
1tad1e lhaew

TERMS ANO CONDITIONS OF SALE ANO LICENSE OF RADIO SHACK COMPUTER EOUIPMENf ANO SOFTWARE PURCHASED FROM A RADIO SHACK COMPANY-OWNED
COMPUTER CENTER, RETAIL STORE OR FROM A RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
I. CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility !hat U1is Radio Shack compu1er nardware pu;chased (Inc '"Equipmenl'"). and any copies of Radio Shack sottware included with tne Equipment or licensed separately (the
"Software'") meets the specifications, capacity, capabilities, versatilily, and other requirements ol CUSTOMER.

B. CUSTOMER ass.mes lull responsibility !or lhe condilion and cllectiveness ol tne operating environment ,n which the Equ,pment ana Software are to !unction, and !or its installation.

II. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE
A. For a period ol ninety (90) calendar days from the date ol the Radio Shack sales document rece,ved upon purchase ol the Equipment. RADIO SHACK warrants to the original CUSTOMER that the Equipment and

the medium upon which the Software is stored is free from manulactunng delects THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER
FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES ANO FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED LOCATION The warranty is void if the
Equipment's case or cabinet has been opened, or ,1 the Equipmen: or Sottware nas been sub1ecled 10 improper or abnormal usa II a manufacturing defect is discovered during the stated warranty period, the
defective Equipment must be returned to a Radio Shae, Computer Center. a Rad,o Shack retail store participaling Radio Shack franchisee or Radio Shack dealer for rep~r. alono wilh a copy of the sales
documenl or lease agreement. The original CUSTOMER'S sole and exclusi1·e remedy in the even! ol a delect is hm,led lo !he correc~on of the defect by repair, replacement, or refund of the purchase price, at
RADIO SHACK'S election and sole expense R~OIO SHACK has no obligat,on 10 replace or repair expendable items

8. RADIO SHACK makes no warranty as lo the design, capability, capacity, or suitab,hty !or use ol the SottwJre, exccpl as provided in this paragtaph. Sottware is licensed on an " AS IS'" basis, without warranly.
The original CUSTOMER'S exclusive remedy, in tne event ol a Software manulactunng defect. is ils repa,r or replacement within l/11rty (30) calendar days of the date ol lhe Radio Shack sales document received
upon license of the Sottware. The defective Software shall be returned to a Radio Shack Computer Center. a Radio Shaci,; rela1I store, participating Radio Shack franchisee or Radio Shack dealer along with the
sales document

C. Except as provided herein no employee. agent, lranchisee, dealer or other person ,s aulhorized to give any wan antics ol any nature on behalf of RADIO SHACK.
0 Ex_cept as provided herein. RADIO SHACK MAKES NO IYARRANTltS, lliCLUDilfG WARRANTIES OF MERCHMlTABILITY OR FITHESS FOR fl PARTICULAR PURPOSE.
E Some states do not allow limitations on now long an implied warranty 1as1s, so the abo,e lim,1ation(s) may not apply lo CUSTOMER.

Ill. LIMITATION OF LIABILITY
A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO A!ff LIABILITY, LOSS OR DAMAGE

CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY '"EQUIPMENT'" OR '"SOffiVARE'" SOLD, LEASED. LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO,
ANY INTERRUPTION Of SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION OF THE " EQUIPMENT" OR "SOffiVARE".
IN NO EVENT SHALL RAOIO SHACK BE LIABLE FOR LOSS Of PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY
MANNER ARISING OUT Of OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE Of THE "EQUIPMENT" OR "SOffiVARE"

NOTWIT!iSTANOING THE ABOVE LIMITATIONS ANO WARRANTIES, RADIO SHACK"S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID
BY CUSTOMER FOR THE PARTICULAR '"EQUIPMENT'" OR " SOFTWARE'" INVOLVED.

B. RADIO SHACK shall nol be liable for any damages caused by delay ,n delivering or furnishing Equipment and/or Sottware
C. No action aris,ng out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years alter lhe cause of action has accrued or more than four (4) years after

the date of the Radio Shack safes document lor lhe Equipment or Software, whichever Inst occurs
D. Some states do not allow lhe limitation or exclusion of incidental or consequenlial damages. so the above limitation(s) or exclus,on(s) may not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE
RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer. subject to the following provisions·
A. Except as olherwise provided in this Sof1ware License, applicable copyrighl laws shall apply to lhe Sottware.
B. Tille lo !he medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, bu! not lille to the Software.
C. CUSTOMER may use Software on one host compuler and access that Sohware through one or more terminals if lhe Sottware permils this function.
D. CUSTOMER shall not use, make, manulaclure, or reproduce copies ol Software except for use on one computer and as is specifically provided in this Software License. CuSlomer is expressly prohibited from

disassembling the Software.
CUSTOMER is perniined to make addilional copies of tne Software only for backup or archival purposes or ii addilional copies are required in the operation of one compuler with the Software. bul only to lhe
ex1ent tne Sottware allows a backup copy lo be made. However, !or TRSOOS Software, CUSTOMER is permitted to make a limiled number ol additional copies for CUSTOMER'S own use.
CUSTOMER may resell or distribute unmodified copies of the Sohware provided CUSTOMER has purchased one copy 01 tne Software 1or each one sold or distnbuled The provisions ol lhis sonware License
shall also be applicable to third parties receiving cop,es ol the Sohware from CUSTOMER

G. All copyright nokes shall be relained on all copies ol the Sottware

V. APPLICABILITY OF WARRANTY
A. The lerms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of lhe Equipment am!lor Software License to CUSTOMER or lo a transaction whereby RADIO

SHACK sells or conveys such Equipment 10 a third party for lease to CUSTOMER
8. The limitations of liability and Warranty provisions herein shall inure lo the beneli l ol RADIO SHACK. the author, owner and/or licensor of the Sottware and any manufacturer of lhe Equipment sold by RADIO

SHACK

VI. STATE LAW RIGHTS
The warranlies granted herein give the original CUSTOMER specific legal rights, and the orfglnaf CUSTOMER may have other rights which vary from state to state.

Getting Started with Color BASIC:

Copyright © 1981 Tandy Corporation,
Fort Worth, Texas 76102, U.S.A.

All rights reserved.

Reproduction or use, without express written permission
from Tandy Corporation, of any portion of this manual, is
prohibited. While reasonable efforts have been taken in
the preparation of the manual to assure its accuracy,
Tandy Corporation assumes no liability resulting from any
errors or omissions in this manual or from the use of the
information obtained herein.

TRS -80 Color BASIC System Software: Copyright ©
1980 Tandy Corporation and Microsoft.

All rights reserved.

The system software in the Color Computer is retained in
a read-only memory (ROM) format. All portions of this sys
tem software, whether in the ROM format or other source
code format, and the ROM circuitry, are copyrighted and
are the proprietary and trade secret information of Tandy
Corporation and Microsoft. Use, reproduction, or publica
tion of any portion of this mater ial, without the prior writ
ten authorization by Tandy Corporation, is strictly
prohibited.

Printed in the United States of America

9 8 7 6 5 4 3

WELCOME NEWCOMERS!

If you don't know anything about Computers and would like to be spared the long, technical explana
tions, relax - this book is for you!

Using this as your guide, you' ll be able to interact and enjoy your Computer right away. The first
section is all you need to get going. The rest of the book is frills.

You'll find that , especially at first - we'll have you doing a lot of games, songs, and other fun-type
programs. Don't worry - if you want to do " practical" programs, you'll find plenty of that later. We
start you off with the fun programs because that's the quickest way for you to feel at ease with your
Computer. Once you feel it's truly an extension of yourself, you'll be able to make it do most anything
you want.

So sit down and spend a couple of hours with it. Type away at it. Play with it. TI:y to make it do strange
things. In other words .. . get to feeling comfortable with it. There's an endless number of things it can
do for you .

. . . AND HELLO OLD-TIMERS

We haven't forgotten about you. If you already know how to program, turn to Appendix J. There,
you'll find a summary of COLOR BASIC with page numbers you can refer to for the things you want
to know more about. Then, if you want to learn more about your Computer, go straight to Section IV.
It'll show you how to program high resolution graphics and call machine-language programs.

TO GET STARTED ...

Connect your Computer by referring to the Chapters on "Installation" and "Operation", and to
Figure 1 in your TRS-80 Color Computer Operation Manual.

Then power up your Computer:

• Turn ON your television set
• Select channel 3 or 4
• Set the antenna switch to "COMPUTER"
• Turn ON the Computer. The POWER button is on the left rear of your keyboard (when you're

facing the front) .

This message should appear:

COLOR BASIC v.r
© 1980 TANDY
01<

(v.r is two numbers specifying which version and release you have).

If you don't get this message, turn the computer on and off again. Adjust the
Brightness and Contrast on your T.V. set. Check all the connections. If you still
don't get this message, refer to "Troubleshooting and Maintenance" in the
TRS-80 Color Computer Operations Manual.

Once you do get this message,you're ready to begin.

?
•

r '\
8 Q I

HOW DO YOU TALK TO A COMPUTER?

In this book, you'll learn how to talk to your Computer. That's all programming is, by the way. Once
you learn how to communicate, you'll be able to get your Computer to do whatever you tell it. (well,
almost).

The Computer understands a language called COLOR BASIC. COLOR BASIC is form of BASIC -
Beginners All-purpose Symbolic Instruction Code. There are lots of computer languages. COLOR
BASIC just happens to be the language your Computer understands.

We'll introduce BASIC words in the order that it's easiest to learn them. When you get mid-way in
the book, you might forget what one of the words means. If this happens, simply look up the word in
the back of the book or use your "Quick Reference Card" to find its meaning.

1

TABLE OF CONTENTS

SECTION I - GETTING THE HANG OF IT
CHAPTER 1: MEET YOUR COMPUTER . • . 6
CHAPTER 2: YOUR COlVIPUTER NEVER FORGETS(. .. unless you turn it off ...) 16
CHAPTER 3: SEE HOW EASY IT IS . • . 24
CHAPTER 4: COUNT THE BEAT . • 34
CHAPTER 5: SING OUT THE TIME . • 42
CHAPTER 6: DECISIONS, DECISIONS . 54
CHAPTER 7: GAMES OF CHANCE . 60
CHAPTER 8: SA VE IT ON TAPE . • . 70
CHAPTER 9: COLOR YOUR SCREEN . 76
CHAPTER 10: ONE FANTASTIC TEACHER 90
CHAPTER 11: HELP WITH MATH 102
CHAPTER 12: A GIFT WITH WORDS 112
CHAPTER 13: BEAT THE COMPUTER 124
CHAPTER 14: POLISH IT OFF 134

SECTION II - GRAPHICS WITH PIZZAZZ
CHAPTER 15: MOVING PICTURES 148
CHAPTER 16: THE TALKING COMPUTER TEACHER 158
CHAPTER 17: GAMES OF MOTION•..... . .. 166
CHAPTER 18: FASTER THAN MOTION .. 174
CHAPTER 19: LET'S DANCE 186

SECTION III - GETTING DOWN TO BUSINESS
CHAPTER 20: KEEPING TABS ON EVERYTHING•........................... 196
CHAPTER 21: PUT POWER IN YOUR WRITING 208
CHAPTER 22: TAPE YOUR BOOK COLLECTION(. .. or your records, Christmas list,

tax receipts, inventory .. .) ... 218
CHAPTER 23: FILING-AS EASY AS ABC 232
CHAPTER 24: GETTING ANALYTICAL 238

SECTION IV - DON'T BYTE OFF MORE THAN YOU CAN CHEW
PART A: HIGH RESOLUTION GRAPHICS•.......•........ . .. •... 252
PART B: USING MACHINE-LANGUAGE SUBROUTINES•.•....•.... • 267
PART C: MEMORY MAP 271

APPENDIXES
A I MUSICAL NOTES •••••••• • • •• •• • •• ••• •• • ••••••• • ••••••••.••••••• • •••••••••••.•••••••••••••••••••••••••• 274
B / BASIC COLORS AND GRAPHICS .••••••••• • •••••••••••••••••• • ••• • ••• • • • •••••••••••••••••••••••••••••••••• 276
C I PRINT @ SCREEN LOCATIONS •.••••.••••••••••••. • •••• • • • •• • •• 277
D I GRAPHICS SCREEN LOCATIONS •.••• • ••••••••••••••••• 278
E I ASCII CHARACTER CODES • •••••••••.•••••••••••.•• • •••••••••••• 280
F I ANSWERS TO EXERCISES ••••••••••••••••••••••••••••••••. • ••••••••••••• • •••••••••••••••••••••••••••••• • 282
G I SUBROUTINES •• • ••••••••••••••••••••••••••• 287
H / SAMPLE PROGRAMS •••••••••• • ••••• • •••• •• • ••• 291
I / ERROR MESSAGES ••••••••••••• •• ••• • ••••••••••••••••••••••••••••••• • • • • ••••••••••• • ••••••••••••••••••• 298
J f BASIC SUMMARY • • •••••••••• , ••••••••••••• • ••••••••••••••••••••••••• • ••••••••••••••••••••••••••••••••• 300

l ' I Ii
I j
I 1

I I
j ! 1
i I I
j i i
I l .
I

; i
, I

I l
: I
• I

. I ! . I .
j l ;
I; I

I
I
I

I l

;
l
l

SECTION I

@IBTITITI~@ TIOOIB
00~~@ @IP TITI

CHAPTER 1

MEET YOUR COMPUTER
r-=· ::;::::::=====:::::============::::;:==-=-==--::-:::=-==-=::..==-===- ::-::::::=---=::==--~~::::...::::=-- =:;::_=--===:-:--=......:::::-=--=-==-=-=-=--=-=---=--=· =---=-=-=========::::::::;:==::=-=-:::::::
:;::::- =======::;;::=:::;.::::::::=::;::;;;:::::;:=::.:::= . - ---------==----.::...··~----·=~-==---====--·- .. ----::::::::;--·- · - -;-;=:-·--==·:.:;::-==-::::::· ==:::=::::::::=-::::;:.-=::;_--

In these first two C rnpters, we're goi11g to intl:oduce yo~1 to youx Con,.rnter •·
the way it thi ,,ks, some of its many talents, a:12 even a couple nfl ittle qui ks it
has. By the time you finish t.hese fraptern, you'll ue 1·eady tc prngrarn
promise!

Type away on the keybom·d a nd then p1·ess the (Ei:T::nl key.

Don't worry ahout anything but t he last iine of type o:n your screen. It! should
say:

01<

OK is the Computer's "prompt". It's telling you - "OK, enough foolishness .. .
as soon as you a re ready . . . " (It patiently waits for your command.) You a re
the Master - you can tell the Compute1· to do anything you wish .

Give it your first command. Type this exactly as it is below:

PRINT "HI, I'M YOUR COLOR COMPUTER"

When you reach the end of the line on your screen, keep on typing. The last part
of the message will appear on the next line.

All lt:!t.ter.,:; you type should ot? BLACK
with a GREEN BACKGROUND. lf
lhe:y';·c reuersed (green with a hlack
bacl?ground) , p ,ess the (SHIFT) a.nd
GD (zero) keys at the same time.

7

~

8

See the blinking light? You can type
something wherever you see it.

/

111 -•• u

-..

"Hi, I'm Your Color Computer!"

Now check your line. Did you put the quotation marks where we have them? If
you made a mistake, no problem. Simply press the 8 key and the last
character you typed will disappear. Press it again and the next to the last will
disappear(. .. and so on and so on ...).

Ready? This should be on your screen:

01<
PRINT "HI, I'M YOUR COLOR COMPUT
ER"

Press the (ENTER) key and watch. Your screen should look like this:

01<
PRINT " HI, I'M YOUR COLOR COMPUT
ER"
HI, I'M YOUR COLOR COMPUTER
QI(

Your Computer just obeyed you by printing the message you had in quotes.
Give it another message to print. Type:

PRINT "2"

Press (ENTER) The Computer again obeys you and prints your next
message:

2

Try another one:

PRINT "2 + 2" (ENTER)

The Computer obeys you by printing:

2 + 2.

You probably expect a lot more than just an electronic mimic . .. like maybe

some answers! Well, try it without the quotation marks. Type:

PRINT 2 + 2 (ENTER)

Much better. This time the Computer prints the answer:

4

These quotation marks obviously must mean something. Try experimenting
some more with them. Type each of these lines:

PRINT 5+4 (ENTER)
PRINT "5+4" (ENTER)
PRINT "5 + 4 EQUALS" 5 + 4 (ENTER)
PRINT 6/2 " IS 6/2" (ENTER)
PRINT "8/2" (ENTER)
PRINT 8/2 (ENTER)

Have you come up with any conclusions on what the quotes do?

~ ~~~~~~~~~~~~

''
The Computer thinks of quotes like a
journalist does. If the message is in
quotes, the Computer must PRINT it
exactly as it appears. If it's not in
quotes, the Computer can interpret it
by adding, subtracting, multiplying
or dividing it.

RULES ON STRINGS VS NUMBERS ~

The Computer sees everything you type as STRINGS or NUMBERS. If it's in ·~
quotes, it's a STRING. The Computer sees it EXACTLY as it is. If it's not in quotes ~

)~~~ER. The Computer will figme it out like a numerical ;::~'-. (

9

Nctice hm.<• the Computi?I' hcm dles
parts in quotes vs. the parts not in
quotr;s .

Any a1·i thmelic problem is a snnp for yom Computer. Let it do some long

division. Type:

PRit-JT "3862 GIV!DED BY 13.2 IS" 3862/13.2 (ENTl;BJ

Let's do a ,:ndtiplication prnblem:

Ncti-:::2 tr.at t'.1e -Compde1_.s mt:itiplicr,t.ion sign is an asterisk. rather than the
:~ si gn. \·;},:ch. ··ou've a lways us2d :n rn.c,th . This is because the Computer is such
c: p,·ecise <md l: Let'ai c ea.Ltire that it ·-\'Gtdd get t.he :)(n,ult ip1icat ion sign mi :~ed

l1.'I) ~.vit l1 ch e ./(t..1lJ11aL.: ~i~ai cl-1E1t·act.er.

PRINT "15 '' 2 = " :is-2 CElT~:m
P!~ iN T 18 .,, 18 "iS Tri::: SQUt2\RE OF 18" U;tlH:iJ)
:c rmn 33_:-:;122.82 (f:::r::;:-D

No,v iVs y ::i-t:tr tur n . Writ e t wo c0,i1lm:nd lines which will prin t these two

prnblerns as ivell as t heir answers:

157 I 13.2 =
95 " 43 =

DO-IT-YOURSELF COivf!VIAND LINES

'? \\ 10:7 /J~. cl~ II 15 '7 /1 ~.o)
'

-- -----,{

__ J

If you used "correct" command lines, this is what the Computer should have
printed on your screen:

157 / 13.2 = 11.8939394
95 * 43 = 4085

Ready for the answers:

PRINT "157 I 13.2 =" 157/13.2
PRINT "95 * 43 =" 95* 43

IT HAS ITS RULES ...

By now, the Computer has probably printed some funny little messages on
your screen. If it hasn't, type this line deliberately mispelling the
word PRINT:

P RII NT "HI" (ENTER)

The Computer prints:

?SN ERROR

SN ERROR stands for "syntax" error. This is the Computer's way of saying
"The command 'PRIINT' is not in my vocabulary ... I have no earthly idea
what you want me to do". Anytime you get a SN error, it's probably because you
made some kind of typographical error.

The Computer will also give you error messages when it does understand what
you want it to do, but you're asking it to do something that it feels is illogical or
impossible. For instance, try this:

PRINT 5/0 (ENTER)

The Computer prints:

?/0 ERROR

Actually there is no "correct'' Com
mand line. For that matter, there is no
correct way of handling your
Computer. There are many ways of
getting it to do what you want. Re
lieved ... Good!

11

If you don't get the right colors, refer
to the color test in your Owner's
Manual.

12

Which means "Don't ask me to divide by O - that's impossible!!"

If you get a strange error message you don't understand, flip back to the

Appendix. We've listed all the error messages there and what probably caused

them.

IT'S A SHOW OFF, TOO

So far, all you've seen your Computer do is silently print on a green screen. But

your color Computer enjoys showing off. Type:

CLS(3) (ENTER)

Now your screen is a pretty shade of blue with a green stripe at the top. Your

typed command told the Computer to clear the screen and print color number 3

- blue.

But why the green stripe? The Computer cannot type on a blue background.

Anytime it types something on the screen, it must type it on a green

background. Try typing some more characters. Notice that the Computer gives

these characters a green background also.

Colors other than green'are for printing graphics illustrations. We'll spend lots

more time with this color capability later.

Press (ENTER) so that you get the OK prompt on your screen. Type:

CLS(7) (ENTER)

Now you should have magenta (pinkish purple) on your screen with a green

stripe at the top. Try some more colors if you like. Use any number from Oto 8.

Your color Computer has nine colors. Each color has a numeric code.

BUG: If you get a message saying MICROSOFT or an ?FC

Error message, it's because you are using a number other than 0

through 8.

Type CLS without a number code:

CLS (ENTER)

If you don't use a number code, the Computer assumes you just want a clear
green screen.

COMPUTER SOUND OFF - ONE, TWO ...

Type this:

SOUND 1, 100 (ENTER)

If you don't hear anything, turn up the volume and try again.

What you are hearing is 6 seconds of the lowest tone the Computer can hum.
How about the highest tone? Type:

SOUND 255, 100 (ENTER)

OK, so it's got quite a hum-range . .. hope you're suitably impressed. Try some
other numbers. Hope you like the Computer's voice (it's the only one it's got).

You want to know what the other number is for? (Or maybe you've already
found out). The second number tells the Computer how long to hum the tone.
You can use any number from 1 to 255. Try 1:

SOUND 128, 1 (ENTER)

and the Computer will hum the tone for about 6/l00ths of a second. Try 10:

SOUND 128, 10 (ENTER)

The Computer sounds the tone for 6/l0ths of a second. Try variations of both
numbers, but stick to numbers between 1 and 255.

"Sound Off!"

13

14

~

Curious about the reversed colors?
They're for people with a printer. The
printer will print everything typed in
reversed colors as lower case letters.

BUG: Again, if you. get an ?FC Error message, it's because you

are using a number other than 1 through 255.

ONE MORE THING ...

Press the (SHIFT) and CID (zero) keys, holding both down at the same time. Now

type some letters. The letters you type should now be green on a blach

bachground. If they're not, try it again pressing (SHIFT) slightly before

pressing([) . Be sure to hold both keys down at the same time.

Now, with the colors "reversed", press (ENTER) and then type this simple com

mand line:

PRINT " HI" (ENTER)

The Computer gives you an ?SN ERROR. It doesn't understand the command.

Press the (SHIFT) and CID characters again and type some letters. They should
be back to normal: blach with the green bachg round. Press (ENTER) and type

the same command line again. This time, it'll work.

We just wanted to show you this in case you ever press (SHIFT) and (QJ by a

mistake. The computer can't understand any commands you type with re

versed colors. If you ever find you're typing with these reversed colors, press

the (SHIFT) and CID keys to get the colors back to normal.

f ,-

1 L' PRINT
SOUND

t ~-C-LS _

BASIC WORDS

~- ~ · ', \ , - LYC! Ci- .,

s ('\ ~ = ~ tc (\ t ~)~
••

LEARNED IN CHAPTER 1

KEYBOARD CHARACTERS CONCEPTS

string vs. numbers
error messages

J
We'll put a list like this at the end of each chapter. It'll help you make sure you
didn't miss anything.

NOTES:

15

CHAPTER 2

G

r ~

~-=-~~ 1<$1
JFs;ij~~ ---...~ M$

W4

XW4]
C>C. 1:)$ 1
~E$ 1[E$ 1
Q$ 11 Ml$ 1

YOUR COMPUTER NEVER FORGETS
(.. . unless you turn it off ...)

YOUR COMPUTER NEVER FORGETS
(... unless you turn it off . ..)

One of the things that makes your Computer so powerful is its ability to
remember anything you ask it to. To make the Computer remember the
number 13, type this:

A = 13 (ENTER)

Now type anything you want to confuse the Computer. When you're done,
press (ENTER). To see if the Computer remembers what A stands for, type:

PRINT A (ENTER)

Your Computer will remember 13 as long as you have it on . .. or until you do
what we're going to do next. Type:

A = 17 .2 (ENTER)

Now if you ask it to PRINT A, it will print the number 17.2.

This is what just happened in your Computer's memory:

Did it get confused?
or forget?

If you already know BASIC, you
might be accustomed to using the
word LET before these command
lines. Your Color Computer thinks
that word is unnecessary and is con
{ used when you use it.

17

18

To the Computer, a dollar sign means
it's a string.

You don't have to use the letter A. You may use any letters from A to Z. (As a
matter of fact, you can use any two letters). Try typing this:

B = 15 (ENTER)

C = 20 (ENTER)

BC = 25 (ENTER)

Have it print all your numbers. Type:

PRINT A, B, C, BC

To get it to remember a string ofletters or numbers, put a dollar sign next to the
letter. Type:

A$ = "TRY TO"
B$ = "REMEMBER"
C$ = "THIS YOU"
BC$ = "GREAT COMPUTER"

Let's see how sharp your Computer is. Type:

PRINT A$, B$, C$, BC$ (ENTER)

Computer types call all these letters variables. So far, we've used these
variables:

YOUR COMPUTER'S MEMORY

NUMBERS CHARACTERS

A ~ 17.2 A$:> "TRY TO"
B J 15 B$) "REMEMBER"
C ➔ 20 C$ > "THIS YOU"
BC) 25 BC$) "GREAT COMPUTER"

Try spot checking these variables to see if the Computer has remembered your
information properly. For instance, type:

PRINT BC (ENTER)

To see if BC still contains 25.

You can think of these variables as little boxes where you can store your
information. One set of boxes is for strings; the other set's for numbers. You use
these variables to label each box.

THE COMPUTER IS FUSSY ABOUT ITS RULES

Do you think the Computer will accept these lines:

D "6" (ENTER)
Z = "THIS IS STRING DATA" (ENTER)

With both of these lines, the Computer responds with ?TM ERROR. It's telling
you you've got to play according to its rules.

These are the rules you ignored:

To obey the Computer's rules, we have to put a dollar sign after D and Z. Type:

Try to set the computer to remember a
letter we haven't used yet. What hap
pens ... interesting . ..

Like we said before, the Computer has
it's rules and might get a little fussy
with you if you don't play by them.

TM stands for Type MisMatch error.
It means you didn't go by the rules.

19

20

D$ = "6" (ENTER)

Z$ = "THIS IS STRING DATA" (ENTER)

which the Computer accepts.
Do you think the Computer will accept this?

D$ = 6 (ENTER)

These are the rules that this command ignored:

~ ~ ~ ~ ~ ~~ ~ ~~ ~ ~~~ ~ ~ ~ ~~

RULES ON NUMERIC DATA ~

(ll Numbers not in quotes are NUMERIC DATA ~
(2) Numeric data can only be assigned to ~ ,
variables WITHOUT A $ SIGN

Type this, which the Computer will accept:

D = 6 (ENTER)

Z = 12 (ENTER)

You have now added this to your Computer's memory.

YOUR COMPUTER'S MEMORY

NUMBERS STRINGS

D
z ---➔

• 6 --->~ 12
D$ --->• "6"
Z$) "THIS IS STRING DATA"

Now you can do something interesting with these letters. Type:

PRINT D * 2 (ENTER)

The Computer prints the product of D times 2.

Try this line:

PRINT Z/D

The Computer prints the quotient of Z divided by D.

Would this work:

PRINT D$ * 2 (ENTER)

Did you try it? This makes the Computer print the same ?TM ERROR. It
cannot multiply string data.

Cross out the commands that the Computer will reject:

EXERCISE WITH VARIABLES

F = 22. 9999999
M = "19.2"
DZ$ = "REMEMBER THIS FOR ME"
M$ = 15
Z = F + F

Finished? This is what the Computer will accept.

F = 22.9999999
DZ$ = "REMEMBER THIS FOR ME"
Z = F + F

The computer remembers that D = 6.

21

22

RULES ON VARIABLES

You may use any two characters from A-Z for a variable.
The first character must be a letter from A-Z; however, ~

~- the second may be either a numeral or letter. If you
>'1 want to assign it string data, put a dollar sign after it.
~'\: Othenvise, it can only hold numedo data.

v ~~~~ ~~~~~

LEARNED IN CHAPTER 2

CONCEPTS

Variables
String vs. Numeric Variables

Now that you've learned how the Computer thinks it will be easy to write some
programs. But before going to the next chapter, how about a break?

NOTES:

23

CHAPTER 3

SEE HOW EASY IT IS?
---- --- -- -------------- -~--- -~ -~~-- ·---·· --- -- -- ----~~-~~~

Type:

NEW (ENTER)

••••• •• •••
~

SEE HOW EASY IT IS?

This is just to erase anything that might be in the Computer's "memory".

Now type this line: Be sure you type the number 10 first - that's pretty
important.

10 PRINT "HI, I'M YOUR COLOR COMPUTER" CENTER)

Did you press (ENTER)? Nothing happened, did it? Nothing that you can see, that
is. What you just did is type your first program. Type:

RUN (ENTER)

The Computer obediently runs your program. Type RUN again and again to
your heart's content. The magic machine will run your program anytime you
wish, as many times as you wish.

Since that worked so well, let's add another line to the program. Type:

20 PRINT "WHAT IS YOUR NAME?"

25

26

If you make a mistake after press
ing CENTER), simply type the line
over again.

Now type:

LIST (ENTER)

Your Computer obediently LISTs your entire program. Your screen should

look exactly like this:

10 PRINT "HI, I' M YOUR COLOR COM
PUTER"
20 PRINT "WHAT IS YOUR NAME?"

What do you think will happen when you RUN this? Try it. Type:

RUN (ENTER)

The Computer prints:

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

Answer the Computer's question and then press (ENTER) What?

There's that SN Error. The Computer didn't understand what you meant when

you typed your name. In fact, the Computer can't understand anything unless

you talk to it in its own way.

So let's use a word the Computer understands - INPUT. Type this line:

30 INPUT A$ (ENTER)

This tells the Computer to stop and wait for you to type something, which it

will label as A$. Add one more line to the program:

40 PRINT "HI, " A$ (ENTER)

Now list the program again to see if yours looks like mine. Type:

LIST CENTER)

Your program should look like this:

10 PRINT "HI, I'M YOUR COLOR COM
PUT ER"
20 PRINT "WHAT IS YOUR NAME"
30 INPUT A$
40 PRINT " HI, " A$

Can you guess what will happen when you RUN it? Try it:

RUN (ENTER)

That worked well, didn't it? This is probably what happened when you ran the
program (depending on what you typed as your name):

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
? JANE
HI, JANE

RUN the program again using different names:

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
? HUGO
HI, HUGO

HI, I' M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
? NONE OF YOUR BUSINESS
HI, NONE OF YOUR BUSINESS

HI, I' M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
? 772-36-8228
HI, 772-36-8228

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
? I GET IT!!
HI, I GET IT!!

The Computer doesn't care what you want to call yourself. Here's what line 30
did to your Computer's memory each time you ran the program. (Assuming you
gave it the same names we did):

27

'
GOOOOOOOOO G
0 ~---1 0

.. 0 o-
0 -- ----- 0
00000000000

28

I
. I

To delete a program line, simply type
and fflEID the line number. For
example:

50~
erases line 50 from the program.

YOUR COMPUTER'S MEMORY

HUGO
A$~JA'NE

772-36-8228
NONE OF YOUR BUSINESS

I GET IT! !

There's an easier way to run your program over and over without having to
type the RUN command. Type this line:

50 GOTO 10

Now RUN it the program runs over a nd over again without stopping.
GOTO told the Computer to go back up to line 10:

(

10 PRINT "HI, I'M YOUR COLOR COMPUTER"

20 PRINT "WHAT IS YOUR NAME"
30 INPUT A$
40 PRINT "HI, " A$
50 GOTO 10

Your program will now run perpetually, because every time it hits line 50, the
Computer goes up to line 10 again. We call this a "loop". The only way you can
stop this endless loop is by pressing the (BREAK) key.

SPOTLIGHT YOUR NAME

Change line 50 so we can give your name the kind of attention it deserves. How
do we change a program line? Simply by typing it over again, using the same
line number. Type:

50 GOTO 40

This is what the program looks like now:

10 PRINT "HI, I'M YOUR COLOR COMPUTER"
20 PRINT "WHAT IS YOUR NAME"
30 INPUT A$

~ 40 PRINT "HI, 11 A$
~ 50 GOTO 40

Type RUN and watch what this loop does. Press the (BREAI{) key when you've
seen enough.

There's a big change we can make simply by adding a comma or a semicolon .
Try the comma first. Type line 40 again, but with a comma at the end:

40 PRINT A$,

RUN the program The comma seems to print everything in two
columns.

Press (BREAK) and try the semicolon. Type:

40 PRINT A$;

, and RUN You probably won't be able to tell what it's doing until you press
(BREAK). See how the semicolon crams everything together?

We're leaving out the "HI, "part
this time.

Remember, if you make a mistake on
one of the lines, simply type the line
over again.

29

30

NEW CENTER). . . wish mine worked
that easily!

In this program we are using T as a
variable. However, we could use any
letter.

Notice that Line 30 asks for T rather
than T$. This is because we want
numeric data rather than string data.

COLOR/SOUND DEMONSTRATION

Let's play around some more with your Computer's sound and color abilities.
First clean out its memory. Remember how?

Now enter this program:

10 PRINT "TO MAl<E ME CHANGE MY TONE"

20 PRINT "TYPE IN A NUMBER FROM 1 TO 255"

30 INPUT T
40 SOUND T, 50
SO GOTO 10

RUN through this program to get a sampling of some of the Computer's tones.

BUG: If you get a ?FC Error when you run this program, it's

because you used a number other than 1 through 255. This error,

like all errors, will make the Computer stop RUN ning the program.

What would happen if we changed line 40 to:

40 SOUND SO, T

HINT: Look back in Chapter 1 where we talk about SOUND .

.

Did you figure it out? By making this change, the Computer hums the same
tone every time, but hums it for a different length of time, depending on the

number you type in.

Press (BREAK) first and then erase this program by typing NEW. Now see if you
can write a program, similar to the one above, to make the Computer show a

color you ask for. Remember, there are 9 colors, 0 through 8.

This is our program:

DO-IT-YOURSELF PROGRAM

HINT: L ine 40 could be:
40 CLS(T)

10 PRINT "TO MAKE ME CHANGE MY COLOR"
20 PRINT "TYPE A NUMBER BETWEEN O AND 8
30 INPUT T
40 CLS(Tl
50 GOTO 10

ADD POLISH TO THE PROGRAM

Professional programmers would think that pressing the rn;lEAKl key was a
rather sloppy way of getting the program to stop running. Why not get the
Computer to politely ask us if we are ready to end it? Change Line 50 in the
above program to:

50 PRINT "DO YOU WANT TO SEE ANOTHER COLOR"

Press (BREAK) before typing the line.

31

32

Don't worry about this IF/THEN
right now. We'll be devoting a whole
chapter to it later.

L~ -~-

and add these lines:

60 INPUT R$
70 IF R$ = "Y ES" THEN 20

and RUN the program . . . Type YES and the program will keep on running.
Type anything else and the program will stop.

This is what the program looks like:

10 PRINT "TO MAl<E ME CHANGE COLORS"
-~ 20 PRINT " TYPE A NUMBER BETWEEN O AND 8"

30 INPUT T
40 CLS(T)

50 PRINT " DO YOU WANT TO SEE ANOTHER COLOR"
60 INPUT R$

--70 IF R$ = "YES" THEN 20

Let's look at what these new lines did:

Line 50 simply printed a question.

Line 60 told the Computer to stop and wait for our answer -- R$.

Line 70 told the Computer to go back to line 20 IF (and only IF) your answer
(R$) was YES. If not, the program simply ended since there are no more lines in
the program.

You've covered a lot of ground in this chapter. Hope we're just whetting your
appetite for more to come.

Don't worry if you don't understand everything perfectly yet. Just enjoy using
your Computer.

BASIC WORDS

Characters

NEW
INPUT
GOTO
RUN
PRINT,
PRINT;
LIST
IF/THEN

LEARNED IN CHAPTER 3

CONCEPTS

How to Change and Delete a
Program Line

KEYBOARD

~fiiili~~ ~===~:JC.========~==-=:=~-=--~~~iiilB-EI _ ____ _____ ,....;:_

NOTES:

-----·--·------·----------------- ..

--- ---- ··--·-------· --------

CHAPTER4

0

0

COUNT THE BEAT

COUNT THE BEAT

In this Chapter we are going to do some experimenting with Computer sound
effects. To do this, we have to first teach the Computer how to count.

Type this:

10 FOR X = 1 TO 10
20 PRINT "X = " X
30 NEXT X
40 PRINT "I HAVE FINISHED COUNTING"

RUN the program.

RUN the program several times, each time replacing line 10 with one of these
lines:

10 FOR X = 1 TO 100
10 FOR X =
10 FOR X
10 FOR X =

5 TO 15
-2 TO 2
20 TO 24

Do you see what FOR and NEXT are making the Computer do? They are
making it count. Let's study the last program we suggested you try:

'

The logic of this will become clear
later.

Remember to type
NEW (ENTER)

before typing a new program.

35

36

C 10 FOR X = 20 TO 24
20 PRINT "X = " X
30 NEXT X
40 PRINT "I HAVE FINISHED COUNTING"

Line 10 tells the Computer that the first number should be 20 and the last
number should be 24. It uses X to label these numbers.

Line 30 tells the Computer to keep going back up to line 10 for the next
Number-the NEXT X-until it reaches the last number (24) .

Look at line 20. Since line 20 is between the FOR and NEXT lines, the
Computer must PRINT the value of X every time it counts:

X = 20
X = 21
X = 22
X = 23
X = 24

Add another line between FOR and NEXT:

15 PRINT " .. . COUNTING .. . "

and RUN it. With every count, your Computer executes any lines you choose to
insert between FOR and NEXT.

Write a program which will make the Computer print your name 10 times.

DO-IT-YOURSELF PROGRAM 4/A

HINT: The program must count to 10.

Write a program which will print the multiplication tables for 9 (9*1 through
9*10).

DO-IT-YOURSELF PROGRAJ'vl 4/B

HINT: PRINT 9'~X is a pe1fectly legitimate program line.

Write a program which will print the multiplication tables for 9*1 through
9*25.

DO-IT-YOURSELF PROGRAM 4/C

HINT: By adding a comma in the PRINT line, you can get all the problems and results
on your screen at once.

37

"2, 4, 6, 8, . .. "

38

Finished? These are our programs:

Program 4/A

10 FOR X = 1 TO 10
20 PRINT "THOMAS"
30 NEXT X

COUNTING BY TWOS

Program 4/B

10 FOR X = 1 TO 10
20 PRINT "9*"X"="9* X
30 NEXT X

Program 4/C

10 FOR X = 1 TO 25
20 PRINT "9*"X"= "9*X,
30 NEXT X

Now we'll make it count a little differently. Erase your program by typing
NEW and then type our origina l program, using a new line 10:

10 FOR X = 2 TO 10 STEP 2
20 PRINT "X= " X
30 NEXT X
40 PRINT "I HAVE FINISHED COUNTING"

RUN the program .. . Do you see what the STEP 2 did? It makes the Computer
count by 2's. Line 10 tells the Computer that:

• the first X is 2
• the last Xis 10

.. . AND STEP 2 ...
• all the Xs between 2 and 10 are 2 apart . . . that is 2 , 4 , 6, 8, and 10.

(STEP 2 tells the Computer to add 2 to get each NEXT X.J

To make the Computer count by 3's, make all the Xs 3 apart. Try this for line
10:

10 FOR X = 3 TO 10 STEP 3

RUN the program. It should print this on your screen:

X = 3
X 6
X = 9

It passed up the last X (10) because 9 + 3 = 12. Try a few more FOR . . . STEP
lines so you can see more clearly how this works:

10 FOR X
10 FOR X
10 FOR X

5 TO 50 STEP 5
10 TO 1 STEP-1
1 TO 20 STEP 4

COUNTING THE SOUNDS

Now that you've taught the Computer to count, you can add some sound. Erase
your old program and type this:

C
10 FOR X = 1 TO 255
20 PRINT "TONE " X
30 SOUND X, 1
40 NEXT X

This program is making the Computer count from 1 to 255 (by ones). Each time
it counts it does what lines 20 and 30 tell it to do:

• It PRINTs X, the current count (Line 20)
• It SOUNDs X's particular tone (Line 30)

For example:

• the first time the Computer got to FOR, in line 10, it made X equal to 1.
• then it went to line 20 and printed 1, the value of X.
• then, line 30 had it SOUND tone #1.
• then it went back up to line 10 and made X equal to 2
• etc.

What do you think the Computer will do if you make this change to line 10:

10 FOR X = 255 TO 1 STEP - 1

Did you try it? Using STEP, change line 10 so the Computer will sound tones
from:

You might be wondering about the
programs we ran at the first of this
Chapter where we didn't use STEP. If
we leave out STEP, the Computer as
sumes we mean STEP I.

Don't type the arrow of course. That's
there to help you understand.

39

40

(1) the bottom of its range to the top, humming every tenth note.
(2) the top of its range to the bottom, humming every tenth note.
(3) the middle of its range to the top, humming every fifth note.

PROGRAMMING EXERCISE

10 ____________________________________ _

10 __________________________________ _

10 _____________________________________ _

Try this: To pause the program while
it is running press the (SHIFT) and @?)
keys at the same time. Then press any
key· to continue.

Ready for the answers?

10 FOR X
10 FOR X
10 FOR X

= 1 TO 255 STEP 10
255 TO 1 STEP -10
128 TO 255 STEP 5

Now see if you can write a program which makes the Computer hum:

(1) from the bottom of its range to the top, and then
(2) from the top of its range back to the bottom

DO-IT-YOURSELF PROGRAM

The answer is in the back of this book.

BUT CAN IT SING?

Yes. Although your Computer is slightly off pitch, it can warble out most
songs. The next chapter will show you how to teach it some o[your favorite
songs.

LEARNEDINCHAPTER4

BASIC WORDS

FOR ... TO ... STEP
NEXT

I

KEYBOARD CHARACTER

NOTES:

__ e~,--_3_ s :_ rmi=oJ ____ _ ,.,. -----· - -----------------·-----

41

CHAPTER 5

SING OUT THE TIME

0000
0
000•0

0
0 •Dao

SING OUT THE TIME

You're now ready to show your Computer how to do two things: tell time and
sing(. .. well, as good as the Computer can sing ...). Since they are actually
closely related - especially to your Computer! - we're covering them both in
the same Chapter.

Begin by typing this:

10 FOR Z = 1 TO 460 * 2
20 NEXT Z
30 PRINT "I COUNTED TO 920"

RUN the program. Be patient and wait a couple of seconds. Two seconds, to be
precise. It takes your computer 2 seconds to count to 920.

Lines 10 and 20 set a timer pause in your program. By making t he Computer
count to 920, it keeps the Computer busy for 2 seconds.

As you can see, this gives us the makings of a stopwatch. Erase the program,
and type this:

10 PRINT "HOW MANY SECONDS"
20 INPUT S
30 FOR Z = 1 TO 460*S
40 NEXT Z
50 PRINT S " SECONDS ARE UP!!!" 43

44

This is how computerized timers
work.

RUN it, inputting the number of seconds you want timed on your stopwatch.

It would be nice if the stopwatch could sound some kind of alarm. Add some
lines to the end of the program to make it sound an alarm.

DO IT YOURSELF PROGRAM

Here's the program we wrote:

10 PRINT "HOW MANY SECONDS"
20 INPUT S

A 30 FOR Z = 1 TO 460 * S
~40 NEXT Z

50 PRINT S "SECONDS ARE UP!!!"

C60 FOR T = 120 TO 180
70 SOUND T, 1
80 NEXT T

(

90 FOR T = 150 TO 140 STEP -1
100 SOUND T, 1
llO NEXT T

120 GOTO 50

Notice the GOTO line we added at the end of the program. This is so the
message would print and the alarm would keep ringing over and over again
until the nervous programmer must press the (BREAK) or (SHIFT) @ keys to turn
it off.

COUNTING WITHIN THE TIME

Before we go any further on the clock, we're going to have the Computer keep
count within the time. This concept will become very clear to you shortly.

Type this new program:

10 FOR X = 1 TO 3
20 PRINT "X = "X

C 30 FOR Y = 1 TO 2
40 PRINT, "Y = "Y
50 NEXT Y
60 NEXT X

RUN it ... This should be on your screen:

X = 1

X = 2

X 3

y 1
y 2

y = 1
y = 2

y 1
y 2

Call it a count within a count or a loop within a loop - whatever you prefer.
Programmers call this a "nested loop". This is what the program does:

I. It counts X from 1 to 3. Every time it counts
X, it does these things:

A. It PRINTs the value of X

Notice the comma in line 40. Try it
without the comma. The comma
makes "Y = "Y PRINT on the next
column.

\.

45

46

Notice that we changed the TIMER ·
PAUSE in line 40 to 390. (in our pre
vious program it was 460.) Because of .
all the extra things the program is ·

, doing, we had to adjust the timer to a
i lower number.

B. It counts Y from 1 to 2. Every time it counts
Y, it does this:

(1) It PRINTs the value of Y

Whenever you put a loop inside another loop, you must close the inner loop
before closing the outer loop:

Right
10 FOR X = 1 TO 3

20 FOR Y = 1 TO 2
30 NEXT Y
40 NEXTX

@
10
20
30
40

RELATING THIS TO A CLOCK

Wrong
FOR X = 1 TO 3
FOR Y = 1 TO 2
NEXT X
NEXT Y

With these tools, we can make the Computer do a lot more. Type this:

.----. 10 FORS= 0 TO 59
20 PRINTS
30 SOUND 150, 2

t -c40

{ 50

FOR T = 1 TO 390

NEXT T

60 NEXT S

70 PRINT "l MINUTE IS UP"

RUN the program . .. This is what it does:

I. It counts the seconds from O to 59. every time.

it counts one second -

A. It PRINTs the second

B. It SOUNDs a tone

C. It pauses long enough for one second to pass.

II. When it finishes counting all the seconds from 0 to 59,
it PRINTs a message that one minute is up.

There is a way we can make this program look a little better. Add this line
which Clears the Screen:

15 CLS

Now RUN the program. This time the Computer goes through these steps:

I. It counts the seconds from 0 to 59 (lines 10 and 60).
Every time it counts the seconds.

A. It CLears the screen (line 15).

B. It PRINTs the second (line 20).

C. It SOUNDs a tone (line 30).

D. It pauses long enough for one second to pass Oinef' 4< and 50).

II. When it finishes counting all the seconds, from 0 to 59, it prints a
message that one minute has passed (line 70).

xr I

JI

1X

47

With this groundwork, it is easy to make a full fledged clock:

----------+ 10 FOR H = 0 TO 23

-----~ 20 FOR M = 0 TO 59

----~ 30 FOR S = 0 TO 59

40 CLS

50 PRINT H":"M":"S

60 SOUND 150, 2

FOR T = 1 TO 375

NEXT T

90 NEXT S

100 NEXT M

---------- 110 NEXT H

Here's an outline of what the Computer does in this program:

48

I. It counts the hours from 0 to 23. (Line 10)
Every time it counts a new hour:

A. It counts the minutes from 0 to 59. (Line 20)
Every tinie it counts a new minute:

1. It counts the seconds from 0 to 59. (Lines 30 and 90)
Every time it counts a new second:

a . It CLears the Screen. (Line 40)
b. It PRINTs the hour, minute, and second. (Line 50)
c. It SOUNDs a tone. (Line 60)
d. It pauses long enough for one second to pass. (Lines 70 and 80)

2. When it finishes counting all the 59 seconds,
it goes back up to line 20 for the next minute. (Line 100)

B. When it finishes counting all the 59 minutes,
it goes back up to line 10 for the next hour. (Line 110)

'

II. When it finishes counting all hours W-23), the program ends.

Between lines 90 and 100 you can add some tones which will sound every
minute. Write a program which does this.

DO-IT-YOURSELF PROGRAM

By adding this line:
120 GOTO 10

the clock will run perpetually.

~·
Having a tough time with this pro-
gram? Skip it for now. It'll seem easy
later.

50

But who said this Computer could

1 make the Opera?

If you're a real music lover, you will
probably want to purchase RADIO
SHACK's "MUSIC" -Catalog num-
ber26-3151. Then you will be able to
compose songs on your Computer

1
with perfect pitch.

Write a program which makes your Computer show each of its nine colors for 1
second each:

DO-IT-YOURSELF PROGRAM

The answers to both of these programs are in the back.

FOR A COMPUTER, IT SINGS GREAT!

Now back to teaching your Computer how to sing. Flip back to the Appendix.
We have a table, "Musical Tones", which shows the Computer's tone number
for each note on the musical keyboard. For example, the Computer's tone
number 89 corresponds to "middle C".

Unfortunately, your Computer can't exactly match most of the musical tones.
That's why the Computer sings a little off key ... But to those without perfect
pitch, it can still sound very close to music.

Type this:

20 SOUND 125, 8
30 SOUND 108, 8
40 SOUND 89, 8

RUN the program. It is the first three notes of ... well you know that, great
piece!

To get these first three notes to play over again, we can put a FOR/NEXT loop
in the program:

[

10 FOR X = 1 TO 2
20 SOUND 125, 8
30 SOUND 108, 8
40 SOUND 89, 8
50 NEXT X

Now RUN the program again. It's missing a pause, isn't it? It's easy enough to
put a timer pause in the program. Add these lines:

44 FOR Y = 1 TO 230
46 NEXT Y

and RUN it again. Now it's beginning to sound like the real thing!

•

0

51

L

52

$a J j , : I
Three blind mice

I J J J
See how they run

Are your programs getting too long to
list? Try this

LIST 10-48 CENTER)
0 nly the first half of this progra.m. will
be listed.

1

Here is a program that gets through the first two phrases:

THREE BLIND MICE

10 FOR X = 1 TO 2
20 SOUND 125, 8
30 SOUND 108, 8
40 SOUND 89, 8

l 44 FOR Y = 1 TO 230 c.:46 NEXT Y

50 NEXT X

------->60
70
80
90
100

FOR X = 1 TO 2
SOUND 147, 8
SOUND 133, 4
SOUND 133, 4
SOUND 125, 8

FOR Y = 1 TO 230
NEXT Y

----130 NEXT X

"Three"
"blind"
"mice"

(pause)

"See"
"how"
"they"
" run"

(pause)

Finish the song, if you like. Or write a better one. Your Computer songs can
certainly jazz up any program.

LEARNED IN CHAPTER 5

BASIC WORD PROGRAMMING CONCEPT

CLS
Nested Loops

•

NOTES:

53

CHAPTER 6
_,/ ~

II I\ tni.

DECISIONS, DECISIONS . ..

•• • • •

DECISIONS, DECISIONS . ..

Here's an easy decision for the Computer:

(1) IF you type RED .. . THEN make the screen red

. . . or

(2) IF you type BLUE ... THEN make the screen blue

Easy enough? Let's make the Computer do it. Type this program:

10 PRINT "DO YOU WANT THE SCREEN RED OR BLUE?"
20 INPUT C$

30 IF C$ "RED" TH EN 100 ~ =
~

40 IF C$ = "BLUE" THEN 200 J·-100 CLS(4)
llO END ~ ,,
200 CLS(3) ~

RUN the program several times, typing both RED and BLUE.~

Let's see what the program is doing:

Don't be confused by the arrows or the
spaces between program lines. We
just put them in to illustrate the fiow
of the program.

55

56

IF you type RED ... THEN . ..

Line 30 sends your program down to line 100. Line 100 makes your screen red.
At this point, we have to stop the Computer from going on to line 200.

Line 110 does just that. It ends your program right there ... Once the
Computer gets to line 110, it will never make it to 200 .

. . . On the other ha nd .. .

IF you type BLUE ... THEN . . .

Line 40 sends your Computer down to line 200, which makes your screen blue.
We do not have to put END on the next line. Since line 200 is the last line in the
program, the Computer will end there anyway.

What happens if you type something other than RED or BLUE? Try running
the program, typing GREEN in response to the Computer's question.

It makes the screen RED, right? Do you know why?

HINT: IF the condition is not true, the THEN part of the line is
ignored and the Computer proceeds to the next program line.

There are two lines you could add to make the Computer ask you to type your
answer again if you don't type RED or BLUE. We will give you the two lines,
and let you figure out where to put them in the program:
them in the program:

PROGRAMMING EXERCISE
PRINT "YOU MUST TYPE EITHER RED OR BLUE"

GOTO 20

._ __________ insert the line numbers

HINT: The lines must come AFTER the Computer has had a
chance to test your answer for RED or BLUE.

HINT: The lines must come BEFORE the Computer makes
your screen RED.

Did you figure out where the two lines should go in the program? They must
come after line 40 and before line 100:

50 PRINT "YOU MUST TYPE EITHER RED OR BLUE"
60 GOTO 20

See if you can make one more change to the program:

Instead of having the Computer end the program after it makes the screen red
or blue, have it go back and ask you to type RED or BLUE again.

DO IT YOURSELF PROGRAM

HINT: You will need to change line 110 and add line 210.

Have you got a program written? Look on the next page for a diagram of ours.

57

58

10 PRINT "DO YOU WANT THE SCREEN RED OR BLUE?"

20 INPUT C$

~j
30 IF C$ "RED" TH EN 100

40 IF C$ " BLUE" THEN 20 ~
-~ j 50 PRINT "YOU MUST TYPE EITHER RED OR BLUE"

,,

r ~] 60 GOTO 20

100 CLS(4) <i

llO GOTO 10

200 CLS(3)

210 GOTO 10

To trace the path the Computer takes down this program, simply go down, from
one line to the next, following the arrows when told to. Notice the difference
between the arrows going from the IF/THEN and the GOTO lines:

~ ~ ~~~~~~~ ~

~ RULES ON IF/THEN AND GOTO ~
~. IF/THEN is conditional. ~
-~~ You only follow these arrows if the condition ~
~ (C$ = "RED" or C$ = "BLUE") is true. .~

GOTO is unconditional.

~ You follow these arrows whenever ~
,,.. you arrive at a GOTO line. ~

~''''''''''''''"'~ Although this chapter was short, you've learned one of the most important
programming concepts. We will be getting the Computer to make decisions all
through the rest of this book.

~

'~

~

LEARNED IN CHAPTER 6

~

:
BASIC WORDS

p

IFffHEN
END

- 11.-· Ill!, ~ -~, 111·

NOTES:

59

CHAPTER 7

GAMES OF CHANCE
r= _____ "____ -------- . ------~" -- -----·- ,
'----- -----~- _____ ...__~ - - ~----~~~----'-

GAMES OF CHANCE

Thanks to a BASIC word called RND, your Computer can play almost any kind
of game involving chance or luck. Even if you don't plan to play games with
your Computer, you'll want to know how to use RND and PRINT @ - the
words we're introducing in this Chapter. We'll also show you some more uses
for IF/THEN.
Type this:

10 PRINT RND(lO)

RUN it. The Computer just picked a random number from 1 to 10. RUN it some
more times . ..

It's as if the Computer is drawing a number from 1 to 10 out of a hat. The
number the Computer picks is unpredictable. Type and RUN this program.
Press (BREAK) when you satisfy yourself that the Computer is printing random
numbers:

10 PRINT RND(lO);
20 GOTO 10

To have the Computer pick random numbers from 1 to 100, change line 10 to
this:

10 PRINT RND(lOOl;

To make the Computer pause while
running the program, press the
(SHIH) and @ keys at the same time.
Press any key and the Computer will
continue.

61

62

and RUN. How would you change this program to have the Computer pick a
random number from 1 to 255?

. :

The answer is:

10 PRINT RND(255l;

A COMPLETELY RANDOM SHOW

Just for the fun of it, let's have the Computer compose a song made up of
random tones. Type this:

C 10 T = RN 0(255)
20 SOUND T, 1
30 GOTO 10

RUN it. Great music, eh? Press (BREAK) when you've heard enough.

To add a random visual presentation to this program, add a couple of lines to

make the Computer show a random color (1-8) just before it sounds each
random tone.

DO IT YOURSELF PROGRAM

Here's our program:

(

10 T = RN D(255)
14 C = RND(8)
16 CLS(Cl
20 SOUND T, 1
30 GOTO 10

We'll show you a couple of simple games in this Chapter. Feel free to use your
imagination to add interest to them - or invent your own games.

RUSSIAN ROULETTE

In our "Russian Roulette" game, the gun has 10 chambers. The Computer
picks, at random, which of the 10 chambers will have the fatal bullet. Type:

10 PRINT "CHOOSE YOUR CHAMBER(l-10)"
20 INPUT X
30 IF X = RND(lO) THEN 100
40 SOUND 200, 1
50 PRINT "--CLICI<--"
60 GOTO 10

100 PRINT "BANG - YOU'RE DEAD"

First, in line 20, the player INPUTs X - a number from 1 to 10. Then the
Computer compares X with RND(lO) - a random number from 1 to 10.

Now look at the arrows we drew:

IF X is equal to RND(l0), THEN the Computer goes down , J 100.

IF Xis not equal to RND(lO), THEN the Computer "clicks" and goes back up to
line 10 where you get another chance ...

Let's make the dead routine in line 100 better. Type:

R emember to always type:
NEW (ENTER)

before typing a new program.

63

64

Remember how to list a portion. of a
program?

LIST 50-130
lists the middle portion of the pro
gram.

This will also help you in listing a
long program. Press the (SHIFT) and
@ keys when the Computer first starts
listing the program. The Computer
will pause the "scrolling" on your
display. Press any key to continue the
listing.

c:100
llO
120
130
140
150
160
170

FOR T = 133 TO 1 STEP -5

PRINT " BANG!!!!!"

SOUND T, 1
NEXT T
CLS
PRINT @ 230, "SORRY, YOU'RE DEAD"

SOUND l , 50

PRINT @ 390, "NEXT VICTIM, PLEASE"

RUN the program. Here's what happens in this program:

Lines 100 through 130 makes the Computer produce a sound of descending

tones and print BANG!!!!! over and over again on the screen. •

Line 140 CLears the Screen. Since we did not choose a color number code, the

Computer assumes we want the screen green.

Look at lines 150 and 170. Both of these lines use PRINT @. Here's the way
PRINT @ works:

Notice the grid we have below, showing each of the 511 positions on your video

screen. When writing the program, we wrote the two messages "SORRY,

YOU'RE DEAD" and "NEXT VICTIM PLEASE" on this grid, positioning

them where we wanted them on the screen.

SORRY, YOU'RE DEAD begins at location 230 (224 + 6). NEXT VICTIM

PLEASE begins at location 390 (384 + 6). Using these numbers in the PRINT

@ line, simply tells the Computer where we want the message printed.

0 I 2 3 ,, 5 6 7 .8 9]01112!3141516171819202122232425262728293031

0

32

' 64

%

128

160

192

ll4 SORRY , Y OU 'RE DEA D

256

288

320

352

380

416

448

480

NEXT VICTIM. PLEASE

Change this program, so that if the player DOES manage to stay alive for 10
clicks, the Computer pronounces the player the winner, printing this message
on the screen:

0

32

b4

%

128

160

192

22•

256

288

320

352

384

416

448

480

0 I 2 3 '.4 5 6 7 8 910111213141516171819202122232425262728293031

C D _NG RAT UL A T I O N S 1

YOU MANAGED

TO STAY ALIVE

We put this grid in the Appendi:x of
this book "PRINT @ Screen Loca
tions". Use it in planning your pro
grams, since good screen formatting
can add a great deal of interest to your
programs.

\

65

"Loser!"

66

DO IT YOURSELF PROGRAM

HINT: You can use the FOR/NEXT loop, so that the Computer can lwep count of the
number of clicks .

Our answer to this is in Appendi-."C F.

ROLLING THE DICE

For our next game, we'll first have to teach the Computer to roll the dice. To do
this, the Computer must roll two dice; that is, it must come up with two random
numbers. Type:

. .
II

10 CLS
20 X = RND(6)
30 Y = RND(6)

40 R = X + Y
50 PRINT (cu 200, X
60 PRINT @ 214, Y
70 PRINT @; 394, "YOU ROLLED A" R
80 PRINT @ 454, "DO YOU WANT ANOTHER ROLL?"

90 INPUT A$
100 IF A$ = " YES" TH EN 10

RUN the program. Let's look at it:

Line 10 tells the Computer to CLear the Screen.

Line 20 has the Computer pick a random number from 1 to 6 for one of the die.
Line 30 has the Computer pick a random number for the other die.

Line 40 simply adds the two dice to get the total roll.

Lines 50-70 PRINT the results of the roll on the screen.

In line 90, you are able to INPUT whether you want the program to RUN
again. IF you type YES, the Computer goes back to line 10 and runs the
program again. Otherwise, since this is the last line in the program, the
program ends.

CRAPS

Now that you know how to get the Computer to roll the dice, it should be fairly
easy for you to write a Craps program. These are the rules of the game (in its
simplest form):

1. The player rolls the two dice. If he rolls a sum of 2 ("snake eyes"), a 3
("cock-eyes"), or a 12 ("boxcars") on the first roll, the player loses and the
game 1s over.

2. If the player rolls a 7 or 11 on the first throw, ("a natural"), the player wins
and the game is over.

3. Ifany other number is rolled on the first roll, it becomes the player's "point".
He must keep rolling until he either "makes his point" by getting the same
number again to win, or rolls a 7, and loses.

You already know more than enough to write this program. Do it. Make the
Computer print it in an attractive format on your screen and keep the player
informed on what is happening. It may take you awhile to finish, but give it
your best. Good luck!

"Winner!"

67

68

DO-IT-YOURSELF PROGRAM

Our answer to th is is in the bach.

LEARNED IN CHAPTER 7

BASIC WORD

RND
PRINT @

NOTES:

.I

69

CHAPTER 8

10
..lC> ~Ol)~~ TI \

30 (:.OTO \()

SAVE IT ON TAPE
7

SA VE IT ON TAPE

You'll soon be writing longer and more powerful programs. Perhaps you
already are. It certainly cramps your style to have the program disappear
everytime you turn the Computer off!

You can "save" (make a copy oO any of your programs on cassette tape. Once
the program's on tape, you'll be able to "load" the program back into your
Computer's memory anytime you want. We recommend that you use Radio
Shack's CTR-80A cassette recorder (catalog number 26-1206) a long with Radio
Shack's Computer Tapes (catalog number 26-301 l.

This chapter is only for those of you that have this type of cassette recorder and
want to use it. If you don't, you'll probably want to skip this chapter for now,
remembering that the information's here whenever you need it.

Once you're used to it, you'll find cassette tape easy to use. Simply follow these
steps:

A. Connect the Tape Recorder

l. Locate the CTR-BOA Cassette Recorder, Interconnecting Cable and Radio
Shack Computer Recording Tape cassette.

2. Connect the short cable between the TAPE jack on the back of the TRS-80
and your Cassette Tape Recorder

If you are using a different type of
cassette recorder, the connections
might bP: different from the explana
tion in this chapter.

If you are using a tape other than
Radio Shack's, you need to position it
after the plastic "leader" at the
beginning of the tape.

71

72

You may substitute any na.me for
NAME.

• The small grey plug goes into the REM jack on the Recorder.

• The large grey plug goes into the AUX jack.

• The black plug goes into the EAR jack.

3. Plug the Recorder into the wall outlet

B. Save a Program

1. Type any program into your Computer. RUN it to make sure it works.

2. Load the cassette tape, positioning it to the beginning of the tape. Press the
PLAY and RECORD buttons at the same time until they lock.

3. Name the program you want to SAVE. You may use any name with 8 or
fewer letters. For our example, we'll use "NAME".

4. SA VE on tape by typing this command:

CSA VE "NAME" (ENTER)

The motor on the Recorder will start and you'll be recording the Computer's
program on tape. Watch the screen. When:

QI(

returns and the motor stops, your program is recorded on tape. It is also still in
the Computer's memory. It has only been copied.

LOADING

Reversing the process and loading (copying) the program from tape into the
Computer is just as easy:

1. Be sure the tape is fully rewound and the plugs are all in place.

2. Push the PLAY button down until it locks. Set the Volume Control to your
CTR-80A's "Recommended Volume Level". Your CTR-80A Manual gives
this recommended volume.

3. Type NEW to clear out any existing program.

4. Type the CLO AD command with the name of your program. For example:

CLOAD "NAME" (ENTER)

The Tape Recorder's motor will start. Watch your screen. The letter:

s

will appear at the top left hand corner. This means the Computer is
Searching for your program. When the Computer has Found your program,
it will print the letter F and the name of your program. For example, if your
program name is NAME:

F NAME

will appear at the top of your screen. When the Computer prints:

01(

and the recorder motor stops, the program is "loaded" in memory. You may
now RUN the program.

SAVING MORE THAN ONE PROGRAM

To SA VE more than one program on the same tape, you must make sure you
are not recording on top of another program. This is an easy way to position the
tape to the end of your last program:

1. Rewind the tape to the beginning.
2. Press the PLAY button until it locks

If you have several programs on tape,
the Computer will print the name of
each program it Finds on the tape pre
ceeding the one you want loaded.

If you try to load a program that's not
on the tape, the Computer will not stop
searching for it. Press the RESET
button to stop searching.

73

74

You may replace the name X with a.ny
name you know is NOT on the tape.

3. Type SKIPF and the name of the last program on your tape. For example, if
your last program is named "NAME", type:

Sl<IPF "NAME"

The Computer will notify you when if Finds your program called NAME.
When it reaches the end of NAME, the recorder's motor will stop and:

will appear on your screen.

4. Once you've positioned the tape to the end of the last program, press the
RECORD and PLAY buttons, name your program, and CSAVE it.

If you can't remember the name of your last program, type:

Sl<IPF "X"

and watch the screen. The Computer will give you the na me of each program it
encounters on the tape. It will print an I/O ERROR when it reaches the end of
the tape, but don't worry about it. You've found what you were looking for -
the name of the last program on the tape.

Now you can type the SKIPF command with the name of this last program.
(Don't forget to rewind the tape first).

TIPS ON MAKING GOOD RECORDINGS

Here are some tips for making good recordings:

• When you're not using the Recorder for saving or loading, do not leave the
RECORD or PLAY keys down. Press STOP.

• Don't attempt to re-record on a pre-recorded Computer tape. Even though
the recording process erases the old recording,just enough information may

be left to confuse the new recording. If you want to use the same tape a
second or third time, use a high-quality bulk tape eraser to be sure you erase
everything.

• If you want to save a taped program permanently, break off the Erase
Protect tab on the Cassette (see Tape Recorder's Manual). When the tab(s)
has been broken off, you can't press the RECORD key on your Recorder. This
will keep you from accidentally erasing that tape.

Now type as long of programs as you want, knowing you can make a permanent
copy of them on tape. Happy recording!

LEARNED IN CHAPTER 8

BASIC WORDS

CLOAD
CSAVE
Sl(IPF

75

CHAPTER 9

~

COLOR THE SCREEN
--

-----··-·-·- --~--- - --··-....r--~-.. - -- ------·--·

COLOR THE SCREEN

You've learned enough now to really start using the colors. Since color graphics
ideas usually come very quickly to people - and the good graphics programs
usually end up long- this Chapter just shows you how to get started. While going
through this Chapter, you'll probably want to stop from time to time and add on to
om programs or build your own. We hope you do. That's a fast way to learn.

To get started, type:

10 CLS<O)

to make the screen black. Add these two lines and RUN the program:

20 SET(0,0,3)
30 GOTO 30

Do you see the blue dot? It's at the top left-hand corner of your screen. To put
the dot at the bottom right-hand corner, change line 20 and RUN the program:

20 S ET(63,31,3)

Want to put it in the middle of the screen? RUN the program using this for line
20:

Be sure to type line 30. We'll explain
why later.

77

78

The computer uses different screen
locations for SET than PRINT @ID.
That's why we have two grids in the
Appendix. Be sure to use the one we
call "Graphics Screen Locations".

20 SET(31,14,3l

SET tells the Computer to SET a dot on your screen at a certain horizontal and
vertical location .

• The first number you type is the horizontal location. This may be a number
from Oto 63.

• The second number is the vertical location. It may be a number between 0
and 31.

In the Appendix, there's a grid on your screen, "Graphics Screen Locations".
The grid di vi des your screen into the 64 (0 to 63) horizontal locations and 32 (0

to 31) vertical locations. Use this grid in planning your graphics illustrations.

All of this explains what the first two numbers are for, but what about 3, the
third number? Try using some numbers other than 3 for the third number.
Type each of these lines and RUN the program:

20 SET(31,14,4)
20 S ET(31,14,ll

Got it figured out? With number 4, you get a red dot, and with number 1 you get
a green dot. The number codes are the same as the CLS number codes - 0 to 8.
These are listed in your Appendix, "BASIC Colors".

Now, what's the GOTO line for? Try deleting the GOTO line from your
program and RUN it:

10 CLS<O)
20 SET(31,14,l)

It looks like no dot was SET this time. Actually the dot was SET, but when the
program ended, the Computer printed its OK message on top of the dot.

To avoid this, type the GOTO line at the end of the program. It sets up an
infinite loop (going to itself over and over again) so that the program will never end.

SETTING TWO DOTS

To SET more than one dot, you need to do a little planning. Erase your program
and RUN this program:

10 CLS(O)
20 SETC32,14,3)
30 SET(33,14,3)
40 GOTO 40

You should now have two blue dots-side by side-in the middle of your
screen.

Now change the color of the right dot so you'll have one blue and one red dot.
Type:

30 SET(33,14,4)

and RUN the program ... Both dots are red_.

Look again at the "Graphics Screen Locations" grid in your Appendix.
Notice the darker lines group the dots together into blocks of four. For
instance, the block in the middle of the grid contains these 4 dots:

Horizontal
Location 32
Location 33
Location 32
Location 33

Each dot within the block must either be:

1. the same color (colors 1-8)
or

2. black

Vertical
14
14
15
15

In our program, we tried to get the Computer to SET two dots with different
colors - blue and red- within the same block. Since the Computer can't do
that, it SETs both dots the second color - red.

Type this and RUN the program:

'I I
y

"Set Doti"

79

f "\
\ I

00-

~
,L

"Funny Face!''

80

30 SETC34,14,4)

Since the dot in location 34, 14 is in a different block, the Computer can SET
the two dots in different colors.

THE COMPUTER'S FACE

With this groundwork, you can draw whatever you want. We'll draw a simple
picture of a Computer. First draw the top and the bottom of the head. We'll
make it buff. Type:

5 CLSCO)

C
10 FOR H = 15 TO 48
20 SET (H,5,5)
30 SET (H,20,5)
40 NEXT H
50 GOTO 50

and RUN.

This is what you should have on your screen. (The lines should be buff rather
than white, like we have them):

Notice we've changed line 50 - the
GOTO line.

Lines 10 and 40 set up a FOR/NEXT loop for H - making the horizontal
locations 15 through 48 for the top and the bottom lines.

Line 20 SETs the top line. The horizontal location is 15 through 48 and the
vertical location is 5.

Line 30 SETs the bottom line. The horizontal location, again, is 15 through 48
and the vertical location is 20.

To SET the left and right sides of the head type these lines:

and RUN.

50 FOR V = 5 TO 20
60 S ET(l5, V,5)
70 SET(48,V,5)
80 NEXT V
90 GOTO 90

We'll make the nose orange. Type:

90 SET(32,13,8)

and the mouth red. Type:

100 FOR H = 28 TO 36
110 SET(H,16,4)
120 NEXT H

and blue eyes. Type:

130 SET(25,10,3)
140 SET(38,10,3)
150 GOTO 150

RUN the program. This is what your screen should look like now:

81

82

You don't need to tell the Computer
the color of the dot to RESET (erase)
it.

A BLINKING COMPUTER

By adding a couple of lines, we can make the Computer blink. Type:

150 RESET(38,10)

and RUN the program. What you should have on your screen now is the same
face as above, except the right eye is missing. RESET tells the Computer to
erase the dot in the horizontal location 38 and the vertical location 10. That's
the right eye.

To make it blink, we'll simply SET and RESET the right eye over and over
again, by adding line 160:

160 GOTO 140

LIST your program to see if it still looks like mine:

5 CLS(O)

(10 FOR H = 15 TO 48
20 SETCH,5,5)
30 SET(H,20,5)
40 NEXT H

(so FOR V = 5 TO 20
60 S ET(l5, V,5)
70 S ET(48, V,5)
80 NEXT V

90 S ET(32,13,8) ----~
100 FOR H = 28 TO 36
llO SETCH,16,4) --~-
120 NEXT H

130 SET(25,10,3) (140 SET(38,10,3)

150 RESET(38,10)
160 GOTO 140

and RUN it ... Try your hand at some pictures. I'm sure you have better
artistic skills than we do.

THE BOUNCING DOT

By using SET and RESET, we can make a moving picture. Type and RUN
these lines to make the dot go down:

5 CLS(O)

C
10 FOR V = 0 TO 31
20 SET(31, V,3)
30 RESET(31,V)
40 NEXT V

(
' ~'\ . ~ .. \' ... \ r· r-- , /- ,_

I \ • • \
• • I \ • .

• • I • •

Remember to always erase your
program before typing a NEW one.

83

84

Every dot that is SET on line 20 is RESET (erased) on line 30. Add these lines to
make the dot go back up:

C
50 FOR V = 31 TOO STEP -1
60 SET(31,V,3)
70 RES ET(31, V)
80 NEXT V

and this line to make the dot go up and down, over and over again:

90 GOTO 10

and RUN it. To slow the dot down - it will look a little better-change lines 30
and 70:

30 IF V > 0 TH EN RESET(31, V-1)
70 IF V < 31 TH EN RESET(31, V + 1)

The > sign means the same as it does in math - greater than. The < sign
means less than.

SET and RESET opens up all sorts of possibilit ies - moving targets, animated
pictures, etc. Use your imagination in experimenting with this combination.

IF YOU HA VE THE JOYSTICKS . ..

If you have joysticks with your Computer, you have many more options open to
you. If you haven't connected them yet, do it. Simply plug them in to the back of
your Computer. They only fit in the correct slot, so don't worry about connect
ing them to the wrong one.

Now, type this short program which demonstrates how they work:

10 CLS

C
20 PRINT @ 0, JOYSTl((O);
30 PRINT @ 5, JOYSTl((l);
40 PRINT @ 10, JOYSTl<(2);
50 PRINT @ 15, JOYSTK(3);
60 GOTO 20

RUN the program. See the four numbers on your screen. These numbers tell
the Computer the horizontal and vertical coordinates of your two joysticks'
"floating switches".

Grab the "floating switch" of your right joystick (the one connected to the jack
marked RIGHT JOYSTICK on the back of the Computer). Keeping it in the
center, move it from left to right. The first number on your screen will change,
going tru:ough all the numbers from 0 to 63.

Move the "floating switch" of your left joystick from left to right. It will change
the third number on your screen.

Now move the floating switches up and down, keeping them in the center.
Moving the right joystick up and down makes the second number change from
0 to 63. Moving the left joystick up and down makes the fourth number change
from Oto 63.

This is how the Computer reads the position of your joysticks:

RIGHT JOYSTICK

0

JOYSTl((O)

0

63

JOYSTl((l)

0

JOYSTK(2)

Be sure to type the semicolons at the
ends of lines 20, 30, 40, and 50.

The second or fourth number might
change also, but NOT from Oto 63.

LEFT JOYSTICK

0

63

JOYSTl((3)

85

C}

0

86

JOYSTK (0) and JOYSTK (1) tell the Computer the read the position of your
right joystick:

• JOYSTK(0) makes it read the horizontal (left to right) coordinate.

• JOYSTK(l) makes it read the vertical (up and down) coordinate.

JOYSTK (2) and JOYSTK (3) tell the Computer to read the position of your left
joystick:

• JOYSTK(2) makes it read the horizontal coordinate.

• JOYSTK(3) makes it read the vertical coordinate.

One more thing. Delete line 50 and RUN the program. It works almost the
same, except it doesn't read JOYSTK(3) - the vertical position of your left
joystick.

Now delete line 20 and change line 60:

60 GOTO 30

RUN the program. Move all the switches around. This time it doesn't work at
all. The Computer will not read any of the coordinates unless you first have it
read JOYSTK(0). Type these lines:

20 A = JOYSTl((O)
60 GOTO 20

and RUN the program. Even though the Computer is not printing the location
of JOYSTK(0), it is still reading it. Everything else works like it's supposed to.
Remember that anytime you're having the Computer read to coordinates of
JOYSTK(l), JOYSTK(2), or JOYSTK(3l, you must first have it read
JOYSTK(O).

MAKE PAINT BRUSHES OUT OF JOYSTICKS:

Type this:

10 CLS(O)

C
20 H = JOYSTl((O)
30 V = JOYSTl<Cl)
40 IF V > 31 THEN V = V - 32
80 SET(H,V,3)
90 GOTO 20

RUN it . . . Use the revolving switch of your right joystick to paint a picture.
(Move the switch slowly so that the Computer has time to read its coordinates).

Line 20 reads H - the horizontal position of your right joystick. This could be
a number from O to 63.

Line 30 reads V - its vertical position. This also could be a number from Oto
63. Since the highest vertical position on your screen is 31, we had to add line
40 to the program. Line 40 makes V always equal to a number from Oto 31.

Line 80 SETs a blue dot at Hand V.

Line 90goes back to get the next horizontal and vertical positions of your joysticks.

We haven't even used the left joystick. Perhaps we could use it for color. Add
these lines:

50 C = JOYSTl((2)
60 IFC < 31THENC=3
70 IF C > = 31 THEN C = 4
80 SET(H,V,C)

RUN the program. Move your left joystick to the right and the Computer
makes C = 3. It SETs red dots. Move it to the left and the Computer makes C =
4 and SETs blue dots.

Want to make the buttons on your joysticks do something? Add these lines to
the end of your program:

> = means greater than or equal to

87

88

If you press the buttons when you're
not RUNning the program you will
get @ABCDEFG or HIJKLMNO.

Some of the joysticks will not read 6
"blocks" in each of the four comers
of your screen.

Now type:

100 P = PEEK(65280)
110 PRINT P
120 GOTO 100

RUN 100 (ENTER)

This tells the Computer to only RUN lines 100 through the end of the program.
Your computer should be printing either 255 or 127 over and over again.

PEEK tells the Computer to look at a certain spot in its memory to see what
number's there. We had it look at the number in location 65280. As long as
you're not pressing either of the buttons, this spot contains the number 255 or
127.

Press the right button. When you press it, this memory location contains either
the number 126 or 254.

Press the left button. This makes this memory location contain either the
number 125 or 253.

Using this information, you can make the computer do whatever you want
when you press one of the buttons. We'll make it go back to line 10 and CI.S(0)
clear the screen to black-when you press the right button. Change lines 110
and 120:

110 IF P = 126 THEN 10
120 IF P = 254 THEN 10

Delete line 90 and add this line:

130 GOTO 20

RUN the program. Start your paintings. Press the right button when you want
to clear the screen and start over again.

r=-,

LEARNED IN CHAPTER 9

BASIC WORDS

SET
RESET
JOYSTI<
PEEi<

NOTES:

89

CHAPTER IO I

ONE FANTASTIC TEACHER

Your Computer has all the attributes of a natural born teacher. After all, it 's
patient, tireless, and detail conscious (. . . perhaps a bit nit-picky . . .). Depend
ing on the programmer - we're talking about you, of course - it can be
imaginative, consoling, and quite enthusiastic.

So lets get on with it! We can use RND to get the Computer to drill us on one
math problem after the next. Type:

r :> 10 CLS
20 X = RN D(15)
30 y = RNDC15)
40 PRINT "WHAT IS" X "*" y
45 INPUT A
50 IF A = X * Y THEN 90

60 PRINT "THE ANSWER IS" X* Y
70 PRINT "BETTER LUCI(NEXT TIME" -41--- 80 GOTO 100

"-""'--:> 90 PRINT " CORRECT!!!"

\.
------) 100 PRINT "PRESS < ENTER> WHEN READY FOR ANOTHER"

105 INPUT A$
\'---- llO GOTO 10

91

92

This program will drill you on your multiplication tables, from 1 to 15, and

check your answers.

How would you change this program to get the Computer to drill you on

addition problems from 1 to 100:

DO-IT-YOURSELF PROGRAM

Here's the lines we changed: .

20 X = RND(lOO)
30 Y = RND(lOO)
40 PRINT "WHAT IS" X "+" Y
45 INPUT A
50 IF A = X + Y THEN 90

60 PRINT "THE ANSWER IS" X + Y

To make the program a little more interesting we can have the Computer keep

a running total of all the correct answers. Type:

15 T = T + 1
95 C = C + 1
98 PRINT "THAT IS" C "OUT OF" T "CORRECT ANSWERS"

T keeps a count of all the questions the Computer asks you. When you first

RUN the program T equals zero. Then, everytime the Computer gets to line 15,
it adds 1 to T.

C does just about the same thing. It keeps a count of the number of correct
answers. Since it is on line 95, the Computer will not increase C unless you get
a correct answer.

There are many ways to make this program more entertaining. Add some lines
to the program which will get the Computer to do one or more of the following:

1. Call you by name

2. Reward your correct answer with a sound and light show

3. Print the problem and messages attractively on your screen. (Use PRINT @
for this).

4. Keep a running total of the percent of correct answers.

5. End the program if you get 10 answers in a row correct.

Use your imagination on this one. We have a program in back which does all
five of the above.

DO-IT-YOURSELF PROGRAM

When you first turn on the Computer,
all numeric variables equal 0. Also,
when you type NEW (ENTER), all
numeric variables equal 0.

There are man_y variations you could
try with this program. For instance, '
the Computer could test you with
business questions.

93

94

0
0

FIRST BUILD YOUR COMPUTER'S VOCABULARY . ..

To build your Computer's vocabulary (so that it can build yours!) type and

RUN this program:

10 DATA APPLES, ORANGES, PEARS

20 FOR X = 1 TO 3
30 READ F$
40 NEXT X

So what happened? Nothing? Nothing that you can see, that is. To see what the

Computer is doing, add this line and RUN it:

35 PRINT "F$ = :" F$

Line 30 tells the Computer to:

1. Look for a DATA line

2. READ the first item in the list - APPLES

3. Give APPLES an F$ label

4. "Cross out" APPLES

The second time the Computer gets to line 30 it is told to do the same things:

1. Look for a DATA line

2. READ the first item - this time it is ORANGES

3. Give ORANGES the F$ label

4. "Cross out" ORANGES

This is what is happening in your Computer's memory when you RUN the

What if you want the Computer to READ the same list over again? It's already
crossed everything out .. . Type:

60 GOTO 10

and RUN the program. It prints ?OD ERROR IN 30. OD means Out of Data.
The Computer has already crossed out its Data.

Type this line and RUN the program:

SO RESTORE

Now it's as if the Computer never crossed anything out. The Computer will
READ the list over and over again.

The nice thing about DATA lines is that you can put them anywhere you want
in the program. RUN each of these programs:

10 DATA APPLES 10 DATA APPLES, ORANGES
20 DATA ORANGES 20 DATA PEARS (30 FOR X = 1 TO 3 c30 FOR X = 1 TO 3
40 READ F$ 40 READ F$
so PRINT "F$ = ·" F$ so PRINT "F$ = ·" F$
60 NEXT X 60 NEXT X
70 DATA PEARS

(30 FOR X = 1 TO 3 (30 FOR X = 1 TO 3
40 READ F$ 40 ..,E \D F$
so PRINT "F$ = :" F$ so p r :I NT "F$ = :" F$
60 NEXT X 60 ~EXT X

Remember how to make the Computer
pause while RUNning a program?
Press (SHIFT) @ Press any key to get it '
to continue.

70 DATA APPLES 70 DATA APPLES, ORANGES, PEARS
80 DATA ORANGES
90 DATA PEARS

95

"Cataclysmic!"

96

They all work the same, don't they? This knowledge should be handy for
something ...

... NOW HA VE IT BUILD YOUR VOCABULARY

Here's some words and definitions you might want to be tested on:

Words Definitions

10 DATA TACITURN, HABITUALLY UNTALl<ATIVE
20 DATA LOQUACIOUS, VERY TALKATIVE
30 DATA VOCIFEROUS, LOUD AND VEHEMENT
40 DATA TERSE, CONCISE
50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY

Now to get the Computer to pick out a word at random from the list. Hmmm .. .
there are ten items in the list. Maybe this will work:

60 N = RND(lO)

(

70 FOR X = 1 TO N
80 READ A$
90 NEXT X
100 PRINT "THE RANDOM WORD IS:" A$

RUN it a couple of times to see if it works.

It doesn't quite work like we want it to. The Computer is just as likely to stop at
a definition as a word. What we really want the Computer to do is to pick a
random word from items 1, 3, 5, 7, or 9.

Fortunately, there is a word which will explain this to the Computer. Type:

65 IF INT(N/2) = N/2 THEN N = N - 1

RUN the program a few times. It should work now.

INT tells the Computer to only look at the whole portion of the number and

ignore the decimal part. For instance, the Computer sees INT(3.9) as 3.

Here's how line 65 works. Say the random number the Computer picks is 10.
The Computer does this calculation:

I NT(l0/2) = 10/2
INT<5) = 5

5 = 5

Since this is true, 5 does equal 5, the Computer completes the THEN portion of
the line and makes N equal to 9 (10 - 1).

However, if the Computer picks 9, it does this:

INT(9/2) = 9/2
INT(4.5) = 4.5

4 = 4.5

Since this is not true, 4 does not equal 4.5, the Computer doesn't subtract 1 from
N. 9 remains 9.

Now that the Computer is able to READ a random word, it must also READ the
word's definition. You can do this simply by adding t hese lines to the end of the
program:

llO READ B$
120 PRINT "THE DEFINITION IS :" B$

RUN it several times now. To get the Computer to print one random word and
definition after the next, add this line to the beginning of the program:

5 CLEAR 100

to give the Computer plenty of string space. And add these lines to the end of
the program:

130 RESTORE
140 GOTO 60

So that the Computer can pick out a new random word and its definition from a

97

98

If you like, add some more words and
definitions by adding DATA lines.

For variations on this program, you
might try states and capitols, cities
and countries, foreign words and
meanings. Got more ideas?

clean slate of data items.

Here is the way the entire program looks now:

5 CLEAR

10
20
30
40
50

DATA TACITURN, HABITUALLY UNTALl(ATIVE

DATA LOQUACIOUS, VERY TALKATIVE
DATA VOCIFEROUS, LOUD AND VEHEMENT
DATA TERSE, CONCISE
DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY

.--+ 60 N = RN DOO>
65 IF INT(N/2) = N/2 THEN N = N - 1

(~~
90
100
llO
120
130

--- 140

FOR X = l TO N
READ A$
NEXT X
PRINT "A RANDOM WORD IS :" A$
READ B$
PRINT "ITS DEFINITION IS :" B$
RESTORE
GOTO 60

Want to complete this program? Try it before turning the page to see ours.
Program it so that the Computer will:

1. PRINT the definition ONLY

2. Ask you for the word

3. Compare the word with the correct random word

4. Tell you if your answer is correct. If your answer is incorrect, have it
PRINT the correct word.

DO-IT-YOURSELF PROGRAM

Here's our program:

5 CLEAR 500
10 DATA TACITURN, HABITUALLY UNTALl<ATIVE
20 DATA LOQUACIOUS, VERY TALKATIVE
30 DATA VOCIFEROUS, LOUD AND VEHEMENT
40 DATA TERSE, CONCISE
50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY
60 N = RND(lO)
65 IF INT(N/2) = N/2 THEN N = N - 1
70 FOR X = 1 TO N
80 READ A$
90 NEXT X

llO READ B$
120 PRINT "WHAT WORD MEANS:" B$
130 RESTORE
140 INPUT R$
150 IF R$ = A$ THEN 190
160 PRINT "WRONG"
170 PRINT "THE CORRECT WORD IS:" A$
180 GOTO 60
190 PRINT "CORRECT"
200 GOTO 60

Feel free to dress the program up with
a good looking screen format, sound,
etc.

99

100

LEARNED IN CHAPTER 10

BASIC WORDS

DATA
READ
RESTORE
INT
CLEAR

NOTES:

101

CHAPTER 11 Ax (BY + C) - D + E (G/W) - F

(
\

\

~-
HELPWITH MATH

0 0
og a:

0 •
0 0
,, <I

lll>O <JOii>

HELP WITH MATH

Solving complicated math formulas with super speed and precision is an a rea
where your Computer shines. But before driving yourself crazy typing a bunch
of math formulas, there are some shortcuts and hints you'll probably want to
know about.

One easy way to handle complicated math formulas is by using SUBROU
TINES. Type and RUN this program:

10 PRINT " EXECUTING THE MAIN PROGRAM"
20 GOSUB 500
30 PRINT "NOW BACI< IN THE MAIN PROGRAM"
40 END

500 PRINT "EXECUTING THE SUBROUTINE"
510 RETURN

Line 20 tells the Computer to GO to the SUBroutine beginning at line 500.
RETURN tells the Computer to return back to the BASIC word immediately
following GOSUB.

Delete line 40 and see what happens when you RUN the program.

Did you delete it?

l • h

~
0

t ll -0

103

104

See something different about
INPUT? We can have the Computer
PRINT a message before waiting for
us to INPUT something.

If you did, this is what's on your screen:

EXECUTING THE MAIN PROGRAM
EXECUTING THE SUBROUTINE
NOW BACI(IN THE MAIN PROGRAM

EXECUTING THE SUBROUTINE
?RG ERROR IN 510

RG means RETURN without GOSUB. Can you see why deleting END in line
40 would cause this error?

At first , the Computer went through the program just like it did before you
deleted the END line. It was sent to the subroutine in line 500 by GOSUB and
it returned to the BASIC word immediately following GOSUB.

Then, since you deleted END, it went to the next line in the program which was
the subroutine. When it got to RETURN, it did not know where to return to,
since this time it had not been sent to the subroutine by a GOSUB.

Here's a subroutine which raises a number to any power you want:

10 IN PUT "TYPE A NUMBER"; N

20 INPUT "TYPE THE POWER YOU WANT IT RAISED TO"; P

.,-i--30 GOSUB 2000

40 PRINT: PRINT N "TO THE" P" POWER IS" E

50 GOTO 10
--+2000 REM FORMULA FOR RAISING A NUMBER TO A POWER

2010 E = 1
2020 FOR X = 1 TO P

2030 E = E * N
2040 NEXT X
2050 IF P = 0 TH EN E = 1
2060 RETURN

Notice we introduced a couple of new things in the program.

Look at line 40. If you find it easier, you can combine two or more program lines
into one, using a colon to separate the two lines. Line 40 contains the two lines:

PRINT
and
PRINT N" TO THE" P" POWER IS" E

Line 2000 has something else new - REM.

REM doesn't mean anything to the Computer. The Computer ignores any line
beginning with REM. You can put REM lines anywhere you want in your
program, so that you can remember what the program does. These REM lines
will make no difference to the way the program works.

If you don't believe us, add these lines and RUN the program to see if they
make any difference:

5 REM THIS IS A PECULIAR PROGRAM,
17 REM THIS LINE SHOULD MESS UP THE PROGRAM
45 REM THE NEXT LINE l<EEPS THE SUBPROGRAM SEPARATED

Satisfied? ... Good.

Change the program so that the Computer prints a table of squares (a number
to the power of 2) for numbers, say, from 2 to 10.

DO-IT-YOURSELF PROGRAM

The answer is in the back of the book.

PRINT by itself tells the Computer to
skip a line.

105

106

The word "operation" means some
thing you're getting the Computer to
do. Here, we're talking aboitt the

' "operations" of adding, subtracting,
multiplying, and dividing.

GIVE THE COMPUTER A LITTLE HELP

As math formulas get more complex, your Computer will need some help

understanding them. For example, what if you want the Computer to solve this
problem:

Divide the sum of 13 + 3 by 8

You might want the Computer to solve the problem like this:

13 + 3 / 8 = 16/8 = 2

But your Computer solves it differently. Type this command line:

PRINT 13 + 3 / 8 (ENTER)

What the Computer did was logical according to its rules:

In the problem above the Computer followed its rules. It performed the di vision
operation first (3/8 = .375) and then the addition (13 + .375 = 13.375). To get
the Computer to solve the problem differently, you can use parenthesis. Type
this line:

PRINT (13 + 3) I 8 (ENTER)

Whenever the Computer sees an operation in parenthesis, it solves that before
solving anything else.

What do you think the Computer will PRINT as the answers to each of these
problems:

COMPUTER MATH EXERCISE

PRINT 10 - (5 - 1) / 2 _______________________ _

PRINT 10 - 5 - 1/ 2

PRINT (10 - 5 - 1) / 2 _______________________ _

PRINT (10 - 5) - 1 / 2 _ ______________________ _

PRINT 10 - (5 - l / 2) _ _____ _________________ _

Finished? Type each of the command lines to check your answers.

What if you want the Computer to solve this problem?

Divide 10 minus the difference of 5 minus 1 by 2

That is what you're actually asking the Computer to do:

(10 - (5 - 1)) / 2

When the Computer sees a problem with more than one set of parenthesis, it

107

108

solves the inside parenthesis and then moves to the outside parenthesis. In
other words, it does this:

(10 - (5 - 1)) / 2

l_ ___ ___..> 5- 1 4

(10 - 4) / 2

_------➔ 10 - 4 = 6

6 / 2
l ____ ➔

6 / 2 = 3

~~~~~~~~ 

RULES ON PARENTHESIS ~ 
1. When the Computer sees a problem containing parenthesis, it solves the ,r,,:J 

operation inside the parenthesis BEFORE solving the rest of the "~ 

operations. ~ 
2. If there are parenthesis inside parenthesis, the Computer solves the ~~ 

innermost parenthesis first and works its way out. 

~~~~~~~~~~~ -

Insert parenthesis in the problem below so that the Computer will PRINT 28 as
the answer:

COMPUTER MATH EXERCISE

PRINT 30 - 9 - 8 - 7 - 6

Answer:

PRINT 30 - (9 - (8 - (7 - 6)))

IS SAVING WORTH IT?

With what you've learned in this chapter , you can let the Computer do a ll the
math by putting complicated math formulas in your subroutines. The program
below uses two subroutines. It's for those of you who save by putting the same
amount of money in the bank each month:

10 INPUT "YOUR MONTHLY DEPOSIT"; D
20 INPUT " BANl<' S ANNUAL INTEREST RATE" ; I
30 I = I/12 * .01
40 INPUT " NUMBER OF DEPOSITS"; P
50 GOSUBlOOO
60 PRINT "YOU WILL HAVE$" FV " IN " P " MONTHS"
70 END

1000 REM COMPOUND MONTHLY INTEREST FORMU LA
1010 N = 1 + I
1020 GOSUB 2000
1030 FV = D * ((E - 1) / I)

1040 RETURN

2000 REM FORMULA FOR RAISING A NUMBER TO A POWER
2010 E = 1
2020 FOR X = 1 TO P
2030 E = E * N
2040 NEXT X
2050 IF P = 0 TH EN E = 1
2060 RETURN

Notice that we have one subprogram "calling" another subroutine. This is
perfectly OK with the Computer as long as you have a GOSUB to send the
Computer to each subroutine, and a RETURN in each subroutine to return the

L BANK J

"A PENNY SAVED . . . "

109

110

BASIC WORDS

GOSUB
RETURN
REM

Computer to the BASIC word following each GOSUB.

One more thing we think you'll like. Flip back to the Appendix, "Subroutines".
We've put a lot of math formulas into subroutines. You'll probably want to add
some of these to your programs.

LEARNED IN CHAPTER 11

BASIC SYMBOLS BASIC CONCEPTS

() Order of operations

NOTES:

-------- - --

111

CHAPTER 12

~
Cl

"

"
0 I,,

c:r

b

~• £ D
0

D

~ ~
. a

d ••

A GIFT WITH WORDS

a

• ti 0
0 •

..

0 0

0 •• . • ..
0

000

o•••• ..
•" C>

Cl<1IIOO

A GIFT WITH WORDS

One of your Computer's greatest skills is its gift with words. It can tirelessly
twist, combine, or separate words to anything you want. Because of this gift,
you can teach it to read, write, and even carry on a half way decent conversa
tion.

For starters, see what you think of this:

10 PRINT "TYPE A SENTENCE"
20 INPUT S$
30 PRINT "YOUR SENTENCE HAS " LEN(S$) " CHARACTERS"
40 INPUT "WANT TO TRY ANOTHER"; A$
50 IF A$ = "YES" THEN 10

Impressed? LEN(S$) tells the Computer to compute the LENgth of the string
S$-your sentence. Your obedient Computer counts every single character in
the sentence, including spaces and punctuation marks.

Here's another skill it has. Erase your program and type this to make it
compose a poem (of sorts):

10 A$ = "A ROSE"
20 8$ = \\ II

30 C$ = "IS A ROSE"
40 D$ = 8$ + C$
50 E$ = "AND SO FORTH AND SO ON"
60 F$ = A$ + D$ + D$ + 8$ + E$
70 PRINT F$

Not impressed? Well, later we'll talk
about some practical ways to use this
unusual skill.

113

114

Here the Computer combines strings. The plus sign tells it to do this. D$
combines B$ and C$ to get "IS A ROSE", and you can see what strings are
combined to form F$.

A word of caution about combining strings- add this line to your program and
RUN it:

80 G$ = F$ + F$ + F$ + F$ + F$ + F$ + F$

When you RUN this program, the Computer prints ?OS ERROR IN 80. OS
means Out of String Space. The Computer only reserves about 200 characters
for working with strings. Add this line to the beginning of the program for
reserving plenty of string space:

5 CLEAR 500

RUN the program again. This takes care of the first problem, but there's still
another.

This time the Computer prints ?LS ERROR IN 80. LS means string too long.
Line 80 asks the Computer to form a string - G$ - with more than 255
characters. Your Computer simply can't manage to remember a string with
that many characters.

Now that the Computer has combined strings, let's get it to take one apart.
Type and RUN this program:

10 INPUT "TYPE A WORD"; W$
20 PRINT "THE FIRST LETTER IS : " LEFT$ (W$,l)

30 PRINT " THE LAST 2 LETTERS ARE : " RIGHT$ (W$,2)

40 GOTO 10

Here's what your Computer is doing:

In line 10 you INPUT a string for W$. Let's say the string is MACHINE:

0 0

Your Computer then performs several calculations in lines 20 and 30 to get the
first LEFT letter and the last 2 RIGHT letters of the string:

M A C H N

LEFT$ (W$,l)

Try RUNning the progr a m a few times until you get the hang of it.

Add this line to the program:

5 CLEAR 500

E

RIGHT$ (W$,2)

So that your Computer will set aside plenty of space for working with strings.
Now INPUT a sentence rather than a word.

How would you change lines 20 and 30 so that the Computer will give you the
first 5 letters and the last 6 letters of your string?

Answers:

PROGRAMMING EXERCISE

20
30

20 PRINT "THE FIRST FIVE LETTERS ARE :" LEFT$ (W$,5)
30 PRINT "THE LAST SIX LETTERS ARE :" RIGHT$ (W$,6)

115

116

Remember how to erase a program?
Type:

NEW CENTER!

Erase your program and type this one:

10 CLEAR 500
20 IN PUT "TYPE A SENTENCE"; S$
30 PRINT "TYPE A NUMBER FROM 1 TO " LEN(S$)
40 INPUT X
50 PRINT "THE MIDSTRING WILL BEGIN WITH CHARACTER " X
60 PRINT "TYPE A NUMBER FROM 1 TO " LEN($$) - X + 1
70 INPUT Y

80 PRINT "THE MIDSTRING WILL BE" Y "CHARACTERS LONG"
90 PRINT "THIS MIDSTRING IS :" MID$(S$,X,Y)
100 GOTO 20

RUN this program a few times to see if you can figure out how MID$ works.

Here's how the program works. Say you INPUT "HERE IS A STRING" for your
sentence:

In line 30, the computer first calculates the LENgth of S$ - 16 characters. It
then asks you to choose a number from 1 to 16. Let's say you pick the number 6.

The Computer then, in line 60, asks you to pick another number from 1 to 11
(16-6) plus 1. Say you pick the number 4.

0

In line 90, the Computer gives you a MID string of S$ which begins at character
number 6 and is 4 characters long:

2 3 4 S b 7 8 9 10 11 12 13 14 15 l b

H E R E s A

~4➔ ·
MID$(S$,6,4)

S T R N G

Here's something else you can do with MID$. Erase your program and type:

10 INPUT "TYPE A SENTENCE"; S$
20 INPUT "TYPE A WORD IN THE SENTENCE"; W$
30 L = LEN(W$)
40 FOR X = 1 TO LEN(S$)
50 IF MID$(S$,X,U = W$ THEN 90
60 NEXT X
70 PRINT "YOUR WORD ISN'T IN THE SENTENCE"
80 END
90 PRINT W$ "--BEGINS AT CHARACTER NO." X

RUN this program a few times. Here's how it works.

Say you type in the above sentence, and the word you INPUT for W$ is "IS". In
line 30, the Computer then calculates the LENgth of W$ - 2 characters.

o 0
0

YOUR COMPUTER'S MEMORY

S$ ~ HERE IS A STRING
W$~ IS
L _...., 2

The Computer then goes through the FOR/NEXT loop (lines 40-90) counting
each character in S$ beginning with character 1 and ending with character
number LEN(S$) - 16.

These types of programs can be used
to sort through large files of informa
tion. For instance, by separating
strings, you could look through a
mailing list for TEXAS addresses.

117

"#@%!&$!"

118

Every time it counts a new character, the Computer looks at a new MID string.
Each MID string begins at character X and is Lor 2 characters long.

For example, when X equals 1, the Computer looks at this MID string:

H E R E
+,2.,.

s A S T R

MID$(S$,l,2)

The fourth time through the loop, when X equals 4, the Computer looks at this:

4
H E R E S

~2~
MID$(S$,4.,2l

A S T

It finally finds the MID string it is looking for when X equals 6 .

YOUR COMPUTER CAN BE A TOUGH EDITOR

R

Are you beginning to get a picture of the Computer hacking away at your
sentences with a red pen? You can program it to help refine your writing and
save you hours of typing and rewriting.

Say you had a phrase you want to add to:

10 A$ = "CHANGE A SENTENCE."

Add to this one-line program so that the Computer will insert these words at
the beginning of the sentence:

IT'S EASY TO

and PRINT the new sentence:

IT'S EASY TO CHANGE A SENTENCE

N G

N G

DO-IT-YOURSELF PROGRAM

This is our program:

10 A$ = "CHANGE A SENTENCE."
20 B$ = "IT'S EASY TO"

30 C$ = 8$ + " 11 + A$
40 PRINT C$

Now see if you can add to the program to get the Computer to:

1. Find the beginning location of the MID string:

A SENTENCE

2. Delete the words A SENTENCE, forming a new string:

Irs EASY TO CHANGE

3. Add these words to the end of the new string:

ANYTHING YOU WANT

4. And PRINT the newly formed string:

IT'S EASY TO CHANGE ANYTHING YOU WANT

119

120

DO-IT-YOURSELF PROGRAM

HINT: To form the string IT'S EAS Y TO CHANGE, you need to get the LEFT portion of
the string IT'S EASY TO CHANGE A SENTEN CE.

This type of program is the basis of a
"word processing" program - a
popular program for cutting down on
office typing expenses.

Answer:

10 A$ = "CHANGE A SENTENCE."
20 8$ = "IT' S EASY TO"
30 C$ = 8$ + " " + A$
40 PRINT C$
50 Y = LEN ("A SENTENCE")
60 FOR X = 1 TO LEN(C$)

70 IF MID$ (C$,X,Y) = "A SENTENCE" THEN 90

80 NEXT X
85 END
90 D$ = LEFT$ (C$,X - 1)
100 E$ = D$ + "ANYTHING YOU WANT"
llO PRINT E$

IF YOU LIKE A CHALLENGE, TRY THIS . ..
Write a program in which:

1. The Computer asks you to INPUT:
a. a sentence
b. a phrase within the sentence to delete
c. a new phrase to replace the deleted phrase

2. The Computer then PRINTs a new sentence with your change intact.

This may take a while, but you have everything you need to write it. Our
answer is in the back of the book:

DO-IT-YOURSELF CHALLENGER PROGRAM

121

122

LEARNED IN CHAPTER 12

BASIC WORDS

LEN
LEFT$
RIGHT$
MID$

_-. --7
BASIC String OPERATOR

+

-------·- ----a ------~ ___ _.,

NOTES:

NOTES:

123

CHAPTER 13

-------=-

BEAT THE COMPUTER

• •• . • . • oee

BEAT THE COMPUTER

You'll find the Computer much more adept by getting it to constantly watch
and react to everything you do. By "watching you", we mean watching the
keyboard to see if you are pressing something. The word INKEY$ makes this
possible.

Type this:

10 A$ = INl<EY$
20 IF A$ < > '"' GOTO 50
30 PRINT "YOU PRESSED NOTHING"
40 GOTO 10
50 PRINT "THE l<EY YOU PRESSED IS---" A$

Press a key while RUN ning this program.

INKEY$ tells the Computer to look at the keyboard to see if you have pressed
anything. The Computer does this with super-speed. You will have pressed
absolutely nothing for at least the first 20 times the Computer checks.

The Computer labels this key, or this non-key ("" l , A$. Then Lhe Computer
makes its decision:

If A$ equals "" - nothing - the Computer prints "YOU PRESSED NOTH
ING" and goes back up to line 10 to check the keyboard again.

Remember what < > means? (It
means "not equal to")

'"' means an empty string - nothing

125

~

126

However, if A$ equals something, the Computer goes to line 50 and prints the

key.

For a constant look-out, type this and RUN the program:

60 GOTO 10

No matter how quick you are, the Computer is much faster! Erase line 30 to see

what keys you're pressing.

AN ELECTRONIC PIANO

Try using INKEY$ to make a piano out of your keyboard. Look at that table in
the Appendix, "Musical Tone Numbers". It lists these as the tones for middle C

through the next higher C:

C - 89
D - 108

E - 125
F - 133

G - 147
A - 159

B - 170
C - 176

We can tell the Computer that if you press a certain key it should SOUND one

of these tones. Erase your program and type:

10 A$ = INl(EY$
20 IF A$= \\II THEN 10

30 IF A$ = "A" THEN T = 89

40 IF A$ ="S" THEN T = 108

50 IF A$ ="D" THEN T = 125
60 IF A$ = "F" TH EN T = 133

70 IF A$= "G" THEN T = 147

80 IF A$ = "H" TH EN T = 159
90 IF A$ = "J" TH EN T = 170

100 IF A$ = "I(" THEN T = 176

llO IF T = 0 THEN 10

120 SOUND T, 5

130 T = 0
140 GOTO 10

RUN the program . .. Well, what are you waiting for? Play a tune. Type any of
the keys on the third row down on your keyboard - from A to K.

Why wouldn't the program work right if you use INPUT rather than INKEY$?

If you use INPUT the Computer will wait until you press (ENTER) before
acknowledging what you type. With INKEY$, it sees everything you type.

There's another way of writing this program using READ and DATA lines. Do
you know how this would be done?

This is what we came up with:

10 A$ = INl<EY$
20 FOR X = 1 TO 8
30 READ B$, T
40 IF A$ = B$ THEN SOUND T, 5
50 NEXT X
60 RESTORE
70 GOTO 10
80 DATA A, 89, S, 108
90 DATA D, 125, F, 133
100 DAT A G, 147, H, 159
llO DATA J, 170, I(, 176

How would this change the program?
120 SOUND T, 1

Using these DATA and READ lines
will make it easier for you to add more

• tones to your Compute~s repertoire.

127

128

BEAT THE COMPUTER
Type this program:

~~- 10 X = RND(4)
20 Y = RND(4)

30 PRINT "WHAT IS" X "+" Y
40 T = 0
50 A$ = INl<EY$
60 T = T + 1
70 SOUND 128, 1
80 IF T = 15 THEN 200
90 IF A$ = \\II TH EN 50

..__ 100 GOTO 10

200 CLS(7)

210 SOUND 180, 30
220 PRINT "TOO LATE"

Here's what the program tells the Computer to do:

Lines 10, 20, and 30 gets the Computer to pick two random numbers and
ask you what their sum is.

Line 40 sets T to 0. We will use T as a timer.

Line 50 gives you your first chance to answer the question - in one
minute split second.

Line 60 adds 1 to the timer. T now equals 1. The next time the Computer
gets to line 60 it again adds 1 to the timer to make T equal 2. Everytime
the Computer executes line 60 it will add 1 to T.

Line ?O's just there to make you nervous.

Line 80 tells the Computer you have 15 chances to answer. Once T equals
15, time's up. The Computer will insult you with lines 200, 210, and 220.

Line 90 says if you haven't answered yet to go back and give you another
chance.

The Computer only gets to line 100 if you do answer. It will go back for
another problem.

How would you get the Computer to give you three times as much time to
answer each question?

...

Answer:

By changing this line:

80 IF T = 45 THEN 200

CHECKING YOUR ANSWERS
How would you get the Computer to check to see if your answer is correct?
Would this work?

100 IF A$ = X + Y TH EN 130
110 PRINT "WRONG", X "+" Y "=" X + Y
120 GOTO 10
130 PRINT "CORRECT"
140 GOTO 10

If you RUN this program (and answer on time), you'll get this error message:

?TM ERROR IN 100

That's because you can't make A$, a string, equal to X + Y, numbers. You have
to somehow change A$ to a number.

Fortunately, your Computer has a way of doing this. Change line 100 by typing:

100 IF VAUA$) = X + Y THEN 130

VAL(A$) turns A$ into its numeric VALue. If A$ equals the string "5";
V AL(A$) equals the number 5. (However, if V AL(A$) equals the string "C";
V AL(A$) equals O since "C" has no numeric value.)

Remember the problem of mixing
strings with numbers. Chapter 2 will
refresh your memory.

129

130

For those that want to make the program a bit more challenging, change these
lines:

10 X = RND(49) + 4
20 Y = RND(49) + 4

90 8$ = 8$ + A$
100 IF VAU8$) = X + Y THEN 130

And add these lines:

45 8$ = \V/

95 IF LEN(B$) <> 2 THEN 50

A COMPUTER TYPING TEST

Here's a program that will get the Computer to time how fast you type:

10 CLS
20 INPUT "PRESS < ENTER> WHEN READY TO TYPE THIS PHRASE"; E$

30 PRINT "NOW IS THE TIME FOR ALL GOOD MEN"
40 T = 1
50 A$ = INl<EY$

--60 IF A$ = "" TH EN 100
70 PRINT A$;
80 8$ = 8$ + A$
90 IF LEN<B$) = 32 TH EN 120
100 T = T + 1
·no GOTO 50

120 S = Tn4
130 M = S/60
140 R = 8/M
150 PRINT
160 PRINT "YOU TYPED AT -"R"-WDS/MIN"

Here's how this program works:

In line 40, we set the timer - T - to l.

Line 50 gives you your first opportunity to type a key-A$. If you're not quick
enough, line 60 sends the Computer directly to line 100 and adds l to the
timer.

Line 70 prints the key you typed.

Line 80 forms a string named B$. Each time you type a key (A$), it will be
added to B$. For example, if the first key you type is "N", then:

A$= "N"
and

8$ = 8$ + A$
8$ = \\II + "N"
8$ = "N"

If the next key you type is "O", then:

A$ = "O"
and

8$ = 8$ + A$
8$ = "N" + "O"
8$ = "NO"

And if the third key you type is "W", then:

A$ = "W"
and

8$ = "NO" + "W"
8$ = "NOW"

When the LENgth ofB$ equals 32 characters (the length of "NOW IS THE
TIME FOR ALL GOOD lVIEN"), the Computer assumes you've finished
typing the phrase and goes to line 120 to compute your words per minute.

nNow

is
the
time
for

good
men99

131

132

We could have made this calcula
tion in one line by using parenthe
sis:
120 R = Bl((T/74)160)

L___ ~~ -

How about trying a va,:iation of this
program - a speed reading test.

J

We calculate the words per minute in lines 120, 130, and 140 by dividing T by
74 (to get the seconds), S by 60 (to get the minutes), and then dividing the 8
words by M to get the rate of words per minute.

Change this program to get the Computer to check to see if you made a
typographical error.

DO-IT-YOURSELF PROGRAM

Our answer is in the back of this book.

LEARNED IN CHAPTER 13

BASIC WORDS

'

INl<EY$
VAL

NOTES:

-- -··-----

133

CHAPTER14

POLISH IT OFF

POLISH IT OFF

Before we let you finish this section, there are a few more BASIC words we
want to tell you about. You don't have to know them. They'll just make
programming a little easier for you.

The first word is STOP. Easy enough? Type and RUN this program;

10 A = 1
20 A = A +
30 STOP
40 A = A"
50 STOP
60 GOTO 20

The Computer prints:

BREAK IN 30
OK

1

2

The Computer STOPped executing the program when it got to line 30. At this
point, you can type a command line to see what your program has done so far.
for example, type:

PRINT A (ENTER)

135

136

To save memory, you can omit
spaces in your program before and
after punctuation marks, operators,
and BASIC words.

The Computer prints 2 - the value of A when it STOPped running the program.
Now type:

CONT (ENTER)

The Computer CONTinues to run the program where it STOPped. In other
words it CONTinues running the program at line 40. Then it prints:

BREAK IN 50

the second place you have a STOP. Now, you may type:

PRINT A (ENTER)

again. It prints 4, the value of A at line 50. Type CONT again and the Computer
breaks back up a t line 30. If you have it PRINT A it will print 5, the value of A
at line 30 the second time through the program.

STOP and CONT are for times when your program isn't working as you ex
pected it to. By putting STOP lines in your program you can analyze what's
going wrong. Once you fix the program, you can take the STOP lines out.

FOR AMBITIOUS PROGRAMS ...

Type NEW to clear memory and then type:

PRINT MEM (ENTER)

The Computer prints how much storage space remains in the Computer's
memory.

When you're typing a long program, you will want to have the Computer
PRINT MEM from time to time to make sure you're not running out of
memory.

HELP WITH TYPING

Type this program:

INPUT "TYPE 1, 2, OR 3"; N
ON N GOSUB 100, 200, 300
GOTO 10

PRINT "YOU TYPED l"
110 RETURN

200 PRINT "YOU TYPED 2"
210 RETURN

300 PRINT "YOU TYPED 3"
310 RETURN

RUN it.

Line 20 could actually be replaced by these three lines:

18 IF N 1 THEN GOSUB 100
20 IF N 2 THEN GOSU B 200
22 IF N = 3 THEN GOSUB 300

It's simply fewer lines to type when you use ON ... GOSUB.

ON . . . GOSUB tells the Computer to look at the number following ON - in
this case number N. If it's a 1, the Computer goes to the subroutine beginning
at the first line number following GOSUB. If N is 2, the Computer goes to the
subroutine beginning at the second line number; if N is 3, the Computer counts
down to the third line number and goes to that subroutine.

What if N is 4? Since there is no fourth line number, the Computer simply goes
to the next line in the program.

137

138

r·

. When A does not equal X + Y, the con

dition set up in line 1020 is not true.

Here is a program that uses ON . .. GOSUB:

5 FOR P = 1 TO 600: NEXT P

10 CLS: X = RNDClOO): Y = RNDClOO)

20 PRINT "(l) ADDITION"

30 PRINT "(2) SUBTRACTION"

40 PRINT "(3) MULTIPLICATION"

50 PRINT "(4) DIVISION"

60 INPUT "WHICH EXERCISE(l-4)"; R

70 CLS
80 ON R GOSUB 1000, 2000, 3000, 4000

90 GOTO 5

1000 PRINT "WHAT IS" X"+"Y

1010 INPUT A

1020 IF A=X+Y THEN PRINT " CORRECT" ELSE PRINT "WRONG"

1030 RETURN

2000 PRINT " WHAT IS" X "-" y
2010 INPUT A

2020 IF A= X-Y THEN PRINT " CORRECT" ELSE PRINT " WRONG"

2030 RETURN

3000 PRINT "WHAT IS" X """ Y

3010 INPUT A

3020 IF A = X" Y THEN PRINT " CORRECT" ELSE PRINT "WRONG"

3030 RETURN

4000 PRINT " WHAT IS" X "/" Y

4010 INPUT A
4020 IF A= XI V THEN PRINT " CORRECT" ELSE PRINT "WRONG"

4030 RETURN

Notice the word ELSE in lines 1020, 2020, 3020, and 4020. You can use ELSE if

you want the Computer to do something special when the condition is not true.

In line 1020, IF your answer - A - equals X + Y the Computer prints COR
RECT or ELSE it prints WRONG.

You may use ON .. . GOTO in a similar way as ON ... GOSUB. The only

difference is that ON GOTO simply sends the Computer to another line number,

rather than a subroutine.

Here's part of a program using ON .. . GOTO:

10 CLS
20 PRINT @ 134, "(l) CRAZY EIG HTS"
30 PRINT @ 166, "(2) 500"
40 PRINT @ 198, "(3) HEARTS"
50 PRINT @ 354, " WHICH DO YOU WANT TO PLAY"
60 INPUT A
65 CLS
70 ON A GOTO 1000, 2000, 3000

1000 PRINT @ 230, " CRAZY EIGHTS GAM E" ,.,
1010 END

u

2000 PRINT @ 236, " 500 GAME"
2010 END

3000 PRINT @ 235, " HEARTS GAM E"
3010 END

DOES THE JOB SAY "AND" OR "OR"?

Anyone who speaks English knows the difference between AND and OR - even
your Computer. For example, let's say that Radio Shack has a bunch of job
openings in programming. To get the job, you must have:

a degree in programming
AND

experience in programming

Here it is in a program. E rase memory and type:

10 PRINT " DO YOU HAVE --"
20 INPUT " A DEGREE IN PROGRAMMING"; D$
30 I NPUT " EXPERIENCE I N PROGRAMMING"; E$
40 IF D$ = " YES" AND E$ = " YES" TH EN PRINT " YOU'VE GOT THE
JOB" ELSE PRINT " SORRY, WE CAN'T HIRE YOU "
50 GOTO 10

139

~

140

RUN the program. With your experience on the Color Computer, you might

answer the questions this way:

DO YOU HAVE --
A DEGREE IN PROGRAMMING? NO

EXPERIENCE IN PROGRAMMING? YES

SORRY, WE CAN'T HIRE YOU

Now let's say Radio Shack decided to be more lenient. Here a.re the new job

qualifications:

a degree in programming
OR

experience in programming

All they did is change one little word. They changed AND to OR. To make this

change in your program type:

40 IF D$ = "YES" OR E$ = "YES" THEN PRINT " YOU'VE GOT THE

JOB" ELSE PRINT "SORRY, WE CAN'T HIRE YOU "

To see the difference that one word makes, RUN the program:

DO YOU HAVE --

A DEGREE IN PROGRAMMING? NO

EXPERIENCE IN PROGRAMMING? YES

YOU'VE GOT THE JOB

Now that you see your Computer understands the meaning of AND and OR,

you can use them in your programs. We'll be using these words in the next

sections.

MORE HELP WITH MATH

There's a couple more words you might want to use to help with math programs:

SGN

SGN tells you whether a number is positive, negative, or 0. Type:

10 INPUT "TYPE A NUMBER"; X
20 IF SGN(X) 1 THEN PRINT " POSITIVE"
30 IF SGN(Xl = 0 THEN PRINT "ZERO"
40 IF SGN(X)
50 GOTO 10

- 1 TH EN PRINT "NEGATIVE"

RUN the program. Try INPUTting some numbers like these:

15 -30 - .012 0 .22

ABS

ABS tells you the absolute value of a number (the magnitude of the number
without respect to its sign). Type:

10 INPUT "TYPE A NUMBER"; N
20 PRINT " ABSOLUTE VALUE IS" ABS(N)
30 GOTO 10

RUN the program INPUTting numbers like the ones above.

STR$

STR$ converts a number to a string. Example:

10 INPUT "TYPE A NUMBER"; N
20 A$ = STR$(Nl
30 PRINT A$ + " IS NOW A STRING"

One more thing before we let you finish this section ...

141

142

Notice the OV (Ove,f[ow) Error at the
end. The Computer can't handle
numbers larger than 1 E + 38 or
smaller than -JE+38. (It rounds off
numbers around 1 E -38 and -.1 E-38 to
0.)

Or technically 1 * 10\ which is 1 times
ten to the ninth power:
J*J0*J0*J0*J0* J0*J0* J0*J0*J0

In our BASIC, that's 5110110/10/10/
10110

Type and RUN this program:

10 X = 1
20 PRINT X;

30 X = X O 10
40 GOTO 20

Sometimes a number will get so large or so small that the Computer will cope
with it by printing it in "exponential notation" . The number "one billion"
{l,000,000,000), for example, can be written "lE +09". This means "the number
1 followed by nine zeros."

If an answer comes out "5E-06", t hat means we must shift the decimal point,
which comes after the 5, six places to the left inserting zeroes as necessary.
Technically, it means 5" 10·6, or 5 millionths. (.000,005). It's really pretty simple
once you get the hang of it, and a lot easier to keep track of numbers without
losing the decimal point.

We've run you through this Chapter pretty fast, but we think you 'll appreciate
knowing these odds and ends when you go through the next sections or practice
your own programs.

LEARNED IN CHAPTER 14

BASIC WORDS BASIC SYMBOLS BASIC CONCEPT

STOP
CONT
MEM

SGN
ABS
STR$

AND
OR

Exponential notation

PICTURE THIS

By programming different positions for
this man, along with a song, you can easily
make him dance. Chapter .19, "Let's Dance,"
shows how to do it.

A

(A) and (B) This "Blackjack" game uses different col
ored cards to represent suits. See Appendix H, "Sam
ple Programs," for a program listing.

(C) Press any key and the "Electric Dice" will roll.
This program is listed in Appendix H also.

B

C

D

F

E

(D) Use your joystick to guide your spaceship through
this maze of asteroids. Chapter 17, "Games of Motion,''
shows how to write this program.

(E) The joysticks propel these two spaceships. The
blue one has a gun. You can fire it by pressing the but
ton on the joystick propelling it. See "Spaceguns" in
Appendix H, "Sample Programs'!

(F) You can create a 1·andom traffic jam that moves
perpetually with graphic strings. Chapter 18 shows you
how.

(G) Chapter 16 sholVs holV to create this "Talking Teacher" by
making the T. V. sound your OlVn taped voice.

(H) This "Etch-a-Sketch" program uses high resolution graphics.
Pressing the "!" key changes the colors (I). See Program Listing
1 in Part A of Section IV for the program listing.

(J) This "Kaleidoscope" program is listed in Appendix H, Sample
Programs.

G

H

I

J

NOTES:

143

,/
I ,

144

CONGRATULATIONS

We're calling you a programmer, because that's what you are.
You've learned practically the entire BASIC programming
language.

As you know by now, there are as many ways to use the
Computer as there are types of people. What you do now
depends on which type you feel like you are right now.

~
... OFFICIAL

ladle
lhaeK
PROGRAMMING

AWARD

A CREATIVE SORT

You probably want to do a lot more with color
graphics. That's why you bought the Color Com
puter in the first place ! The next section ,
"Graphics with Pizzazz," is devoted to you.

A PERSON
ON THE GO

Enough of this reading and learning - you've got
a lot of ideas and you're ready to start program
ming! We think that's great, and we won't get
our feelings hurt if you don't read any more of
this book. Honest!

l
I

I I
I

I
f
I

A PRACTICAL
BUSINESS TYPE

All of this has been fun, but you're ready to put
the Computer to work! Skip section two and go
straight to section three, " Getting Down to Busi
ness." We come down to earth there and get very
practical.

A TECHNICAL WHIZ

Armed with a strong curiosity and some staying
power, you can step into section four, "Don't
Byte Off More Than You Can Chew." There we
show you how to change some of the inner work
ings of your Computer to do high resolution
graphics and to call out machine-language pro
grams.

145

'
! I

SECTION II

®W~IPIBJTICC~
~[ITIIBJ IPTIZ2Z2~Z2Z2

Those of you who want to write colorful and exciting programs will defin
itely want to read this Section. Here, we'll put pictures on your screen that
move, dance, and even talk.

To keep things simple, our program examples are short. Once you under
stand what we're doing, you can easily create your own much more impres
sive programs.

CHAPTER JS

MOVING PICTURES
::.:::::::::====~-- ---.

o o.ao
o: 11=o
oQo oeoo0

MOVING PICTURES

Ready to put some life into yom programs? Animation is the key to making
your graphics programs fun.

There are two ways to program graphics. The first is by using SET and RESET
to position a "dot" horizontally and vertically. We'll use this method first . In
ChapteT 18 we'll introduce a new method to you.

Type:

PRINT ASC("A") (ENTER)

and the Computer prints:

65

65 is the "ASCII" code for the character A. Type:

PRINT CH R$(65)(ENTER)

and the Computer prints A, to tell you that the CHaRacter that code number
65 represents is A.

Look at the list of "ASCII Character Codes" in your Appendix. Each character on

''ASCII" stands for the American
Standard Code for Information In
terchange. By using these standard
codes, your Computer is capable of
communicating over the telephone
with other computers.

149

150

We'll talk about some more uses for
CHR$ later on in this section.

Need to review IN KEY$? See Chapter
13.

your keyboard has a code. Try testing some of the other characters .. .

So how does this help with graphics? With most of the characters on your
keyboard, you can program what your Computer should do when you type
them. For example, you could type these lines in your program:

10 INPUT A
20 IF A = "W" TH EN H = H - 1

to tell the Computer what to do when you type the character W.

However if you try to substitute the 8 key for W, in line 20, the Computer
will not let you do it. This is because the Computer has ah-eady decided what to
do when you type the 8 key.

To get around this, we can use CHR$(8) to represent the 8 character. Type
NEW to erase your Computer's memory and type:

10 CLS(O)

20 H = 63
25 SET(H,14,3)

fo A$ = INKEY$
40 IF A$ = CHR$(8) THEN 60

50 GOTO 30

60 H = H - 1
65 IF H < OTHEN END
70 SETCH,14,3)
75 RESETCH + 1,14)

80 GOTO 30

RUN the program. Press the 8 character. Each time you press it, it back
spaces the blue dot.

Line 30 tells the Computer to label whatever key you are pressing or not
pressing as A$. If A$ equals the character represented by code 8 - the 8
character - then the Computer will go to line 60.

In lines 60 and 70 it "backspaces" H, the horizontal coordinate and SETs a
blue dot. Then, in line 75, it RESETs or blacks out the previously SET blue
dot.

Write some more lines to the program so that when you press the 8
character, the Computer will move the dot forward.

DO-IT-YOURSELF PROGRAJvl

Our answer is in the back of this book.

A TRAIN THAT MOVES

Now that you understand CHR$, you can use it in a moving picture.

151

152

Programming will be much easier if
you use this grid to plan your graph
ics in advance. Use pencil or make
some photo copies of it.

Want a review of this? We talk about
it in Chapter 9.

Press (BREAK) to get out of program.

Before writing the program, we will draw a grid of what it will look like, using
t he grid in Appendix D, "Graphics Screen Locations".

Our scene will look something like this:

I I

t

t
~

I I

t

------ t---._

I I :r -f - ' +
/t -,-

~
I r

H-
H-

.._ .J

Notice how the grid is divided into blocks - the groupings outlined with the
dark lines. Each block contains 4 dots. All four dots in a block must be:

• all on e color, or
• one color and black

Since the track markings are black, we can let them share the same block as
the green grass.

Let's create the scene first. After typing the lines to create each part of the
scene - the sky, grass, tracks, and train - you might want to RUN the pro
gram to see what it looks like.

To make the sky cyan, erase memory and type:

10 CLS(6)

For green grass type:

20 FOR H = 0 TO 63
30 FOR V = 22 TO 31
40 SET(H,V,l)

50 NEXT V,H

This SETs every dot green (color# 1) from Horizontal locations Oto 63 and
Vertical locations 22 to 31. Notice that line 50 actually contains two instruc
tions:

NEXT V
NEXT H

To make the track markings, type:

60 FOR H = 0 TO 63 STEP 2
70 RESET<H,22)

80 NEXT H

This blacks out (RESETs) every other dot of the green grass in vertical loca
tion 22.

To make the train, type:

90 FOR V = 20 TO 21
100 FOR H = 0 TO 15

llO SET<2 + H,V,3): SET(20 + H,V,3)
120 NEXT H,V

This sets a train with two cars, each 16 dots long (0 to 15). One begins at
horizontal location 2 and the other begins at location 20.

RUN the program to make sure your scene looks like the one we graphed
above.

Looks the same? Now we'll make the train move forward. Type:

Since we haven't put a GOTO line in
the program to set a pe1petual loop,
your screen will have a green stripe
at the top with the OK message.

153

F = 0 at this point.

154

200 A$ = INl<EY$
210 IF A$ = CHR$(9) THEN GOSUB 1000

220 GOTO 200

This simply tells the Computer that IF you press the 8 key - the character
represented by code number 9 -THEN the Computer will go to a subroutine
in line 1000. Here's the subroutine. Type:

1000 REM FORWARDS

1010 IF F > 26 THEN RETURN
1020 FOR V = 20 TO 21
1030 FOR H = 0 TO 1

1040 SET (2 + F + H,V,6): SET(20 + F + H,V,6)

1050 SET <18 + F + H,V,3): SET(36 + F + H,V,3)

1060 F = F + 2
1070 GOTO 1000

RUN the program. Press the 8 key and the train will move forwards.

Line 1040 SETs the first block of each car - the blocks beginning at locations 2
and 20 - the color of the sky.

Line 1050 SETs one block ahead of each car - the blocks beginning at loca
tions 18 (2 + 16) and 36 (20 + 16) - the color of the train. After the Computer
RUNs line 1050, the screen looks like this:

r .

See how each car has moved over one block. Of course it will only look like this
for a split second. Line 1060 adds 2 to F to make it equal 2. Line 1070 sends t.he
Computer back up to do the routine again.

The second time through the routine, the blocks beginning at locations 4 (2 + F) and 22 (20 + F) are SET the color of the sky and the blocks beginning at
locations 20 (18 + F) and 38 (36 + F) are SET the color of the train. This makes
the train move over another block:

,
" I . I I I I . I

+--
I

I
I

I 1

C

.L

The train continues to "move," block by block, until it reaches the end of the
screen. This happens when F equals 26. After this happens line 1010 will RE
TURN the Computer back to line 220.

Want to make the train go backwards? Add these lines

215 IF A$ = CHR$(8) THEN GOSUB 2000

2000 REM BACKWARDS
2010 IF F < 0 THEN RETURN
2020 FOR V = 20 TO 21
2030 FORH = OTOl
2040 SET(O + F + H,V,3): SET(l8 + F + H,V,3)
2050 SETC16 + F + H,V,6) : SET(34 + F + 1:1,V,6)
2060 NEXT H,V
2070 F=F-2
2080 GOTO 2000

I ,

/

155

156

RUN the program. Press B and the train will go backwards. Press 8 and it

will go forwards.

The method we just showed you works great in getting a small and simple

image to move. However, if you want to move a larger, more complicated

image, you'll prefer the method that we use in Chapter 18.

LEARNED IN CHAPTER 15

,·---·-- ---- --"'------·--------~

l
l

BASIC WORD

ASC
CHR$

NOTES:

NOTES:

157

l
CHAPTER16

THE TALKING COMPUTER TEACHER

THE TALKING COMPUTER TEACI-IER

Who says the Computer can't talk? Its voice, though, will sound strangely like
your own . ..

We will get the Computer to talk by using your own taped voice. By doing this,
you'll greatly magnify the interest and fun in your programs - particularly
games and teaching programs. Even if you don't have a tape recorder, you'll
still want to use some of the graphics ideas we have in this Chapter.

Unplug the thrne-pronged cable connecting your tape recorder to the Com
puter. Put in a tape, rewind it, press the PLAY and RECORD buttons, and talk
into the microphone. (Plug in a microphone if your recorder doesn't have one
built in.) Say whatever you want.

Now type this program:

5 CLS
10 INPUT "PRESS < ENTER > TO HEAR THE RECORDING"; A$
20 MOTOR ON
30 AUDIO ON

Ready? Before running the program you need to prepare your tape for playing:

• rewind the tape with your recording

Even if you don't have a microphone,
you can t,y this program using a tape
of music or one of your program tapes.

159

f Chapter 8 shows-~ow to connect it.

160

• connect your tape recorder to the Computer
• press the PLAY button on your recorder
• turn up the volume on your T.V.

RUN the program. You'll hear your voice over the T.V.

MOTOR ON turns on your cassette recorder. AUDIO ON connects your re
corder's sound to the T.V. speaker.

There's a way of programming your tape recorder to stop, but for now simply
press the RESET button. It's on the back right-hand side of your keyboard
(when you're facing it) . LIST your program. It's still intact.

Add these lines :

35 CLS
40 A$ = INKEY$
50 PRINT@ 225, " PRESS < X > TO TURN OFF RECORDER"

60 IF A$<> " X" THEN 40

70 AUDIO OFF
80 MOTOR OFF

Prepare your tape for playing and RUN the program.

Line 40 tells the Computer to label whatever key you are pressing or not
pressing as A$. If you are not pressing an "X", line 60 sends program control
back to line 40. If you do press an X the recorder's AUDIO connection and
MOTOR are turned off.

Now that you understand how it works, you're ready to record the Computer
teacher. Ham it up a bit. Here's the script:

SCRIPT

"Hi, I'm your talking Computer teacher. The first lesson is
math. I will give you a series of addition problems. Press
the 'W' key--"

(pause for a few seconds)

"you'll hear that every time you give me a wrong answer.
Press the 'R' key--"

(pause for a few seconds)

"that's what I'll reward you with when you answer cor
rectly. I won't talk to you again until you give me three
correct answers. Press the 'G' key to begin."

(pause for a few seconds)

"Hello again. Now is a good time to start the next lesson. I
don't have another lesson, though, so I'm ending the pro
gram. Press the 'E' key to turn off the cassette."

161

162

This program is a little long but we

think you'll enjoy it. If you want, you
1 can go on to the next chapter and

come back to this later.

Finished? The next thing to do is draw the talking teacher. Here's our grid of

what it will look like:

,

, 1 ~ '

I,,

,,
>+: ::. ·
. !-!I I

, : . . : L

r----: i .. ~ .· i ,~ . • .
t-,-t·.•-t-iH-1 +-. t-+'+-t-f-h++-f---F-14'-l-'-!-+4~1+1 J-, ~

. t ' '

-- i--- J I ' ~ 1"7 j • r I ~ I • f- _I
.......... '-'-'-..&.....L...LU...L..L.s..L....L.1.'-1-'--'.J.LL.J....J....L...L.JUJ...L.L...LU..J.WL..L..L..l.:::lJ

~---------'"
Draw the mouth first. Erase memory and type:

5 CLS<O)
200 FOR H = 26 TO 35

210 FOR V = 16 TO 21

220 SET(H,V,4)

230 NEXT V,H

That's a closed mouth. 'Io make it talk, type:

500 RESET(30,18): RESETC30,19)

510 GOTO 200

and RUN. Not as good looking a mouth as mine, but it'll do. Now draw the

face. Type:

100 FOR H = 16 TO 47

llO FOR V = 4 TO 23
120 SET(H, V,5)

130 NEXT V,H

and the body. Type:

140 FOR H = 0 TO 63 STEP 4

150 FOR V = 24 TO 31
160 SETCH,V,2): SETCH + l ,V,2)

170 SET(H + 2,V,7) : SET(H + 3,V,7)
180 NEXT V,H

and t he eyes. Type:

300 FOR V = 10 TO 11
310 SETC24,V,3): SET(25,V,3)

320 SETC36,V,3) : SETC37,V,3)
330 NEXT V
340 PRINT @ 0, " THE TALKING COMPUTER TEACHER"

RUN it now. Want to make the eyes blink? Type:

505 IF RND(4) = 4 THEN SET<24,10,5) : SET(37,10,5)

and RUN. That's the talking teacher.

Now get it to t alk. Type:

400 MOTOR ON

410 AUDIO ON

420 A$ = INKEY$
430 IF A$ = "G" THEN MOTOR OFF: END

440 IF A$ = " W" TH EN MOTOR OFF: GO SUB 2000

450 IF A$ = " R" THEN MOTOR OFF: GOSUB 3000

2000 FORT = 176 TO 89 STEP -10
2010 SOUND T, 1

2020
2030

3000

3010
3020
3030

Remember, you can always press
RESET to stop your recorder when
it is connected to the Computer.

NEXT T
RETURN

FORT = 89 TO 176 STEP 10

SOUND T, 1
NEXT T
RETURN

163

164

/--
(

t

Notice line 1015. It sets the PRINT .
position for what you type in line I 020. ,

- ---~-..J

Before RUNning the program, prepare your tape for playing (rewind it, connect
the recorder to the Computer, and press the PLAY button). Now RUN it . . .
Do what your voice tells you to do.

Working so far? When you press W you should hear descending tones; R gives
you ascending tones. G just ends the program. That's because you h aven't
typed the ari t hrnetic routine yet.

Change line 430 and add line 460:

430 IF A$ = " G" THEN MOTOR OFF: GOSUB 1000
460 IF A$ = " E" THEN MOTOR OFF: END

and add the arithmetic routine:

1000 X = RND(l00): Y = RND<l00)
1010 PRINT @ 0, " WHAT IS" X " + " Y
1015 PRINT@ 20,
1020 INPUT A

1030 IF A = X + Y THEN GOSU B 3000: C = C + 1

1040 IF A <> X + Y THEN GOSUB 2000: PRINT @ 0, " WRONG - THE

ANSWER IS" X + Y
1050 IF C = 3 THEN RETURN

1060 FOR P = 1 TO 500: NEXT P
1070 GOTO 1000

Rewind your tape and press PLAY. RUN the program .. .

There you h ave it. The Talking Computer Teacher: Perfect for making a rith
metic fun.

LEARNED IN CHAPTER 16

-- ------

BASIC WORDS

MOTOR
AUDIO

NOTES:

• • ~ • • • • • ' •• :, • ,r •• • •

165

CHAPTER17

GAMES OF lVIOTION
-· ----- ----

0
OP ..
"'

0011

GAMES OF MOTION

Ready to play a little video tennis? How about some target practice or space
games? You can teach your Computer to play any of these games as soon as you
learn one more BASIC word. That word is POINT, and we're devoting this
whole Chapter to it.

Erase memory and type this program:

5

C lO
20
30

e40
50
60
70
80
100
llO

CLS(O)
FOR X = 1 TO 5
SET<RND(64)-l, RND(30)+1, 8)
NEXT X
FOR V = 2 TO 31
FOR H = 0 TO 63
IF POINT(H,V) < > 0 TH EN GOSU B 100
NEXT H,V
END
PRINT @ 0, "LOCATION" H "," V "IS SET"
RETURN

In line 60, the Computer scans each POINT (dot) from vertical location 2
through 31 and horizontal location O through 63 to see if it is lit up. If it is lit
up-that is, the POINT does not equal 0-line 100 prints its horizontal and
vertical location.

167

168

Delete lines 40, 50, and 70 and change line 10. Type:

40
50
70
10 FOR X = 1 TO 300

Now change lines 60 and 100, so that if the POINT at location 63, 31 is SET, the
Computer will print a message.

PROGRAMMING EXERCISE

This is how we did it:

60 IF POINT(63,31) <> 0 THEN GOSUB 100
100 PRINT @ 0, "LOCATION 63, 31 IS SET"

Erase memory and type this program:

5 CLS(O)
10 C = RND(9)-l
20 SET(31,15,C)
30 IF POINT(31,15) = 2 THEN PRINT @ 0, "LOCATION 31,15
IS YELLOW";
40 IF POINT(31,15) = 3 THEN PRINT @ 480, "LOCATION 31 ,15
IS BLUE";
50 FOR T = 1 TO 1000: NEXT T
60 GOTO 5

RUN it and watch the screen for a while. POINT not only checks to see
whether a particular POINT on the screen is lit up, it also checks to see if it is
lit up a certain color. The POINT will equal O if it is not lit up. If the POINT is
lit up it will equal one of the color code numbers listed in Appendix B.

Add two lines to the program so the Computer will also check to see if the
POINT at location 31,15 is GREEN or RED.

43 IF POINT(31,15)
IS GREEN"
45 IF POINT(31,15)
IS RED"

PROGRAMJl.1ING EXERCISE

1 THEN PRINT @ 160, "LOCATION 31,15

4 THEN PRINT @ 320, "LOCATION 31,15

~ PLOTTING THROUGH ASTEROIDS

In this game, we'll be using the right joystick, so make sure it's connected.

We can create asteroids like the way we SET the random POINTs above. Erase
memory and type:

5 CLS (0)

10 FOR X = 1 TO 200
20 SET (RND(64) -1, RND (30) + 1,8)
30 NEXT X

169

0

0

0

0

170

0

/)

0

0 I ,

/

To SET the planet your ship must reach, type:

((

40 FOR H = 54 TO 63
50 FOR V = 28 TO 31
60 SET(H,V,3)
70 NEXT V,H

To read the right joystick's position, type:

100 A
llO B
120 B
130 B

JOYSTK(O)
JOYSTK(l)
B/2
INT(B)

A reads the horizontal coordinates (0-63) and B reads the vertical coordinates
(0-63). Since the highest vertical position on your screen is 31, we had to add
lines 120 and 130.

To SET the entire block surrounding the joystick's position, add these lines:

200 IF INT(A/2) < > A/2 TH EN A = A 1
210 IF INT(B / 2) <> B/ 2 THEN B B - 1 (C220 FOR H = A TO A + 1

►230 FOR V = B TO B + 1
240 SETCH,V,6)
250 NEXT V,H
999 GOTO 100

Lines 200 and 210 make sure that the first horizontal and vertical dots SET are
even numbers and lines 220 through 250 SET the entire block.

RUN the program. Move your joystick around. The cyan colored line will move
wherever you position the joystick.

Now make a game out of it. Type:

212 FOR H A TO A + 1
214 FOR V = B TO B + 1

216 IF POINTCH,V)
218 NEXT V,H

8 TH EN SOUND 128,1: T = T+l

RUN it again. Each time you hit an orange POINT, the Computer will SOUND
a tone.

Notice that line 216 does two things IF the POINT is orange:

• it SOUNDs a tone
• it adds 1 to T, the counter

Add these lines to your program:

235

300
310
1000
1010
1020
1030
1040

IF POINT<H,V) = 3 THEN PRINT @ 0, " CONGRATULATIONS
- YOU MADE IT": END
PRINT @ 28, T
IF T > 10 THEN 1000
FOR X = 1 TO 40
CLS(RND(8))
SOUND RND(255), 1
NEXT X
PRINT @ 228, " YOUR SPACESHIP EXPLODED"

and RUN it . . . Would you like to have directions printed on the screen? Add
these lines:

(

80 FORX = 1T08
82 READ A$
84 PRINT @ O,A$
86 FOR Y = 1 TO 1500: NEXT Y
88 NEXT X
90 R$ = IN KEY$: IF R$ "" TH EN 90
92 FOR H = 4 TO 63
94 SET(H,0,8) : SET(H ,1,8)
96 NEXT H

2000 DATA YOUR GOAL IS TO PLOT A COURSE
2010 DATA TO GUIDE YOUR SPACESHIP
2020 DATA THROUGH THE ASTEROIDS
2030 DATA TO THE BLUE PLANET
2040 DATA HIT MORE THAN 10 ASTEROIDS
2050 DATA AND YOUR SPACESHIP EXPLODES!!!
2060 DATA PRESS ANY KEY WHEN YOUR SPACE-
2070 DATA SHIP IS AT TOP LEFT CORN ER

* +
0

0

0 -+

o*

171

--- ---- - ---------

172

LEARNED IN CHAPTER 17

--- - ---

BASIC WORD

POINT

NOTES:

NOTES:

--------- ---- ------

. -------- -· ----

173

CHAPTER18

FASTER THAN MOTION

FASTER THAJ\l MOTION

In this Chapter, we'll show you an alternate way to program graphics which we
think you'll like. In many cases, it will make programming simpler, and it will
definitely speed up your moving picture programs.

Type:

PRINT CHR$(128) (ENTER)

The Computer prints a black block which looks like this:

I
Try some more numbers. Type:

PRINT CHR$C129) (ENTER)
PRINT CHR$Cl30) (ENTER)
PRINT CHR$(131) (ENfffi)

The Computer prints three blocks with different combinations of green and
black:

175

176

A grid of "PRINT @ Screen Loca
tions" is in Appendix C. (We ex
plained how to use it in Chapter 7).
Be sure to type the semi-colon.

I
128 129

136 137

, ■
Since the green background makes it difficult to see the outline of the blocks,
type this program. It will print the first block against a buff background:

10 CLS(5)
20 PRINT @ 239, CHR$(129);
30 GOTO 30

Remember CHR$ from Chapter 15? CHR$ converts a code to the character it
represents. For example, CHR$(65) converts the code 65 to the character "A".
The codes above - 128, 129, 130 and 131 - are codes for graphics characters.

Look at "Graphics Screen Location" in Appendix D. As we explained earlier the
darker lines divide the grid into blocks. E ach block contains four dots. These
dots can be arranged in sixteen ways to form these graphics characters;

I I
130 131 132 133 134 135

I I
■ I I

138 139 140 141 142 143

To print all these graphics characters, type and RUN this program:

10 CLS{S)
20 FOR C = 128 TO 143
30 PRINT @ 0, "PRESS ANY KEY TO CONTINUE";
40 PRINT @ 173, C;
50 PRINT @ 240, CHR${C);
60 K$ = INKEY$: IF K$ = "" THEN 60
70 NEXT C

80 GOTO 10

Line 50 prints the graphics characters for codes 128 through 143 at location 240
on your screen .

. . . Try something a little different. Type:

PRINT CHR${129 + 16) (ENTER)

The Computer PRINTs the graphics character for 129, except the area that
should be green is yellow.

Type:

PRINT CHR$Cl29 + 32) (ENTER)
PRINT CHR$Cl29 + 48) (ENTER)
PRINT CHR$Cl29 + 64) (ENTER)

These are the numbers you can add to the graphics character codes to create
different colors:

16 - yellow
32 - blue
48 - red
64 - buff
80 - cyan
96 - magenta
112 - orange

To see all the different colored characters, add these lines and RUN the pro
gram:

Know why it's important to type a
semi-colon at the end of these
PRINT @ lines? Try it with and
without the semi-colon.

The semicolon makes the Computer
stop printing as soon as it prints
your characters. Otherwise, it will
continue printing its customary

' green background for the rest of the
line.

L

Notice that these numbers are all ,j
multiples of 16. (16 = 16*1; 32 =)
16*2; 48 = 16*3 . .. 112 = 16*7). _J

177

178

If you prefer, you can use the formula
on your Quick Reference Card. It'll
give you the same results.

15 FOR X = 0 TO 7
17 IF X = 1 THEN CLS(l)
40 PRINT @ 170, C "+" X O 16;
50 PRINT @ 240, CH R$(C + X O 16);
75 NEXT X

Write three lines to create the characters below. Make the first buff; the second,
magenta; and the third, blue:

PROGRAlvIMING EXERCISE

Answers:

PRINT CHR$O33 + 64)
PRINT CHR$(137 + 96)
PRINT CHR$040 + 32)

Since these are characters, just like A, B, C, and Dare, you can treat them the
same way as strings. For example, you can combine and store them just as you
would combine and store strings. Erase memory and type:

10 A$ = CHR$C129+32) + CHR$Cl31+32)
20 B$ = CHR$Cl33+112) + CHR$(143+112) +
CH R$Cl30 + 112)

and you can position them at, say, the center of the screen in the same way you
would position two words - by using PRINT@. Type:

30 CLS(O)
40 PRINT @ 237, A$;
50 PRINT @ 241, B$;
60 GOTO 60

and RUN the program. the Computer prints the images of a blue car and an
orange truck at the center of your screen.

Using graphics characters, write a program to create this image in the center of
your screen. Make the chairs yellow and the table orange:

DO-IT-YOURSELF PROGRAM

Note the difference. You PRINT
graphics characters using PRINT
@ Screen Locations (Appendix C).
You SET "dots" using Graphics '
Screen Locations (Appendix DJ.

179

\

180

I,
/

This is how we did it:

10 LC$ = CHR$(139+16) + CHR$(130+16)
20 TA$= CHR$(142+112) + CHR$Cl40+112) +
CHR$Cl41 + 112)
30 RC$ = CHR$(129+16) + CHR$Cl35+16l
40 CLS(Ol
50 PRINT @ 236, LC$+ TA$+ RC$;
60 GOTO 60

TRAFFIC JAM

Erase memory and type:

10 A = RN D(7l * 16: B = RND(7l * 16
20 A$ CHR$(129+Al + CHR$Cl3l+Al
30 B$ = CHR$(133+B) + CHR$Cl43+Bl + CHR$(130+B)

RUN the program and ask the Computer to print A$ and B$. RUN it and print
A$ and B$ again. Repeat this several times . ..

Each time you run the program, the Computer creates a randomly colored cru·
and truck. Type:

40 IF RND(2) = 2 THEN VE$ = A$ ELSE VE$ = B$

RUN the program and PRINT VE$ several times. Sometimes you'll get a car;
sometimes a truck. The Computer creates a randomly colored car or truck - at
random.

Now you can make a traffic jam. Type:

50 IF LEN(TR$+VE$+SP$) > 32 THEN 100 70 GOTO 10

60 TR$= TR$+ VE$ 100 PRINT TR$

RUN the program several times. Each time, the Computer creates a random
traffic jam 32 characters long. To make it move, type:

100 INPUT "SPEED(l - 200)";5
llO FOR P = 0 TO 480
120 PRINT @ P, TR$;
130 FOR X = 1 TO S: NEXT X
140 CLS(O)
150 NEXT P

and RUN. The traffic will move from the top left corner to the bottom right
corner of your screen.

Line 120 PRINTs the traffic AT location P (0 through 480).

Line 130 puts a pause in the program for the speed you requested.

Line 140 clears the screen so that the traffic can be printed at the next location.

To make the traffic move across your screen perpetually, type:

and RUN.

110 P = 320
150 P = P + 1
160 IF P = 351 THEN 110
170 PRINT @ P, LEFT$<TR$, 352..:.. P);
180 PRINT @ 320, RIGHT$(TR$, P - 320);
190 GOTO 130

MAKING LARGER PICTURES

Up to now in this Chapter, we have not added height to our graphic images. To
print this mouth, we must form three rows of graphic strings:

We show you how to use LEFT$ and
RIGHT$ in Chapter 12.

181

182

To create Rl$ and R3$, erase memory and type:

10 FOR X = 1 TO 9
20 Rl$ = Rl$ + CHR$U31+48)
30 R3$ R3$ + CHR$U40 + 48)
40 NEXT X

RUN the program and PRINT Rl$ and R3$. RI$ now equals a string of nine
number 131 + 48 graphics characters; R3$ equals nine number 140 + 48
characters.

To create R2$, type:

50 Tl$ = CHR$(137+64)
60 T2$ = CH R$(136 + 64)
70 R2$ = CHR$(138 + 48) +Tl$+ Tl$+ T2$ +Tl$+ Tl$+ T2$ +Tl$+

CH R$U33 + 48)

and to print the entire mouth on your screen, type:

80 CLS
90 PRINT @ 5, "LOCATION";
100 INPUT L
llO CLS(O)
120 PRINT @ L, Rl$;
130 PRINT @ L + 32, R2$;
140 PRINT @ L + 64, R3$;
150 GOTO 90

Line 120 PRINTs the first row - RI$ - AT L, the location you requested. Let's
assume this is location 40.

Line 130 PRINTs the second row- R2$ AT L+32, which is location 72. Notice
that since there are 32 locations to a row (0-31), location L + 32 is directly
under location L.

Line 140 PRINTs R3$ AT L + 64, which is directly under L + 32 (R2$'s
location).

With this method, we have made each row a string. We could also make the
whole mouth a string called MO$. To do this, we need to combine all the rows
- RI$, R2$, and R3$ - plus BK$, the background between the rows:

Type:

72 FOR X = 1 TO 32-9
74 BK$ = CHR$(128) + BK$
76 NEXT X
78 MO$ = Rl$ + BK$ + R2$ + BK$ + R3$

Since the entire mouth is now one string, you only need one PRINT @ line.
Delete lines 130 and 140 and change line 120:

120 PRINT @ L, MO$;

and RUN it.

By building graphics strings, you'll be able to make your animated programs
run fast. In the next Chapter, we'll show you how to make a dancing computer
out of these graphic strings.

183

LEARNED IN CHAPTER 18

BASIC CONCEPT

g1·aphics characters

NOTES:

184

NOTES:

185

CHAPTER19

:--- --
+

LET'S DANCE

,I

• ·= • • • •••

LET'S DANCE

This chapter will give you a chance to catch your breath and, at the same time
review what you've learned. We're not going to teach you anything new. We're
just going to have a little fun building a "dancing computer" out of graphics
strings.

Here it is at rest:
I
I

~ > C\ :; B I
b I

I I

I R kt-.
~ ~ - ~ s I

1..-,j ~ I

" - - ,.\ - ' :i I 'ir I '"' ~ • l
I
I

Since this will take up a lot of string space, type:

1 CLEAR 1000

I

187

188

On your screen, the light green will
be buff; the dark green, red; and the
grey area, black.

1
B$ is actually five characters long.
On your screen it will line up with
the word PRINT.

D$ is two characters; G$ is three;
BK$ is nineteen; A$ is three.

to reserve plenty of space.

To form the strings made up of black graphics characters, type:

10 D$ = CHR$Cl28) + CHR$Cl28)

20 G$ D$ + CHR$(128)

30 B$ G$ + D$
40 B 1($ = B$ + B$ + B$ + D$ + D$

RUN the program and ask the Computer to PRINT B$, D$, G$, and BK$:

PRINT B$ (ENTER)

PRINT D$ (ENTER)

PRINT G$ CENTER)

PRINT BK$ (ENTER)

To form the buff colored strings, type:

50 C$
60 F$
70 A$

CH R$(143 + 64)

= C$ + C$
F$ + C$

RUN the program. PRINT A$, C$, and F$:

PRINT A$ (ENTER)

PRINT C$ (ENTER)

PRINT F$ CENTER)

To form E$, the red string, type:

80 FOR X = 1 TO 7
90 E$ = E$ + CHR$C143 + 48)
100 NEXT X

RUN the program and print E$:

PRINT E$ (ENTER)

Form the strings for HD$, BD$, and L1$, so that after RUNning the program,
you can PRINT them like this:

PRINT HD$ (ENTER)

PRINT BO$ @TIID

! I

LJ
PRINT L1$ (ENTER)

1

C$ is one character long; F$ is two;
E$ is seven.

.,

189

190

PROGRAMMING EXERCISE

Here is how we did it:

110 HD$= B$+A$+B$+Bl($ + B$+A$+B$+BK$
120 FOR X = 1 TO 4
130 BD$ = BD$+D$ + C$+E$ + C$+D$+BK$
140 NEXT X

150 L1$ = G$ + E$ + G$ +BK$+ G$ + F$ + G$ + F$ + G$ +BK$+ G$ +

F$ + G$ + F $ + G$

To make the Computer dance, we'll give it two more leg positions:

I
1,

I

I

I
:

I
I

i

I I

Add lines to your program to create the strings 12$ and 13$.

I
I

f':\<;..•--o ~ -~,:\
L:'.)--~ • v~-- CJ

0 tv

-+-+-+---+-+--+-1-+-1-+--1-1---f-1--+-+--+-+--+-+-+---+-+--+--+-)-·

191

192

PROGRAMMING EXERCISE

We did it this way:

160 H$ = G$ + G$
170 1$ = H$ + D$
180 L2$ = G$ + E$ + A$ + BK$ + G$ +

F$ + H$ + F$ + BK$ + G$ + F$

190 L3$ = A$ + E$ + G$ + BK$ + F$ + H$ +
~ + ~ + B~ + ~ + ~

To see the Computer's three positions, add these lines to your program:

500 INPUT "LOCATION (0-243)"; L

510 INPUT "POSITION Cl-3)"; P
520 GOSU B 1000
530 GOTO 500

1000
1010
1020
1030

CLS(O)

PRINT@ L, HD$ + BO$; ~ 2D00

ON P GOSUB 2000, 3000, 4000 er:----- 3000

PRINT @ L + 32 -> 6, LG$; : RETU~ 4000

LG$ L1$: RETURN
LG$ = L2$: RETURN
LG$ = L3$: RETURN

RUN the program. Try different locations and positions.

Line 1010 prints the head and the body at the location you requested.

Line 1020 sends the program to a subroutine which makes LG$ equal to LI$,
L2$, or L3$ (depending on whether you typed 1, 2, or 3 for P). Line 1030 then
prints LG$ directly under the head and body, which is 6 columns below the
location you requested.

By controlling these locations and positions, you can easily make the Computer
move. This is how we did it. Change lines 500 and 510 and add these lines:

500 FOR X = 1 TO 17
510 IF X = 1 OR X = 5 THEN RESTORE

5 INPUT "SPEED Cl-10)"; S
515 READ L, P, T, D
525 SOUND T, S • D
527 NEXT X
5000 DATA 137, 2, 89, 1, 240, 1, 133, 2
5010 DATA 137, 3, 159, 1, 229, 1, 133, 2
5020 DATA 5, 1, 89, 1, 229, 1, 133, 2
5030 DATA 5, 1, 147, 1, 229, 1, 159, 1
5040 DATA 229, 1, 147, 1, 5, 1, 133, 1
5050 DATA 229, 1, 125, 2, 5, 1, 133, 1
5060 DATA 229, 1, 147, 2

RUN the program and watch it dance.

Line 515 reads the Location, Position, Tone, and the tone's Duration from lines
5000 through 5060. The fast time through the program the Computer will
appear at Location 137, Position 2, and, in line 525, will SOUND Tone 89 for a
Duration of S times 1. The second time through the program the computer will
appear at Location 240, Position 1, and will SOUND Tone 133 for a Duration of
S times 2.

As you can see, by adding more positions, you can make this more entertaining.
Try it, or look at some of our sample programs in the back for more ideas on
how to use graphics characters.

Remember READ and DATA from
Chapter 10?

193

SECTION III

@IEITITIJN@ [[)@~N
IT@ WillJ~IJNIE~~

Do you have some lists or files you want the Computer to manage? Here,
you'll get the Computer to sort, compare, store, and print your information
faster and more accurately than you could ever do it by hand.

These are some things the Computer has been known to manage:

1. shopping items 16. inventory
2. checkbook receipts 17. sales records
3. winter storage items 18. billing
4. garage sale items 19. payroll
6. tax records 20. payable records
6. medical bills 21. letters
7. addresses 22. poems
8. phone numbers 23. songs
9. appointments 24. essays

10. stock prices 26. test questions
11. book collections 26. term papers
12. coin collections 27. game rules
13. stamp collections 28. game plays
14. program collections 29. cards in a deck
16. record collections 30. card players' hands

CHAPTER20
1 AC,)

- -_

KEEPING TAB§ ON EVERYTHING!

KEEPING TA.BS ON EVERYTHING!

Have you tried yet to write a program to handle a lot of information? If you
have, you'll be happy to know your Computer has a built in "labeling and
organizing" system to make this programming much easier!

To begin, how would you get the Computer to remember these election results?

District
1
2
3
4
5
6
7
8
9
10
11
12
13
14

ELECTION RESULTS

Votes For Candidate A
143
215
125
331
442
324
213
115
318
314
223
152
314
92

For remembering things, we've always used variables. To get the Computer to

197

198

Look at Chapter 2 if you want a
quick review on variables.

Computer types call an entire list of
labeled variables an ARRAY. Each
labeled variable is an item in the
ARRAY.

remember the votes for the first three districts, type:

A 143 (ENTER)
B = 215 (ENTER)
C = 125 (ENTER)

. . . but there's a much better way. Type this:

ACl) = 143 (ENTER)
A(2) 215 (ENTER)
A(3) 125 (ENTER)

Each of these variables has a label - A(l), A.(2), and A(3). Other t han the label,
they're the same as the ones above. To see that they work the same, type both
of these lines:

PRINT A; B; C (ENTER)
PRINT A(l>; A(2); A(3) (ENTER)

They both work the same, right? So why are labeled variables better? Take a
quick look at these two programs. Both do the same thing:

PROGRAM 1 PROGRAM 2

10 DATA 143, 215, 125, 331, 442
20 DATA 324, 213, ll5, 318, 314
30 DATA 223, 152, 314, 92
40 READ A, B, C, D, E
50 READ F, G, H, I, J
60 READ K, L, M, N
70 INPUT "DISTRICT NO. (1-14) "; Z
75 IF Z>l4 THEN 70
80 IF Z = 1 TH EN PRINT A "VOTES"
90 IF Z = 2 TH EN PRINT B "VOTES"
100 IF Z = 3 TH EN PRINT C "VOTES"
llO IF Z = 4 THEN PRINT D "VOTES"
120 IF Z = 5 THEN PRINT E "VOTES"
130 IF Z = 6 THEN PRINT F "VOTES"
140 IF Z = 7 THEN PRINT G "VOTES"
150 IF Z = 8 THEN PRINT H "VOTES"

160 IF Z = 9 TH EN PRINT I "VOTES"
170 IF Z=lO THEN PRINT J "VOTES"
180 IF Z = ll THEN PRINT K "VOTES"
190 IF Z = 12 TH EN PRINT L "VOTES"
200 IF Z = 13 TH EN PRINT M " VOTES"
210 IF Z = 14 TH EN PRINT N "VOTES"
220 GOTO 70

10
20
30
40

\

50
60
70

(

80
85
90
100

DATA 143, 215, 125, 331, 442
DATA 324, 213, ll5, 318, 314
DATA 223, 152, 314, 92
DIM A(l4)
FOR X = 1 TO 14
READ ACX)
NEXT X
INPUT "DISTRICT NOCl-14)"; Z
IF Z > 14 THEN 80
PRINT A(Z) "VOTES"
GOTO 80

The first program uses "regular" variables. The second uses labeled variables.
Labeled variables simply make it much easier to program a large list of infor
mation.

Type and RUN the second program. Here's how it works:

Line 40 says make room for a list - an array - of information named A with 14
labeled items.

Lines 50 and 70 set up a loop to count from 1 to 14. Line 60 READs this into
memory:

YOUR COMPUTER'S MEMORY

A(l) ~ 143 A(8) ➔ 115
A(2) ~ 215 A(9) ;:il' 318
A(3) ~ 125 AUO) ~ 314
A(4) ➔ 331 A(ll) ➔ 223
A(S) __..;:. 442 AU2) ➔ 152
A(6) ~ 324 A(l3} ~ 314
A(7) ~ 213 AU4) > 92

This stores all the votes in an array named A. Array A contains 14 labeled
items.

Line 80 asks you to INPUT one of the labels, and line 90 PRINTs what you
requested.

Now that you have the votes stored in an array, it's easy to do things with
them. For instance, if you want your program to be able to change any of the
vote totals, you could add these lines:

Actually, this leaves room for 15 la
beled items when you count O as a
label.

199

200

The name of the array is A. The X
or Z in parenthesis refers to the label
of one of the items.

You don't need to study these pro
grams if you're anxious to move on.
We're just showing some benefits of
using these variables with labels.

District
1
2
3
4
5
6
7
8
9

92 INPUT "DO YOU WANT TO ADD TO THIS"; R$
94 IF R$ = "NO" THEN 80
96 INPUT "HOW MANY MORE VOTES"; X
97 A(Z) = A(Z) + X
98 PRINT "TOTAL VOTES FOR DISTRICT" Z "IS NOW" A(Z)

Or if you want to PRINT a table like the one at the beginning of this chapter,
you could add these lines:

72 INPUT "DO YOU WANT TO SEE ALL THE TOTALS"; S$
74 IF S$ = "YES" THEN GOSUB 110
110 PRINT " DISTRICT", "VOTES"
120 FOR X = 1 TO 14
130 PRINT X, A(X)
140 NEXT X
150 RETURN

and change line 100:

100 GOTO 72

MAKING ROOM FOR CANDIDATE B

Let's assume you also want to keep track of the votes for candidate B:

ELECTION RESULTS

Votes for Candidate A
143
215
125
331
442
324
213
115
318

Votes for Candidate B
678
514
430
475
302
520
613
694
420

District Votes for Candidate A

10 314
11 223
12 152
13 314
14 92

We can simply add another array to our program for candidate B. We'll call this
array B. This program records the votes for candidate A (array A) and candidate
B (array B):

10
20
30
40
50
60
70
80
90
100
110
120
130
140
145
150
160
170
180

DATA 143, 215, 125, 331~442 JJ::o._ LA>.JO A
DATA 324, 213, 114, 318, 314 CT"''-~
DATA 223, 152, 314, 92 Q
DATA 678, 514, 430, 475, 302
DATA 520, 613, 694, 420, 518 ~ ~ OJ\5\..0.Ai 12,
DATA 370, 412, 460, 502 ()
DIM A(l4), B(14) ---_-_-_ -------~ ~
FOR X =~TO 14
READ A(X) ~ OJ\f\..O!.t A ~
NEXT X 0
FOR X =~TO 14 ~ B, &a1:o.-
READ B(X) ~
NEXT X
INPUT "DISTRICT NO."; Z
IF Z > 14 THEN 140
INPUT "CANDIDATE A OR B"; R$
IF R$ = "A" THEN PRINT A(Z)
IF R$ = "B" THEN PRINT B(Z)
GOTO 140

KEEPING INVENTORY

Arrays are often used to keep track of business records. Write a program to help
a store keep track of its inventory of 12 items:

Votes for Candidate B

518
370
412
460
502

201

202

Item#

1
2
3
4
5
6
7
8
9
10
11
12

INVENTORY

Quantity

33
12
42
13
15
23
25
30
33
27
14
8

DO-IT-YOURSELF PROGRAM

Here's the program we wrote:

10 DATA 33, 12, 42, 13, 15, 23
20 DATA 25, 30, 33, 27, 14, 8
30 DIM Hl2)
40 FOR X = l TO 12
50 READ ICX)
60 NEXT X
70 INPUT "ITEM NO."; N
75 IF N > 12 THEN 70
80 PRINT "INVENTORY FOR ITEM" N "IS" HN)
90 GOTO 70

MEMORY TEST

Ready for a breather. This program tests both yours and your Computer's
memory. Type NEW to.erase your program and type:

C
5
10
15
20
30
40
50
60
70
80
90
100
110

120

DIM A(7)
PRINT "MEMORIZE THESE NUMBERS"
PRINT "YOU HAVE 10 SECONDS"
FOR X = 1 TO 7
ACX) = RNDClOO)
PRINT A(X)
NEXT X
FOR X l TO 460 " 10 NEXT X
CLS
FOR X 1 TO 7
PRINT "WHAT WAS NUMBER" X
INPUT R
IF A(X) = R THEN PRINT "CORRECT" ELSE PRINT "WRONG -
IT WAS" ACX)
NEXT X

Line 5 saves room for an array named A with 7 items.

Lines 20 through 50 assign seven random numbers to the array.

Actually, you don't need this DIM
line if none of your array items use a
label higher than 10. However, it's
still a good idea to put this line in
your program to reserve just the
right amount of memory.

Remember, you can put instructions
on one line, separating them with a
colon. These two instructions put a
ten second pause in the program.

The Computer uses an array to
memorize these numbers. What are
you using?

203

204

If you like, try it on your own first.
We must warn you though - it's
tricky.

Line 60 puts a ten second pause in the program, and line 70 clears the screen.

Lines 80 through 120 quiz you on each of the seven numbers in array A.

DEAL THE CARDS

Watch carefully while we show you how to use an array to get the Computer to

deal the cards.

To deal 52 random cards, erase your program and type:

40 FOR X = 1 TO 52
50 C = RND(52)
90 PRINT C;
100 NEXT X

RUN the program . . . The Computer deals 52 random "cards". However, if you

look closely, you'll see that some of the cards are the same.

Somehow, we're going to have to somehow keep track of which cards have been

dealt. To do this, we will first build an array named T which contains all 52

cards. Type:

5 DIM T(52)

10 FOR X = 1 TO 52
20 T(X) = X
30 NEXT X

This simply tells the Computer that T(l) = 1, T(2) = 2, T(3) = 3 and so forth

through T(52) which, of course, equals 52.

Now add these lines, which will zero out each card in array T after it is dealt.

Type:

60 IF T(C) = 0 THEN 50
80 T<C) = 0

Now the Computer can't deal the same random card twice. For example, say
the first card the Computer deals is 2. Line 80 changes the value of T(2) from 2
to 0. Now say the Computer deals another 2. Line 60 says that since T(2) now
equals 0, the Computer must go back to line 50 and deal another card.

RUN the program. Notice how the Computer hesitates before printing the last
cards. This is because it's trying many differen t random cards first before
finding one which h asn't been dealt.

If you want to play card games with the Computer, you 'll need to get it to
remember which cards it has dealt. To do this, we can create another array.
We'll name it anay D. Type:

7 DIM D(52)
70 D(X) = T(C)
90 PRINT DCX);

Now array D contains a list of all the cards the Computer dealt in the order
that it dealt them.

How would you change this program so it would only print your "hand" - the
first 5 cards dealt?

DO-IT-YOURSELF PROGRAM

----,,
' '
\\

This program is a little tough. Skip
it and come back to it later if it's
slowing you down too much.

205

206

Line 130 tells the Computer that
whatever it PRINTs next should be
at location 167.

Here's ours:

5 DIM T<52)
7 DIM 0(52)

10 FOR X = 1 TO 52
20 T(X) = X

30 NEXT X
34 CLS
36 PRINT @ 101, " ... DEALING THE CARDS"

40 FOR X = 1 TO 52
50 C = RND(52)
60 IF T<C) = 0 THEN 50
70 D(X) = C

75 SOUND 128, 1
80 TCC) = 0
100 NEXT X
llO CLS
120 PRINT @ 107, "YOUR HAND"

130 PRINT @ 167,

140 FOR X = 1 TO 5
150 PRINT D(X);
160 NEXT X

We will show you a lot more things you can do with arrays in the next chapters.

This is all you need to remember:

~~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~~~ ~ ~

~ RULES ON ARRAYS ~

~
1. There are two kinds ofvariabl~s: /J

A. SIMPLE VARIABLES, such as A, B, C, and D. V

~
B. "LABELED" VARIABLES or ARRAY ITEMS such as A(5), A(3), B(2), . /J

and B(6). ~

~~ 2. An ARRAY is a group of labeled items which each have the same variable /J
.. "'-J name. For example, M(2), M(4), M(5), -and M(6) all belong an array named M. V

~ ~

LEARNED IN CHAPTER 20

BASIC WORD BASIC CONCEPT

DIM arrays

NOTES:

207

CHAPTER21

PUT POWER IN YOUR WRITING

• ••
" ..

408

PUT POWER IN YOUR WRITING

In the last chapter, we only used arrays for lists of numbers. But arrays are also
for words. Not just a simple list of words, but as you'll see in this Chapter, your
Computer can remember, edit, and print an entire essay filled with words.

We'll start with a simple list of words - a shopping list:

1. EGGS 7. TOMATOES
2. BACON 8. BREAD
3. POTATOES 9. MILK
4. SALT 10. CHEESE
5. SUGAR 11. FISH
6. LETTUCE 12. JUICE

To get the Computer to remember each of these items, we'll assign each one to
a labeled string variable. For example, for the first three items, you could type:

S$Cl) "EGGS" (ENTER)
S$(2) = "BACON" (ENTER)
S$(3) = "POTATOES" (ENTER)

See the dollar sign? That's the only
difference between these labeled
variables and the ones in the last
chapter.

209

210

To get the Computer to PRINT these first three items, type:

PRINT S$(1), S$(2), S$(3) (ENTER)

Here's how to put them in a program:

5
10
20
30
40
50
60
70
80
90
100

DIM S$(12)
DATA EGGS, BACON, POTATOES, SALT
DATA SUGAR, LETTUCE, TOMATOES, BREAD
DATA MILK, CHEESE, FISH, JUICE

FOR X =~TO 12 u l "--\- · +
R EA D S$ (X) ~ ~ ~
NEXT X
PRINT "SHOPPING LIST:"
FOR X = l TO 12 O !
PRINT X; S$(X) r~ ~~sf
NEXT X ~

This program puts all 12 items into an array named S$ and PRINTs the list.
Add some lines to this program so that you can change any of the items on this
list.

DO-IT-YOURSELF PROGRAM

Here are the lines we added:

110 INPUT " WHICH ITEM NO. DO YOU WANT TO CHANGE"; N
115 IF N > 12 THEN 110
120 INPUT " WHAT IS THE REPLACEMENT ITEM"; S$(N)
130 GOTO 80

In the back, we show how to add or delete items from this list.

WRITING SONG LYRICS
(... A POEM, A LETTER, ETC)

Here's a program using an array to help you write song lyrics. Erase memory by
typing NEW and type:

DIM A$(4)
PRINT "TYPE 4 LIN ES"

Want to compose music? Look up
"Music Composer" in the Sample
Programs Appendix in the back of
the book.

5
10
20
30
40
50
60
70
80
90
100

FOR X = 1 TO 4 ~ ·.;- . · ~ ~ t,. l
INPUT A$ (X) ~ J..rV\.U)- I"\ 'f
NEXT X
CLS -----~
PRINT "THIS IS YOUR SONG:"
PRINT
FOR X = 1 TO 4 0 · -+- I\ l
PRINT X; " "; A$(X) f ~ ~ r\ -y
NEXT X ____ .., ~

RUN it. Add some lines so that you can revise any of the lines in the song.

211

212

Haven't heard of word processing?
It's a way of getting the Computer to
memorize what you type, make
changes to it, and print it out on de
mand.

DO-IT-YOURSELF PROGRAM

Here are the lines we added:

110 PRINT
120 INPUT " WHICH LINE DO YOU WANT TO REVISE"; L

125 IF L > 4 THEN 120
130 PRINT "TYPE THE REPLACEMENT LINE"
140 INPUT A$(U
150 GOTO 50

WRITING AN ESSAY
(... A NOVEL, TERM PAPER ...)

Here is a better program to help you with your writing. Use it along with what

you learned in Chapter 12 and you've got yourself a word processing program:

l CLEAR 1000
5 DIM A$(50)
10 PRINT "TYPE A PARAGRAPH"
20 PRINT "PRESS <I> WHEN FINISHED"
30 X = l
40 A$ = INKEY$
50 IF A$ = \\II THEN 40
60 PRINT A$;
70 IF A$ "/" THEN 110
80 A$(X) = A$(X) + A$
90 IF A$ = "." TH EN X = X + l
100 GOTO 40
110 CLS
120 PRINT "YOUR PARAGRAPH:"
130 PRINT
140 FOR Y = l TO X
150 PRINT A$(Y);
160 NEXT Y

Type and RUN the program. Before reading how the program works, try
experimenting with it. Type:

PRINT A$(1) (ENTER)
PRINT A$(2) (ENTER)
PRINT A$(3) (ENTER)

Got an idea how it works? Here is a run down:

Line 1 CLEARs plenty of string space for the Computer to use.

Line 5 saves room for an array named A$ which may have up to 50 sentences.

Line 30 makes X equal to 1. X will be used to label all the sentences.

Line 40 checks to see which key you are pressing. If it is nothing - remember,
"" is nothing - line 50 sends the Computer back up to line 40.

Line 60 prints the key you pressed.

Need a refresher on some of this? We
talk about CLEAR in Chapter 12
and IN KEY$ in Chapter 13.

213

214

Line 70 sends the Computer to the lines which PRINT your paragraph when
you press the "/" key.

Line 80 builds a string and labels it with number X. X is equal to 1 until you
press a period. Then line 80 makes X equal to X + 1.

For example, if the first letter you press is "R"

A$(1) EQUALS "R".

If the second letter you press is "O",

A$(1) EQUALS A$(1) - WHICH IS "R" + "O"
OR

"RO"

This might continue until A$(1) equals "ROSES ARE RED". At this point,
you press " ." A$(1) now equals your entire sentence - "ROSES ARE RED."
The next letter you press will belong to A$(2).

Lines 140 through 160 PRINT your paragraph.

A WORD PROCESSOR CHALLENGER

Here's a tough one (. . . but it can be done! . . .) for those intrigued with word
processing. Make this into a full fledged word processing program which:

1. PRINTs whatever sentences you want

2. Lets you revise your sentences

You'll need to review the challenger program we have at the last of Chapter 12.
Our program's at the back of the book.

DO-IT-YOURSELF CHALLENGER PROGRAM

FOR THOSE WITH A PRINTER

If you have a printer, you're probably ready to put it to use. Connect the
printer's cable to the jack marked SERIAL I/0 on the back of your keyboard.
Power it up and insert paper. The manual that comes with the printer shows
you how.

Ready? Type this short progrnm:

10 INPUT A$
20 PRINT # -2, A$

Now type:

LUST (ENTER)

215

216

Having trouble getting into this
mode? Read the end of Chapter 1.

All the letters in RUN should ap
pear in regular (not reversed) colors.

. .. and watch the printer work. This sure will make listing long programs easy!
If your program doesn't list on the printer, make sure the printer is ON, ON
LINE, and connected to your keyboard. Try typing LLIST again.

Now RUN the program .. . INPUT whatever you want and watch the printer
work.

PRINT # - 2, tells the Computer to PRINT, not on the screen, but on device
- 2, which is the printer. Be sure to include the comma after the 2, or you will
get a syntax error.

Press the (SHIFT) and @ (zero) keys simultaneously so that the letters you type
appear in reversed colors on your screen (green with a black background). You
are now in an upper/ lower case mode. The reversed colored letters are actually
lower case (non capitalized) letters.

Type a letter while holding t he (SHIFT) key down. It is a capital letter, so it
appears in regular colors.

RUN your program by pressing the (SHIFT) key while you type RUN:

RUN (ENTER)

INPUT a sentence with both upper and lower case letters. Type:

M y PRINTER PRINTS LOWER CASE LETTERS

A printer with upper and lower case letters would come in handy on a word
processor program. Look at the one we discussed earlier in this chapter. How
would you change lines 140-160 so that your paragraph is printed on the printer
rather than your screen?

....

Got the answer? You would simply change line 150 to:

150 PRINT # -2, A$(Y);

LEARNED IN CHAPTER 21

! BASIC WORDS BASIC CONCEPT

LUST string arrays
PRINT #-2

NOTES:

J

217

CHAPTER22
Rc:CORbs:

• 'Pot='
. COUij~YIWE."::,TI:~

~- CL,A.SS\CAL
°"·, ·· ~OC K '~ lieOL~

·Jt.,zz.
·Ol>E~A

· NUTS
. l:Sbl.TS
· SC.l(c~S

· WlitS~ERS
· Nti-1 l.~

TAPE YOUR BOOK COLLECTION
(or your records, Christmas list, tax receipts, inventory .. J

You know you can store programs on tape. You can also use tape to store any
lists you want organized. Once you have a list on tape, you can use the time
saving power of the Computer to print it, change it, add to it, or analyze it
anytime you want.

Ready to get organized? We'll start with your books. Here's a very small book
list:

1. WORKING
2. CAT'S CRADLE
3. SMALL IS BEAUTIFUL
4. STEPPENWOLF

To put this list on tape, and to read it back into your Computer's memory from
tape, you need a program. You have to type the whole program before you can
see how it works, so be patient with us.

Begin by typing:

10 OPEN "O", #-1, "BOOKS"

--
-

The " 0 "stands for OUTPUT
TING.

219

220

A "file" is a bunch of infonnation -
such as book titles - stored under
one name.

Actually, you can record anywhere
on tape you want.

If you're not using a RADIO
SHACK tape, make sure you posi
tion it past the begi,nning leader.

This tells the Computer to OPEN the lines of communication to device #-1

- the tape recorder. We're going to be sending out - outputting - a file of

information and storing it all under the name BOOKS.

Now type:

15 CLS: PRINT "INPUT YOUR BOOKS-TYPE <XX> WHEN FINISHED"

20 INPUT "TITLE"; T$

30 PRINT # -1, T$

40 GOTO 15

This lets you INPUT T$, the title of a book, over and over again. Each time

you INPUT T$, the Computer PRINTs it - not on the screen, but to device

#-1 which is the tape recorder.

Add these lines:

25 IF T$ = "XX" TH EN 50
50 CLOSE #-1

This permits you to type XX when you've finished typing all your book titles.

The Computer then CLOSEs communication to device #-1, the tape recorder.

Add three more lines:

1 CLS
2 PRINT "POSITION TAPE PRESS PLAY AND RECORD"

4 INPUT "PRESS < ENTER> WHEN READY"; R$

That's the program. Before RUNningit, you need to:

• Connect your tape recorder. Chapter 8 shows you how.

• Position a tape in the recorder and rewind it to the beginning.

• Press the RECORD and PLAY buttons so that they are both down.

Ready? LIST your program to see if it still looks like ours:

CLS
PRINT "POSITION TAPE - PRESS PLAY AND RECORD"

1
2
4
10

INPUT "PRESS <ENTER> WHEN READY"; R$.
OPEN "O", #-1, "BOOKS" ~----~ ~ 1:&-~

(
!~ CLS: PRINT "INPUT YOUR BOOKS-TYPE < XX> WHEN FINISHED"

INPUT "TITLE"; T$
25
30
40
50

IF T$ = "XX" TH EN 50
PRINT # -1, T$
GOTO 15
CLOSE #-1 ◄-------

Got it typed OK? . . . RUN it.

Notice that as soon as you press (ENTER) , the cassette motor turns on. The
Computer is OPENing a "file" on tape and naming it BOOKS.

When it asks you for titles, INPUT the four titles we have above and then type
XX:

TITLE? WORKING
TITLE? CAT'S CRADLE
TITLE? SMALL IS BEAUTIFUL
TITLE? STEPPENWOLF
TITLE? XX

Each time you INPUT a title, the Computer PRINTh it in a special place in
memory reserved for the tape recorder. When you've finished, the tape recorder
motor will run again. The Computer is PRINTing all the titles on the tape (line
30) and then CLOSEing communication to the tape recorder (line 50).

Now all the titles are output to tape. To load or input them back from tape,
type:

60 CLS: PRINT "REWIND THE RECORDER AND PRESS PLAY"
70 INPUT "PRESS < ENTER> WHEN READY"; R$
80 OPEN "I", #-1, "BOOKS"

Line 80 OPENs communication to the tape recorder for a file of information
named BOOKS. This time, rather than being OPEN for output, communication

The Computer will clear the screen
after each title.

The "I" stands for INPUT

221

222

Are you wondering what the -1
means? EOF returns a -1 if you
have reached the end of the file.

is OPEN for input from the tape recorder.

Add these lines:

90 INPUT # -1, T$
100 PRINT T$

Line 90 inputs the first title - T$. Again, T$ is not input from your typing it on

your keyboard. It is input from the tape recorder. Line 100 PRINTs T$ on your

screen.

Now add these lines:

85 IF EOF (-1) THEN 120

llO GOTO 85
120 CLOSE # -1

Line 85 says if you are at the End Of this File of BOOKS then go to 120, which

CLOSEs communication with the tape recorder.

BUG: Be sure to put the EOF(-1) line before the INPUT #-1 line.

Otherwise, you'll get an IE error - Input past the end of the file.

List this last part of the program by typing:

LIST 60 -

It should look like this:

CL$: PRINT "REWIND THE RECORDER AND PRESS PLAY" 60
70
80

(

85
90
100
llO
120

INPUT "PRESS < ENTER> WHEN READY"; R$
~_/~ .k-~~

~~r~
◄e---~~~~

OPEN "I", #-1, "BOOKS"
IF EOF (-1> THEN 120
INPUT # -1, T$
PRINT T$
GOTO 85
CLOSE #-1

Now RUN it. Type:

RUN 60

Follow the Computer's instructions . ..

When you press (ENTER) , notice that the tape recorder motor is running. The
Computer is inputting your items from tape. Once they are input, the Computer
PRINTs the four items on your screen.
Want a quick review?

1 CLS
2 PRINT "POSITION TAPE - PRESS PLAY AND RECORD"
4 INPUT "PRESS < ENTER> WHEN READY"; R$

10 OPEN " O", # - 1, " BOOKS"

h 15 CLS: PRINT "INPUT YOUR BOOKS - TYPE < XX > WHEN FINISHED"
20 INPUT "TITLE"; T$
25 IF T$ = "XX" THEN 50
30 PRINT # -1, T$

*
40 GOTO 15
50 CLOSE #-1

60 CLS: PRINT "REWIND THE RECORDER AND PRESS PLAY"
70 INPUT "PRESS < ENTER> WHEN READY"; R$

~
80 OPEN "I", # -1, "BOOKS"
85 IF EOF (- 1} THEN 120
90 INPUT # -1, T$
100 PRINT T$

~ llO GOTO 85
120 CLOSE #-1

Be sure you only press the PLAY but
ton. Not RECORD. Also, be sure you
rewind the tape.

If your Computer becomes "hung
up" communicating with the tape re
corder, you can regain control by
pressing the RESET button. It's on
the back right-hand side of your key
board. Then wok for missing or mis
typed lines in your program.

223

224

In line 30 we PRINTed T$ (the title of the books) on tape. To do this, we had to
OPEN communication to the tape recorder for output. After finishing the
"output" we had to CLOSE communication with the tape recorder.

In line 90 we INPUT T$ from the tape recorder. To do this, we had to OPEN
communication with the tape recorder for input. After finishing the input, we
CLOSEd communication.

Understand it? Think over the answers to these three questions . . .

QUESTIONS

1. What would happen if you leave out line 50 and RUN the program?

ANSWER: Without line 50, communication with the tape recorder remains OPEN for OUTPUT. Since it's already

OPEN, the Computer will not let you OPEN it again for INPUT. Therefore, line 80 will give you an AO error-.

Attempt to Open a file that's already open.

2. Would it be O.K. to leave out both lines 50 and 80 and RUN the program?

............

ANSWER: This won't work either. Without lines 50 and 80, communication remains OPEN for OUTPUT. When

line 90 asks the Computer to INPUT from the tape recorder, you'll get a NO error - File not Open. The file is not

OPEN for INPUT.

3. Would it work if you changed lines 90 and 100 to:

90 INPUT #-1, X$
100 PRINTX$

ANSWER: Yes it does work. The Computer doesn't care that you called the titles T$ when you put them on tape.
When you're IN PUTting them from tape, the Computer simply looks for a string variable on tape and labels it X$.

AN ELECTRONIC CARD CATALOG

Getting ambitious? How about changing the program so you can put all of this
on tape:

TITLE AUTHOR

WORKING Studs Terkel
CAT'S CRADLE Kurt Vonnegut
SMALL IS BEAUTIFUL E. F. Schumacher
STEPPENWOLF Hermann Hesse

First, we'll work with the first half of the program - the part that outputs to
tape. Add these lines to the program:

26 INPUT "AUTHOR"; A$
28 INPUT "SUBJECT"; S$
29 IF A$ = "XX" OR S$ = "XX" THEN 50

To PRINT all of this on tape, simply change line 30:

30 PRINT # -1, T$, A$, S$

Now for the second half of the program. How would you change line 90 and 100
so that the Computer inputs from tape and PRINTs the title, author and
subject?

SUBJECT

Sociology
Fiction
Economics
Fiction

225

226

PROGRAMMING EXERCISE

Here's the way we did it:

90 INPUT # -1, T$, A$, S$
100 PRINT " TITLE :" T$
102 PRINT " AUTHOR :" A$
104 PRINT " SUBJECT :" S$

Like we said earlier, you don't have to use the same variable names you used
when outputting. This would also work:

90 INPUT #-1, X$, Y$, Z$
100 PRINT " TITLE :" X$
102 PRINT "AUTHOR :" Y$
104 PRINT "SUBJECT :" Z$

PICK A SUBJECT

Now you can take advantage of all this organization. For example you might
want to have the Computer print a list of books on any given subject.

Add these lines to your program:

130 CLS
140 INPUT "WHICH SUBJECT"; C$
150 PRINT "REWIND THE TAPE - PRESS PLAY"
160 INPUT " PRESS < ENTER> WHEN READY"; E$
170 CLS: PRINT C$ " BOOKS" : PR!t..JT
180 OPEN "I", #-1, " BOOKS"
190 IF EOF (-1) THEN 230
200 INPUT #-1, T$, A$, S$
210 IF S$ = C$ THEN PRINT T$, A$
220 GOTO 190
230 CLOSE # -1

and RUN it by typing RUN 130. If you choose Fiction, the RUN should go
like this:

WHICH SUBJECT? FICTION
REWIND THE TAPE - PRESS PLAY
PRESS < ENTER> WHEN READY

FICTION BOOKS:

CAT'S CRADLE KURT VONNEGUT
STEPPENWOLF HERMANN HESSE

BALANCING YOUR CHECKBOOK

Now its your turn to try it. Say you have these checks:

NO. DATE PAYABLE TO

101 5/13 Safeway
102 5/13 Amoco
103 5/14 Joe's Cafe
104 5/17 American Airlines
105 5/19 Holiday Inn

ACCOUNT

food
car
food
vacation
vacation

AMOUNT

$52.60
32.70
10.32
97.50
72.30

227

228

Write a program which outputs all the checks to tape. Then have it input them
from tape so that you can type one account - such as food - and the Computer
will tell you the total amount you've spent on food.

Remember how to output information to tape:

~~~~~ ~~~ ~~~ ,"<~~~~~~~~ 

~ RULES ON OUTPUTTING DATA TO TAPE ~ 
~ To output data to tape you must: '/1 
l'--: 1. OPEN communication to tape for OUTPUT (/ 

.~ 2. PRINT data to the tape ~ 
~- 3. Continue PRINTmg data to tape until finished, and then V 
~ 4. CLOSE communication to tape ~ 

~ ~ ~ ~ ~-~~ ~~ ~~ ~~-~~~~ ~ ~ ~ ~ ~ 

and how to INPUT information from tape: 

~~~~~~~~~~~~~~~~~~~~~ 

~ RULESON INPUTTINGDATA FROM TAPE ~
~ To INPUT data from tape, you must: '_.'1J

1. OPEN communication to tape for INPUT V..,
2. Use EOF (-1) to see if you've reached the end of the file on "~

tape. " •
3. INPUT data from tape •~

4. Continue INPUTting data until you've finished or have ~ .
reached the end of the file, and then •~

5. CLOSE communieation to tape I

~' '' ''-= ' ' '''' ',

DO-IT-YOURSELF PROGRAM

Here is what we wrote:

5
7
10
15
20
25
30
40
50

60
70
80

CLS: PRINT "POSITION TAPE - PRESS PLAY AND RECORD"
INPUT "PRESS < ENTER> WHEN READY"; R$
OPEN "O", #-1, "CHECKS"
CLS: PRINT "INPUT CHECKS - PRESS < XX > WHEN FINISHED"
INPUT "NUMBER :"; N$
IF N$ = "XX" TH EN 90
INPUT "DATE :"; D$
INPUT "PAYABLE TO :"; P$
INPUT "ACCOUNT :"; S$
INPUT "AMOUNT :$"; A
PRINT # -1, N$, D$, P$, S$, A
GOTO 15

90 CLOSE #-1
92 CLS: T = 0
95 INPUT "WHICH ACCOUNT"; B$
100 PRINT " REWIND TAPE - PRESS PLAY"
110 INPUT "PRESS < ENTER> WHEN READY"; R$
120 OPEN "I", #-1, "CHECKS"
130 IF EOF(-1) THEN 170
140 IN PUT # -1, N$, D$, P$, S$, A
150 IF B$ = S$ THEN T = T + A
160 GOTO 130
170 CLOSE #-1
180 PRINT "TOTAL SPENT ON " B$, "1S $" T

229

230

Now that you've got an understanding of how to put your information on tape,
you might want to look at some of the sample programs in the back of the book.
They'll give you some more ideas on how to use these tape "files".

LEARNED IN CHAPTER 22

BASIC WORDS

OPEN
CLOSE
PRINT #-1
INPUT #-1
EOF

BASIC CONCEPT

data files

I
i

NOTES:

231

CHAPTER23 /

I~]
, a

g ~
()

IQl
~

0 • 0

"6:;JJ

l ~ I Jg 0 lg -
~ ~ ~ ~

.. I C. 0 •

FILING = AS EASY AS ABC

0- 00000
" fJ o"

O 00
0 •

,. C, 0
ooooe o•q.,

FILING - AS EASY AS ABC

Any file clerk can tell you it's much easier to find things if you have them in
alphabetical order. To save you the tedium of alphabetizing, why not have the
Computer do it? Type this program:

10 INPUT "TYPE TWO WORDS"; A$, B$
20 IF A$ < B$ THEN PRINT A$ " COMES BEFORE " BS
30 IF A$ > B$ THEN PRINT A$ " COMES AFTER " B$
40 IF A$ = B$ THEN PRINT "BOTH WORDS ARE THE SAME"
50 GOTO 10

RUN the program. Keep INPUTting words until you're convinced the Com
puter knows how to alphabetize.

With strings, the greater than, less than, and equal signs that we discussed in
Chapter 11 take on a new meaning. They tell which of two strings comes before
the other in alphabetical sequence:

< precedes alphabetically
< = precedes or is the same alphabetically
> follows alphabetically
> = follows or is the same alphabetically
= is the same

Since the Computer can alphabetize, you can write a program to alphabetize a
long list of words. Here is ours:

233

234

You can easily make the Computer
alphabetize more words by chang
ing the 5 to say, 100, in lines 10, 20,
70, and 90.

10 DIM A$(5)
20 FOR I = 1 TO 5
30 INPUT "TYPE A WORD"; A$(!)
40 NEXT I
50 X = 0
60 X=X+l
70 IF X > 5 THEN GOTO 70
80 IF A$(X) = "ZZ II TH EN 60
90 FOR Y = 1 TO 5
100 IF A$(Y) < A$(X) THEN X = Y
llO NEXT Y
120 PRINT A$(X)
130 A$(Xl = "ZZ
140 GOTO 50

Type and RUN this program.

Before explaining how it works, we'll show what's happening when the program
is RUN. Type:

30 READ A$(!)
200 DATA MICHAEL, TRAVIS, DYLAN, ALEXIA, SUSAN

so that we'll both alphabatize the same words. Delete line 120 and type:

120
5 CLS
35 PRINT A$(!)
85 V = V + 1
105 PRINT @ 15+32*(V-l), A$(Xl
135 GOSUB 500
500 FOR I = 1 TO 5
510 PRINT@ 0+32*(1-1), A$(!);
520 NEXT I
530 RETURN

These lines are just for appearance - so you can see what is happening in the
program. You don't need to study them. Just type them like they are. They
don't have anything to do with alphabetizing.

RUN the program.

Too fast? Type this line. It'll slow it down so you can see what's happening:

107 FORT = 1 TO 600: NEXT T

RUN it again and watch carefully. Look at the second column. See how the
first name changes from Michael to Dylan to Alexia. Next notice what happens
to Alexia in the fast column. Alexia becomes ZZ.

Here's a picture of how the Computer determines the first and second positions:

FIRST POSITION

MICHAEL MICHAEL MICHAEL MICHAEL MICHAEL
TRAVIS TRAVIS TRAVIS
DYLAN DYLAN DYLA N
ALEXIA ALEXIA ALEXIA
SUSAN SUSAN SUSAN

MICHAEL DYLAN MICHAEL ALEXIA MICHAEL
TRAVIS TRAVIS TRAVIS
DYLAN DYLAN DYLAN
ALEXIA ALEXIA zz
SUSAN SUSAN SUSAN

SECOND POSITIO N

MICHAEL ALEXIA MICHAEL ALEXIA MICHAEL
TRAVIS MICHAEL TRAVIS MICHAEL TRAVIS
DYLAN DYLAN DYLAN
zz zz zz
SUSAN SUSAN SUSAN

MICHAEL ALEXIA MICHAEL ALEXIA MICHAEL
TRAVIS DYLAN TRAVIS DYLAN TRAVIS
DYLAN DYLAN zz
zz zz zz
SUSAN SUSAN SUSAN

MICHAEL

'&n A.
I

ALEXIA

ALEXIA
MICHAEL

ALEXIA
DYLAN

235

0
0

236

When the program begins, MICHAEL is compared with MICHAEL to see

which precedes the other alphabetically. MICHAEL remains at the top. MI

CHAEL is compared with TRAVIS. MICHAEL still remains at the top.

Next MICHAEL is compared with DYLAN. Since DYLAN precedes MI

CHAEL, DYLAN now assumes MICHAEL's place at the top.

Now DYLAN is compared with ALEXIA. ALEXIA comes to the top. Finally

ALEXIA is compared with SUSAN. ALEXIA remains at the top.

Now that all t he names have been compared for the top position, the Computer

repeats the cycle to determine the second, third, fourth, and fifth positions.

ALEXIA becomes ZZ so that it will not assume other positions.

Now that you see what the program does, lets run through it using the same

names we used above.

Lines 50 and 60 set the value of X. The first time through the program, X equals

1.

Then lines 90 th.rough 110 compare A$(1) - MICHAEL - with every other

name in array A$ until it reaches a word that precedes A$(1). In our example,

the third word - DYLAN - precedes it. Line 100 then makes A$(X) equal to

A$(3) - DYLAN's place in the array. When DYLAN is compared with the

fourth word - ALEXIA - A$(X) becomes A$(4).

Line 120 PRINTu A$(4) - ALEXIA - and line 130 makes A$(4) equal to ZZ.

At this point, lines 50 and 60 make X equal 1 again. A$(1) - MICHAEL - is

again compared with other names in the array.

When MICHAEL's place in the array becomes ZZ, line 80 sends the Computer

back up to line 60 which makes X equal to 2. A$(2)-TRAVIS is then compared

with all the names in the array.

When all places in the array contain ZZ, line 70 ends the program.

Using this sort routine, change the program from the last chapter so that the

Computer will alphabetize your books by title, author, or subject.

DO-IT-YOURSELF PROGRAM

Our answer is in the back of the book.

The method of sorting we've demonstrated is one of the easiest to program.
There are other more complicated methods which will sort much faster. If you
have a great number of items to sort, you may want to investigate one of the
other sorting methods.

LEARNED IN CHAPTER 23

BASIC SYMBOLS

>
<

237

r

CHAPTER24

t' ,{
I

~

,I , ,

00
1/ ...,

Getting Analytical
(for those with inore than 4K RAM)

GETTING ANALYTICAL
(for those with more than 4K RAM)

If you have more than 4K RAM, you have an easy way to analyze everything.
By giving your information several labels, you'll be able to look at it all through
several perspectives.

For an example, let's use the voting program from chapter 15. He1·e's the
information:

ELECTION POLL

We're only using 3 districts to keep it
simple.

Were calling them candidates 1 and
2 this time rather than A and B.

District Votes For Candidate 1 Votes For Candidate 2

1
2
3

143
215
125

678
514
430

239

240

In Chapter 15, we created array A
for candidate 1 and array B for can
didate 2, Now, we're putting them in
one array - V.

District 1

District 2

District 3

By giving each item two labels we can put them all in one array. Here's what it
will look like:

ARRAYV

Candidate 1

V(l,l)

143

V(2,l)

215

V(3,l)

125

Candidate 2

V(l,2)

678

V(2,2)

514

V(3,2)

430

The first label tells which district the votes are from. The second tells which
candidate they are for.

For example, we used V(l,2) to label the 678 votes. By doing that, we said that
the 678 votes are in an array named V. They are from district 1 and are for
candidate 2.

Let's put it all in a program. Type:

5
10
20

;~
60

DIM V(3,2)
DATA 143, 678, 215, 514, 125, 430
FOR D = 1 TO 3
FOR C = 1 TO 2
READ V(D,C)
NEXT C
NEXT D

70 INPUT "DISTRICT NO. {1-3)"; D
80 IF D < 1 OR D > 3 TH EN 70
90 INPUT "CANDIDATE NO. Cl-2)"; C
100 IF C < 0 OR C > 2 THEN 90
110 PRINT V(D,C)
120 GOTO 70

Line 5 reserves space in memory for an array named V. Each item may have
two labels. The first label can be no higher than 3; the second, no higher than 2.

RUN the program. Make sure all the votes are labeled like they are above. 'fry
different combinations of district and candidate numbers.

Lines 20 through 60 READ the votes for candidates 1 and 2 from districts 1, 2,
and 3, label them, and put them in your Computer's memory:

0
0

YOUR COMPUTER'S MEMORY

---,),,;a 143 VC1,2) > 678
---'>;;a 215 V(2,2) > 514,
-->~ 125 V(3,2) -------;. 430

Now that you have two perspectives on the vote groups, you can take advantage
of it. Delete lines 70-120 and type:

~--+---1

~
~---+-2

FIRST DIMENSION

Remeber how to delete lines?
70~

Deletes line 70

241

242

If you are truly an analytical type,
you're going to love the rest of this
Chapter. If you're definitely NOT
that type, don't feel bad. Skip it!

70 INPUT "TYPE < 1 > FOR DISTRICT OR < 2 > FOR CANDIDATE" ; R
80 IF R < 1 OR R > 2 THEN 70

------:::::o-100 ON R GOSUB 1000, 2000
llO GOTO 70

1000 INPUT "DISTRICT NOCl-3)"; D
1010 IF D < 1 OR D > 3 THEN 1000
1015 CLS
1020 PRINT @ 132, "VOTES FROM DISTRICT" D
1030 PRINT

C
1040 FOR C = 1 TO 2
1050 PRINT "CANDIDATE" C,
1060 PRINT V(D,C)
1070 NEXT C
1080 RETURN

___ __,,._ 2000 INPUT "CANDIDATE NOCl-2)"; C

2010 IF C < 1 OR C > 2 THEN 2000
2015 CLS
2020 PRINT @ 132, " VOTES FOR CANDIDATE" C
2030 PRINT

C
2040 FOR D = 1 TO 3
2050 PRINT "DISTRICT" D,
2060 PRINT VCD,Cl
2070 NEXT D
2080 RETURN

RUN the program and analyze to your heart's content.

What you've just programmed is a two-dimensional a1Tay. It's called two-di
mensional because all the items in it have two labels - district and candidate
number. In the previous chapters, we were programming one-dimensional ar
rays - their items only had one label.

There's no reason to stop with two dimensions. Your Computer will let you
program as many dimensions as you want in your array.

THE THIRD DIMENSION

We're now ready to add interest groups - a third dimension to the array. The
election poll statistics above were all from interest group 1. We also polled some
statistics from groups 2 and 3. Here's the information:

District 1
District 2
District 3

District 1
District 2
District 3

District 1
District 2
District 3

VOTESFROMINTERESTGROUPJ

Candidate 1

143
215
125

VOTESFROMINTERESTGROUP2

Candidate 1

525
318
254

VOTESFROMINTERESTGROUP3

Candidate 1

400
124
75

Candidate 2

678
514
430

Candidate 2

54
157
200

Candidate 2

119
300
419

243

District 1

District 2

District 3

District 1

244

Here's how we'll label all these votes in array V:

ARRAYV

INTEREST GROUP 1

Candidate 1

V(l,1,1)

143

V(l,2,1)

215

V(l,3,1)

125

INTEREST GROUP 2

Candidate 1

V(2,1,1)

525

Candidate 2

V(l,1,2)

678

V(l,2,2)

514

V(l,3,2)

430

Candidate 2

V(2,1,2)

54

District 2

District 3

District 1

District 2

District 3

V(2,2,l)

318

V(2,3,1)

254

INTEREST GROUP 3

Candidate 1

V(3,1,1)

400

V(3,2,1)

124

V(3,3,1)

75

To get all this into your Computer's memory, erase your program and type:

V(2,2,2)

157

V(2,3,2)

200

Candidate 2

V(3,l,2)

119

V(3,2,2)

300

V(3,3,2)

419

245

1

.. .
• • •• I

I";

I

. . Y.'
: .I .

I

... · . ◄. . . , . ··1 . :·

SECOND DIMENSION

246

5 DIM V(3,3,2)
10 DATA 143, 678, 215, 514, 125, 430
20 DATA 525, 54, 318, 157, 254, 200
30 DATA 400, 119, 124, 300, 75, 419

40

'C!~
~90

100

FOR G = 1 TO 3
FOR D = 1 TO 3
FOR C = 1 TO 2
READ V(G,D,Cl
NEXT C
NEXT D
NEXT G

110
120
130
140
150
160
170
180

INPUT " INTEREST GROUP NO {1-3)"; G
IF G < 1 OR G > 3 THEN 110
INPUT "DISTRICT NO. <1 -3)"; D
IF D < 1 OR D > 3 THEN 130
INPUT " CANDIDATE NO. <1-2)"; C
IF C < 1 OR C > 2 THEN 150
PRINT V(G,D,C)
GOTO 110

RUN the program and test all the labels. Line 40 - 100 put this into your
Computer's memory:

YOUR COMPUTER'S MEMORY

V<l,l,l}---+-143
V<l,2,1>~215
V<l,3,1)~125
V(2,l,1)~525
V(2,2,1)~318
V(2,3,1)~254
V(3,1,1)~400
V(3,2,l)~ 124
V(3,3,l)~ 75

V(l,l ,2)~678
V<l,2,2)~514
V<l,3,2)~430
V(2,l,2)~54
V(2,2,2)--►157

V(2,3 ,2)----->200
V(3,l,2)~119
V(3,2,2)~300
V(3,3,2)~419

To take advantage of all three dimensions, delete lines 110-180 and type:

llO PRINT: PRINT " TYPE < l > FOR GROUP"
120 PRINT " < 2 > FOR DISTRICT OR < 3 > FOR CANDIDATE"
130 P=224 : INPUT R

r-::::==;;; 140 ON R GOSU B 1000,2000,3000
150 GOTO llO

1000 INPUT "GROUP(l-3)"; G
1010 IF G< l OR G> 3 THEN 1000
1020 CLS
1030 PRINT @ 102, "VOTES FROM GROUP" G
1040 PRINT @ 168, " CAND. l" 1
1050 PRINT @ 176, " CAN D. 2"
1060 FORD=lT03
1070 PRINT @ P, "DIST." D
1080 FOR C = 1 TO 2
llOO PRINT @ P + 8* C, V(G,D,C};
lllO NEXT C 2
1120 P = P+ 32
1130 NEXT D
ll40 RETURN

2000 INPUT "DISTRICT(l-3)"; D
2010 IF D< l OR D> 3 THEN 2000 3
2020 CLS
2030 PRINT @ 102, "VOTES FROM DIST. II D
2040 PRINT @ 168, " CAND. l "
2050 PRINT @ 176, " CAND. 2"
2060 FOR G = 1 TO 3
2070 PRINT @ P, "GROUP" G
2080 FOR C=l TO 2
2100 PRINT @ P + 8"C,V(G,D,C);
2110 NEXT C
2120 P = P+ 32
2130 NEXT G
2140 RETURN

3000 INPUT "CANDIDATE(l-2)"; C
3010 IF C< l OR C> 2 THEN 3000
3020 CLS
3030 PRINT @ 102, "VOTES FOR CAND." C

- ...

INTERES"f
GROUPS

~ BLUE COLL..AR -

· - WHITE COLLAR .

- MINORITIES -

THIRD DIMENSION

3040 PRINT @ 168, "DIST. l"
3050 PRINT @ 176, "DIST. 2"
3060 PRINT @ 184, "DIST. 3"
3070 FOR G=l TO 3
3080 PRINT @ P, "GROUP" G
3090 FOR D=l TO 3
3100 PRINT @ P + 8* D, V(G,D,C);
3110 NEXT D
3120 P = P + 32
3130 NEXT G
3140 RETURN

247

248

TWO DIMENSIONAL CARDS

Write a program to deal the cards using a two dimensional array. One dimension
can be one of the 4 suits and the other dimension can be the card's value (1-13).

DO-IT-YOURSELF PROGRAM

Our answer is in the back of this book.

LEARNEDINCHAPTER24

BASIC CONCEPT

·- 1
[

Multi-dimensional arrays

NOTES:

249

l I
. i

i

' ;
1 I

I

. I
'

' l
I
l

'. i
It ~

SECTION IV

! I i

:,
1 w@~0rr rnwrrrn @LFLF

i ru@mrn rroofil~ w@ruJ
~fil~ ~I]J[E'3]7

Pardon our pun, but this section is quite a bit (oops-pardon again) more technical than the rest of this book. It uses some terms and concepts we haven't explored yet, such as machine-language and direct memory addressing.

If you're a technical type, jump right in! But if you're not, be forewarned. You will have to be extra careful in typing in the sample programs. Then double- and triple-check them against our program listings before running them. If your program contains typing errors, it won't work, and you'll probably have to reset the Computer to regain control.

. .. Still with us? 0.K. - now that we've warned you, we can tell you the good part. The results of your labors will be very impressive. Part I will demonstrate how to create high resolution (extremely detailed) graphics on your screen. Part II gives you the information you need to do things you can't do with BASIC- such as greatly intensifying the speed of graphics programs - by calling machine-language subroutines.

I
I

I

252

PARTA

HIGH RESOLUTION GRAPHICS

CONTENTS OF THIS PART

INTRODUCTION
SAMPLE PROGRAMS (3)
A FEW DEFINITIONS
PREPARING THE COLOR COMPUTER FOR GRAPHICS
PUTTING GRAPHICS TO WORK
TABLES:

1. DESCRIPTION OF THE GRAPHICS MODES AVAILABLE
2. DISPLAY MODE SELECTION
3. VIDEO RAM PAGE SECTION
4. DETAILED DESCRIPTION OF THE GRAPHICS MODES

INTRODUCTION

The Color Computer has many graphics capabilities that cannot be
accessed using the ordinary statements of COLOR BASIC. How
ever, with the special memory functions PEEK and POKE, you can
use and experiment with many of these powerful features. It does
take some extra work on your part, but the results can be impres
sive. In this part we're going to demonstrate how you activate and
use these graphics features.

Note: In Extended COLOR BASIC, many of the graphics capabilities are
quite simple to use. That's one of the main attractions of Extended COLOR
BASIC. However, euen if you haue Extended BASIC, you may find this
part interesting. Some of the graphics modes described may only be used
via the techniques presented in this part.

. .

First, we'll list two COLOR BASIC programs which demonstrate
how to select a graphics mode and how to use it. The first runs on
4K or 16K RAM systems; the second, on 16K only. We've also
included a general-purpose program which you can modify to select
any of the graphics modes (it'll be up to you to put the graphics to

use).

After you've tried the programs, you'll be ready for an explanation
of how they work. We'll start with a few definitions you'll need.
Then we'll go over the steps required to put the Computer into any
of the graphics modes. These steps aren't meant to be followed one
at a time; they should be put into your BASIC program and then
executed in succession.

Finally, we'll suggest a few ways you can put graphics to work.

SAMPLE PROGRAMS

PROGRAM # 1: 64 x 64 GRAPHICS MODE FOR 4K OR 16K
RAM SYSTEMS

This program makes Color Computer act like a drawing board with
a 64 x 64 grid. You may choose between two sets of four colors:

Color# Set 0 Set 1

0 Green Buff
1 Yellow Cyan
2 Blue Magenta
3 Red Orange

Type in the program. Be sure to omit all remarks (lines or a
portion of a line beginning with an apostrophe). Also delete
all spaces before and after punctuation marks and arithme
tic operators(.,;:+-!*>< =).You must have at least 335 bytes
(characters) remaining in memory to run the program. You can
check this by having the computer PRINT MEM after the program
is typed in. Check the program over carefully. Then run it.

After a few seconds, a block will appear in the middle of the screen.
You may move the block, drawing a line in any of four colors; you
may switch color sets; and you may stop the line. Here is a list of
the keys that control the drawing board:

Direction of motion:

(SPACE BAR)

CD
®
®
@

CD

North (up)
South
East
West
Northwest
Northeast
Southwest
Southeast
Stops motion

Four-Color Set:

Color 1
Color 2
Color 3
Color 0 (background color)
Change to other four-color set

To return to BASIC's normal text screen, press the RESET button.

PROGRAM # 1 LISTING

10 'RESERVE lK
20 CLEAR 10,3071
30 'SET VIDRAM = 3072
40 FOR I = 0 TO 6: READ DT: POKE 65478 + 1°2 + DT, 0:
NEXT
50 DATA ~,1,1,0,0,0,0
60 'SELECT VDG MODE GlC
70 FOR I = 0 TO 2: READ DT: POKE 65472 + 1°2 + DT, 0:
NEXT
80 DATA 1,0,0
90 'SET UP VIDEO CONTROL REG.
100 POKE 65314, 135
110 ' CLEAR VIDRAM
120 FOR! = 3072 TO 4095: POKE 1,0: NEXT
130 ' BEGIN MAIN PROGRAM
140 ' MP() IS A LIST OF POWERS OF 4
150 ' TO BE USED BY THE MAPPING FUNCTION
160 DIM MP(3) : FORI = 9 TO 3: READ MP([): NEXT
17-0 DATA 1,4,16,64
180 CC = 3 : CS = 0 'CC COLOR, CS = COLOR SET
SELECT
190 X = 31: Y = 31: XI 0: YI = 0 ' STARTING POINT AND
INCREMENT
200 'SET UP KEYBOARD TABLE
210 U$ = ",t. ": D$ = CHR$Cl0) : W$ · = CHRSC8l : ES=
CH R$(9l
220 NW$ = "Q": NE$ = " W": SW$ = " A": SE$ = " S"
230 C0$ = " 0": Cl$ = " l ": C2$ = " 2": C3$ = "3"
240 'CHECK FOR KEYBOARD CHARACTER
250 A$ = IN KEY$
260 IF A$ US TH EN YI = - 1: XI = 0: GOTO 400
270 IF AS D$ THEN YI = 1: XI = 0: GOTO 400
280 IF A$ W$ TH EN XI = - 1: YI = 0: GOTO 400
290 IF A$ E$ THEN XI = 1: YI = 0: GOTO 400
300 IF A$ NW$ THEN XI = - 1: YI = ~ 1: GOTO 400
310 IF A$ NE$ THEN XI = 1: YI = - 1: GOTO 40()
320 IF A$ SW$ THEN XI = -1: YI = 1: GOTO 400
330 IF A$ SE$ THEN XI = 1: YI = 1: GOTO 400
340 ' CHANGE COLORS IF 0- 3 WAS PRESSED
350 IF C0$ < = A$ AND A$ < = C3$ THEN CC ASC(A$)
- 48: GOTO 4GlG

360 ' CHANGE COLOR SET IF "!" WAS PRESSED
370 IF A$ = " ! " THEN CS = (NOT CS AND 8) OR (CS AND
NOT 8): POKE 65314,135 + CS: GOTO 400

253

· 254

380 IF A$ = CHR$(32) THEN XI = 0: YI 0 'STOP DRAWING

IF <SPC> WAS PRESSED
390 'GET NEW CX,Yl POSITION
400 X = X + XI: Y = Y + YI : IF X < 0 THEN X 0
410 IF X > 63 THEN X = 63
420 IF Y < 0 THEN Y = 0
430 IF Y > 63 THEN Y = 63
440 ' PLOT THE (X,Yl POINT
450 Xl = INTCX/ 4): OF = Xl + Y0 16: BYTE = 3072 + OF
460 XMOD4 = INT(X - Xl 0 4): BIT = 3 - XMOD4
4711 X3 = MP(BIT)°CC: X4 = MP(BIT) 0 3
480 OL = PEEK(BYTE)
490 TE= (255 AND NOT X4) OR (-256 AND X4): NU (TE

AND OU OR X3
50(,) POKE BYTE, NU
510 GOTO 230

Note for Extended BASIC Users: The 64 x 64 mode is not available in
Extended BASIC; however, this program will get it for you. But first, make
these changes in the program:

20 CLEAR 10, 15359
30 'SET VIDRAM = 15360
50 DATA 0,1,1,1,1,0,0
120 FOR I = 15360 TO 16383: POKE I , 0: NEXT
450 Xl ~ INT(X/ 4) : OF = Xl + Y0 16: BYTE = 15360 + OF

PROGRAM # 2: 256 x 192 GRAPHICS FOR 16K RAM SYS
TEMS

Thls program shows the highest resolution available on Color Com
puter. Because it requires 6144 bytes of RAM for the gr aphics
screen, it will not run on a 4K RAM system.

The program draws lines on the screen. You type in (X,Y) coordi
nates for the starting and ending points, then the program goes into
the graphics mode and draws the points. You can then press any key
and the program will ask you for another pair of coordinates.

Type in the program. BE SURE TO OMIT ALL REMARKS
(STATEMENTS BEGINNING WITH AN APOSTROPHE).
Check the program over carefully. Then run it. There will be a one
minute delay before you see the program begin.

If you interrupt the program whlle it is in the graphlcs mode, you

will need to reset the Computer to get back in the normal mode.

PROGRAM LISTING

10 ' RESERVE 6K
20 CLEAR 10,10239
30 'SET START AND END OF VIDEO RAM
40 VIDRAM = 10240:VND = 16383
50 PSEL = 65478 ' START OF PAGE SELECT REG.
60 VDG = 65472 ' START OF VDG REG.
70 VCTRL = 65314 'VIDEO CONTROL REG.
80 'X(0) AND Y(0) WILL BE COORDINATES OF START POINT
90 'M$(0) AND M$(1) WILL BE MESSAGES
100 DIM X(l),Y(l),M$(1)
110 ' PH(l AND VH() CONTAIN HI-RES. BIT PATTERN
120 ' PA() AND VA() CONTAIN TEXT BIT PATTERN
130 'TWO(l CONTAINS A LIST OF POWERS OF 2
140 DIM PH(6) ,PA(6) ,VH (2) ,VA(2) ,TWO(?)
150 FOR I = 0 TO 6 : READ PH (!): NEXT
160 DATA 0,0,1,0,1,0,0
170 FOR I = 0 TO 6: READ PA(!) : NEXT
180 DATA 0,1,0,0,0,0,ll
190 FOR I = 0 TO 2: READ VH(I) : NEXT
200 DATA 0,1,1
210 FOR I = 0 TO 2: READ VA(!) : NEXT
220 DATA 0,0,0
230 READ CH 'HI-RES BIT MASK FOR VID.CTRL. REG.
240 DATA 240
250 READ CA 'TEXT BIT MASK FOR VID.CTRL. REG.
260 DATA fl
270 FOR I = 0 TO 7: READ TWO(!) : NEXT
280 DATA 1,2,4,8,16,32,64,128
290 GOSUB 800 'CLEAR OUT VIDRAM
300 'MAIN PROGRAM
310 M$(0) = "FIRST" : M$(1) = "SECOND"

320 FOR! = 0 TO 1
330 PRINT "ENTER "; M$(1); " X AND Y"

340 PRINT "0 < = X < = 255, 0 < = Y < = 191"
350 INPUT xm, Y(I)

360 IF X(I) < 0 OR xm > 255 OR Y(I) < 0 OR Y(I) > 191

THEN 340
370 NEXT
380 GOSUB 620 ' GO INTO GRAPHICS
39G ' DX,DY CONTAIN X,Y DISPLACEMENTS
400 'SX,SY CONTAIN DIRECTION OF THE LINE

410 DX = X(l) - X(0): DY = Y(l) - Y(0) : SX SGNCDX):
SY = SGN<DY)

420 'USE EQUATION Y = SLOPE • X + B
430 'SL = SLOPE OF LINE: B = OFFSET FROM X-AXIS
440 IF DX = 0 THEN 550 'SPECIAL CASE FOR VERTICAL

LINES
450 SL = DY / DX: B = Y(0) - SL • X(0)
460 T = SL • SL + 1: GOSUB 930 'GET SQR(T)
470 NX =1/Tl * SX 'NX IS INCREMENT FOR X
480 FOR XT = X(0) TO X(ll STEP NX
490 X = INT<XT + .5)
500 Y = INT<SL • XT + B + .5)
510 GOSUB 830
520 NEXT
525 A$ = INKEY$: IF A$ = "" THEN 525
530 GOSUB 630 'GO INTO TEXT
540 GOTO 320 'GET NEXT PAIR OF POI NTS
550 X = X(0)
560 FOR Y = Y(0) TO Y(l) STEP SY 'DRAW VERTICAL LINE

THRU X(0)
570 GOSUB 830
580 NEXT
585 IF INKEY$ = "" THEN 590
590 GOSUB 630 : GOTO 320
600 ' END OF MAIN PROGRAM
610 ' SUBRTNS TO SELECT G6R AND TEXT
620 GOSUB 650 : GOSUB 70<J' GOSUB 750 : RETURN
630 GOSUB 670 : GOSUB 720 : GOSUB 770 : RETURN
640 'PAGE-SELECT SUBRTNS
650 FORI = 0 TO 6: POKE PSEL + • 2 + PH(l),0: NEXT
660 RETURN
670 FORI = 0 TO 6: POKE PSEL + • 2 + PA(I),0: NEXT
680 RETURN
690 'VDG SELECT SUBRTNS
700 FOR! = 0 TO 2: POKE VDG + I • 2 + VH(l),0: NEXT
710 RETURN
720 FOR! = 0 TO 2: POKE VDG + • 2 + VA(l) ,0: NEXT
730 RETURN
740 'SUBRTNS TO SET UP VIDEO CONTROL REG.
750 POKE VCTRL, CH OR (PEEK(VCTRU AND 7)
760 RETURN
770 POKE VCTRL, CA OR (PEEK(VCTRU AND 7)
780 RETURN
79~ 'SUBRTN TO CLEAR OUT VIDEO RAM
8/JIJ FOR! = VIDRAM TO VND:POKE I,0: NEXT
810 RETURN

820 ' MAPPING FUNCTION
830 Xl = I NT<X/8)
84G OF = Xl + Y • 32: BYTE = VIDRAM + OF
850 XMOD8 = INT<X - Xl • 8)
860 BIT = 7 - XMOD8
870 VLU = TWOCBIT)
880 OLD = PEEK(BYTE)
890 MASK = VLU OR OLD
900 POKE BYTE,MASK
910 RETURN
920 ' SQR(X) SUBRTN
930 IF T < = 0 THEN Tl = 0: RETURN
940 Tl = T • .5: T2 = 0
950 T3 = (T / Tl - Tl) • .5
960 IF (T3 = 0) OR (T3 T2) THEN RETURN
97@ Tl = Tl + T3 : T2 = T3: GOTO 950

Note: This entire program can be duplicated using the LINE statement
of Extended BASIC. However, if you wish to use it for experimentatwn, it
will run without modification under 16K Extended BASIC.

PROGRAM # 3: GENERAL-PURPOSE SUBROUTINES

These subroutines may be used to select any of the graphics modes
(subject to the RAM limitations of your Computer and the require
ments of your main program). You supply the main program to
write information onto the graphics screen. You also provide the
correct values for lines 20 and 40.

Later in this section, we provide hints on designing your main
program (Putting Graphics to Work).

PROGRAM LISTING

i0 ' RESERVE RAM FOR GRAPHICS
20 ' CLEAR STRINGSPACE, MEMEND
30 'SET START AND END OF VIDEO RAM
40 'VIDRAM = MEMEND + 1: VND = 4095 OR 16383
50 PSEL = 65478 ' START OF PAGE SELECT REG.
60 VDG = 65472 ' START OF VDG REG.
70 VCTRL = 65314 'VIDEO CONTROL REG.
100 DIM X(l) , Y(l), M$(1)
110 ' PHO AND VHO CONTAIN THE GRAPHICS BIT PATTERN

255

256

120 'PAO AND VAO CONTAIN THE NORMAL (TEXT) BIT PATTERN

140 DIM PH(6), PA(6), VH(2), VA(2)
150 FOR I = 0 TO 6: READ PH(!) : NEXT
160 'DATA X,X,X,X,X,X,X (PAGE-SELECT BIT PATTERN)

170 FOR I = 0 TO 6: READ PA(!) : NEXT ' READ NORMAL P-S BIT

PATTERN
180 DATA 0,1,0,0,0,0,0
190 FOR I = 0 TO 2: READ VH(I): NEXT
200 ' DATA X,X,X (GRAPHICS BIT PATTERN FOR VDG)

210 FOR I = 0 TO 2: READ VA(!) : NEXT 'NORMAL VDG BIT

PATTERN
220 DATA 0,0,0
230 READ CH 'GRAPHICS BIT MASK FOR VID.CTRL. REG.

240 'DATA XXX (VIDEO CONTROL VALUE)
250 READ CA 'TEXT BIT MASK FOR VID.CTRL. REG.

260 DATA 0
290 GOSUB 800 'CLEAR OUT VIDRAM
300 '
310 'YOUR MAIN PROGRAM GOES HERE
320 '
599 'END MAIN PROGRAM
600 '
61G 'SUBRTNS TO SELECT GRAPHICS AND TEXT
620 GOSUB 650 : GOSUB 700 GOSUB 750 : RETURN

630 GOSUB 670 : GOSUB 720 : GOSUB 770 : RETURN
640 'PAGE-SELECT SUBRTNS
650 FOR! = 0 TO 6: POKE PSEL + 0 2 + PH(l) ,0: NEXT
660 RETURN
670 FOR! = 0 TO 6: POKE PSEL + 0 2 + PA(!) ,0: NEXT
680 RETURN
690 'VDG SELECT SUBRTNS
700 FOR! = 0 TO 2: POKE VDG + 0 2 + VH(l),0: NEXT
710 RETURN
720 FOR! = 0 TO 2: POKE VDG + 0 2 + VA(l) ,0: NEXT

730 RETURN
740 'SUBRTNS TO SET UP VIDEO CONTROL REG.
750 POKE VCTRL, CH OR (PEEK(VCTRLJ AND 7)

760 RETURN
770 POKE VCTRL, CA OR (PEEK(VCTRLJ AND 7)
780 RETURN
790 'SUBRTN TO CLEAR OUT VIDEO RAM
800 FOR! = VIDRAM TO VND: POKE 1,0: NEXT

810 RETURN

A FEW DEFINITIONS

GRAPHICS

This refers to the ability to set or reset blocks or points called
"pixels." For each pixel, you may choose from two, four or eight
colors, depending on t he particular mode selected. By setting var
ious combinations of pixels, you can generate lines, geometric fig
ures, pictures, etc.

RESOLUTION

The pixel density (how many pixels to a screen) determines the
degree of resolution. Depending on the graphics mode, the screen
may contain from 2048 (SET/RESET) to 49152 (G6R) pixels. The
higher the resolu tion, the finer the lines and the more detailed the
pictures.

To see the importance ofresolu tion, look at these two diagonal lines.
The resolu tion of Line Bis four times as fine as that of line A.

I I

.-- I I

...... •.r ,-.. ,-.. I

,-..,-..-

•
,-.. ,-.. ,-..

,~--_J ,-..
I I ,-..

I I I

Line A. Line B.
Low Resolution High Resolution

RA.t'1, BYTES AND BITS

RAM is divided up into individually addressed locations called
"bytes." The addresses in RAM run from 0 to 4095 or 16383, de
pending on whether you have a 4K or 16K RAM system. Each
address references one byte.

RAM is "random access memory." This is the area where your
programs and data are stored. The Computer also uses RAM for
storage of internal values. RAM is erased when the Computer is
turned off.

One byte consists of eight on/off switches called "bits." Here is one
byte:

Bit# 7 6 5 4 3 2 1 0

Notes:

(]) In thi.s discussion, we will refer to the individual bits using the numbers
0 through 7, as shown in the diagram.

(2) When a bit has a value of I, we say it is "set"; when it ha.s a value of 0,
we say it is "reset." These terms will be used throughout this section.

There are 256 possible on/off combinations for a single byte. The
combinations are often interpreted as binary numbers ranging from
00000000 to 11111111 or decimal Oto 255. (See a math or computer
text for a discussion of binary numbering.)

PEEK AND POKE

These BASIC words allow you to examine (PEEK) or change
(POKE) the contents of memory. Just for review, here is the syntax
for each command (the syntax is the way that the command should
be put together. For an example, with POKE you should first spec
ify the address, then the value):

PEEK (address)
POKE address, value

PEEK is a function. This means it cannot stand alone in a BASIC
program, but must be used in a statement like:

OLD= PEEK (BYTE)

OLD will be given the contents of address BYTE.

POKE can stand alone. It stores the value specified in the address
specified.

POKE BYTE, NU

The address specified by BYTE will be given the value NU.

BITS AND BOOLEAN ALGEBRA

In the graphics modes, one or two bits may control the color or on/
off status of a pixel. Se we need a way to control a single bit or pair
of bits without affecting other bits.

To change one or two bits in a byte requires a form of computer
logic called Boolean algebra. Boolean algebra uses logical operators
like AND, OR and NOT. These three are available in Color BASIC.

AND and OR compare two values bit-for-bit; NOT takes value and
reverses the state of each of its bits. Here are table summaries

AND 0 1 OR 0 1

0 0 0 0 0 1 NOTO= 1

1 0 1 1 1 1 NOT 1 = 0

Here are some examples of Boolean operations on one-byte binary
values:

10101010
AND 11110000

10100000

01101110
OR 10001000

11101110

NOT(l0101010) = 01010101

Suppose you want to set (set to I) bit 7 in byte #4000, without
changing any of the other bits. You simply OR the current contents
of #4000 with the binary value 10000000, which is equivalent to

257

258

decimal 128:

NB = PEEK(4000) OR 128

Since bit 7 is set in the value 128, bit 7 will always be set as a result
of the operation. The other bits in the result will be the same as
those in address #4000.

VIDEO RAM

When you output to the screen, the information is actually stored
in a portion of memory. The video display circuitry reads from this
"video RAM" in order to generate the screen di.splay.

You type:

Text goes
into RAM

PRINT "HERE IS A MESSAGE"➔!._ -~_i_dM_eo __

Computer generates
the correct display

\V
TV
Screen

Normally, COLOR BASIC uses the memory area from 1024 to 1535
as video RAM. There are 512 distinct memory locations or "bytes"
in this area, enough to hold 512 alphanumeric characters or 2048
SET / RESET pixels.

The COLOR COMPUTER can be programmed to use any area of
RAM as "video RAM." This is desirable when:

A. You want to use high-resolution graphics that require a large
video RAM area.

B. You want to switch back and forth between "pages" of video
RAM.

High resolution requires a larger video RAM area than does normal
text. For example, in the highest resolution mode, G6R, 6144 bytes
of memory are required to store a screenful or "page" of informa
tion.

This increased video RAM requirement has to be taken from the
"user area" at the top of memory. This limits the space available to
your BASIC program. If you have a 4K RAM machine, you will
probably be limited to using the GlC and GlR graphics modes,
which take only 1024 bytes and leave approximately 1300 bytes
for your BASIC program. If you have a 16K RAM machine, you
may use the highest resolution mode and still have about 8400
bytes available for your BASIC program.

VIDEO DISPLAY GENERATOR (VDG) REGISTER

This consists of three pairs of addresses in RAM that control the
graphics mode. (See Table 1 for a description of the graphics modes
available.) These addresses are not actual bytes in RAM, but are
direct links to t he VDG cu·cuitry in the Computer.

DISPLAY CONTROL REGISTER

This is a single memory location that determines which color set is
available, and also plays a role in selecting the graphics mode. This
address is not an actual byte in RAM, but is a direct link to certain
display control circuitry in the Computer.

PAGE-SELECT REGISTER

This consists of seven pairs of addresses that determine the start
addJess of video RAM. Using this register, you can start video RAM
on any 512-byte boundary in RAM. This address is not an actual
byte in RAM, but is a du·ect link to the page-select circuitry in the
Computer.

PREPARING THE COLOR COMPUTER FOR
GRAPHICS

1. CHOOSE WHICH GRAPHICS MODE YOU WANT

Using Table 1, decide which graphics mode you want to try. There
are several questions to ask yourself:

What is the video RAM requirement? Does your Computer have
enough RAM to accommodate it? If it does, will there be enough
room for the program that uses the graphics mode?

How much resolution do you need? How many colors? There is a
trade-off between colors and resolution.

For example, GI C and G IR both requ ire 1024 bytes for video RAM,
but after that, they differ. G lC offers a 64 x 64 pixel density, with
four colors available for each pixel. Further, you may select between
two sets of four colors. GlR on the other hand, offers a 128 x 64
pixel density, with two colors available for each pixel. You may
select between two sets of two colors.

Program #1 uses GlC; Program #2, G6R.

2. SELECT A PAGE OF VlDEO RAM FOR GRAPHICS USE

COLOR BASIC uses addresses 1024-1535 for video RAM. This is
sufficient for alphanumerics and SET / RESET graphics, but, not
for any of the higher-resolution graphics modes. For these, you
should reserve a sufficiently large area at the top of RAM. Use the
CLEAR statement to do this.

CLEAR stringspace, memencl

stringspace is the amount of space you'll require for stdng infor
mation. Use the smallest number possible that won't result in
an OS error when your program runs.

memend is the highest address COLOR BASIC will use - ad
dresses above memend can be used for your graphics video
RAM.

To compute memend, use this formula:

memend = memory size - pagesize

memory size depends on how much RAM is in your system. For
4K systems, it is 4095; for the 16K systems, 16383.

pagesize depends on which graphics mode you are going to use.
For 4K systems, you will probably be limited to GlC or GlR;
in either of these modes,pagesize = 1024. For 16K systems,
you may use any of the modes, even those that use 6144
bytes.

For example, to use G lC in a 4K system, you should start your
program with this statement:

CLEAR 20, 3071

This assumes you won't need more than 20 bytes for string storage,
and it reserves the highest 1024 bytes for use as video RAM.

111 Program # 1, see line 20; in Program #2, line 20.

3. "CLEAR OUT" YOUR VIDEO RAM

You will probably want to start out with a clean video screen. To do
this, simply store zero in each byte of video RAM. For example, in
a 4K system, you might use these statements:

FOR I = 3072 to 4095: POKE 1,0: NEXT

In Program # 1, see line 120; in Program #2, line 790.

Important Note: Steps 4 and .5 should be performed consecutively, with
no pauses in between steps. Otherwise, the screen will show what is often
ca !led "garbage."

4. SWITCH IN YOUR VIDEO RAM

Using the page select register, you tell the Color Computer where
your " page" of video RAM starts. A graphics page must start on a
512-byte boundary. To tell Color Computer where the page starts,
use a seven-bit value. (The eight bit, bit 7, is always 0 so is not
needed by the page-select register.) Table 3 lists the correct values
for pages starting at memend + I (see Step 3).

Table 3 doesn't list a ll possible addresses where you might want to
start video RAM. The following procedure will let you calculate the
correct value for any valid start address for video RAM. (Addresses
must be on 512-byte boundaries: 0, 512, 1024, etc.)

First calculate the video offset in 512-byte "blocks," as follows:

OFFSET = VIDRAM / 512

VIDRAM is the start address of your video RAM (usually memend
+ 1).

259

260

For example, in 4K systems with your video RAM starting at 3072,
OFFSET = 3072 I 512 = 6.

Then express OFFSET as a seven-bit binary number. For example,

6 decimal

Bit#.

0 0 0 0 1 0 binary
'---'------''------'~----'-----'----'-~

6 5 4 3 2 0

After finding the correct value, you must give it to the page-select
register.

Remember, this register consists of seven pairs of addresses. Each
pair controls whether a given bit in the page-select circuitry is on or
off. To RESET a bit (make it equal to 0), POKE any value into the
even-numbered address in the pair; to SET a bit (make it equal to
1), POKE any value into the odd-numbered address in the pair.

TO RESET, TO SET,
BIT# POKE HERE POKE HERE

0 65478 65479
1 65480 65481
2 65482 65483
3 65484 65485
4 65486 65487
5 65488 65489
6 65490 65491

For example, to switch in the video RAM starting at 3072, we need
to give the value 000110 to the page control circuitry as follows:

POKE 65478,0
POKE 65481,0
POKE 65483,0
POKE 65484,0
POKE 65486,0
POKE 65488,0
POKE 65490,0

'R ESET BIT 0
'SET BIT 1
'SET BIT 2
'RESET BIT 3
'RESET BIT 4
' RESET BIT 5
'RESET BIT 6

In Program # 1, see lines 40-50. The formula in line 40.

65478 + I O 2 + DT

is a shorthand way to poke the appropriate addresses in the
page-select register. DT is the 0/1 value for each of the
seven bits.

In Program #2, lines 640-670 do the same thing using bit
patterns stored in PH() and PA().

5. SELECT THE DESIRED GRAPHICS MODE

To select a given graphics mode, you must:

5-A. Set the VDG register

5-B. Set the control register.

(5-A.) First, look up the three-bit VDG pattern that selects
the graphics mode (see Column 2 in Table 2).

This is the binary value you must give to the VDG register.
Remember, this register consists of three pairs of addresses.
Each pair can be used to control whether a given bit in the
VDG circuitry is on or off. To RESET a bit (SET it to
zero), POKE any value into the even-numbered address in
the pair; to SET a bit, POKE any value into the odd-num
bered address in the pair.

TO CLEAR, TO SET,
BIT # POKE HERE POKE HERE

0 65472 65473
1 65474 65475
2 65476 65477

For example, to select graphics mode GlC, we need to give
the value 001 to the VDG registers as follows:

POKE 65473,0
POKE 65474,0
POKE 65476,0

'SET BIT 0
'RESET BIT 1
'RESET BIT 2

(5-B.) Now, select the control value for the graphics mode

you want (see Column 3 of Table 2). Then store this value
in the control register without changing bits 0-3 of the con
trol register.

For example, to select graphics mode GlC with color set 0.

I. Get temporal)' result with all
bits on· except 0, 1, 2. These
are not changed.

POKE 65314, 128 OR (PEEK(65314) AND 7)

2. Turn on bit 7 without chang
ing bits 0, I, 2.

When you have executed Steps 2 through 5, the Computer
will be in the graphics mode you selected. The screen should
be blank. The rest of your program can be devoted to using
the graphics mode.

In Program #1, see line 100. In Program #2, see lines 740-
770.

PUTTING GRAPHICS TO WORK

Once you've selected the graphics mode, you can control
what appears on the screen by POKEing data into the
graphics page you have selected. How the data is interpreted
will depend on the mode you've selected. In some modes, one
byte may control a sequence of eight bits; in others, one
byte may control a 2 x 6, 2 x 12, etc., "block."

Table 4 explains how each pixel in a given mode is controlled
by a byte or bit. If you're writing your own main program
to use the subroutines in Program #3, you may want to ex
periment, storing vaTious values from 0-255 into a single byte
in your page of video RAM.

If you want to get more predictable results, read on . ..

MAPPING FUNCTIONS

In all the graphics modes, the screen is divided up into (X,Y)

coordinates. Each pixel on the screen has a unique (X,Y)
"address."

If you've used SET, RESET and POINT, then you're familiar
with this coordinate system. All of these statements allow di
rect reference to (X, Y) coordinates. For example, to set the
centerpoint on the screen to blue, we simply use:

SET(31,15,3)

Using the higher-resolutions graphics modes 1s a little more
difficult. We can't deal directly with (X,Y) coordinates; we
must translate or "map" the desired (X,Y) coordinates onto
the appropriate byte of video RAM. When one byte controls
two or more pixels, we must map the (X,Y) coordinates onto
the appropriate bit or bits within a byte.

Table 4 shows how each byte of video RAM controls one or
more pixels.

As an example, we'll take the 256 x 192 mode, G6R.

In this mode, the first 32 bytes of video RAM control the
first row of 256 pixels; the second 32 bytes control the sec
ond row; etc.

Within each row, each byte of video RAM controls a se
quence of eight pixels:

7 6 5

One Byte of Video RAM
seen as eight bits:

4 3 2 0

• Eight pixels

Bit 7 controls the leftmost pixel 111 the sequence; bit 0, the
rightmost.

With this in mind, we can construct a series of BASIC oper
ations to map (X,Y) onto one bit in one byte.

261

262

Notes: In the following BASIC statements, we assume the
following:

• X is the X-coordinate. (For illustration, X = 128.)

• Y is the Y-coordinate. (For illustration, Y = 96.)

• VIDRAM is the first address of video RAM. (For illustra
tion, VIDRAM = 10240.)

• The expression "2 X " means "2 to the X power." (This
function is not available in Color BASIC, but we can simu
late it with a table of powers or 2.)

1. Which byte "contains" the pixel?

OFFSET = INT<X/8) + V-32 = 16 + 3072
= 3088
BYTE = VIDRAM + OFFSET = 10240 +
3088 = 13328

2. Which bit in BYTE controls the pixel?
XMOD8 = X - INT<X/8)•8 0
BIT = 7 - XMOD8 = 7

3. What one-byte value will set the pixel? What one-byte mask will
set the pixel without changing any of the others con trolled by the
same byte? For illustration, assume BYTE contains 8.

VLU = 2 ♦BIT = 128 = binary 10000000
OLD = PEEK(BYTE) = 8 = binary 00001000
MASK = VLU OR OLD = 136 = 10001000
POKE BYTE, MASK

4. What one-byte value will reset the pixel? What one-byte mask
will reset the pixel without changing any of the others controlled
by the same byte? For illustration, assume BYTE contains 136.

VLU = 255 - 2 ♦ BIT = 255 - 128 = 127
= binary 01111111
OLD = PEEK(BYTE) = binary 10001000
136
MASK = VLU AND OLD = binary 00001000
8
POKE BYTE, MASK

The mapping we have just described is used in Program #2. See
lines 820-910. Another mapping (64 x 64, GlC) is used in Program
1, lines 440-500.

TABLE 1. DESCRIPTION OF THE GRAPHICS MODES
AVAILABLE

Number of Video RAM

Mode (1) Resolution Colors (2) ReQ. (Bytes)

SG6 64x48 8 512

SG8 64x64 8 2048

SG12 64x96 8 3072

SG24 64 X 192 8 6144

G1C 64x64 4 1024

G1R 128 X 64 2 1024

G2C 128 X 96 4 2048

G2R 128 X 96 2 1536

G3C 128 X 96 4 3072

G3R 128 X 192 2 3072

G6C 128 X 128 4 6144

G6R 256 X 192 2 6144

NOTES:

(1) The mode names are abbreviations. Read "SG6" as "semigraphics six";
read "GlC" as "graphics one with color"; read "GlR" as "graphics one
with resolution"; etc. In all of the "semigraphics" modes, you have
eight colors at once. In all of the "with color" modes, you have four
colors at once. In all of the "with resolution" modes, you have two
colors at once.

(2) In the four-color modes, you may select between two sets of four colors
each. In the two-color modes, you may select between two sets of two
colors each. The color-set select bit (bit 3 of the video control register)
determines which set is used. See Table 2 for more details on selecting
the color set.

TABLE 2. DISPLAY MODE SELECTION TABLE 3. VIDEO RAM PAGE SELECTION

Video Control
Register Value Data

VDG Register With Color Set* Bits*

Mode Three-Bit Pattern 0 I 1 7 16

Page Select
VIDRAM Register

Bit Pattern

Size (Bytes) Start Address 6543210

SG6 000 16 124 1 I X
4K

R
512 3584 00001 1 1

SGS 010 0 10 1 I X A 1024 3072 0000110

SG12 100 0 10 1 I X M 1536 2560 0000 101

SG24 1 1 0 0 10 XIX 512 15872 0 0 1 1 1 1 1

G1C 001 128 I 136 XIX 16K 1024 15360 001 1110

G1R 001 144 1152 XIX R 1536 14848 0011101

G2C 010 160 1168 XIX A 2048 14336 0011100

G2R 0 1 1 176 I 184 XIX M 3072 13312 0011010

G3C 100 192 1200 XIX 6144 10240 0010 100

G3R 1 0 1 208 I 216 XIX
G6C 1 1 0 224 I 232 XIX
G6R 1 1 0 240 I 248 XIX

*"X" indicates "Don't care:'

263

Table 4. Detailed Description of the Graphics Modes

DATA Color Resolution
COLOR

BIT Data Byte(s) Comments
SET Character

6 Color Background Border Columns x Rows Detail

0 0 Green Black Black B dots I I The Alphanumeric Internal mode uses an internal
1 Black Green -[a]- character generator which contains the following five

0 Orange Black
32x 16 12dots D __ 7 I O I ~ I I I I I I I dot by seven dot characters: @ A B C D E F G H I J K

1
1 Black Orange Black ASCII code L M N O P O R S T U V W X Y Z [/] • - S P I " #

I I s $ % & • + , = I O 1 2 3 4 5 6 7 8 9 : ; = ? .
Lx C2 C1 CO Color
0 X X X Black T he Semigraphics-4 mode uses an internal
1 0 0 O Green " coarse g raphics" ~enerator in which a rectan-
1 0 0 1 Yellow gle (eight dots by 2 dots) is divided in to four
1 0 1 O Blue mane I 1 I C, I C, j Co j L, j L, j L, j Lo I egual parts. The luminance of each part is deter-

X X 1 0 1 1 Red Black 64x32 element mined by a corres~onding bit on the VDG data
1 1 0 O Buff bus. The color of i i uminated parts is determined
1 1 0 1 Cyan by three bits. It requi res 512 bytes of d isplay
1 1 1 O Magenta memory.
1 1 1 1 Orange

Lx C1 CO Color
0 X X Black
1 0 0 Green

0 1 0 1 Green -- The Semigraphics-6 mode is s imilar l o the
1 1 0 Blue _s_ ~ IC, j Co j Ls j L, I L, I L, j L, j Lo j

Semigraphics-4 mode with the following differ-
1 1 1 Red L, L,

ence: T he eight dot by twelve dot rectangle is
X

0 X X Black
Black 64x48 ,__ - divided into six equal parts. Color is determined

~~ br the two remaining bits. It requires 512 bytes
1 0 0 Buff o display memory.

1 1 0 1 Buff
1 1 0 Magenta
1 1 1 Orange

Lx C2 C1 CO Color
0 X X X Black --
1 0 0 0 Green L, Lo 1 c, c, Co L, Lo X X
1 0 0 1 Yellow - - c, c, Co L, L, X X

The Semigraphics-8 mode requires four column
1 0 1 0 Blue ~ ~

1 consecutive addresses; and produces a 2x4
X X 1 0 1 1 Red Black 64x64 Ls L, 1 c, C, Co X X Ls L, block. It requires 2048 bytes of display memory.

1 1 0 0 Buff - - 1 c, C, Co X X L1 4; 1 1 0 1 Cyan ~~
1 1 1 O Magenta
1 1 1 1 Orange

Lx C2 C1 CO Color
0 X X X Black --

1 0 0 0 Green L, ~ 1 c, c, c, L, Lo X X -
1 0 0 1 Yellow L, L, 1 c, c, Co L, L, X X
1 0 1 O Blue - -

X X 1 0 1 1 Red Black 64x96 2-..'::. 1 c, C, Co Ls L, X X The Semi9raphics-12 mode requires six column

1 1 0 0 Buff ~ ~ 1 c, c, Co X X L, I.,,
consecutive addresses; and p roduces a 2x6

1 1 0 1 Cyan block. It requires 3072 bytes o f display memory.

1 1 1 0 Magenta ~ ~ 1 c, c, Co X X 4 Le
1 1 1 1 Orange ~~ 1 c, C, Co X X L,, L,o

264

Table 4. Detailed Description of the Graphics Modes (Continued)

DATA Color Resolution
COLOR BIT Data Byte(s) Comments

SET Character
Background Border Columns x Rows Detoil 6 Color

Lx C2 C1 CO Color
0 X X X Black - -
1 0 0 O Green L, '-o 1 c, C, Co L, Lo X X
1 0 0 1 Yellow - -~ ~ 1 c, c, Co L, L, X X
1 0 1 0 Blue

X X 1 0 1 1 Red Black 64 X 192 L; L, 1 c, c, Co L; l. X X
1 1 0 0 Buff - -1 1 0 1 Cyan

L, Lo 1 c, C, Co L, Lo X X

1 1 1 O Magenta L, La 1 c, c, Co L, La X X
The Semigraphics-24 mode requires twelve col-1 1 1 1 Orange - -L,, L,o 1 c, c, Co L,, L,o X X umn consecutive addresses; and produces a - - 2x12 block. It requires 6144 bytes of display L,, L,, 1 c, c, Co X X L,, L,, -- memory.

~ L,. 1 c, C, Co X X L15 L,.

L,, L,o 1 c, -- c, Co X X L11 L,o

~ ~ 1 c, c, Co X X L,9 L,a

L, , L,o 1 c, C, Co X X L,, L,o --
L,, L,, -- 1 c, C, Co X X L,, L,,

C1 co Color
0 0 Green

0 0 1 Yellow Green
1 0 Blue The Gra~hics-1C mode uses 1024 bytes of dis-
1 1 Red I E, I E, I E, I Ea I jc, le, / c, / Cale, / co /C, / Co/ play RA in which one pair of bits specifies one

X
0 0 Buff

64x64 picture element.

1
0 1 Cyan Buff
1 0 Magenta
1 1 Orange

Lx Color
0 0 Black Green The Gra~hics-1R mode uses 1024 bytes of dis-

1 Green l~lt..lL;/t...lt.,,lt.,l~ILo/ l~lt.. l L; /t... lt.,, lt.,l~!Lo/ play RA in which one bit specifies one picture
X

0 Black
128 x 64 element.

1
1 Buff

Buff

0 Same colors as
Green The Gra~hics-2C mode uses 2048 bytes of d is-

X 128x64 I E, I E, I E, I Ea I j C, I Co I C, I Co I C, I Co I C, / Co/ play RA in which one pair of bits specifies one Graphics one C -
1 Buff picture element.

0
Same colors as

Green The Gra~hics-2R mode uses 1536 bytes of dis-
X - 128x96 I L, I Lo I L; I t... / L, I t., I L, I Lo I l ~ lt..lL;/ t... / L, /t.,/~I 1..o l

play RA in which one bit specifies one picture
Graphics one R element.

1 Buff

0 Green The Gra~hics-3C mode uses 3072 by1es of dis-
X Same colors as - 128x96 I E, I E, I E, I Ea I j C, / Co/ C, / Co/ C, / Co j C, I Co / play RA in which one pair of bytes specifies

Graphics one C
1 Buff one picture element.

265

Table 4. Detailed Description of the Graphics Modes {Continued)

DATA Color Resolution
COLOR BIT Data Byte(s) Comments SET Character Background Border Columns x Rows Detail 6 Color

0 Green 1~ 1~1~1~1~141~1~1 The Gra~hics-3R mode uses 3072 bytes of dis-
X Same colors as ,-- 128x192 I L, I ~ I ~ I L, I L, I L2 I L, I ~ I play RA in which one bit specifies one picture Graphics one R element. 1 Bull

0 Green The Gra~hics-6C mode uses 6144 bytes of dis-
X Same colors as 128x192 I E, I E2 I E, I f:o I I c, I c. I c, I c. I c, I c. I c, I c. I plari RA in which one pair of bits specifies one Graphics one C ,--

pie ure element. 1 Bull

0 Green The Gra~hics-6R mode uses 6144 bytes of dis-
X Same colors as 256 X 192 1~ 1~1~1 ~1~1 41~1~1 1~1~1~1~1~14 1~1~1 play RA in which one bit specifies one picture Graphics one R ,--

element. 1 Bull

"Column-consecutive addresses starting al HEX 0400 are 0400, 0420, 0440, 0460, etc.

266

PARTB

USING MACHINE-LANGUAGE SUBROUTINES
WITH COLOR BASIC

This part describes how to call a machine-language subroutine from
a BASIC program, and lists certain ROM subroutines that you may
find useful.

"Machine-language" (ML) is the low-level language used internally
by your Computer. It consists of microprocessor instructions. Ma
chine-language subroutines are useful for special applications sim
ply because they can do things very fast.

Writing such routines requires familiarity with assembly-language
programming and with the microprocessor's instruction set . For
more information, see Basic Microprocessors and the 6800, Ron
Bishop, Hayden Book Company, 1979.

In this section, we'll take a step-by-step approach to using ML
subroutines, as follows:

1. Protecting Memory
2. Storing the ML Subroutine in RAM
3. Telling BASIC Whel·e the Subroutine Is
4. Calling the Subroutine
5. Returning to BASIC

As we go along, we'll be presenting a BASIC program that performs
all five operations. You may type in the BASIC program lines as
they are given, but don't try to run the program until you've read
this entire section.

Our ML subroutine will be a simple one. It gets a character from
the keyboard. The character is returned as an ASCII code rather
than as a string.

The subroutine has a few features not available with INKEY$ or
INPUT. First, it will return any key code, including the one for

(filli:A]) . Second, it will let you key in control codes A-Z
(CTRL-A through CTRL-Z). To key in a control character, press (I),
release it, then press any key from @ to ® . The control
codes generated range from 1 to 26.

Upon return from the subroutine, the USR reference is "replaced"
with a character code.

We'll call the subroutine "GETKEY". For a listing of this ML
subroutine, see the end of this section.

STEP 1. PROTECTING MEMORY

With the CLEAR statement, you can reserve a section of RAM for
storage of your ML subroutine. The first CLEAR parameter sets
the string space, and the second sets the memory protection address.
For example:

10 CLEAR 25, 4050

sets the string space to 25 bytes and reserves memory addresses
from 4051 to the end of RAM (see the Memory Map). Your ML
program may then safely be stored in this area.

STEP 2. STORING THE MACHINE LANGUAGE SUBROU
TINE IN RAM

ML programs may be loaded from tape via CLOADM, or POKEd
into RAM. In our example, we'll store the individual codes in DATA
statements, then read and POKE each code into the correct RAM
location. The numbers in the DATA statements are derived from
the ML subroutine listed later in this section.

267

268

20 FOR I = 1 TO 28
30 READ B: POKE 4050 + I, B
40 NEXT I
50 DATA 173, 159, 160, 0
60 DATA 39, 250, 129, 10, 38, 12
70 DATA 173, 159, 160, 0, 39, 250
75 DATA 129, 65, 45, 2
80 DATA 128, 64, 31 ,137, 79
90 DATA 126, 180, 244

STEP 3. TELLING BASIC WHERE THE SUBROUTINE IS

Before you can use the subroutine, you have to tell Color Computer

where it starts. You do this by POKEing the two-byte address into
RAM locations 275-276. The most significant byte (MSB) goes first,

then the least significant byte (LSB).

Our ML will start at decimal 4051, so:

Decimal 4051 = Hexadecimal OF D3 =
Decimal 15 (MSB), Decimal 211 (LSB)

Here's the program line to accomplish this:

100 POKE 275, 15: POKE 276, 211

STEP 4. CALLING THE SUBROUTINE

At the correct point in your program, insert a USR function refer

ence:

110 A = USR(O) ·

In our example, 0 is a "dummy argument." It won't be used by the

ML subroutine. ·

When this statement is encountered, BASIC will call the ML sub

routine.
Note: On entry to the subroutine, you can get the USR argument (the O in
this case) by calling a ROM subroutine, INTCNV, which returns with the
integer value in the D register. The address of INTCNV is hexadecimal
B3ED.

STEP 5. RETURNING TO BASIC

If you do not want to return any values to the BASIC program, end
t he subroutine with an RTS instruction. If you want to return a
two-byte integer value, load the integer into register D in MSB
LSB sequence, then end the subroutine by calling a special ROM

subroutine, GIVABF. The address of GIVABF is hexadecimal B4F4.

After an RTS, the USR-reference in your BASIC program will
return the original dummy argument. After a call to GIVABF, the
USR-reference in your BASIC program will return the value you

loaded into the D register.

THE BASIC PROGRAM

The following program gets the object code into RAM and then
uses the subroutine to get keyboard input. Type it in carefully, then

run it.

Each time you press a key, control returns to BASIC with the
ASCII code for that key. Try pressing (BREAK) . You'll get the
code for (BREAK) 3. The BASIC program ends when you press

(ENTER) or (I) (M)
To get any of the codes 1 through 26, press (I) , release it, then

press a key from @ to ®

10 CLEAR 25, 4050 ' RESERVE MEMORY
15 CLS
20 FOR I = 1 TO 28 'STORE EACH BYTE OF OBJECT CODE

30 READ B: POKE 4050 + I , B
40 NEXT I
45 'HERE IS THE OBJECT CODE
50 DATA 173, 159, 160, 0
60 DATA 39, 250, 129, 10, 38, 12
70 DATA 173, 159, 160, 0, 39, 250
75 DATA 129, 65, 45, 2
80 DATA 128, 64, 31, 137, 79
90 DATA 126, 180, 244
99 'TELL BASIC WHERE THE ROUTINE IS

100 POKE 275, 15: POKE 276, 211
110 A = USR(O) 'CALL THE SUBROUTINE AND GIVE RESULT TO A

115 IF A = 13 THEN END

120 PRINT "CODE = "; A
130 GOTO 110

Note to Customers with 16K RAM: You may change lines JO and
30:

10 CLEAR 25, 16350
30 READ B: POKE 16350 + I, B

For a variation in the program, change line 120 to:

120 PRINT CHRS(A); ' DISPLAY THE CHARACTER

Most control keys (I) followed by a key @ - ®) will
have no effect when they a r e printed. But try control-H
(backspace).

ML SUBROUTINE LISTING
Note: Don't type this in. It,~~ here for those who want to understand how
the ML subroutine worhs.
Hexadecimal Source Code
Object Code
AD 9F AO 00
27 FA
81 OA
26 OC
AD 9F AO 00
27 FA
81 20
20 02
80 40
lF 89
4F
7E B4 F4

LOO Pl

LOOP2

OUT

POLCAT
GIVABF

JSR
BEQ
CMPA
BNE
JSR
BEQ
CMPA
BLT
SUBA
TFR
CLRA
JMP
EQU
EQU

[POLCATl
LOO Pl
#10
OUT
[POLCAT]
LOOP2
#65
OUT
#64
A,B

GIVABF
40960
46324

Comments

; POLL FOR A KEY
;IF NONE, RETRY
;CTR L KEY CON ARW)7
; NO, SO EXIT
;YES. SO GET NEXT l<EY
;I F NONE, RETRY
;IS ITA-Z?
;IF < A, EXIT
;CONVERT TO CTRL A/Z
; GET RETURN BYTE READY
;ZERO MSB
; RETURN VALUE TO BASIC

Notes: "Source code" is not meaningful to the computer. It is a set of mem
ory aids and symbols we use for convenience. The source code must be
translated or "assembled" into object code, which the computer under
stands. In the listing above, the object code is given in hexadecimal form.

I We converted it to decimal numbers for our BASIC program.

ROM SUBROUTINES AVAILABLE FOR USE FROM
BASIC

The Color BASIC ROM contains many subroutines that can be
called by a machine-language program; many of these can be called
by a Color BASIC program via the USR function. Each subroutine
will be described in the following format :

NAME - Entry address
Operation Pe1formed
Entry Condition
Exit Condition

Note: The subroutine NAME is only for reference. It is not recognized by
the Color Computer. The entry address is given in he.wdecimal form; you
must use an indirectju.mp to this address. Ent1yand Exit Conditions are
given for machine-language programs.

BLKIN = (A006)
Reads a Block from Cassette

Entry Conditions

Cassette must be on and in bit sync (see CSRDON). CBMFAD contains
the buffer address.

Exit Conditions
BLKTYP, which is located at 7C, contains the block type:

0 = File Header
1 = Data
FF = End of File

BLKLEN, located at 7D, contains the number of data bytes in the
block (0-255).
z';, = l,A = CSRERR = 0 (ifno errors).
z = 0, A = CSR ERR = 1 (if a checksum error occurs).
z = O,A = CSRERR = 2 (ifamemoryerroroccurs).
(Note:CSRERR = 81)
Unless a memory error occurs, X = CBUF AD + BLKLEN. If a
memory error occurs, X points to beyond the bad address.
Interrupts are masked. U and Y are preserved , al I other modified.
*Z is a flag in the Condition Cocle(CC) register.

269

270

BLKOUT = [A008]
Writes a Block to Cassette
Entry Conditions
The tape should be up to speed and a leader of hex 55s shou Id have
been written if this first block to be written after a motor-on.
CBUF AD, located at 7E, contains the buffer address.
BLKTYP, located at 7C, contains the block type.
BLKLEN, located at 7D, contains the number of data bytes.

Exit Conditions
Interrupts are masked.
X = CBUFAD + BLKLEN.
All registers are modified.

WRTLDR = [A00C]
Turns the Cassette On and Writes a Leader
Entry Conditions
None
Exit Conditions
None

CHROUT = [A002]
Outputs a Character to Device
CHROUToutputs a character to the device specified by the
contents of6F (DEVNUM).

DEVNUM = -2 (printer)
DEVNUM = 0 (screen)
Entry Conditions
On entry, the character to be output is in A.

Exit Conditions
All registers except cc are preserved.

CSRDON = [A004]
Starts Cassette
CSRD0N starts the cassette and gets into bit sync for reading.

Entry Conditions
None

Exit Conditions
FIRQ and IR0 are masked. u and y are preserved. All others are
modified.

JOYIN = [A00A]
Samples Joystick Pots
J0YIN samples all four joystick pots and stores their values in
POTVALthrough P0TVAL + 3.

Left Joystick
Up/Down 15D
Right/Left 15C

Right Joystick
Up/Down 15B
Right/ Left 15A

For Up/Down, the minimum value = UP.

For Right/Left, the minimum value = LEFT.

Entry Conditions
None

Exit Conditions
Y is preserved. All others are modified.

POLCAT = [A0O0]
Polls Keyboard for a Character

Entry Conditions
None

Exit Conditions
z = 1, A = 0 (ifno key seen).
z = 0, A = key code, (ifkey is seen).
Band x are preserved. All others are modified.

PARTC

MEMORY CONTENTS

This table shows the contents of the Color Computer's memory.
The first column shows the memory address in decimal notation;
the second, in hexadecimal notation.

Decimal Hex Memory Contents
0-105 0-69 Direct page RAM (can be used by machine

language programs)
112-255 70-FF Direct page RAM (cannot be used by machine

language programs using any of BASIC's
subroutines)

256-273 100-111 Internal Use (Interrupt Vector's)
274-276 112-114 USRJMP - Jump to BASIC's USR routine
277-281 115-119 Can be used by machine language programs
282 llA Keyboard Alpha lock - 0 = not locked, FF =

locked
283-284 llB-llC Keyboard delay constant
285-337 llD-151 Can be used by machine language programs
338-345 152-159 Keyboard rollover table
346-349 15A-15D Joystick pot values
350-1023 15E-3FF Internal Use
1024-1535 400-5FF Video Memory
1536-4095 600-0FFF Program and Variable Storage (4K RAM)
1536-16383 600-3FFF Program and variable storage (16K RAM)
16384-32767 4000-7FFF Not Used
32768-40959 8000-9FFF Extended Color BASIC
40960-49151 A000-BFFF COLOR BASIC (BK ROM)
49152-65279 C000-FEFF Program Pak Memory
65280-65535 FF00-FFFF Input/Output

271

1·

i
I

i I

1 1
i I
I

274

APPENDIX A _______________________________ _

MUSICAL TONES

Your Computer can come fairly close to matching !allhough il can't e:rac:tly
match) the musical tones shown below. You may either use the piano keyboard
or the musical staff to produce electronic music.

If you're using the piano keyboard, the Compuler lone for each key is directly
over the key. For example, the Computer tone number for Middle C is 89.

If you're using the musical staff, the tone number fo r each nole is below the
note. For example the tone number for:

J
is 108.

IEJ E ~ ~ ~1 J ~ J ~

co r-. in (") 0
,.._

0) (\f I!) co 0) CX) Ol 0) 0 (\f (") ..,. ~
in .,... (") ..,. in co ,.._ CX) 0) ,- ,- ,- ,-

MIDDLE

F G A B C D E F G

~ r ~ r ~ II
(') Ol I!) 0 (D 0 in 0) (")

I!) in (D
,.._ ,.._

CX) co CX) Ol
.,... ,- ,- ,- ,- ,-

A B C D E

If the note is a flat, select the tone number immediately preceeding the note.

For example:

is 99.

If the note is a sharp, select the tone number immediately following the note.

For example:

is 117.

Chapter 5 shows how to program the Computer to play a song.

.....
0)

<D
N

CX)
N

..- M LO
N N N
N N N

N-.r<Dr---CX>
MM cry(') MM
C\JN C\JN NN

F G A B C D E F G A B

0)
M
N

C D

cry v
-.:t v
C\J N

E

275

276

APPENDIX B------------------------------

BASIC COLORS AND GRAPHICS CHARACTERS

These are the codes for the colors you can create on your screen. Chapters 1 and 9 show how to
create them.

BASIC COLORS

0 - black (absence of color)
1- green
2 -yellow

3 - blue
4- red
5 - buff

When using SET, color O will leave a dot's color unchanged.

GRAPHICS CHARACTERS

6- cyan ·
7 - magenta
8 - orange

These are the codes for the Color Computer's graphics characters. To produce them, use CHR$
with the character's code. For example, PRINT CHR$ (129) produces character 129.

I ' ~ ll ~ I \ I

128 129 130 131 132 133 134 135

I I
■ I I

136 137 138 139 140 141 142 143

To print all these graphics characters, type and RUN this program:

To create these characters in one of the colors below, add the appropriate number to the code.
For example, PRINT CHR$ (129 + 16) produces character 129, except the green area is yellow.

+ 16 -yellow
+32 - blue
+48- red

+64- buff
+80 - cyan

Chapter 18 explains how to use graphics characters.

+ 96 - magenta
+ 112 - orange

APPENDIXC ________________ _

PRINT @ SCREEN LOCATIONS

----.- ~--l=--::'.'.-77 ---·--,--,-7- -
3

o 1 1 : 2 1 3 1 4 1 s rl' 1 1 81 9 110:irn2113,111sj16:1111811~20:211222324i2SJ2fl,2~~ 2T o;31
0 I l ___ LI__I_I_LJ_L__,_U_ l~-'-~~~-1 _

64 __ J_Ll__l_! _ _l __ _l_lJ_µ_I_IJ _ _I ____ LW_i,_l;.-:1----)--~
96 I 111 11 ~-I I l __ i_[_~LjJ i l~ i_l_l_H-;-t---1--1

12~-,--.-:- 1 1 r- 1 _1__1_1_
1

__ ! _LJ-1 __ 1_, i , I , 1 , J_
160 I , I~I_LJ_, __ l_1_1_l__l_! __ LJ __ _l_J ____ _IJ_LL
192

I I

1+1-I-I-H-1

,-

1 l-1-1--1-h l I l l
::~- ·1---1-t--: 1 1 - ,-,-,-,1-ffi-h-r---~!--,
2a___,.- I ,_I_J_I , I 1:-i----: _ __.__
32

35

384 l
----~~~~I~-~-~~-~~-~-~

416

448
--+--+--+-+-+----:---t--+--+--+-+--'.---·!--i--11--+--1-J--+.--!--+-+-+---+-+--+-+--+--+--r-+- - -

480
~--'--'--~-'~·'---'----"'--'----'--'--'---'---'--'--'--'---'-__,___._~~_.__.__~- ~

277

APPENDIX D _________________________________ _

GRAPHICS SCREEN LOCATIONS

r o , Ll'\ ,... ' r-- ' r<ll

'"" 0 I I l
- - - - .

' ' ' I

I ·-1
- - . - - - --,._

>

I I

'
'

- - - - ' - - ' I ' I ' I

- ' - ,_ -- -i" I I I

' I I
' - - - - -

I - - - -
I ! '

- ..., __ 1 __ ,

I I ' '
) I l

I ' I . I

I I I l I I
- - . I_ -'- I i i - --

7 I j j I '
I

278

NOTES:

- - ----- - --------------

--- ----- ----

-- ----- ------

- ---------· ----------

-----·- -- -- -------- ----------------

--- -----------------

---- --------- - - ------

---- --- ----

279

APPENDIXE

ASCII CHARACTER CODES

These are the ASCII codes for each of the characters on your keyboard. The first column is the
character; the second is the code in decimal notation; and the third converts the code to a
hexadecimal (16-based number).

Chapter 15 shows how to use these codes with CHR$ to produce a character.

CHARACTER DECIMAL HEXADECIMAL CHARACTER DECIMAL HEXADECIMAL
CODE CODE CODE CODE

SPACEBAR 32 20 59 3B
33 21 < 60 3C

" 34 22 = 61 3D
35 23 > 62 3E
$ 36 24 ? 63 3F
% 37 25 @ 64 40
& 38 26 A 65 41

39 27 B 66 42
(40 28 C 67 43
) 41 29 D 68 44
* 42 2A E 69 45
+ 43 2B F 70 46

44 2C G 71 47
45 2D H 72 48
46 2E I 73 49

I 47 2F J 74 4A
0 48 30 K 75 4B
1 49 31 L 76 4C
2 50 32 M 77 4D
3 51 33 N 78 4E
4 52 34 0 79 4F
5 53 35 p 80 50
6 54 36 Q 81 51
7 55 37 R 82 52
8 56 38 s 83 53
9 57 39 T 84 54

58 3A u 85 55

280

CHARACTER DECIMAL
CODE

V 86
w 87
X 88
y 89
z 90
CD* 94
(I)* 10
8* 8
8* 9

(BREAK) 03
(CLEAR) 12
(ENTER) 13

HEXADECIMAL
CODE

56
57
58
59
5A
5E
OA
08
09
03
oc
OD

* If shifted, the code for these characters are as follows: ~1-~ARI is 92

(hex SC); CD is 95 (hex SF); (I) is 91 (hex SB); 8 is 21 (hex 15); and

8 is 93 (hex 5D).

LOWER-CASE CODES

These are the ASCII codes for lower-case letters. You can produce these characters by pressing
the (SHIFT)and (ID keys simultaneously to get into an upper/lower case mode.
The lower case letters will appear on your screen in reversed colors (green with a black
background).

CHARACTER DECIMAL HEXADECIMAL CHARACTER DECIMAL HEXADECIMAL
CODE CODE CODE CODE

a 97 61 n ll0 6E
b 98 62 0 lll 6F
C 99 63 p ll2 70
d 100 64 q 113 71
e 101 65 r 114 72
f 102 66 s 115 73
g 103 67 t 116 74
h 104 68 u ll7 75
i 105 69 V 118 76
J 106 6A w 119 77
k 107 6B X 120 78
1 108 6C y 121 79

m 109 6D z 122 7A

281

282

APPENDIX F-------------------------------

ANSWERS TO EXERCISES
CHAPTER4

SOUNDing tones from bottom of range to top and back to
bottom:

10 FOR X = 1 TO 255
20 SOUHD X, 1
30 NrnT X
4£1 FOR >: = 255 TO 1 STEP -1
50 SOUND X, 1
60 NEXT X

CHAPTER 5

Lines added to clock program:

92 FORT= 2£10 TO 210 STEP 5
94 SOUND T,1
95 NEXT T
97 FORT= 210 TO 200 STEP -5
98 SOUflD T, 1
99 flEXT T

Program which Shows 9 colors for 1 second each:

10 FOR C = 0 TO 8
20 CLS(C)
30 FOR X = 1 TO 460
40 NEXT X
50 NEXT C

CHAPTER 7

Craps Game

10 CLS
20 A= RND(6)
30 B = RND(6)
40 R =A+ B
50 PRINT@ 200, A
60 PRINT@ 214, B
70 PRINT @ 394, ·vou ROLLED A" R
80 IF R = 2 THHI 600
90 IF R = 3 THEN 600

100 IF R = 12 THHI 600
110 IF R = 7 THEH 500
120 IF R = 11 THEH 500
13€1 FOR >; = 1 TO 800
140 HE>:T ,:
150 CLS
160 PRUIT di 195, "ROLL AHOTHER" R "AND VOU WIN"
170 PRUIT aJ 262, "ROLL A 7 AND VOU LOSE"
180 PRUIT @ 420, "PRESS <HITER> l~HEt~ READV"
lE:5 PRUIT d1 456, "FOR VOUR NEXT ROLL"
190 HIPUT A$
WO X = RN{)(E,)
210 V = Rtl()(6)
22HZ=>:+V
225 CLS
230 PRUIT@ 200, X
240 PRUIT @ 214, V
250 PRUIT d1 ~:94, 11\'0U ROLLED A" Z
260 IF Z = R THEil 500
270 IF Z = 7 THEN 600
2t:0 GOTO 180
500 FOR :~ = 1 TO 1000
510 MEXT >:
515 CLS
520 PRUIT @ 230, "VOU' RE THE WIMNER"
530 PRINT @ 294, "COt·lGRATULATIOflS! ! ! "
540 GOTO 630
600 FOR X = 1 TO 1000
610 NEXT >:
615 CLS
620 PRINT@ 264, "SORRV, VOU LOSE"
630 PRUIT @ 458, "GAl1E' S OVER"

Russian Roulette program

5 FOR H = 1 TO 10
10 PRINT "CHOOSE VOlR CHAMBER(l-10)"
20 Itf•UT X
30 IF X = RMD(10) THEH 100

40 SOLIHO 200, 1
50 PRINT "--CLICK-"
60 HEXT N
65 CL5
70 PRUIT @ 230, "CONGR.ATLILATIONS ! ! ! "
80 PRUIT @ 265, "YOU MAHAGED"
90 PRINT @ 2%, "TO STA\' ALIVE"
95 Et[)
100 FORT= 133 TO 1 STEP -5
110 PRUIT ·BA~IG! ! ! ! ! 11

120 SOUtlD T, 1
130 NEXT T
140 CLS
150 PRUIT @ 2"30, "SORR'r', YOU' RE DEAD"
160 SOUHD 1, 50
170 PRHIT @ 290, "tlEXT VICTIM PLEASE"

CHAPTER 10

Test Your Arithmetic Program

5 CLS
6 PRIHT @ 230, "YOUR NAME";
8 IHPIJT N$
10 CLS
15 T = T + 1
20 X = RHD(100)
30 Y = RND(100)
40 PRINT@ 228, "WHAT IS" X "+" Y;
45 Itf'UT A
50 IF A = X + I/ THEN 82
60 PRUIT @ 326, "THE AHSlJER IS" X + Y
70 PRINT @ 385, "BETTER LUCK ~IEXT TIME, " ~I$
80 GOTO 100
82 CL5(7)
83 FORM= 1 TO 4
84 SOUND 175, 1
85 SOOHD 200, 1
86 NEXT t1
87 a.5
90 PRINT @ 232, "CORRECT," N$ "! ! ! "
95 C = C + 1
97 PRINT @ 299, "THAT IS"

98 PRINT@ 322, C "OUT OF" T "CORRECT AHSMERS"
99 PRUIT ~1 362, ClH:100 "% CORRECT"
100 PRUIT @ 420, "PRESS <HITER> l,JHEH READY"
102 PRUIT @ 458, "FOR ANOTHER"
105 It-lPIJT A$
110 GOTO 10

CHAPTER 11

Table of Squares

5 CLS
7 PRUIT @ 38, "TABLE OF SGUARES"
8 PRIHT
10 P = 2
20 FOR N = 2 TO 10
25 GOSUB 2000
30 PRINT N "*" H "=" E,
40 NEXT t-1

50 HID
2000 REM FORMULA FOR RASIHG A ~PJt1BER TO A POI.JER
2010 E = 1
2020 FOR >1 = 1 TO P
2030 E = E * N
2040 NEXT X
2050 IF P = 0 THEl-l E = 1
2060 RETURN

CHAPTER 12

Editing a Sentence

10 PRUIT "PIPE A SENTEHCE : "
15 HIPUT 5$
20 PRUIT "Tl/PE A PHRASE TO DELETE"
23 INPUT D$
25 L = LHl(D$)
30 PRUIT "PIPE A REPLACEMNT PHRASE"
35 HPUT R$
40 FOR }! = 1 TO LEN(S$)
50 IF l1ID$(5$,X,L) = D$ THEH 100
60 NEXT X
70 PRINT D$ •-- IS HOT HI VOUR SEHTEHCE"
80 GOTO 20

283

284

100 E = X - 1 + LHl(D$)
110 HS$ = LEFT$(5$,X-1) + R$ + RI6HT$(5$,LEN(5$) - E)

120 PRHff "HEM SHITEHCE IS : "
130 PRIHT HS$

CHAPTER 13

Computer Typing Test
10 CLS
20 Hf'UT "PRESS <ENTER> bJHEN READY TO T'r'PE THIS PHRASE"; E$
30 PRUIT "HOW 15 THE TIME FOR ALL GOOD MEH"
40 T = 1
50 A$ = IHKE~'$
60 IF A$ = "" THHl 100
70 PRINT A$;
80 B$ = B$ + A$
90 IF LEN(B$) = 32 THEN 120
100T=T+1
110 GOTO 50
120 S = Tl74
130 11 = 5160
140 R = 81M
142 FOR X = 1 TO 32
144 IF MID$("HOW 15 THE TIME FOR ALL GOOD MEH", :,(, 1) 0 t110$(13$, >:
,1) THEN E = E + 1
146 NEXT X
150 PRUIT
160 PRIHT "'IOU TYPED AT - 11 R "-1.JDSl MUl"
170 PRUIT "MITH" E "ERRORS"

CHAPTER 15

Forward spacing dot:
10 CL5(0)
20 H = 63
25 SET(H,14,3)
30 A$ = INKP/$
40 IF A$ = CHR$(8) THEH 60
45 IF A$= CHR$(9) THEH 100
50 GOTO 30
60 H = H - 1
65 IF H < 0 THEtl H=0: GOTO 30
70 SET<H, 14, 3)
75 RESET(H + 1, 14)
80 GOTO 30

100 H = H + 1
110 IF H) 63 THEH H=63: GOTO 30
120 SET<H, 14,3)
130 RESET<H-1,14)
14(1 GOTO 30

CHAPTER21

Word processor challenger:
1 CLEAR 1000
5 Dil'l A$(5€1)
7 CLS
10 PRIMT "T'r'PE A PARAGRAPH"
16:
20 PRINT "PRESS {/) bJHEM FUHSHED"
30 >: = 1
40 A$= INKEV$
50 IF A$ = 1111 THEN 40
60 PRHff A$;
70 IF A$ = "/ 11 THEN 105
8(1 A$0D = A$(X) + A$
90 IF A$="." OR A$= 11?11 OR A$="!" THEN X = X + 1
100 GOTO 40
105 PRUlT: PRUIT
11(1 HIPUT "(1) PRUIT OR (2) REVISE"; R
120 CLS
130 OHR GOSIJB 1000, 2000
140 GOTO 105
1000 REM PR HIT PARAGRAPH
1010 FOR 'I = 1 TO X-1
1020 PRUIT A$('?);
1030 NEXT V
1040 RETURN
2000 REM REVISE PARAGRAPH
2010 FOR V = 1 TO X-1
2020 PR IHT 'I "--" AWi)
2030 ~lEXT I/
2040 IHPUT "SENTENCE TO REVISE"; S
2045 IF S > X-1 OR S < 1 THEN 2040
2050 PRINT A$(5)
2060 PRIHT "T'r'PE PHRASE TO DELETE"
2070 UlPUT D$
2080 L = LEH<D$)
2090 PRIHT "TVPE A REPLACEMENT P~ASE"
2100 HlPUT R$

2110 FOR Z = 1 TO LEH(A$(5))
2120 IF 11ID$(H$(S), Z, U = D$ THEN 2160
2130 HEXT Z
2140 PRIHT D$ "-- IS ~lOT IN VOLIR SEHTEHCE"
2150 SOTO 2060
2160 E = Z - 1 + LEN(D$)
2170 A$(S) = LEFT$<A$(S), Z-1) + R$ + RIGHT$(A$(5), LEN<A$(S)) -E)

2180 RETURN

CHAPTER23
Alphabetizing book collection:

1 CLS: CLEAR 1000: DIM TH10B), A$(100), 5$(100), M$(100) , 2(100
)

2 PRINT "POSITION TAP£ -- PRESS PLA\' AHD RECORD"
4 INPUT "PRESS <EHTER) MHEtl REHDV"; R$
8 REM
9 REM OUTPUT TO TAPE
10 OPEH "O", lt-1, "BOOKS"
15 CLS: PRUIT • HlPUT YOUR BOOKS -- TYPE <XX> WHEH FINISHED"
20 IHPUT "TITLE"; T$
25 IF T$ = "XX" THHl 50
26 Hf'IJT "AUTHOR"; A$
28 HIPUT "SUBJECT"; 5$
30 PRINT #-1, T$, A$, 5$
40 GOTO 15
50 CLOSE 1-1
60 CLS: PRUIT "REbJUIO THE RECORDER AHD PRESS PUllr'"
70 IHPIJT "PRESS <EtlTER> lJHEH READ\/"; R$
74 R8'1
76 REM I ~lPIJT FROM TAPE
78 B = 1
80 OPEH "I", 1-1, "BOOKS"
85 IF EOF(-1) THEH 120
90 IHPIJT #-1, T$(8), A$(8) , 5$(8)
95 B = B + 1
110 GOTO 85
120 CLOSE i-1
490 PRIHT
500 ItlPUT "SORT BY (1) TITLE (2) AUTHOR OR (3) SUBJECT"; A
510 IF A > 3 OR A < 1 THEH 500

520 Oh A 605UB 1000, 2000, 3000
530 GOSIJB 4000
540 PRUIT
550 FOR X = 1 TO B-1
560 PRUIT "TITLE : • T$(Z<X))
570 PRIHT "AUTHOR : • A$(Z(X))
580 PRIHT "SUBJECT : 11 5$(Z(X))
590 MEXT X
600 PRUIT: GOTO 500
800 REM
900 li'B1 BUILD M$ ARRA1/

1000 FOR ;: "' 1 TO B-1
1010 M$(X) = T$(X)
Hl20 HEXT X
1030 RETURH
2000 FOR X = 1 TO B-1
2010 Mt(X) = A$(X)
2020 MEXT X
2030 RETURN
3000 FOR X = 1 TO B-1
3010 M$(X) = 5$(X)
3020 ~lE>ff X
3030 RETURN
3900 REM
4000 REM SORT ROUTIHE
4005 T = 1
4010 X = 0
4020 X = ,: + 1
4030 IF >: > B-1 THEN RETIJRH
4040 IF M$(X) = "ZZ" THEH 4020
4(150 FOR V = 1 TO B-1
4060 IF 11$(1/) < l1$(X) THEH X = 1,1

4065 Z<D = >l
4080 NEXT Y
4085 T = T + 1
4090 M$(X) = "ZZ"
4100 SOTO 4010

285

286

CHAPTER25

Deal two-dimensional card deck:
10 DIM 5$(4), N$(13), T(4,13)
20 DATA SPADES, HEARTS, DIAMONDS, CLUBS
30 F~ X = 1 TO 4
40 READ 5$(X)
50 NEXT X
60 DATA ACE, 2, 3, 4, 5, 6, 7, 8, 9, 10, JACK, QUEEH, KING
70 F~ X = 1 TO 13
80 READ H$(X)
90 HEXT X
100 FOR 5 = 1 TO 4
110 FOR ti = 1 TO 13
120 T<S, H) = (5-1) * 13 + H
130 NEXT H,5
140 FOR X = 1 TO 52
150 S = RtlD(4): ti ;: RtlD(13)
160 IF T<S,N) = 0 THEtl 150
170 T<S,H) = 0
180 PRINT H$(tD "-" 5$(5),
190 HEXT X

APPENDIX G

SUBROUTINES

These subroutines will let you run programs which require advanced math functions not
directly available in COLOR BASIC.

Each subroutine listing has a set of instructions in the margin. Study them closely. You'll see
that some subroutines require other subroutines for internal calculations. You must enter
these "auxiliary subroutines" when the instructions call for them.

NOTE:Accuracy of the subroutines is less than the accuracy of the COLOR BAS/C's math operators and
functions. This is due to two factors: 1. The subroutines contain many chain calcul,ations, which tend to
magnify the small error of individual operations. 2. These subroutines are only approximations of the
functions they replace. In general, the subroutines are accurate to five or six decimal pl,aces over much of
their allowable range, with a decrease in accuracy as the input approaches the upper or lower limits for
input values.

SQUARE ROOT
Computes: SQR(X), VX
Input: X, must be greater than or equal to zero
Output: Y
Also uses: W,Z internally
Other subroutines required: None
How to call: GOSUB 30030

EXPONENTIATION
Computes: X Y (X to the Y power)
Input: X, Y. If X is less than zero, Y must be an odd integer
Output: P
Also uses: E, L, A, B, C internally. Value of X is changed.
Other subroutines required: Log and Exponential
How to call: 30120

30000 Et·lD
30010 REM :+:SQUARE ROOT* HlPUT X, OUTPUT lr'
30020 REM ALSO USES lJ €, Z HffERHALL V
30030 IF X = 0 THEM 'r' = 0: RETURU
:30040 IF >: > 0 THEt·l 30060
30050 PRUIT "ROOT OF HEGATll,IE HUMBER?" : STOP
30060 l/ = >: * .5: Z=0
30070 ~J = <>VV-'r') * ,5
30080 IF <iJ=0) + (M=Z) THEH RETURN
30090 'I = 'r' + ~J : Z = lJ: GOTO 30070

30000 EHD
30100 REM *EXPOHEHTIATION* HIPIJT X,V; OUTPUT P
30110 REM ALSO USES E,L,A,B,C HITERMALL~'
30120 P=1: E=0: IF l/=0 THHl It.HURM
30130 IF (X(0)AHD(rnwn=ll) THEH P=l-L'>l<l/+4>1< IHT<W2) : X=->:
30140 IF X<>0 THEH GOSUB 30190: X=V*L: GOSUB 30L.'50
30150 P=P*=E: RETURN

287

288

LOGARITHMS (NATURAL AND COMMON)
Computes: LOG(X) base e, and LOG(X) base 10
Input: X greater than or equal to zero
Output: L is natural log (base e), X is common log (base 10)
Also uses: A, B, C internally. Value of X is changed.
Other subroutines required: None
How to call: GOSUB 30190

EXPONENTIAL
Computes: EXP (X) (e to the X power)
Input: X
Output: E
Also uses: L,A internally. Value of X is changed.
Other subroutines required: None
How to call: GOSUB 30250

TANGENT
Computes: TAN(X)
Input: X in degrees
Output:Y
Other subroutines required: Cosine
How to call: GOSUB 30310

30000 Et-ID
30170 REM *MATURHL & COMMotl LOG: HIPIJT X, OUTPUT L, >:
30175 REM OUTPUT L IS t·lHTIJRAL LOG, OUTPIJT X I 5 COMMON LOG
3(1180 REM ALSO USES A,B,C IMTERHALLV
30190 E=O: IF >'.<0 THEtl PRUIT "LOG UMDEFHIED AT"; >(: STOP
3(1195 R=l: 8=2: C=.5
3(1200 IF >(>=A THEt·I 1'.=C:t.>(: E=E+A: GOTO 30200
:X1205 IF WC THEM >'.=B*;,:: E=E-R: GOTO 302t15
30210 :,(=0(-. 707 IIJ?)/ 0(+. 7€1? IIJ?) : L=::(:t::,:
:3(1215 L=(C <. 598979*L +, %147D*L +2. 885~:9)>1:i(+E-. 5)*. 693147
30220 IF ABS(U < lE-6 THEtl L=€1
~:0225 >(=L*. 4342945: RETIJRM

~:0000 EMD
30240 REM *EXPOHEMTIAL* IMPUT >:, OUTPUT E
30245 REM ALSO USES L, A ItHERMALLV
30250 L=Itn<1.4427*>D+1: IF L<127 THEM 30265
30255 IF >DO THEH PRINT "Ol,IERFLOM": STOP
30260 E=0: RETURM
30265 E=.693147>1:L->(: li=1.32988E-3-1.41316E-4*E
30270 R=(<R*E-8. 301%E-3)>t:E+4.16574E-2HE
30275 E=«<A-. !66665)~:E+.5)*E-D•t:E+1: A=2
30280 IF L < =0 THEM A=, 5: L =-L: IF L =0 THEH RETIJRH
30285 FOR >(=1 TO L: E=R*E: ~!EXT X: FHURH

30000 HID
30300 REM *TAt·IGHIT* HIPLIT X IH DEGREES, OUTPUT V
30310 IF AB5(5Hl((90-X)157. 29577951)){ !E-7 THEM PRINT "UHDEFUIED
": STOP
30320 V=SHl(X157.29577951)1SIH((90-X).157. 29577951)
30330 RETIJRH

COSINE
Computes: COS(X)
Input: X in degrees
Output: Y
Other subroutines required: None
How to call: GOSUB 30360

ARC COSINE
Computes: Arccos(S), angle whose cosine is S
Input: S, 0< = S<= 1
Output: Y in degrees, W is in radians
Also uses: X,Z internally
Other subroutines required: ArcSine
How to call: GOSUB 30500

ARC SINE
Computes: ArcSin(S), angle whose sine is S
Input: S, 0<=S<= l
Output: Y in degrees, Win radians
Also uses: X, Y internally
Other subroutines required: None
How to call: 30550

:30000 HID
30350 REM *COSHlE* HlPUT X IM DEGREES, OUTPUT 'I
30360 'l=Sit-1((90-X)/57.29577951)
30365 RETIJRM

~:0000 END
30500 REM *ARCCOS* HlF'UT S, OUTPUT V, l.,J
:3£1510 REM 1t' IS HI DEGREES, l,,I IS HI RADIAf6
:30520 GOSUB 30550: V=90-V: l.,J=l. 570796-l,J: RETURN

30:300 HID
30530 REM *ARCS HI SUBROUTit·IE * HlPUT S, OUTPUT V, M
:3€1535 REM V IS Hl DEGREES, t,.1 IS HI RADIANS
~:0540 REM ALSO USES l,IAR IHBLES X, Z INTERHALL V
30550 >(=S: IF AE:S(S)<=. 707107 THEH 30610
30560 i(=l-S>t:S: IF >(<O THEN PRINT S; "IS OUT OF RA~IGE": STOP
30565 IF >(=0 THEN t,J=90l 57. 29577951: GOTO 30630
30570 l.1J=>V2: Z=O
:3~680 V=<>MH,J)/2: IF (A85(',')<.1E-8)AHD<V=Z) THEN X=W: GOTO 3061
Q

:30600 bJ=bJ+V: Z=V: GOTO 30580
30610 V=X+X*X*>V6+ X*>Ml*X*X*. 075+ X*X*>N:X*>N:X*X*4. 464286E-2
30620 l.1J=V+X*X*X*X*>(*X*X*>(*X*3. 038194E-2
3£1625 IF ABS(S)). 707107 THHI bJ=l.570796-1,J
30630 'Ml*:57. 29577951: RETURN

289

290

ARC TANGENT
Computes: ATN(X), angle whose tangent is X
Input: X
Output: C in degrees, A in radians
Also uses: B,T internally. Value of X is changed.
Other subroutines required: None
How to call: GOSUB 30690

:30000 Et-JD
30660 REM *ARCTAHGEHH IHPUT X, OIJTPIJT C,A
30670 REM C IS HI DEGREES. A 15 HI RADIANS
30680 RB-1 ALSO USES B, T ItlTERHALL'I
30690 T=SGMOD: X=ABS(X): C=0
30700 IF >:> 1 THEM C= 1 : >I= 1JX
30710 A=X*>I
30720 B=((2. 86623E<:ii=A-1. 61657E-2)*A+4. 29096E-2)*A
30730 B=« «B-7. 5289E-2)>t.A+.106563)>1<A-.142089)t-A+.199936)*A
30740 A=«B-. 333332)>t-A+D*>(
30750 IF C=1 THEM A=l.570796-A
30760 A=T*A: C=Ai1=57. 29577951: RETURN

APPENDIX H --------------------------------

SPACE GUNS

10 CLEAR 1000
20F~Y=0T01
30 C = <Y+D*16
40 5$(\') = CHR$(131 +C)+CHR$(139+C)+CHR$(130+C)
50 52$(Y) = CHR$(128+C)+CHR$(136+C)
60 HEXT Y
100 FOR Y = 0 TO 1
105 C = JOY5TK(0)
110 A(1c') = JOY5TK(0+\/>1=2)
120 B<Y) = JOVSTK(l+(W=2))
130 IF A(Y) > 59 THEN A(\-') = 59
140 B(I/) = Uff(B(V).14) * 4
150 L(\') = B(Y) * 8 + INT<A(Y)l 2)
160 IF L<\') >= 480 -THEH L(Y) = L<V) - 32
170 HE}ff ~·
100 a.5(0)
190 FOR V = 0 TO 1
200 PRHff @ l(Y), 5$(1/);
210 PRINT @ L(l/)+32, 52$(1/);
220 IEXT Y
500 P = PEEK(652P.,0)
510 IF P = 125 OR P = 253 THEH GOSUB 1000
530 GOTO 100
800 REM
900 REM FIRE GUH ROUTIHE
1000 lJl = Hff<B<D.12)+1
1010 Hl = A(l) + 2
1020 IF A<l) > A(0) TH8~ 1100
1030 FOR H = Hl + 3 TO 63
1040 IF POUIT<H,lJD = 2 THEH 50l.N-[) 100,2
1050 SET(H,lJ1,4)
1060 IF H <= H1 + 4 THEtl 1080
1070 RE5ET(H-2, lJ1)
1080 HEXT H
1090 RETURN
1100 FOR H = H1 TO 4 STEP -1
1110 IF H = Hl THEtl 1160
1120 IF POIHT(H-4,lJD=2 THEN SOU~[) 100,2

SAMPLE PROGRAMS

11~1 5ET(H-4,lJ1,4)
1140 IF H >= Ht - 2 THEM 116€1
1150 RESET<H-2,Ul)
1160 tlE)ff H
1170 RETIJRM

BOUNCING BALL

5 CLEAR 12
8 HlPUT "BACl(GROUtlD COLOR(l-B)"; C
9 CLS(C)
10)(=13: Y=13
15 XM = 20: WI = 15
400 F=0
410 XT = X: 1r'T = V
420 X = >: + XM: V = V + 1/M
430 rn = >:: Tl/ = 1/: Tl = XM: T2 = VM
440 G05UB 1000
450 X = rn: I/ = TV:)(t1 = T1: VM = T2
455 H = Uff(XTl 2)*2: lJ = Hff<VTl 2)*2
460 SET(H,U,C): SET(H+l,U,C)
462 SET(H,V+l,C): 5ET(H+1,V+1,C)
470 RESET(X,1/)
480 GOTO 400
499 REM
1000 REM CHECK BOUNDARIES
1010 IF TX > 63 THEJI rn = 63: Tl = -Tl
1020 IF TX < 0 THEN TX = 0: Tl = -Tl
1030 IF TV > 31 THEH TY = 31: T2 = -T2
1040 IF TV < 0 THEtl Pl = 0: T2 = -T2
1099 RETURN

291

292

BLACKJACK

"i REH BUILD ARRAVS
7 [)111 5$(5), N$(13L D(52), P(5), C:(5)
10 DATA 16, 32, 48, 96, 1
20 DATA *ACE**, *Tli.lO**, THREE*, :;:FOUR*, *FIL'E*, *SJ>:,1,*, 5EtJEN*,
EIGHT*, *NHlE*, *TEN**, >1:JACK*, QUEEtl*, *Imm*
30 FOR X = 1 TO 5: READ s: 5$(X) = CHR$(143+5): NE:>:T :,:
40 FOR)(= 1 TO 13: READ N$: N$(X) = 1·1$: t·IEXT >(

45 CLS(6)
46 PT= 0: CT= 0
47 FOR >: = 1 TO 5: P(X) = 0: C(X) = 0: NEXT
50 FOR X = 1 TO 52: [)00 =)(: NEXT)l

60 FOR X = 1 TO 5: GOSUB 1000: POD = z: NEXT)(
70 FOR X = 1 TO 3: GOSUB 1000: COO = z: tlDn)l
72 REM
75 REM PRUIT F'LAVER' S HAtlD
80 L = 257
90 FOR M = 1 TO 2: C = F'(M): GOSUB 500: PT = PT + T: tlE)(T
100 FOR M = 1 TO 3: S = 5: GOSUB 2000: tlEXT
102 REM
105 REM PR HIT COMPUTER' 5 HAl·lC•
110 L = 10
120 5 = 5: GOSUB 2000
130 C = C(2): GOSUB 500: CT= CT+ T
150 PRHIT @ 8, 11 C1)MPUTER' 5 HAND";
160 PRIHT@ 267, "VOIJR HAND";
200 L = 269: K = 3
205 PRUIT ~ 230, "ANOTHER CARD(l/1N)?";
210 R$=UIKP/$: IF Rt="" THEtl 210
220 IF R$ = "U" THEN 255
230 C = P(K): GOSUB 500
240 PT= PT+ T
242 FOR X = 1 TOK
244 IF PT > 21 AtlD <P00-1)l 13 = IHT«P(X)-1)113) THEN PT = PT -

10
246 NrnT >l
247 IF PT > 21 THEN PRUIT @ 488, "VOU BUSTED!!!";: GOTO 400
250 K = K + 1: IF K <6 THEH 205
255 L=10
260 C = C(1): GOSUB 500: CT= CT+ T
360 IF PT < =CT THEN 380
370 PRINT 4l 484, "COtlGRATULATIOtlS bJitlHER ! ";

375 GOTO :::90
380 PRINT ~1 487, "TOUGH LUCK, KIC<'';
390 REM
400 PRIMT @ 23ft, "ANOTHER GAME(V1t-1)?11

;

410 R$=IMKEV$: IF K1="" THEN 410
420 IF R$ = 11

\-'
11 THEN 45 ELSE Et·lD

430 IF N = 1 THEt-1 T = 11
500 GOSUB 4000: GOSUB 2000
510 GOSUB 3000: RETURN
900 REM
1000 REM [)EAL THE CARDS
1005 Z = Rl-lD(52)
1010 IF D(Z) = 0 THEt-11000
1020 D<Z) = 0
1030 RETURN
1900 REM
2000 REM PRUIT THE SUITS
2005 L1 = L
2010 FOR >l = 1 TO 6
2015 L1 = L1 + ~:2
2020 FOR V = 1 TO 5
2030 PRUIT ~1 L1 + (V-D, 5$(5);
2040 t·IE>(T V, >I
2045 L1 = 0: L = L + 6
2050 RETURN
2900 REM
3000 REM PRHIT THE NUMBERS
:3005 L1 = L - 6
3010 FOR >I = 1 TO 6
3020 Li= L1 + 32
3030 PRUIT @ L1 +2, 11Il)$(H$(H), X, 1);

3040 NE>ff X
3045 L1 = 0
3050 RETURN
3900 REM
4000 REM COMPUTE HUMBER AHD SUIT
4005 S = HIT«C-1)113)+1
4010 N = C-<S*13-13)
4015 REM COMPUTE F'OHIT VALUE
4020 IF N = 11 OR N = 12 OR tl = 13 THEN T = 10 ELSE T=H
4030 IF ti = 1 THEN T = 11
4040 RETURN

KALEIDOSCOPE

10 CL50
20 X=RHD<32)-1
30 1r'=Rt1D(16)-1
40 Z=RN0(9)-1
SO GOSLIB90
60 GOT020
90 IFZ=O OR Rt1D(7)=3THEH150
100 SET(31-);, 16+\',Z)
110 5ET(3H;, 15-V, Z)

120 SET(32+);, 16+\',Z)
130 SET<32+X,15-V,Z)
140 RETLIRM
150 RESET<3H/, 16+V)
160 RESET<3Hl, 15-11')

170 RESET<32+)(, 16+V)
180 RESETC:32+>:, 15-'i)
190 l<fTLIR~l

ELECTRONIC DICE

4 CLEAR 2000
5 CL5(3)
6 DIM D8$(6)
8 [)JM DF(2D, P(6), D$(6)

10 REM FACES IF DIE
20 FOR X = 1 TO 21
30 READ DFOD
40 HEXT >(

50 DATA 39
60 DATA 14, 64
70 DATA 14, 39, 64
80 DATA 14, 20, 58, 64
90 DATA 14, 20, 39, 58, 64
100 DATA 14, 20, 36, 42, 58, 64
105 FOR X = 1 TO 7
110 l<fl1
120 REM PLACE Hl ARRAV DF
130 FOR X = 1 TO 6

140 READ POO
150 1-IE>(T)/
16€1 DATA 1, 2, 4, 7, 11, 16
165 REM
17€1 REM BIJIL[l DIE STRING
175 FOR)/ = 1 TO 6
180 M = P()D
185 FOR V = 1 TO 7
1 %1 FOR Z = 1 TO 11
192 IF (V-D*11+Z <> CiF<M) THEl·l 200
194 [)$(1() = [:<$OD + CHR$(128)
1% M = M + 1
197 IF M = 22 THEH M = 0
198 IF M = X THEN M = 0
199 GOTO no
20ft [)$(:~) = C1$0D + CHR$(143+96)
2:30 llE>(T Z

;2,40 Ef1R,,Z: €! _T~ .. 31-p .. ., ,..
,:50 Dl-<.,,) - D$0,,i + t.:HR$<. 14,.,+..:,2)
260 HE>ff Z
270 ME>:T I/,)(
480 REM
4 90 REM ROLL [)J CE
500 FORT= 1 TO 10
510 A=RMD(6) : B = RND(6)
520 PRHff @ 35, D$<A);
530 PRHff :it 273, D$(8) ;
540 HE>:T T •
550 PRHff @ 113, "PRESS AIW KEV";
560 PRINT @ 145, "FOR NEXT ROLL";
570 Kt=IMKEV$: IF K$= 11

" THEl·l 570
580 GOTO 500

293

294

PLAY BACK YOUR TUNE

5 om A(25), 5$(13), 8(200): V=l
10 FOR): = 1 TO 25: READ A(X) : NEXT X
20 DATA 89, 99, 108, 117, 125
30 DATA 133, 140, 147, 153, 159
40 DATA 165, 170, 176, 180, 185
50 DATA 189, 193, 197, 200, 204
60 DATA 207, 210, 213, 216, 218
70 FOR >: = 1 TO 13: READ S$(X): NEXT X
80 DATA A,M,5,E,D,F,T,G,1/,H,U,J,K
90 CL5
92 PRUIT @ 167, "COMPOSE I/OUR SONG"
94 PRUIT @ 227, "USE KEI/S OH 2ND S, 3RD ROWS"
96 PRINT @ 292, "PRESS <X> I.IHEH FINISHED"
100 P$ = IHKEI/$
110 IF P$ = nu THEN 100
115 FOR X = 1 TO 13
120 IF P$ < > S$(X) THEH 150
130 SOUHD A(X), 5
140 B(I/) = >:
145 'r' = 'c' + 1
150 ~IEXT X
160 IF P$ <> "X0 THHI 100
165 CLS
170 PRIHT - 202, "SOHG PLABACK"
174 PRIHT@ 264, "WHICH KEl/(1-11)";
176 IHPUT K
180 FOR X = 1 TO V-1
190 SOUHD A<B<>D+K), 5
200 1£>,'T X
210 OOTO 165

LEARN THAT TUNE

10 DIM M(50), T(8)
20 FOR B = 1 TO 8
~:0 READ T<B)
40 NE)ff B
50 >: = 1
60 M<>D = RND(8)
70 FOR Y = 1 TO >:
80 CL5(t1(Y))
90 PRUIT @ 2:39, 11(1,');
100 SOUND T<M<Y>), 8
110 NEXT Y
120 CLS
Dl PRUIT@ 2:31, "PLAY BACK THE TIJ~lE";
140 FOR V = 1 TO >:
150 T = 1
160 K$ = INKEV$
170 T = T + 1
180 IF T > 150 THEN :310
190 IF K$ = 1111 THEN 160
200 K = VAL(K$)
210 IF K <> M(Y) THEN 310
220 CLS<IO
230 PRINT @ 239, K;
240 SOUND T<K), 3
250 HEXT Y
260X=>:+1
270 CLS: PRUIT @ 230, "LISTEN TO NEXT TUHE";
280 FORT= 1 TO 500: NEXT T
290 CLS: PRINT @ 230, "LISTEN TO NEXT TU
300 GOTO 60
310 CLS(0)
320 PRIHT @ 235, "','OU LOSE";
330 SOUHD 1, 25
340 DATA 89, 108, 125, 133, 147, 159, 170, 176

INVENTORY
SHOPPING LIST

5 CLEAR 2000: DIM 5$(100)
10 REM INllHITOR~'lSHOPPING LIST
20 CLS
30 PRUIT @ 71, "DO \'OU ~JAHT TO--•
40 PRHIT @ 134, "< D IHPIJT ITEMS"
50 PRINT @ 166, "(2) REPLACE ITEMS"
60 PRUIT @ 198, 11 (3) ADD TO THE LIST"
70 PRUIT @ 230, "(4) DELETE ITEMS"
80 PRINT @ 262, "(5) PRINT ALL ITEMS"
90 PR HIT @ 294, " (6) SAUE ITEMS OM TAPE"
100 PRUIT @ 326, "(7) LOAD ITEMS FROM TAPE"
110 PRINT @ 395, "(1-7)";
120 HlPLIT M
130 IF M < 0 ORM > 7 THEN 10
140 ON 11 GOSLIB 1000, 2000, 1020, 3000, 4000, 5000, 6000
150 GOTO 10
900 REM
1000 REM INPUTlADD ITEMS
1010 'l = 1
1020 CLS: PRUIT @ 8, "IHPIJTiADD ITEMS"
1030 PRUIT @ 34, "PR£5S <HITER> ~IHEH FIIHSHED"
1040 PRINT: PRINT "ITEM" I/;
1045 HIPLIT 5$(V)
1050 IF 5$(',') = nn THEH RETURN
1060 l,' : 't' t 1
1070 GOTO 1040
1900 REM
2000 REM REPLACE ITEMS
2005 H = 0
2010 CLS: PRHlT @ 9, "REPLACE ITEMS"
2020 PRil-lT @ 34, "PRESS <HITER> WHEH FIHISHED"
2030 PRUIT: HlPUT "ITEM HO. TO REPLACE"; H
2040 IF ~l = 0 THEN RETURN
2050 HlPUT "REPLACEMHIT ITEM"; 5$(H)
2060 GOTO 2000
2900 REM
3000 REM DELETE ITEMS
3005 N = 0
3010 CLS: PRINT@ 9, "DELETE ITEMS"
3020 PRIHT @ 34, "PRESS <ENTER> WHEH FHHSHED"
3030 PRUIT: IHPUT • ITEM TO DELETE"; H
3035 IF H > Y-1 TIEN 3030

:3040 IF H = 0 THEl·l RETURl·l
3050 FOR X = H TO 'l-2
3060 S$0D = S$(X+D

3080 S$(X) = 1111

~:090 V = V-1
3100 GOTO :3000
3900 REM
400f1 REM PRINT ITEMS
4010 FOR :,; = 1 TO 'l-1 STEP 15
40W FOR Z =); TO >M4
40:30 PRUIT Zi 5$(2)
404£1 HE>ff Z
4050 UlPUT "PRESS <HITER> TO CONTHllJE"i C$
4060 tu:T >:
4070 RETURN
4900 REM
5(100 REM SAUE ITEMS Otl TAPE
5010 CLS: PRUIT ~1 1:35, "SAUE ITEMS Oil TAPE"
5020 P~:HIT @ 2~:4, "POSITION TAPE"
5030 PRUIT ~1 294, "PRESS PLA'l AND RECORD"
5ft4f1 PRUIT @ 388, "PRESS <HITER> 11.IHEU READ\'"
5050 INPUT R$
5f160 OPEH 11 011

, #-1, "LIST"
5070 FOR X = 1 TO V-1
5080 PRIHT #-1, S$(X)
5090 MEXT >(
5100 CLOSE #-1: RETURH
5900 REM
6000 REM LOAD I m1s FROM TAPE
6010 CLS: PRUIT ,1 136, "LOAD ITEMS FROM TAPE"
6020 PRUIT @ 235, "RElJHID TAPE"
6030 PRUIT @ 300, "PRESS PLAl/"
6040 PRHIT @ 388, "PRESS <HITER) lJHEfl READY"
6050 HlPLIT R$
6060 OPHI "I", #-1, "LIST"
6070 I/= 1
6080 IF EOF(-1) THEH 6120
6090 INPUT IH, 5$(\')
6095 PRINT 5$(\')
6100 V = Y + 1
6110 GOTO 6080
6120 CLOSE #-1: RETURN

295

296

BAR GRAPH

10 DIM A(5,3,2), A$(5)
20 DATA UTILITIES, PERSOHHEL, SIJPPLIES, RHIT, TRAVEL
30 FOR X = 1 TO 5
40 READ A$0;)
50 CLS
60 PRINT @ 139, "EXPEl·lSES"
70 PRIHT @ 175 - INT<LEH(A$(X)),r2), AWD
80 PRHIT
90 FOR '-r' = 1 TO 3
100 PRINT "DEPT" '-r'
1 Hl IHPUT "EtlDJETED"; AO(.'/, D
120 IHPUT "ACTUAL"; A<>:,V,2)
130 HEXT \'
140 ~lEXT X
150 QS
160 PRIHT @ 133, "WOULD ~·ou LIKE TO SEE"
170 L = 20"3
180 FOR X = 1 TO 5
190 PRINT @ L, :~; MOD
200 L = L + 32
210 NE>:T X
220 PRUIT @ 460, 11 (1-5) 11

230 HlPUT >1
235 CC1)=0:C(2)=0:LCC1)=0:LC(2)=0
240 FOR 'i = 1 TO 3
250 C<l) = ACX,'r', D+C(D
260 C(2) = A(X,'r',2) + C(2)
270 HEXT \'
280 IF C(2) > CC 1) THEN 310
290 LC(1>=30: LC(2)=1MT (C(2)lC(1)*:30)
300 GOTO 320
310 LC(2)=30: LC(D=UIT(C(l>l C(2)*30)
320 P = 129
330 CL5(0)
340 PRHlT@ 11, "EXPHlSES";
350 PRIHT @ 47 - HITCLEHCA$(X))/2), A$(X) l
360 PRHff @ 97, "BUDGETED";
370 PRIHT al 257, "ACTUAL 11

;

380 PRUlT @ 448, CHR$(159)+CHR$(159);
390 PRINT @ 451, "DEPT 111

;

400 PRINT~ 459, CHR$(175)+CHR$(175);

410 PRUIT @ 462, "DEPT 2";
420 PRIMT@ 470, CHR$(19D+CHR$(191);
430 PRUIT qi 473, "DEPT 3";
440 PRUIT :i1 480, "PRESS AIW KEV TO COHTIHUE";
450 FOR t1 = 1 TO 2
460 FOR ~l = 1 TO 2
470 Pl= P + 32
480 FDR V = 1 TO 3
490 D(V) = INT(A(X,'i',M)IC(l)*LC(I))
500 FOR O = 1 TO [:•(V)
510 PRHff ~1 Pl, CHR$(143+16*'<');
520 Pl = Pl + I
5:3.0 NEXT 0
540 NEXT 'i'
550 P = P + 32
560 NE>:T N
570 P = 289
580 IU:T M
590 K:t = HlKPt'$: IF K:t="" THEil 590
600 GOTO 150

SPEED READING

1 O REM SPEED READ HIG
20 CLS: PRIHT ~1 32, 11HOl1.I MA~N li.lORDS PER MHVJTE"
30 INPUT "DO VOU READ"; l.,JPM
40 FOR X = 1 TO 23
60 READ At : PRHff @ 256, A$
70 FOR V = 1 TO (36fvli.lPM) * 460 : HE>ff V
80 REM lr' LOOP SETS LHlES.1MIM
90 HEXT X: END
100 DATA SCARLETT OHARA liJAS MOT BEAUTIFUL
110 LlATA BUT MEN SELDOM REALIZED IT liJHEI-I
120 DATA CAUGHT BY HER OliJM CHARM AS THE
130 DATA TARLETON TWHIS liJERE. HI HER FACE
140 DATA MERE TOO SHARPLV BLENDED
150 DATA THE DELICATE FEATURES OF HER
160 DATA "MOTHER, A COAST ARISTOCRAT OF"
170 DATA "FRENCH DESCEHT, AND THE HEAl.N"
180 DATA mlES OF HER FLORID rnISH FATHER
190 DATA "BIJT IT liJAS AH ARRESTIMG FACE, 11

200 DATA "POINTED OF CHUI, SQUARE OF .JAM"
210 DATA HER EVES MERE PALE GREEN
220 DATA "~JITHOIJT A TOUCH OF HAZEL, 11

230 DATA STARRED bJITH BRISTLV BLACK
240 DATA LASHES mm SLIGHTL't' TILTrn
250 C•ATA "THE ENDS, ABO!JE THEM, HER THICK"
260 DATA "BLACK BROWS SLAHTED UPliJARDS,"
270 DATA CUTTING A STARTLING OBLIQUE LIME
280 DATA Ul HER MAmlOLIA-liJHITE SKHl-THAT
290 DATA "SKIN 50 PRIZED Bl/ SOUTHERN 1.JOMEU"
300 DATA AHD SO CAREFULL'I GUARDED li.lITH
310 DATA "BmlNETS, VEILS, mm MITTENS"
320 DATA AGAINST HOT GEORGIA srnis

MUSIC COMPOSER

10 INPUT "LEMGTH(l-10)" ; M
20 M = M~:4
~:o rnnrr "TEMPO < 1-4>"; Tt
40 IF T1 = 4 THEN 60
50 T = Tl : GOTO 70
60 T = 8
70 FORK= 1 TO 1'1*8
80 GOSIJB 1000
90 8 = RND(3) * T
100 SOUND P, B
110 CLS(S)
120 NEXT K
130 IF R~lDOO) <=8 THEN 150
140 SOUMD 125, 16*T
145 END
15(1 SOUND 90, 16*T
Wl END
1000 >: = RHD< 100)
1010 IF >: <= 20 AND >: <=25 THEN P = 90 : 5 = 1
1020 IF X > 20 AMC• >: <=25 THEN P = 108 : 5 = 2

1030 IF >: > 25 AHD X <= 40 THEN P = 125 : 5 = 3
1£140 IF ;: > 40 AMD X <= 55 THEM P = 133 : 5 = 4
1050 IF X > 55 AND X <= 75 THEN P = 147 : 5 = 5
1060 IF X > 75 AND X <= 85 THEI-I P = 159: 5 = 6

1070 IF X > 85 AND X <= 95 THEN P = 176: 5 = 7
1080 IF >: > 95 THEN P = 58 : 5 = 8
1090 RETURN

297

298

APPENDIX I---------------------------------

ERROR MESSAGES

/0 Division by zero. The Computer was asked to divide a number by 0, which is impossible.

AO Attempt to open a data file which is already open.

BS Bad subscript. The subscripts in an array are out of range. Use DIM to dimension the
array. For example, if you have A(12) in your program, without a preceding DIM line
which dimensions array A for 12 or more elements, you will get this error.

CN Can't continue. If you use the command CONT and you are at the END of the program,
you will get this error.

DD Attempt to redimension an array. An array can only be dimensioned once. For example,
you cannot have DIM A(12) and DIM A(50) in the same program.

DN Device number error. Only three devices may be used with OPEN, CLOSE, PRINT, or
INPUT: 0, - 1, or - 2. If you use another number you will get this error.

DS Direct statement. There is a direct statement in the data file. This could be caused if you
load a program with no line numbers.

FC Illegal Function Call. This happens when you use a parameter (number) with a BASIC
word that is out ofrange. For example SOUND (260,260) or CLS(lO) will cause this
error. Also RIGHT$(S$,20), when there are only 10 characters in S$, would cause it.
Other examples are a negative subscript, such as A(- 1), or a USR call before the address
has been POKEd in.

FD Bad file data. This error occurs when you PRINT data to a file, or INPUT data from the
file, using the wrong type of variable for the corresponding data. For example, INPUT
- 1, A, when the data in the file is a string, causes this error.

FM Bad file mode. This error occurs when you attempt to INPUT data from a file OPEN for
OUTPUT (0), or PRINT data into a file OPEN for INPUT (I).

0
ID Illegal direct statement. You can only use INPUT as a line in the program, not as a

command line.

IE Input past end of file. Use EOF to check to see when you've reached the end of the file.
When you have, CLOSE it.

IO Input/Output error. Often this is caused by trying to input a program or a data file from a
bad tape.

LS String too long. A string may only be 255 characters.

NF NEXT without FOR. NEXT is being used without a matching FOR statement. This error
also occurs when you have the NEXT lines reversed in a nested loop.

NO File not open. You cannot input or output data to a file until you have OPENed it.

OD Out of data. A READ was executed with insufficient DATA for it to READ. A DATA
statement may have been left out of the program.

OM Out of memory. All available memory has been used or reserved.

OS Out of string space. There is not enough space in memory to do your string operations.
Use CLEAR at the beginning of your program to reserve more string space.

OV Overflow. The number is too large for the Computer to handle.

RG RETURN without GOSUB. A RETURN line is in your program with no matching
GOSUB.

SN Syntax error. This could result from a mis-spelled command, incorrect punctuation, open
parenthesis, or an illegal character. Type the program line or command over.

ST String formula too complex. A string operation was too complex to handle. Break up the
operation into shorter steps.

TM Type Mismatch. This occurs when you try to assign numeric data to a string variable
(A$ = 3) or string data to a numeric variable (A= "DATA").

UL Undefined line. You have a GOTO, GOSUB, or other branching line in the program
asking the Computer to go to an unexisting line number.

299

APPENDIX J -----------------------------------

BASIC SUMMARY

PAGES
WORD PURPOSE EXAMPLES DISCUSSED

ABS Computes the absolute value of a number. PRINT ABS(-5) 141

ASC Converts the first character in a string to PRINT ASC("B") 149
its ASCII code. For example, ASC ("CAT") X = ASC(T$)
converts "C" to its ASCII code, 67.
A listing of ASCII codes is in Appendix E.

AUDIO Connects or disconnects the sound coming AUDIO ON 159-64
from your tape recorder to your T. V. AUDIO OFF
speaker.

CHR$ Converts an ASCII code to the character PRINT CHR$(143) 149, 154-5,
it represents. A listing of the codes is in PRINT CHR$(67) 175-194
Appendix E. The graphics codes are listed Y$ = CHR$(32)
in Appendix B.

CLEAR Reserves space in the Computer's memory CLEAR 97-100
for working with strings. (Without CLEAR 500
CLEAR, the Computer reserves 200 CLEAR 100, 14000
characters). If you are loading a machine
language program, you can use a second
number to specify the highest address
BASIC can use. CLEAR always sets all
numeric variables to zero and string
variables to null (nothing).

CLOAD Loads the first program from cassette CLOAD 72-75
tape. You may specify the name of the CLOAD "PROGRAM"
program.

CLOADM Loads a machine-language program from CLOADM "PROG" 267
cassette tape. You can specify an offset CLOADM
address for the Computer to add to the CLOADM "PROG", 1000
program's loading address.

300

CLOSE Closes a file by closing communication to CLOSE #-1 220-30
the device you specify. CLOSE #-2

See OPEN for a listing of devices.

CLS Clears the screen to green , or to the color CLS 12, 13, 47,
code you specify. See Appendix B for a list CLS(2) 221
of the color codes.

CONT Continues executing a program after CONT 136
pressing BREAK or using STOP.

CSAVE Saves a progTam on cassette tape. You CSAVE 71-75
may use a program name with up to 8
letters. CSAVE "PROGRAM"

DATA Stores data in your program. Use READ DATA 5 , 3, PEARS 94-100, 127
to assign this data to variables. DATA PAPER, PEN

DIM Reserves space in memory for the arrays DIM R(65), W(40) 198-9, 201,
you specify. DIM W$(8,25) 203, 241-8

END Ends your program. END 55-58

EOF Checks to see if you've reached the end of IF EOF(-1) THEN CLOSE 222
the data in a file. If you have, EOF(- 1) IF EOF(O) THEN INPUT #-1

will be true; if you haven't, EOF(0) will be
true.

EXEC Transfers control to a machine-language EXEC

program at the address you specify. If you EXEC 32453
don't specify an address, the Computer
will use the address specified at the last
CLOADM command.

30 1

FOR .. . TO Creates a loop in your program which FOR X = 2 TO 5/NEXT X 35-36, 64,
STEP/ the Computer must repeat from the first FOR A = 1 TO 10 STEP 5/ 117-8
NEXT number to the last number you specify. NEXT A

You may use STEP to specify how much FOR M = 30 TO 15 STEP
to increment the number each time - 5/
through the loop. If you omit STEP, 1 is NEXT M
the increment.

GOSUB Sends the Computer to the subroutine GOSUB 500 103-10
beginning at the line number you specify. GOSUB 5000

GOTO Sends the Computer to the line number GOTO 300 28-31, 58
you specify.

IF/THEN . .. Tests the relationship. If it is true, the IF A = 5 THEN 300 32, 55-8, 63,
ELSE Computer executes the instruction IF B$ = "YES" THEN PRINT 138

following THEN. If it is not true the "XYZ"
Computer executes the instruction IF A = 3 THEN PRINT
following ELSE or, of ELSE is omitted, "CORRECT" ELSE PRINT
the next line in the program. "WRONG"

INKEY$ Strobes the keyboard and returns the key A$ = INKEY$ 125-31
or non-key being pressed.

INPUT Causes the Computer to stop and await INPUT X$ 26, 27, 63,
input from the device you specify. If you INPUT "NAME"; N$ 104-5, 113,
do not specify a device number, the INPUT R-1, A, 8$ 220-30
Computer will await input from the
keyboard. See OPEN for device numbers.

INT Converts a number to an integer. X = INT(5.2) 96-100

JOYSTK Returns the horizontal or vertical M = JOYSTK(O) 84-9, 169-71
coordinate of the left or right joystick: H = JOYSTK(2)

0 - horizontal, right joystick
1 - vertical, right joystick
2 - horizontal , left joystick
3 - vertical, left joystick

LEFT$ Returns the left port ion of a string. You P$ = LEFT$(M$,7) 115-22
specify the string and the length of the
left portion.

302

LEN

LIST

LLIST

MEM

MID$

MOTOR

NEW

ON . .. GOSUB

ON ... GOTO

OPEN

Returns the length of a string.

Lists the entire program, or the lines in
the program you specify.

Lists the entire program, or the lines you
specify, on the printer.

Tells you how much space the Computer
has remaining in memory.

Returns a substring within a string. You
specify the string, the position which
begins· the substring, and the length of
the substring. For example,
MID$("HOMES;'2, 3) returns OME.

Turns the cassette ON or OFF.

Erases everything in memory.

Sends the Computer to one of the
subroutines you specify.

Sends the Computer to one of line
numbers you specify.

Opens communication to a device for
Inputting (I) or Outputting (0) data.
The devices are:

#0 - screen of keyboard
- 1 - cassette recorder
#-2- printer

(It is not necessary to Open
communication when you are INPUTting
from the keyboard or PRINTing on the
screen).
You may specify an 8-character name of
the data file

X = LEN(M$)

LIST
LIST 50-85

LIST 30
LIST -30
LIST 30-

LLIST

LUST 20-50

MEM

PRINT MID$("WORDS:'2,3)

MOTOR ON
MOTOR OFF

NEW

ON Y GOSUB 50, 100

ON X GOTO 190, 200

OPEN "I'; #-1, " FILE"

OPEN "O", #- 1, "DATA"

113-22

26,64

215-6

136

116-22

159-64

25

137

138

219-20, 228

303

PEEK Returns the contents in the memory A = PEEK(32076) 88,257
location you specify.

POINT Tells whether a dot at the horizontal and IF POINT(15, 12) = 3 THEN 167-72
vertical location you specify is lit up. It PRINT "BLUE"
will return a - 1 if the dot is in the
character mode, 0 if it is off, or a color
code if it is on. See Appendix B for the
color codes.

POKE Puts a value in the memory location you POKE 15872,255 257
specify. The value may be a number
between O and 255.

PRINT Prints the message you specify on the PRINT " HI" 9-11, 104,
device you specify. If you do not specify a PRINT A$ 209-30
device, your message will be printed on PRINT # - 1, A$
the video screen. See OPEN for device PRINT # -2, "HI"
numbers.

PRINT@ Prints your message at the screen position PRINT "HI", 256 64, 164-94
you specify. See Appendix C for the screen PRINT A$, 33 1
positions.

READ Reads the next item in the DATA line and READ A$ 94-100, 127
assigns it to the variable you specify. READ C, B

REM Allows you to insert a comment in REM THIS IS IGNORED 105
your program. The Computer ignores
everything on a REM line.

RESET Erases the dot SET on the screen location RESET(l4, 15) 83-4, 149-64
you specify. See Appendix D for the screen
locations.

RESTORE Sets the Computer's pointer back to the RESTORE 97-100
first item on the DATA lines.

RETURN Returns the Computer from the RETURN 103
subroutine to the BASIC word following
GOSUB.

304

RIGHT$ Returns the right portion of the string ZP$ = RIGHT$(AD$,5) 115-22
you specify beginning at the position PRINT RIGHT$("ONE",2)
you specify.

RND Returns a random integer between 1 and A = RND(lO) 61-8, 91-3
the number you specify.

RUN Executes a program. RUN 25

SET Sets a dot at the screen location you SET(l4, 13,3) 77, 78-88,
specify, using the color you specify. See 149-55
Appendix D for the screen locations and
Appendix B for the color codes.

SGN Tells the sign of a number. Returns a 1 if PRINT SGN(-4) 141
the number is positive, 0 if it is zero, or X = SGN(A*B)
- 1 if it is negative.

SIN Returns the sine in radians Y = SIN(5)

SKIPF Skips to the end of the next program on SKIPF 74
cassette tape, or to the end of the program SKIPF "PROGRAM"

you specify.

SOUND Sounds the tone you specify for the SOUND 128, 3 13, 30, 39-41,
duration you specify. Both the tone and 50-2, 126-8,
the duration may be a number between 163-4
1 and 255.

STOP Makes the Computer stop executing STOP 135
the program.

STR$ Converts a number to a string. X$ = STR$(5) 141
X = STR$(Y)

TAB TABs to the position you specify. PRINT TAB(2)"HI"
PRINT #-2, TAB(S) "HI"

USR Calls a machine-language subroutine X = USR(Y) 267
whose address is stored at 275-276.

VAL Converts a string to a number. A= VAL(B$) 129-30

305

306

KEYBOARD CHARACTERS

CHARACTER PURPOSE

B

(ENTER)

Backspaces the cursor
(the blinking light)
Tells Computer you've reached
the end of your program line
or command line.

Stops execution of your program.

Pauses execution of your program.
Press any key to continue.

Switches Computer to and from
upper/lower case mode.

BASIC SYMBOLS

SYMBOL EXPLANATION

u " Indicates that the data in
quotes is a constant.

PAGES
DISCUSSED

8

7,25

28-33

61

14, 216

PAGES
DISCUSSED

8, 9, 125

Separates program "statements" 104

()

on the same line.

Tells the Computer to perform
the operation in the inside
parenthesis first.

Causes constants and variables
to be PRINTED right next to
each other.

107,108

29,85, 177

BASIC OPERATORS

OPERATOR PURPOSE

+ Combines strings
+ Addition

*
I

=

Subtraction
Multiplication
Division
Equals
Greater Than >

> =or =
< =or =

<

> Greater than or equal to
< Less than or equal to

Less than
<> or> <

AND
OR

NOT

Not equal to
Logical AND
Logical OR
Logical NOT

PAGES
DISCUSSED

113-4
8-11
8-11
8-11
8,11
84, 87, 125, 233-8
84, 87, 125, 233-8
84, 87, 125, 233-8
84, 87, 125, 233-8
84, 87, 125, 233-8
84, 87, 125, 233-8
139-40, 257
139-40, 257
257

Index--------------------
Subject Page
ABS 141
Alphabetizing *233-8
AND 139-40, 257
Animation . 149-94
Array *199-207, 239-48

rules 206
string . 209-16

ASC Appendix, 149
AUDIO 159-64
BASIC Appendix, 3
Bits 257
Boolean algebra 257
BREAK . 28-33
Bytes 257
Cassette See "Recorder"
Changing words 26, 28-9
Character codes Appendix, 149
CHR$ See "Character codes;·

Appendix, 149, 154-5, 175-194
CLEAR *97-100, 212
CLOAD *72-75
CLOADM 268
CLOSE *220-30
CLS 12, 13, *47, 221
Colon(:) 104
Color 7, 12, 14, 77-89, 177
Comma(,) 29
CONT 136
Counting (time) 35-41 , 43-9
CSAVE *71-75
DATA *94-100, 127
Delete 28, 118
DIM *198-9, 201, 203, 241-8
Dividing . 10
Dollar sign ($) *18-20
ELSE 138
Empty string *125-131
END 55-58
ENTER 7
EOF 222
Erase 28,118
Error messages 11, 12, 19, 21, 30, 95,104,114,

Appendix
Exponential notation . 142
Files . 220-30
Filing See "Alphabetizing"
FOR/NEXT 35-36, 64, 117-8

Subject Page
Games 167-194
GOSUB *103-10
GOTO *28-31, 58
Graphics 77-89, 149-93

High resolution 252
Graphics characters Appendix, 175-93
Greater than (>)

Numeric 84, 87
String 233

Grid Appendix, 65, 78, 152
High resolution graphics 252
IF/THEN 32, *55-8, 63
INKEY$ *125-31
INPUT 26, 27, 63, 104-5, 113
INPUT # - 1 220-30
INT *96-100
Joysticks *84-9, 169-71
JOYSTK See "Joysticks"
Labels 199-206
LEFT$ 115-22, 181
LEN 113-22
Less than (<)

Numeric 84
String 233

LIST 26, 64
LUST 215-6
Load from tape See "CLOAD"
Loop *28, 45-52
Lower Case Mode 181
Machine-Language 267

Sub-routines
Math 103-10, *106
MEM 136
Memory 17,136,203
Microphone . 159-64
Ml~$;: . ·.· 11~-2~
Molion See Animation
Motor . 159-66
Multiplying 10
Nested Loop . 45-52
NEW 25
NOT 257
Not equal to(<>, ><) 125
Numeric data *9, 20
OK 7
ON . . . GOSUB 137
ON . .. GOTO 138

307

Index--------------------
Subject Page Subject Page

OPEN 219-20, 228 RETURN 103
Operations . 106
OR 140,257

Reverse colors 7, 14
RIGHT$ 115-22, 181

Output 219-21, 228
Parentheses () . 107, • 108
Pause 40

RND *61-8, 91-3
RUN 25
Save on tape See "CSAVE"

PEEK *88, 257 Semi-colon(;) 29, 85, 177
Plus sign (+) 113-22
POKE 257

SET 77, *78-88, 149-55
SGN 141

POINT 167-72 SHIFT @ 61
PRINT 9-11 , 104, 209-30 SKIPF 74
PRINT #-1 220-30 SOUND 13, 30, 39-41, 50-2, 126-8, 163-4
PRINT #-2 216 STEP 38-40
PRINT @ Appendix, *64, 164-94
Printer 215-16
Print punctuation 29, 177
Program 3, 25
Prompt 7
Quotation marks (" ") 8, ·s, 125
READ · *94-100, 127

STOP 135
Strings *9, 19, 113-22
STA$ 141
Subroutines *103-10

Machine-language 267
Tape See " Recorder"
Timer 44-52, 128

Recorder 71 -5, 159-64, 219-30 USR 268
Relational See "Alphabetizing"

Operators 84, 87, 125
REM (Remark) 105
RESET 83-4, 149-64
RESTORE *97-100

VAL 129-30
Variables 18, 22, 197-206
"Labeled" "199-206
Word processing 213-15

308

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A. CANADA
FORT WORTH, TEXAS 76102 BARRIE, ONTARIO, L4M4W5

-------•-------

TANDY CORPORATION

AUSTRALIA
91 KURRAJONG ROAD

MOUNT DRU/TT, N.S.W. 2770

BELGIUM
PARC INDUSTRIEL NANINNE

5140 NANINNE

UNITED KINGDOM
HILSTON ROAD, WEDNESBURY

WEST MIDLANDS WS10 7JN

	Front Cover
	Limited Warranty
	Copyrights
	Welcome Newcomers!
	To Get Started...
	Table of Contents
	Section I - Getting the Hang of it
	Chapter 1: Meet Your Computer
	Chapter 2: Your Computer Never Forgets (unless you turn if off)
	Chapter 3: See How Easy It Is
	Chapter 4: Count the Beat
	Chapter 5: Sing Out the Time
	Chapter 6: Decisions, Decisions
	Chapter 7: Games of Chance
	Chapter 8: Save It to Tape
	Chapter 9: Color Your Screen
	Chapter 10: One Fantastic Teacher
	Chapter 11: Help With Match
	Chapter 12: A Gift With Words
	Chapter 13: Beat the Computer
	Chapter 14: Polish It Off

	Picture This
	Section II - Graphics With Pizzazz
	Chapter 15: Moving Pictures
	Chapter 16: The Talking Computer Teacher
	Chapter 17: Games of Motion
	Chapter 18: Faster Than Motion
	Chapter 19: Let's Dance

	Section III - Getting Down to Business
	Chapter 20: Keeping Tabs on Everything
	Chapter 21: Put Power in Your Writing
	Chapter 22: Tape Your Book Collection
	Chapter 23: Filing - As Easy as ABC
	Chapter 24: Getting Analytical

	Section IV - Don't Byte off More Than You Can Chew
	Part A: High Resolution Graphics
	Part B: Using Machine-Language Subroutines
	Parc C: Memory Map

	Appendixes
	A / Musical Notes
	B / BASIC Colors and Graphics
	C / PRINT @ Screen Locations
	D / Graphics Screen Locations
	E / ASCII Character Codes
	F / Answers to Exercices
	G / Subroutines
	H / Sample Programs
	I / Error Messages
	J / BASIC Summary

	Index
	Back Cover

