only and is toggled by pressing <s-DFT> <O>. Note that
when you are in the lowercase mode using the non-ASCll
display option (see discussion of screen display above),
lowercase characters will be represented by punctuation
and other anom.olous symbols. 1his is due to the
non-standard character generator chip used by Tandy in
the C.olor Computer.

After you have entered the desired ASOI or number
string, press <ENIER>. 1he system will locate the first
occurrence of the string in the disk, display that
sector in the AS(][display and will stop there with the
cursor immediately following the string. Below the
ASCll display is a BYIE indicator which indicates the
relative location of the last character in the string in
number of bytes, in the number base you selected, from
the beginning of the sector.

On the command line will appear the prompt
"Continue or Exit?" To continue to the next occurrence
of the string press <C>. You may continue to the end of

35

the disk and beyond. 1he VIP Disk-ZAP supports certain
systems which use tracks beyond the 35th track
accessible by the standard C.Olor C.Omputer operating
system. When the program reaches the end of track 35 it
prompts: "C.Ontinue or Exit." 1hose of you having a
system using a format of over 35 tracks may continue
Locating through those files by pressing <C>. 1hose
with the standard 35 track format must press <E> to exit
the Locate function, When you exit the Locate function
the ASClI display will remain intact and you will be
prompted: ''Disk Request" on the command line. You may
then proceed to call up any command from the Disk Zap
menu, such as Modify (if you want the Disk Zap menu
press <ENIER>), or press <BREAK> to exit to the Master
Menu.

During a Locate, or any read function for that
matter, the system may encounter a faulty sector. If so
it will perform a Verify function on the sector to
determine the nature of the error. For more information
see the Verify section above.

Disk Repair C.Ommands

1his section consists of the Modify command and its
sub-commands. 1he Modify command and its sub-commands
in the Disk Zap function are identical to those in the
File Zap function. Please refer to that section for a
thorough discussion.

Print C.Ommands

1he print commands consist of the <P> Print Sector
command and the Set Baud Rate command. 1hese
commands in the Disk Zap function are identical to those
in the File Zap function. See that section for a
thorough discussion.

36

Killing Disk Files

<K> Kill

1his command is used directly from the Master Menu.
It is used to kill diskfil.es. When you press <K> a
prompt "Kill Disk File?" will appear on the command line
below the Master Menu. You must then input the name of
the diskfile that you desll:e to kill, including
extension and drive number, and press <ENTER>. 1he
system will not automatic ally kill the file, but will
fust seek authorization by prompting "Do you really
wish to kill?" Pressing <Y> will kill the file;
pressing any other key will abort the Kill and bring
back the "Request?" prompt for further action from the
Master Menu.

37

http:diskfil.es

PART II ZAPPING TECHNIQUES

Introduction

With care - extreme care - and luck you should
never have a need for the VJP Disk-ZAP. All you have
to do is filw~ backup the files you are working on,
both periodically while you are working on them and when
you are finally done. You also must take special care
of your entire computer system and your disks. You can
keep the bus connections on your disk pack plugs clean
using a large pencil eraser; you keep your disks in
shape by not using them for second base in a whlffle
ball game, or a swab for your ketchup. By the way, data
is stored on the back side of the disk, so avoid
touching all exposed parts of the disk, especially those
on the back side.

Still, even with the utmost of care, your disks can
become garbled. Your wife could put them into a
toaster, or, more likely, the operating system could be
finicky and deconstruct both your master and backup
disks. 1hen it's VJP Disk-ZAP time. One word of
warning, though. Not every crashed disk is repairable;
some crashes may be caused by defective or damaged
disks.

1here are generally three types of persons who will
use the VJP Disk-ZAP. 1he first is the experienced
machine language programmer. Such a person will know
most all there is to know about zapping disks, and will
probably never even read this section.

1he second type of person is the intermediate to
experienced BASIC or other high level language
programmer. 1his person is constantly using the disk
system to write programs and is likely to encounter disk
errors. Since BASIC programs are normally saved to the
disk in a tokenized machine-language form, correcting
such files may be difficult without learning some

38

machine language concepts. This manual cannot hope to
teach those concepts, and instead is devoted to helping
those who save files in ASaI. (We have, nevertheless,
provided the curious with a list of the BASIC tokens in
the appendix. Gook luck!)

BASIC programmers can save a lot of trouble if,
instead of saving programs in the usual manner, they
save the programs in the ASCll format
(SAVE"filename" ,A<ENIER> - see your BASIC and Disk
manuals). You can then make full use of the VJP
Disk-ZAP without having to learn machine language.
Added to this is the fact that you can then load the
progr am into an editor, such as the VJP Writer, for fast
and easy editing.

'Uie third type of person likely to use this program
ts the individual who is not and never wants to be any
kind of programmer. He or she just wants to fix disks
to retrieve valuable ASaI files created using some
utility program such as a word processor, like the the
VJP Writer. Since recovery and restoration of ASCll
files is the true purpose of this program, this portion
of the manual has been written with this person in mind.
Although we attempt in this part to teach some
ruclimentary concepts of disk repau, we do not promise
to teach you any but a mirumal amount on the subject.
To become an expert you must read reference works and
get plenty of experience.

Disk Structure

In order to understand disk structure, you must
understand how numbers are used in many computer
applications. Often, items in computer applications are
numbered beginning with zero instead of one. 'Uius,
there are 35 tracks to the disk, numbered from 0 to 34.
A convention has been developed to refer to such a
counting method which considers 0 as the first number.
'Uiese numbers are referred to as "relative" numbers.

39

'illus, the fust track is relative track zero; the 35th
and last track is relative track 34. 'Ibis convention
can be very confusing, so be careful to keep tabs on
which is being referred to.

Before beginning to repair a disk you must fust
understand how data is stored on a disk. Cllapter 11 of
your CQlor~uter Disk .S_y_stem book is devoted to this
topic and is essential reading. Since Western Digital
Corporation is the maker of the Disk Controller chip
which controls your disk drive, you may also turn to
their publications on the controller chip for some very
technical explanations. See the following of their
publications: filJJ.2X:-02 Floppy Disk For1J!!!tt!L
Qm!_t.__Q._ll~ amil~ and ill.UJX...Ap.J?.lic a tion No_t.tl-

In discussing disk structure, we've got to be
concerned about five categories of disk structure. From
smallest to largest unit these are: Bytes, Sectors,
Granules, Tracks and the Directory.

First off, A byte is a unit of data equivalent to
one character, such as the letter "Z'' or a comma. 'Uie
data you putcon yo-µr disk is put there in byte units,
and the remaining parts of the disk are made up of
conglomerations of bytes. Of course, a character is not
put on the disk; instead, the numberic equivalent of a
character is put there. 1f you are not storing ASOI
characters, numbers are still stored, but they don't
equate to characters, but to some token or operation
code. 'Uie numbers ere storee in binary form, that is,
ones and zeros. Since those are hard for us to read,
they are converted into hexidecimal (and sometimes
decimal) numbers for monitor display, Each byte
contains a combination of eight ones and zeros, allowing
representation of numbers of up to FF hex (relative 255
decimal), Each one or zero is a bit, so there are eight
bits to the byte.

40

A Sector is the next smallest part of disk
structure. With the Radio Shack Color Computer
operating system, each sector contains 256 data bytes.
It is these data bytes you see in the ASCil display when
using this program. 1he sector is also surrounded by
identification bytes used for such things as telling the
system where this sector is for reading from and writing
to this sector. 1hese ID bytes, which are set when the
disk is initially formatted, cannot be displayed on the
screen, nor can they be zapped using this program. In
these ID bytes are also bytes used to make sure what was
being written to the sector got there intact. 1hese
bytes are called cyclical redundancy check ("CRC')
bytes. If the sum of these bytes is not what the
computer expects it to be, i.e., the "checksum" is off,
a CRC ERROR occurs. More on this later.

NOIE that since the number of data bytes per sector JS

controlled by the operating system, some operating
systems have sectors with fewer or more than 25 6 data
bytes.

1he next largest unit of disk structure is the
Granule, but since it is more easily understood after
you understand what a Track is, the Track will be
discussed first. With the standard Color Computer
operating system a disk contains 35 tracks numbered from
O to 34, and each track contains 18 sectors, numbered
from 1 (not O) to 18. Each track is surrounded by extra
bytes for ease of location by the disk drive. (Some
systems allow use of formats having more than 35 tracks
per disk, and those systems are also supported by the
VJP Disk-ZAP.) Of. the 35 tracks, 34 are avail.able for
your files. The other track, track 17, is reserved for
the directory (discussed below).

Now to the Granule. A granule is not so much an
element of disk structure as it is a function of the
operating system. It is the smallest unit in which
files may be saved to the disk by the operating system.
In the Color Computer that size is nine sectors. 1hat

41

is exactly one-half a track. 1hus, with the 34 tracks
avail.able (the directory track is not available) for
your files, there are 68 granules on the standard Color
Computer disk. 1he VJP Disk-ZAP contains a GRAN
indicator on the screen when any disk access is made to
allow you to keep track of which gran you are in.

As was sald above, Track 17 (11 hex) is set aside
for system use for the Directory. It contains the
information the operating system needs to catalog what
your files are, where they are located on the disk, and
how much space they occupy. 1he directory track will. be
the focus of much of your attention when repattmg
disks, so it will be given the most detailed attention
here.

Like other tracks, the Directory Track contains 18
sectors, but only ten are presently used by the
operating system. 1he directory can be divided into two
sections: the file allocation table (more commonly and
from now on called a granule allocatior:, table - GAU
residing in sector 2; and the directory ent ry section,
sectors 3 to 11, which are devoted to identification
information about each of the files stored on the disk.

Although the GAT sector occurs first in the track,
it will. be more easy to understand if it is discussed
after the directory entry section. Directory entries
are each allocated 32 bytes, but only 16 are used.
Before describing the functions of the various bytes,
remember that when you are looking at the ASClI display
you must go into the Modify function to see the numeric
equivalent for that ASClI symbol. Jn the Modify
function, you will. be given the hexidecimal numeric
equivalent of the ASClI symbol in the HEX display in the
bottom half of the screen. To find the he:xidecimal
equivalent of any particular ASClI symbol, move the
cursor over that symbol and look at the number at the
position of the cursor in the HEX display.

42

The first eight bytes, starting from zero, are
reserved for the filename. The next three bytes are for
the extension. Note that the "/'' used to separate the
filename and the extension when you save a file to disk
is not stored in the directory. That is because it is a
command to the operating system to treat the next three
bytes as an extension. The eleventh byte tells what
type of file this is. The binary equivalent of O means
it is a BASIC program; 1 is a BASIC data file; 2 is a
machine language program and 3 is a text editor source
file. The twelfth byte tells whether the file is stored
in ASClI or binary format, 0 for binary and 255 (FF hex)
for the ASClI format. The thirteenth byte tells the
relative number of the first granule in the file. It
may be from 0 to 67 (43 hex). Bytes 14 and 15 tell the
relative number of bytes used in the last sector of the
file. Since a sector in this operating system may
contain only 256 bytes, byte 14 will always be 00 and
byte 15 will give the end-of-file byte unless all 256
bytes are used, in which case byte 14 will be 01 and
byte 15 will be 00. The remaining 16 bytes in the
directory entry are reserved for future use. Each of
the 16 bytes used will become of immense importance when
you desire to reconstruct a directory or a file.

The Granule Allocation Table (GAn sector contains
68 bytes of concern to us. Each of these bytes relates
to each of the granules on your disk, in sequential
ascending order, from 0 to 67 (43 hex). Thus, byte 0
corresponds to granule O; byte 43 hex (67 decimal)
corresponds to granule 67. (Remember that the directory
track, track 17, is not used for data storage, and thus
is not allocated granules.) 'Tbe contents of these bytes
corresponding to the granules may contain three
dlfferent types of numbers (in hex): FF, 00 to 43 and
CO to C9. Look at the hex display of the sector in the
Modlfy function to see the numeric value of each
location. The BYIE indicator will tell you which byte
(in hex) and thus which granule you are considering.

43

If the byte contains an FF hex (25 5 decimal), the
corresponding granule is free and not part of any disk
file. If the byte contains any of the numbers from 0 to
43 hex, this indicates that the corresponding granule is
part of a disk file, and the number points to the next
granule in the file. If the byte contains any of the
numbers from CO to C9 you are told two things. 1he C
mdicates that this granule is the last granule of a
disk file. 1he number, from 0 to 9, mdicates the
number of sectors m the granule that are part of the
disk file. Note that to determine the number of bytes
m use in the last sector you may refer to bytes 14 and
15 of the directory entry for the file in the directory
track.

1his abstract explanation has probably floated by
in several swigs of beer, Let's make it more concrete
by tracing a hypothetical file named 1ESINAME/VIP. When
sector three of the directory track is called up, the
name 1ESINAMEVIP would occupy the first eleven bytes,
from 0 to 10. 1ESINAME would be the filename and VIP
(VIP Writer file) would be the extension. Byte eleven
would tell that this is a data file, byte twelve would
mdicate that it is an ASOI file. 1he thirteenth byte
would tell you the relative number of the first granule
of the file. Here let's assume the number in byte
thirteen would be 5. With this number you could go to
the GAT sector (track 17, sector 2), and you would then
go into the Modjfy function, You would see both the
ASOI and HEX displays. Recall that the number obtained
from byte thirteen was 5. Paymg attention to the byte
indicator, you would move the cursor over the fifth
byte. Ut is most helpful for granule tracing to have
selected the hex option from the Master Menu so that the
BYIE indicator and the HEX display numbers will both be
in hex.) In the fifth byte would be a number other than
FF smce the granule would be part of the 1ESINAME disk
file. Let's say the number would be 32 (20 hex). 1his
number would tell you the next granule in your file.
You would then again look in the GAT sector to see what
granule 32 would contain. It would not hold FF hex

44

since again it would be part of the disk file. Let's
say this time that the number in byte 32 would be C3
hex. 1his number would indicate that this gram:le would
be the last granule of your file (the O and that only
three of the nine sectors in the granule would be part
of the file. Now you would know the last sector of the
disk file. To find out the number of bytes in the last
sector which are part of your file you would have to
return to sector three of the directory track where the
directory entry is located and check bytes 15 and 16
(relative bytes 14 and 15), Bytes 15 and 16 give a
number which is the number of bytes in the sector, up to
25 6 decimal, used by your file. You would use this
number and go to the last sector of your file to find
the end-of-file point. If only a portion of the sector
were devoted to your file, the rest of the sector would
be filled with garbage.

One last thing remams for proper handling of the
granule information: granule to track conversion. 1his
is essential to be able to determine from the granule
number obtained from the directory which track your
files are on since this program and the disk are
track-oriented. First, convert the hex number you have
obtained into dedmal for easy manipulation (see decimal
to hex conversion chart in Appendix). Divide the number
by two. The result will. be used to obtain the track
number. If the number is less than 17 it is the track
number; if the result is over 16, add one to the result
(because the directory track occupies track 17), and
this is the track number. If the remamder after the
division is O, go to the first sector of tbe track; if
the remainder is 1, go to the tenth sector of the track.
To go from track number to granule number reverse this
procedure. If the track number is under 17, multiply by
two to get the granule number. If you are concerned
with sector 10 or beyond of that track, add one to the
result to get the granule number. If the track number
is 18 or more, add an additional two to get the granule
number, Remember to convert the decimal number back to

45

hexidecimal if you need to (i.e., you have selected the
hex number option).

Now you know just about all you ever wanted to
about where your file is on the disk.

The Operating System

Your disk system is comprised of hardware and
firmware. The hardware is the disk drive; the firmware
is the conglomeration of chips in you controller pack.
Central to these is the floppy disk formatter/controller
chip supplied by Western Digital C.Orporation (see
above). This chip controls how the disk drive w:iil
work, and signals if things aren't working right.

In the controller pack also is Tandy's C.Olor
C.Omputer operating system program chip. The disk
operating system is a program supplied by Tandy which
controls how your files are saved to and read from the
disk. It determines the diskstructure for its purposes,
such as the number of tracks, sectors and data bytes,
and it controls formatting and killing the disk. It
determines how and where files are placed, and what to
do if files cannot be read or written. Knowledge of the
inner workings of the operating system is not necessary
to repair your disk. Its idiosyncracies should,
however, be understood for proper comprehension of error
prompts and for comprehension of the clifficulty of
restoring killed files.

The C.Olor C.Omputer operating system is fairly
simple and straightforward. It doesn't offer many of
the features available with operating systems on more
expensive computers; yet, this makes the operating
system less difficult to understand and makes it less
difficult to repair operating system ger,eHJted errors.
The disk controller hardware is supplied by Western
Digital C.Orporation. The Western Digital controller
chip gives specific indications of particular errors

4l

when they occur. The Tandy operating system does not
directly use these indications. Instead, it generalizes
the error indications into general error messages.
These operating system error prompts thus may tell you
very little about what the real error is. Errors are
discussed in more detail below and this idiosyncracy
will. be discussed more there.

The second significant idiosyncracy relates to the
manner in which disk files are "KJLLED". When the C.olor
C.omputer operating system kills a file it places a 00 in
the first byte of the directory entry, thereby
eliminating the first letter of the file name.
Otherwise the directory entry for the file is not
altered. The real change is done to the granule
allocation table sector. The operating system places an
FF in the byte corresponding to the number of each
granule allocated to the file to tell the system that
this granule is available for use. ('Ihe actual data in
the respective granule on the disk remains intact, and
will. be overwritten when the granule is next used.)
This general erasure of the granule allocation
information makes killed disk files very difficult to
reconstruct. For more information, consult the section
below entitled "Retrieving Killed Files."

47

DISK REPAIR

Introduction

If you encounter an error while using your disk you
will know about it since you will either not be able to
read from or write to the disk. When this happens you
may have two options. If you are lucky enough to have a
backup copy of your disk you may be able to backup your
backup copy using the Backup command from BASIC. lf you
do not have a backup copy, or your ha ckup copy is also
crashed or unreliable, you then must consider repair.
Disk repair requires that you use certain tools and that
you follow a sequence of tests to determine and then fix
the error.

1he tools you will need are these: first and
foremost, one or more formatted disks on which to write
any files or sectors as may be required; a sharp pencil
and a notebook to scrupulously record the nature and
location of any error and to outline the steps for
repair; and any or all of the following - a pot of
coffee, your favorite brew, a good dose of patience and
maybe something handy to smash.

Errors - Types, Causes and Repairability

Errors and their correction are at the heart of the
VIP Disk-ZAP. 'Ums, a proper diagnosis of the error
encountered is essential to proper disk repair. 1bere
are several ways to classify errors. 1be most essential
classification is between those repairable and those not
repairable. Another classification is between "hard"
and "soft" errors. A third classification is according
to the error messages that appear on the screen when a
read or write is blocked because of an error.

Repairability is a fluid classification. You won't

always know that something cannot be repaired until you

48

have tried everything and cannot make a repair.
Sometimes you will know that the error is due to damage
to the disk and that repair is not worth attempting.
For example, you dropped your disk on your barbeque
grill, or spread mayonaise on it. In such cases you
need only consider whether or not to salvage what you
can from the disk.

'Uie "hard/soft" classification refers to errors due
to disk damage or defect vs. errors due to operating
system failure. Errors emanating from disk damage or
defect are usually not repairable, Disk damage includes
defective manufacture, scratches, creases, spilling
things on the disk, punctures, or a heavy dose of static
electricity. Errors emanating from operating system
failure may or may not be repairable, depending on the
type of error.

One cause for operating system error which you
should always look for is Bad C.Onnections. A bad
connection between your disk drive and your computer ts

usually caused by dirty connections. It can lead to
almost any kind of error message since it causes faulty
reads and writes of ail sorts. 'Uiis is a problem which
should always be looked for when errors are erratic, and
different error messages occur when you retry the read
or write. 'Uie fix is with the hardware. First turn off
your whole system. Next, erase the connecting plugs
with a large pencil eraser, or jiggle the connectors to
get a better connection. Now turn on your system to see
if you still get the errors. If so, try cleaning again.
If it still continues, and there is nothing wrong with
your disk, there may be something wrong with your drive,
disk controller or computer.

Error Prompts

When you are Verifying the disk to determine the
existence and nature of any errors, or you encounter an
error when performing any other read from or write to
the disk while using VIP Disk-ZAP, you may be presented

49

with one of several different error messages. 1hese
error messages, are listed below with most of their
causes: NOTE: 1hese messages are not supplied by the
operating system, but derive from the Western Digital
disk controller chip (the Tandy operating system
translates almost all of them into the ubiquitous "I/O
ERROR"). 1he operating system messages are generalized
from these and will be of little use in diagnosing
errors. 1hat's why you purchased this program.

Error Messages During A Read

Drive Not Ready: 1his message has several causes,
mostly relating to the disk drive somehow not being
ready to operate. Usually this comes from the drive
door not being closed or no disk being in the drive. It
can also be caused, however, by a parity error, by a
crashed directory, by a defective or damaged disk, or by
an unformatted disk in the drive.

Record Not Found: 1his message indicates that the
operating system could not find the specified drive,
track and sector. 1his could be due to incorrect input
of the numbers, faulty ID bytes, a crashed directory, or
a damaged diwk.

me Error: 1his message indicates that an error has
been found in the checksum which indicates that the
sector located has been incorrectly saved by from one
bit to all 256 bytes. 1he checksum fault may occur in
the sector ID bytes or data bytes. 1his error is the
easiest to correct.

Lost Data: 1his message indicates that the system has
failed to read ever} byte of data. It is rarely
encountered, but if it is, try again. If it continues
to recur, your disk drive may need adjustment.

Data Request: 1his message indicates that the system ts

not receiving data for some reason.

50

Bad Data Address Mark: 1his error occurs when there is

an error in the sector ID bytes making the sector
unreadable.

Bad File: 1his error occurs on a read only and
indicates that the directory is faulty. 1his error will
be indicated by either an asterisk or an "R" next to a
file when you call up the directory of your disk. See
the section on the Directory command in Part I.

Error Messages During A Write

Error messages during a write are the same as the
following during a read: Drive Not Ready, Record Not
Found, CRC Error and Lost Data. In addition the
following error messages occur only during a write:

Write Protect: 1his messages indicates that the system
cannot write to a disk because it is write protected
with a write protect tab over the slot. Check to see if
you left the VIP Disk-ZAP master diskette in your drive
or have put a write protected disk in the drive.

Data Request: 1his message indicates that the system is
not able to send data for some reason.

Write Fault: 1his error indicates that the operating
system or disk system made an error while writing. Try
again. Jf this error message continues, your computer
system may need readjustment or repair.

The Fixes

As you can see, most of the error messages do not
define the cause of the error encountered or specify the
method for repair • .A.Il the messages indicate is what
has caused the system to be unable to read or write.
The errors which are specific are: CRC Error and Write
Protect. Don't forget that errors may not only be due
to faulty disks, but may also be due to bad connections

51

between your drive, disk controller and computer, or to

faulty equipment. 1hi.s problem was discussed above.

The fixes for all the errors can be divided into
·"automatic" repairs, minor repairs and modifications,
and disk rebuilding. The latter two can sometimes be
quite time consuming. Fortunately, by far the most
often enountered error is the rnc Error, and it is the
easiest one to correct - nearly automatic.

Automatic Repairs

Most errors you will encounter will be repairable
"automatically". What is meant by "automatic" is that
the errors can be corrected by rewriting the bad sector
back to itse1£. The error messages which can be fixed
this way are: rnc Error, Drive Not Ready and Record Not
Found. The rnc Error can usually be fixed this way; the
others less so.

rnc errors can have two general causes. Either the
operating system just made one of its rare mistakes, or
the disk sector with the rnc error has become "£1.oosy."
Unfortunately, a sector which is physically bad may not
always appear bad. Sometimes it may act normal and may
be written to; other times it will have a rnc error.
Thus, although this "automatic" repair will be permanent
for rnc errors caused by the operating system, it will
not permanently repair rnc errors caused by a £1.oosy
disk. The proper repair for such a problem is to
temporarily repair the bad sector, read the file off the
disk and save it to another part of the disk under a
different name, and then allocate the bad granule so
that it cannot be used again (see granule allocation
below).

To explain how to make an automatic repair it will
be assumed that you have verified the disk and found the
sector(s) containing this error. Using the Cisk Zap
function, use the <T> or <J> command to access the bad

52

sector. When found, go into the Modify function and do
the following: press <BREAK> to write the sector to the
disk, answer the DRV, TRK and SEC prompt with the number
of the bad sector and press <ENIER>, answer the ''Write
or return" prompt with a <W>, give the drive, track and
sector numbers for the write (press <ENIER> for the same
ones), and answer the prompt "Do you really wish to
write?" with a <Y> and the sector will be written back
to the disk just as it is. 1his should correct the
sector and you can continue to other errors, if any.
You should try to read the sector to see if the fix
worked.

The Drive Not Ready and Record Not Found errors may
sometimes also succomb to this treatment. If this fix
does not work you will have to try something else.

Minor Repairs and Modifications

Minor repairs and modifications cover many
situations, which could involve your desire to modify a
file created on one program for use in another program,
or your need to make a minor correction to the GAT or
directory entry sectors. Perhaps you wish to change a
prompt in a program which you feel is irksome. Just use
the Locate and Modif.y sections to find the irksome
prompt in the program, ZAP a new prompt into place and
write the sector back to the disk.

- Reallocating A Granule To Repair An 1/0 Error

One particularly helpful minor correction is
reallocation of a bad granule so that it cannot be used
by the system. When you save a file to the disk from
BASIC, if the operating system encounters a sector which
is physically bad, it will give you an 1/0 error.
Everytime you try to save to tbat disk the sane error
will occur.

53

When this happens, you have to find the bad sector,
and allocate the granule in which that sector resides so
that the system will skip it. 1he way this is done is
to zap a CO hex into the granule allocation table in the
position equated with the granule with the bad sector.
You should recall from the discussion above about the
GAT sector that the number CO tells the system that this
granule is the last granule in the file (the "C') and

11 011that no sectors are being used (the). What this
does is tell the system that this granule has already
been used, so the system w.ill skip it; and since it is
the last one in the file, the system w.ill not look for
another granule related to it.

Here's what you do with the disk with the I/O
error. First use the Verify function to find the bad
sector. Record the exact location of the bad sector
(track and sector number and granule number). Next, if
not already done, convert the number you obtained into
he:xidecimal. 1he next step is to use the Enter Track
command from the Disk Zap menu to call up the GAT table,
track 11 hex, sector 2 hex. Go into the Modify mode.
1he cursor will be at relative byte zero, equal to
granule zero. 1he BYIE indicator w.ill cue your byte
location (be sure you have selected the hex input option
so that the BYIE counter is in hex). Now move the
cursor in the HEX display until the BYIE indicator is
the same number as the granule number containing the bad
sector that you obtained above. Be sure that the ASC
flag is not on the screen so that you w.ill be inputting
into the HEX display (if it is, press <a.EAR>).
Now - zap CO into the byte in the HEX display at the
position of the cursor and write the zapped GAT sector
back to the disk.

Once you have reallocated the bad granule, you will
again be able to write to and read from the disk. You
will not, however, be able to backup the disk using the
BASIC backup command since the sector is still bad. You
should not, therefore, use this disk for much longer;
instead you should copy its files to another disk and

54

discard it. If you do desire to backup the disk, you
may do so with the Read Sectors and Write Sectors
commands from the Master Menu. Read the following
section.

- Backup the lhbackupable

At times you will not be able to backup a disk with
the BASIC backup command, such as when you have to
reallocate a granule with a bad sector. You may use the
Read Sectors and Write Sectors connnands from the Master
Menu to backup such a disk, or copy files off a bad
disk. All you have to do is sequentially read the
tracks from the bad disk, including the directory track,
and write them to the same track on a good disk. Be
sure to copy to the corresponding tracks on the good
disk so that the directory will be correct!

When you're done copying, go into the GAT sector
and de-allocate any granules allocated with a CO because
of a bad sector. To do this follow the instructions for
allocation of a granule above except replace the CO with
an FF hex to tell the system that the granule is
available.

- Fixing A Tokenized BASIC File With A Bashed Sector

BASIC programmers too are subject to the fates.
Disk sectors can go bad, making a valuable program
unloadable. Utless yo1C have a backup copy, you may lose
it. 1.his section will help you recover most of your
lost program.

As was mentioned above, BASIC programs are saved in
a tokenized machine language form in that the BASIC
commands have numeric equivalents (see BASIC Token chart
in Appendix). BASIC files have a special format when
saved. BASIC programs must be loaded to begin in a
specific place in computer memory. 'Uley are stored m
line units, each line unit pointing to the place in
memory where the next line is located. Individual

55

program lines also have a set structure. Each file, and
the first line in the file, begins with a 00 byte.
(1hls and all future numbers in this discussion are in
hex unless specified otherwise.) 1he following two
bytes point to the location in memory where the next
line is to begin. Following that are two bytes giving
the line number of that line of the program. 1he
contents of the program line then follow, tern:inated
with a 00. 1he next line begins with the pointer bytes,
then the next line number, and so on. 1he actual
contents of the program line are tokenized basic
commands and data strings.

To illustrate, a short three line program will be
explained. 1he first program line 11 10 PRNf MEM'' would
look like this in memory:

00 26 09 00 OA 87 FF 93 00

It is assumed for this example that the startir•g memory
location of the program is 2600 (again, all these
numbers are in hex). 1he first 00 tells us that this is
the beginning of the program in the file. 1his first
line is nine bytes long. 1he second and third bytes, 26
09, are the pointer bytes. 1hey tell the computer to go
to memory location 2609 to get the next line of the
program. 1he next two bytes, 00 OA, are the line
number, a decimal 10. 1he next byte, 87, is the
tokenized form of the PRINT command of BASIC; and the
next two bytes, FF 93, are the tokenized form of the MEM
command (for a list of the tokens see the Appendix).
1he final 00 tells the computer that this is the end of
the line, and that it should consult the previous
pointer bytes to find the next program line.

1he next program line is: 20 A$ = NKEY $. 1his
is represented in memory as 26 13 00 14 41 24 B3 FF 92
00. 1he first byte of this line, 26, is located at
memory locatior·. 26 09. 1he 26 13 is the pointer,
telling the computer to go to that location in memory
for the start of the next line. 1he 00 14 is the line

56

number (decimal 20); and so on to 00, the end of line
marker. 1he last line of this little program is:
30 A = PEEK(O), whose hex display is: 26 lF 00 lE 41 B3
FF 86 28 30 29 00 00 00

1his last line begins at 26 13 and points to 26 lF.
Again, there is a line number, and tokenized commands,
and an end of line 00. H you count using all sixteen
fingers, starting at byte 26 at memory location 26 13,
you will see that the 26 IF points to a 00 and it is
followed by a 00. 1his indicates that the f:ile is
ended. Now you know how to find your way through a
BASIC file.

So what happens when a sector of your valuable
program is bashed? Well, first, BASIC will not be able
to read it so you will have to inspect it using the VJP
Disk-ZAP. When you look you will probably be able to
locate the beginning of the line and maybe the pointer,
but the contents will be bashed - maybe the whole sector
will be garbage. One sector is lost. 1he object is to
save what you can of the program so that you don't lose
it all.

1he first step is to use the Read and Write Sectors
command to save the whole program, every sector in every
granule allocated to it, and the whole directory track,
to a good disk. Once you have done this, begin the
operation. Just to tell you now, our goal will be to
load the program back into BASIC having the system
ignore the bashed sector. 1his will require that you do
two things. You first must change the pointer in the
last good sector which originally pointed to the line(s)
in the bashed sector, so that it now points to the first
line in the first good sector after the bashed sector.
Secondly, you must establish a bogus line number at the
beginning of the bashed sector so the system will load
it and so you can easily delete the garbage.

1he first task is as simple as it sounds. Go to

the first good sector prior to the bashed sector and

57

look for the last 00 byte before the end of the sector.
1his tells you a line ends there. Since BASIC lines
must be less than 240 bytes, there has to be at least
one 00 byte in every sector. Now look for the beginning
of that line (which may be in the next sector back).
When you find it (just after the next previous 00 byte)
you will. be looking at the pointer bytes. Be sure to
note the contents and location of these. Also note the
lin.e number from the third and fourth bytes after the
00. Next, go to the first good sector after the bashed
sector and do the same thing: locate the first 00 in
the sector. 1his ends a bad line which emanates from
the bashed sector. 1he two bytes after the 00 are again
the pointer bytes; the third and fourth bytes are the
line number. Note this line number.

Now that you have the line numbers and know where
the OO's are you can repoint . To repoint you must add
the number of bytes between the two good lines to the
number in the pointer bytes of the last good line before
the bashed sector. 1hus, start from the last 00 before
the bashed sector and count the bytes to the end of the
sector; next add to this the 256 bytes from the bashed
sector; finally add the number of bytes from the bashed
sector to the first byte of the pointer after the first
00 in the next good sector. Now you have a decimal
number. C.onvert it to hex with the chart in the
appendix and add it, in hex, to the hex number in the
pointer of the last good line befor,. the bashed sector.
For addition try: PRJNr HEX~ (&H :XX :XX + &H :XX XX),
where the ~s are your hex numbers. The sum is the
number to be zapped into the pointer in the last good
line before the bashed sector. Write this sector back
to itself to complete the zap. Now, when the program is
loaded, the system will. go from that good line to the
memory location of the start of the first good line
after the bashed sector.

Now only one last thing. Go to the bashed sector,
and see if you can find a 00 followed by a pointer and
line number. If so, you need not do any zapping. If

58

not, in the first two byte locations in the bashed
sector zap in a valid line number and then a 00. To be
valid, the line number must be greater than the last
good line number before the bashed sector and less than
the next good line number. Check the line numbers you
noted down to be sure.

Once you have completed these repairs, load the
program into BASIC. It should load nicely, except that
the bashed sector should load as garbage. To get rid of
it, type in the line number you found or zapped into the
bashed sector and press (R\IJ:ER>. When you list the
program the garbage will be gone. Now all you need do
is reconstruct the program line and resave the program.

See how easy it was!

59

Rebuilding Files, Tracks, Etc.

All along this manual has been concerned with ASClI
files. lhat emphasis is even stronger in this section.
Reconstructing BASIC files not saved in the ASClI format
and binary object code files are for the experienced
only; we cannot hope to teach you how to reconstruct
binary files.

Rebuilding files, you should know it now, is REAL
WORK. It is a last resort when all else has failed and
you absolutely must have the data stored on the disk.
lhe degree to which you will succeed will depend
primarily on your patience and planning. You will have
to carefully record contents of sectors and plan how you
will rebuild your files •

lhe primary reason you will ever need to rebuild a
file is that somehow your directory track has been
altered, either by disk damage, operating system
failure, or accidental killing of a file. Directory
failure should be checked whenever you receive the Drive
Not Ready, File Not Found or Disk Bad messages or a CRC
error in the directory, and all other sources for the
error have been ruled out. lhe error may be in the GAT
sector, the directory entry sectors or both.

To determine where the errors are, go into Disk Zap
and access track 17, sector 3 (the first directory entry
sector). Of a CRC Error occurs, try the CRC fix
above.) See if it contains any garbage. 1f all looks
OK there, continue through to the end of directory entry
sectors with file entries. 1f the directory entry
sectors are OK, and even if the directory sectors are
filled with junk, go to sector two of track 17, the GAT
sector, and see if that sector is intact.

Checking to see if the GAT sector is intact is r:ot
the easiest thing ever done. Of course, if the whole
sector is filled with junk, it obviously is bad since
only the first 68 of the 256 bytes are supposed to have

60

anything but FF's (255 decimal), the rest being orange
graphics pixels (FF's).

1f there seems to be the correct number of FF's,
the job becomes more difficult since the other
characters are AS(]I representations of the numeric
equivalents. Go into the modify mode to further check
the numbers in the byte positions. 1f the I-EX display
contains any numbers other than FF, 00 to 43 or CO to C9
(all in hex), some garbage has entered the GAT sector;
this is also true :if the same number, except FF and
CO-C9, appears in more than one position.

Once you have determined that the directory has
been damaged your FIRST task is to clone your directory
to either another disk or to a free space on the same
disk. Do this using the Read Sectors and Write Sectors
conmands from the Master Menu. nus is done so that you
can operate on your sick directory without worrying
about destroying it forever.

Once the directory is cloned, you must then inspect
the amount of damage done to the directory. You will
need to take careful notes to make use of any useful
information about granule allocation that the directory
sectors have to offer. Your task will be to search the
disk sector by sector, granule by granule to find the
sectors of your files. Take careful notes to keep track
of the locations of your files and which granules you
have inspected. You will need to know the exact number
and location of the sectors, the number of granules in
the files, the number of sectors in the last granule of
the files, and the number of bytes used by the file in
the last sector of the last granule. NJIE: The search
is made more difficult when you are using an older disk
since it will probably be quite full, and you will
probably have killed and replaced many files many times.
nus usually II'eans that a several granule file will be
put on granules located all over the disk.

61

Once you have the search data, your job is to
either recreate the bashed directory, if it is only
slightly damaged, or recreate the files on the disk on a
new disk. To recreate the directory, you must zap the
pertinent granule, sector and byte information into the
appropriate GAT and directory positions.

To recreate the disk files on a new disk, you must
first have a formatted disk. Then do the following:

1) From BASIC, or from some other text editor such
as the VJP Writer, create short, one-line files on the
formatted disk with the old file names to save the
trouble of zapping in all those filenames.

2) Copy the first granule of the file to the
granule allocated in the directory entry.

3) Zap the number of an open granule into the
granule position in the GAT sector of the granule just
copied to.

4) Copy the next granule of the file to the
granule on the new disk the number of which you just
zapped into the GAT sector.

5) Continue so until you reach the last granule of
the file. For the last granule ZAP a "C' plus the
number of sectors used in the granule into the
appropriate place in the GAT sector.

6) Count the number of bytes used by the file in
the last sector and zap this number into relative bytes
14 and 15 of the directory entry for the file.

7) 1f some of the sectors contain bad data, you
can correct them by zapping the correct data in place;
or, if you don't know the correct data, you can replace
the data with spaces (hex 20) or carriage returns (hex
OD) for easy detection and repair.

62

It is definitely going to take experience to master
the technique of directory repair. Be sure to refer to
your disk manual and other reference works for all the
help you can get.

Retrieving Killed Files

Retrieving killed files is a form of rebuilding the
directory. As was noted above, when a file is killed,
the operating system does not erase your whole file;
instead, it does two things. First, the initial byte of
the file entry (somewhere on sectors 3 to 11 of track
17) is changed to 00. niis causes the first character
of the file name to be changed to 00. Second, the
system goes to the GAT sector and changes all bytes
corresponding to the granules of the file to FF (those
nice orange blocks) indicating that those granules are
not allocated and may be used. The actual data in the
file granules remains intact on the disk until the
granules are used when you save a new file to the disk.
Your task will be to change those FF's back to the
relative numbers of the granules corresponding to the
granules wherein your file resides.

The first step is to go to the file entry in the
directory and change the 00 in the first byte back to
what it was (i.e., reconstitute your file name). The
next step is to go to relative byte 13 to see where the
first granule of your file is, and to relative bytes 14
and 15 to see how many bytes of the last sector of the
last granule of the file are used by the file. Note
these down.

Now to the GAT sector. If your file occupies only
one granule, the job is easy. Using the number from
relative byte 13 above, access that granule (remember to
convert the granule number to the correct track and
sector number - discussed above) and see how many
sectors are used by that file. With this information,
return to the GAT sector and go to the byte
corresponding to the granule which the byte occupies,

63

and ZAP in a "C' and the number of sectors occupied by
the fil.e. 1bat was simple.

It is where your fil.e occupies more than one
granule that the problems arise. You may still use the
granule reference from relative byte 13 of the directory
entry to find the first granule of the fil.e, but from
there you must search the disk for tbe rest of the fil.e.
1here is a way to find your fil.e on the disk \\ithout the
laborious search techinique, but this requires that
there be only one outstanding killed fil.e so that the
GAT is not absolutely littered with FF's. 1he first aid
is the linUted ability to find out the granule length of
your fil.e. 1his may be determined by looJr..ing at the GAT
sector to see how many FF's are in between other valid
numbers (00-43 and CO-C9 hex). Count the orange blocks.
Of course, your fil.e could have occupied granules after
the last granules shown as allocated. 1his makes it
difficult to determine the number of granules allocated,
since the bytes corresponding to the kill granules are
changed back to FF, just like the rest of the sector.

1he second aid involves a more in-depth analysis of
the GAT sector. By a careful analysis of the numbers of
the granules allocated, preferably by writing them down
on paper, you should be able to find some granules in
the sequence from granule 0 to the last granule
allocated that are not allocated. 1hese are the
granules to check first for your file.

Once you have found the locations of the granules
occupied by the killed fil.e, carefully rebWJ.d the GAT
sector, beginning \\'ith the byte corresponding to the
number obtained from relative byte 13 from the directory
entry. Remember, that byte in the GAT sector must point
to the byte corresponding to the next granule of the
fil.e, and so on until you come to the byte corresponding
to the last granule of the file, which must be zapped
with a "C' plus the number of sectors of the granule
used by your fil.e. 1hen you're done. You've "unkilled"
your fil.e.

64

APPENDICES

Standard ASCll Oiaracter Set

1he standard ASCJI character set, bdow, is
comprised of the 128 ASCJI symbols from decimal 0
through 127. 1he first column gives the first 128 ASCJI
svmbols in order; the second column gives the disQlay of
those s~bols using the non-ASClI option; the third
column gives the display of those symbols using the
ASCJI optioni the fourtli column gives the decimal
numeric eqwvalent of the ASCll symbol; column five
gives the hexadecimal equivalent· and the final column
explains how to generate the ASal symbol and its screen
di,Spla y eguiyalent through your C.Olor C.Orpputer kc;yboard
whlle modifymg a sector usmg the ASCJI mput option.
You can see that to generate the ASCJI symbol, you may
usually either place tlie hex number in the approQriate
location ir. the hex display in the hex option or, m the
AS<ll OQtion, input a character from the keyboard in the
prng_er !ocatior,. in the ASCJI display. Note tbat several
A.Sar S)'!!lbols may not be generated from the keyboard in
the .Asar option, but may only be input in hex in the
Moclify mode

ASCII KN-ASC DISP ASC DISPLAY ~c I-EX KEY(S)
NULL INVERSE @ GRAPHICS 0 0 HEX CNLY
CIRL A a INVERSE I 1 1 HEX CNLY
CIRL B b INVERSE 2 2 HEX CNLYII

CIRL C c INVERSE # 3 3 HEX CNLY
CIRL D d INVERSE ~ 4 4 HEX CNLY
CIRL E e INVERSE . 5 5 HEX CNLY
C1RL F f INVERSE & 6 6 HEX CNLY
CIRL G INVERSE I 7 7 HEX CNLY
ORLH Ii INVERSE (8 8 HEX CNLY
CIRL I 1 INVERSE) 9 9 HEX CNLY
CIRL t INVERSE • 10 A HEX CNLY
CIRL l INVERSE + 11 BI-EX CNLY
CIRL L 1 INVERSE 12 C HEX CNLY
CIRL M m INVERSE - 13 DI-EX CNLY
CIRL N n INVERSE 14 E HEX CNLY
CIRL 0 0 INVERSE i 15 F HEX CNLY
CIRL P p INVERSE 0 16 10 HEX CNLY
CIRL Q q INVERSE 1 17 11 HEX CNLY
CIRL R r INVERSE 2 18 12 HEX Q.ll,Y
C1RL S s INVERSE 3 19 13 HEX CNLY
CIRL T t INVERSE 4 20 14 rnx CNLY
CIRL U u INVERSE 5 21 15 HEX CNLY
GIRL V v INVERSE 6 22 16 HEX CNLY
CIRL W w INVERSE 7 23 17 HEX CNLY
CIRL X x INVERSE 8 24 18 HEX Q.ll,Y
CIRL Y y INVERSE 9 25 19 HEX CNLY
CIRL Z z INVERSE 26 1A HEX CNLY
ESQ\PE [INVERSE ; 27 1B HEX CNLY
FS \ INVERSE < 28 lC HEX CNI.Y

65

APPENDICES

Sf.AN:WID ASCII CHARACTER SET (cont.)

ASCII KN-ASC DISP ASC DISPLAY ooc I-EX KEY(S)

GS
RS
us
SPAIB
I
i1

1
~

SPAIB
I
"

INVERSE
INVERSE
INVERSE

SPAIB
I
II

=
>
?

29
30
31
32
33
34

ID HEX CNLY
1E HEX CNLY
lF HEX CNLY
20 <SPAIB>
21 <I>
22 <">

35 23 <#>

~
&
' (
)
l(c

+
,-
i
0
1
2
3
4
5
6
7
8
9

;
<
=
>
?
@
A
8
c
D
E
F
G
H
I

k
L
M
N

~
&
' (
)
l(c

+
,-
i
0
1
2
3
4
5
6
7
8
9

;
<
=
>
?
@
A
8
c
D
E
F
G
H
I

t
L
M
N

~
&
' (
)
•
+

i
0
1
2
3
4
5
6
7
8
9

;
<
=
>
?
@
A
8
c
D
E
F

G
H
I

l
L
M
N

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78

24
25
26
27
28
29
2A
28
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
38
3C
D

3E
3F
40
41
42
43
44
45
46

47
48
49
4A
4B
4C
4D
4E

<~>< o)
<&>
<'>
<(>
<)>
<*>
<+>
<,>
<->
<.>
</>
<O>
<D
<2>
<3>
<4>
<5>
(6)
<7>
<8>
<9>
<:>
<·>
"("
<=>
">"
<?>
<@>
<A>

<C>
<D>
<E>
<F>

<G>
<H>
<I>
~g
<L>
<M>
<N>

66

APPENDICES

Standard ASCII Character Set (cont.)

ASCII N:N-ASC DISP ASC DISPLAY ooc I-EX KEY(S)

0
p

0
p

0
p

79
80

4F
50

<O>
<P>

~ ~ ~ 81
82

51
52

<Q>
<R> s s s 83 53 <S>

T T T 84 54 <T> u u u 85 55 <U> v
w

v
w v

w
86
87

56
57

<V>
<Yv"> x x x 88. 58 <X>

y y y 89 59 <Y> z

}
~

z
INVERSE

f
INVERSE
INVERSE
INVERSE
INVERSE ~
GRAPHICS

z

~
~

INVERSE @

90
91
92
93
94
95
96

5A ~>
5B <SFT>< >
SC <ST><U>
5D <SFT><~>
5E <i>
5F <SFT>< >
60 I-EX CNLY

a
b
c

INVERSE
INVERSE
INVERSE

I
II

a
b
c

97
98
99

61
62
63

<a>

<c>

d
e
£

l
1

~
1
m

INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE

~
o

&
I

(
)

* +
,
-

d
e
£

~
1

~
1
m

100
101
102
103
104
105
106
107
108
109

64
65
66
67
68
69
6A
6B
6C
6D

<d>
<e>
<f >
<l>< >
<i>
<"><~>
<l>
<m>

n
0
p
q
[

INVERSE
INVERSE
INVERSE
INVERSE
INVERSE

i
0
1
2

n
0
p
q
r

110
111
112
113
114

6E
6F
70
71
72

<n>
<o>
<p>
<q>
<r>

s INVERSE 3 s 115 73 <s>
t INVERSE 4 t 116 74 <t>
u INVERSE 5 u 117 75 <u>
v INVERSE 6 v 118 76 <v>
w INVERSE 7 w 119 77 <w>
x INVERSE 8 x 120 78 <x>
y
z

1
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE

9

;
<
=
>

y
z

INVERSE S
INVERSE
INVERSE 1
INVERSE

121
122
123
124
125
126

79 <y>
7A <z>
7B HEX CNLY
7C I-EX CNLY
7D HEX CNIY
7E HEX CNLY

Rubout INVERSE ? INVERSE ~ 127 7F HEX CNLY

67

APPENDICES

Decimal-Hexidecimal Conversion Oiart.
IECIMAL I-EX IECIMAL HEX IECIMAL I-EX

0 0 50 32 100 64
1 1 51 33 101 65
2 2 52 34 102 66
3 3 53 35 103 67
4 4 54 36 104 68
5 5 55 37 105 69
6 6 56 38 106 6A
7 7 57 39 107 6B
8 8 58 3A 108 6C
9

10
9
A

59
60

3B
3C

109
110

6D
6E

11
12

B
c

61
62

30
3E

111
112

6F
70

13 D 63 3F 113 71
14
15
16

E
F

10

64
65
66

40
41
42

114
115
116

72
73
74

17
18

11
12

67
68

43
44

117
118

75
76

19
20

13
14

69
70

45
46

119
120

77
78

21
22
23
24
25
26
27
28
29
30

15
16
17
18
19
1A
1B
lC
ID
1E

71
72
73
74
75
76
77
78
79
BO

47
48
49
4A
4B
4C
4D
4E
4F
50

121
122
123
124
125
126
127
128
129
130

79
7A
7B
7C
7D
7E
7F
BO
Bl
B2

31
32

1F
20

Bl
B2

51
52

131
132

83
84

33 21 B3 53 133 B5
34 22 B4 54 134 B6
35
36

23
24

85
B6

55
56

135
136

B7
BB

37
38
39
40
41
42
43
44
45
46
47
4B
49

25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31

B7
BB
B9
90
91
92
93
94
95
96
97
98
99

57
5B
59
5A
5B
5C
5D
5E
5F
60
61
62
63

137
138
139
140
141
142
143
144
145
146
147
148
149

B9
BA
8B
BC
8D
BE
BF
90
91
92
93
94
95

68

APPENDICES

Decimal-Hexidecimal Conversion <liart (Cont.)

I:ECIMAL IEX I:ECIMAL I-EX I:ECIMAL I-EX

150 96 1B6 BA lll rn
151 97 1B7 BB ll3 IF
15l 9B lBB BC ll4 EO
153 99 189 BD ll5 El
154 9A 190 BE ll6 El
155 9B 191 BF ll7 E3
156 9C 192 co 22B E4
157 9D 193 Cl 2l9 E5
15B 9E 194 Cl l30 E6
159 9F 195 C3 231 E7
160 AO 196 C4 232 EB
161 Al 197 C5 l33 E9
162 Al 19B C6 234 EA
163 A3 199 C7 235 EB
164 A4 200 C-8 l36 EC
165 A5 lOl C9 237 ID
166 A6 lOl CA l3B EE
167 A7 203 CB 239 EF
168 AB 204 cc l40 FO
169 A9 l05 CD l41 Fl
170 AA l06 CE l42 Fl
171 AB 207 CF l43 F3
17l AC lOB DO l44 F4
173 N) 209 Dl l45 F5
174 !ill llO Dl l46 F6
175 AF 211 D3 247 F7
176 BO lll D4 l4B FB
177 Bl 213 D5 l49 F9
17B Bl ll4 D6 l50 FA
179 B3 215 D7 251 FB
lBO B4 216 D8 252 FC
1Bl B5 217 D9 253 FD
182 B6 218 DA l54 FE
183 B7 219 [ti 255 FF
184 BS 220 DC
1B5 B9 221 ID

69

APPENDICES

BASIC Keyword Token C.odes

BASIC BASIC (2 BYIE #)• BASIC
IEC I-EX KEw.aID IEC JEX KEWIClID IEC HEX . KE\'\\tR>

128 80 FCR 167 A7 lliEN 255+128 FF+80 SCN
129 81 CD 168 A8 NJf 255+129 FF+81 INr
130 82 REM 169 A9 SIEP 255+130 FF+82 ABS
131 83 I 170 M CFF 255+131 FF+83 USR
132 84 ELSE 171 AB PWS 255+132 FF+84 RID
133 85 IF 172 AC MINUS 255+133 FF+85 SIN
134 86 DATA 173 1'D 255+134 FF+86 PEEK* 135 87 PRINr 174 AE 255+135 FF+87 lEN
136 88 CN 175 AF 1 25 5+136 FF+88 §!$137 89 INPUI' 176 BO AN) 255+137 FF+89
138 BA EN) 177 BI rn 255+138 FF+8A ASC
139 BB NEXI' 17B Bl > 255+139 FF+8B a-IR$
140 BC DIM 179 B3 = 255+140 FF+8C F.G'
141 8D RE/>D 180 B4 < 255+141 FF+BD 11.SlK142 BE RlN 181 B5 IEL 255+142 FF+8E
143 BF RESICRE 182 B6 IDIT 255+143 FF+8F Rclfr~
144 90 RE1lRN 183 B7 TRCN 255+144 FF+90 MIDfu
145 91 S1CP 184 B8 'IRCFF 255+145 FF+91 POI
146 92 Pa<E 185 B9 IEF 255+146 FF+92 INKEY$
147 93 CINf 186 BA IET 255+147 FF+93 M3M
148 94 LISI' IB7 BB LINE 255+148 FF+94 A1N
149 95 a.EAR 188 BC PO.S 255+149 FF+95 cos
150 96 NEW IB9 BD PSET 255+150 FF+96 TAN
151 97 GOAD 190 BE PRESET 255+151 FF+97 EXP
152 98 CSAVE 191 BF SCREEN 255+152 FF+98 FIX
153 99 a>EN 192 co PCIEAR 255+153 FF+99 Lai
154 9A aDSE 193 Cl CDLCR 255+154 FF+9A POS
155 9B LLISf 194 Cl CIRCLE 255+155 FF+9B ~
156 9C SET 195 C3 PAINr 255+156 FF+9C ~
157 90 RESET 196 C4 G:T 255+157 FF+9D VAR
158 9E a.s 197 C5 PUI' 25 5+15 8 FF+9E INSIR
159 9F Mnrn 198 C6 DRAW 255+159 FF+9F TThER
160 AO ilID 199 C7 P<IPY 255+160 FF+AO PPOINr
161 Al AI.DIC 200 CB PM:IE 255+161 FF+A1SIRING$
162 A2 EXEC 201 C9 PLAY
163 A3 SKI PF 202 CA 01.CW)
164 A4 TAB 203 CB RENlM
165 A5 <DID 204 cc FN
166 A6 <DSlB 205 CD USING

• !he token codes for these BASIC ke}'Y>'.ords are double
byte tokens as opposed to the others which are single
byte tokens. !he first byte of the double ~te tokens
is FF hex (255 decimal) and is the least sig ·"cant
byte; the second byte is the most significant byte.

70

APPENDICES

How To Use Other VJP Library Programs

Each of the progrrur•s in the VJP Library, with the
exce.P_tion of VJP Speller and VJP Disk-ZAP, were
specifically designed to create files compatible with
other pro_grams in the Library. 'With the Library you can
perform the essential home business tasks and combine
the results for many purposes.

1he VJP Writer is one of the central programs in
the Library. It contains the most sophisticateo editing
and printing features, and it is to be used to create
all reports combining files created on other applicable
Library programs. Its companion is the VJP Speller.
1he Speller is an indispensilile tool to correct typos
and mtsspellings in VJP Library files.

VJP Cale is used to create financial or
mathematical reports. It contains sophisticated print
functions for independent printing_ of such reports. You
may create files usable by the VJP Writer for reports to
be combined \\ith other text, and you may_ create
templates with the VJP Writer for use in VJP Cale.

VJP Terminal is a communications program capable of
transmitting and receiving any ASCil file, including VJP
Library files. ASClI files can be transferred to the
VJP Writer for further editing~ lhe Terminal program
also allows you to transfer files to work, duos or
friends. You can also print files receivea from others.

VJP Database, similar to VJP Cale has its own
sophisticated _pr:ir:t functions for independent printing
of database files. You can also create files for use
with the VJP Writer to create combined text and database
files.

VJP Disk-ZAP is a disk repair utility designed to
repair any kind of file created using the Color Compt1ter
disK. operating system. Of course, 1t therefore will
also work on other Library files.

71

NOTES

72

NOTES

73

NOTES

74

	Binder Front Cover
	Front Cover
	Title Page
	Copyrights
	Table of Contents
	VIP Disk-ZAP
	PART I: How the VIP Disk-ZAP Works
	About this Manual
	Loading the VlP Disk-ZAP from the Diskette
	System Requirements
	Getting Started
	Toggle Commands: X-Late, Base, and ASCII
	<BREAK>: Exit

	File Determination
	<F> Filename
	<A> Directory

	File and Disk Access
	<V> Verify Disk
	<R>, <W> Read Sectors/Write Sectors
	<F> File Zap
	File Access Commands
	The Screen Display
	The ASCII System
	<N> Name
	<A> Directory
	<E> Last Granule
	<F> First Granule
	<R> Read Sector
	Left/Right Arrow; Up/Down Arrow
	<M> Modify Sector
	The Screen Display
	Movement in the Display
	Zapping the Sector
	Writing the Zapped Sector Back to Disk

	Printing Functions
	<P> Print Sector
	 Set Baud Rate

	<D> Disk ZAP
	Disk Access
	<J> Enter Track
	<T> Enter Drive
	<E> Last Track
	<F> First Track
	Arrow Commands
	<L> Locate

	Disk Repair Commands
	Print Commands

	Killing Disk Files
	<K> Kill

	PART II: Zapping Techniques
	Introduction
	Disk Structure
	The Operating System
	Disk Repair
	Introduction

	Errors - Types, Causes and Repairability
	Error Prompts
	Error Messages During A Read
	Error Messages During A Write

	The Fixes
	Automatic Repairs
	Minor Repairs and Modifications
	Reallocating A Granule To Repair An I/0 Error
	Backup the Unbackupable
	Fixing A Tokenized BASIC File With A Bashed Sector

	Rebuilding Files, Tracks, Etc.
	Retrieving Killed Files

	Appendices
	Standard ASCll Character Set
	Decimal-Hexidecimal Conversion Chart
	BASIC Keyword Token Codes
	How To Use Other VIP Library Programs

	Notes
	Back Cover
	Binder Back Cover
	VIP Library Binder
	Disk Scan

0.04141496

