DMC Floppy Disk Controller

Hardware Manual

Preliminary Version

Sardis Technologies
Ph. (604) 255-4485 (Pacific Time)

2261 East 11th Ave.
Vancouver, B.C.
Canada V5N 1Z7

(c) 1987 by Sardis Technologies
CREDITS

Special thanks to Jim B., whose help and encouragement made this product possible.

TRADEMARKS

"Radio Shack" and "Color Computer" are trademarks of Tandy Corp. "OS-9" is a trademark of Microwave Systems Corp. and Motorola.

COPYRIGHT NOTICE

The entire contents of this manual and the DMC circuit board are copyrighted by Sardis Technologies, all rights reserved.

DISCLAIMER

Although much effort has been made to ensure the accuracy of the hardware, software and documentation, Sardis Technologies disclaim any and all liability for consequential damages, economic loss, or any other injury arising from or on account of the use of, possession of, defect in, or failure of the supplied material.

This manual last revised July 14, 1987
TABLE OF CONTENTS

1) Title Page 1
2) Credits 2
3) Trademarks 2
4) Copyright Notice 2
5) Disclaimers 2
6) Date of Last Revision 2
7) Table of Contents 3
8) Introduction 4
9) System Requirements (prerequisites) ... 4
10) Installation of DMC Cartridge; Setting up 5
11) Modifying for EPROMs, dual DOS, external switch; installing different ROMs, disassembly and re-assembly of the cartridge 6-10
12) Upgrading the cache RAM to 32K bytes 11
13) Specifications 11
14) Component Layout Diagram 12
15) Block Diagram 13
16) Theory of Operation 14
17) Trouble-shooting and Maintenance 14
18) Parts List 14
19) Memory Map 16
20) Connector Pinouts 17
21) Sample Drivers for use with standalone machine language programs 18
22) RS-DOS 1.1 Command Summary 24
23) Availability of Schematics 26
24) Warranty 26
25) User Feedback 26
26) Index 26

(c) 1987 by Sardis Technologies
SYSTEM PREREQUISITES - or, what you need to run the DMC on a CoCo

1) A Tandy / Radio Shack Color Computer 1 or 2 with 64K memory, or a Color Computer 3 with either 128K or 512K memory.

2) A Radio Shack "Multi-Pak Interface" (MPI), or similar unit. The DMC's power consumption is somewhat greater than what Radio Shack specifies may be drawn from the CoCo's cartridge slot. Although the DMC controller will run when plugged directly into the CoCo, you risk overheating and damaging the CoCo's internal power supply if you omit the MPI.

3) At least one 5 1/4" floppy disk drive, with its own power supply, and a 34 conductor ribbon cable with edge-card connector on its end to connect to the DMC. Up to 3 double-sided or 4 single-sided drives may be connected, and they may be 48 tpi (35 or 40 tracks) or 96 tpi (80 tracks), or even 3.5" drives (135 tpi). However, for software compatibility reasons, drive 0 should be some type of 48 tpi drive (35 or 40 tracks).
SETTING UP -- INSTALLATION OF THE DMC CARTRIDGE

1) If you bought the DMC controller without a ROM installed, first carry out the instructions in the following 2 sections to install your ROM.

2) Before connecting the floppy drive cable to the DMC controller, and before plugging the DMC controller into the Multi-Pak Interface (MPI), TURN OFF THE POWER TO - the CoCo
 - the MPI
 - the floppy disk drives

3) First plug the 34 conductor ribbon cable (from the disk drives) into the DMC controller, into the end that also has the 1/4" round hole. Refer to the drawing below for the correct orientation of the cable:

![Diagram showing correct orientation of cable]

4) Now plug the other end of the DMC controller cartridge into the MPI (usually slot 4) with the DMC's venting slots facing the rear of the MPI. Be careful to ensure that the controller cartridge is firmly and properly seated into the connector in the slot, and that it is not installed crookedly. Refer to the drawings below for what NOT to do:

![Diagram showing correct and incorrect installation]
5) Now turn on the power to the TV set or monitor, then the disk drives, then the Multi-Pak, and finally the CoCo itself. You should see the sign-on message indicating "Disk Extended BASIC 1.1" for the CoCo 1 or 2, and "Disk Extended BASIC 2.1" for the CoCo 3. If not, immediately turn the power off, and refer to the section entitled "Trouble-Shooting and Maintenance".

NOTE - since the 1773 FDC chip used in the DMC controller doesn't handle head load delay, any disk drives that have head load solenoids should be configured to load their heads with the motor-on signal, not with the drive select signal. Refer to the OEM manual or service manual for your particular drive on how to change or check this setting.

INSTALLING A 24 PIN ROM

If you bought the DMC controller without the RS-DOS 1.1 ROM chip installed and want to install your own 24 pin ROM, read this section. If you will be installing a 28 pin EPROM, read the next section.

We advise you to remove the circuit board from the metal case to install the ROM -- the board might bend too much from the pressure exerted to insert the ROM chip, causing damage to the board.

1) Read the warning in the next section regarding static electricity, then follow the instructions in step #1 in that section to remove the board from the metal case.

2) Perform step #6 in the next section to install the ROM chip.

3) Perform steps #7 and #9 in the next section to re-install the board in the metal case.
MODIFICATIONS FOR 28 PIN EPROMS, ETC.

The DMC controller, as it leaves the factory, is set up to accept a 24 pin ROM in the ROM socket, and a 24 pin ROM containing Radio Shack Disk BASIC 1.1 is usually installed. The configuration of the ROM socket for the several kinds of ROMs and EPROMs that may be installed is handled by jumper locations J1 to J6, which are hardwired by traces on the printed circuit board (PCB) for 24 pin ROMs:

Location and pin numbering of jumpers J1 to J6

In order to install 28 pin EPROMs (2764, 27128, or 27256) you will need to do three things: a) cut four default jumper traces; b) solder in 6 male header strips; c) install 4 or 5 shorting blocks to set the desired configuration. Once you have made these changes, you will be able to quickly switch between using 24 and 28 pin ROM chips.

NOTE -- Static electricity can damage MOS integrated circuit chips (ICs). Even a static electricity charge too weak to feel can cause problems, and the damage, if it merely weakened the chip, might not cause the chip to fail until weeks or months later. While handling any MOS IC's or circuit boards containing MOS IC's you should ground your body and all tools and work areas that will touch the IC leads or the circuit board. Use a 1 Megohm resistor in series between you and ground to protect yourself against dangerous shocks. Remember -- just because the IC's have been installed in their sockets or soldered on the circuit board doesn't make them immune to static electricity. Better safe than sorry!

1) Remove the circuit board from the metal case. To do this, first remove the 4 sheet metal screws on the sides of the metal case; there are two on each side. The top of the case (it has the venting holes in it) should now lift off the base unit. Remove the four screws fastening each corner of the circuit board to the case bottom, and the circuit board can now be lifted out. Set it onto a grounded work surface as suggested above. Locate (ie. don't lose) the 4 fiber washers -- they should either be stuck onto the bottom of the board at the mounting holes, or stuck onto each standoff in the base unit.

(c) 1987 by Sardis Technologies
2) If a ROM is currently installed on the board at U4, remove it carefully using a small screwdriver, and set it on the grounded work surface.

3) Using a small, very sharp knife (such as an X-Acto knife), cut the four jumper traces between pins 2 and 3 of jumpers J1 to J3, and between pins 1 and 2 of J6. In the diagram below they are represented by a light colored bar filled with dots. This is a very tricky operation, as the traces are hard to cut. You must cut deep enough to remove the trace, yet by cutting too deep you can cut other traces deeper inside the board thereby damaging it (remember the board is a 4 layer sandwich). If the knife slips, you can cut yourself, or damage the board. If you haven't done this kind of PCB modification before, you should find a friend who has, or for a reasonable service fee we will do it for you at the factory.

4) Now install and solder the 6 male header strips (three 3-pin, two 2-pin, one 5-pin). These can be cut or snapped from a single long strip. Check with your local Radio Shack store for part number 276-165B. If you can't find these locally, one mail order source is JDR Microdevices, whose ads appear in various magazines including BYTE. Ask for their "1x40 straight lead snappable header". The shorter end of the pins is inserted into the top side of the PCB, with the longer end sticking up. If you haven't done much soldering on PC boards before, this is best left to someone who is experienced.
5) Now slip shorting blocks (also available from JDR Microdevices) onto the pins of the header strips using the diagrams below as a guide.

- = shorting block installed

24 pin RKx32 ROM

28 pin 2764 EPROM

28 pin 27128 EPROM

1 - 16K bank

2 - 8K bank

6) Install the ROM or EPROM chip. Be very careful to orient the chip properly. Look for a dot or dimple on the top of the chip at one of the corners -- this indicates pin #1. Or, look for a semi-circular indentation at one end -- this is the end that has pin #1. If using a 24 pin ROM, make sure you "lower justify" it in the 28 pin socket, as shown below. After the chip has been inserted into the socket, check that all pins went into the socket OK, that none are bent or curled underneath the chip's body.

(see diagram next page)
7) Re-install the circuit board into the metal case. First make sure that the four fiber washers are glued to either the bottom of the board at the mounting holes, or onto the tops of each of the standoffs in the case bottom. Place the PC board into the case bottom, so that the computer end of the board (the end with the 40 pin connector) sticks through the wide slot of the case. The 34 pin connector will just barely stick out of its slot (the end with the 1/4" round hole). Install the four screws that hold the board to the case. Be careful not to cross-thread them. Don’t put the metal case cover on yet.

8) If you will be implementing the dual-DOS capability of the DMC controller, you will need:

1 - SPDT toggle switch designed for panel mounting in a 1/4" hole

1 - 2 pin female connector (for .025" square pins, .100" centers)

2 - 7" lengths of insulated wire

Assemble as per the diagram below. Mount the switch using the 1/4" round hole provided. The female connector at the other end plugs into the male header at J4 (it doesn’t matter which is pin 1).

9) Put the metal cover over the case bottom. The end with the venting slots in it should be at the disk drive end; i.e., the slots should be over the 1773 and static RAM chips. Replace the 4 sheet metal screws. Be careful to have the screws use the existing "threads" in the case bottom -- if you make them cut new threads, the screws may not hold as well, and they will generate a lot of small loose metal particles that can cause the board to malfunction if they cause a short circuit. [In any case, after the four screws are in place, shake and/or blow out any loose metal particles.]
UPGRADING THE CACHE RAM TO 32K BYTES
===

The current version of the DMC controller is shipped with 8K bytes of cache RAM installed. It is a simple matter to upgrade this to 32K bytes by merely replacing the single static RAM chip. Note, however, that the preliminary version of our software will NOT take advantage of the additional memory.

The new memory chip can be obtained from several sources, one of which is Microprocessors Unlimited, who advertise in such magazines as BYTE. Their part number is 43256L-12, which is a CMOS 120 nsec. 32Kx8 static RAM chip.

We advise you to remove the circuit board from the metal case to install the new RAM chip — the board might bend too much from the pressure exerted to insert the RAM chip, causing damage to the board.

1) Read the warning in the section above regarding static electricity, then follow the instructions in step #1 in that same section to remove the PC board from the metal case.

2) Carefully remove the RAM chip at U23 (it is one of the large 28 pin chips, and is usually marked "4264") using a small screwdriver, and set it on the grounded work surface.

3) Install the new RAM chip. Be very careful to orient the chip properly. Look for a dot or dimple on the top of the chip at one of the corners — this indicates pin #1. Or, look for a semi-circular indentation at one end — this is the end that has pin #1. Pin #1 should be positioned next to capacitor C14 (refer to the Component Layout Diagram elsewhere in this manual. After the chip has been inserted into the socket, check that all pins went into the socket OK, that none are bent or curled underneath the chip's body.

4) Follow steps #7 and #9 in the section above to reassemble the cartridge.

5) Boot up the OS-9 operating system, then run the TESTBUFR diagnostic program supplied with our SDISK-DMC Level I or SDISK3-DMC Level II software packages.

SPECIFICATIONS
===

(c) 1987 by Sardis Technologies
TROUBLE-SHOOTING AND MAINTENANCE

PARTS LIST

Capacitors

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>33 pF miniature ceramic disk capacitor, radial leads</td>
</tr>
<tr>
<td>C2</td>
<td>(not installed)</td>
</tr>
<tr>
<td>C3</td>
<td>470 pF miniature ceramic disk capacitor, radial leads</td>
</tr>
<tr>
<td>C4</td>
<td>33 pF miniature ceramic disk capacitor, radial leads</td>
</tr>
<tr>
<td>C5</td>
<td>47 uF electrolytic capacitor, axial leads</td>
</tr>
<tr>
<td>C6-C10</td>
<td>.1 uF monolithic bypass capacitor, radial leads</td>
</tr>
<tr>
<td>C11-C12</td>
<td>.22 uF monolithic bypass capacitor, radial leads</td>
</tr>
<tr>
<td>C13</td>
<td>10 uF tantalum capacitor, radial leads</td>
</tr>
<tr>
<td>C14-C20</td>
<td>.1 uF monolithic bypass capacitor, radial leads</td>
</tr>
</tbody>
</table>

Resistors

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>470 ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>R2</td>
<td>10K ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>R3</td>
<td>2.2K ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>R4,R5</td>
<td>1K ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>R6</td>
<td>470 ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>R7,R8</td>
<td>10K ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>R9</td>
<td>470 ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>R10</td>
<td>330 ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>R11</td>
<td>470 ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>R12</td>
<td>150 ohm 1/4 watt resistor</td>
</tr>
<tr>
<td>RP1</td>
<td>10K ohm resistor SIP, 10 pin, 9 bussed resistors</td>
</tr>
</tbody>
</table>

I.C.'s

<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>74F04</td>
</tr>
<tr>
<td>U2</td>
<td>74LS14</td>
</tr>
<tr>
<td>U3</td>
<td>74LS04</td>
</tr>
<tr>
<td>U4</td>
<td>Radio Shack MXP-0156 DOS 1.1 ROM, or 2764/27128/27256 EPROM</td>
</tr>
<tr>
<td>U5</td>
<td>74LS245</td>
</tr>
<tr>
<td>U6-U7</td>
<td>7406 or 7416</td>
</tr>
<tr>
<td>U8</td>
<td>74F32</td>
</tr>
<tr>
<td>U9</td>
<td>74LS02</td>
</tr>
<tr>
<td>U10</td>
<td>PAL20L10 (specially programmed for the DMC)</td>
</tr>
<tr>
<td>U11</td>
<td>WD1773 floppy disk controller</td>
</tr>
<tr>
<td>U12</td>
<td>74LS273</td>
</tr>
<tr>
<td>U13-U16</td>
<td>74LS74A</td>
</tr>
<tr>
<td>U17</td>
<td>74LS174</td>
</tr>
<tr>
<td>U18</td>
<td>74LS139</td>
</tr>
<tr>
<td>U19-U22</td>
<td>74LS161A</td>
</tr>
<tr>
<td>U23</td>
<td>8Kx8 or 32Kx8 120 nsec. CMOS static RAM (4264, 43256, etc.)</td>
</tr>
<tr>
<td>U24</td>
<td>74LS157</td>
</tr>
<tr>
<td>Part #</td>
<td>Other parts</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Y1</td>
<td>8 MHz crystal</td>
</tr>
<tr>
<td>J1-J10</td>
<td>(no parts installed)</td>
</tr>
<tr>
<td>TP1,TP2</td>
<td>(no parts installed)</td>
</tr>
</tbody>
</table>
Addr.:
(hex) R/W Register accessed; function

FF40: W Drive latch
 bit 7 = enable halt mode
 6 = select drive 4 or 2nd side
 5 = enable double density
 4 = enable write precomp
 3 = motor on
 2 = select drive 3
 1 = select drive 2
 0 = select drive 1

FF42: W D0-D3 = bits 8-11 of cache pointer;
 also clears bits 0-3 of cache pointer

FF44: R disable DMA mode

FF44: W 1773 command register; also enables DMA write mode

FF46: W D0-D2 = bits 12-14 of cache pointer;
 also clears bits 4-7 of cache pointer

FF48: R 1773 status register

FF48: W 1773 command register (non-DMA)

FF49: R/W 1773 track register

FF4A: R/W 1773 sector register

FF4B: R/W 1773 data register

FF4C: W 1773 command register; also enables DMA read mode

FF4E-FF: R/W read/write cache memory;
 (cache pointer incremented after)

NOTE - all other locations in the $FF40 - $FF5F range are reserved for future use and should not be read or written.

NOTE - once the DMA mode has been enabled (by writing to $FF44 or $FF4C), NONE of the registers in the $FF40-$FF4F range can be accessed -- only the "disable DMA mode" function (read from location $FF44) still functions. After the DMA mode has been disabled, all the registers are accessible again. Remember that if the DMA mode is disabled in the middle of an I/O operation like read sector or write sector, the 1773 controller chip will try to continue, but will eventually generate a "Lost Data" error code. If you disable the DMA mode before the 1773 asserts the NMI interrupt line to indicate command completion, you should execute the $DO "force interrupt" command to reset the 1773 chip.
Connector Pinouts

Color Computer Connector - P1

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(n/c)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(n/c)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>*HALT</td>
<td>Controller</td>
</tr>
<tr>
<td>4</td>
<td>*NMI</td>
<td>Controller</td>
</tr>
<tr>
<td>5</td>
<td>*RESET</td>
<td>Computer</td>
</tr>
<tr>
<td>6</td>
<td>E Clock</td>
<td>Computer</td>
</tr>
<tr>
<td>7</td>
<td>Q Clock</td>
<td>Computer</td>
</tr>
<tr>
<td>8</td>
<td>(n/c)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>+5 volts power</td>
<td>Computer</td>
</tr>
<tr>
<td>10</td>
<td>D0</td>
<td>Bi-Directional</td>
</tr>
<tr>
<td>11</td>
<td>D1</td>
<td>Bi-Directional</td>
</tr>
<tr>
<td>12</td>
<td>D2</td>
<td>Bi-Directional</td>
</tr>
<tr>
<td>13</td>
<td>D3</td>
<td>Bi-Directional</td>
</tr>
<tr>
<td>14</td>
<td>D4</td>
<td>Bi-Directional</td>
</tr>
<tr>
<td>15</td>
<td>D5</td>
<td>Bi-Directional</td>
</tr>
<tr>
<td>16</td>
<td>D6</td>
<td>Bi-Directional</td>
</tr>
<tr>
<td>17</td>
<td>D7</td>
<td>Bi-Directional</td>
</tr>
<tr>
<td>18</td>
<td>R*/W</td>
<td>Computer</td>
</tr>
<tr>
<td>19</td>
<td>A0</td>
<td>Computer</td>
</tr>
<tr>
<td>20</td>
<td>A1</td>
<td>Computer</td>
</tr>
<tr>
<td>21</td>
<td>A2</td>
<td>Computer</td>
</tr>
<tr>
<td>22</td>
<td>A3</td>
<td>Computer</td>
</tr>
<tr>
<td>23</td>
<td>A4</td>
<td>Computer</td>
</tr>
<tr>
<td>24</td>
<td>A5</td>
<td>Computer</td>
</tr>
<tr>
<td>25</td>
<td>A6</td>
<td>Computer</td>
</tr>
<tr>
<td>26</td>
<td>A7</td>
<td>Computer</td>
</tr>
<tr>
<td>27</td>
<td>A8</td>
<td>Computer</td>
</tr>
<tr>
<td>28</td>
<td>A9</td>
<td>Computer</td>
</tr>
<tr>
<td>29</td>
<td>A10</td>
<td>Computer</td>
</tr>
<tr>
<td>30</td>
<td>A11</td>
<td>Computer</td>
</tr>
<tr>
<td>31</td>
<td>A12</td>
<td>Computer</td>
</tr>
<tr>
<td>32</td>
<td>*CTS</td>
<td>Computer</td>
</tr>
<tr>
<td>33</td>
<td>GROUND</td>
<td>Computer</td>
</tr>
<tr>
<td>34</td>
<td>GROUND</td>
<td>Computer</td>
</tr>
<tr>
<td>35</td>
<td>(n/c)</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>*SCS</td>
<td>Computer</td>
</tr>
<tr>
<td>37</td>
<td>A13</td>
<td>Computer</td>
</tr>
<tr>
<td>38</td>
<td>(n/c)</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>(n/c)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>(n/c)</td>
<td></td>
</tr>
</tbody>
</table>

Disk Drive Connector - P2

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(n/c)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(n/c)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(n/c)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>*INDEX HOLE</td>
<td>Drive</td>
</tr>
<tr>
<td>10</td>
<td>*DRIVE 1</td>
<td>Controller</td>
</tr>
<tr>
<td>12</td>
<td>*DRIVE 2</td>
<td>Controller</td>
</tr>
<tr>
<td>14</td>
<td>*DRIVE 3</td>
<td>Controller</td>
</tr>
</tbody>
</table>

(c) 1987 by Sardis Technologies
DMC - Dual Mode Controller

16 *MOTOR ON Controller
18 *DIRECTION IN Controller
20 *STEP Controller
22 *WRITE DATA Controller
24 *WRITE GATE Controller
26 *TRACK 0 Drive
28 *WRITE PROTECT Drive
30 *READ DATA Drive
32 *SIDE 1/*DRIVE 4 Controller
34 (n/c)

All odd numbered pins 1 - 33 are ground.

SAMPLE DRIVERS for standalone machine language programs

The following sample machine language drivers use the new "no halt" mode of disk I/O. They are intended as a guide or starting point, and are not really intended to be used as-is, since they do not use the same control blocks as the Disk BASIC calls, and no provision is made for motor control.

```
**********************************************************************
*  "DRVSAMPL.TXT"  DW120
* Sample routines to read/write using the
*  "no halt" mode of the DMC controller
*
* (c) 1986 by Sardis Technologies, all rights reserved
* Last modified  July 14, 1987  3:10 pm
**********************************************************************

**********************************************************************
*  *
*  EQUATES
*
**********************************************************************

0001 Carry  EQU  $01  carry status bit
*
*  INTERRUPT VECTORS
*
0109 NMIV  EQU  $0109
*
*  DISK CONTROLLER ADDRESSES
*
FF40 FDCDRV EQU  $FF40  drive/density latch (write only)
FF48 FDCCMD EQU  $FF48  1773 command register (write only)
  *  - non-DMA mode
FF48 FDCSTA EQU  $FF48  1773 status register (read only)
FF49 FDCTRK EQU  $FF49  1773 track register (read/write)
FF4A FDCSEC EQU  $FF4A  1773 sector register (read/write)
FF4B FDCDTA EQU  $FF4B  1773 data register (read/write)
```
DMC - Dual Mode Controller

FF44 FDWRIT EQU $FF44 1773 command register (DMA write)
FF4C FDRREAD EQU $FF4C 1773 command register (DMA read)
FF44 DISDMA EQU $FF44 read register to disable DMA mode
FF46 FDPTRH EQU $FF46 high nibble of MSB of DMA buffer
 * pointer (write only)
 * FDPTRL EQU $FF42 low nibble of MSB of DMA buffer
 * pointer (write only)
 * BUFFER EQU $FF4E DMA buffer RAM location

7000 ORG $7000

**
 *
 * JUMP TABLE
 *
**

7000 160014 JINIT LBRA INIT
 7003 16013F JCLOSE LBRA CLOSE
 7006 160045 JSSEEK LBRA SEEK
 7009 16007D JREAD LBRA READ
 700C 1600A5 JWRITE LBRA WRITE
 700F 16010B JHOME LBRA HOME

**
 *
 * VARIABLE STORAGE
 *
**

7012 STAT RMB 1 1773 status
7013 READY RMB 1 not-ready flag (zero = ready)
7014 NMISAV RMB 2 NMI vector save area
7016 00 STEP PCB 0 $00 = 30 msec., $01 = 20 msec.
 * $02 = 12 msec., $03 = 6 msec.

**
 *
 * INITIALIZE
 * IN - none
 * OUT - A,B,X undefined
 * Y,U unchanged
 * ERROR - CC CS; B 1773 status code
**

7017 4F INIT CLRA 1st try to disable halt mode
 7018 B7FF40 STA FDCDVRV
701B FC010A LDD NMIV+1 save existing NMI vector
701E F7D714 STD NMISAV
7021 30BD 7137 LEAX NMISRV,PC point NMI vector to new
7025 BF010A STX NMIV+1 . service routine
7028 B7FF44 LDA DISDMA disable DMA mode
702B 4F CLRA 2nd try to disable halt mode and
702C B7FF40 STA FDCDVCV . set to SD to disable NMI
702F B6FF LDA #$FF set flag to "not ready"
7031 B77013 STA READY
7034 B6DD LDA #$D0 command = force interrupt
7036 B7FF4C STA FDRREAD (DMA mode)
7039 B400A0 LDX #4000 timeout after .4 sec. @ .89 MHz
703C 170099 LBSR WAIT
703F C481 ANDB #$81 not-ready/busy?

(c) 1987 by Sardis Technologies
WMC - Dual Mode Controller

7041 2704 BEQ INBO
7043 1A01 ORCC #Carry .Y
7045 2006 BRA IN99

7047 86FF INBO LDA ##FF default track register to 255
7049 B7FF49 STA FDCTRK
704C 5F CLRB
704D 39 IN99 RTS

**
* SEEK
* SELECT DRIVE, SIDE, DENSITY, PRECOMP, AND
* TURN MOTOR ON, THEN SEEK TO DESIRED TRACK.
* IN - A drive/density/side/precomp codes for drive reg.
* (refer to memory map in section ?? for
* explanation of each bit)
* X MSB = track number; LSB = sector number
* OUT - A,B undefined
* X,Y,U unchanged
* ERROR - CC CS; B 1773 status code
**

704E 3410 SEEK FSHS X
7050 847F ANDA ##7F make sure halt mode is not used
7052 8A08 ORA ##08 make sure motor is on
7054 B7FF40 STA FDDDRV

7057 1F10 TFR X,D transfer track # to Reg A
7059 B1FF49 CMPA FDCTRK are we already on desired track?
705C 2720 BEQ SK60 .Y
705E B7FF4B STA FDCTDA .N, seek to it
7061 1700A4 LBSR DELAY
7064 86FF LDA ##FF set flag to "not ready"
7066 B77013 STA READY
7069 B61B LDA ##1B command = seek
706B B87016 EGRA STEP set step rate
706E B7FF4C STA FDREAD (DMA mode)
7071 8E7530 LDX #30000 timeout after 3.0 sec. @ .89 MHz
7074 8D62 BSR WAIT
7076 C490 ANDB ##90 not-ready/seek-error?
7078 2704 BEQ SK60 .Y, error
707A 1A01 ORCC #Carry
707C 2009 BRA SK99

707E A661 SK60 LDA 1,S write sector number to 1773
7080 B7FF4A STA FDSEC
7083 170082 LBSR DELAY
7086 5F CLRB
7087 3590 SK99 PULS X,PC

**
* READ SECTOR
* IN - X address of buffer in main memory to read
* data into
* (SEEK routine must be called immediately prior)
* OUT - A,B undefined
* X,Y,U unchanged
* ERROR - CC CS; B 1773 status code
**

(c) 1987 by Sardis Technologies
7089 3410 READ PSHS X
708B 170082 LBSR POINTS set DMA buffer pointer
708E 86FF LDA #$FF set flag to "not ready"
7090 B77013 STA READY
7093 8684 LDA #$84 command = read
7095 B7FF4C STA FDREAD (DMA mode)
7098 8E1F40 LDX #$8000 timeout after .8 sec. @ .89 MHz
709B 8D5B BSR WAIT
709D C49C ANDB #$9C not-ready/RNF/CRC/lost-data?
709F 2704 BEQ .RD40
70A1 1A01 ORCC #Carry .Y, error
70A3 200D BRA RD99

70A5 8D69 RD40 BSR POINTS reset DMA buffer pointer
70A7 AE4E LDX 0,S get ptr. to buffer in main memory
70A9 5F CLRB count = 256 bytes
70AA B6FF4E RD60 LDA BUFFER get byte from DMA RAM buffer
70AD A780 STA ,X+ store byte into main memory buffer
70AF 5A DECB
70B0 26FB BNE RD60

70B2 3590 RD99 PULS X,PC

**
* WRITE SECTOR*
* IN - X addr. of buffer in main memory to write*
* data from*
* (SEEK routine must be called immediately prior)*
* OUT - A,B undefined*
* X,Y,U unchanged*
* ERROR - CC CS; B 1773 status code
**
70B4 8D69 WRITE BSR POINTS set DMA buffer pointer
70B6 5F CLRB count = 256 bytes
70B7 A680 WR30 LDA ,X+ get byte from main memory buffer
70B9 B7FF4E STA BUFFER store byte into DMA RAM buffer
70BC 5A DECB
70BD 26FB BNE WR30

70BF 8D4F BSR POINTS reset DMA buffer pointer
70C1 86FF LDA #$FF set flag to "not ready"
70C3 B77013 STA READY
70C6 B6A4 LDA #$A4 command = write
70CB B7FF44 STA FDWRIT (DMA mode)
70CB 8E1F40 LDX #$8000 timeout after .8 sec. @ .89 MHz
70CE 8D5B BSR WAIT
70D0 4F CLRA clear carry bit
70D1 C4FC ANDB #$FC not-ready/write-protect/write-
fault/RNF/CRC/lost-data?
70D3 2702 BEQ .WR99
70D5 1A01 ORCC #Carry
70D7 39 .WR99 RTS

(c) 1987 by Sardis Technologies
Wait until a DMA FDC operation is completed or timed-out

* IN - X timeout value (10000 = 1.0 sec. @ .89 MHz)
* OUT - B 1773 status code
* A,X undefined
* Y,U unchanged
* ERROR - never

70DB WAIT EQU *

* LOOP WAITING FOR NMI OR TIMEOUT, WHICHEVER COMES FIRST *

70DB 17002D WT20 LBSR DELAY (9+55) total loop = 89 cycles
70DB 21FE 8RN * (3)
70DD 12 NOP * (2)
70DE 12 NOP * (2)
70DF 7D7013 TST READY (7) I/O operation completed?
70E2 2720 BEQ WT65 (3) .Y
70E4 301F LEAX -1,X (5) .N, time-out?
70E6 26F0 BNE WT20 (3) . N

* PROCESS TIMEOUT ERROR *

70EB B6FF44 LDA DISDMA disable DMA mode
70EB 4F CLRA set single-density to disable NMI
70EC 7FFF40 STA FDCDRV
70EF 12 NOP
70F0 7D7013 TST READY
70F3 270C BEQ WT50
70F5 B6DO LDA ##DO force interrupt to abort command
70F7 B7FF4B STA FDCCMD
70FA 8D0C BSR DELAY
70FC BD0A BSR DELAY
70FE B6FF48 LDA FDSTA read status register to reset 1773
7101 C680 WT50 LDB ##80 simulate status code = "not ready"
7103 39 RTS

* NORMAL EXIT *

7104 F67012 WT65 LDB STAT
7107 39 RTS

* DELAY *

* BSR DELAY = (7+55) cycles
* LBSR DELAY = (9+55) cycles
* IN - none
* OUT - CC,A,B,X,Y,U unchanged
* ERROR - never

7108 170000 DELAY LBSR DELAY2 (9+23) \
7108 170000 DELAY2 LBSR DELAY3 (9+7) \ > 55
710E 12 DELAY3 NOP (2) > 23 |
710F 39 RTS (5) / /
POINTS LDB #$3C
* POINTS/POINTT
* PRESET DMA BUFFER POINTER TO BEGINNING OF SECTOR
* OR TRACK IN BUFFER RAM.
* IN - B MSB of address (only for POINTT)
* DMA mode should be inactive
* OUT - A, X, Y, U unchanged
* B, CC undefined
* ERROR - never

POINTT STB FDPTRL
7115 54 LSRB
7116 54 LSRB
7117 54 LSRB
7118 54 LSRB
7119 F7FF46 STB FDPTRH
711C 39 RTS

POSITION HEAD TO TRACK 0 (RECALIBRATE)
IN - none
OUT - A, B, X undefined
Y, U unchanged
ERROR - CC CS; B 1773 status code

HOME LDA #$FF set flag to "not ready"
711F B77013 STA READY
7122 860B LDA #$0B command = restore
7124 BB7016 EDRA STEP set step rate
7127 B7FF4C STA FDREAD (DMA mode)
712A 8E7530 LDX #$0000 timeout after 3.0 sec. @ .89 MHz
712D 8DA9 BSR WAIT
712F 4F CLRA clear carry bit
7130 C490 ANDB #$90 not-ready/seek-error?
7132 2702 BEQ HM99
7134 1A01 ORCC #Carry .Y, error
7136 39 HM99 RTS

NMI SERVICE ROUTINE

NMISRV LDA DISDMA deactivate DMA mode
7137 B6FF44 NOP
713A 12 LDB FDCSTA read 1773 status, reset INTRO/NMI
713B F6FF48 STB STAT save status code
713E 77012 CLR READY set flag = "DMA transfer finished"
7141 7F7013 RTI
7144 3B

RESET NMI VECTOR

CLOSE LDD NMISAV restore previous NMI vector
7145 FC7014 STD NMIV+1
7148 FD010A RTS
714B 39

(c) 1987 by Sardis Technologies
The following is a reference listing of the new commands and error codes that the Disk BASIC 1.1 ROM adds to those already present in the Extended Color BASIC ROM(s). The first line for each command shows the syntax of the command, while the indented second line gives an example of its use. Refer to Tandy's "Color Computer Disk System -- Owners Manual & Programming Guide" for more details.

Disk BASIC Commands

BACKUP source drive TO destination drive
 BACKUP 0 TO 1

CLOSE # buffer, ...
 CLOSE #1, #2

COPY filename1 TO filename2
 COPY "mouse.dat:0" TO "cat.dat:1"

CVN (string variable)
 \$ = CVN(S$)

DIR drive number
 DIR 0

DOS

DRIVE drive number
 DRIVE 2

DSKINI drive number
 DSKINI0

DSKI drive number, track, sector, string variable1, string variable2
 DSKI 1, 10, 5, "A", "B"

DSKO drive number, track, sector, string1, string2
 DSKO 1, 3, 9, "data abc", "data xyz"

EOF (buffer)
 IF EOF(2) = -1 THEN CLOSE #2

FIELD # buffer, field size AS field name, ...
 FIELD #2, 32 AS N$, 6 AS P$, 15 AS C$

FILES buffer number, buffer size
 FILES 2, 500

FREE (drive number)
 PRINT FREE(1)

GET # buffer, record number
 GET #2, 4

INPUT # buffer, variable name, ...
 INPUT #2, S$, T$

Page 24 (c) 1987 by Sardis Technologies
KILL filename
 KILL "fleas/bas:1"

LINE INPUT # buffer, data
LINE INPUT #2, A$

LOAD filename, R
 LOAD "mortgage/bas:1", R

LOADM filename, offset address
 LOADM "pgrm/bin", 2800

LOC (buffer)
 PRINT LOC(2)

LOF (buffer)
 FOR N = 1 TO LOF(2)

LSET field name = data
 LSET N$ = "George"

MERGE filename, R
 MERGE "subrtn/bas", R

MKN$ (number)
 LSET N$ = MKN$(378510)

OPEN "node", # buffer, filename, record length
 OPEN "I", #1, "info/dat", 64

PRINT # buffer, data list
 PRINT #2, "AABBCC"

PRINT # buffer, USING format; data list
 PRINT USING #1, "###.##"; 195.50

PUT # buffer, record number
 PUT #1, 3

RENAME old filename TO new filename
 RENAME "afile/bin:1" TO "xfile/bin:1"

RSET field name = data
 RSET A$ = "brass"

RUN filename, R
 RUN "poker/bas", R

SAVE filename, A
 SAVE "bestprog/bas:1", A

SAVEV filename, first address, last address, execution address
 SAVEV "seive/bin:1", &H4800, &H4AFF, &H4920

UNLOAD drive number
 UNLOAD 1

VERIFY ON
VERIFY OFF
WRITE # buffer, data list
 WRITE #0, X$, Y$, A

Error Messages

AE file Already Exists
AO file is Already Open
BR Bad Record number
DF Disk Full
DN Drive Number or Device Number error
ER write or input past End of Record
FD bad File Data
FM bad File Mode
FN bad File Name
FO Field Overflow
FS bad File Structure
IE Input past End of file
IO Input/Output error
NE disk file not found
NO file Not Open
OB Out of Buffer space
VF Verification error
WP Write Protected

AVAILABILITY OF SCHEMATICS
=================================

WARRANTY
=================================

USER FEEDBACK
=================================

INDEX
=================================

....DMCDOC.DW120.B70714.1720 rm#70 dp/p66/112 (headers/footers defined

Page 26 (c) 1987 by Sardis Technologies