
NitrOS-9 EOU Technical Reference
Manual

The NitrOS-9 EOU Project
http://www.lcurtisboyle.com/nitros9/nitros9.html

The NitrOS-9 Project
https://sourceforge.net/projects/nitros9/

1

NitrOS-9 EOU Technical Reference Manual

Revision History:

Revision Date Comment

0.21
0.2

12/01/2022
10/27/2020

Corrections
Updated to reflect
changes to NitrOS-9 over
time and specifically to
cover changes related to
the EOU (“Ease of Use”)
project.

0.1 July 10, 2004 Created

Acknowledgments:
2004 Input and Typesetting: Boisy Pitre
2020 revision additions and corrections by: L. Curtis Boyle and Jay Searle

2

Table of Contents NitrOS-9 EOU Technical Reference Manual

Table of Contents
NitrOS-9 EOU Technical Reference Manual...1
Table of Contents...3
Chapter 1. System Organization..10

Layer 1: The Kernel..10
Layer 2: Input Output Mananger (IOMan)...11
Layer 3: File Managers...11
Layer 4: Device Drivers..12
Layer 5: Device Descriptors...12
Beyond Layer 5: Applications...12

Chapter 2. The Kernel..13
System Initialization...14

System Call Processing...14
OS9.D and Symbolic Names...15
Types of System Calls...15

Memory Management...16
Memory Use in NitrOS-9..17

NitrOS-9 Level 1 Memory Specifics..17
NitrOS-9 Level 2 Memory Specifics..18

Color Computer 3 Memory Management Hardware..18
Multi-programming (Multitasking)..22

Process Creation..23
Process States..24
Execution Scheduling...24
Signals..25
Interrupt Processing..26
Virtual Interrupt Processing...29

Chapter 3. Memory Modules...32
Module Types..32
Module Format..32
Module Header..33
Module Body..33
CRC Value...33
Module Headers: Standard Information...34

Sync Bytes..34

3

Table of Contents NitrOS-9 EOU Technical Reference Manual

Module Size..34
Offset to Module Name...34
Type/Language Byte..34

$6x-$Bx...35
Attributes/Revision Level Byte...36
Header Check...36

Module Headers: Type-Dependent Information...36
Chapter 4. NitrOS-9’s Unified Input/Output System...40

The I/O Manager..42
File Managers...43

File Manager Structure..44
Create, Open..44
MakDir..45
ChgDir...45
Delete...45
Seek..45
Read...46
Write..46
ReadLn...46
WriteLn..46
GetStat, SetStat..47
Close...47

Interfacing with Device Drivers..47
Device Driver Modules...48

Device Driver Module Format...50
NitrOS-9 Interaction with Devices...51

Suspend State (NitrOS-9 Level 2 only)...53
Device Descriptor Modules..55
Path Descriptors...57

Path Descriptor: Standard Information...57
Chapter 5. Random Block File Manager..59

Logical and Physical Disk Organization..59
Identification Sector (LSN 0)..60
Disk Allocation Map Sector (LSN 1)...60
Root Directory..61
File Descriptor Sector...61

Directories..63

4

Table of Contents NitrOS-9 EOU Technical Reference Manual

The RBF Manager Definitions of the Path Descriptor..63
RBF-Type Device Descriptor Modules...66

RBF Record Locking..68
Record Locking and Unlocking...69
Non-Shareable Files...70
End-of-File Lock..70
Deadlock Detection..71

RBF-Type Device Driver Modules..71
The RBF Device Memory Area Definitions...72
RBF Device Driver Subroutines..74

Init..75
Read...76
Write..77
GetStats and SetStats..78
Term...80
IRQ Service Routine...81
Boot (Bootstrap Module)...82

Chapter 6. Sequential Character File Manager..84
SCF Line Editing Functions...84

Read and Write..84
Read Line and Write Line...85
SCF Definitions of the Path Descriptor..86

SCF-Type Device Descriptor Modules..89
SCF-Type Device Driver Modules...92

SCF Device Driver Subroutines...93
Init..94
Read...95
Write..96
GetSta and SetSta..97
Term...99
IRQ Service Routine...100

Chapter 7. The Pipe File Manager (PIPEMAN)...101
Chapter 8. VIRQ / RAM / NIL Driver (VRN)..104
Chapter 9. System Calls...108

Calling Procedure...108
I/O System Calls...109
System Call Descriptions..109

5

Table of Contents NitrOS-9 EOU Technical Reference Manual

User Mode System Calls Quick Reference...110
System Mode Calls Quick Reference...112
User System Calls...114

Set an Alarm...114
Allocate Bits...116
Allocate RAM...117
Chain..118
Clear Specified Block..120
Compare Names..121
Copy External Memory..122
CRC...123
CRC Module Checking..124
Debug (Reboot)..125
Deallocate Bits...126
Deallocate RAM blocks..127
Exit...128
Fork..129
Get System Block Map...132
Get Module Directory..133
Get Process Descriptor..134
Intercept..135
Get ID...136
Link...137
Load..139
Map Specific Block...141
Memory..142
Link to a module..143
Load a module...144
Print Error..145
Parse Name..146
Search Bits..148
Send...149
Sleep...150
Set Priority...151
Set SWI...152
Set Time...153
Set User ID Number...154

6

Table of Contents NitrOS-9 EOU Technical Reference Manual

Time...155
Unlink...156
Unlink a Module By Name...157
Wait..158

I/O User System Calls...159
Attach...159
Change Directory...161
Close Path..162
Create File..163
Delete File..165
Delete A File...166
Detach Device..167
Duplicate Path..168
Get Status...169
Make Directory..170
Modify Descriptor in Memory...172
Open Path..174
Read...176
Read Line With Editing...177
Seek..178
Set Status...179
Write..180
Write Line...181

Privileged System Mode Calls..182
Allocate 64...182
Allocate High RAM...184
Allocate Image...185
Allocate Process Descriptor...186
Allocate Process Task Number...187
Insert Process...188
Bootstrap System...189
Bootstrap Memory Request..190
DAT to Logical Address..191
Deallocate Image RAM Blocks...192
Deallocate Process Descriptor...193
Deallocate Task Number..194
Link Using Module Directory Entry..195

7

Table of Contents NitrOS-9 EOU Technical Reference Manual

Find Module Directory Entry...196
Find 64..197
Get Free High Block..198
Get Free Low Block..199
Compact Module Directory...200
Get Process Pointer...201
I/O Delete...202
I/O Queue..203
Set IRQ...204
Load A From Task B..205
Get One Byte..206
Get Two Bytes..207
Move Data..208
Next Process..209
Release a Task..210
Reserve Task Number..211
Return 64...212
Set Process DAT Image..213
Set Process Task DAT Registers...214
System Link..215
Request System Memory...216
Return System Memory...217
Set SVC...218
Store A Byte In A Task..220
Install Virtual Interrupt..221
Validate Module..222

Get Status System Calls..223
Set Status System Calls..265

Appendices...327
A. System Module Diagrams..328

Executable Memory Module Format...328
Device Descriptor Format..329
INIT Module Format...330

B1. Standard Floppy Disk Format..333
Physical Track Format Pattern...333

B2. 20 Sector per Track Floppy Disk Format..334
Physical Track Format Pattern...334

8

Table of Contents NitrOS-9 EOU Technical Reference Manual

C. System Error Codes..335
D. Basic09 Error Codes...339
E. Device Driver Error Codes..343
F. VIRQ Example Code..344

9

Chapter 1. System Organization NitrOS-9 EOU Technical Reference Manual

Chapter 1. System Organization
The NitrOS-9 Operating System is composed of groups of modules that work together to
perform a common task. The following illustration shows the major modules and their
position in the five-layer organization of NitrOS-9.

Layer 5 D0 D1 D2 Term T1 T2 Pipe

Layer 4 Floppy Driver (rb1773) Terminal or serial Driver
Pipe Driver

(Piper)

Layer 3 Disk File Manager (RBF)
Character File Manager

(SCF)

Pipe File
Manager

(PIPEMAN)
Layer 2 Input/Output Manager (IOMan)

Layer 1 NitrOS-9 Kernel (Krn,KrnP2) Init
Clock/
Clock2

Layer 1: The Kernel
At the lowest layer, Krn and KrnP2 make up the two primary parts of the kernel, or core
of NitrOS-9. It is the kernel that provides the intelligence behind NitrOS-9, and handles
basic system services such as multitasking and memory management. The kernel also
links all other NitrOS-9 modules into the system.

Another important set of modules that reside at this layer are Clock and Clock2.
Together, these two modules work to keep track of both system time (known as the
tick, the heartbeat of the system) as well as actual clock time, either through software
or via real-time clock hardware.

The final module of this layer is Init. This module contains a table of initialization values
and is consulted by the kernel during system startup. Information such as the user task
to run after boot, initial table sizes, and device names are found in this module. It is
loaded into RAM (random access memory) by the NitrOS-9 bootstrap module Boot,
along with other necessary system modules.

10

Chapter 1. System Organization NitrOS-9 EOU Technical Reference Manual

It should be mentioned that, on the Coco, when you boot NitrOS-9, the first thing
loaded is known as the "kernel track" (usually track 34, which is what the DECB
command "DOS" uses). This is always loaded at $2600 in memory, and is comprised of a
special 6 byte header, followed by 3 modules (in the following order): REL (short for
RELocate), BOOT, and Krn. The 6 byte header is used by the DOS command to make
sure this is a legitimate boot track; if it is, it then runs REL (which creates the boot
screen, sets up the hardware, and then relocates the boot track to the top of RAM).
Then, it jumps to the Krn module, which starts initializing the NitrOS9 system, and
eventually calls BOOT, which loads the OS9Boot file.

Layer 2: Input Output Mananger (IOMan)
The system’s second layer (just above kernel) contains the input/output manager,
IOMan. This module provides common processing for all input/output operations, and is
required for performing any I/O supported by NitrOS-9.

Layer 3: File Managers
The system’s third layer contains file managers. File managers perform I/O request
processing for similar classes of I/O devices. There are three file managers that come
with NitrOS-9:

RBF The random block file manager processes all disk I/O
operations.

SCF The sequential character file manager handles all non-disk I/O
operations that operate one character at a time. These
operations include terminal and printer I/O.

PIPEMAN The pipe file manager handles pipes. Pipes are memory buffers
that act as files. Pipes are used for data transfers between
processes.

11

Chapter 1. System Organization NitrOS-9 EOU Technical Reference Manual

Layer 4: Device Drivers
The system’s fourth layer is the device driver layer. Device drivers handle basic I/O
functions for specific I/O controller hardware, and are normally provided to you when
you purchase new I/O devices or cartridges. You can use pre-written drivers, or you can
write your own.

Layer 5: Device Descriptors
The system’s fifth layer contains the device descriptors. Device descriptors are small
tables that define the logical name, device driver and file manager for each I/O port.
They also contain port initialization and port address information. Device descriptors
require only one copy of each I/O controller driver used.

Beyond Layer 5: Applications
NitrOS-9’s primary purpose is to act as the manager of data flow for applications, which
run as processes outside of the five layer hierarchy. This includes the initial user process,
SysGo, which is forked after boot, and Shell, the program that allows commands to be
typed and executed by NitrOS-9.

12

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

Chapter 2. The Kernel
The kernel, as stated in the previous chapter, is the true core of NitrOS-9. All resource
management and services, from memory allocation to the creation and destruction of
processes, are supervised by this very important software component.

The kernel is actually split into two parts: Krn (which holds core system calls that must
be present during the boot process) and KrnP2 (which handles additional system calls).
These two modules complete the concept of the NitrOS-9 kernel.

The kernel modules for NitrOS-9 Level 1 are smaller than those of NitrOS-9 Level 2, and
are small enough to reside on the boot track. Under NitrOS-9 Level 2, Krn resides in the
boot track while KrnP2 is part of the OS9Boot file, a file that is loaded into RAM with the
other NitrOS-9 modules at bootstrap time.

Here’s a look at the kernel’s main responsibilities:

 System initialization after reset
 Service request processing
 Memory management
 Multiprogramming management
 Interrupt processing

I/O functions are not included in the list because the kernel does not directly process
them. Instead, it passes I/O system calls to the I/O Manager, IOMan, for processing.

We will now explore the kernel’s responsibilities in more detail.

13

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

System Initialization
After a hardware reset, the kernel initializes the system. This involves:

1. Locating modules loaded into memory from the NitrOS-9 boot file.

2. Determining the amount of available RAM.

3. Loading any required modules that were not loaded from the NitrOS-9 boot file.

NitrOS-9 also adds the ability to install new system calls through the F$SSvc system
service call. Under NitrOS-9 Level 1, user state programs can directly call this system call.
However, NitrOS-9 Level 2 user processes cannot call this system call directly because it
is privileged. Instead, new system calls are added through special kernel extension
modules, named KrnP3, KrnP4, KrnP5, etc. These kernel modules must be present in the
OS9Boot file. The cold start routine in KrnP2 performs a link to KrnP3, and if it exists in
the boot file, it will be branched to. If KrnP3 does not exist in the boot file, KrnP2
continues with a normal cold start.

System Call Processing

System Calls are used to communicate between NitrOS-9 and programs for such
functions as memory allocation and process creation. In addition to I/O and memory
management functions, system calls have other functions. These include inter-process
control and timekeeping.

System calls use the 6809 microprocessor’s SWI2 instruction followed by a constant
byte representing the code. You usually pass parameters for system calls in the 6809
registers.

14

NitrOS-9 EOU only:
KrnP3, a kernel extension which prints full text error messages (based

on the /dd/sys/errmsg file), is always pre-installed in EOU.

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

OS9.D and Symbolic Names

A system-wide assembly language equate file, called OS9.D, defines symbolic names for
all system calls. This file is normally included when assembling hand-written or compiler-
generated code. The NitrOS-9 assembler has a built-in macro to generate system calls.
For example:

os9 I$Read

is recognized and assembled as equivalent to:

swi2
fcb I$Read

The NitrOS-9 assembler macro “os9” generates an SWI2 instruction. The label I$Read is
the label for the system call code $89.
Note: Some assemblers are case sensitive with labels, including System call names. The
safest practice is to make sure that the exact case match is followed from the DEFS files.

Types of System Calls

System calls are divided into two categories: I/O calls and function calls.

I/O calls perform various input/output functions. The kernel passes calls of this type to
the I/O manager for processing. The symbolic names for I/O calls begin with I$ instead
of F$. For example, the Read system call is called I$Read.

15

NitrOS-9 EOU Beta 2 and up specific:

OS9.D, and all other system def files, are always in /dd/defs in EOU.

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

Function calls perform memory management, multi-programming and other functions,
with most being processed by the kernel. The symbolic names for function calls begin
with F$. For example, the Link function call is called F$Link.

The function calls include user calls and privileged system mode calls. (See Chapter 8,
“System Calls,” for more information.)

Memory Management

Memory management is an important operating system function. Using memory and
modules, NitrOS-9 manages the logical contents of memory and the physical assignment
of memory to programs.

An important concept in memory management is the memory module. The memory
module is a format in which programs must reside. NitrOS-9 maintains a module
directory that points to the modules that occupy memory. This module directory
contains information about each module, including its name and address and the
number of processes using it. The number of processes using a module is reflected in
the module’s link count.

When a module’s link count reaches zero, NitrOS-9 releases the module, returns the
memory it held back to the free pool, and removes its name from the module directory.
NOTE: If you have multiple modules merged together, all of their link counts must go
down to 0 before they are removed from memory.

Memory modules are the foundation of NitrOS-9’s modular software environment, and
have several advantages:

 Automatic runtime linking of programs to libraries of utility modules
 Automatic sharing of re-entrant programs
 Replacement of small sections of large programs into memory for update or

correction.

16

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

Memory Use in NitrOS-9

NitrOS-9 automatically allocates memory when any of the following occurs:

 Program modules are loaded into RAM
 Processes are created
 Processes execute system calls to request additional RAM
 NitrOS-9 needs I/O buffers or larger tables

NitrOS-9 also has inverse functions to deallocate memory allocated to program
modules, new processes, buffers, and tables.

In general, memory for program modules and buffers is allocated from high addresses
downward. Memory for process data areas is allocated from low addresses upward.

NitrOS-9 Level 1 Memory Specifics

Under NitrOS-9 Level 1, a maximum of 64K of RAM is supported. The operating system
and all processes must share this memory. In the 64K address map, NitrOS-9 reserves
some space at the top and bottom of RAM for its own use. The amount depends on the
sizes of system tables that are specified in the Init module and what mixture of drivers
and descriptors you have in your OS9Boot file.

NitrOS-9 pools all other RAM into a free memory space. As the system allocates or
deallocates memory, it dynamically takes it from or returns it to this pool. Under NitrOS-
9 Level 2, RAM does not need to be contiguous because the memory management unit
can dynamically rearrange memory addresses.

The basic unit of memory allocation is the 256-byte page. NitrOS-9 Level 1 always
allocates memory in whole numbers of pages.

The data structure that NitrOS-9 uses to keep track of memory allocation is a 256-byte
bitmap. Each bit in this table is associated with a specific page of memory. A cleared bit
indicates that the page is free and available for assignment. A set bit indicates that the
page is in use (that no RAM is free at that address).

17

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

NitrOS-9 Level 2 Memory Specifics

Because NitrOS-9 Level 2 utilizes the Memory Management Unit (MMU) component of
the Color Computer 3, up to 2MB of memory can be supported. However, each process
is still limited to a maximum of 64K of RAM accessible at one time.

Even with this limitation, there is a significant advantage over NitrOS-9 Level 1. Every
process has its own 64K “playground.” Even the operating system itself has its own 64K
area (and, if you are running CoGrf/CoWin, which is mandatory in EOU, the graphics
sub-system of CoWin/Grfdrv also has it's own 64K area). This means that programs do
not have to share a single 64K block with each other or the system. Consequently, larger
programs are possible under NitrOS-9 Level 2.

These 64K areas are made up of 8K blocks, the size that is imposed by the MMU found
in the Color Computer 3. NitrOS-9 Level 2 assembles a number of these 8K blocks to
provide every process (including the system) its own 64K working area. Please note,
under NitrOS-9 Level 2, $FE00-$FFFF still can not be used by user processes, as this area
is reserved for OS Vector page RAM ($FE00-$FEFF), and hardware I/O ($FF00-$FFFF).

Within the system’s 64K address map, memory is still allocated in 256-byte pages, just
like NitrOS-9 Level 1.

Color Computer 3 Memory Management Hardware

As mentioned previously, the 8-bit CPU in the Color Computer 3 can directly address
only 64K of memory. This limitation is imposed by the 6809/6309, which has only 16
address lines (A0-A15). The Color Computer 3’s Memory Management Unit (MMU)
extends the addressing capability of the computer by increasing the address lines to 19
(A0-A18). This lets the computer address up to 512K of memory ($0-$7FFFF), or up to
2MB of memory ($0-$1FFFFF) when enhanced with certain memory upgrades. In this
document we will discuss the more common 512K configuration.

The 512K address space is called the physical address space. The physical address space
is subdivided into 8K blocks. The six high order address bits (A13-A18) define a block
number.

18

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

NitrOS-9 creates a logical address space of up to 64K for each task by using the F$Fork
system call. Even though the memory within a logical address space appears to be
contiguous, it might not be—the MMU translates the physical addresses to access
available memory. Address spaces can also contain blocks of memory that are common
to more than one map.

The MMU consists of a multiplexer and a 16 by 6-bit RAM array. Each of the 6-bit
elements in this array is an MMU task register. The computer uses these task registers
to determine the proper 8-kilobyte memory segment to address.

The MMU task registers are loaded with addressing data by the CPU. This data indicates
the actual location of each 8-kilobyte segment of the current system memory. The task
registers are divided into two sets consisting of eight registers each. Whether the task
register select bit (TR bit) is set or reset determines which of the two sets is to be used.

The relation between the data in the task register and the generated addresses is as
follows:

Bit D5 D4 D3 D2 D1 D0

Corresponding
Memory Address

A18 A17 A16 A15 A14 A13

When the CPU accesses any memory outside the I/O and control range (XFF00-XFFFF),
the CPU address lines (A13-A15) and the TR bit determine what segment of memory to
address. This is done through the multiplexer when SELECT is low (See the following
table.)

When the CPU writes data to the MMU, A0-A3 determine the location of the MMU
register to receive the incoming data when SELECT is high. The following diagram
illustrates the operation of the Color Computer 3’s memory management.

The system uses the data from the MMU registers to determine the block of memory to
be accessed, according to the following table:

TR Bit A15 A14 A13 Address Range MMU Address

0
0

 0 0 0
 0 0 1

X0000-X1FFF
X2000-X3FFF

FFA0
FFA1

19

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

0
0
0
0
0
0

 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

X4000-X5FFF
X6000-X7FFF
X8000-X9FFF
XA000-XBFFF
XC000-XDFFF
XE000-XFFFF

FFA2
FFA3
FFA4
FFA5
FFA6
FFA7

1
1
1
1
1
1
1
1

 0 0 0
 0 0 1
 0 1 0
 0 1 1
 1 0 0
 1 0 1
 1 1 0
 1 1 1

X0000-X1FFF
X2000-X3FFF
X4000-X5FFF
X6000-X7FFF
X8000-X9FFF
XA000-XBFFF
XC000-XDFFF
XE000-XFFFF

FFA8
FFA9
FFAA
FFAB
FFAC
FFAD
FFAE
FFAF

The translation of physical addresses to 8K blocks is as follows:

Range
From To

Block
Number

Range
From To

Block
Number

 00000 01FFF 00 40000 41FFF 20
 02000 03FFF 01 42000 43FFF 21
 04000 05FFF 02 44000 45FFF 22
 06000 07FFF 03 46000 47FFF 23
 08000 09FFF 04 48000 49FFF 24
 0A000 0BFFF 05 4A000 4BFFF 25
 0C000 0DFFF 06 4C000 4DFFF 26
 0E000 0FFFF 07 4E000 4FFFF 27
 10000 11FFF 08 50000 51FFF 28
 12000 13FFF 09 52000 53FFF 29
 14000 15FFF 0A 54000 55FFF 2A
 16000 17FFF 0B 56000 57FFF 2B
 18000 19FFF 0C 58000 59FFF 2C
 1A000 1BFFF 0D 5A000 5BFFF 2D
 1C000 1DFFF 0E 5C000 5DFFF 2E
 1E000 1FFFF 0F 5E000 5FFFF 2F
 20000 21FFF 10 60000 61FFF 30
 22000 23FFF 11 62000 63FFF 31

20

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

 24000 25FFF 12 64000 65FFF 32
 26000 27FFF 13 66000 67FFF 33
 28000 29FFF 14 68000 69FFF 34
 2A000 2BFFF 15 6A000 6BFFF 35
 2C000 2DFFF 16 6C000 6DFFF 36
 2E000 2FFFF 17 6E000 6FFFF 37
 30000 31FFF 18 70000 71FFF 38
 32000 33FFF 19 72000 73FFF 39
 34000 35FFF 1A 74000 75FFF 3A
 36000 37FFF 1B 76000 77FFF 3B
 38000 39FFF 1C 78000 79FFF 3C
 3A000 3BFFF 1D 7A000 7BFFF 3D
 3C000 3DFFF 1E 7C000 7DFFF 3E
 3E000 3FFFF 1F 7E000 7FFFF 3F

In order for the MMU to function, the TR bit at $FF90 must be cleared and the MMU
must be enabled. However, before doing this, the address data for each memory
segment must be loaded into the designated set of task registers. For example, to select
a standard 64K map in the top range of the Color Computer 3’s 512K RAM, with the TR
bit set to 0, the following values must be preloaded into the MMU’s registers:

MMU Location
Address

Data (Hex) Data (Binary) Address Range

FFA0
FFA1
FFA2
FFA3
FFA4
FFA5
FFA6
FFA7

38
39
3A
3B
3C
3D
3E
3F

111000
111001
111010
111011
111100
111101
111110
111111

70000-71FFF
72000-73FFF
74000-75FFF
76000-77FFF
78000-79FFF
7A000-7BFFF
7C000-7DFFF
7E000-7FFFF

Although this table shows MMU data in the range $38 to $3F, any data between $0 and
$3F can be loaded into the MMU registers to select memory addresses in the range 0 to
$7FFFF.

21

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

Normally, the blocks containing I/O devices are kept in the system map, but not in the
user maps. This is appropriate for timesharing applications, but not for process control.
To directly access I/O devices, use the F$MapBlk system call. This call takes a starting
block number and block count, and maps them into unallocated spaces of the process’
address space. The system call returns the logical address at which the blocks were
inserted.

For example, suppose a display screen in your system is allocated at extended addresses
$7A000-$7DFFF (blocks $3D and $3E). The following system call maps them into your
address space:

ldb #$02 number of blocks
ldx #$3D starting block number
os9 F$MapBlk call MapBlk
stu IOPorts save address where mapped

On return, the U register contains the starting address at which the blocks were
switched. For example, suppose that the call returned $4000. To access extended
address $7A020, write to $4020.

Other system calls that copy data to or from one task’s map to another are available,
such as F$STABX and F$Move. Some of these calls are system mode privileged. You can
unprotect them by changing the appropriate bit in the corresponding entry of the
system service request table and them making a new system boot with the patched
table.

Multi-programming (Multitasking)
NitrOS-9 is a multiprogramming operating system. This means that several independent
programs called processes can be executed at the same time. By issuing the appropriate
system call to NitrOS-9, each process can have access to any system resource.

Multi-programming functions use a hardware real-time clock. The clock generates
interrupts 60 times per second, or one every 16.67 milliseconds (or 50 times per
second / one every 20 milliseconds on PAL systems). These interrupts are called ticks.

22

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

Processes that are not waiting for some event are called active processes. NitrOS-9 runs
active processes for a specific system-assigned period called a time slice. The number of
time slices per minute during which a process is allowed to execute depends on a
process’ priority relative to all other active processes. Many NitrOS-9 system calls are
available to create, terminate and control processes.

Process Creation

A process is created when an existing process executes the F$Fork system call. This call’s
main argument is the name of the program module that the new process is to execute
first (the primary module).

Finding the Module. NitrOS-9 first attempts to find the module in the module directory.
If it does not find the module, NitrOS-9 usually attempts to load into a memory a mass-
storage file in the execution directory, with the requested module name as a filename.

Assigning a Process Descriptor. Once OS-9 finds the module, it assigns the process a
data structure called a process descriptor. This is a 64-byte package (512 byte package in
Level 2) that contains information about the process, its state (see the following section,
“Process States”), memory allocations, priority, queue pointers, and so on. NitrOS-9
automatically initializes and maintains the process descriptor.

Allocate RAM. The next step is to allocate RAM for the process. The primary module’s
header contains a storage size, which NitrOS-9 uses, unless a larger one was requested
at fork time. The memory is allocated from the free memory space and given to that
process.

Proceed or Terminate. If NitrOS-9 can perform all of the previous steps, it adds the new
process to the active process queue for execution scheduling. If it cannot, it terminates
the creation; the process that originated the F$Fork is informed of the error.

Assign Process ID and User ID. NitrOS-9 assigns the new process a unique number
called a process ID. Other processes can communicate with the process by referring to
its ID in various system calls.

23

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

The process also has a user ID, which is used to identify all processes and files that
belong to a particular user. The user ID is inherited from the parent process.

Process Termination. A process terminates when it executes the F$Exit system call, or
when it receives a fatal signal. The termination closes any open paths, deallocates
memory used by the process, and unlinks its primary module.

Process States

At any instant a process can be in one of three states:
 Active – The process is ready for execution.
 Waiting – The process is suspended until a child process terminates or until it

receives a signal. A child process is a process that is started by another process
known as the parent process.

 Sleeping – The process is suspended for a specific period of time or until it
receives a signal.

Each state has its own queue, a linked list of descriptors of processes in that state. To
change a process’ state, NitrOS-9 moves its descriptor to another queue.

The Active State. Each active process is given a time slice for execution, according to its
priority. The scheduler in the kernel ensures that all active processes, even those of low
priority, get some CPU time.

The Wait State. This state is entered when a process executes the F$Wait system call.
The process remains suspended until one of its child processes terminates or until it
receives a signal. (See the “Signals” section later in this chapter.)

The Sleep State. This state is entered when a process executes the F$Sleep system call,
which expects the number of ticks for which the process is to remain in the sleep queue.
The process will remain until the specified time has elapsed, or until it receives a
wakeup signal.

Execution Scheduling

The NitrOS-9 scheduler uses an algorithm that ensures that all active processes get
some amount of execution time.

24

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

All active processes are members of the active process queue, which is kept sorted by
process age. Age is the number of process switches that have occurred since the
process’ last time slice. When a process is moved to the active process queue from
another queue, its age is set according to its priority—the higher the priority, the higher
the age.

Whenever a new process becomes active, the ages of all other active processes increase
by one time slice count. When the executing process’ time slice has elapsed, the
scheduler selects the next process to be executed (the one with the next highest age,
the first one in the queue). At this time, the ages of all other active processes increase
by one. Ages never go beyond 255.

A new active process that was terminated while in the system state is an exception. The
process is given high priority because it is usually executing critical routines that affect
shared system resources.

When there are no active processes, the kernel handles the next interrupt and then
executes a CWAI instruction. This procedure decreases interrupt latency time (the time
it takes the system to process an interrupt).

Signals

A signal is an asynchronous control mechanism used for interprocess communication
and control. It behaves like a software interrupt, and can cause a process to suspend a
program, execute a specific routine, and then return to the interrupted program.

Signals can be sent from one process to another by the F$Send system call. Or, they can
be sent from NitrOS-9 service routines to a process.

A signal can convey status information in the form of a 1-byte numeric value. Some
signal codes (values) are predefined, but you can define most. Those already defined by
NitrOS-9 are:

0 Kill (terminates the process, is non-interceptable)
1 Wakeup (wakes up a sleeping process)
2 Keyboard terminate

25

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

3 Keyboard interrupt
4 Window change, or Hang Up (some modem/serial ports)
128-255 User defined

When a signal is sent to a process, the signal is saved in the process descriptor. If the
process is in the sleeping or waiting state, it is changed to the active state. When the
process gets its next time slice, the signal is processed.

What happens next depends on whether or not the process has set up a signal intercept
trap (also known as a signal service routine) by executing the F$Icpt system call.

If the process has set up a signal intercept trap, the process resumes execution at the
address given in the system call. The signal code passes to this routine. Terminate the
routine with an RTI instruction to resume normal execution of the process.

Note: A wakeup signal activates a sleeping process. It sets a flag but ignores the call to
branch to the intercept routine.

If it has not set up a signal intercept trap, the process is terminated immediately. It is
also terminated if the signal code is zero. If the process is in the system mode, NitrOS-9
defers the termination. The process dies upon return to the user state.

A process can have a signal pending (usually because the process has not been assigned
a time slice since receiving the signal). If it does, and another process tries to send it
another signal, the new signal is terminated, and the F$Send system call returns an
error. To give the destination process time to process the pending signal, the sender
needs to execute an F$Sleep system call for a few ticks before trying to send the signal
again.

Interrupt Processing

Interrupt processing is another important function of the kernel. OS-9 sends each
hardware interrupt to a specific address. This address, in turn, specifies the address of
the device service routine to be executed. This is called vectoring the interrupt. The
address that points to the routine is called the vector. It has the same name as the
interrupt.

26

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

The SWI, SWI2, and SWI3 vectors point to routines that read the corresponding pseudo
vector from the process’ descriptor and dispatch to it. This is why the F$SSWI system
call is local to a process; it only changes a pseudo vector in the process descriptor.

Vector Address
SWI3 $FFF2
SWI2 $FFF4
FIRQ $FFF6
IRQ $FFF8
SWI $FFFA
NMI $FFFC
RESTART $FFFE

FIRQ Interrupt. The system uses the FIRQ interrupt. The FIRQ vector is not available to
you. The FIRQ vector is reserved for future use. Only one FIRQ generating device can be
in the system at a time.

Logical Interrupt Polling System
Because most NitrOS-9 I/O devices use IRQ interrupts, NitrOS-9 includes a sophisticated
polling system. The IRQ polling system automatically identifies the source of the
interrupt, and then executes its associated user- or system-defined service routine.

IRQ Interrupt. Most NitrOS-9 I/O devices generate IRQ interrupts. The IRQ vector points
to the real-time clock and the keyboard scanner routines. These routines, in turn, jump
to a special IRQ polling system that determines the source of the interrupt. The polling
system is discussed in an upcoming paragraph.

NMI Interrupt. The system uses the NMI interrupt. The NMI vector, which points to the
disk driver interrupt service routine, is not available to you.

The Polling Table. The information required for IRQ polling is maintained in a data
structure called the IRQ polling table. The table has an entry for each device that might
generate an IRQ interrupt. The table size is permanent and is defined by an initialization
constant in the Init module. Each entry in the polling table is given a number from 0
(lowest priority) to 255 (highest priority). In this way, the more important devices (those
that have a higher interrupt frequency) can be polled before the less important ones.

27

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

Each entry has six variables:

Polling Address Points to the status register of the device. The register
must have a bit or bits that indicate if it is the source of
an interrupt.

Flip byte Selects whether the bits in the device status register
indicate active when set or active when cleared. If a bit in
the flip byte is set, it indicates that the task is active
whenever the corresponding bit in the status register is
clear.

Mask Byte Selects one or more interrupt request flag bits within the
device status register. The bits identify the active task or
device.

Service Routine
Address

Points to the interrupt service routine for the device. You
supply this address.

Static Storage Address Points to the permanent storage area required by the
device service routine. You supply this address.

Priority Sets the order in which the devices are polled (a number
from 0 to 255).

Polling the Entries. When an IRQ interrupt occurs, NitrOS-9 enters the polling system via
the corresponding RAM interrupt vector. It starts polling the devices in order of priority.
NitrOS-9 loads the status register address of each entry into Accumulator A, using the
device address from the table.

NitrOS-9 performs an exclusive-OR operation using the flip byte, followed by a logical-
AND operation using the mask byte. If the result is non-zero, NitrOS-9 assumes that the
device is the source of the interrupt.

NitrOS-9 reads the device memory address and service routine address from the table,
and performs the interrupt service routine.

Note: If you are writing your own device driver, terminate the interrupt service routine
with an RTS instruction, not an RTI instruction. If your driver determines that it’s IRQ
routine was called in error, set the Carry Flag before issuing the RTS. This will force
IOMAN to continue looking for the IRQ source.

28

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

Adding Entries to the Table. You can make entries to the IRQ (interrupt request) polling
table by using the F$IRQ system call. This call is a privileged system call, and can only be
executed in system mode. NitrOS-9 is in system mode whenever it is running a device
driver.

Note: The code for the interrupt polling system is located in the I/O Manager module.
The Krn and KrnP2 modules contain the physical interrupt processing routines.

Virtual Interrupt Processing

A virtual IRQ, or VIRQ, is useful with devices in Multi-Pak expansion slots. Because of the
absence of an IRQ line from the Multi-Pak interface, these devices cannot initiate
physical interrupts. VIRQ enables these devices to act as if they were interrupt driven.

Use VIRQ only with device driver and pseudo device driver modules, or through
Get/SetStat calls through /nil, using the VRN driver (see it's section in the manual). VIRQ
is handled in the Clock module, which handles the VIRQ polling table and installs the
F$VIRQ system call. Since the F$VIRQ system call is dependent on clock initialization,
the SysGo module forces the clock to start.

The virtual interrupt is set up so that a device can be interrupted at a given number of
clock ticks. The interrupt can occur one time, or can be repeated as long as the device is
used.

The F$VIRQ system call installs VIRQ in a table. This call requires specification of a 5-
byte packet for use in the VIRQ table. This packet contains:

 Bytes for an actual counter
 A reset value for the counter
 A status byte that indicates whether a virtual interrupt has occurred and whether

the VIRQ is to be reinstalled in the table after being issued

F$VIRQ also specifies an initial tick count for the interrupt. The actual call is summarized
here and is described in detail in Chapter 8.

Call: os9 F$VIRQ

29

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

Input: (Y) = address of 5-byte packet
(X) = 0 to delete entry, 1 to install entry
(D) = initial count value

Output: None
(CC) carry set on error
(IS) appropriate error code

The 5-byte packet is defined as follows:

Name Offset Function
Vi.Cnt $0 Actual counter
Vi.Rst $2 Reset value for counter
Vi.Stat $4 Status byte

Two of the bits in the status byte are used. These are:
Bit 0 – set if a VIRQ occurs
Bit 7 – set if a count reset is required

When making an F$VIRQ call, the packet might require initialization with a reset value.
Bit 7 of the status byte must be either set or cleared to signify a reset of the counter or a
one-time VIRQ call. The reset value does not need to be the same as the initial counter
value. When NitrOS-9 processes the call, it writes the packet address into the VIRQ
table.

At each clock tick, NitrOS-9 scans the VIRQ table and subtracts one from each timer
value. When a timer count reaches zero, NitrOS-9 performs the following actions:

1. Sets bit 0 in the status byte. This specifies a Virtual IRQ has triggered.
2. Checks bit 7 of the status byte for a count reset request.
3. If bit 7 is set, resets the count using the reset value. If bit 7 is reset, deletes the

packet address from the VIRQ table.

When a counter reaches zero and makes a virtual interrupt request, NitrOS-9 runs the
standard interrupt polling routine and services the interrupt. Because of this, you must
install entries on both the VIRQ and IRQ polling tables whenever you are using a VIRQ.

30

Chapter 2. The Kernel NitrOS-9 EOU Technical Reference Manual

Unless the device has an actual physical interrupt, install the device on the IRQ polling
table via the F$IRQ system call before placing it on the VIRQ table.

If the device has a physical interrupt, use the interrupt’s hardware register address as
the polling address for the F$IRQ call. After setting the polling address, set the flip and
mask bytes for the device and make the F$IRQ call.

If the device is totally VIRQ-driven, and has no interrupts, use the status byte from the
VIRQ packet as the status byte. Use a mask byte of %00000001, defined as Vi.IFlag in the
OS9.D file. Use a flip byte value of 0.
See Appendix F for example code using the VIRQ feature of NitrOS-9.

31

Chapter 3. Memory Modules NitrOS-9 EOU Technical Reference Manual

Chapter 3. Memory Modules
In Chapter 2, you learned that NitrOS-9 is based on the concept that memory is

modular. This means that each program is considered to be an individually named

object.

You also learned that each program loaded into memory must be in the module format.

This format lets NitrOS-9 manage the logical contents of memory, as well as the physical

contents. Module types and formats are discussed in detail in this chapter.

Module Types

There are several types of modules. Each has a different use and function. These are the
main requirements of a module:

 It cannot modify itself.

 It must be position-independent so that NitrOS-9 can load or relocate it wherever
space is available. In this respect, the module format is the NitrOS-9 equivalent of
load records used in older operating systems.

A module need not be a complete program or even 6809/6309 machine language. It can
contain BASIC09 I-code, constants, single subroutines, and subroutine packages.

Module Format

Each module has three parts: a module header, a module body, and a cyclic-redundancy-
check value (CRC value).

32

Module Header

Program
Or

Constants

CRC Value

Chapter 3. Memory Modules NitrOS-9 EOU Technical Reference Manual

Module Header

At the beginning of the module (the lowest address) is the module header. Its form
depends upon the module’s use. The header contains information about the module
and its use. This information includes the following:

 Size
 Type (machine code, BASIC09 compiled code, and so on)
 Attributes (executable, re-entrant, and so on)
 Data storage memory requirements
 Execution starting address

Usually, you do not need to write routines to generate the modules and headers. All OS-
9 programming languages automatically create modules and headers.

Module Body

The module body contains the program or constants. It usually is pure code. The module
name string is included in this area.

The following figure provides the offset values for calculating the location of a module’s
name. (See “Offset to Module Name.”)

CRC Value

The last three bytes of the module are the Cyclic Redundancy Check (CRC) value. The
CRC value is used to verify the integrity of a module.

When the system first loads the module into memory, it performs a 24-bit CRC over the
entire module, from the first byte of the module header to the byte immediately before
the CRC. The CRC polynomial used is $800FE3.

As with the header, you usually don’t need to write routines to generate the CRC value.
Most OS-9 programs do this automatically.

33

Chapter 3. Memory Modules NitrOS-9 EOU Technical Reference Manual

Module Headers: Standard Information

The first nine bytes of all module headers are defined as follows:

Relative Address Use
$00,$01 Sync bytes ($87,$CD)
$02,$03 Module size
$04,$05 Offset to module name
$06 Module type/language
$07 Attributes/revision level
$08 Header check

Sync Bytes
The sync bytes specify the location of the module. (The first sync byte is the start of the
module.) These two bytes are constant.

Module Size
The module size specifies the size of the module in bytes (includes CRC).

Offset to Module Name
The offset to module name specifies the address of the module name string relative to
the start of the module. The name string can be located anywhere in the module. It
consists of a string of ASCII characters with the most significant bit set on the last
character.

Type/Language Byte
The type/language byte specifies the type and language of the module.

The four most significant bits of this byte indicate the type. Eight types are predefined.
Some of these are for OS-9’s internal use only. The type codes are given here (0 is not a
legal type code):

34

Chapter 3. Memory Modules NitrOS-9 EOU Technical Reference Manual

Code Module Type Name
$1x Program module Prgrm

$2x Subroutine module Sbrtn
$3x Multi-module (for future use) Multi
$4x Data module Data
$5x Shell+ shell subroutine module ShellSub

$6x-$Bx User-definable module

$Cx NitrOS-9 system module Systm
$Dx NitrOS-9 file manager module FlMgr
$Ex NitrOS-9 device driver module Drivr
$Fx NitrOS-9 device descriptor module Devic

The four least significant bits of Byte 6 indicate the language (denoted by x in the
previous Figure). The language codes are given here:

Code Language Name
$x0 Data (non executable)
$x1 6809 object code module (6809/6309

until Obj6309 fully implemented)
Objct

$x2 Basic09 I-Code I-Code
$x3 Pascal P-Code Data
$x4 C I-Code (not currently used) CCode
$x5 Cobol I-Code (not currently used) CblCode
$x6 Fortran I-Code (not currently used) FrtnCode
$x7 6309 object code (EXPERIMENTAL/NOT

FULLY IMPLEMENTED)
Obj6309

&8x-$Fx Reserved for future use

By checking the language type, high-level language runtime systems can verify that a
module is the correct type before attempting execution. Basic09, for example, can run
either I-Code or 6809/6309 machine language procedures arbitrarily by checking the
language type code.

35

Chapter 3. Memory Modules NitrOS-9 EOU Technical Reference Manual

Attributes/Revision Level Byte
The attributes/revision level byte defines the attributes and revision level of the module.

The four most significant bits of this byte are reserved for module attributes. Currently,
only Bit 7 is defined. When set, it indicates the module is re-entrant and, therefore,
shareable.

Code Attribute Flag Name
$8x Re-Entrant Module ReEnt
$4x Reserved for upcoming SCF Buffered write

support
BufsWrits

$2x EXPERIMENTAL 6309 native mode ModNat
$1x Reserved for upcoming SCF Buffered read

support
BufReads

The four least significant bits of this byte are a revision level in the range 0 to 15. If two
or more modules have the same name, type, language, and so on, NitrOS-9 keeps in the
module directory only the module having the highest revision level. Therefore, you can
replace or patch a ROM module, simply by loading a new, equivalent module that has a
higher revision level.

Note: A previously linked module cannot be replaced until its link count goes to zero.

Header Check
The header check byte contains the one’s complement of the Exclusive-OR of the
previous eight bytes.

Module Headers: Type-Dependent Information

More information usually follows the first nine bytes of a module header. The layout
and meaning vary, depending on the module type.

Module types $Cx-$Fx (system module, file manager module, device driver module, and
device descriptor module) are used only by OS-9. Their formats are given later in the
manual.

36

Chapter 3. Memory Modules NitrOS-9 EOU Technical Reference Manual

Module types $1x through $Bx have a general-purpose executable format. This format is
often used in programs called by F$Fork or F$Chain. Here is the format used by these
module types:

37

Chapter 3. Memory Modules NitrOS-9 EOU Technical Reference Manual

As you can see from the preceding chart, the executable memory has four extra bytes in
its header. They are:

$09,$0A Execution offset
$0B,$0C Permanent storage size

38

SYNC BYTES ($87, $CD)

MODULE SIZE (BYTES)

MODULE NAME OFFSET

HEADER PARITY CHECK

EXECUTION OFFSET

PERMANENT STORAGE SIZE

TYPE LANGUAGE

REVISIONATTRIBUTES

RELATIVE
ADDRESS

$05

$0A

$09

$08

$07

$06

$04

$03

$00

$0C

$0B

$02

$01

$0D

CHECK
RANGE

MODULE
CRC

HEADER
PARITY

PERMANENT STORAGE SIZE

MODULES BODY,
OBJECT CODE, CONSTANTS,

AND SO ON

CRC CHECK VALUE

Chapter 3. Memory Modules NitrOS-9 EOU Technical Reference Manual

Execution Offset. The program or subroutine’s offset starting address, relative to the
first byte of the sync code. A module that has multiple entry points (such as cold start
and warm start) might have a branch table starting at this address.

Permanent Storage Size. The minimum number of bytes of data storage required to
run. Fork and Chain use this number to allocate a process’ data area.

If the module is not directly executed by a Fork or Chain system call (for instance a
subroutine package), this entry is not used by NitrOS-9. It is commonly used to specify
the maximum stack size required by re-entrant subroutine modules. The calling program
can check this value to determine if the subroutine has enough stack space.

When NitrOS-9 starts after a single system reset, it searches the entire memory space
for ROM modules. It finds them by looking for the module header sync code ($87,$CD).

When NitrOS-9 detects the header sync code, it checks to see if the header is correct. If
it is, the system obtains the module size from the header and performs a 24-bit CRC
over the entire module. If the CRC matches, NitrOS-9 considers the module to be valid
and enters it into the module directory. All ROM modules that are present in the system
at startup are automatically included in the system module directory.

After the module search, NitrOS-9 links to the component modules it found. This is the
secret to NitrOS-9’s ability to adapt to almost any 6809/6309 computer. It automatically
locates its required and optional component modules and rebuilds the system each time
it is started.

39

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

Chapter 4. NitrOS-9’s Unified
Input/Output System

Chapter 1 mentioned that NitrOS-9 has a unified I/O system, consisting of all modules
except those at the kernel level. This chapter discusses the I/O modules in detail.
Below is a chart showing the operating system layers with some sample drivers and
descriptors. Your boot may vary, depending on your hardware and setup.

40

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

41

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

The VDG interface performs both interface and low-level routines for VDG Color
Computer 2 compatible modes and has limited support for high resolution screen
allocation.

The CoGrf interface provides the standard code interpretations and interface functions.

The CoWin interface, available in the Multi-View package, contains all the functionality
of CoGrf along with additional support features. If you use CoWin, do not include
CoGrf! NOTE: CoWin is required for all versions of EOU.

Both CoWin and Grflnt use the low-level driver GrfDrv to perform drawing on the
bitmap screens.

Term_VDG or VERM uses VTIO/CoVDG while Term_win40/Term_win80 and all window
descriptors use VTIO/(CoWin/CoGrf)/GrfDrv modules, by default. It is possible to modify
the descriptors to switch them between CoWin/CoGrf and CoVDG, which Gshell itself
does, depending on the program being launched.

The I/O system provides system-wide, hardware-independent I/O services for user
programs and NitrOS-9 itself. All I/O system calls are received by the kernel and passed
to the I/O manager for processing.

The I/O manager performs some processing, such as the allocation of data structures for
the I/O path. Then, it calls the file managers and device drivers to do most of the work.
Additional file manager, device driver, and device descriptor modules can be loaded into
memory from files and used while the system is running. Please note that: when
loading file managers, device drivers and/or device descriptors while the system is
running, each such load will take 8K of RAM out of the 64K system map. Merge them
together to take the least amount of system RAM possible.

The I/O Manager

The I/O manager provides the first level of service of I/O system calls. It routes data on
I/O process paths to and from the appropriate file managers and device drivers.

42

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

The I/O Manager also maintains two important internal OS-9 data structures: the device
table and the path table. Never modify the I/O manager.

When a path is opened, the I/O manager tries to link to a memory module that has the
device name given or implied in the pathlist. This module is the device descriptor. It
contains the names of the device driver and file manager for the device. The I/O
manager saves the names so later system calls can be routed to these modules.

File Managers

NitrOS-9 can have any number of file manager modules. Each of these modules
processes the raw data stream to or from a class of device drivers that have similar
operational characteristics. It removes as many unique characteristics as possible from
I/O operations. Thus, it assures that similar devices conform to the NitrOS-9 standard
I/O and file structure.

The file manager also is responsible for mass storage allocation and directory
processing, if these are applicable to the class of devices it serves. File managers usually
buffer the data stream and issue requests to the kernel for dynamic allocation of buffer
memory. They can also monitor and process the data stream, for example, adding
linefeed characters after carriage-return characters.

The file managers are re-entrant. The three standard NitrOS-9 file managers are:

 Random block file manager: The RBF manager supports random-access, block-
structured devices such as disk systems and bubble memories. (Chapter 5
discusses the RBF manager in detail.)

 Sequential Character File Manager: The SCF manager supports single-character-
oriented devices, such as CRTs or hardcopy terminals, printers, and modems.
(Chapter 6 discusses SCF in detail.)

 Pipe File Manager (PIPEMAN): The pipe manager supports interprocess
communication via pipes.

43

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

File Manager Structure

Every file manager must have a branch table in exactly the following format. Routines
that are not used by the file manager must branch to an error routine that sets the carry
and loads B with an appropriate error code before returning. Routines returning without
error must ensure that the carry bit is clear.

* All routines are entered with:
* (Y) = Path Descriptor pointer
* (U) = Caller’s register stack pointer
*
EntryPt equ *

lbra Create
lbra Open
lbra MakDir
lbra ChgDir
lbra Delete
lbra Seek
lbra Read
lbra Write
lbra ReadLn
lbra WriteLn
lbra GetStat
lbra SetStat
lbra Close

Create, Open

Create and Open handle file creating and opening for devices. Typically, the process
involves allocating any required buffers, initializing path descriptor variables, and
establishing the path name. If the file manager controls multi-file devices (RBF),
directory searching is performed to find or create the specified file.

44

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

MakDir

MakDir creates a directory file on multi-file devices. MakDir is neither preceded by a
Create nor followed by a Close. File managers that are incapable of supporting
directories need to return carry set with an appropriate error code in Register B.

ChgDir

On multi-file devices, ChgDir searches for a directory file. If ChgDir finds the directory, it
saves the address of the directory (up to four bytes) in the caller’s process descriptor.
The descriptor is located at P$DIO + 2 (for a data directory) or P$DIO + 8 (for an
execution directory).

In the case of the RBF manager, the address of the directory’s file descriptor is saved.
Open/Create begins searching in the current directory when the caller’s pathlist does
not begin with a slash. File managers that do not support directories should return the
carry set and an appropriate error code in Register B.

Delete

Multi-file device managers handle file delete requests by initiating a directory search
that is similar to Open. Once a device manager finds the file, it removes the file from the
directory.

Any media in use by the file are returned to unused status. In the case of the RBF
manager, space is returned for system use and is marked as available in the free cluster
bitmap on the disk. File managers that do not support multi-file devices return an error.

Seek

File managers that support random access devices use Seek to position file pointers of
an already open path to the byte specified. Typically, the positioning is a logical
movement. No error is produced at the time of the seek if the position is beyond the
current “end of file.”

45

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

Normally, file managers that do not support random access ignore Seek, However, an
SCF-type manager can use Seek to perform cursor positioning.

Read

Read returns the number of bytes requested to the user’s data buffer. Make sure Read
returns an EOF error if there is no data available. Read must be capable of copying pure
binary data, and generally performs no editing on the data. Generally, the file manager
calls the device driver to actually read the data into the buffer. Then, the file manager
copies the data from the buffer into the user’s data area to keep file managers device
independent.

Write

The Write request, like Read, must be capable of recording pure binary data without
alteration. The routines for Read and Write are almost identical with the exception that
Write uses the device driver’s output routine instead of the input routine. The RBF
manager and similar random access devices that use fixed length records (sectors) must
often pre-read a sector before writing it, unless they are writing the entire sector. In OS-
9, writing past the end of file on a device expands the file with new data.

ReadLn

ReadLn differs from Read in two respects. First, ReadLn terminates when the first end-
of-line (carriage return) is encountered. ReadLn performs any input editing that is
appropriate for the device. In the case of SCF, editing involves handling functions such
as backspace, line deletion, and the removal of the high order bit from characters.

WriteLn

WriteLn is the counterpart of ReadLn. It calls the device driver to transfer data up to and
including the first (if any) carriage return encountered. Appropriate output editing can
also be performed. For example, SCF outputs a line feed, a carriage return character,
and nulls (if appropriate for the device). It also pauses at the end of a screen page.

46

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

GetStat, SetStat

The GetStat (get status) and SetStat (set status) system calls are wildcard calls designed
to provide a method of accessing features of a device (or file manager) that are not
generally device independent. The file manager can perform specific functions such as
setting the size of a file to a given value. Pass unknown status calls to the driver to
provide further means of device independence. For example, a SetStat call to format a
disk track might behave differently on different types of disk controllers.

Close

Close is responsible for ensuring that any output to a device is completed. (If necessary,
Close writes out the last buffer.) It releases any buffer space allocated in an Open or
Create. Close does not execute the device driver’s terminate routine, but can do specific
end-of-file processing if you want it to, such as writing end-of-file records on disks, or
form feeds on printers.

Interfacing with Device Drivers

Strictly speaking, device drivers must conform to the general format presented in this
manual. The I/O Manager is slightly different because it only uses the Init and Terminate
entry points.

Other entry points need only be compatible with the file manager for which the driver is
written. For example, the Read entry point of an SCF driver is expected to return one
byte from the device. The Read entry point of an RBF driver, on the other hand, expects
Read to return an entire sector.

The following code is part of an SCF file manager. The code shows how a file manager
might call a driver.

* IOEXEC Execute Device's Read/Write Routine
*
* Passed: (A) = Output character (write)

47

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

* (X) = Device Table entry ptr
* (Y) = Path Descriptor pointer
* (U) = Offset of routine (D$Read,D$Write)
*
* Returns: (A) = Input char (read)
* (B) = Error code, CC set if error
*
* Destroys B,CC

IOEXEC pshs a,x,y,u save registers
ldu V$STAT,x get static storage for driver
ldx V$DRIV,x get driver module address
ldd M$EXEC,x and offset of execution entries
addd 5,s offset by read/write
leax d,x absolute entry address
lda ,s+ restore char (for write)
jsr ,x execute driver read/write
puls x,y,u,pc return (A)=char, (B)=error
emod Module CRC

Size equ * size of sequential file manager

Device Driver Modules

The device driver modules are subroutine packages that perform basic, low-level I/O
transfers to or from a specific type of I/O device hardware controller. These modules are
re-entrant. So, one copy of the module can concurrently run several devices that use
identical I/O controllers.

Device driver modules use a standard module header, in which the module type is
specified as code $Ex (device driver). The execution offset address in the module header
points to a branch table that has a minimum of six 3-byte entries.

Each entry is typically an LBRA to the corresponding subroutine. The file managers call
specific routines in the device driver through this table, passing a pointer to a path
descriptor and passing the hardware control register address in the 6809 registers. The
branch table looks like this:

48

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

Code Meaning
$00 Device initialization routine
$03 Read from device
$06 Write to device
$09 Get device status
$0C Set device status
$0F Device termination routine

(For a complete description of the parameters passed to these subroutines, see the
“Device Driver Subroutines” sections in Chapters 5 and 6.)

49

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

Device Driver Module Format

$0D Mode Byte – (D S PE PW PR E W R)

50

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

NitrOS-9 Interaction with Devices

Device drivers often must wait for hardware to complete a task or for a user to enter
data. Such a wait situation occurs if an SCF device driver receives a Read but there is no
data is available, or if it receives a Write and no buffer space is available. NitrOS-9
drivers that encounter this situation should suspend the current process (via F$Sleep). In
this way the driver allows other processes to continue using CPU time.

The most efficient way for a driver to awaken itself and resume processing data is by
using interrupt requests (IRQs). It is possible for the driver to sleep for a number of
system clock ticks and then check the device or buffer for a ready signal. The drawbacks
to this technique are:

• It requires the system clock to always remain active.
• It might require a large number of ticks (perhaps 20) for the device to become

ready. Such a case leaves you with a dilemma. If you make the program sleep for
two ticks, the system wastes CPU time while checking for device ready. If the
driver sleeps 20 ticks, it does not have a good response time.

An interrupt system allows the hardware to report to the CPU and the device drivers
when the device is finished with an operation. Using interrupts to its advantage, a
device driver can setup interrupt handling to occur when a character is sent or received
or when a disk operation is complete. There is a built-in polling facility for pausing and
awakening processes. Here is a technique for handling interrupts in a device driver:

1. Use the Init routine to place the driver interrupt service call (IRQSVC) routine in
the IRQ polling sequence via an F$IRQ system call:

ldd V.Port,u get address to poll
leax IRQPOLL,pcr point to IRQ packet
leay IRQSERVC,pcr point to IRQ routine
os9 F$IRQ add dev to poll Sequence
bcs Error abnormal exit if error

2. Ensure that driver programs waiting for their hardware call the sleep routine. The
sleep routine copies V.Busy to V.Wake. Then, it goes to sleep for some period of
time.

51

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

3. When the driver program wakes up, have it check to see whether it was
awakened by an interrupt or by a signal sent from some other process.

Usually, the driver performs this check by reading the V.Wake storage byte. The
V.Busy byte is maintained by the file manager to be used as the process ID of the
process using the driver. When V.Busy is copied into V.Wake, then V.Wake
becomes a flag byte and an information byte. A non-zero Wake byte indicates
that there is a process awaiting an interrupt. The value in the Wake byte indicates
the process to be awakened by sending a wakeup signal as shown in the following
code:

lda V.Busy,u get proc ID
sta V.Wake,u arrange for wakeup
andcc #^IntMasks prep for interrupts

Sleep50 ldx #0 or any other tick time (if signal test)
OS9 F$Sleep await an IRQ
ldx D.Proc get proc desc ptr if signal test
ldb P$Signal,x is signal present? (if signal test)
bne SigTest bra if so if signal test
tst V.Wake,u IRQ occur?
bne Sleep50 bra if not

Note that the code labeled “if signal test” is only necessary if the driver wishes to
return to the caller if a signal is sent without waiting for the device to finish. Also
note that IRQs and FIRQs must be masked between the time a command is given
to the device and the moving of V.Busy and V .Wake. If they are not masked, it is
possible for the device IRQ to occur and the IRQSERVC routine to become
confused as to whether it is sending a wakeup signal or not.

4. When the device issues an interrupt, NitrOS-9 calls the routine at the address
given in F$IRQ with the interrupts masked. Make the routine as short as possible,
and have it return with an RTS instruction. IRQSERVC can verify that an interrupt
has occurred for the device. It needs to clear the interrupt to retrieve any data in
the device. Then the V.Wake byte communicates with the main driver module. If

52

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

V.Wake is non-zero, clear it to indicate a true device interrupt and use its contents
as the process ID for an F$Send system call. The F$Send call sends a wakeup
signal to the process. Here is an example:

ldx V.Port,u get device address
tst ?? is it real interrupt from device?
bne IRQSVC90 bra to error if not
lda Data,x get data from device
sta 0,y
lda V.Wake,u
beq IRQSVC80 bra if none
clr V.Wake,u clear it as flag to main routine
ldb #S$Wake get wakeup signal
os9 F$Send Send Signal to driver

IRQSVC80 clrb clear carry bit (all is well)
rts

IROSVC90 comb Set carry bit (is an IRQ call)
rts

Suspend State (NitrOS-9 Level 2 only)

The Suspend State allows the elimination of the F$Send system call during interrupt
handling. Because the process is already in the active queue, it need not be moved from
one queue to another. The device driver IRQSERVC routine can now wake up the
suspended main driver by clearing the process status byte suspend bit in the process
state. Following are sample routines for the Sleep and IRQSERVC calls:

lda D.Proc get process ptr
sta V.Wake,u prep for re-awakening

* enable device to IRQ, give command, etc.
bra Cmd50 enter suspend loop

Cmd30 ldx D.Proc get ptr to process desc
lda P$State,x get state flag

53

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

ora #Suspend put proc in suspend state
sta P$State,x save it in proc desc
andcc #^IntMasks unmask interrupts
ldx #1 give up time slice
OS9 F$Sleep suspend (in active queue)

Cmd50 orcc #IntMasks mask interrupts while changing state
ldx D.Proc get proc desc addr (if signal test)
lda P$Signal,x get signal (if signal test)
beq SigProc bra if signal to be handled
lda V.Wake,u true interrupt?
bne Cmd30 bra if not
andcc #^IntMasks assure interrupts unmasked

Note that D.Proc is a pointer to the process descriptor of the current process. Process
descriptors are always allocated on 256 byte page boundaries. Thus, having the high
order byte of the address is adequate to locate the descriptor. D.Proc is put in V.Wake
as a dual value. In one instance, it is a flag byte indicating that a process is indeed
suspended. In the other instance, it is a pointer to the process descriptor which enables
the IRQSERVC routine to clear the suspend bit. It is necessary to have the interrupts
masked from the time the device is enabled until the suspend bit has been set. Masking
the interrupts ensure that the IRQSERVC routine does not think it has cleared the
suspend bit before it is even set. If this happens, when the bit is set the process might
go into permanent suspension. The IRQSERVC routine sample follows:

ldy V.Port,u get dev addr
tst V.Wake,u is process awaiting IRQ?
Beq IRQSVCER no exit

*clear device interrupt, exit if IRQ not from this device
lda V.Wake,u get process ptr
clrb
stb V.Wake,u clear proc waiting flag
tfr d,x get process descriptor ptr
lda P$State,x get state flag
anda #Suspend clear suspend state
sta P$State,x save it
clrb clear carry bit

54

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

rts
IRQSVCER comb Set carry bit

rts

Device Descriptor Modules

Device descriptor modules are small, non-executable modules. Each one provides
information that associates a specific I/O device with its logical name, hardware
controller address(es), device driver, file manager name, and initialization parameters.

Unlike the device drivers and file managers, which operate on classes of devices, each
device descriptor tailors its functions to a specific device. Each device must have a
device descriptor.

Device descriptor modules use a standard module header, in which the module type is
specified as code $Fx (device descriptor). The name of the module is the name by which
the system and user know the device (the device name given in path lists).

The rest of the device descriptor header consists of the information in the following
chart:

Relative
Address(es)

Use

$09,$0A The relative address of the file manager name string address

$0B,$0C The relative address of the device driver name string

$0D Mode/Capabilities: D S PE PW PR E W R (directory, single user,
public execute, public write, public read, execute, write, read)

$0E,$0F,$10 The absolute physical (24-bit) address of the device controller

$11 The number of bytes (n bytes) in the initialization table

$12,$13...n Initialization table

When OS-9 opens a path to the device, the system copies the initialization table into the
option section (PD.OPT) of the path descriptor. (See “Path Descriptors” in this chapter.)

55

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

The values in this table can be used to define the operating parameters that are
alterable by the Get Status and Set Status system calls (I$GetStt and I$SetStt). For
example, parameters that are used when initializing terminals define which control
characters are to be used for functions such as backspace and delete.

The initialization table can be a maximum of 32 bytes long. If the table is fewer than 32
bytes long, OS-9 sets the remaining values in the path descriptor to 0.

You might wish to add devices to your system. If a similar device driver already exists, all
you need to do is add the new hardware and load another device descriptor. Device
descriptors can be in the boot module or they can be loaded into RAM from mass-
storage files while the system is running.

The following diagram illustrates the device descriptor format:

Device Descriptor Format

Name Relative
Address

Bytes Use

M$ID $00-$01 2 Sync Bytes ($87CD)

M$Size $02-$03 2 Module Size (bytes)

M$Name $04-$05 2 Offset to Module Name

M$Type $06 1 Type ($F) / Language ($1)

M$Revs $07 1 Attributes / Revision Level

M$Parity $08 1 Header Parity Check

M$FMgr $09-$0A 2 File Manager Name Offset

M$PDev $0B-$0C 2 Device Driver Name Offset

M$Mode $0D 1 Mode

M$Port $0E-$10 3 Port Address (24 bit)

M$Opt $11 1 Initialization Table Size

$12,$12…n n Initialization table

Name Strings, and so on

CRC Check Value

56

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

Path Descriptors

Every open path is represented by a data structure called a path descriptor (PD). The PD
contains the information the file managers and device drivers require to perform I/O
functions.

PDs are 64 bytes long and are dynamically allocated and deallocated by the I/O manager
as paths are opened and closed.

They are internal data structures that are not normally referenced from user or
applications programs (except for the PD.OPT section; see table below). The description
of PDs is presented here mainly for those programmers who need to write custom file
managers, device drivers, or other extensions to OS-9.

PDs have three sections. The first section, which is ten bytes long, is the same for all file
managers and device drivers. The information in the first section is shown in the
following chart.

Path Descriptor: Standard Information

Name Address Bytes Use

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode: 1 = read, 2 = write, 3 = update

PD.CNT $02 1 Number of open paths using this PD

PD.DEV $03 2 Address of the associated device table entry

PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of the caller’s register stack

PD.BUF $08 2 Address of the 256-byte data buffer (if used)

PD.FST $0A 22 Defined by the file manager

PD.OPT $20 32 Reserved for the GetStat/SetStat options

PD.FST is a 22-byte storage reserved for and defined by each type of file manager for file
pointers, permanent variables, and so on.

PD.OPT is a 32-byte option area used for file or device operating parameters that are
dynamically alterable. When the path is opened, the I/O manager initializes these

57

Chapter 4. NitrOS-9’s Unified Input/Output System NitrOS-9 EOU Technical Reference Manual

variables by copying the initialization table that is in the device descriptor module. User
programs can change the values later, using the Get Status and Set Status system calls.

PD.FST and PD.OPT are defined for the file manager in the assembly-language equate
file (scf.d for the SCF manager or rbf.d for the RBF manager).

58

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Chapter 5. Random Block File Manager
The random block file manager (RBF manager) supports disk storage. It is a re-entrant
subroutine package called by the I/O manager for I/O system calls to random-access
devices. It maintains the logical and physical file structures.

During normal operation, the RBF manager requests allocation and deallocation of 256-
byte data buffers. Usually, one buffer is required for each open file. When physical I/O
functions are necessary, the RBF manager directly calls the subroutines in the associated
device drivers. All data transfers are performed using 256-byte data blocks (pages).

The RBF manager does not deal directly with physical addresses such as tracks and
cylinders. Instead, it passes to the device drivers address parameters, using a standard
address called a logical sector number, or LSN. LSNs are integers from 0 to n-1, where n
is the maximum number of sectors on the media. The driver translates the logical sector
number to actual cylinder/track/sector values.

Because the RBF manager supports many devices that have different performance and
storage capacities, it is highly parameter-driven. The physical parameters it uses are
stored on the media itself.

On disk systems, the parameters are written on the first few sectors of Track 0. The
device drivers also use the information, particularly the physical parameters stored on
Sector 0. These parameters are written by the FORMAT program that initializes and
tests the disk.

Logical and Physical Disk Organization

All disks used by NitrOS-9 store basic information, file structure, and storage allocation
information on these first few sectors.

LSN 0 is the identification sector. Starting at LSN 1 is the disk allocation map, which is
usually a single sector for floppy drives, but can be multiple sectors for hard drives. The
first sector following the end of the disk allocation map marks the beginning of the disk's
root directory. The following section tells more about LSN 0 and the disk allocation map.

59

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Identification Sector (LSN 0)

LSN 0 contains a description of the physical and logical characteristics of the disk. These
characteristics are set by the FORMAT command program when the disk is initialized.

The following table gives the NitrOS-9 mnemonic name, byte address, size, and
description of each value stored in this LSN 0.

Name Relative
Address

Size
(Bytes)

Use

DD.TOT $00 3 Number of sectors on disk

DD.TKS $03 1 Track size (in sectors)

DD.MAP $04 2 Number of bytes in the allocation bit map

DD.BIT $06 2 Number of sectors per cluster

DD.DIR $08 3 Starting sector of the root directory

DD.OWN $0B 2 Owner’s user number

DD.ATT $0D 1 Disk attributes

DD.DSK $0E 2 Disk identification (for internal use)

DD.FMT $10 1 Disk format, density, number of sides

DD.SPT $11 2 Number of sectors per track

DD.RES $13 2 Reserved for future use

DD.BT $15 3 Starting sector of the bootstrap file

DD.BSZ $18 2 Size of the bootstrap file (in bytes)

DD.DAT $1A 5 Time of creation (Y:M:D:H:M). Year is 1900 + byte
value.

DD.NAM $1F 32 Volume name in which the last character has the most
significant bit set

DD.OPT $3F Path descriptor options

Disk Allocation Map Sector (LSN 1)

LSN 1 is the start of the disk allocation map, which is created by FORMAT. This map
shows which sectors are allocated to the files and which are free for future use.

Each bit in the allocation map represents a sector or cluster of sectors on the disk. If the
bit is set, the sector is considered to be in use, defective, or non-existent. If the bit is
cleared, the corresponding cluster is available. The allocation map usually starts at LSN

60

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

1. The number of sectors it requires varies according to how many bits are needed for
the map. DD.MAP specifies the actual number of bytes used in the map.

Multiple sector allocation maps allow the number of sectors/cluster to be as small as
possible for high volume media.

The FORMAT utility bases the size of the allocation map on the size and number of
sectors per cluster.

The DD.MAP value in LSN 0 specifies the number of bytes (in LSN 1) that are used in the
map.

Each bit in the disk allocation map corresponds to one sector cluster on the disk. The
DD.BIT value in LSN 0 specifies the number of sectors per cluster. The number is an
integral power of 2 (1, 2, 4, 8, 16, and so on).

If a cluster is available, the corresponding bit is cleared. If it is allocated, non-existent, or
physically defective, the corresponding bit is set.

Root Directory

This file is the parent directory of all other files and directories on the disk. It is the
directory accessed using the physical device name (such as /D1). Usually, it immediately
follows the Allocation Map. The location of the root directory file descriptor is specified
in DD.DIR. The root directory contains an entry for each file that resides in the directory,
including other directories.

File Descriptor Sector

The first sector of every file is the file descriptor. It contains the logical and physical
description of the file.

The following table describes the contents of the file descriptor.

61

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Name Relative
Address

Size
(Bytes)

Use

FD.ATT $00 1 File attributes: D S PE PW PR E W R (see next chart)

FD.OWN $01 2 Owner’s user ID

FD.DAT $03 5 Date last modified (Y:M:D:H:M). Year is 1900 + byte
value.

FD.LNK $08 1 Link count

FD.SIZ $09 4 File size (number of bytes)

FD.Creat $0D 3 Date created (Y M D). Year is 1900 + byte value.

FD.SEG $10 240 Segment list (see next chart)

FD.ATT. The attribute byte contains the file permission bits. When set the bits indicate
the following:

Bit 7 Directory
Bit 6 Single user
Bit 5 Public execute
Bit 4 Public write
Bit 3 Public read
Bit 2 Execute
Bit 1 Write
Bit 0 Read

FD.SEG. The segment list consists of a maximum of 48 5-byte entries that have the size
and address of each file block in logical order. Each entry has the block’s 3-byte LSN and
2-byte size (in sectors). NOTE: RBF is currently limited to segments being no larger than
2048 ($800) sectors. The entry following the last segment is zero.

After creation, a file has no data segments allocated to it until the first write. (Write
operations past the current end-of-file cause sectors to be added to the file. The first
write is always past the end-of-file.)

If the file has no segments, it is given an initial segment. Usually, this segment has the
number of sectors specified by the minimum allocation entry in the device descriptor. If,

62

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

however, the number of sectors requested is more than the minimum, the initial
segment has the requested number.

Later expansions of the file usually are also made in minimum allocation increments.
Whenever possible, NitrOS-9 expands the last segment instead of adding a segment.
When the file is closed, NitrOS-9 truncates unused sectors in the last segment.

NitrOS-9 tries to minimize the number of storage segments used in a file. In fact, many
files have only one segment. In such cases, no extra read operations are needed to
randomly access any byte in the file.

If a file is repeatedly closed, opened, and expanded, it can become fragmented so that it
has many segments. You can avoid this fragmentation by writing a byte at the highest
address you want to be used on a file. Do this before writing any other data.

Directories

Disk directories are files that have the D attribute set. A directory contains an integral
number of entries, each of which can hold the name and LSN of a file or another
directory.

Each directory entry contains 29 bytes for the filename followed by three bytes for the
LSN of the file’s descriptor sector. The filename is left-justified in the field with the most
significant bit of the last character set. Unused entries have a zero byte in the first
filename character position.

Every disk has a master directory called the root directory. The DD.DIR value in LSN 0
(identification sector) specifies the starting sector of the root directory.

The RBF Manager Definitions of the Path Descriptor

As stated earlier in this chapter, the PD.FST section of the path descriptor is reserved for
and defined by the file manager. The following table describes the use of this section by
the RBF manager. For your convenience, it also includes the other sections of the PD.

63

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Name Relative
Address

Size
(Bytes)

Use

Universal Section (Same for all file managers and device drivers)

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode
1 = read
2 = write
3 = update

PD.CNT $02 1 Number of open images (paths using this PD)

PD.DEV $03 2 Address of the associated device table entry

PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of the caller’s 6809 register stack

PD.BUF $08 2 Address of the 256-byte data buffer (if used)

Name Relative
Address

Size
(Bytes)

Use

The RBF manager Path Descriptor Definitions (PD.FST Section)

PD.SMF $0A 1 State flag:
Bit 0 = current buffer is altered
Bit 1 = current sector is in the buffer
Bit 2 = descriptor sector is in the buffer

PD.CP $0B 4 Current logical file position (byte address)

PD.SIZ $0F 4 File size

PD.SBL $13 3 Segment beginning logical sector number (LSN)

PD.SBP $16 3 Segment beginning physical sector number (PSN)

PD.SSZ $19 3 Segment size

PD.DSK $1C 2 Disk ID (for internal use only)

PD.DTB $1E 2 Address of drive table

64

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Name Relative
Address

Size
(Bytes)

Use

The RBF manager Option Section Definitions (PD.OPT Section)
(Copied from the device descriptor)

PD.DTP $20 1 Device class
0 = SCF
1 = RBF
2 = PIPE
3 = SBF

PD.DRV $21 1 Drive number (0..n)

PD.STP $22 1 Step rate

PD.TYP $23 1 Device type

PD.DNS $24 1 Density capability

PD.CYL $25 2 Number of cylinders (tracks)

PD.SID $27 1 Number of sides (surfaces)

PD.VFY $28 1 0 = verify disk writes

PD.SCT $29 2 Default number of sectors per track

PD.T0S $2B 2 Default number of sectors per track (Track 0)

PD.ILV $2D 1 Sector interleave factor

PD.SAS $2E 1 Segment allocation size

PD.TFM $2F 1 DMA transfer mode

PD.EXTEN $30 2 Path extension for record locking

PD.STOFF $32 1 Sector/track offsets

(Not copied from the device descriptor)

PD.ATT $33 1 File attributes (D S PE PW PR E W R)

PD.FD $34 3 File descriptor PSN

PD.DFD $37 3 Directory file descriptor PSN

PD.DCP $3A 4 File’s directory entry pointer

PD.DVT $3E 2 Address of the device table entry

Any values not determined by this table default to zero.

65

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

RBF-Type Device Descriptor Modules

This section describes the use of the initialization table contained in the device
descriptor modules for RBF-type devices. The following values are those the I/O
manager copies from the device descriptor to the path descriptor.

Name Relative
Address

Size
(Bytes)

Use

$00-$11 Standard device descriptor module header

IT.DTP $12 1 Device type:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF

IT.DRV $13 1 Drive number

IT.STP $14 1 Step rate

IT.TYP $15 1 Device type (see RBF path descriptor)

IT.DNS $16 1 Media density:
Always 1 (double)
(see following information)

IT.CYL $17 2 Number of cylinders (tracks)

IT.SID $19 1 Number of sides

IT.VFY $1A 1 0 = Verify disk writes
1 = no verify

IT.SCT $1B 2 Default number of sectors per track

IT.T0S $1D 2 Default number of sectors per track (Track 0)

IT.ILV $1F 1 Sector interleave factor

IT.SAS $20 1 Minimum size of segment allocation (number of sectors
to be allocated at one time)

IT.DRV is used to associate a 1-byte integer with each drive that a controller handles.
Number the drives for each controller as 0 to n-1, where n is the maximum number of
drives the controller can handle.

IT.TYP specifies the device type (all types).The high bit (bit 7) specifies if it is a hard drive
or a floppy drive; the meaning of bits 0 to 4 change depending on this type:

66

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

 Bit definitions common to floppy and hard drives:
 Bit 7 0 = Floppy diskette
 1 = Hard drive
 Bit 6 0 = Standard NitrOS-9 format
 1 = Non-Standard format
 Bit 5 0 = Non-Coco format
 1 = Coco format
 Bit definitions 0 to 4 for floppy drives:
 Bit 4 Reserved for future use/special drivers
 Bit 3 Reserved for future use/special drivers
 Bit 2 0 = 256 byte physical sectors
 1 = 512 byte physical sectors
 Bit 1 0 = Sector base offset=0 (sector #'s start at 0)
 1 = Sector base offset=1 (sector #'s start at 1)
 Bit 0 0 = 5.25" floppy
 1 = 3.5" floppy (actually doesn't affect driver)
 Bit definitions 0 to 4 for hard drives:
 Bit 4 0 = Do not query drive for size
 1 = Query drive for size
 Bit 3 Reserved for future use/special drivers
 Bit 2 Reserved for future use/special drivers
 Bits 0-1 00=256 bytes/sector
 01=512 bytes/sector
 10=1024 bytes/sector
 11=2048 bytes/sector

IT.DNS specifies the density capabilities (floppy diskette only):
 Bit 0 0 = Single bit density (FM)
 1 = Double bit density (MFM)
 Bit 1 0 = Single-track density (5 inch, 48/135 tracks per inch)
 1 = Double-track density (5 inch, 96 tracks per inch)
 Bit 2 0 = Single density track 0
 1 = Double density track 0

IT.SAS specifies the minimum number of sectors allocated at one time.

67

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

The above constitutes all of initialization table used by floppy drives and the CocoSDC. For
some older hard drive system (like SuperDriver SCSI, etc.), this table gets extended with the
following additional values:

Name Relative
Address

Size
(Bytes)

Use

IT.TFM $21 1 DMA Transfer Mode (Reserved For Future Use)

IT.Exten $22 2 Path Extension (PE) for record locking

IT.ST0ff $24 1 Sector/Track offsets (for “foreign” disk formats)

IT.WPC $25 1 Write Precomp cylinder/4 (used on some older drives)

IT.OFS $26 2 Starting cylinder offset (for partitions on some older
hard drives)

IT.RWC $28 2 Reduced write current cylinder (used on some older
hard drives)

NOTE: The Superdriver redefines from Relative address $25 (IT.WPC) onwards
differently than the older hard drive drivers did:

Name Relative
Address

Size
(Bytes)

Use

IT.SOFF1 $25 3 SuperDriver offset (partition offset by physical
number?)

IT.LLDRV $28 2 SuperDriver offset (logical drive # for RGB/HDBDos?)

IT.MPI $29 1 CocoSDC/SuperDriver (Reserved for future use)

RBF Record Locking

Record locking is a general term that refers to methods designed to preserve the
integrity of files that can be accessed by more than one user or process. The NitrOS-9
implementation of record locking is designed to be as invisible as possible. This means
that existing programs do not have to be rewritten to take advantage of record locking
facilities. You can usually write new programs without special concern for multi-user
activity.

68

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Record locking involves detecting and preventing conflicts during record access.
Whenever a process modifies a record, the system locks out other procedures from
accessing the file. It defers access to other procedures until it is safe for them to write to
the record. The system does not lock records during reads; so, multiple processes can
read the records at the same time.

Record Locking and Unlocking

To detect conflicts, NitrOS-9 must recognize when a record is being updated. The RBF
manager provides true record locking on a byte basis. A typical record update sequence
is:

OS9 I$Read program reads record
RECORD is LOCKED

.

. program updates record

.
OS9 I$Seek reposition to record
OS9 I$Write record is rewritten

RECORD IS RELEASED

When a file is opened in update mode, any read causes locking of the record being
accessed. This happens because the RBF manager cannot determine in advance if the
record is to be updated. The record stays locked until the next read, write, or close.

However, when a file is opened in the read or execute modes, the system does not lock
accessed records because the records cannot be updated in these two modes.

A subtle but important problem exists for programs that interrogate a data base and
occasionally update its data. If you neglect to release a record after accessing it, the
record might be locked indefinitely. This problem is characteristic of record locking
systems and you can avoid it with careful programming.

Only one portion of a file can be locked at a time. If an application requires more than
one record to be locked, open multiple paths to the same file and lock the record
accessed by each path. RBF notices that the same process owns both paths and keeps
them from locking each other.

69

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Non-Shareable Files

Sometimes (although rarely), you must create a file that can never be accessed by more
than one user at a time. To lock the file, you set the single-user bit in the file’s attribute
byte. You can do this by using the proper option when the file is created, or later using
the NitrOS-9 ATTR command. Once the single-user bit is set, only one use can open the
file at a time. If other users attempt to open the file, Error 253 (Non-Shareable file busy)
is returned. Note, however, that non-shareable means only one path can be opened to a
file at one time. Do not allow two processes to concurrently access a non-shareable file
through the same path.

More commonly, you need to declare a file as single-user only during the execution of a
specific program. You can do this by opening the file with the single-user bit set. For
example, suppose a process is sorting a file. With the file’s single-user bit set, NitrOS-9
treats the file exactly as though it had a single-user attribute. If another process
attempts to open the file, NitrOS-9 returns Error 253.

You can duplicate non-shareable files by using the I$Dup system call. This means that it
can be inherited and therefore accessible to more than one process at a time. Single-
user means only that the file can be opened only once.

End-of-File Lock

A special case of record locking occurs when a user reads or writes data at the end of a
file, creating an EOF Lock. An EOF Lock keeps the end of the file locked until a process
performs a read or write that it is not at the end of the file. It prevents problems that
might otherwise occur when two users want to simultaneously extend a file. The EOF
Lock is the only case in which a write call automatically causes portions of a file to be
locked. An interesting and useful side effect of the EOF Lock function occurs if a program
creates a file for sequential output. As soon as the program creates the file, EOF Lock is
set and no other process can pass the writer in processing the file. For example, if an
assembler redirects a listing to a disk file, and a spooler utility tries to print a line from
the file it is written, record locking makes the spooler wait and stay at least one step
behind the assembler.

70

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Deadlock Detection

A deadly embrace, or deadlock, typically occurs when two processes attempt to gain
control of two or more disk areas at the same time. If each process gets one area
(locking the other process), both processes become permanently stuck. Each waits for a
segment that can never become free. This situation is not restricted to any particular
record locking scheme or operating system.

When a deadly embrace occurs, RBF returns a deadlock error (Error 254) to the process
that caused NitrOS-9 to detect the deadlock. To avoid deadlocks, make sure that
processes always access records of shared files in the same sequence.

When a deadlock error occurs, it is not sufficient for a program to retry the operation
that caused the error. If all processes use this strategy, none can ever succeed. For any
process to proceed, at least one must cancel operation to release control over a
requesting segment.

RBF-Type Device Driver Modules

An RBF-type device driver module contains a package of subroutines that perform
sector-oriented I/O to or from a specific hardware controller. Such a module is usually
re-entrant. Because of this, one copy of one device driver module can simultaneously
run several devices that use identical I/O controllers.

The I/O manager allocates a permanent memory area for each device driver. The size of
the memory area is given in the device driver module header. The I/O manager and the
RBF manager use some of this area. The device driver can use the rest in any manner.
This area is used as follows:

71

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

The RBF Device Memory Area Definitions

Name Relative
Address

Size
(Bytes)

Use

V.PAGE $00 1 Port extended address bits A20-A16

V.PORT $01 2 Device base address (defined by the I/O
manager)

V.LPRC $03 1 ID of the last active process (not used by RBF
device drivers)

V.BUSY $04 1 ID of the current process using driver (defined by
RBF)
0 = no current process

V.WAKE $05 1 ID of the process waiting for I/O completion
(defined by the device driver)

V.USER $06 0 Beginning of file manager specific storage

V.NDRV $06 1 Maximum number of drives the controller can
use (defined by the device driver)

$07 8 Reserved

DRVBEG $0F 0 Beginning of the drive tables

TABLES $0F DRVMEM*N Space for number of tables reserved (n)

FREE 0 Beginning of space available for driver

These values are defined in files in the DEFS directory.

TABLES. This area contains one table for each drive that the controller handles. (The RBF
manager assumes that there are as many tables as indicated by V.NDRV.) Some time
after the driver Init routine is called, the RBF manager issues a request for the driver to
read LSN 0 from a drive table by copying the first part of LSN 0 (up to DD.SIZ) into the
table. Following is the format of each drive table:

Name Relative
Address

Size
(Bytes)

Use

DD.TOT $00 3 Number of sectors

DD.TKS $03 1 Track size (in sectors)

DD.MAP $04 2 Number of bytes in the allocation bit map

DD.BIT $06 2 Number of sectors per bit (cluster size)

DD.DIR $08 3 Address (LSN) of the root directory

72

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

DD.OWN $0B 2 Owner’s user number

DD.ATT $0D 1 Disk access attributes (D S PE PW PR E W R)

DD.DSK $0F 2 Disk ID (a pseudo-random number used to detect
diskette swaps)

DD.FMT $10 1 Media format

DD.SPT $11 2 Number of sectors per track. (Track 0 can use a
different value specified by IT.T0S in the device
descriptor.)

DD.RES $13 2 Reserved for future use

DD.SIZ $15 0 Minimum size of device descriptor

V.TRAK $15 2 Number of the current track (the track that the
head is on, and the track updated by the driver)

V.BMB $17 1 Bit-map use flag:
0 = Bit map is not in use (Disk driver routines must
not alter V.BMB)

V.FILEHD $18 2 Open file list for this drive

V.DISKID $1A 2 Disk ID

V.BMAPSZ $1C 1 Size of bitmap

V.MAPSCT $1D 1 Lowest reasonable bitmap sector

V.RESBIT $1E 1 Reserved bitmap sector

V.SCTKOF $1F 1 Sector/track byte

V.SCOFST $20 1 Sector offset split from byte above

V.TKOFST $22 4 Reserved for future use

DRVMEM $26 . Size of each drive table

The format attributes (DD.FMT) are these:

Bit 0 Number of sides
0 = Single-sided
1 = Double-sided

Bit 1 Density
0 = Single-density
1 = Double-density

Bit 2 Track density
0 = Single (48 tracks per inch)
1 = Double (96 tracks per inch)

73

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Bit 5
0 = Double Density track 0
1 = Single Density track 0

RBF Device Driver Subroutines

Like all device driver modules, RBF device drivers use a standard executable memory
module format.

The execution offset address in the module header points to a branch table that has six
3-byte entries. Each entry is typically a long branch (LBRA) to the corresponding
subroutine. The branch table is defined as follows:

ENTRY LBRA INIT Initialize drive
LBRA READ Read sector
LBRA WRITE Write sector
LBRA GETSTA Get status
LBRA SETSTA Set status
LBRA TERM Terminate device

Ensure that each subroutine exits with the C bit of the condition code register cleared if
no error occurred. If an error occurs, set the C bit and return an appropriate error code
in Register B.

The rest of this chapter describes the RBF device driver subroutines and their entry and
exit conditions.

74

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Init
Initializes a device and the device’s memory area.

Entry Conditions:
Y address of the device descriptor
U address of the device memory area

Exit Conditions:
CC carry set on error
B error code (if any)

Additional Information:
1. If you want NitrOS-9 to verify disk writes, use the Request Memory system

call (F$SRqMem) to allocate a 256-byte buffer area in which a sector can be
read back and verified after a write.

2. You must initialize the device memory area. For floppy diskette controllers,
initialization typically consists of:
A. Initializing V.NDRV to the number of drives with which the controller

works
B. Initializing DD.TOT (in the drive table) to a non-zero value so that Sector

0 can be read or written
C. Initializing V.TRAK to $FF so that the first seek finds Track 0
D. Placing the IRQ service routing on the IRQ polling list, using the Set IRQ

system call (F$IRQ)
E. Initializing the device control registers (enabling interrupts if necessary)

3. Prior to being called, the device memory area is cleared (set to zero),
except for V.PAGE and V.PORT. (These areas contain the 24-bit device
address.) Ensure the driver initializes each drive table appropriately for the
type of diskette that the driver expects to be used on the corresponding
drive.

75

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Read
Reads a 256-byte sector from a disk and places it in a 256-byte sector buffer.

Entry Conditions:
B MSB of the disk’s LSN
X LSW of the disk’s LSN
Y address of the path descriptor
U address of the device memory area

Exit Conditions:
CC carry set on error
B error code (if any)

Additional Information:
• The following is a typical routine for using Read:

1. Get the sector buffer address from PD.BUF in the path descriptor.
2. Get the drive number from PD.DRV in the path descriptor.
3. Compute the physical disk address from the logical sector number.
4. Initiate the Read operation
5. Copy V.BUSY to V.WAKE. The driver goes to sleep and waits for the I/O to

complete. (The IRQ service routine is responsible for sending a wakeup signal.)
After awakening, the driver tests V.WAKE to see if it is clear. If it is not clear,
the driver goes back to sleep.

• Whenever you read LSN 0, you must copy the first part of this sector into the
proper drive table. (Get the drive number from PD.DRV in the path descriptor.)
The number of bytes to copy is in DD.SIZ. Use the drive number (PD.DRV) to
compute the offset for the corresponding drive table as follows:

LDA PD.DRV,Y Get the drive number
LDB #DRVMEM Get the size of a drive table
MUL
LEAX DRVBEG,U Get the address of the first table
LEAX D,X Compute the address of the table

76

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Write
Writes a 256-byte sector buffer to a disk.

Entry Conditions:
B MSB of the disk LSN
X LSW of the disk LSN
Y address of the path descriptor
U address of the device memory area

Exit Conditions:
CC carry set on error
B error code (if any)

Additional Information:
• Following is a typical routine for using Write:

1. Get the sector buffer address from PD.BUF in the path descriptor.
2. Get the drive number from PD.DRV in the path descriptor.
3. Compute the physical disk address from the logical sector number.
4. Initiate the Write operation.
5. Copy V.BUSY to V.WAKE. The driver then goes to sleep and waits for the I/O

to complete. (The IRQ service routine sends the wakeup signal.) After
awakening, the driver tests V.WAKE to see if it is clear. If it is not, the driver
goes back to sleep. If the disk controller cannot be interrupt-driven, it is
necessary to perform a programmed I/O transfer.

6. If PD.VFY in the path descriptor is equal to zero, read the sector back in and
verify that it is written correctly. Verification usually does not involve a
comparison of all of the data bytes.

• If disk writes are to be verified, the Init routine must request the buffer in
which to place the sector when it is read back. Do not copy LSN 0 into the drive
table when reading it back for verification.

• Use the drive number (PD.DRV) to compute the offset to the corresponding
drive table as shown for the Read routine.

77

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

GetStats and SetStats
Reads or changes device’s operating parameters.

Entry Conditions:
U address of the device memory area
Y address of the path descriptor

The function code must be pulled from getting the callers register stack ptr
(PD.RGS,y), and then the code itself from the R$B offset within that stack
(see below)."

Exit Conditions:
CC carry set on error
B error code (if any)

Additional Information:
1. Get/set the device’s operating parameters (status) as specified for the Get

Status and Set Status system calls. GetStat and SetStat are wild card calls.
2. It might be necessary to examine or change the register stack that contains

the values of the 6809 registers at the time of the call. The address of the
register stack is in PD.RGS, which is located in the path descriptor. You can
use the following offsets to access any value in the register stack (It is
recommended that you get these values from the /dd/defs/os9.d, with the
H6309 value set appropriately, so that the offsets are correct for your CPU
(NOTE: All system calls currently only use 6809 registers (for compatibility)
for passing parameters, but the offsets need to be adjusted between
CPU's):

Reg. Relative
Address
(6809)

Relative
Address
(6309)

Size 6809
Register

R$CC $00 $00 1 Condition code
register

R$D $01 $01 2 Register D

R$A $01 $01 1 Register A

R$B $02 $02 1 Register B

R$DP $03 $05 1 Register DP

78

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

R$X $04 $06 2 Register X

R$Y $06 $08 2 Register Y

R$U $08 $0A 2 Register U

R$PC $0A $0C 2 Program
counter

3. Register D overlays Registers A and B.

79

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Term
Terminate a device.

Entry Conditions:
U address of the device memory area

Exit Conditions:
CC carry set on error
B error code (if any)

Additional Information:
• This routine is called when a device is no longer in use in the system (when the

link count of its device descriptor module becomes zero).

• Following is a typical routine for using Term:
1. Wait until any pending I/O is completed.
2. Disable the device interrupts.
3. Remove the device from the IRQ polling list.
4. If the Init routine reserved a 256-byte buffer for verifying disk writes, return

the memory with the Return System Memory system call (F$SRtMem).

80

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

IRQ Service Routine
Services device interrupts

Additional Information:
• The IRQ Service routine sends a wakeup signal to the process indicated by the

process ID in V.WAKE when the I/O is complete. It then clears V.WAKE as a flag
to indicate to the main program that the IRQ has indeed occurred

• When the IRQ Service routine finishes servicing an interrupt, it must clear the
carry and exit with an RTS instruction.

• Although this routine is not included in the device driver module branch table
and is not called directly by the RBF manager, it is a key routine in interrupt-
driven drivers. Its function is to:

1. Service the device interrupts (receive data from device or send data to it).
The IRQ Service routine puts its data into and gets its data from buffers that
are defined in the device memory area.

2. Wake up a process that is waiting for I/O to be completed. To do this, the
routine checks to see if there is a process ID in V.WAKE (if the bit is non-
zero); if so, it sends a wakeup signal to that process.

3. If the device is ready to send more data, and the out buffer is empty,
disable the device’s ready to transmit interrupts.

81

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

Boot (Bootstrap Module)

Loads the boot file into RAM.

Entry Conditions:
None

Exit Conditions:
D size of the boot file (in bytes)
X address at which the boot file was loaded into memory
CC carry set on error
B error code (if any)

Additional Information:
1. The Boot module is not part of the disk driver. It is a separate module that

is stored on the boot track of the system disk with Krn and REL.
2. The bootstrap module contains one subroutine that loads the bootstrap file

and related information into memory. It uses the standard executable
module format with a module type of $C. The execution offset in the
module header contains the offset to the entry point of this subroutine.

3. The module gets the starting sector number and size of the OS9Boot file
from LSN 0. NitrOS-9 allocates a memory area large enough for the Boot
file. Then, it loads the Boot file into this memory area.

4. Following is a typical routine for using Boot:
A. Read LSN 0 from the disk into a buffer area. The Boot

module must pick its own buffer area. LSN 0 contains the
values for DD.BT (the 24-bit LSN of the bootstrap file), and
DD.BSZ (the size of the bootstrap file in bytes).

B. Get the 24-bit LSN of the bootstrap file from DD.BT.
C. Get the size of the bootstrap file from DD.BSZ. The Boot

module is contained in one logically contiguous block
beginning at the logical sector specified in DD.BT and
extending for DD.BSZ/256+1 sectors.

D. Use the NitrOS-9 Request System Memory system call
(F$SRqMem) to request the memory area in which the
Boot file is loaded.

E. Read the Boot file into this memory area.

82

Chapter 5. Random Block File Manager NitrOS-9 EOU Technical Reference Manual

F. Return the size of the Boot file and its location. Boot file is
loaded.

83

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

Chapter 6. Sequential Character File
Manager

The Sequential Character File Manager (SCF) supports devices that operate on a
character-by-character basis. These include terminals, printers, and modems.

SCF is a re-entrant subroutine package. The I/O manager calls the SCF manager for I/O
system handling of sequential, character-oriented devices. The SCF manager includes
the extensive I/O editing functions typical of line-oriented operations, such as:

• character insert
• character delete
• backspace
• line delete
• line repeat
• auto line feed
• screen pause
• return delay padding

The SCF-type device driver modules are VTIO, SCBBT, and SCBBP, and VRN. They run the
video display, printer, serial ports, and nil device respectively. See the NitrOS-9
Commands manual for additional Color Computer I/O devices.

SCF Line Editing Functions

The SCF manager supports two sets of read and write functions. I$Read and I$Write
pass data with no modification. I$ReadLn and I$WritLn provide full line editing of device
functions.

Read and Write

The Read and Write system calls to SCF-type devices correspond to the BASIC09 GET and
PUT statements. While they perform little modification to the data they pass, they do
filter out keyboard interrupt, keyboard terminate, and pause characters. (Editing is
disabled if the corresponding character in the path descriptor contains a zero).

84

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

Carriage returns are not followed by line feeds or nulls automatically, and the high order
bits are passed as sent/received.

Read Line and Write Line

The Read Line and Write Line system calls to SCF-type devices correspond to the
BASIC09 INPUT, PRINT, READ, and WRITE statements. They provide full line editing of all
functions enabled for a particular device.

The system initializes I$ReadLn and I$WritLn functions when you first use a particular
device. (NitrOS-9 copies the option table from the device descriptor table associated
with the specific device.

Later, you can alter the calls—either from assembly-language programs (using the Get
Status system call), or from the keyboard (using the TMODE command). All bytes
transferred by I$ReadLn and I$WritLn have the high order bit cleared.

NitrOS-9 supports extended editing keys in SCF input devices compared to the original
OS-9. These additional keys are:

Key Editing Function

Left Arrow Move left one character in edit buffer*

Right Arrow Move right one character in edit buffer*

Ctrl-Left Arrow Delete character under cursor **

Ctrl-Right Arrow Insert character under cursor **

Shift-Left Arrow Move to beginning of line

Shift-Right Arrow Move to end of line

*   = cursor movement requires backspace path option to be non destructive (not
backspace-space-backspace).
** = These values are hard-coded into SCF, and are not able to be set from device or
path descriptors.
You can also pre-fill the keyboard input buffer with the SS.Fill SetStat system call (see the
System Calls section for details)

85

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

SCF Definitions of the Path Descriptor

The PD.FST and PD.OPT sections of the path descriptor are reserved for and used by the
SCF file manager.

The following table describes the SCF manager’s use of PD.FST and PD.OPT. For your
convenience, the table also includes the other sections of the path descriptor.

The PD.OPT section contains the values that determine the line editing functions. It
contains many device operating parameters that can be read or written by the Set
Status or Get Status system call. Any values not set by this table default to zero.

Note: You can disable most of the editing functions by setting the
corresponding control character in the path descriptor to zero. You can use
the Set Status system call or the TMODE command to do this. Or, you can
go a step further by setting the corresponding control character value in the
device descriptor module to zero.

To determine the default settings for a specific device, you can inspect the device
descriptor.

Universal Section

Name Relative
Address

Size
(Bytes)

Use

Universal Section (Same for all file managers)

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode:
1 = read
2 = write
3 = update

PD.CNT $02 1 Number of open images (paths using this path
descriptor)

PD.DEV $03 2 Address of the associated device table entry

PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of the caller’s 6809 register stack

PD.BUF $08 2 Address of the 256-byte data buffer (if used)

86

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

Name Relative
Address

Size
(Bytes)

Use

SCF Path Descriptor Definitions (PD.FST Section)

PD.DV2 $0A 2 Device table address of the second (echo) device

PD.RAW $0C 1 Edit flag:
0 = raw mode
1 = edit mode

PD.MAX $0D 2 Read Line maximum character count

PD.MIN $0F 1 Devices are mine if cleared

PD.STS $10 2 Status routine module address

PD.STM $12 2 Reserved for status routine

Name Relative
Address

Size
(Bytes)

Use

SCF Option Section Definition (PD.OPT Section)
(Copied from the device descriptor)

PD.DTP $20 1 Device class:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF

PD.UPC $21 1 Case:
0 = uppercase and lowercase
1 = uppercase only

PD.BSO $22 1 Backspace:
0 = backspace
1 = backspace, space, and backspace

PD.DLO $23 1 Delete:
0 = backspace over line
1 = carriage return, line feed

PD.EKO $24 1 Echo:
0 = no echo
1 = echo

PD.ALF $25 1 Auto line feed:
0 = no auto line feed
1 = auto line feed

PD.NUL $26 1 End-of-line null count:

87

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

N = number of nulls ($00) sent after each carriage
return or carriage return and line feed (n = $00-$FF)

PD.PAU $27 1 End of page pause:
0 = no pause
1 = pause

PD.PAG $28 1 Number of lines per page

PD.BSP $29 1 Backspace character

PD.DEL $2A 1 Delete-line character

PD.EOR $2B 1 End-of-record character (End-of-line character) Read
only. Normally set to $0D
0 = Terminate read-line only at the end of the file

PD.EOF $2C 1 End-of-file character (read only)

PD.RPR $2D 1 Reprint-line character

PD.DUP $2E 1 Duplicate-last-line character

PD.PSC $2F 1 Pause character

PD.INT $30 1 Keyboard-interrupt character

PD.QUT $31 1 Keyboard-terminate character

PD.BSE $32 1 Backspace-echo character

PD.OVF $33 1 Line-overflow character (bell CTRL-G)

PD.PAR $34 1 Device initialization value (parity)

PD.BAU $35 1 Software settable baud rate

PD.D2P $36 2 Offset to second device name string

PD.XON $38 1 ACIA XON character

PD.XOFF $39 1 ACIA XOFF character

PD.ERR $3A 1 Most recent I/O error status

PD.TBL $3B 2 Copy of device table address

PD.PLP $3D 2 Path descriptor list pointer

PD.PST $3F 1 Current path status

PD.EOF specifies the end-of-file character. If this is the first and only character that is
input to the SCF device, SCF returns an end-of-file error on Read or ReadLn.

PD.PSC specifies the pause character, which suspends output to the device before the
next end-of-record character. The pause character also deletes any type-ahead input for
ReadLn.

88

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

PD.INT specifies the keyboard-interrupt character. When the character is received, the
system sends a keyboard-terminate signal to the last user of a path. The character also
terminates the current I/O request (if any) with an error identical to the keyboard
interrupt signal code.

PD.QUT specifies the keyboard-terminate character. When this character is received,
the system sends a keyboard-terminate signal to the last user of a path. The system also
cancels the current I/O request (if any) by sending an error code identical to the
keyboard interrupt signal code.

PD.PAR specifies the parity information for external serial devices. For screens, it
instead has these bit flags:
 %0XXXXXXX = VDG window.
 %1XXXXXXX = Co(Grf/Win) window.
 %0XXXXXX0 = True lowercase on VDG window.
 %0XXXXXX1 = Inverse video lowercase on VDG window.

PD.BAU specifies baud rate, word length, and stop bit information for serial devices.

PD.XON contains either the character used to enable transmission of characters or a
null character that disables the use of XON.

PD.XOFF contains either the character used to disable transmission of characters or a
null character that disables the use of XOFF.

SCF-Type Device Descriptor Modules

The following chart shows how the initialization table in the device descriptors is used
for SCF-type devices. The values are those the I/O manager copies from the device
descriptor to the path descriptor.

An SCF editing function is turned off if its corresponding value is set to zero. For
example, if IT.EOF is set to zero, there is no end-of-file character.

89

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

Name Relative
Address

Size
(Bytes)

Use

(header) $00-$11 Standard device descriptor module header

IT.DVC $12 1 Device class:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF

IT.UPC $13 1 Case:
0 = upper- and lowercase
1 = uppercase only

IT.BSO $14 1 Backspace:
0 = backspace
1 = backspace, space, and backspace

IT.DLO $15 1 Delete:
0 = backspace over line
1 = carriage return

IT.EKO $16 1 Echo:
0 = echo off
1 = echo on

IT.ALF $17 1 Auto line feed:
0 = auto line feed disabled
1 = auto line feed enabled

IT.NUL $18 1 End-of-line null count

IT.PAU $19 1 Pause:
0 = end-of-page pause disabled
1 = end-of-page pause enabled

IT.PAG $1A 1 Number of lines per page

IT.BSP $1B 1 Backspace character

IT.DEL $1C 1 Delete-line character

IT.EOR $1D 1 End-of-record character

IT.EOF $1E 1 End-of-file character

IT.RPR $1F 1 Reprint-line character

IT.DUP $20 1 Duplicate-last-line character

IT.PSC $21 1 Pause character

IT.INT $22 1 Interrupt character

IT.QUT $23 1 Quit character

90

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

IT.BSE $24 1 Backspace echo character

IT.OVF $25 1 Line-overflow character (bell)

IT.PAR $26 1 Initialization value—used to initialize a device control
register when a path is opened to it (parity)

IT.BAU $27 1 Baud rate

IT.D2P $28 2 Attached device name string offset

IT.XON $2A 1 X-ON character

IT.XOFF $2B 1 X-OFF character

IT.COL $2C 1 Number of columns for display

IT.ROW $2D 1 Number of rows for display

IT.WND $2E 1 Window number

IT.VAL $2F 1 Data in rest of descriptor is valid

IT.STY $30 1 Window type

IT.CPX $31 1 X cursor position

IT.CPY $32 1 Y cursor position

IT.FGC $33 1 Foreground color

IT.BGC $34 1 Background color

IT.BDC $35 1 Border color

91

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

SCF-Type Device Driver Modules

An SCF-type device driver module contains a package of subroutines that perform raw
(unformatted) data I/O transfers to or from a specific hardware controller. Such a
module is usually re-entrant so that one copy of the module can simultaneously run
several devices that use identical I/O controllers. The I/O manager allocates a
permanent memory area for each controller sharing the driver.

The size of the memory area is defined in the device driver module header. The I/O
manager and SCF use some of the memory area. The device driver can use the rest in
any way (typically as variables and buffers). Typically, the driver uses the area as follows:

Name Relative
Address

Size
(Bytes)

Use

V.PAGE $00 1 Port extended 24-bit address

V.PORT $01 2 Device base address (defined by the I/O manager)

V.LPRC $03 1 ID of the last active process

V.BUSY $04 1 ID of the active process (defined by SCF):
0 = no active process

V.WAKE $05 1 ID of the process to reawaken after the device
completes I/O (defined by the device driver):
0 = no waiting process

V.USER $06 0 Beginning of file manager specific storage

V.TYPE $06 1 Device type or parity

V.LINE $07 1 Lines left until the end of the page

V.PAUS $08 1 Pause request:
0 = no pause requested

V.DEV2 $09 2 Attached device memory area (echo output device)

V.INTR $0B 1 Interrupt character

V.QUIT $0C 1 Quit character

V.PCHR $0D 1 Pause character

V.ERR $0E 1 Error accumulator

V.XON $0F 1 XON character

92

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

V.XOFF $10 1 XOFF character

V.KANJI $11 1 Reserved

V.KBUF $12 2 Reserved

V.MODADR $14 2 Reserved

V.PDLHD $16 2 Path descriptor list header

V.RSV $18 5 Reserved

V.SCF $1D 0 End of SCF memory requirements

FREE $1D 0 Free for the device driver to use

V.LPRC contains the process ID of the last process to use the device. The IRQ service
routine sends this process the proper signal if it receives a quit character or an interrupt
character. V.LPRC is defined by SCF.

V.BUSY contains the process ID of the process that is using the device. (If the device is
not being used, V.BUSY contains a zero.) The process ID is used by SCF to prevent more
than one process from using the device at the same time. V.BUSY is defined by SCF.

SCF Device Driver Subroutines

Like all device drivers, SCF device drivers use a standard executable memory module
format.

The execution offset address in the module header points to a branch table that has six
3-byte entries. Each entry is typically an LBRA to the corresponding subroutine. The
branch table is defined as follows:

ENTRY LBRA INIT Initialize driver
LBRA READ Read character
LBRA WRITE Write character
LBRA GETSTA Get status
LBRA SETSTA Set status
LBRA TERM Terminate device

If no error occurs, each subroutine exits with the C bit in the Condition Code register
cleared. If an error occurs, each subroutine sets the C bit and returns an appropriate
error code in Register B.

The rest of this chapter describes these subroutines and their entry and exit conditions.

93

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

Init
Initializes device control registers and enables interrupts if necessary.

Entry Conditions:
Y address of the device descriptor
U address of the device memory area

Exit Conditions:
CC carry set on error
B error code (if any)

Additional Information:
1. Prior to being called, the device memory area is cleared (set to zero),

except for V.PAGE and V.PORT. (V.PAGE and V.PORT contain the device
address.) There is no need to initialize the part of the memory area used by
the I/O manager and SCF.

2. Follow these steps to use Init:
A. Initialize the device memory area.
B. Place the IRQ service routine on the IRQ polling list, using the Set

IRQ system call (F$IRQ).
C. Initialize the device control registers.

94

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

Read
Reads the next character from the input buffer.

Entry Conditions:
Y address of the path descriptor
U address of the device memory area

Exit Conditions:
A character read
CC carry set on error
B error code (if any)

Additional Information:
1. This is a step by step description of a Read operation:

A. Read gets the next character from the input buffer.
B. If no data is ready, Read copies its process ID from V.BUSY

into V.WAKE. It then uses the Sleep system call to put
itself to sleep.

C. Later, when Read receives data, the IRQ service routine
leaves the data in a buffer. Then, the routine checks
V.WAKE to see if any process is waiting for the device to
complete I/O. If so, the IRQ service routine sends a
wakeup signal to the waiting process.

2. Data buffers are not automatically allocated. If a buffer is used, it defines it
in the device memory area.

95

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

Write
Sends a character (places a data byte in an output buffer) and enables the device
output interrupts.

Entry Conditions:
A character to write
Y address of the path descriptor
U address of the device memory area

Exit Conditions:
CC carry set on error
B error code (if any)

Additional Information:
1. If the data buffer is full, Write copies its process ID from V.BUSY into

V.WAKE. Write then puts itself to sleep.
Later, when the IRQ service routine transmits a character and makes room
for more data, it checks V.WAKE to see if there is a process waiting for the
device to complete I/O. If there is, the routine sends a wakeup signal to
that process.

2. Write must ensure that the IRQ service routine that starts it begins to place
data in the buffer. After an interrupt is generated, the IRQ service routine
continues to transmit data until the data buffer is empty. Then, it disables
the device’s ready-to-transmit interrupts.

3. Data buffers are not allocated automatically. If a buffer is used, define it in
the device memory area.

96

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

GetSta and SetSta
Gets/sets device operating parameters (status) as specified for the Get Status and
Set Status system calls. GetSta and SetSta are wildcard calls.

Entry Conditions:
A Function Code
Y address of the path descriptor
U address of the device memory area

Other registers depend on the function code.

Exit Conditions:
CC carry set on error
B error code (if any)

Other registers depend on the function code

Additional Information:
1. Any codes not defined by the I/O manager or SCF are passed to the device

driver.
2. You might need to examine or change the register stack that contains the

values of the 6809 registers at the time of the call. The address of the
register stack can be found in PD.RGS, which is located in the path
descriptor.

3. You can use the following offsets to access any value in the register packet

(It is recommended that you get these values from the /dd/defs/os9.d, with
the H6309 value set appropriately, so that the offsets are correct for your
CPU (NOTE: All system calls currently only use 6809 registers (for
compatibility) for passing parameters, but the offsets need to be adjusted
between CPU's):

Reg. Relative
Address
(6809)

Relative
Address
(6309)

Size 6809
Register

R$CC $00 $00 1 Condition code register

R$D $01 $01 2 Register D

R$A $01 $01 1 Register A

R$B $02 $02 1 Register B

97

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

R$DP $03 $05 1 Register DP

R$X $04 $06 2 Register X

R$Y $06 $08 2 Register Y

R$U $08 $0A 2 Register U

R$PC $0A $0C 2 Program counter

The function code is retrieved from R$B on the caller’s stack.

98

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

Term
Terminates a device. Term is called when a device is no longer in use (when the link
count of the device descriptor module becomes zero).

Entry Conditions:
U pointer to the device memory area

Exit Conditions:
CC carry set on error
B error code (if any)

Additional Information:
1. To use Term:

A. Wait until the IRQ service routine empties the output
buffer.

B. Disable the device interrupts.
C. Remove the device from the IRQ polling list.

2. When Term closes the last path to a device, NitrOS-9 returns to the
memory pool the memory that the device used. If the device has been
attached to the system using the I$Attach system call, NitrOS-9 does not
return the static storage for the driver until an I$Detach call is made to the
device. Modules contained in the Boot file are never terminated, even if
their link counts reach zero.

99

Chapter 6. Sequential Character File Manager NitrOS-9 EOU Technical Reference Manual

IRQ Service Routine
Receives device interrupts. When I/O is complete, the routine sends a wakeup signal
to the process identified by the process ID in V.WAKE. The routine also clears V.WAKE
as a flag to indicate to the main program that the IRQ has occurred.

Additional Information:
1. The IRQ Service Routine is not included in the device driver branch tables,

and is not called directly by SCF. However, it is a key routine in device
drivers.

2. When the IRQ Service routine finishes servicing an interrupt, the routine
must clear the carry and exit with an RTS instructions.

3. Here is a typical sequence of events that the IRQ Service Routing performs:
A. Service the device interrupts (receive data from the

device or send data to it). Ensure this routine puts its data
into and gets its data from buffers that are defined in the
device memory area.

B. Wake up any process that is waiting for I/O to complete.
To do this, the routine checks to see if there is a process
ID in V.WAKE (a value other than zero); if so, it sends a
wakeup signal to that process.

C. If the device is ready to send more data, and the output
buffer is empty, disable the device’s ready-to-transmit
interrupts.

D. If a pause character is received, set V.PAUS in the
attached device storage area to a value other than zero.
The address of the attached device memory area is in
V.DEV2.

E. If a keyboard terminate or interrupt character is received,
signal the process in V.LPRC (last known process) if any.

100

Chapter 7. The Pipe File Manager (PIPEMAN) NitrOS-9 EOU Technical Reference Manual

Chapter 7. The Pipe File Manager
(PIPEMAN)

The Pipe file manager handles control or processes that use paths to pipes. Pipes allow
concurrently executing processes to send each other data by using the output of one
process (the writer) as input to a second process (the reader). The reader gets input
from the standard input. The exclamation point (!) or pipe symbol (|) (when used in the
Shell) operator specifies that the input or output is from or to a pipe. Use the descriptor
‘/pipe’ instead when using pipes within a program. The Pipe file manager allocates a
256-byte block and a path descriptor for data transfer. The Pipe file manager also
determines which process has control of the pipe. The Pipe file manager has the
standard file manager branch table at its entry point:

ENTRY LBRA Create
LBRA Open
LBRA MakDir
LBRA ChgDir
LBRA Delete
LBRA Seek
LBRA PRead
LBRA PWrite
LBRA PRdLn
LBRA PWrLn
LBRA GetStat
LBRA SetStat
LBRA Close

You cannot use MakDir, ChgDir, Delete, and Seek with pipes. If you try to do so, the
system returns E$UNKSVC (unknown service request). GetStat and SetStat are also no-
action service routines. They return without error.

Create and Open perform the same functions. They set up the 256-byte data exchange
buffer and save several addresses in the path descriptor.

101

Chapter 7. The Pipe File Manager (PIPEMAN) NitrOS-9 EOU Technical Reference Manual

The Close request checks to see if any process is reading or writing through the pipe. If
not, NitrOS-9 returns the buffer.

PRead, PWrite, PRdLn, and PWrLn read data from the buffer and write data to it.

The ! or | operator tells the Shell that processes wish to communicate through a pipe.
For example:

proc1 ! proc2

In this example, shell forks Proc1 with the standard output path to a pipe and forks
Proc2 with the standard input path from a pipe.

Shell can also handle a series of processes using pipe. For example:

proc1 | proc2 |proc3 | proc4

The following outline shows how to set up pipes between processes:

Open /pipe save path in variable x
Dup path #1 save stdout in variable y
Close #1 make path available
Dup x put pipe in stdout

(Dup uses lowest available)
Fork proc1 fork process 1
Close #1 make path available
Dup y restore stdout
Close y make path available

Dup path #0 save stdin in Y
Close #0 make path available
Dup x put pipe in stdin
Fork proc2 fork process 2
Close #0 make path available
Dup y restore stdin
Close x no longer needed
Close y no longer needed

102

ENTER

ENTER

Chapter 7. The Pipe File Manager (PIPEMAN) NitrOS-9 EOU Technical Reference Manual

Example: The following example shows how an application can initiate another process
with the stdin and stdout routed through a pipe:

Open /pipe1 save path in variable a
Open /pipe2 save path in variable b
Dup 0 save stdin in variable x
Dup 1 save stdout in variable y
Close #0 make stdin path available
Close #1 make stdout path available
Dup a make pipe1 stdin
Dup b make pipe2 stdout
Fork new process
Close #0 make stdin path available
Close #1 make stdout path available
Dup x restore stdin
Dup y restore stdout
Return a&b return pipe path numbers to caller

103

Chapter 8. VIRQ / RAM / NIL Driver (VRN) NitrOS-9 EOU Technical Reference Manual

Chapter 8. VIRQ / RAM / NIL Driver
(VRN)

The VRN driver is a special driver that interfaces through the SCF File Manager (mainly
to drive the /nil device), but also allows user process    access to setting up and accessing
VIRQ's, and allocating/de-allocating RAM blocks outside of the user’s process space.
Two specially named descriptors (/FTDD and /VI) are installed for backwards
compatibility with programs sold by Tandy, which originally had custom drivers using
these descriptors. The newer VRN driver combines both of those older drivers, along
with new functionality, in one new, combined driver, and then merged in support for
/nil (from the Level 2 Development System) and new memory calls. Some of the original
features of those drivers have also been enhanced. It is recommended that all new
programs use the standard /NIL device for all functions in this driver, and we will
eventually phase out the older descriptors (for those curious, the original descriptor
/FTDD was used for special user VIRQ functions in Sub Logic's Flight Simulator II, and the
original descriptor /VI was used for different special user VIRQ functions in Sierra's King
Quest III and Leisure Suit Larry).

/nil is a null descriptor; anything directed to it just returns without doing anything and
never generates an error; and anything trying to read from it immediately receives an
EOF (End of File) error. It is usually used to redirect standard output and/or standard
error paths to, so that the output isn't displayed on a screen or written to a file (ex. to
do a DIR from a Shell, but not showing normal DIR output, but only errors, one could do
a 'DIR >/nil'). All other functionality with VRN is done through GetStat and SetStat calls.

It should be noted that VIRQ signals are based on unique process ID number and path
number combinations, combined. This way a single process can specify multiple paths,
each with their own VIRQ setting. The system wide limit is currently 4 unique entries.

Since VRN is an SCF based device, the beginning of it's device memory area is the exact
same as shown in Chapter 6 (SCF), up through V.SCF. The remainder of it's device
memory area is typically defined as follows:

104

Chapter 8. VIRQ / RAM / NIL Driver (VRN) NitrOS-9 EOU Technical Reference Manual

Name Relative
Address

Size
(Bytes)

Use

VIRQPckt $1D 5 Standard VIRQ packet (see Virtual Interrupt
Processing in Chapter 2)

PathNmbr $22 1 Current path number

ProcNmbr $23 1 Current process ID

VIRQTbls $24 56 4 VIRQ table entries, each 14 bytes (see below)

RAMTbls $5C 160 32 RAM table entries, each 5 bytes (See below)

PathNmbr is a temp holder for the current path # of the calling process.
ProcNmbr is a temp holder for the current process # of the calling process.

For each VIRQTbls entry, the following offsets are used:

Name Offset Size
(Bytes)

Use

FS2.ID $0 1 Flight Simulator 2 (and FS2+) VIRQ process ID

FS2.Pth $1 1 Flight Simulator 2 (and FS2+) VIRQ path #

FS2.Sgl $2 1 Flight Simulator 2 (and FS2+) VIRQ signal code

FS2.Tmr $3 2 Flight Simulator 2 (and FS2+) VIRQ countdown
timer

FS2.Rst $5 2 Flight Simulator 2 (and FS2+) VIRQ reset count

FS2.STot $7 1 Flight Simulator 2 (and FS2+) VIRQ signal counter

FS2.VTot $8 4 Flight Simulator 2 (and FS2+) total VIRQ counter

KQ3.ID $C 1 Kings Quest III VIRQ process ID

KQ3.Pth $D 1 Kings Quest III VIRQ path number

FS2.Tmr - # of VIRQ's (1/60th second increments) before a signal is sent.
FS2.Rst - is the reset count. Once a signal has been sent, this how many 1/60th second
VIRQ's need to happen before the next time the signal is sent. If this is set to 0, it is a
"one shot" VIRQ, and doesn't ever trigger again.
FS2.STot - this is how many signals (0-255) have been sent (this can be reset to 0 at any
time by the caller).
FS2.VTot - this is how many VIRQ's (regardless of how many signals have been sent) that
have occurred since this count was last reset. This is a 32 bit unsigned number (0 to
4,294,967,296).

105

Chapter 8. VIRQ / RAM / NIL Driver (VRN) NitrOS-9 EOU Technical Reference Manual

- The original Flight Simulator 2 driver always sends a signal code of $80 (this is referred
to as 'FS2' in this documentation). The FS2+ additions allow the caller to define their
own signal codes (and also define multiple ones with different countdowns, using
separate paths). The KQ3 is also hardcoded to send a signal code of $80.
- KQ3 VIRQ's are always 1/60th of second.
- FS2/FS2+ VIRQ's are programmable, can be single shot VIRQ's or repeating, and can
also keep track of both how many 1/60th second VIRQ's have occurred, and how many
times each signal has been sent. They are more versatile than the KQ3 ones, but take a
little longer to service in the VIRQ routine.

For each RAMTbls entry, the following offsets are used:

Name Offset Size
(Bytes)

Use

RAM.ID $0 1 RAM process ID

RAM.Pth $1 1 RAM path #

RAM.Bks $2 1 Number of 8K RAM blocks allocated

RAM.StB $3 2 Starting RAM block number

Each path's RAM allocation is of contiguous MMU Blocks. A program can open multiple
paths to get non-contiguous chunks of RAM.

The VRN driver itself has a six entry branch table at it's entry point:
 VRNEnt lbra Init
 lbra Read
 lbra Write
 lbra GetStat
 lbra SetStat
 lbra Term

Init allocates a 256 byte device memory page to VRN, which by default allows up to 4
simultaneous user VIRQ entries active in the system at once. (It also sets up it's VIRQ &
IRQ routines, for 1/60th of second). In addition, it by default allows up to 32

106

Chapter 8. VIRQ / RAM / NIL Driver (VRN) NitrOS-9 EOU Technical Reference Manual

simultaneous contiguous RAM allocation blocks in the system at once. It should be
noted that both the VIRQ and RAM entries can be from different processes, or multiples
of each within the same process (the latter requires you opening multiple path's to /nil
from a single process).

Read always returns an EOF Error.

Write always returns with no error, and simply ignores any data written.

GetStat handles the following functions (see the System Call chapter entries for details):
    SS.Ready - Always returns Device Not Ready error.
    SS.VCtr - FS2(+) VIRQ call - returns total VIRQ's triggered count, and resets that count
 to 0.
    SS.VSig - FS2(+) VIRQ call - returns # of signals triggered, and resets that count to 0.
    All other GetStat calls to VRN return an Unknown Service error.

SetStat handles the following functions (see the System Call chapter entries for details):
    SS.Close - This clears all entries (VIRQ or RAM) for the caller's process #/path #.
    SS.FClr - Set or Clear FS2 VIRQ for calling process #/path #., or Clear FS2+ VIRQ for
 calling process #/path #..
    SS.FSet - Set FS2+ VIRQ for calling process #/path #.
    SS.KSet - Set KQ3 VIRQ for calling process #/path #.
    SS.KClr - Clear KQ3 VIRQ for calling process #/path #.
    SS.ARAM - Allocate RAM blocks for calling process #/path #.
    SS.DRAM - Deallocate RAM blocks for calling process #/path #.
    All other SetStat calls to VRN return an Unknown Service error.

Term disables VRN's VIRQ and IRQ entries.

107

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Chapter 9. System Calls
System calls are used to communicate between the NitrOS-9 operating system and
assembly-language programs. There are two major types of calls—I/O calls and function
calls.

Function calls include user mode calls and system mode calls.

Each system call has a mnemonic name. Names of I/O calls start with I$. For example,
the Change Directory call is I$ChgDir. Names of function calls start with F$. For example,
the Allocate Bits call is F$AllBit. The names are defined in the assembler-input
conditions equate file called OS9.D.

System mode calls are privileged. You can execute them only while NitrOS-9 is in the
system state (when it is processing another system call, executing a file manager or
device driver, and so on).

System mode calls are included in this manual primarily for programmers writing device
drivers and other system-level applications.

Calling Procedure

To execute any system calls, you need to use an SWI2 instruction:
1. Load the 6809 registers with any appropriate parameters.
2. Execute an SWI2 instruction, followed immediately by a constant byte, which is

the request code. In the references in this chapter, the first line is the system call
name (for example Close Path) and the second line contains the call’s mnemonic
name (for example I$Close), the software interrupt Code 2 (103F), and the call’s
request code (for example, 8F) in hexadecimal.

3. After NitrOS-9 processes the call, it returns any parameters in the 6809 registers.
If an error occurs, the C bit of the condition code register is set and Register B
contains the appropriate error code. This feature permits a BCS or BCC instruction
immediately following the system call to branch either if there is an error or if no
error occurs.

108

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

As an example, here is the Close system call:

LDA PATHNUM
SWI2
FCB $8F
BCS ERROR

You can use the assembler’s OS9 directive to simplify the call, as follows:

LDA PATHNUM
OS9 I$Close
BCS ERROR

The ASM assembler defaults to case sensitive, but can be overridden to be case
insensitive on mnemonic names with the ‘U’ option. The RMA assembler, included in
the OS-9 Level Two Development Pak, is case sensitive. The names in this manual have
been spelled with upper and lower case letters, matching the defs for RMA.

I/O System Calls

NitrOS-9’s I/O calls are easier to use than many other systems’ I/O calls. This is because
the calling program does not have to allocate and set up file control blocks, sector
buffers, and so on.

Instead, NitrOS-9 returns a 1-byte path number whenever a process opens a path to a
file or device. Until the path is closed, you can use this path number in later I/O requests
to identify the file or device.

In addition, NitrOS-9 allocates and maintains its own data structures; so, you need not
deal with them.

System Call Descriptions

The rest of this chapter consists of the system call descriptions. At the top of each
description is the system call name, followed by its mnemonic name, the SWI2 code,
and the request code. Next are the call’s entry and exit conditions, followed by
additional information about the code where appropriate.

109

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

In the system call descriptions, registers not specified as entry or exit conditions are not
altered. Strings passed as parameters are normally terminated with a space character
and end-of-line character, or with Bit 7 of the last character set.

If an error occurs on a system call, the C bit of Register CC is set and Register B contains
the error code. If no error occurs, the C bit is clear and Register B contains a value of
zero.

User Mode System Calls Quick Reference

Following is a summary of the User Mode System Calls referenced in this chapter:

F$Alarm Sets up an alarm
F$AllBit Sets bits in an allocation bit map
F$AllRAM Allocates RAM blocks
F$Chain Chains a process to a new module
F$ClrBlk Clears the specified block of memory
F$CmpNam Compares two names
F$CpyMem Copies external memory
F$CRC Generates a cyclic redundancy check
F$CRCMod Enables/Disables or reports status of module CRC checking
F$Debug Reboots the Coco to Disk BASIC
F$DelBit Deallocates bits in an allocation bit map
F$DelRAM Deallocates RAM blocks
F$Exit Terminates a process
F$Fork Starts a new process
F$GBlkMp Gets a copy of a system block map
F$GPrDsc Gets a copy of a process descriptor
F$Icpt Set a signal intercept trap
F$ID Returns a process ID
F$Link Links to a memory module
F$Load Loads a module from mass storage
F$MapBlk Maps the specified blocks
F$Mem Changes a process’s data area size
F$NMLink Links to a module; does not map the module into the user’s address

space

110

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

F$NMLoad Loads a module but does not map it into the user’s address space
F$PErr Prints an error message
F$PrsNam Parses a pathlist name
F$SchBit Searches a bit map
F$Send Sends a signal to a process
F$Sleep Suspends a process
F$SPrior Sets a process’s priority
F$SSWI Sets a software interrupt vector
F$STime Sets a system time
F$SUser Sets a user ID number
F$Time Returns the current time
F$UnLink Unlinks a module
F$UnLoad Unlinks a module by name
F$Wait Waits for a signal
I$Attach Attaches to an I/O device
I$ChgDir Changes a working directory
I$Close Closes a path
I$Create Creates a new file
I$Delete Deletes a file
I$DeletX Deletes a file from the execution directory
I$Detach Detaches an I/O device
I$Dup Duplicates a path
I$GetStt Gets a device’s status
I$MakDir Creates a directory file
I$ModDsc Modify bytes in a device descriptor
I$Open Opens a path to an existing file
I$Read Reads data from a device
I$ReadLn Reads a line of data from a device
I$Seek Positions a file pointer
I$SetStt Sets a device’s status
I$Write Writes data to a device
I$WritLn Writes a data line to a device

111

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

System Mode Calls Quick Reference

Following is a summary of the System Mode Calls referenced in this chapter:

F$All64 Allocates a 64-byte memory block
F$AlHRAM Allocates high RAM
F$AllImg Allocates image RAM blocks
F$AllPrc Allocates a process descriptor
F$AllTsk Allocates a process task number
F$AProc Enters active process queue
F$Boot Performs a system bootstrap
F$BtMem Performs a memory request bootstrap
F$DATLog Converts a DAT block offset to a logical address
F$DelImg Deallocates image RAM blocks
F$DelPrc Deallocates a process descriptor
F$DelTsk Deallocates a process task number
F$ELink Links modules using a module directory entry
F$FModul Finds a module directory entry
F$Find64 Finds a 64-byte memory block
F$FreeHB Gets a free high block
F$FreeLB Gets a free low block
F$GCMDir Compacts module directory entries
F$GProcP Gets a process’s pointer
F$IODel Deletes an I/O module
F$IOQu Puts an entry into an I/O queue
F$IRQ Makes an entry into IRQ polling table
F$LDABX Loads Register A from 0,X in Task B
F$LDAXY Loads A[X,[Y]]
F$LDDDXY Loads D[D+X,[Y]]
F$Move Moves data to a different address space
F$NProc Starts the next process
F$RelTsk Releases a task number
F$ResTsk Reserves a task number
F$Ret64 Returns a 64-byte memory block
F$SetImg Sets a process DAT image
F$SetTsk Sets a process’s task DAT registers

112

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

F$SLink Performs a system link
F$SRqMem Performs a system memory request
F$SRtMem Performs a system memory return
F$SSvc Installs a function request
F$STABX Stores Register A at 0,X in Task B
F$VIRQ Makes an entry in a virtual IRQ polling table
F$VModul Validates a module

113

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

User System Calls

Set an Alarm Sets an alarm, or a signal to send to a
specified process ID, at a specified time

OS9 F$Alarm 103F 1E

Entry Conditions
X relative address of 6-byte time packet

(YYMMDDHHMMSS)
 (not needed if D=0000)
 = operation to perform (A:B = D)
 A = 00
 B = Function
 00 = clear the setting
 01 = cause the alarm to "beep" for 15 seconds after system time

matches the time packet sent
 02 = inquire alarm settings
 or
 A = process ID to signal on time match
 B = signal to send on time match

Exit Conditions (if D=0002 on entry)
 X address of current alarm setting packet returned (same address that was

passed)
 A process to receive sign on match
 B signal to be sent on time match

Error Output
CC carry set on error
B appropriate error code

Additional Information
• When the system reaches the specified alarm time, it rings the bell for 15 seconds

or sends the specified signal.

114

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• The time packet is identical to the packet used in the F$STime call. See F$STime
for additional information on the format of the packet.

• All alarms begin at the start of a minute and any seconds in the packet are
ignored.

• The system is currently limited to one alarm at a time.

115

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Allocate Bits Sets bits in an allocation bit map

OS9 F$AllBit 103F 13

Entry Conditions
D number of the first bit to set
X starting address of the allocation bit map
Y number of bits to set

Error Output
CC carry set on error
B error code (if any)

Additional Information
• Bit numbers range from 0 to n-1, where n is the number of bits in the allocation

bit map.
• Warning: Do not issue the Allocate Bits call with Register Y set to 0 (a bit count of

0).

116

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Allocate RAM Searches the memory block map for the
desired number of contiguous free RAM
blocksOS9 F$AllRAM 103F 39

Entry Conditions
B number of blocks

Exit Conditions
D start block number of RAM found ($0000-$00FF on the CoCo)

Error Output
CC carry set on error
B error code, if any

Additional Information
• The support module for this system call is Krn.
• This call searches starting at the lowest RAM address.

117

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Chain Loads and executes a new primary
module without creating a new process

OS9 F$Chain 103F 05

Entry Conditions
A language/type code ($00 = any language/type)
B size of the area (in 256 byte pages); must be at least one page
X address of the module name or filename (can be CR or hi-bit terminated)
Y parameter area size (in bytes); defaults to zero if not specified
U starting address of the parameter area; must be at least one page

Error Output
CC carry set on error
B error code (if any)

Additional Information
• Chain loads and executes a new primary module, but does not create a new

process. A Chain system call is similar to a Fork followed by an Exit, but it has less
processing overhead. Chain resets the calling process program and data memory
areas and begins executing a new primary module. It does not affect open paths.
This is a user mode system call.

• Warning: Make sure that the hardware stack pointer (Register SP) is located in
the direct page before Chain executes. Otherwise the system might crash or
return a suicide attempt error. This precaution also prevents a suicide in the event
that the new module requires a smaller data area than that in use. Allow
approximately 200 bytes of stack space for execution of the Chain system call.

• Chain performs the following steps:
1. It causes NitrOS-9 to unlink the process’s old primary module.
2. NitrOS-9 parses the name string of the new process’s primary module (the

program that is to be executed first). Then, it causes NitrOS-9 to search the
system module directory to see if a module with the same name, type, and
language is already in memory.

3. If the module is in memory, it links to it. If the module is not in memory, it
uses the name string as the pathlist of a file to load into memory. Then, it
links to the first module in this file. (Several modules can be loaded from a
single file.)

118

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

4. It reconfigures the data memory area to the size specified in the new
primary module’s header.

5. It intercepts and erases any pending signals.

The following diagram shows how Chain sets up the data memory area and
registers for the new module.

Parameter Area
 Y (highest address)

Data Area

 X,SP

Direct Page

 U,DP (lowest address)

D parameter area size
PC module entry point absolute address
CC F=0, I=0; others are undefined

Registers Y and U (the top-of-memory and bottom-of-memory pointers, respectively)
always have values at page boundaries. If the parent process does not specify a size for
the parameter area, the size (Register D) defaults to zero. The data area must be at least
one page.

(For more information, see the Fork system call.)

119

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Clear Specified Block Marks blocks in the process DAT image
as unallocated

OS9 F$ClrBlk 103F 50

Entry Conditions
B number of blocks
U address of first block

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• After Clear Specified Block deallocates blocks, the blocks are free for the process

to use for other data or program areas. If the block address passed to Clear
Specified Block is invalid or if the call attempts to clear the stack area, returns
E$IBA (Illegal Block Address).

• The support module for the call is KrnP2.

120

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Compare Names Compares two strings for a match

OS9 F$CmpNam 103F 11

Entry Conditions
B length of string1
X address of string1
Y address of string2

Exit Conditions
CC carry clear if the strings match

Additional Information
• The Compare Names call compares two strings and indicates whether they match.

Use this call with the Parse Name system call. The second string must have the
most significant bit (Bit 7) of the last character set.

121

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Copy External Memory Reads external memory into the user’s
buffer for inspection

OS9 F$CpyMem 103F 1B

Entry Conditions
D DAT image pointer
X offset in block to begin copy
Y byte count
U caller’s destination buffer

Error Output
CC carry set on error
B error code (if any)

Additional Information
• You can view any system memory through the use of the Copy External Memory

call. The call assumes Register X is the address of the 64K address space described
by the DAT image given.

• If you pass the entire DAT image of a process, place a value in Register X that
equals the address in the process space. If you pass a partial DAT image (the
upper half), place a value in Register X that equals the offset from the beginning
of the DAT image ($8000).

• The support module for this call is KrnP2.

122

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

CRC Calculates the CRC of a module

OS9 F$CRC 103F 17

Entry Conditions
X starting byte address
Y number of bytes
U address of the 3-byte CRC accumulator

Exit Conditions
Updates the CRC accumulator.

Additional Information
• The CRC call calculates the CRC (cyclic redundancy count) for use by compilers,

assemblers, or other module generators.
• The calculation begins at the starting byte address and continues over the

specified number of bytes.
• You need not cover an entire module in one call since the CRC can be

accumulated over several calls. The CRC accumulator can be any 3-byte memory
area. You must initialize it to $FFFFFF before the first CRC call.

• F$CRC can be used to both create a new CRC, or to verify an existing one. If
you are verifying an existing one, the calculation should be performed on
the entire module (including the header and CRC itself). The CRC
accumulator will contain the CRC constant bytes ($800FE3) if the module
CRC is correct.

• If the CRC of a new module is to be generated, the CRC is accumulated over
the module (excluding the CRC itself).

• The updated accumulator does not include the last three bytes of the module.
The three CRC bytes are stored there.

• Be sure to initialize the CRC accumulator only once for each module check by CRC.

123

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

CRC Module Checking Reports or turns module CRC checking
ON or OFF

OS9 F$CRCMod 103F 55

Entry Conditions
A starting byte address

A=0 : Report current module CRC checking mode
A=1 : Turn module CRC checking OFF
A=2 : Turn module CRC checking ON

Exit Conditions
A 0=Module CRC checking is OFF, 1=Module CRC checking is ON

Error Output
None

Additional Information
• Module CRC checking (to check for a corrupted module) currently defaults to OFF

on boot (in NitrOS-9; OS-9 level 2 *always* has CRC checking ON). The default can
be changed in the the INIT module in the OS9Boot file. Enabling it will slow down
the launch of programs, sometimes taking a few seconds extra for large ones.

• This call is handled by KrnP2.
• This call was added in NitrOS-9 Level 2.

124

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Debug (Reboot) Reboots the Coco to Disk BASIC (for
debugging)

OS9 F$Debug 103F 23

Entry Conditions
A function ($FF=Reboot to BASIC. $00-$FE reserved for future use).

Exit Conditions
None. The system exits NitrOS-9, and returns to BASIC.

Error Output:
CC Carry set on error
B Error code (if any)

Additional Information
• Currently, only the function $FF (Reboot to DECB) is supported. Any memory

outside of BASIC’s initialization is left alone, making it useful for debugging
purposes. Also useful for rebooting under software control, versus the RESET
button.

• The calling process also must be either the system task, or the Superuser (User 0).
All other users will received Error $D0 (208 – Unknown Service Request)

• This call is handled by KrnP2.
• This call was added in NitrOS-9 Level 2.

125

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Deallocate Bits Clears allocation map bits

OS9 F$DelBit 103F 14

Entry Conditions
D number of the first bit to clear
X starting address of the allocation bit map
Y number of bits to clear

Exit Conditions
None

Additional Information
• The Deallocate Bits call clears bits in the allocation bit map pointed to by Register

X. Bit numbers are in the range 0 to n-1, where n is the number of bits in the
allocation bit map.

• Warning: Do not call Deallocate Bits with Register Y set to zero (a bit count of
zero).

126

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Deallocate RAM blocks Clears a block’s RAM In Use flag in the
system memory block map

OS9 F$DelRAM 103F 51

Entry Conditions
B number of blocks
X starting block number

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Deallocate RAM Blocks call assumes the blocks being deallocated are not

associated with any DAT image.
• The support module for this call is KrnP2.

127

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Exit Terminates the calling process

OS9 F$Exit 103F 06

Entry Conditions
CC Carry bit clear if no error
B Status code to return to the parent process

CC Carry bit set if error
B Error code to return to the parent process

Exit Conditions
The process is terminated.

Additional Information
• The Exit system call is the only way a process can terminate itself. Exit deallocates

the process’s data memory area and unlinks the process’s primary module. It also
closes all open paths automatically.

• The Wait system call always returns to the parent the status code passed by the
child in its Exit call. Therefore, if the parent executes a Wait and receives the
status code, it knows the child has died.

• Exit unlinks only the primary module. Unlink any module that is loaded or linked
to by the process before calling Exit.

128

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Fork Creates a child process

OS9 F$Fork 103F 03

Entry Conditions
A language/type code ($00 = any language/type)
B size of the optional data area (in pages)
X address of the module name or filename (can be CR, NUL or hi-bit

terminated)
Y size of the parameter area (in pages); defaults to zero if not specified
U starting address of the parameter area; must be at least one page

Exit Conditions
X address of the last byte of the name + 1 (See the following example)
A new process I/O number

Error Output
CC carry set on error
B error code (if any)

Additional Information
• Fork creates a new process, a child of the calling process. Fork also sets up the

child process’s memory and 6809 registers and standard I/O paths.

• Before the Fork call:

T E S T $0D

↑
X

• After the Fork call:

T E S T $0D

↑
X

129

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• This is the sequence of Fork’s operations:
1. NitrOS-9 parses the name string of the new process’s primary module

(the program that NitrOS-9 executes first). Then, it searches the system
module directory to see if the program already is in memory.

2. The next step depends on whether or not the program is already in
memory. If the program is in memory, NitrOS-9 links the module to the
process and executes it.
a) If the program is not in memory, NitrOS-9 uses the name as the

pathlist of the file that is to be loaded into memory. Then, the first
module in the this file is linked to and executed. (Several modules
can be loaded from one file.)

3. NitrOS-9 uses the primary module’s header to determine the initial size
of the process’s data area. It then tries to allocate a contiguous RAM
area of that size. (This area includes the parameter passing area, which
is copied from the parent process’s data area.)

4. The new process’s data memory area and registers are set up as shown
in the following diagram. NitrOS-9 uses the execution offset given in the
module header to set the program counter to the module’s entry point.

Parameter Area
 Y (highest address)

Data Area

 X,SP

Direct Page

 U,DP (lowest address)

D size of the parameter area
PC module entry point absolute address

130

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

CC F=0, I=0, other condition code flags are undefined

Registers Y and U (the top-of-memory and bottom-of-memory pointers,
respectively) always have values at page boundaries.

As stated earlier, if the parent does not specify the size of the parameter area, the
size defaults to zero. The minimum overall data area size is one page.

When the shell processes a command line, it passes a string in the parameter
area. The string is a copy of the parameter part of the command line. To simplify
string-oriented processing, the shell also inserts an end-of-line character at the
end of the parameter string.

Register X points to the start byte of the parameter string. If the command line
includes the optional memory size specification (#n or #nK), the shell passes that
size as the requested memory size when executing the Fork.

• If any of the preceding operations is unsuccessful, the Fork is terminated and
NitrOS-9 returns an error to the caller.

• The child and parent processes execute at the same time unless the parent
executes a Wait system call immediately after the Fork. In this case, the parent
waits until the child dies before it resumes execution.

• Be careful when recursively calling a program that uses the Fork system call.
Another child can be created with each new execution. This continues until the
process table becomes full.

• Do not fork a process with a memory size of zero.

131

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get System Block Map Gets a copy of the system block map

OS9 F$GBlkMp 103F 19

Entry Conditions
X pointer to the 1024-byte buffer (NOTE: The Coco version of NitrOS-9 only

needs a 256 byte buffer)

Exit Conditions
D number of bytes per block ($2000 on the Coco version of NitrOS-9) (MMU

block size dependent)
Y system memory block map size (number of 8K blocks of RAM available on

the Coco version of NitrOS-9)

Error Output
CC carry set on error
B error code (if any)

Additional Information
• The Get System block Map call copies the system’s memory block map into the

user’s buffer for inspection. The NitrOS-9 MFREE command uses this call to find
out how much free memory exists.

• The support module for this call is KrnP2.

132

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get Module Directory Gets a copy of the system module
directory

OS9 F$GModDr 103F 1A

Entry Conditions
X pointer to the 2048-byte buffer to hold module directory copy

Error Output
Y end of copied module directory
U start address of the system module directory
CC carry set on error
B error code (if any)

Additional Information
• The Get Module Directory call copies the system’s module directory into the

user’s buffer for inspection. The NitrOS-9 MDIR command uses this call to read
the module directory.

• The support module for this call is KrnP2.

133

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get Process Descriptor Gets a copy of the process’s process
descriptor

OS9 F$GPrDsc 103F 18

Entry Conditions
A requested process ID
X pointer to a 512-byte buffer

Error Output
CC carry set on error
X error code (if any)

Additional Information
• The Get Process Descriptor call copies a process descriptor into the calling

process’s buffer for inspection. The data in the process descriptor cannot be
changed. The NitrOS-9 PROCS and PROC commands uses this call to get
information about each existing process.

• The support module for this call is KrnP2.

134

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Intercept Sets a signal intercept trap

OS9 F$Icpt 103F 09

Entry Conditions
X address of the intercept routine
U starting address of the routine’s memory area

Exit Conditions
Signals sent to the process cause the intercept routine to be called instead of the
process being killed.

Additional Information
• Intercept tells NitrOS-9 to set a signal intercept trap. Then, whenever the process

receives a signal, NitrOS-9 executes the process’s intercept routine.
• Store the address of the signal handler routine in Register X and the base address

of the routine’s storage area in Register U.
• Once the signal trap is set, NitrOS-9 can execute the intercept routine at any time

because a signal can occur at any time.
• Terminate the intercept routine with an RTI instruction.
• If a process has not used the Intercept system call to set a signal trap, the process

terminates if it receives a signal.
• This is the order in which F$Icpt operates:

• When the process receives a signal, NitrOS-9 sets Registers U and B as
follows:

U starting address of the intercept routine’s memory area
B signal code (process’s termination status)

Note: The value of Register DP cannot be the same as it was when the
Intercept call was made.

• After setting the registers, NitrOS-9 transfers execution to the intercept
routine.

135

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get ID Returns a caller’s process ID and user ID

OS9 F$ID 103F 0C

Entry Conditions
None

Exit Conditions
A process ID
Y user ID

Additional Information
• The process ID is a byte value in the range 1 to 255. NitrOS-9 assigns each process

a unique process ID.
• The user ID is an integer from 0 to 65,535. It is defined in the system password

file, and is used by the file security system and a few other functions. Several
processes can have the same user ID.

• On the Color Computer 3, the initial user ID on your startup windows is inherited
from SysGo, which forks the initial shell, unless you use LOGIN during startup.

136

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Link Links to a memory module that has the
specified name, language, and type

OS9 F$Link 103F 00

Entry Conditions
A language/type code ($00 = any language/type)
X address of the module name (See the following example)

Exit Conditions
A type/language code
B attributes / revision level (if no error)
X address of the last byte of the module name + 1 (See the following example)
Y module entry point absolute address
U module header absolute address

Error Output
CC carry set on error
B error code (if any)

Additional Information
• The module’s link count increases by one whenever Link references its name.

Incrementing in this manner keeps track of how many processes are using the
module.

• If the module requested is not shareable (not re-entrant), only one process can
link to it at a time.

• Before the Link call:

T E S T $0D

↑
X

• After the Link call:

T E S T $0D

↑
X

137

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• This is the order in which the Link call operates:
1. NitrOS-9 searches the module directory for a module that has the specified

name, language, and type.
2. If NitrOS-9 finds the module, the address of the module’s header is returned in

Register U and the absolute address of the module’s execution entry point is
returned in Register Y. (This, and other information, is contained in the module
header.)

• If NitrOS-9 finds the module, the address of the module’s header is returned in
Register U and the absolute address of the module’s execution entry point is
returned in Register Y. (This, and other information, is contained in the module
header.)

• If NitrOS-9 does not find the module or if the type/language codes in the entry
and exit conditions do not match, NitrOS-9 returns one of the following errors:

• Module not found
• Module busy (not shareable and in use)
• Incorrect or defective module header

138

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Load Loads a module or modules from a file

OS9 F$Load 103F 01

Entry Conditions
A type / language code; 0 = any language / type
X address of the pathlist (filename) (See the following example)

Exit Conditions
A language / type code
B attributes / revision level (if no error)
X address of the last byte of the pathlist (filename) + 1 (See the following

example)
Y primary module entry point address
U address of the module header

Error Output
CC carry set on error
B error code (if any)

Additional Information
• The Load call loads one or more modules from the file specified by a complete

pathlist or from the working execution directory (if an incomplete pathlist is
given).

• The file must have the execute access bit set. It also must contain one or more
modules with proper module headers.

• NitrOS-9 adds all modules loaded to the system module directory. It links the first
module read. The exit conditions apply only to the first module loaded.

• Before the Load call:

/ D 0 / A C C T S R C V $0D

↑
X

• After the Load call:

/ D 0 / A C C T S R C V $0D

↑
X

139

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• Possible errors:
• Module directory full
• Memory full
• Errors that occur on the Open, Read, Close, and Link system calls.

140

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Map Specific Block Maps the specified block(s) into
unallocated blocks of process space

OS9 F$MapBlk 103F 4F

Entry Conditions
X starting block number
B number of blocks

Exit Conditions
U address of first block

Error Output
CC carry set on error
B error code, if any

Additional Information
• The system maps blocks from the top down. It maps new blocks into the highest

available addresses in the address space. See Clear Specified Block for information
on unmapping.

141

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Memory Changes process’s data area size

OS9 F$Mem 103F 07

Entry Conditions
D size of the new memory area (in bytes);

0 = return current size and upper bound

Exit Conditions
Y address of the new memory area upper bound
D actual size of the new memory (in bytes)

Error Output
CC carry set on error
B error code (if any)

Additional Information
• The Memory call expands or contracts the process’s data memory area to the

specified size. Or, if you specify zero as the new size, the call returns the current
size and upper boundaries of data memory.

• NitrOS-9 rounds off the size to the next page boundary. In allocating additional
memory, NitrOS-9 continues upward from the previous highest address. In
deallocating unneeded memory, it continues downward from that address.

142

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Link to a module Links to a module; does not map the
module into the user’s address space

OS9 F$NMLink 103F 21

Entry Conditions
A language/type code ($00 = any language/type)
X address of the module name

Exit Conditions
A type / language code
B module revision
X address of the last byte of the module name + 1; any trailing blanks are

skipped
Y storage requirement for the module

Error Output
CC carry set on error
B error code (if any)

Additional Information
• Although this call is similar to F$Link, it does not map the specified module into

the user’s address space but does return the memory requirement for the
module. A calling process can use this memory requirement information to fork a
program with a maximum amount of space. F$NMLink can therefore fork larger
programs than can be forked by F$Link.

143

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Load a module Loads one or more modules from a file
but does not map the module into the
user’s address spaceOS9 F$NMLoad 103F 22

Entry Conditions
A language/type code ($00 = any language/type)
X address of the pathlist

Exit Conditions
A type / language code
B module revision
X address of the last byte of the pathlist + 1
Y storage requirement for the module

Error Output
CC carry set on error
B error code (if any)

Additional Information
• If you do not provide a full pathlist for this call, it attempts to load from a file in

the current execution directory.
• Although this call is similar to F$Load, it does not map the specified module into

the user’s address space but does return the memory requirement for the
module. A calling process can use this memory requirement information to fork a
program with a maximum amount of space. F$NMLoad can therefore fork larger
programs than can be forked by F$Load.

144

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Print Error Writes an error message to a specified
path

OS9 F$PErr 103F 0F

Entry Conditions
B error code

Error Output
CC carry set on error
B error code (if any)

Additional Information
• Print Error writes an error message to the standard error path for the specified

process. By default, NitrOS-9 shows:

ERROR #decimal number

• The error reporting routine is vectored. Using the Set SVC system call, you can
replace it with a more elaborate reporting module. To replace this routine use the
Set SVC system call.

145

NitrOS-9 EOU:
In EOU, KrnP3 replaces the standard F$PErr call with an enhanced one that prints

the full error name from /dd/sys/errmsg".

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Parse Name Scans an input string for a valid NitrOS-9
name

OS9 F$PrsNam 103F 10

Entry Conditions
X address of the pathlist (See the following example)

Exit Conditions
X address of the optional slash + 1
Y address of the last character of the name + 1
A trailing byte (delimiter character)
B length of the name

Error Output
CC carry set on error
B error code (if any)
Y address of the first non-delimiter character in the string

Additional Information
• Parses, or scans, the input text string for a legal NitrOS-9 name. It terminates the

name with any character that is not a legal name character.
• Parse Name is useful for processing pathlist arguments passed to a new process.
• Because Parse Name processes only one name, you might need several calls to

process a pathlist that has more than one name. As you can see from the
following example, Parse Name finishes with Register Y in position for the next
parse.

• If Register Y was at the end of a pathlist, Parse Name returns a bad name error. It
then moves the pointer in Register Y past any space characters so that it can
parse the next pathlist in a command line.

• Before the Parse Name call:

/ D 0 / P A Y R O L L

↑
X

146

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• After the Parse Name call:

/ D 0 / P A Y R O L L

↑
X

↑
Y

B=2
A=’/’

147

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Search Bits Searches a specified memory allocation
bit map for a free memory block of a
specified sizeOS9 F$SchBit 103F 12

Entry Conditions
D starting bit number
X starting address of the map
Y bit count (free bit block size)
U ending address of the map

Exit Conditions
D starting bit number
Y bit count

Error Output
CC carry set on error
B error code (if any)

Additional Information
• The Search Bit call searches the specified allocation bit map for a free block

(cleared bits) of the required length. The search starts at the starting bit number.
If no block of the specified size exists, the call returns with the carry set, starting
bit number, and size of the largest block.

148

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Send Sends a signal to a specified process

OS9 F$Send 103F 08

Entry Conditions
A destination's process ID (0=All non-system processes. If not super-user, only

processes with caller's user number are allowed.)
B signal code

Error Output
CC carry set on error
B error code (if any)

Additional Information
• The signal code is a single byte value in the rage 0 through 255.
• If the destination process is sleeping or waiting, NitrOS-9 activates the process so

that the process can process the signal.
• If a signal trap is set up, F$Send executes the signal processing routing (Intercept).

If none was set up, the signal terminates the destination process and the signal
code becomes the exit status. (See the Wait system call.) An exception is the
wakeup signal; that signal does not cause the signal intercept routine to be
executed.

• Signal codes are defined as follows:

0 System terminate (cannot be intercepted)
1 Wake up the process
2 Keyboard terminate
3 Keyboard interrupt
128-255 User defined

• If you try to send a signal to a process that has a signal pending, NitrOS-9 cancels
the current Send call and returns an error. Issue a Sleep call for a few ticks; then,
try again.

• The Sleep call saves CPU time. See the Intercept, Wait, and Sleep system calls for
more information.

149

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Sleep Temporarily turns off the calling process

OS9 F$Sleep 103F 0A

Entry Conditions
X One of the following:

sleep time (in ticks)
0 = sleep indefinitely
1 = sleep for the remainder of the current time slice

Exit Conditions
X sleep time minus the number of ticks that the process was asleep

Error Output
CC carry set on error
B error code (if any)

Additional Information
• If Register X contains zero, NitrOS-9 turns the process off until it receives a signal.

Putting a process to sleep is a good way to wait for a signal or interrupt without
wasting CPU time.

• If Register X contains one, NitrOS-9 turns the process off for the remainder of the
process’s current time slice. It inserts the process into the active process queue
immediately. The process resumes execution when it reaches the front of the
queue.

• If Register X contains an integer in the rage 2-255, NitrOS-9 turns off the process
for the specified number of ticks, n. It inserts the process into the active process
queue after n-1 ticks. The process resumes execution when it reaches the front of
the queue. If the process receives a signal, it awakens before the time has
elapsed.

• When you select processes among multiple windows, you might need to sleep for
two ticks.

150

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set Priority Changes the priority of a process

OS9 F$SPrior 103F 0D

Entry Conditions
A process ID
B priority

0 lowest
255 highest

Error Output
CC carry set on error
B error code (if any)

Additional Information
• Set Priority changes the process’s priority to the priority specified. A process can

change another process’s priority only if it has the same user ID.
• The process ID can not be 0.

151

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set SWI Sets the SWI, SWI2, and SWI3 vectors

OS9 F$SSWI 103F 0E

Entry Conditions
A SWI type code
X address of the user software interrupt routine

Error Output
C carry set on error
B error code (if any)

Additional Information
• Sets the interrupt vectors for SWI, SWI2, and SWI3 instructions.
• Each process has its own local vectors. Each Set SWI call sets one type of vector

according to the code number passed in Register A:

1 SWI
2 SWI2
3 SWI3

• When NitrOS-9 creates a process, it initializes all three vectors with the address of
the NitrOS-9 service call processor.

• Warning: Microware-supplied software uses SWI2 to call NitrOS-9. If you reset
this vector, these programs cannot work. If you change all three vectors, you
cannot call NitrOS-9 at all.

152

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set Time Sets the system time and date

OS9 F$STime 103F 16

Entry Conditions
X Points to 6 byte Date and Time packet data

Error Output
CC carry set on error
B error code (if any)

Additional Information
• Set Time sets the current system date and time and starts the system real-time

clock. The date and time are passed in a time packet as follows:

Relative
Address Value

0 Year (1900+value, good until 2155)
1 month
2 day
3 hours
4 minutes
5 seconds

Then, the call makes a link system call to find the clock. If the link is successful,
NitrOS-9 calls the clock initialization. The clock initialization:

◦ Sets up hardware dependent functions
◦ Sets up the F$Time system call via F$SSVc

153

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set User ID Number Changes the current user ID without
checking for errors or checking the ID
number of the callerOS9 F$SUser 103F 1C

Entry Conditions
Y desired user ID number

Error Output
CC carry set on error
B error code (if any)

Additional Information
• The support module for this call is Krn.

154

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Time Gets the system date and time

OS9 F$Time 103F 15

Entry Conditions
X address of the area in which to store the date and time packet

Exit Conditions
X Pointer to the date and time packet

Error Output
CC carry set on error
B error code (if any)

Additional Information
• The Time call returns the current system date and time in the form of a 6-byte

packet (in binary). NitrOS-9 copies the packet to the address passed in Register X.
• The packet looks like this:

Relative
Address Value

0 Year (1900+value, good until 2155)
1 month
2 day
3 hours
4 minutes
5 seconds

• Time is a part of the clock module and it does not exist if no previous call to
F$STime has been made.

155

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Unlink Unlinks (removes from memory) a
module that is not in use and that has a
link count of zeroOS9 F$UnLink 103F 02

Entry Conditions
U address of the module header

Error Output
CC carry set on error
B error code (if any)

Additional Information
• Unlink unlinks a module from the current process’s address space, decreases its

link count by one, and, if the link count becomes zero, returns the memory where
the module was located to the system for use by other processes.

• You cannot unlink system modules or device drivers that are in use.
• Unlink operates in the following order:

• Unlink tells NitrOS-9 that the calling process no longer needs the module.
• NitrOS-9 decreases the module’s link count by one.
• When the resulting link count is zero, NitrOS-9 destroys the module.

If any other process is using the module, the module’s link count cannot fall to
zero. Therefore, NitrOS-9 does not destroy the module.

• If you pass a bad address, Unlink cannot find a module in the module directory
and does not return an error.

• If modules were loaded merged together, the link count of ALL modules within
that merge have to be 0 before they are removed from memory.

156

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Unlink a Module By Name Decrements a specified module’s link
count, and removes the module from
memory if the resulting link count is zeroOS9 F$UnLoad 103F 1D

Entry Conditions
A module type
X pointer to module name

Error Output
CC carry set on error
B error code (if any)

Additional Information
• This system call differs from Unlink in that it uses a pointer to the module name

instead of the address of the module header.
• If modules were loaded merged together, the link count of ALL modules within

that merge have to be 0 before they are removed from memory.
• The support module for this call is KrnP2.

157

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Wait Temporarily turns off a calling process

OS9 F$Wait 103F 04

Entry Conditions
None

Exit Conditions
A deceased child process’s ID (0 means the F$Wait exited by a signal received

in the calling program (not child)
B deceased child process’s exit status (if no error)

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Wait call turns off the calling process until a child process dies, either by

exiting an Exit system call, or by receiving a signal. The Wait call helps you save
system time.

• NitrOS-9 returns the child’s process ID and exit status to the parent. If the child
died because of a signal, the exit status byte (Register B) contains the signal code.

• If the caller has several children, NitrOS-9 activates the caller when the first one
dies. Therefore, you need to use one Wait system call to detect the termination of
each child.

• NitrOS-9 immediately reactivates the caller if a child dies before the Wait call. If
the caller has no children, Wait returns an error. (See the Exit system call for more
information.)

• If the Wait call returns with the carry bit set, the Wait function was not successful.
If the carry bit is cleared, Wait functioned normally and any error that occurred in
the child process is returned in Register B.

• If A=0, then the process calling F$Wait received a signal itself (and should have
ran the Intercept trap, if it was set up). If B=0 as well, then it was a Wake signal.

158

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

I/O User System Calls

Attach Attaches a device to the system or
verifies device attachment.

OS9 I$Attach 103F 80

Entry Conditions
A access mode (0=any access mode)
X address of the device name string

Exit Conditions
X updated past device name
U address of the device table entry

Error Output
CC carry set on error
B error code, if any

Additional Information
• Attach does not reserve the device. It only prepares the device for later use by

any process.
• NitrOS-9 installs most devices automatically on startup. Therefore, you need to

use Attach only when installing a device dynamically or when verifying the
existence of a device. You need not use the Attach system call to perform routing
I/O.

• The access mode parameter specifies the read and/or write operations to be
allowed. These are:

0 = Use any special device capabilities
1 = Read only
2 = Write only
3 = Update (read and write)

 Attach will make sure that both the device descriptor and it's driver
support the access mode requested.

159

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• Attach operates in this sequence:
• NitrOS-9 searches the system module to see if any memory contains a

device descriptor that has the same name as the device.
• NitrOS-9’s next operation depends on whether or not the device is already

attached. If NitrOS-9 finds the descriptor and if the device is not already
attached, NitrOS-9 link the device’s file manager and device driver. It then
places the address of the manager and the driver in a new device table
entry. NitrOS-9 then allocates any memory needed by the device driver,
and calls the driver’s initialization routine, which initializes the hardware.

• If NitrOS-9 finds the descriptor, and if the device is already attached,
NitrOS-9 verifies the attachment.

160

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Change Directory Changes the working directory of a
process to a directory specified by a
pathlist.OS9 I$ChgDir 103F 86

Entry Conditions
A access mode
X address of the pathlist

Exit Conditions
X updated past pathlist

Error Output
CC carry set on error
B error code, if any

Additional Information
• If the access mode is read, write, or update, NitrOS-9 changes the current data

directory. If the access mode is execute, NitrOS-9 changes the current execution
directory.

• The calling process must have read access to the directory specified (public read if
the directory is not owned by the calling process).

• The access modes are:

1 = Read only
2 = Write only
3 = Update (read and write)
4= Execute

161

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Close Path Terminates an I/O path

OS9 I$Close 103F 8F

Entry Conditions
A path number

Error Output
CC carry set on error
B error code, if any

Additional Information
• Close Path terminates the I/O path to the file or device specified by path number.

Until you use another Open, Dup, or Create system call for that path, you can no
longer perform I/O to the file or device.

• If you close a path to a single-user device, the device becomes available to other
requesting processes. NitrOS-9 deallocates internally managed buffers and
descriptors.

• The Exit system call automatically closes all open paths. Therefore, you might not
need to use the Close Path system call to close some paths.

• Do not close a standard I/O path unless you want to change the file or device to
which it corresponds.

• Close Path performs an implied I$Detach call. If it causes the device link count to
become 0, the device termination routine is executed. See I$Detach for additional
information.

162

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Create File Creates and opens a disk file

OS9 I$Create 103F 83

Entry Conditions
A access mode (write or update)
B file attributes
X address of the pathlist (can be NUL,SPACE or CR terminated) (See the

example below)

Exit Conditions
A path number
X address of the last byte of the pathlist + 1; skips any trailing blanks

Error Output
CC carry set on error
B error code, if any

Additional Information
• NitrOS-9 parses the pathlist and enters the new filename in the specified

directory. If you do not specify a directory, NitrOS-9 enters the new filename in
the working directory.

• NitrOS-9 gives the file the attributes passed in Register B, which has bits defined
as follows:

Bit Definition

0 Read
1 Write
2 Execute
3 Public read
4 Public write
5 Public execute
6 Shareable file

163

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• These access mode parameters passed in Register A must have the write bit set if
any data is to be written. These access codes are defined as follows: 2 = write, 3 =
update. The mode affects the file only until the file is closed.

• You can reopen the file in any access mode allowed by the file attributes. (See the
Open system call.)

• Files opened for write can allow faster data transfer than those opened for
update because update sometimes needs to pre-read sectors.

• If the execute bit (Bit 2) is set, the file is created in the working execution
directory instead of the working data directory.

• Create File causes an implicit I$Attach call. If the device has not previously been
attached, the device’s initialization routine is called.

• Later I/O calls use the path number to identify the file, until the file is closed.
• NitrOS-9 does not allocate data storage for a file at creation. Instead, it allocates

the storage either automatically when you first issue a write or explicitly by the
SetStat subroutine.

• If the filename already exists in the directory, an error occurs. If the call specifies a
non-multiple file device (such as a printer or terminal), Create behaves the same
as Open.

• You cannot use Create to make directories. (See the Make Directory system call
for instructions on how to make directories.)

• Before the Create File call:

/ D 0 / W O R K $0D

↑
X

• After the Create File call:

/ D 0 / W O R K $0D

↑
X

164

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Delete File Deletes a specified disk file

OS9 I$Delete 103F 87

Entry Conditions
X address of the pathlist (can be NUL, SPACE or CR terminated)

Exit Conditions
X address of the last byte of the pathlist + 1; skips any trailing blanks

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Delete File call deletes the disk file specified by the pathlist. The file must

have write permission attributes (public write, if the calling process is not the
owner). An attempt to delete a device results in an error. The caller must have
non-shareable write access to the file or an error results.

Example
Before the Delete File call:

/ D 0 / W O R K M E M O $0d

↑
X

After the Delete File Call:

/ D 0 / W O R K M E M O $0d

↑
X

165

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Delete A File Deletes a file from the current data or
current execution directory

OS9 I$DeletX 103F 90

Entry Conditions
A access mode
X address of the pathlist (can be NUL, SPACE or CR terminated)

Exit Conditions
X address of the last byte of the pathlist + 1; skips any trailing blanks

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Delete A File call removes the disk file specified by the selected pathlist. This

function is similar to I$Delete except that it accepts an access mode byte. If the
access mode is execute, the call selects the current execution directory.
Otherwise, it selects the current data directory.

• If a complete pathlist is provided (the pathlist begins with a slash (/)), the access
mode of the call ignored.

• Only use this call to delete a file. If you attempt to use I$DeletX to delete a device,
the system returns an error.

166

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Detach Device Removes a device from the system
device table

OS9 I$Detach 103F 81

Entry Conditions
U address of the device table entry

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Detach Device call removes a device from both the system and the system

device table, assuming the device is not being used by another process. You must
use this call to detach devices attached using the Attach system call. Attach and
Detach are both used mainly by the I/O manager. SCF also uses Attach and Detach
to set up its second device (echo device).

• This is the sequence of the operation of Detach Device:
• Detach Device calls the device driver’s termination routine. Then, NitrOS-9

deallocates any memory assigned to the driver.
• NitrOS-9 unlinks the associated device driver and file manager modules.
• NitrOS-9 then removes the driver, as long as no other module is using that

driver.

167

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Duplicate Path Returns a synonymous path number

OS9 I$Dup 103F 82

Entry Conditions
A old path number (number of path to duplicate)

Exit Conditions
A new path number (if no error)

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Duplicate Path returns another, synonymous path number for the file or

device specified by the old path number.
• The shell uses the Duplicate Path call when it redirects I/O.
• System calls can use either path number (old or new) to operate on the same file

or device.
• Makes sure that no more than one process is performing I/O on any one path at

the same time. Concurrent I/O on the same path can cause unpredictable results
with RBF files.

• The I$Dup call always uses the lowest available path number. This lets you
manipulate standard I/O paths to contain any desired paths.

168

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get Status Returns the status of a file or device

OS9 I$GetStt 103F 8D

Entry Conditions
A path number
B function code

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Status is a wildcard call. Use it to handle device parameters that:

• Are not the same for all devices
• Are highly hardware-dependent
• Must be user-changeable

• The exact operation of the Get Status system call depends on the device driver
and file manager associated with the path. A typical use is to determine a
terminal’s parameters for such functions as backspace character and echo on/off.
The Get Status call is commonly used with the Set Status call.

• The Get Status function codes that are currently defined are listed in the “Get
Status System Calls” section.

169

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Make Directory Creates and initializes a directory

OS9 I$MakDir 103F 85

Entry Conditions
B directory attributes
X address of the pathlist (can be NUL or CR terminated)

Exit Conditions
X address of the last byte of the pathlist + 1; skips any trailing blanks

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Make Directory call creates and initializes a directory as specified by the

pathlist. The directory contains only two entries, one for itself (.) and one for its
parent directory (..).

• NitrOS-9 makes the calling process the owner of the directory.
• Because the Make Directory call does not open the directory, it does not return a

path number.
• The new directory automatically has its directory bit set in the access permission

attributes. The remaining attributes are specified by the byte passed in Register B.
The bits are defined as follows:

Bit Definition

0 Read
1 Write
2 Execute
3 Public read
4 Public write
5 Public execute
6 Single-user
7 Don’t care

170

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Example
Before the Make Directory call:

/ D 0 / N E W D I R $0D

↑
X

After the Make Directory call:

/ D 0 / N E W D I R $0D

↑
X

171

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Modify Descriptor in Memory Modify byte(s) in a device descriptor

OS9 I$ModDsc 103F 91

Entry Conditions
X Pointer to the module name to modify (high bit OR Carriage Return

terminated)
B Number of bytes to change
U Pointer to start of 2 byte change pairs (2 * B):

Byte 0 is the offset into the descriptor to change (>M$DType offsets ONLY)
Byte 1 is the new byte value to write at that offset

Exit Conditions
CC Carry clear if no error; also, the descriptor is updated, with the header

parity and CRC updated as well,
 OR
Carry set if error

Error Output
B Error code (if any). Some possible ones:

$BB (187) Illegal Argument error: Caused by attempting to modify the
module header, or modifying byte offsets beyond the size of the descriptor.
$D8 (216) File Not Found error: If the specified module name is not currently
loaded in the module directory.

A If an Illegal Argument error was returned, then A contains the first byte
offset that contained the error.

Additional Information
• This call allows larger programs to directly modify device descriptors (including

outside of the OPT section), without having to map the device descriptor into
the calling program’s memory space. This especially helps if the device descriptor
is merged with other modules (a prime example being the OS9Boot file itself), as
otherwise an F$Link call will try to load in the entire merged file into the process’
memory space.

• You can only modify bytes after M$DTyp until the end of the module, up to 127
bytes maximum (ie, you can not modify the module header). If you specify an

172

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

offset out of range, the first such offset encountered will be return in A along with
your error. You can specify the CRC byte offsets; however, the value you ask to
write will be ignored and the CRC recalculated anyways.

• This call was added in NitrOS-9 EOU Beta 5.

173

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Open Path Opens a path to an existing file or device
as specified by the pathlist

OS9 I$Open 103F 84

Entry Conditions
A access mode (D S PE PW PR E W R)
X address of the pathlist (can be NUL, SPACE or CR terminated) (See example

below)

Exit Conditions
A path number
X address of the last byte of the pathlist + 1

Error Output
CC carry set on error
B error code, if any

Additional Information
• NitrOS-9 searches for the file in one of the following:

• The directory specified by the pathlist if the pathlist begins with a slash.
• The working data directory, if the pathlist does not begin with a slash.
• The working execution directory, if the pathlist does not begin with a slash

and if the execution bit is set in the access mode.
• NitrOS-9 returns a path number for later system calls to use to identify the file.
• The access mode parameter lets you specify which read and/or write operations

are to be permitted. When set, each access mode bit enables one of the
following: Write, Read, Read and Write, Update, Directory I/O.

• The access mode must conform to the access permission attributes associated
with the file or device. (See the Create system call.) Only the owner can access a
file unless the appropriate public permission bits are set.

• The update mode might be slightly slower than the others because it might
require pre-reading of sectors for random access of bytes within sectors.

• Several processes (users) can open files at the same time. Each device has an
attribute that specifies whether or not it is shareable.

• If the single-user bit is set, the file is opened for single-user access regardless of
the settings of the file’s permission bits.

174

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• You must set the directory flag if you are opening for read or write a file with the
directory bit set.

• Open Path always uses the lowest path number available for the process.

Example
Before the Open Path call:

/ D 0 / A C C T S P A Y $0D

↑
X

After the Open Path call:

/ D 0 / A C C T S P A Y $0D

↑
X

• Open Path always uses the lowest path number available for the process.

175

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Read Read n bytes from a specified path

OS9 I$Read 103F 89

Entry Conditions
A path number
X address in which to store the data
Y number of bytes to read

Exit Conditions
Y number of bytes read (including carriage return on SCF devices)

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Read call reads the specified number of bytes from the specified path. It

returns the data exactly as read from the file/device without additional processing
or editing. The path must be opened in the read or update mode.

• If there is not enough data in the specified file to satisfy the read request, the
read call reads fewer bytes than requested but an end-of-file error is not
returned. After all data in file is read, the next I$Read call returns an end-of-file
error.

• If the specified file is open for update, the record read is locked out on RBF-type
devices.

• The keyboard terminate, keyboard interrupt, and end-of-file characters are
filtered out of the Entry Conditions data on SCF-type devices unless the
corresponding entries in the descriptor have been set to zero. You might want to
modify the device descriptor so that these values are initialized to zero when the
path is opened.

• The call reads the number of bytes requested unless Read encounters any of the
following:

• An end-of-file character
• An end-of-record character (SCF only)
• An error

176

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Read Line With Editing Reads a text line with editing

OS9 I$ReadLn 103F 8B

Entry Conditions
A path number
X address at which to store data
Y maximum number of bytes to read

Exit Conditions
Y number of bytes read (includes carriage return on SCF devices)

Error Output
CC carry set on error
B error code, if any

Additional Information
• Read Line is similar to Read. The difference is that Read Line reads the input file or

device until it encounters a carriage return character or until it reaches the
maximum byte count specified, whichever comes first. The Read Line also
automatically activates line editing on character oriented devices, such as
terminals and printers. The line editing refers to auto line feed, null padding at
the end of the line, backspacing, line deleting, and so on.

• SCF requires that the last byte entered be an end-of-record character (usually a
carriage return). If more data is entered than the maximum specified, Read Line
does not accept it and a PD.OVF character (usually a bell) is echoed.

• After one Read Line call reads all the data in a file, the next Read Line call
generates an end-of-file error.

• For more information about line editing, see “SCF Line Editing Functions” in
Chapter 6.

177

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Seek Repositions a file pointer

OS9 I$Seek 103F 88

Entry Conditions
A path number
X MS 16 bits of the desired file position
U LS 16 bits of the desired file position

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Seek call repositions the path’s logical file pointer, the 32-bit address of the

next byte in the file to be read from or written to.
• You can perform a seek to any value, regardless of the file’s size. Later writes

automatically expand the file to the required size (if possible). Later reads,
however, return an end-of-file condition. Note that a seek to Address 0 is the
same as a rewind operation.

• NitrOS-9 usually ignores seeks to non-random access devices, and returns without
error.

• On RBF devices, seeking to a new disk sector causes the internal disk buffer to be
rewritten to disk if it has been modified. Seek does not change the state of record
locking.

178

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set Status Sets the status of a file or device

OS9 I$SetStt 103F 8E

Entry Conditions
A path number
B function code
Other registers depend on the function code

Error Output
CC carry set on error
B error code, if any
Other registers depend on the function code

Additional Information
• Set Status is a wildcard call. Use it to handle device parameters that:

• Are not the same for all devices
• Are highly hardware-dependent
• Must be user-changeable

• The exact operation of the Set Status system call depends on the device driver
and file manager associated with the path. A typical use is to set a terminal’s
parameters for such functions as backspace character and echo on/off. The Set
Status call is commonly used with the Get Status call.

• The Set Status function codes that are currently defined are listed in the “Set
Status System Calls” section.

179

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Write Writes to a file or device

OS9 I$Write 103F 8A

Entry Conditions
A path number
X starting address of data to write
Y number of bytes to write

Exit Conditions
Y number of bytes written

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Write system call writes to the file or device associated with the path number

specified.
• Before using Write, be sure the path is opened or created in the write or update

access mode. NitrOS-9 writes data to the file or device without processing or
editing the data. NitrOS-9 automatically expands the file if you write data path the
present end-of-file.

180

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Write Line Writes to a file or device until it
encounters a carriage return

OS9 I$WritLn 103F 8C

Entry Conditions
A path number
X address of the data to write
Y maximum number of bytes to write

Exit Conditions
Y number of bytes written

Error Output
CC carry set on error
B error code, if any

Additional Information
• Writes to the file or device that is associated with the path number specified.
• Write Line is similar to Write. The difference is that Write Line writes data until it

encounters a carriage return character. It also activates line editing for character-
oriented devices, such as terminals and printers. The line editing refers to auto
line feed, null padding at the end of the line, backspacing, line deleting, and so on.

• Before using Write Line, be sure the path opened or created in the write or
update access mode.

• For more information about line editing, see “SCF Line Editing Functions” in
Chapter 6.

181

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Privileged System Mode Calls

Allocate 64 Dynamically allocates 64-byte blocks of
memory

OS9 F$All64 103F 30

Entry Conditions
X base address of the page table; 0 = the page table has not been allocated

Exit Conditions
A block number
X base address of the page table
Y address of the block

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Allocate 64 system call allocates the 64-byte blocks of memory by splitting

pages (256-byte sections) into four sections.
• NitrOS-9 uses the first 64 bytes of the base page as a page table. This table

contains the page number (most significant byte of the address) of all pages in the
memory structure. If Register X passes a value of zero, the call allocates a new
base page and the first 64-byte memory block.

• Whenever a new page is needed, a Request System Memory system call
(F$SRqMem) executes automatically.

• The first byte of each block contains the block number. Routines that use the
Allocate 64 call should not alter this byte.

• The following diagram shows how seven blocks might be allocated:

182

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Any Memory Page Any Memory Page
Base Page

Page Table
(64 bytes)

X
Block 4
(64 bytes)

X
Block 1
(64 bytes)

X
Block 5
(64 bytes)

X
Block 2
(64 bytes)

X
Block 6
(64 bytes)

X
Block 3
(64 bytes)

X
Block 7
(64 bytes)

183

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Allocate High RAM Allocate system memory from high
physical memory

OS9 F$AlHRAM 103F 53

Entry Conditions
B number of blocks

Exit Conditions
D start block number of RAM found

Error Output
CC carry set on error
B error code, if any

Additional Information
• This call searches for the desired number of contiguous free RAM blocks, starting

its search at the top of memory. F$AllHRam is similar to F$AllRAM except
F$AllRAM begins its search at the bottom of memory.

• Screen allocation routines use this call to provide a better chance of finding the
necessary memory for a screen.

184

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Allocate Image Allocates RAM blocks for process DAT
image

OS9 F$AllImg 103F 3A

Entry Conditions
A starting block number
B number of blocks
X process descriptor pointer

Error Output
CC carry set on error
B error code, if any

Additional Information
• Use the Allocate Image system call to allocate a data area for a process. The

blocks that Allocate Image define might not be contiguous.
• The support module for this system call is Krn.

185

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Allocate Process Descriptor Allocates and initializes a 512-byte
process descriptor

OS9 F$AllPrc 103F 4B

Entry Conditions
None

Exit Conditions
U process descriptor pointer

Error Output
CC carry set on error
B error code, if any

Additional Information
• The process descriptor table houses the address of the descriptor. Initialization of

the process descriptor consists of clearing the first 256 bytes of the descriptor,
setting up the state as a system state, and marking as unallocated as much of the
DAT image as the system allows—typically, 60-64 kilobytes.

• The support module for this system call is KrnP2. The call also branches to the
F$SRqMem call.

186

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Allocate Process Task Number Determines whether NitrOS-9 has
assigned a task number to the specified
processOS9 F$AllTsk 103F 3F

Entry Conditions
X process descriptor pointer

Error Output
CC carry set on error
B error code, if any

Additional Information
• If the process does not have a task number, NitrOS-9 allocates a task number and

copies the DAT image into the DAT hardware.
• The support module for this call is Krn. Allocate Process Task Number also

branches to F$ResTsk and F$SetTsk.

187

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Insert Process Inserts a process into the queue for
execution

OS9 F$AProc 103F 2C

Entry Conditions
X address of the process descriptor

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Insert Process system call inserts a process into the active process queue so

that NitrOS-9 can schedule the process for execution.
• NitrOS-9 sorts all processes in the queue by process age (the count of how many

process switches have occurred since the process’s last time slice). When a
process is moved to the active process queue, NitrOS-9 sets its age according to
its priority—the higher the priority, the higher the age.

• An exception is a newly active process that was deactivated while in the system
state. NitrOS-9 gives such a process higher priority because the process usually is
executing critical routines that affect shared system resources.

188

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Bootstrap System Links either the module named Boot or
the module specified in the INIT module

OS9 F$Boot 103F 35

Entry Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• When it calls the linked module, Boot expects to receive a pointer giving it the

location and size of an area in which to search for the new module.
• The support module for this call is Krn. Bootstrap System also branches to the

F$Link and F$VModul system calls.

189

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Bootstrap Memory Request Allocates the requested memory
(rounded to the nearest block) as
contiguous memory in the system’s
address space

OS9 F$BtMem 103F 36

Entry Conditions
D byte count requested

Exit Conditions
D byte count granted
U pointer to allocated memory

Error Output
CC carry set on error
B error code, if any

Additional Information
• This call is identical to F$SRqMem.
• The Bootstrap Memory Request support module is Krn.

190

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

DAT to Logical Address Converts a DAT image block number and
block offset to its equivalent logical
addressOS9 F$DATLog 103F 44

Entry Conditions
B DAT image offset
X block offset

Exit Conditions
X logical address

Error Output
CC carry set on error
B error code, if any

Additional Information
• Following is a sample conversion:

$4000-$5FFF
Input: B = 2
 X = $0329

$2000-$3FFF
Output: X=$4329

$0000-$1FFF

• The support module for this call is Krn.

191

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Deallocate Image RAM Blocks Deallocates image RAM blocks

OS9 F$DelImg 103F 3B

Entry Conditions
A number of starting block
B block count
X process descriptor pointer

Error Output
CC carry set on error
B error code, if any

Additional Information
• This system call deallocates memory from a process’s address space. It frees the

RAM for system use and frees the DAT image for the process. Its main use is to let
the system clean up after a process death.

• The support module for this call is KrnP2.

192

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Deallocate Process Descriptor Returns a process descriptor’s memory
to a free memory pool

OS9 F$DelPrc 103F 4C

Entry Conditions
A process ID

Error Output
CC carry set on error
B error code, if any

Additional Information
• Use this call to clear the system scratch memory and stack area associated with

the process.
• The support module for this call is KrnP2.

193

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Deallocate Task Number Releases the task number that the
process specified by the passed
descriptor pointerOS9 F$DelTsk 103F 40

Entry Conditions
X process descriptor pointer

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• The support module for this call is Krn.

194

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Link Using Module Directory Entry Performs a link using a pointer to a
module directory entry

OS9 F$ELink 103F 4D

Entry Conditions
B module type
X pointer to module directory entry

Exit Conditions
U module header address
Y module entry point

Error Output
CC carry set on error
B error code, if any

Additional Information
• This call differs from Link in that you supply a pointer to the module directory

entry rather than a pointer to a module name.
• The support module for this call is Krn.

195

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Find Module Directory Entry Returns a pointer to the module
directory entry

OS9 F$FModul 103F 4E

Entry Conditions
A module type ($00 = any module type)
X pointer to the name string
Y DAT image pointer (for name)

Exit Conditions
A module type
B module revision number
X updated name string (if Register A contains 0 on entry)
U module directory entry pointer

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Find Module Directory Entry call returns a pointer to the module directory

entry for the first module that has a name and type matching the specified name
and type. If you pass a module type of zero, the system call finds any module.

• The support module for this call is Krn.

196

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Find 64 Returns the address of a 64-byte
memory block

OS9 F$Find64 103F 2F

Entry Conditions
A block number
X address of the block

Exit Conditions
Y address of the block
CC carry set if block not allowed or not in use

Error Output
CC carry set on error
B error code, if any

Additional Information
• NitrOS-9 uses Find 64 to find path descriptors when given their block number. The

block number can be any positive integer.

197

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get Free High Block Searches the DAT image for the highest
set of contiguous free blocks of the
specified sizeOS9 F$FreeHB 103F 3E

Entry Conditions
B block count
Y DAT image pointer

Exit Conditions
A starting block number

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Get Free High Block call returns the block number of the beginning memory

address of the free blocks.
• The support module for this system call is Krn.

198

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get Free Low Block Searches the DAT image for the lowest
set of contiguous free blocks of the
specified sizeOS9 F$FreeLB 103F 3D

Entry Conditions
B block count
Y DAT image pointer

Exit Conditions
A starting block number

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Get Free Low Block call returns the block number of the beginning memory

address of the free blocks.
• The support module for this system call is Krn.

199

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Compact Module Directory Compacts the entries in the module
directory

OS9 F$GCMDir 103F 52

Entry Conditions
None

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• This function is only for internal NitrOS-9 system use. You should never call it from

a program.

200

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get Process Pointer Gets a pointer to a process

OS9 F$GProcP 103F 37

Entry Conditions
A process ID

Exit Conditions
Y pointer to process descriptor (if no error)

Error Output
CC carry set on error
B error code (If an error occurs (E$(BPrcID) - Bad Process ID)

Additional Information
• The Get Process Pointer call translates a process ID number to the address of its

process descriptor in the system address space. Process descriptors exist only in
the system task address space. Because of this, the address space returned only
refers to system address space.

• The support module for this call is KrnP2.

201

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

I/O Delete Deletes an I/O module that is not being
used

OS9 F$IODel 103F 33

Entry Conditions
X address of an I/O module

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• The I/O Delete call deletes the specified I/O module from the system, if the

module is not in use. This system call is used mainly by the I/O Manager, and can
be of limited or no use for other applications.

• This is the order in which I/O Delete operates:
• Register X passes the address of a device descriptor module, device driver

module, or file manager module.
• NitrOS-9 searches the device table for the address.
• If NitrOS-9 finds the address, it checks the module’s use count. If the count

is zero, the module is not being used; NitrOS-9 deletes it. If the count is not
zero, the module is being used; NitrOS-9 returns an error.

• I/O Delete returns information to the Unlink system call after determining
whether a device is busy.

202

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

I/O Queue Inserts the calling process into another
process’s I/O queue, and puts the calling
process to sleepOS9 F$IOQu 103F 2B

Entry Conditions
A process ID

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• The I/O Queue call links the calling process into the I/O queue of the specified

process and performs an untimed sleep. The I/O Manager and the file managers
are primary and extensive users of I/O Queue.

• Routines associated with the specified process send a wake-up signal to the
calling process.

203

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set IRQ Adds a device to or removes it from the
polling table

OS9 F$IRQ 103F 2A

Entry Conditions
D address of the device status register
X 0 (to remove a device) or the address of a packet (to add a device)

 the address at X is the flip byte
 the address at X + 1 is the mask byte
 the address at X + 2 is the priority byte

Y address of the device IRQ service routine
U address of the service routine’s memory area

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• Set IRQ is used mainly by device driver routines. (See “Interrupt Processing” in

Chapter 2 for a complete discussion of the interrupt polling system.)
• Packet Definitions:

The Flip Byte. Determines whether the bits in the device status register indicate
active when set or active when cleared. If a bit in the flip byte is set, it indicates
that the task is active whenever the corresponding bit in the status register is
clear (and vice versa).
The Mask Byte. Selects one or more bits within the device status register that are
interrupt request flag(s). One or more set bits identify which task or device is
active.
The Priority Byte. Contains the device priority number (0 = lowest priority, 255 =
highest priority).

204

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Load A From Task B Loads A from 0,X in task B

OS9 F$LDABX 103F 49

Entry Conditions
B task number
X pointer to data

Exit Conditions
A byte at 0,X in task address space

Error Output
CC carry set on error
B error code, if any

Additional Information
• The value in Register X is an offset value from the beginning address of the Task

module. The Load A from Task B call returns one byte from this logical address.
Use this system call to get one byte from the current process’s memory in a
system state routine.

205

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get One Byte Loads A from [X,[Y]]

OS9 F$LDAXY 103F 46

Entry Conditions
X block offset
Y DAT image pointer

Exit Conditions
A contents of byte at DAT image (Y) offset X

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Get One Byte system call gets the contents of one byte in the specified

memory block. The block is specified by the DAT image in (Y), offset by (X). The
call assumes that the DAT image pointer is to the actual block desired, and that X
is only an offset within the DAT block. The value in Register X must be less than
the size of the DAT block (8K on the CoCo). NitrOS-9 does not check to see if X is
out of range.

206

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get Two Bytes Load D from [D+X],[Y]

OS9 F$LDDDXY 103F 48

Entry Conditions
D offset to the offset within the DAT image
X offset within the DAT image
Y DAT image pointer

Exit Conditions
D contents of two bytes at [D+X],[Y]

Error Output
CC carry set on error
B error code, if any

Additional Information
• Get Two Bytes loads two bytes from the address space described by the DAT

image pointer. If the DAT image pointer is to the entire DAT, make D+X equal to
the process address for data. If the DAT image is not the entire image (64K), you
must adjust D+X relative to the beginning of the DAT image. Using D+X lets you
keep a local pointer within a block, and also lets you point to an offset within the
DAT image that points to a specified block number.

207

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Move Data Moves data bytes from one address
space to another

OS9 F$Move 103F 38

Entry Conditions
A source task number
B destination task number
X source pointer
Y byte count
U destination pointer

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• You can use the Move Data system call to move data bytes from one address

space to another, usually from system to user, or vice versa.
• The support module for this call is Krn.

208

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Next Process Executes the next process in the active
process queue

OS9 F$NProc 103F 2D

Entry Conditions
None

Exit Conditions
Control does not return to caller.

Additional Information
• The Next Process system call takes the next process out of the active process

queue and initiates its execution. If the queue contains no process, NitrOS-9 waits
for an interrupt and then checks the queue again.

• The process calling Next Process must already be in one of the three process
queues. If it is not, it becomes unknown to the system even though the process
descriptor still exists and can be displayed by the PROCS or PROC command.

209

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Release a Task Releases a specified DAT task number
from use by a process, making the task’s
DAT hardware available for use by
another task

OS9 F$RelTsk 103F 43

Entry Conditions
B task number

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• The support module for this call is Krn.

210

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Reserve Task Number Reserves a DAT task number

OS9 F$ResTsk 103F 42

Entry Conditions
None

Exit Conditions
B task number (if no error)

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Reserve Task Number call finds a free DAT task number, reserves it, and

returns the task number to the caller. The caller often then assigns the task
number to a process.

• The support module for this call is Krn.

211

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Return 64 Deallocates a 64-byte block of memory

OS9 F$Ret64 103F 31

Entry Conditions
A block number
X address of the base page

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• See the Allocate 64 system call for more information.

212

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set Process DAT Image Copies all or part of the DAT image into a
process descriptor

OS9 F$SetImg 103F 3C

Entry Conditions
A starting image block number
B block count
X process descriptor pointer
U new image pointer

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• While copying part or all of the DAT image, this system call also sets an image

change flag in the process descriptor. This flag guarantees that as a process
returns from the system, The call updates the hardware to match the new process
DAT image.

• The support module for this call is Krn.

213

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set Process Task DAT Registers Writes to the hardware DAT registers

OS9 F$SetTsk 103F 41

Entry Conditions
X pointer to process descriptor

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• This system call sets the process task hardware DAT registers, and clears the

image change flag in the process descriptor. It also writes to DAT RAM the
process’s segment address information.

• The support module for this call is Krn.

214

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

System Link Adds a module from outside the current
address space into the current address
spaceOS9 F$SLink 103F 34

Entry Conditions
A module type
X module name string pointer
Y name string DAT image pointer

Exit Conditions
A module type
B module revision (if no error)
X updated name string pointer
Y module entry point
U module pointer

Error Output
CC carry set on error
B error code, if any

Additional Information
• The I/O system uses the System Link call to link into the current process’s address

space those modules specified by a device name in a user call. User calls such as
Create File and Open Path use this system call.

• The support module for this call is Krn.

215

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Request System Memory Allocates a block of memory of the
specified size from the top of available
RAMOS9 F$SRqMem 103F 28

Entry Conditions
D byte count

Exit Conditions
D new memory size
U starting address of the memory area

Error Output
CC carry set on error
B error code, if any

Additional Information
• The Request System Memory call rounds the size request to the next page

boundary.
• This call allocates memory only for system address space.

216

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Return System Memory Deallocates a block of contiguous pages

OS9 F$SRtMem 103F 29

Entry Conditions
D number of bytes to return
U starting address of memory to return; must point to an even page boundary

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• Register U must point to an event page boundary.
• This call deallocates memory for system address space only.

217

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set SVC Adds or replaces a system call

OS9 F$SSvc 103F 32

Entry Conditions
Y address of the system call initialization table

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• Set SVC adds or replaces a system call, which you have written, to NitrOS-9’s user

and system mode system call tables.
• Register Y passes the address of a table, which contains the function codes and

offsets, to the corresponding system call handler routines. This table has the
following format:

Relative
Address

Use

$00 Function Code First entry

$01
$02

Offset From Byte 3
To Function Handler

$03 Function Code Second entry

$04
$05

Offset From Byte 6
To Function Handler

More Entries More entries

$80 End-of-table mark

218

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• If the most significant bit of the function code is set, NitrOS-9 updates the system
table.
If the most significant bit of the function code is not set, NitrOS-9 updates the
system and user tables.

• The function request codes are in the range $29-$34. I/O calls are in the range
$80-$91.

• To use a privileged system call, you must be executing a program that resides in
the system map and that executes in the system state.

• The system call handler routine must process the system call and return from the
subroutine with an RTS instruction.

• The handler routing might alter all CPU registers (except Register SP).

Note: On a 6309, the W register is not used to pass parameters to a system call, to
maintain 6809 compatibility.

• Register U passes the address of the register stack to the system call handler as
shown in the following diagram:

6809
Relative
Address

6309
Relative
Address Name

U CC $00 $00 R$CC

A $01 $01 R$A
(R$D)

B $02 $02 R$B

DP $03 $05 R$DP

X $04 $06 R$X

Y $06 $08 R$Y

U $08 $0A R$U

PC $0A $0C R$PC

Codes $70-$7F are reserved for user definition.

219

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Store A Byte In A Task Stores A at 0,X in Task B

OS9 F$STABX 103F 4A

Entry Conditions
A byte to store
B destination task number
X logical destination address

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• This system call is similar to the assembly language instruction “STA 0,X”. The

difference is that in the system call, X refers to an address in the given task’s
address space instead of the current address space.

• The support module for this system call is Krn.

220

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Install Virtual Interrupt Installs a virtual interrupt handler
routine

OS9 F$VIRQ 103F 27

Entry Conditions
D initial count value
X 0 to delete entry

1 to install entry
Y address of 5-byte packet

Exit Conditions
None

Error Output
CC carry set on error
B error code, if any

Additional Information
• Install VIRQ for use with devices in the Multi-Pak Expansion Interface. This call is

explained in detail in Chapter 2.
• For setting up VIRQ’s from user programs, see the VRN chapter.

221

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Validate Module Checks the module header parity and
CRC bytes of a module

OS9 F$VModul 103F 2E

Entry Conditions
D DAT image pointer
X new module block offset

Exit Conditions
U address of the module directory entry

Error Output
CC carry set on error
B error code, if any

Additional Information
• If the values of the specified module are valid, NitrOS-9 searches the module

directory for a module with the same name. If one exists, NitrOS-9 keeps in
memory the module that has the higher revision level. If both modules have the
same revision level, NitrOS-9 retains the module in memory.

• Header parity is calculated by EOR'ing together the first 8 bytes of the module
header, and then complimenting (NOT) the result.

222

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Get Status System Calls

You use Get Status System calls with the file manager subroutine GetStt (RBF and SCF,
and possibly some 3rd party file managers as well). PIPEMAN does not contain any
GetStt calls, so it simply returns without an error (the exception being SS.DevNm, which
is actually returned from IOMAN). The NitrOS-9 Level Two system reserves function
codes 7-127 for use by Microware. You can define codes 128-255 and their parameter-
passing conventions for your own use. (See the sections on device drivers in Chapters
4,5, and 6).

The Get Status routine passes the register stack and the specified function code to the
device driver if the call is not generic to the file manager itself.

Following are the Get Status functions and their codes.

223

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Opt  Reads the option section of the path
descriptor, and passes it

Function Code $00  into the 32 byte area pointed to by
Register X

Entry Conditions:
    A path number
    B $00
    X address to receive status packet

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is supported by both SCF and RBF devices, returning the 32 byte PD.OPT

section from either type of path descriptor. For SCF devices, this is used to
determine the current settings for editing functions, such as echo and auto line
feed (see Chapter 6). For RBF devices, this includes number of cylinders, sectors
per track, etc (see Chapter 5).

• This call is handled in SCF & RBF.

224

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Ready  Tests for data available on a device

Function Code $01

Entry Conditions:
    A path number
    B $01

Exit Conditions:
    If the device is ready:
    CC Carry clear
    B      $00

• On devices that support it (both VTIO and SC6551 support this), Register B returns
the number of characters that are ready to be read (to a maximum of 255 in
SC6551's case; it is possible to have more than that many bytes ready). An RBF
device will always return carry clear and B=0. A VRN device will always return a
Device Not Ready error.

• If the device is not ready (or for VTIO devices, has 0 characters in it's read buffer):
    CC = carry set
    B    = $F6 (E$NotRdy - Device Not Ready)

Error Output:
    CC carry set on error
    B       error code, if any

Additional Information:
• This call is handled in RBF, VTIO & SC6551.

225

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Size  Gets the current file size

Function Code $02

Entry Conditions:
    A path number
    B $02

Exit Conditions:
    X most significant 16 bits of the current file size
    U least significant 16 bits of the current file size

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is normally for RBF supported devices only. Some level 1 SCF text based

drivers (like CoHR and Co42) do return the screen start address in the X register.
• This call is handled in RBF.

226

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Pos  Gets the current file position

Function Code $05

Entry Conditions:
    A path number
    B $05

Exit Conditions:
    X most significant 16 bits of the current file size
    U least significant 16 bits of the current file size

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is normally for RBF supported devices only. Some level 1 SCF text based

drivers (like CoHR and Co42) do return the screen size in the X register.
• This call is handled in RBF.

227

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.EOF  Tests for the end of the file (EOF)

Function Code $06

Entry Conditions:
    A path number
    B $06

Exit Conditions:
    X most significant 16 bits of the current file size
    U least significant 16 bits of the current file size

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is handled in RBF.

228

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DevNm  Returns a device name

Function Code $0E

Entry Conditions:
    A path number
    B $0E
    X address of 32 byte buffer for name

Exit Conditions:
    X address of buffer, name moved to buffer

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is for all devices, regardless of file manager. It is also hardcoded to copy

32 bytes from the position of the descriptor name offset; in most cases, this
means you will also get the file manager and device driver names as well, all high
bit terminated (most descriptors are built with those all following each other).
However, it is not guaranteed, and if the combined length goes beyond 32 bytes,
you may not get everything.

• This call is handled in IOMAN.

229

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.FD  Return file descriptor

Function Code $0F

Entry Conditions:
    A path number
    B $0F
    X address of 256 byte buffer for File Descriptor sector data
    Y number of bytes to copy from file descriptor to caller (always starts at 0)

Exit Conditions:
    X address of buffer, Y bytes of file descriptor copied

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call gets a copy of the File Descriptor (FD) sector for the file currently open on

path A, to copy to the caller. The caller can specify how many bytes (always
starting at offset 0) they actually want, in Y. This is useful for inspecting
attributes, date created or modified, etc.

• This call is handled in RBF.

230

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DStat  Returns the display status (medium
resolution VDG screens)

Function Code $12

Entry Conditions:
    A path number
    B $12

⁃
Exit Conditions:
    A color code of the pixel at the cursor address
    X address of the graphics display memory
 Y graphics cursor address; X=MSB, Y=LSB

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This function is supported only with the CoVDG module and deals with VDG-

compatible graphics screens (from Level 1). See SS.AAGBf for information
regarding Level Two operation.

• This call is handled in CoVDG.

231

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.VarSe(ct)  Updates current sector size into least
significant 2 bits of PD.TYP in path
descriptor

Function Code $12

Entry Conditions:
    A path number
    B $12

Exit Conditions:
    PD.TYP in path descriptor has least 2 significant bits set to current sector size:
        xxxxxx00 = 256 byte sector
        xxxxxx01 = 512 byte sector
        xxxxxx10 = 1024 byte sector
        xxxxxx11 = 2048 byte sector

    Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• Note that this GetStat shares the same function code as SS.DStat (which is for SCF

devices).
• This internally calls the SS.DSize GetStat as well.
• This does not return the current sector size in any registers returned to the caller;

it updates the PD.Typ byte in the path descriptor instead.
• This call is handled in RBSuper.

232

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Joy  Returns the joystick values

Function Code $13

Entry Conditions:
    A path number
    B $13
    X joystick number
          0 = right joystick
          1 = left joystick

Exit Conditions:
 A fire button down
        0 = none
        1 = Button 1
        2 = Button 2
        3 = Button 1 and Button 2
 X selected joystick X value (0-63)
 Y selected joystick Y value (0-63)

    NOTE: Under Level 1, the following values are return by this call:
 A fire button status
        $FF = fire button is on
        $00 = fire button is off

Error Output:
 CC carry set on error
    B      error code, if any

Additional Information:
• This function returns the joystick X & Y positions, as well as button(s) down status,

for the specified joystick port. If the process calling SS.Joy is not the interactive
screen & keyboard device at the time the call is made, it will always return A=0
(no buttons down), X=0 (X position 0), and Y=0 (Y position 0).

• This call is handled in VTIO.

233

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.AlfaS  Returns VDG alpha screen
memory information

Function Code $1C

Entry Conditions:
    A path number
    B $1C

Exit Conditions:
    A caps lock status
        $00 = lower case
        $FF = upper case
 X memory address of the buffer
 Y memory address of the cursor

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• VDG alpha screens are mapped into the user address space. The call

requires a full block of memory for screen mapping. This call is only for use
with VDG text screens (32x16).

• This call is handled in CoVDG.

• Warning: Use extreme care when poking the screen, since other system
variables in screen memory. Do not change any addresses outside of the
screen.

234

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.FDInf  Return file descriptor based on LSN

Function Code $20

Entry Conditions:
    A path number
    B $20
    X address of up to 256 byte buffer for File Descriptor sector data
    Y MSB: Upper 8 bits of 24 bit Logical Sector Number
            LSB: number of bytes to copy from file descriptor to caller (always starts at 0)
    U Lower 16 bits of 24 bit Logical Sector Number

Exit Conditions:
    X address of buffer, Y bytes of file descriptor copied

Error Output:
    CC carry set on error
    B     error code, if any

Additional Information:
• This call gets a copy of the File Descriptor (FD) sector from the specified

logical sector number, to copy to the caller. The caller can specify how
many bytes (always starting at offset 0) they actually want, in Y. This is
useful for inspecting attributes, date created or modified, etc, when you are
directly dealing with entries in a directory (which have the 24 bit LSN of the
File descriptor in each entry).

• This call is handled in RBF.

235

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Cursr  Returns VDG alpha screen cursor
information

Function Code $25

Entry Conditions:
    A path number
    B $25

Exit Conditions:
    A character code of the character at the current cursor address
 X cursor X position (column)
 Y cursor Y position (row)

Error Output:
    CC carry set on error
    B     error code, if any

Additional Information:
• SS. Cursr returns the character at the current cursor position. It also returns

the X-Y address of the cursor relative to the current device's window or
screen. SS.Cursr works only with text screens.

• This call is handled in CoVDG.

236

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.ScSiz  Returns the window or screen size

Function Code $26

Entry Conditions:
    A path number
    B $26

Exit Conditions:
 X number of columns on screen/window
 Y number of rows on screen/window

Error Output:
    CC carry set on error
    B     error code, if any

Additional Information:
• Use this call to determine the size of an output screen.    The values returned

depend on the on device in use:
◦  For non-VTIO devices, the call returns the COL and ROW values in the

device descriptor.
◦ For VTIO/CoVDG devices, the call returns the size of the window or

screen in use by the specified device (32x16).
◦ For window devices, the call returns the size of the of the current

working area of the window.
• This call is handled by CoVDG, CoGrf/CoWin, SC6551, SC6850, S16550 (and

any future serial port drivers).

237

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DSize  Returns the disk size information
about a device

Function Code $26

Entry Conditions:
    A path number
    B $26

Exit Conditions:
 A number of logical 256 byte sectors per physical sector:
        1 = 256 byte physical sector
        2 = 512 byte physical sector
        4 = 1024 byte physical sector
        8 = 2048 byte physical sector

    B LBA or CHS type drive flag:
        B = 0 LBA (sector numbers only)

• If B=0, then the drive is an LBA mode device, and the 32 bit size (in
sectors) is returned in X:Y

        X = MS 16 bits of the number of sectors on the drive
        Y = LS 16 bits of the number of sectors on the drive

• If B<>0, then the drive is a CHS mode device (Cylinder, Head, Sector),
and the drive size is returned by the maximum size of each of those
three parameters, as follows:

    B = Number of Logical sides
    X = Number of Logical cylinders
    Y = Number of Logical sectors/track (this is physical sectors/track

* number of logical sectors/physical sector from A register
above)

Error Output:
    CC carry set on error
    B     error code, if any

238

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Additional Information:
• Note that this GetStat shares the same function code as SS.ScSiz (which is

for SCF devices).
• This GetStat call ONLY applies to RBSuper driver and it's devices.
• Use this call to determine the size of disk or disk image, and it's physical

sector size.
• This call is handled by the low level driver submodules of RBSuper, including

llcocosdc, llide, llscsi (and other/future RBSuper low level drivers), and is
called by RSuper itself.

239

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.KySns  Returns key down status

Function Code $27

Entry Conditions:
    A path number
    B $27

Exit Conditions:
 A keyboard scan information

Error Output:
    CC carry set on error
    B    error code, if any

Additional Information:
• Accumulator A returns with a bit pattern representing eight keys. With each

keyboard scan, NitrOS-9 updates this bit pattern. A set bit (1) indicates that
a key was pressed since the last scan. A clear bit (0) indicates that a key was
not pressed. Definitions for the bits are as follows:

 Bit Key
 0 SHIFT
 1 CTRL
 2 ALT
 3 Up arrow
 4 Down arrow
 5 Left arrow
 6 Right arrow
 7 Space Bar

• The bits can be masked with the following equates:
 SHIFTBIT equ %00000001
 CNTRLBIT equ %00000010
 ALTERBIT equ %00000100
 UPBIT equ %00001000

240

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

 DOWNBIT equ %00010000
 LEFTBIT equ %00100000
 RIGHTBIT equ %01000000
 SPACEBIT equ %10000000

• It should be noted that this call can be used at any time. The corresponding
SetStat call, however, can change the keyboard driver settings such that this
is the only way to read any keys from a program, and only these keys, until
the SetStat is reissued to turn normal key function on. When keysense
function is enabled, no keypresses go through SCF, thus speeding up
keyboard scans for these specific keys.

• An interesting side effect of this call when using it in normal keyboard mode:
You can use this as an INKEY style call, but it will leave all keypresses of the
printable keys in the above table also in the keyboard buffer, and can be
read by I$Read / I$ReadLn as well.

• This call is the ONLY way to read the SHIFT, CONTROL and ALT keys on their
own, as opposed to in conjunction with another key.

• This call is handled by VTIO and it's sub-module, KEYDRV, in NitrOS-9 3.3.0 &
EOU Beta 5 and under. It is handled solely by VTIO in EOU Betas 6 and
above.

• One other hidden feature – you can differentiate between arrow keys and
their corresponding CTRL-<H through K> equivalents by checking the ASCII
value (from I$Read) first for a potential arrow key, and the SS.KySns to see if
CTRL is down. If it is not, then it was an arrow key.

241

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.ComSt  Returns serial port configuration
information

Function Code $28

Entry Conditions:
    A path number
    B $28

Exit Conditions:
    Y high byte: parity
                low byte: baud
              (see the SetStat call SS.ComSt for values)
              (see below for special values if a VTIO device)
For hardware serial ports only:
 B Special status:
 Bit 6: 0 = DSR enabled
 1 = DSR disabled
 Bit 5: 0 = Carrier Detect enabled
 1 = Carrier Detect disabled
       
Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• The SCF manager uses this call when performing SS.Opt GetStat on an SCF-

type device. User calls to SS.ComSt do not update the path descriptor. Use
the SS.Opt GetStat call for most applications because it automatically
updates the path descriptor.

• For VTIO devices, baud is always return as $00, and parity has special
meaning:

      %0XXXXXXX = CoVDG device
      %1XXXXXXX = CoGrf or CoWin device.

242

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• This call is handled by VTIO, SC6551, SC6850, S16550 (and any future serial
port drivers).

243

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.VCtr  Return 32 bit FS/FS2+ Total VIRQ
counter & resets it to 0

Function Code $80

Entry Conditions:
    A path number
    B $80

Exit Conditions:
    X MS 16 bits of of total # of VIRQ's since last reset
    Y LS 16 bits of of total # of VIRQ's since last reset
        The 32 bit count of how many FS/FS2+ VIRQ's have occurred is reset to 0 upon
completion of this call.

Error Conditions:
 CC carry set on error
    B      error code ($F0 Illegal Unit if no FS2/FS2+ VIRQ has been set up).

Additional Information:
• This call returns the number of 1/60th of a second VIRQ's that have occurred

since that counter was last reset (32 bit unsigned number). Upon passing
this number to the caller, this counter is reset to 0.

• This call is handled by VRN.

244

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.VSig  Return 8 bit count of number of FS2/
FS2+ signals sent & resets it to 0

Function Code $81

Entry Conditions:
    A path number
    B $81

Exit Conditions:
    A number of FS2/FS2+ signals that have been sent since last reset

Error Conditions:
 CC carry set on error
    B      error code ($F0 Illegal Unit if no FS2/FS2+ VIRQ has been set up).

Additional Information:
• This call returns the number of actual signals that have been sent by the

FS2/FS2+ timers. Upon passing this number to the caller, this counter is
reset to 0.

• NOTE: The count will wrap around at 255 signals, if you have not queried
for the count before then.

• This call is handled by VRN.

245

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DRead  Direct Sector Read
Function Code $80

Entry Conditions:
 A path number
 B $80
 U (msb) logical track number
 (lsb) physical sector number
 X Address of user buffer (in user map) to read data into
 Y sector size/format codes:
 bits 8-15 = least significant 8 bits of 11 bit sector size in bytes
 bit 7 = retry flag (0=normal retry, 1= no retry)
 bits 4-6 = most significant 3 bits of 11 bit sector size in bytes
 bit 3 = high density flag (0=not high density, 1=high density)
 bit 2 = tpi of data on diskette (0=48 tpi, 1=96 tpi)
 bit 1 = density of data on diskette (0=single, 1=double)
 bit 0 = side (0 or 1)
 NOTE: Bit 3 (high density) being set overrides any value in bit 1)

Exit Conditions:
    X Address of user buffer that contains data read from disk

Error Conditions:
 CC carry set on error
    B      error code (if any).

Additional Information:
• This call reads a specified sector into a user buffer. Sector lengths of

128,256, 512 and 1024 bytes are supported for single or double density.
Non-OS9 disks (such as MS-DOS, CP/M, or FLEX) can be read with this
function. NOTE: Some versions of SDisk 3 may not support the retry disable
feature. High Density support requires a special controller.

• This call requires and is handled by Sdisk3.

246

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.SDRD  System Direct Sector Read
Function Code $84

Entry Conditions:
 A path number
 B $84
 U (msb) logical track number
 (lsb) physical sector number
 X Address of buffer (in system map) to read data into
 Y sector size/format codes:
 bits 8-15 = least significant 8 bits of 11 bit sector size in bytes
 bit 7 = retry flag (0=normal retry, 1= no retry)
 bits 4-6 = most significant 3 bits of 11 bit sector size in bytes
 bit 3 = high density flag (0=not high density, 1=high density)
 bit 2 = tpi of data on diskette (0=48 tpi, 1=96 tpi)
 bit 1 = density of data on diskette (0=single, 1=double)
 bit 0 = side (0 or 1)
 NOTE: Bit 3 (high density) being set overrides any value in bit 1)

Exit Conditions:
    X Address of user buffer that contains data read from disk

Error Conditions:
 CC carry set on error
    B      error code (if any).

Additional Information:
• NOTE: This call is identical to SS.DRead, except that it reads into a sector

buffer in the system memory map, not the user memory map.
• This call reads a specified sector into a sytem buffer. Sector lengths of

128,256, 512 and 1024 bytes are supported for single or double density.
Non-OS9 disks (such as MS-DOS, CP/M, or FLEX) can be read with this
function. NOTE: Some versions of SDisk3 may not support the retry disable
feature. High Density support requires a controller that supports high
density drives. (SDisk3 is an alternate floppy disk diver).

247

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• This call requires and is handled by Sdisk3.

248

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DrvCh  Returns which floppy drive
(if any) has caching enabled

Function Code $86

Entry Conditions:
    A path number
    B $86

Exit Conditions:
    A drive number that has caching enabled. $FF = no drive currently caching

Error Conditions:
 CC carry set on error
    B      error code (if any).

Additional Information:
• This call is ONLY supported on the Performance Peripheral DMC caching

floppy controller, which was available in 8K or 32K cache RAM versions.
• This call requires and is handled by Sdisk3.    (DMC version only).

249

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.MnSel   Requests that the high level menu
handler take control of menu selection

Function Code $87

Entry Conditions:
    A path number
    B $87

Exit Conditions:
    A menu ID (if valid selection)
                0 (if invalid selection)
    B item number of menu (if valid selection)
                If a selected menu has no pull down items, B returns with 0.

Error Conditions:
 CC carry set on error
    B  error code, if any

Additional Information:
• After detecting a valid mouse click (when the mouse is pointing to a control

area on a window), a process needs to call SS.MnSel. This call tells the
enhanced window interface to handle any menu selection being made. If
accumulator A returns with 0, no selection has been made. The calling
process needs to test and handle other returned values.

• A condition where Register A returns a valid menu ID number and Register B
returns 0 signals the selection of a menu with no items. The application can
now take over and do special graphics pull down of its own (MVCanvas is a
program that does this, for example). The menu title remains highlighted
until the application calls the SS.UMBar SetStat to update the menu bar.

• There are some menu ID's that are reserved within NitrOS-9 itself (assuming
that you have picked a window type that supports these menu ID's; see the
SS.WnSet SetStat call):

 Menu ID # Description
 2 Close Box
 4 Scroll Up Arrow

250

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

 5 Scroll Down Arrow
 6 Scroll Right Arrow
 7 Scroll Left Arrow
 8 Character Pressed
In addition, Menu ID #20 is usually reserved for the Tandy Menu, but this is not
enforced.

• The support module for this call is CoWin.

251

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Mouse  Gets mouse status

Function Code $89

Entry Conditions:
    A path number
    B $89
    X data storage area address

Exit Conditions:
    X data storage area address

Error Conditions:
 CC carry set on error
    B  error code, if any

Additional Information:
• SS.Mouse returns information on the current mouse it's fire button(s). The

following list defines the 32 byte data packet that SS.Mouse creates:
 Packet Mnemonic
 Offset Name Size Description
 00 Pt.Valid RMB 1 Is returned info valid (0=no/1=yes)
 01 Pt.Actv RMB 1 Active Side 0=off/1=Right/2=left
 02 Pt.ToTm RMB 1 Time out Initial value
 03 RMB 2 reserved
 05 Pt.TTTo RMB 1 Time Till Timeout
 06 Pt.TSSt RMB 2 Time Since Start Counter
 08 Pt.CBSA RMB 1 Current Button State (Button A)
 09 Pt.CBSB RMB 1 Current Button State (Button B)
 0A Pt.CCtA RMB 1 Click Count (Button A)
 0B Pt.CCtB RMB 1 Click Count (Button B)
 0C Pt.TTSA RMB 1 Time This State Counter (Button A)
 0D Pt.TTSB RMB 1 Time This State Counter (Button B)
 0E Pt.TLSA RMB 1 Time Last State Counter (Button A)
 0F Pt.TLSB RMB 1 Time Last State Counter (Button B)

252

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

 10 RMB 2 Reserved
 12 Pt.BDX RMB 2 Button down frozen (Actual X)
 14 Pt.BDY RMB 2 Button down frozen (Actual Y)
 16 Pt.Stat RMB 1 Window Pointer type location
 17 Pt.Res RMB 1 Resolution (0..640 by: 0=ten/1=one)
 18 Pt.AcX RMB 2 Actual X Value
 1A Pt.AcY RMB 2 Actual Y Value
 1C Pt.WRX RMB 2 Window Relative X
 1E Pt.WRY RMB 2 Window Relative Y
 20 Pt.Siz EQU . Packet Size 32 bytes

• Button information:

◦ Pt.Valid - The valid byte gives the caller an indication of whether the
information contained in the returned packet is accurate. The
information returned by this call is only valid if the process is running on
the current interactive window. If the process is on a non-interactive
window, this byte (and, in fact, the whole 32 byte packet) is zero and the
process can ignore the information returned.

◦ Pt.Actv - This byte shows which port is selected for use by all mouse
functions (which you set by using the SetStat version of SS.GIP). The
default value is Right (1), assuming you haven't ran GShell (or another
program), which can read the /dd/sys/env.file and set the side from
there. It should be noted that when you enable the keyboard mouse, it
"takes over" whatever the active side is, so it will return left or right
based on the SS.GIP setting regardless.

◦  Pt.ToTm - This is the initial value used by Pt.TTTo.

◦  Pt.TTTo - This is the count down value (as of the instant the the GetStat
call is made). This value starts at the value contained in Pt.ToTm and
counts down to zero at rate of 60 counts per second. The system
maintains all counters until this value reaches 0, at which point it sets all
counters and states to 0. The mouse scan routine changes into a quiet

253

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

mode which requires less overhead than when the mouse is active. The
timeout begins when both buttons are in the up (open) state. The timer
is reinitialized to the value in Pt.ToTm when either button goes down
(closed).

◦  Pt.TSSt - This counter is constantly increasing, beginning when either
button is pressed while the mouse is in the quiet state. All counts are a
number of ticks (60 per second). The timer counts to $FFFF, then stays at
that value if additional ticks occur.

◦  Pt.CBSA / Pt.CBSB - These flag bytes indicated the state of the button at
the last system clock tick. A value of 0 indicates that the button is down
(closed). Button A is available on all Tandy joysticks and mice. Button B is
only available for products that have two buttons (or using the keyboard
mouse).

The system scans the mouse buttons each time it scans the keyboard.

◦  Pt.CCtA / Pt.CCtB - This is the number of clicks that have occurred since
the mouse went into an active state. A click is defined as pressing
(closing) the button, then releasing (opening) the button. The system
counts the clicks as the button is released.

◦ Pt.TTSA / Pt.TTSB - This counter is the number of ticks that have occurred
during the current state, as defined by Pt.CBSx. This counter starts at one
(counts the ticket when the state changes) and increases by one for each
tick that occurs while the button remains in the same state (open or
closed).

◦ Pt.TLSA / Pt.TLSB - This counter is the number of ticks that have occurred
during the time that button is in a state opposite of the current state.
Using this count and the TTSA/TTSB count, you can determine how a
button was in the previous state, even if the system returns the packet
after the state has changed. Use these counters, along with the state and

254

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

click count values, to define any type of click, drag or hold convention
that you want.

        Reserved. Two packet bytes are reserved for future expansion of the returned
data.

• Position information:

◦  Pt.BDX / Pt.BDY - These values are copies of the Pt.AcX and Pt.AcY values
when either of the buttons change from an open state to a closed state.

◦ Pt.Stat - This byte contains information about the area of the screen on
which the mouse is positioned. Pt.Valid must be a value other than 0 for
this information to be accurate. If Pt.Valid is 0, this value is also 0 and not
accurate. Three types of areas are currently defined:

    0 = content region or current working area of the window. In
Multi-Vue windows, this defaults to not include border areas
(including scroll bars), but you can use CWArea to expand this to
include everything except the title bar. See the Multi-Vue
manual for more details.

    1 = control region (for use in Multi-Vue). This is the Menu Bar area
(this includes the Close Box and menus). See the Multi-Vue
manual for more details.

    2 = off window, or on an area of the screen that is not part of the
window (ex. a separate device window on the same screen).

◦  Pt.Res - This value is the current resolution for the mouse. The mouse
must always return coordinates in the range of 0-639 for the X axis and 0-
198 for the Y axis. If the system is so configured, you can use the high
resolution mouse adapter which provides a 1 to 1 ratio with these values
plus 1. If the adapter is not in use, the resolution is a ratio of 1 to 10 on
the X axis, and 1 to 3 (roughly) on the Y axis. The keyboard mouse
provides a resolution of 1 to 1. The values in Pt.Res are:

    0 = low res (x:10, y:3)
    1 = high res (x,y:1)

255

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

    NOTE: The keyboard mouse being active does NOT change the value of
Pt.Res; Pt.Res always reflects the current regular mouse setting.

◦  Pt.AcX / Pt.AcY - The values read from the mouse returned in the
resolution as described under Pt.Res.

◦  Pt.WRX / Pt.WRY - The values read from the mouse minus the starting
coordinates of the current window's working area. These values return
the coordinates in numbers relative to the type of screen. For example,
the X axis is in the range 0-639 for high-resolution screens and 0-319 for
low resolution screens. You can divide the window relative values by 8 to
obtain absolute character positions. These values are most helpful when
working in non-scaled modes.

• The support modules for this call are VTIO, KEYDRV, JOYDRV, and CoWin.

256

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.ScInf  Get current screen info for direct
writes

Function Code $8F

Entry Conditions:
    A path number
    B $8F

Exit Conditions:
 A number of 8K MMU blocks required for the screen
 B start block number of the screen
 X Offset into first block that window starts at
 Y High byte = X start of window
 Low byte = X size of window
 U High byte = Y start of window
 Low byte = Y size of window

Error Conditions:
 CC carry set on error
    B  error code, if any

Additional Information:
• This call is used to get information on the window to allow directly mapping

it into the process space, to directly write to the screen. It works with both
hardware text and graphics windows (but NOT CoVDG windows, which have
their own calls), and windows that do not take up the whole screen.

• The X/Y start and sizes are based on current CWArea of the window, which
can allow programs to compensate for just that part of the window, allowing
it to work with smaller window applications, and Multi-Vue windows
(allowing one to leave the menu and control areas alone).

• The programmer will still need to get the screen type (using the GetStat
SS.ScTyp) so they know how to specifically handle the screen/color
resolution.

• If on a graphics window, the X and Y start/size is based on 8 x 8 pixel
character cells, regardless of the graphics mode.

257

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

NOTE: This simply returns the information needed to map in a deal with the
window directly. You still have to map in the screen (or a portion of it)
using F$MapBlk.

• The support module for this is CoWin.

258

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Palet  Gets palette information
Function Code $91

Entry Conditions:
    A path number
    B $91
    X pointer to the 16 byte palette information buffer

Exit Conditions:
    X pointer to the 16 byte palette information buffer

Error Conditions:
 CC carry set on error
    B  error code, if any

Additional Information:
• SS.Palet reads the contents of the 16 screen palette registers, and stores

them in a 16 byte buffer. When you make the call, be sure the X register
points to the desired buffer location. The pointer is retained on exit. The
palette values returned are specific to the screen on which the call is made.

• The support modules for this call are CoVDG and CoWin (or CoGrf).

259

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Montr  Get current monitor type

Function Code $92

Entry Conditions:
    A path number
    B $92

Exit Conditions:
    X Monitor type:
        0 = color composite
        1 = analog RGB
        2 = monochrome composite

Additional Information:
• The support module for this is VTIO.

260

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.ScTyp  Returns the type of a screen to a
calling program

Function Code $93

Entry Conditions:
    A path number
    B $93

Exit Conditions:
    A screen type code
        1 = 40 x 24 (or 25) text screen
        2 = 80 x 24 (or 25) text screen
        3 = not used
        4 = not used
        5 = 640 x 192 or 200, 2-color graphics screen
        6 = 320 x 192 or 200, 4-color graphics screen
        7 = 640 x 192 or 200, 4-color graphics screen
        8 = 320 x 192 or 200, 16-color graphics screen

Error Conditions:
 CC carry set on error
    B  error code, if any

Additional Information:
NOTE: Due to a bug in the GIME chip, only the first 199 lines are shown

when the 200 line graphics screens are selected.
• Support module for this call is CoWin (or CoGrf).

261

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.FBRgs  Returns the foreground,
background, and border palette
registers for a window

Function Code $96

Entry Conditions:
    A path number
    B $96

Exit Conditions:
    A foreground palette register number
    B background palette register number (if carry clear)
    X least significant byte of border palette register number

Error Output:
 CC carry set on error
    B      error code, if any

Additional Information:
• The support module for this is CoWin (or CoGrf).

262

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DFPal  Returns the default palette
register settings

Function Code $97

Entry Conditions:
    A path number
    B $97
    X pointer to 16-byte data space

Exit Conditions:
    X default palette data moved to user space

Error Output:
 CC carry set on error
    B      error code, if any

Additional Information:
• You can use SS.DFPal to find the values of the default palette registers that

are used when a new screen is allocated by CoWin (or CoGrf). The
corresponding SetStat can alter the default registers. This GetStat/SetStat
pair is for system configuration utilities and should not be used by general
applications.

263

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.ECC  ECC corrected data error status

Function Code $B0

Entry Conditions:
    A path number
    B $B0

Exit Conditions:
    X ECC error correction status:
        0 = ECC error correction disabled
        1 = ECC error correction enabled

Additional Information:
• This gives the current ECC status for the WD1002-05 hard drive/floppy

controller from Frank Hogg's Eliminator controller.
• The support module for this is WDDisk.

264

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Set Status System Calls

You use Set Status System calls with the file manager subroutine SetStt (RBF and SCF,
and possibly some 3rd party file managers as well). PIPEMAN does not contain any
SetStt calls, so it simply returns without an error). The NitrOS-9 Level Two system
reserves function codes 7-127 for use by Microware. You can define codes 128-255 and
their parameter-passing conventions for your own use. (See the sections on device
drivers in Chapters 4,5, and 6).

The Set Status routine passes the register stack and the specified function code to the
device driver if the call is not generic to the file manager itself.

Following are the Set Status functions and their codes.

265

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Opt  Writes the option section of the path
descriptor

Function Code $00

Entry Conditions:
    A path number
    B $00
    X address of the status packet

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.Opt writes the option section of the path descriptor from the the 32-byte

status packet pointed to by Register X. Use this system call to set the device
operating parameters, such as echo and line feed.

•

NOTE: On RBF devices, this only copies from PD.STP to PD.SAS (13 bytes) of the
PD.OPT section (PD.DTP and PD.DRV are skipped).

• This call is handled in SCF & RBF.

266

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Size  Changes the size of a file for RBF-
type devices

Function Code $02

Entry Conditions:
    A path number
    B $02
    X most significant 16 bytes of the desired file size
    U least significant 16 bytes of the desired file size

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is handled in RBF.

267

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Reset  Restores the disk drive head to Track 0 in
preparation for formatting and error
recovery

Function Code $03

Entry Conditions:
    A path number
    B $03

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is handled in RBF, and only applies to RBF devices (usually older

mechanical hard drives).

268

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.WTrk  Formats (writes) a track on a disk

Function Code $04

Entry Conditions:
    A path number
    B $04
    U track number (least significant 8 bits)
    X address of the track buffer
    Y side/density
        Bit B0 = side
            0 = Side 0
            1 = Side 1
        Bit B1 = density
            0 = single
            1 = double

Exit Conditions:
    CC carry set on error
    B      error code, if any

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• For hard disks or floppy disks that have a "format entire diskette" command,

SS.WTrk formats the entire disk only when the track number is 0.
• This call is handled in EMUDSK, RB1773, CC3DISK, SDisk3 and any other RBF based

driver.

269

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Frz  Freeze DD. Information

Function Code $0A

Entry Conditions:
    A path number
    B $0A

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call inhibits SDisk3 from reading LSN0 into the drive tables, allowing for non-

standard disks to be read. SDisk3 by default unfreezes immediately after the next
read of LSN0 on any drive that SDisk3 controls.

• This call requires and is handled by Sdisk3.

270

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.SQD  Starts the shutdown procedure for a hard
disk that has to sequence down prior to
removal of power

Function Code $0C

Entry Conditions:
    A path number
    B $0C

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is handled by hard disk drivers, including EmuDisk, llide, llscsi.

271

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DCmd  Send direct command to disk

Function Code $0D

Entry Conditions:
    A path number
    B $0D
    X Pointer to transfer buffer
    Y Command packet (format depends on driver)

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call only applies to the the low level 'll' drivers that are part of RBSuper

(currently for SCSI and IDE (ATAPI type only) devices). It allows sending direct
command packet to the controller in their native format. Thus, it is up to the
programmer to determine that packet format, for their specific device type.

• This call is handled in the RBSuper companion modules llide (for ATAPI devices
only) and llscsi.

272

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.FD  Writes a file descriptor to disk

Function Code $0F

Entry Conditions:
    A path number
    B $0F
    X Ptr to 256 byte FD buffer
    Y Number of bytes of file descriptor to write

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call will pre-read the existing file descriptor sector, and allows you to modify

only Y number of bytes (from the beginning), leaving the rest alone. This allows
you to change attributes, file owner, date modified, etc. without changing the
creation date and segment list, for example.

• If the file access mode does not have WRITE access, then only the attributes can
be changed.

• Only the super user (0) can change the file's owner number.
• This call is handled in RBF (or MSF, if it is installed).

273

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Ticks  Set number of ticks to wait for a
record lock release

Function Code $10

Entry Conditions:
    A path number
    B $10
    X Number of clock ticks (1/60th second) to wait

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is handled in the RBF (or MSF, if it is installed).

274

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Lock  Lock/Release a record

Function Code $11

Entry Conditions:
    A path number
    B $11
    U MSW of size to lock
    X LSW of size to lock
    See Additional Information below about special values & details about the lock size.

Exit Conditions:
    File is locked from current file position for U:X bytes

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• "Locking" means to disallow other processes from modifying the specified part of

the file.
• This call will lock the currently opened file from the current position in the file for

as many bytes as you specify in registers U:X.
• If you specify a length that reaches or goes past the current end of file, the special

"End of File Lock" is enabled.
• If the end lock file position is $FFFF:FFFF, it will instead lock the entire file, without

requiring setting the non-sharable attribute bit.
• If the end lock file position is $0000:0000, it will instead unlock the existing lock

on the file
• One can open multiple paths to a file and lock different portions of it as well, if

need be.    Locks are automatically released when the file path is closed.
• See Chapter 5 (Random Block File Manager) for more details on record locking.
• This call is handled in RBF.

275

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.SSig  Send Signal on Data Ready

Function Code $1A

Entry Conditions:
    A path number
    B $1A
    X user defined signal code (low byte only)

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.SSig sends the process a signal the next time that the device has data ready in

it's read buffer. That process can then use SS.Ready to determine how many bytes
(up to 255 will be reported) are ready, if desired.

• See SS.Relea for details on shutting off SS.SSig.
• This call is handled in VTIO, scdwv, sc6551, sc6850, and possibly other serial

drivers.

276

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Relea  Release signals on device

Function Code $1B

Entry Conditions:
    A path number
    B $1B

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.Relea will release any data ready signals set up on the device path specified.

NOTE: For windows, this call will release BOTH keyboard data ready (SS.SSig), AND
mouse click data ready signals (SS.MsSig). If you had both enabled, and only want
to release one of them, then you must reenable the one you want to keep active.

• If you close a path, any data ready signal triggers on that path are removed.
• This call is handled in VTIO, scdwv, sc6551, sc6850, and possibly other serial

drivers.

277

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Attr  Change file/directory attributes
Function Code $1C

Entry Conditions:
    A path number
    B $1C
    X file attributes (low byte only)

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• If the caller's user number is not 0, SS.Attr will return a File Not Accessible error if

that user number does not match the user number that created the file.
• If you attempt to change the directory attribute on the root directory, SS.Attr will

return a File Not Accessible error.
• If you attempt to clear the directory attribute, the directory must be empty,

otherwise it will return a Directory Not Empty error (DELDIR uses this).
• This call is handled in RBF (and/of MSF, if installed).

278

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Break  Transmit a line Break on a serial port

Function Code $1D

Entry Conditions:
    A path number
    B $1D

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This transmits an RS-232 break for 0.5 seconds (required to get the attention of

some older host systems).
• For buffered UARTS, it also empties the hardware transmit buffer first, without

transmitting.
• This call is handled in sc6551, sc6850 and possibly other serial port drivers.

279

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.RsBit  Reserve bitmap sector (doesn't allocate)

Function Code $1E

Entry Conditions:
    A path number
    B $1E
    X sector number in bitmap to reserved (low byte only)

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call locks out a specific sector in the bit (cluster) allocation map so that other

processes can not change allocations within it, helping prevent corruption.
• This call is handled in RBF.

280

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.KySns  Enable/disable key sense mode

Function Code $27

Entry Conditions:
    A path number
    B $27
    X key sense switch value
        0 = normal key sense operation
        <>0 = key sense operation

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• When SS.KySns switches the keyboard to key sense mode, the VTIO module

suspends transmission of keyboard characters to the SCF manager and the user.
While the computer is in key sense mode, the only way to detect key presses is
with the SS.KySns GetStat call.

• This call is handled by VTIO and it's sub-module KEYDRV in NitrOS-9 3.3.0, and
EOU Beta 5 and under. It is handled solely by VTIO in EOU Beta 6 and above. It is
also handled by scdwv (for Drivewire).

281

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.ComSt  Used by the SCF manager to configure a
serial port

Function Code $28

Entry Conditions:
    A path number
    B $28
    Y high byte: parity
                low byte: baud rate
NOTE: See Additional Information below for how it works for windows.

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• For CoVDG devices, baud is ignored, and parity has special meaning:

      %XXXXXXX0 = True Lowercase
      %XXXXXXX1 = inverse video lowercase

•  This changes for the current path only. So, if you use it in a program, the setting
will stay in effect for your program, but if you then exit back to a calling Shell
(with it's own paths), it will revert back to the setting that the calling Shell had.

• For serial port devices:
◦ Baud Configuration. The low order byte of Y determines the baud rate, the

word length, and the number of stop bits. The byte is configured as follows:

PD.BAU

282

7 6 5 4 3 2 1 0

Baud Rate

Stop bits

Reserved

Word Length

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

Bits 0-3: Baud rate (0-3 for original RS-232 Pak)
 Bit 4 : Reserved
 Bits 5-6: Word Length
 Bit 7 : Stop bits

 Stop bits:
 0 = 1
 1 = 2

 Word length:
 00 = 8 bit
 01 = 7 bit

 Baud rate:
 0000 = 110 baud
 0001 = 300 baud
 0010 = 600 baud
 0011 = 1200 baud
 0100 = 2400 baud
 0101 = 4800 baud
 0110 = 9600 baud (all but scbb (bit banger))
 0110 = 32,000 baud (only scbb (bit banger) - for MIDI)
 0111 = 19,200 baud
 1000 = 38,400 baud (6552 or 16550 only)
 1001 = 57,600 baud (16550 only)
 1010 = 76,800 baud (16550 only)
 1011 = 115,200 baud (16550 only)
 1100 = undefined
 1101 = undefined
 1110 = undefined
 1111 = 31,135 baud (EXPERIMENTAL - 16550/CoNect only for MIDI)

283

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• Parity Configuration: The high order byte of Y determines parity, and some
special features. The byte is configured as follows:

PD.PAR

 Parity:
 xx0 = none
 001 = odd (non bit banger only)
 011 = even (non bit banger only)
 101 = mark
 111 = space

The following bits are enabled only on hardware serial ports, but not the bit banger
port:

• Modem Kill:
 0 = No action when Carrier Detect is lost
 1 = Return an E$HangUp error and kill all processes related to the device

when Carrier Detect is lost

284

7 6 5 4 3 2 1 0

CTS/
RTS

Parity

XON/
XOFF
Recv

Modem
Kill

XON/
XOFF
Xmit

DSR/
DTR

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• XON/XOFF Receive:
 0 = Receive software flow control disabled
 1 = Receive software flow control enabled

• XON/XOFF Transit:
 0 = Transmit software flow control disabled
 1 = Transmit software flow control enabled

• CTS/RTS:
 0 = CTS/RTS hardware flow control disabled
 1 = CTS/RTS hardware flow control enabled

• DSR/DTR
 0 = DSR/DTR hardware flow control disabled
 1 = DSR/DTR hardware flow control enabled

• The SCF manager users SS.ComSt to inform a driver that serial port configuration
information has been changed in the path descriptor. After calling SS.ComSt, a
user routine must call the SS.Opt SetStat to correctly update the path descriptor.
This is not necessary when being used on a VDG screen vs. a serial port.

• This call is handled by CoVDG, sc6551, sc6522, sc6850, scdwv, scdwp, scbbt,
scbbp, and any other serial port drivers.

285

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Open  Informs a device driver that a path was
opened

Function Code $29

Entry Conditions:
    A path number
    B $29

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is used internally by NitrOS-9's SCF file manager and is not available to

user programs. It can be used only by device drivers and file managers. It is
usually used when handling wild card calls, like next available window (CoWin) or
next virtual port in Drivewire (scdwv).

286

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Close  Informs a device driver that a path is
closed

Function Code $2A

Entry Conditions:
    A path number
    B $2A

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call is used internally by NitrOS-9's SCF file manager and is not available to

user programs. It can be used only by device drivers and file managers. The driver
may use this to set up some hardware settings, if required.

• In VRN's case, this clears ALL process/path entries, even if you had multiple
entries set up between different programs.

287

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.HngUp  Informs SCF driver to hang up the phone

Function Code $2B

Entry Conditions:
    A path number
    B $2B

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This hangs up    a modem connection by dropping the DTR signal for .5 seconds.
• This call is handled by sc6551, sc6522, sc6850, and any other hardware based

serial port drivers.

288

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.FSig  Send signal if file has been updated

Function Code $2C

Entry Conditions:
    A path number
    B $2C
    X LSB is the signal code to send if file was updated

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call sets up a signal to be sent when the file open on the specified path (a

regular file or a directory) has been updated, even if by a different process.
GShell, for example, uses this to update the current directory display if a file has
been removed or added by another process.

• This call is handled by RBF, and only applies to RBF based paths.

289

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.AAGBf  Reserves an additional graphics buffer
Function Code $80

Entry Conditions:
    A path number
    B $80

Exit Conditions:
    X Buffer Address
    Y Buffer Number (1-2)

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.AAGBf allocates an additional 8K graphics buffer. The first buffer (Buffer 0)

must be allocated by using the Display Graphics command. To use the Display
Graphics Command, send control code $0F to the standard terminal driver.
SS.AAGBf can allocate up to two additional buffers (Buffers 1 and 2), one at a
time.

• After calling SS.AAGBf, Register X contains the address of the new buffer. Register
Y contains the buffer number.

• To deallocate all graphics buffers, use the End Graphics control code.
• When SS.AAGBf allocates a buffer, it also maps the buffer into the applications

address space. Each buffer uses 8K of the available memory in the application's
address space. Also, if DD.DStat is called, Buffer 0 is also mapped into the
application's address space. Allocation of all three buffers reduces the
applications free memory by 24K.

• It should be noted that each of these buffers are for Coco 1/2 Level 1 compatible
medium resolution graphics screens (either 128x192x4, or 256x192x2), which only
use 6K of the MMU block that gets mapped in. This leaves 2K in each buffer that
you can use for additional data memory with clever programming.

• This call is handled by CoVDG.

290

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DWrit  Direct sector Write

Function Code $80

Entry Conditions:
 A path number
 B $80
 U (MSB) Logical track #
 (LSB) Physical sector #
 X address of user buffer (in user map) to write data from
 Y sector size/format codes:
 bits 8-15 = least significant 8 bits of 11 bit sector size in bytes
 bit 7 = retry flag (0=normal retry, 1= no retry)
 bits 4-6 = most significant 3 bits of 11 bit sector size in bytes
 bit 3 = high density flag (0=not high density, 1=high density)
 bit 2 = tpi of data on diskette (0=48 tpi, 1=96 tpi)
 bit 1 = density of data on diskette (0=single, 1=double)
 bit 0 = side (0 or 1)
 NOTE: Bit 3 (high density) being set overrides any value in bit 1)

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call writes a specified sector from a user buffer. Sector lengths of 128,256,

512 and 1024 bytes are supported for single or double density. Non-OS9 disks
(such as MS-DOS, CP/M, or FLEX) can be written with this function. NOTE: Some
versions of SDisk 3 may not support the retry disable feature. High Density
support requires a special controller.

• This call requires and is handled by Sdisk3.

291

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.SLGBf  Selects a graphics buffer

Function Code $81

Entry Conditions:
 A path number
 B $81
 X $00 (select buffer for use)
 $01-$FF (select buffer for use and display)
 Y buffer number (0-2)

Exit Conditions:
    X unchanged from entry
    Y unchanged from entry

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• Use DISPLAY GRAPHICS to allocate the first graphics buffer. Use SS.AAGBf to

allocate the second and third graphics buffers.
• Save each return address when writing directly to a screen. It is not necessary to

save return addresses when using operating system graphics commands.
• SS.SLGBf does not update hardware information until the next vertical retrace

(60Hz or 50Hz rate depending on your locality). Programs that use SS.AAGBf to
change current draw buffers need to wait long enough to ensure that OS-9 has
moved the current buffer to the screen. An F$Sleep of 2 ticks is usually sufficient.

• The screen shows the buffer only if the buffer is selected as the interactive device.
If the device does not possess the keyboard, OS-9 stores the information until the
device is selected as the interactive device. When the device is selected as the
interactive device, the display shows the selected device's screen.

• This call is handled by CoVDG.

292

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.UnFrz  Unfreezes updating of DD.xxxx
information

Function Code $81

Entry Conditions:
    A path number
    B $81

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call reactivates the reading of LSN 0 information to DD.xxxx variables after

the SS.Frz call has shut it off.
• This call requires and is handled by Sdisk3.

293

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.FClr  Set/Clear FS2 VIRQ

Function Code $81

Entry Conditions:
 A path number
 B $81
 Y MSB = $00 (Reserved)
 LSB: $00 = Clear (Shut off) existing FS2 signal
 <>$00 = Set (Turn on) FS2 VIRQ signal
 X Timer/Reset count (in 1/60th of second clock ticks between signals)

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B    error code, if any (If the internal VIRQ tables are full, a E$DevBsy (Device Busy)

error will be returned)

Additional Information:
• This call is the original FS2 (Flight Simulator II) VIRQ SetStat call. This originally

used the /ftdd descriptor, but should now be accessed through /nil instead. This
call will always send Signal code $80 (S$FS2Sig).

• This call will send signal $80 every X number of clock ticks, and then resets the
count so that it will repeat the signal at the same rate.

• If you already have the signal sent up, you can re-issue this SetStat call with a new
value in X to change the signal timer. This restarts the timer with the new tick
count. It also resets the total number of clock ticks and total number of signals
sent (see SS.VCtr and SS.VSig GetStat calls).

• It is possible to open multiple paths from the same process, each with their own
unique FS2 timer.

• This call is handled in VRN.

294

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.MOFF  Quick floppy drive motor shutoff

Function Code $82

Entry Conditions:
    A path number
    B $82

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call turns off the floppy drive motors without waiting for the normal time

delay after last use. Use with caution.
• This call requires and is handled by Sdisk3.

295

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.MoTim  Set floppy drive motor turn on/shut
off time

Function Code $83

Entry Conditions:
    A path number
    B $83
    X time constant in clock ticks (1/60th of a second)

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call sets the amount of time that SDisk3 will wait for floppy drive motors to

spin up or shut down. If it is too short, it may cause data corruption
• This call requires and is handled by Sdisk3.

296

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.MpGPB  Maps the Get/Put buffer into a user
address space

Function Code $84

Entry Conditions:
 A path number
 B $84
 X high byte: buffer group number
 low byte: buffer number
 Y action to take:
 1 = map buffer
 0 = unmap buffer

Exit Conditions:
    X address of the mapped buffer
    Y number of bytes in buffer

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.MpGPB maps a Get/Put buffer into the user address space. You can then save

the buffer to disk or directly modify the pixel data contained in the buffer. Use
extreme care when modifying the buffer so that you do not write outside of the
buffer data area.

• This call is handled by CoWin.

297

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.SDWRT  System Direct sector Write

Function Code $84

Entry Conditions:
 A path number
 B $84
 U (MSB) Logical track #
 (LSB) Physical sector #
 X address of buffer (in system map) to write data from
 Y sector size/format codes:
 bits 8-15 = least significant 8 bits of 11 bit sector size in bytes
 bit 7 = retry flag (0=normal retry, 1= no retry)
 bits 4-6 = most significant 3 bits of 11 bit sector size in bytes
 bit 3 = high density flag (0=not high density, 1=high density)
 bit 2 = tpi of data on diskette (0=48 tpi, 1=96 tpi)
 bit 1 = density of data on diskette (0=single, 1=double)
 bit 0 = side (0 or 1)
 NOTE: Bit 3 (high density) being set overrides any value in bit 1)

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call writes a specified sector from a system map buffer. Sector lengths of

128,256, 512 and 1024 bytes are supported for single or double density. Non-OS9
disks (such as MS-DOS, CP/M, or FLEX) can be written with this function. NOTE:
Some versions of SDisk 3 may not support the retry disable feature. High Density
support requires a special controller.

• This call requires and is handled by Sdisk3.

298

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Sleep  Enable/Disable F$Sleep calls in SDisk3
driver (DMC version ONLY)

Function Code $85

Entry Conditions:
 A path number
 B $85
 X 0 = disable F$Sleep and use software delay loops instead
 <>0 = enable F$Sleep and disable software delay loops

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call activates or deactivates the use of F$Sleep for disk I/O operations

(read/write/seek). Non I/O operations (motor on speed and head settle delays)
are not affected.

• This call requires and is handled by Sdisk3 (DMC version only).

299

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.WnSet  Set up a high level Window (Multi-Vue)

Function Code $86

Entry Conditions:
 A path number
 B $86
 X window data pointer (only used if Y=WT.FSWin or WT.Win - see below)
 Y window type code:
 0 = WT.NBox (no box)
 1 = WT.FWin (Framed window)
 2 = WT.FSWin (Framed window with scroll bars)
 3 = WT.SBox (Shadowed box)
 4 = WT.DBox (Double box)
 5 = WT.PBox (Plain box)

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• The C language data structures for windowing are defined in the wind.h file in the

DEFS directory of the system disk.
• The assembly language data structures for the window data are defined in the file

dd/defs/cocovtio.d. In particular, the labels beginning with ‘WN.’, ‘MN.’ and ‘MI’.
Further details are in the Multi-Vue manual, Chapter 9 (Programmer’s Notes).

• You must still create the window using DWSet or OWSet before applying
SS.WnSet to define the high level window type.

• The framed windows use palettes 0-3 (darkest,dark,light,lightest) colors
• Plain Box & Double Box Use palette 1 for the boxes, Shadowed uses both 1 and 2

for the shadow & box.
• This call is handled by CoWin.

300

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

301

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DrvCh  Activates or deactivates disk caching
for a particular drive.

Function Code $86

Entry Conditions:
 A path number
 B $86
 X 0 = disable caching for this drive
 <>0 = enable caching for this drive

Exit Conditions:
    none

Error Conditions:
 CC carry set on error
    B      error code (if any).

Additional Information:
• This call is ONLY supported on the Performance Peripheral DMC caching floppy

controller, which was available in 8K or 32K cache RAM versions. It
enables/disables caching on the drive specified by the caller's path.

• This call requires and is handled by Sdisk3.    (DMC version only).

302

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.SBar  Puts a scroll block at a specified position

Function Code $88

Entry Conditions:
 A path number
 B $88
 X horizontal position of the scroll block
 Y vertical position of the scroll block

Exit Conditions:
    Scroll marker updated if no I/O error occurs

Error Output:
    CC carry set on error
    B      error code, if out of bounds

Additional Information:
• WT.FSWin-type windows have areas at the bottom and right sides to indicate

relative positions within a larger area. These areas are called scroll bars. SS.SBar
gives an application the ability to maintain relative position markers within the
scroll bars. The markers indicate the location of the current screen within a larger
screen. Calling SS.SBar updates both scroll markers.

• Your application must calculate the coordinates to use for the scroll markers. It
can use the SS.ScSiz GetStat call to provide the information for the computation
(the horizontal and vertical size of the content region of the window). The scroll
bar size is on character cell less than the vertical and horizontal sizes returned
from the SS.SCSiz GetStat call.

• When the window is first created, the content area is the size returned by the
SS.ScSiz GetStat call. The content region is smaller than the window and it's
borders by two character widths horizontally, and three character heights
vertically.

• This call is handled by CoWin.

303

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Mouse  Sets the sample rate and button
timeout for a mouse

Function Code $89

Entry Conditions:
 A path number
 B $89
 X mouse sample rate and timeout
 most significant byte = mouse sample rate
 least significant byte = mouse timeout

NOTE: Either byte being set to $FF means leave at it's current setting

Y Auto-follow mouse cursor:
 0 = Autofollow off
 1 = Autofollow on

(other values for Y are reserved for future use)

Exit Conditions:
    None

Error Conditions:
 CC carry set on error
    B      error code, if any

Additional Information:
• SS.Mouse allows the application to define the mouse parameters. The sample

rate and button timeout are the number of clock ticks between the actual
readings of the mouse status. $FF means to leave the current setting alone; this
lets you change one but not the other setting if desired.

• The auto-follow flag only activates if CoWin is active. It does not function if you
are running with CoGrf.

• This call is handled by VTIO.

304

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.MsSig  Sends a signal to a process when the
mouse button is pressed

Function Code $8A

Entry Conditions:
 A path number
 B $8A
 X user defined signal code (low byte only)

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.MsSig sends the process a signal the next time a mouse button changes state

(from open to closed). Once SS.MsSig sends the signal, the process must repeat
the SetStat each time that it needs to set up the signal.

• Processes using SS.MsSig should have an intercept routine to trap the signal. By
intercepting the signal, other processes can be notified when the change occurs.
Therefore, the other processes do not need to continually poll the mouse.

• The SS.Relea SetStat clears the pending signal request, if desired. It also clears any
pending signal from SS.SSig. Because of this, if you want to clear only one signal,
you must reset the other signal after calling SS.MsSig.

• This call is handled by VTIO.

305

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.AScrn  Allocates and maps a high-resolution
screen into an application address space

Function Code $8B

Entry Conditions:
 A path number
 B $8B
 X screen type
 0 = 640 x 192 x 2 colors (16K)
 1 = 320 x 192 x 4 colors (16K)
 2 = 160 x 192 x 16 colors (16K)
 3 = 640 x 192 x 4 colors (32K)
 4 = 320 x 192 x 16 colors (32K)

Exit Conditions:
    X application address space of screen
    Y screen number (1-3)

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.AScrn is particularly useful in systems with minimal memory when you want to

allocate a high resolution graphics screen with all screen updating handled by a
process.

• This call uses CoVDG (CoGrf/CoWin is not required, nor even used).
• All screens are allocated in multiples of 8K blocks. You can allocate a maximum of

three buffers at one time. To select between buffers, use the SS.DScrn SetStat call.
• Screen memory is allocated but not cleared. The application using the screen

must do this.
• Screens must be allocated from a VDG-type device - a standard 32-column text

screen must be available for the device. You can do this via XMODE or the
I$ModDsc call, by changing the PAR(ity) byte from $80 to $01 (VDG with real
lowercase) or $00 (VDG with inverse video).

• Since screens are always allocated by even 8K MMU blocks, there is a little room
left over after each screen that can be used for data.

306

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

• This call is handled by CoVDG.

307

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DScrn  Causes CoVDG to display a screen that was
allocated by SS.AScrn

Function Code $8C

Entry Conditions:
 A path number
 B $8C
 Y screen number
 0 = text screen (32x16)
 1-3 = high resolution screen number

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.DScrn shows the requested screen if the requested screen is the current

interactive device.
• Screen 0 (text screen) should be selected before using SS.FScrn to free all high

resolution screen memory.
• This call is handled by CoVDG.

308

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.FScrn  Frees the memory of a screen allocated by
SS.AScrn

Function Code $8D

Entry Conditions:
 A path number
 B $8D
 Y screen number (1-3)

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• Do not attempt to free a screen that is currently on display.
• SS.FScrn returns the screen memory to the system and removes it from an

application's address space.
• This call is handled by CoVDG.

309

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.PScrn  Converts a screen to a different type

Function Code $8E

Entry Conditions:
 A path number
 B $8E
 X new screen type
 0 = 640 x 192 x 2 colors (16K)
 1 = 320 x 192 x 4 colors (16K)
 2 = 160 x 192 x 16 colors (16K)
 3 = 640 x 192 x 4 colors (32K)
 4 = 320 x 192 x 16 colors (32K)

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.PScrn changes a screen allocated by SS.AScrn to a new screen type. You can

change a 32K screen to either a 32K screen or a 16K screen. You can change a 16K
screen only to another 16K screen type. SS.PScrn updates the current display
screen at the next clock interrupt.

• If you change a 32K screen to a 16K screen, NitrOS-9 does not reclaim the extra
16K of memory. This means that you can later change the 16K screen back to a
32K screen.

• This call is handled by CoVDG.

310

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Montr  Sets the monitor type

Function Code $92

Entry Conditions:
 A path number
 B $92
 X monitor type
 0 = color composite
 1 = analog RGB
 2 = monochrome composite

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• SS.Montr loads the hardware palette registers with the codes for the default color

set for three types of monitors. The system default is set by the Init module when
booting NitrOS-9.

• The monochrome mode removes color information from the signals sent to a
monitor.

• When a composite monitor is in use, a conversion table maps colors from RGB
color numbers. In RGB and monochrome modes, the system uses RGB color
numbers directly.

• This call is handled by VTIO.

311

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.GIP  Sets the system wide mouse and key repeat
parameters

Function Code $94

Entry Conditions:
 A path number
 B $94
 X mouse resolution; in the most significant byte
 0 = low resolution mouse
 1 = optional high resolution adapter
 $FF = leave current setting alone
 mouse port location; in the least significant byte
 1 = right port
 2 = left port
 $FF = leave current setting alone
 Y key repeat start constant; in the most significant byte
 $00 = No key repeat
 $01-$FE = number of 1/60th second ticks before key repeat starts
 $FF = leave current setting alone
 key repeat delay; in the least significant byte
 $00-$FE = number of 1/60th second ticks between key repeats
 $FF = leave current setting alone

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• Because this function affects system-wide settings, it is best to use it from system

configuration utilities and not from general application programs.

• This call is handled by VTIO.

312

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

313

As of Ease of Use (EOU) Beta 5, the $FF (leave current setting alone) also works
on mouse settings, not just keyboard.

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.UMBar   Requests the high level menu manager to
update the menu bar

Function Code $95

Entry Conditions:
 A path number
 B $95

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• An application can call SS.UMBar when it needs to redraw the menu bar

information, such as when it enables or disables menus, or when it completes a
window pull down and needs to restore the menu.

• This call is handled by CoWin.

314

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DFPal  Sets the default palette register values

Function Code $97

Entry Conditions:
 A path number
 B $97
 X pointer to 16 bytes of palette data

Exit Conditions:
    X unchanged, bytes moved to system defaults

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• Use SS.DFPal to alter the system-wide palette register defaults. The system uses

these defaults when it allocates a new screen using the DWSet command.
• Because this function affects system wide settings, it is best to use it from system

configuration utilities, not general application programs.
• This call is handled by CoWin.

315

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Tone  Creates a sound through the terminal
output device

Function Code $98

Entry Conditions:
 A path number
 B $98
 X duration and amplitude (volume) of the tone
 LSB = duration in ticks (1/60th of a second) in the range 0-255
 MSB = amplitude (volume) of the tone in the range 0-63
 Y relative frequency counter (0=low, 4095=high)
 bit 15: 1=8 bit volume (used on TC-9). Means MSB of X uses 0-255 (all 8 bits)

Exit Conditions:
    These are the same as the entry conditions.

Error Output:
    None

Additional Information:
• This call produces a programmed IO tone through the speaker of the monitor

used by the terminal device. You can make the call on any valid path open to a
VDG or a window device.

• The system does not mask interrupts during the time the tone is being produced;
however the calling process is paused until the tone is complete.

• The frequency of the tone is a relative number ranging from 0 for a low frequency
to 4095 for a high frequency. The widest variation of tones occurs at the high
range of the scale.

• This call is handled by VTIO/SndDrv or TC9IO.

316

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.GIP2  Set Global Input Parameters 2
Function Code $99

Entry Conditions:
 A path number
 B $99
 X MSB: 0xxxxxxx = Leave 2nd mouse button function unchanged

10xxxxxx = Disable 2nd mouse button as CLEAR key
11xxxxxx = Enable 2nd mouse button as CLEAR key
xx0xxxxx = Leave current key click setting alone
xx10xxxx = Disable key click on the current window
xx11xxxx = Enable key click on the current window

 LSB: $00 (reserved for future use)
 Y $0000 (reserved for future use)
 U $0000 (reserved for future use)

Exit Conditions:
    none

Error Output:
 CC carry set on error
 B error code, if any

Additional Information:
• Because this function can affect system-wide settings, it is best to use it from

system configuration utilities. One exception is the key click, which affects the
current window (via it’s path number) only.

• Bits not defined for the X register seen above, and the Y and U registers, are
reserved for future use, and should be all set to 0’s (thus leaving any future
functions added as “unchanged”, and ensuring that current programs will still
function correctly in the future, with an updated SS.GIP2 call.

• This call is used to set other input parameters not handled by the SS.GIP call.
• This call is handled by VTIO and some of it’s sub-modules.
• If the 2nd mouse button is enabled as the CLEAR key, then if the 1 st mouse button

is pressed at the time the 2nd button is clicked and released, it acts like SHIFT-
CLEAR (reverse window direction).

•

317

This call was introduced in EOU Beta 6. It currently defaults to both of these
(2nd mouse button function and key click) features being off.

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.CDSig  Send Signal on Carrier Detect (CD) or
DSR change

Function Code $9A

Entry Conditions:
    A path number
    B $9A
    X MSB: not used (set to 0)
            LSB: signal code to send on DSR or CD change

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B error code, if any

Additional Information:
• This call will send the calling process a signal if either the Carrier Detect (CD) or

Data Set Ready (DSR) changes from the state when SS.CDSig was called.
• This is a one shot signal call, and is released upon triggering. Therefore, this call

must be made for each signal sent.
• This call is handled in sc6551, sc6850, s16550 and other hardware based serial

port drivers.

318

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.CDRel  Release a pending SS.CDSig signal

Function Code $9B

Entry Conditions:
    A path number
    B $9B

Exit Conditions:
    None

Error Output:
    CC carry set on error
    B      error code, if any

Additional Information:
• This call will cancel a pending SS.CDSig call, as long as the process ID number of

the caller is the same process ID number that issued the original SS.CDSig call.
• This call is handled in sc6551, sc6850, s16550 and other hardware based serial

port drivers.

319

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.Fill  Pre-fill the SCF line edit buffer with data

Function Code $A0

Entry Conditions:
 A path number
 B $A0
 X Address of the data to pre-fill I$ReadLn buffer with
 Y MSB = Flags:
 high bit=0 = append carriage return to ReadLn buffer
 high bit=1 = do NOT append carriage return to ReadLn buffer
 LSB = number of bytes to pre-fill (maximum of 255)

Exit Conditions:
    None

Additional Information:
• This allows pre-loading the input (I$ReadLn) keyboard buffer on any SCF device

(windows, VDG screens, serial ports) with data. This allows the SCF editing keys (if
enabled) to immediately act on this data (including insert, delete, etc.). Use this to
pre-load default data for prompt responses, for example.

• The support module for this is SCF.

320

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.ECC  Enable/Disable ECC corrected data errors

Function Code $B0

Entry Conditions:
 A path number
 B $B0
 X Change ECC error correction status:
 0 = ECC error correction disabled
 1 = ECC error correction enabled

Exit Conditions:
    None

Additional Information:
• This enables or disables ECC error correction for the WD1002-05 hard

drive/floppy controller from Frank Hogg's Eliminator controller.
• The support module for this is WDDisk.

321

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.FSet  Set FS2+ VIRQ

Function Code $C7

Entry Conditions:
 A path number
 B $C7
 X Initial timer count (in 1/60th of a second clock ticks between signals)
 Y Reset count:
 $0000=one shot VIRQ, will not repeat
 $0001-$FFFF = number of 1/60th of a second clock ticks before re-signaling
 U MSB : $00 (Reserved)
 LSB : Signal code to send

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any (if VRN's VIRQ table is full, you will received a Device Busy error)

Additional Information:
• This is an enhanced version of the original FS2 (Flight Simulator II) VIRQ SetStat

call.
• For a one shot VIRQ, set the the number of 1/60th second ticks before the one

VIRQ triggers in X, and set Y to 0.
• For a repeating VIRQ, you can either have it always trigger in the same number of

clock ticks (set both X and Y to the same value), or you can set it up so that the
first VIRQ will have a unique time count, and all subsequent VIRQ's will have a
second, repeating time count (use X for the first time count, and Y for the
repeating one).

• Unlike the original FS2 VIRQ, you can define your own unique signal code in the
lower byte of U. If you have multiple paths to /nil open, you can set different VIRQ
timers to different signals, and deal with them separately.

• If you already have a signal set up for your current process and path numbers, you
can re-issue this SetStat call with new values in X to (initial tick count), Y
(repeating tick count) and U (signal code). This restarts the timer with the new

322

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

intital and repeat tick counts, and also resets the total number of clock ticks and
total number of signals sent (see SS.VCtr and SS.VSig GetStat calls).

• It is possible to open multiple paths from the same process, each with their own
unique FS2 timer.

• This call is handled in VRN.

323

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.KSet  Set KQ3 VIRQ

Function Code $C8

Entry Conditions:
 A path number
 B $C8

Exit Conditions:
    none

Error Output:
    CC carry set on error
    B      error code, if any (if VRN's VIRQ table is full, you will received a Device Busy error)

Additional Information:
• Sets up a Sierra style VIRQ, which is a fixed signal code ($80 - S$KQ3Sig), and

always sends the signal every 1/60th of a second.
• There can be a maximum of 4 FS2/FS2+/KQ3 type signals installed in the system

at one time, each with their own unique combination of Process ID number and
path #.

• There is no point in having multiple KQ3 signals defined for one process, as there
is only one hardcoded signal code and timer value allowed.

• No metrics are done for KQ3 signals (unlink FS2/FS2+) - no total tick count or total
signals sent.

• This call is handled in VRN.

324

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.KClr  Clears KQ3 VIRQ

Function Code $C9

Entry Conditions:
 A path number
 B $C9

Exit Conditions:
    none

Error Output:
    None

Additional Information:
• Clears/disables a Sierra style VIRQ (see the SS.Kset SetStat for details)
• There can be a maximum of 4 FS2/FS2+/KQ3 type signals installed in the system

at one time, each with their own unique combination of Process ID number and
path number.

• This call is handled in VRN.

325

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.ARAM  Allocate contiguous RAM outside of user
space

Function Code $CA

Entry Conditions:
 A path number
 B $CA
 X MSB : $00 (Reserved)
 LSB : number of contiguous 8K RAM blocks to allocate (from free low RAM)

Exit Conditions:
 X Starting block number of allocated RAM
   

Error Output:
    CC carry set on error
    B    error code, if any

Additional Information:
• A Sierra memory allocation call, SS.ARAM will look for the specified number of

contiguous 8K RAM blocks starting in low memory.
• Each unique process ID number and path # can allocate it's own block, allowing a

single process (using multiple paths) to allocate several chunks of memory that do
not have to be contiguous between each other (but each chunk is contiguous
within themselves).

• 32 is the current limit of such allocations allowed, across the entire system.
• This call is handled in VRN.

326

Chapter 9. System Calls NitrOS-9 EOU Technical Reference Manual

SS.DRAM  De-allocates contiguous RAM outside of
user space

Function Code $CB

Entry Conditions:
 A path number
 B $CB

Exit Conditions:
 None   

Error Output:
    None

Additional Information:
• A Sierra memory allocation call, SS.DRAM will de-allocate previously allocated

external RAM set up by the SS.ARAM call, based on the unique process ID
number and path number combination that did the original allocate call.

• No error is returned if you attempt to SS.DRAM a process/path number
combination that never did a previous allocation.

• This call is handled in VRN.

327

NitrOS-9 EOU Technical Reference Manual

Appendices

328

Appendices NitrOS-9 EOU Technical Reference Manual

A. System Module Diagrams

Executable Memory Module Format

329

SYNC BYTES ($87, $CD)

MODULE SIZE (BYTES)

MODULE NAME OFFSET

HEADER PARITY CHECK

EXECUTION OFFSET

PERMANENT STORAGE SIZE

TYPE LANGUAGE

REVISIONATTRIBUTES

RELATIVE
ADDRESS

$05

$0A

$09

$08

$07

$06

$04

$03

$00

$0C

$0B

$02

$01

$0D

CHECK
RANGE

MODULE
CRC

HEADER
PARITY

PERMANENT STORAGE SIZE

(Additional optional header extensions located
here), then the Module Body (object code,

constants, and so on)

CRC CHECK VALUE

Appendices NitrOS-9 EOU Technical Reference Manual

Device Descriptor Format

330

SYNC BYTES ($87, $CD)

DEVICE CONTROLLER ABSOLUTE
PHYSICAL ADDRESS (24 BIT)

MODULE SIZE (BYTES)

OFFSET TO MODULE NAME

HEADER PARITY CHECK

OFFSET TO FILE MANAGER NAME STRING

OFFSET TO DEVICE DRIVER NAME STRING

$F (TYPE) $1 (LANGUAGE)
REVISIONATTRIBUTES

RELATIVE
ADDRESS

$05

$0A
$09

$08
$07

$06

$04

$03

$00

$0C

$0B

$02

$01

$0D

CHECK
RANGE

HEADER
PARITY

MODE BYTE

$0F
$0E

$10

$11
$12,$12+n

CRC CHECK VALUE

(INITIALIZATION TABLE)
INITIALIZATION TABLE SIZE

NAME STRINGS, AND SO ON

Appendices NitrOS-9 EOU Technical Reference Manual

INIT Module Format

331

SYNC BYTES ($87, $CD)

MODULE SIZE (BYTES)

MODULE NAME OFFSET

HEADER PARITY CHECK

OFFSET TO INITIAL STARTUP MODULE
NAME STRING (HI BIT TERMINATED, NORMALLY SYSGO)

OFFSET TO DEFAULT MASS STORAGE
DEVICE NAME STRING (HI BIT TERMINATED. NORMALLY /DD)

$F (TYPE) $1 (LANGUAGE)

REVISIONATTRIBUTES

RELATIVE
ADDRESS

$09

$08
$07

$06

$04

$00

$0C

$02

$0D

CHECK
RANGE

MODULE
CRC

HEADER
PARITY

MAXIMUM FREE MEMORY

OF DEVICE TABLE ENTRIES

OF IRQ POLLING TABLE ENTRIES

OFFSET TO DEFAULT BOOTSTRAP MODULE
NAME STRING (HI BIT TERMINATED, NORMALLY BOOT)

WRITE PROTECT ENABLE FLAG (UNUSED ON COCO 3, SET TO $01)

OFFSET TO DEFAULT INTERACTIVE TERMINAL
DEVICE NAME STRING (HI BIT TERMINATED, NORMALLY /TERM)

OPERATING SYSTEM MAJOR REVISION #

OPERATING SYSTEM VERSION #

OPERATING SYSTEM LEVEL ($02 FOR LEVEL II)

OPERATING SYSTEM MINOR REVISION #

$0E

$10

$18

$12

$14

$16

$19

$17

$1A

Appendices NitrOS-9 EOU Technical Reference Manual

Additional Information:
• The version #'s are raw binary, not ASCII format (example: Version 3 would be

$03, not $33)
• Feature byte 1 has the following bit flags currently defined:

    Bit 0 = XXXXXXX0 - CRC checking OFF
    Bit 0 = XXXXXXX1 - CRC checking ON
    Bit 1 = XXXXXX0X - 6809 processor
    Bit 1 = XXXXXX1X - 6309 processor

• Feature byte 2 is reserved for future use
• Default monitor type settings are defined as: 0=Composite, 1=RGB,

2=Monochrome.

332

OFFSET TO OPERATING SYSTEM NAME STRING
(NUL TERMINATED) (EXAMPLE ‘NITROS-9/6809 LEVEL2 V3.3.0’)

OFFSET TO INSTALLATION NAME STRING

(NUL TERMINATED) (EXAMPLE ‘TANDY COLOR COMPUTER 3’)

RELATIVE
ADDRESS

$26

$25

$21

$1F

$1B

$28

$27

$1D

$1C

CRC CHECK VALUE

$29

CHECK
RANGE

MODULE
CRC

DEFAULT MOUSE RESOLUTION

DEFAULT MONITOR TYPE

DEFAULT KEY REPEAT START CONSTANT

DEFAULT MOUSE SIDE

FEATURE BYTE 1

FEATURE BYTE 2

RESERVED FOR FUTURE USE (SET TO $00)

NAME STRINGS

DEFAULT KEY SPEED CONSTANT

$2B-
n

$2A

Appendices NitrOS-9 EOU Technical Reference Manual

• Default Mouse resolution settings are defined as: 0=low resolution, 1=high
resolution interface

• Default Mouse Side settings are defined as: 0=left joystick port, 1=right joystick
port

333

Appendices NitrOS-9 EOU Technical Reference Manual

B1. Standard Floppy Disk Format
Color Computer 3

Physical Track Format Pattern

Format Bytes
(Dec)

Value
(Hex)

Header pattern
(once per track)

32
12
3

$4E (Gap 1 MFM)
$00 (Gap II MFM)
$A1

Sector pattern
(repeated 18 times)

1
1
1
1
1
2
22
12
3
1
256
2
22
12
3

$FE (ID Address Mark)
Track number (base 0)
Side number (base 0)
Sector number (base 1)
Sector length ($01=256 byte sector)
Sector header CRC
$4E
$00
$A1
$FB (Data address mark)
Data area
Sector CRC
$4E
$00
$A1

Trailer pattern
(once per track)

N $4E (fill to index mark)

334

Appendices NitrOS-9 EOU Technical Reference Manual

B2. 20 Sector per Track Floppy Disk Format
Color Computer 3 – FORMAT 20 format command

Physical Track Format Pattern

Format Bytes
(Dec)

Value
(Hex)

Header pattern
(once per track)

8
8
3

$4E (Gap 1 MFM)
$00 (Gap II MFM)
$A1

Sector pattern
(repeated 18 times)

1
1
1
1
1
2
28
3
1
256
2
1
3

$FE (ID Address Mark)
Track number (base 0)
Side number (base 0)
Sector number (base 1)
Sector length ($01=256 byte sector)
Sector header CRC
$00
$A1
$FB (Data address mark)
Data area
Sector CRC
$00
$A1

Trailer pattern
(once per track)

N $4E (fill to index mark)

335

Appendices NitrOS-9 EOU Technical Reference Manual

C. System Error Codes
The error codes are show in both hexadecimal and decimal. The error codes listed
include NitrOS-9 system error codes, BASIC09 error codes, and standard windowing
system error codes.

Code Code Meaning

HEX DEC

$01 001 UNCONDITIONAL ABORT—An error occurred from which NitrOS-9 cannot
recover. All processes are terminated.

$02 002 KEYBOARD ABORT—You pressed BREAK to terminate the current
operation.

$03 003 KEYBOARD INTERRUPT—You pressed SHIFT-BREAK either to cause the
current operation to function as a background task with no video display
or to cause the current task to terminate.

$B7 183 ILLEGAL WINDOW TYPE—You tried to define a text type window for
graphics or used illegal parameters.

$B8 184 WINDOW ALREADY DEFINED—You tried to create a window that is
already established.

$B9 185 FONT NOT FOUND—You tried to use a window font that does not exist.

$BA 186 STACK OVERFLOW—Your process (or processes) requires more stack
space than is available on the system.

$BB 187 ILLEGAL ARGUMENT—You have used an argument with a command that is
inappropriate.

$BD 189 ILLEGAL COORDINATES—You have given coordinates to a graphics
command that are outside the screen boundaries.

$BE 190 INTERNAL INTEGRITY CHECK—System modules or data are changed and
are no longer reliable.

$BF 191 BUFFER SIZE TOO SMALL—The data you assigned to a buffer is larger than
the buffer.

$C0 192 ILLEGAL COMMAND—You have issued a command in a form unacceptable
to NitrOS-9.

$C1 193 SCREEN OR WINDOW TABLE IS FULL—You do not have enough room in
the system window table to keep track of any more windows or screens.

$C2 194 BAD/UNDEFINED BUFFER NUMBER—You have specified an illegal or
undefined buffer number.

$C3 195 ILLEGAL WINDOW DEFINITION—You have tried to give a window illegal

336

Appendices NitrOS-9 EOU Technical Reference Manual

Code Code Meaning

HEX DEC

parameters.

$C4 196 WINDOW UNDEFINED—You have tried to access a window that you have
not yet defined.

$C8 200 PATH TABLE FULL—NitrOS-9 cannot open the file because the system path
table is full.

$C9 201 ILLEGAL PATH NUMBER—The path number is too large or you specified a
non-existent path.

$CA 202 INTERRUPT POLLING TABLE FULL—Your system cannot handle an
interrupt request because the polling table does not have room for more
entries.

$CB 203 ILLEGAL MODE—The specified device cannot perform the indicated input
or output function.

$CC 204 DEVICE TABLE FULL—The device table does not have enough room for
another device.

$CD 205 ILLEGAL MODULE HEADER—NitrOS-9 cannot load the specified module
because its sync code, header parity, or Cyclic Redundancy Code is
incorrect.

$CE 206 MODULE DIRECTORY FULL—The module directory does not have enough
room for another module entry.

$CF 207 MEMORY FULL—Process address space is full or your computer does not
have sufficient memory to perform the specified task.

$D0 208 ILLEGAL SERVICE REQUEST—The current program has issued a system call
containing an illegal code number.

$D1 209 MODULE BUSY—Another process is already using a non-shareable
module.

$D2 210 BOUNDARY ERROR—NitrOS-9 has received a memory allocation or
deallocation request that is not on a page boundary.

$D3 211 END OF FILE—A read operation has encountered an end-of-file character
and has terminated.

$D4 212 RETURNING NON-ALLOCATED MEMORY—The current operation has
attempted to deallocate memory not previously assigned.

$D5 213 NON-EXISTING SEGMENT—The file structure of the specified device is
damaged.

$D6 214 NO PERMISSION—The attributes of the specified file or device do not
permit the requested access.

337

Appendices NitrOS-9 EOU Technical Reference Manual

Code Code Meaning

HEX DEC

$D7 215 BAD PATHNAME—The specified pathlist contains a syntax error; for
instance, an illegal character.

$D8 216 PATH NAME NOT FOUND—The system cannot find the specified pathlist.

$D9 217 SEGMENT LIST FULL—The specified file is too fragmented for further
expansion.

$DA 218 FILE ALREADY EXISTS—The specified filename already exists in the
specified directory.

$DB 219 ILLEGAL BLOCK ADDRESS—The file structure of the specified device is
damaged.

$DC 220 PHONE HANGUP-DATA CARRIER LOST—The data carrier detect is lost on
the RS-232 port.

$DD 221 MODULE NOT FOUND—The system received a request to link a module
that is not in the specified directory.

$DE 222 SECTOR OUT OF RANGE—A disk sector number was specified that does
not exist.

$DF 223 SUICIDE ATTEMPT—The current operation has attempted to return to the
memory location of the stack.

$E0 224 ILLEGAL PROCESS NUMBER—The specified process does not exist.

$E2 226 NO CHILDREN—The system has issued a wait service request but the
current process has no dependent process to execute.

$E3 227 ILLEGAL SWI CODE—The system received a software interrupt code that is
less than 1 or greater than 3.

$E4 228 PROCESS ABORTED—The system received a signal Code 2 to terminate the
current process.

$E5 229 PROCESS TABLE FULL—A fork request cannot execute because the process
table has no room for more entries.

$E6 230 ILLEGAL PARAMETER AREA—A fork call has passed incorrect high and low
bounds.

$E7 231 KNOWN MODULE—The specified module is for internal use only.

$E8 232 INCORRECT MODULE CRC—The CRC for the module being accessed is bad.

$E9 233 SIGNAL ERROR—The receiving process has a previous, unprocessed signal
pending.

$EA 234 NON-EXISTENT MODULE—The system cannot locate the specified module.

$EB 235 BAD NAME—The specified device, file, or module name is illegal.

338

Appendices NitrOS-9 EOU Technical Reference Manual

Code Code Meaning

HEX DEC

$EC 236 BAD HEADER—The specified module header parity is incorrect.

$ED 237 RAM FULL—No free system random access memory is available: the
system address space is full, or there is no physical memory available
when requested by the operating system in the system state.

$EE 238 UNKNOWN PROCESS ID—The specified process ID number is incorrect.

$EF 239 NO TASK NUMBER AVAILABLE—All available task numbers are in use.

339

Appendices NitrOS-9 EOU Technical Reference Manual

D. Basic09 Error Codes
Code Code Meaning

HEX DEC

$0A 010 UNRECOGNIZED SYMBOL – a symbol that is not part of a identifier, line
number, operator, keyword or constant has been found

$0B 011 EXCESSIVE VERBIAGE - too many keywords or symbols

$0C 012 ILLEGAL STATEMENT CONSTRUCTION – An expression or statement is
invalid (example: a:=b+*/c)

$0D 013 I-CODE OVERFLOW - You have ran out of workspace memory for the
actual code, and need to allocate more

$0E 014 ILLEGAL PATH NUMBER - Bad Path number given

$0F 015 ILLEGAL MODE - read/write/update/dir only allowed, and you are also not
allowed to CREATE a directory in BASIC09 (you will have to use the system
call).

$10 016 ILLEGAL NUMBER – A number is out of range for the intended purpose
(example: trying to use an array element number not between 1 and
32767)

$11 017 ILLEGAL PREFIX

$12 018 ILLEGAL OPERAND – you have used an operand that can’t be used in the
context you tried (example: attempting to add a variable name to a
procedure name)

$13 019 ILLEGAL OPERATOR

$14 020 ILLEGAL RECORD FIELD NAME – You have specified a record field name
that is not part of the TYPE statement.

$15 021 ILLEGAL DIMENSION

$16 022 ILLEGAL LITERAL – You have specified a non-literal value where one is
required (example: you can’t do PARAM n,a(n):INTEGER; the ‘n’ in a(n) has
to be an actual number).

$17 023 ILLEGAL RELATIONAL

$18 024 ILLEGAL TYPE SUFFIX - You have tried to DIM a variable with a non-
existent variable type, or non-existent TYPE statement

$19 025 TOO-LARGE DIMENSION

$1A 026 TOO-LARGE LINE NUMBER – Line numbers can only be from 1 to 32767.

$1B 027 MISSING ASSIGNMENT STATEMENT

$1C 028 MISSING PATH NUMBER

340

Appendices NitrOS-9 EOU Technical Reference Manual

Code Code Meaning

HEX DEC

$1D 029 MISSING COMMA

$1E 030 MISSING DIMENSION

$1F 031 MISSING 'DO' STATEMENT - you have issued a WHILE statement without
the corresponding DO

$20 032 MEMORY FULL - You have run out of workspace memory (for your
variables), and need to allocate more

$21 033 MISSING GOTO

$22 034 MISSING LEFT PARENTHESIS

$23 035 MISSING LINE REFERENCE

$24 036 MISSING OPERAND

$25 037 MISSING RIGHT PARENTHESIS

$26 038 MISSING THEN STATEMENT - You have issued an IF statement without a
corresponding THEN

$27 039 MISSING TO - You have issued a FOR statement without the corresponding
TO

$28 040 MISSING VARIABLE REFERENCE

$29 041 NO ENDING QUOTE - You have issued a statement (like PRINT) that has a
starting quote, with no ending quote

$2A 042 TOO MANY SUBSCRIPTS

$2B 043 UNKNOWN PROCEDURE - You have to tried to RUN a procedure that
doesn't exist

$2C 044 MULTIPLY-DEFINED PROCEDURE

$2D 045 DIVIDE BY ZERO - You have attempted to divide a number by 0, which is
not allowed

$2E 046 OPERAND TYPE MISMATCH

$2F 047 STRING STACK OVERFLOW

$30 048 UNIMPLEMENTED ROUTINE - You should never see this

$31 049 UNDEFINED VARIABLE

$32 050 FLOATING OVERFLOW

$33 051 LINE WITH COMPILER ERROR

$34 052 VALUE OUT OF RANGE FOR DESTINATION - You have done something like
attempting to use a large REAL number with PRINT USING in INTEGER
format

$35 053 SUBROUTINE STACK OVERFLOW

341

Appendices NitrOS-9 EOU Technical Reference Manual

Code Code Meaning

HEX DEC

$36 054 SUBROUTINE STACK UNDERFLOW

$37 055 SUBSCRIPT OUT OF RANGE - You have attempted to use an array element
number beyond what it was DIMmed for

$38 056 PARAMETER ERROR - You have either passed the wrong number of
parameters, or the wrong variable type(s), to a procedure

$39 057 SYSTEM STACK OVERFLOW

$3A 058 I/O TYPE MISMATCH

$3B 059 I/O NUMERIC INPUT FORMAT BAD

$3C 060 I/O CONVERSION: NUMBER OUT OF RANGE

$3D 061 ILLEGAL INPUT FORMAT

$3E 062 I/O FORMAT REPEAT ERROR

$3F 063 I/O FORMAT SYNTAX ERROR - You have specified a PRINT USING format
code that doesn't exist

$40 064 ILLEGAL PATH NUMBER

$41 065 WRONG NUMBER OF SUBSCRIPTS – The subscripts you are trying to use
do not match the original DIM statement

$42 066 NON RECORD TYPE OPERAND

$43 067 ILLEGAL ARGUMENT – Can be returned from a subroutine module, or by
doing things like trying to compare to array names (as whole arrays)

$44 068 ILLEGAL CONTROL STRUCTURE

$45 069 UNMATCHED CONTROL STRUCTURE - You have have only specified the
beginning, or the end, of a control structure (WHILE/DO, REPEAT/UNTIL,
etc.), instead of both beginning and end

$46 070 ILLEGAL FOR VARIABLE - You have attempted a FOR/NEXT loop with a
variable that is not INTEGER or REAL

$47 071 ILLEGAL EXPRESSION TYPE

$48 072 ILLEGAL DECLARATIVE STATEMENT

$49 073 ARRAY SIZE OVERFLOW - You have tried to DIM too many elements for a
variable

$4A 074 UNDEFINED LINE NUMBER - You have attempted a GOTO or GOSUB to a
line number that does not exist

$4B 075 MULTIPLY-DEFINED LINE NUMBER – a duplicate line number was found.
This can ONLY happen when the source was edited outside of BASIC09
itself.

342

Appendices NitrOS-9 EOU Technical Reference Manual

Code Code Meaning

HEX DEC

$4C 076 MULTIPLY-DEFINED VARIABLE - You have attempted to DIM the same
variable name more than once.

$4D 077 ILLEGAL INPUT VARIABLE - You have attempted to use INPUT with a TYPE
name versus a variable name

$4E 078 SEEK OUT OF RANGE

$4F 079 MISSING DATA STATEMENT

$50 080 I/O BUFFER OVERFLOW (PRINT BUFFER OVERFLOW) - You shouldn't
normally see this, as it should be handled internally in BASIC09 / RUNB

343

Appendices NitrOS-9 EOU Technical Reference Manual

E. Device Driver Error Codes
I/O device drivers generate the following error codes. In most cases, the codes are
hardware-dependent. Consult your device manual for more details.

Code Code Meaning

HEX DEC

$F0 240 UNIT ERROR—The specified device unit does not exist.

$F1 241 SECTOR ERROR—The specified sector number is out of range.

$F2 242 WRITE PROTECT—The specified device is write-protected.

$F3 243 CRC ERROR—A Cyclic Redundancy Code error occurred on a read or write
verify.

$F4 244 READ ERROR—A data transfer error occurred during a disk read operation,
or there is a SCN (terminal) input buffer overrun.

$F5 245 WRITE ERROR—An error occurred during a write operation.

$F6 246 NOT READY—The device specified has a not ready status.

$F7 247 SEEK ERROR—The system attempted a seek operation on a non-existent
sector.

$F8 248 MEDIA FULL—The specified media has insufficient free space for the
operation.

$F9 249 WRONG TYPE—An attempt is made to read incompatible media (for
instance an attempt to read double-side disk on single-side drive).

$FA 250 DEVICE BUSY—A non-shareable device is in use.

$FB 251 DISK ID CHANGE—You changed diskettes when one or more files are
open.

$FC 252 RECORD IS LOCKED-OUT—Another process is accessing the requested
record.

$FD 253 NON-SHAREABLE FILE BUSY—Another process is accessing the requested
file.

$FE 254 I/O DEADLOCK—Two processes have attempted to gain control of the
same disk area at the same time.

344

Appendices NitrOS-9 EOU Technical Reference Manual

F. VIRQ Example Code
NOTE: The following code examples are incomplete and only used to illustrate
the relevant VIRQ code.

*VIRQ Example #1 - Device Driver possessing real IRQ's

*Copyright 1985,1986 by Microware Systems
*Reproduced Under License

use defsfile

*actual mask byte for hardware interrupt
IRQReq set 1000000 Interrupt Request
*offset to the actual hardware status register
Status equ 1

*VIRQ countdown value
 VIRQCNT equ 1 do the VIRQ on every tick

*Static storage offsets

 org V.SCF room for scf variables

 VIRQBUF rmb 5 buffer for fake interrupt from clock

 MEM equ . Total static storage requirement

*Module Header

 mod MEND,NAM,DRIVR+OBJCT,REENT+1,ENT,MEM
 fcb UPDAT.

 fcb Edition Current Revision

*Driver entry jump table
ENT lbra INIT
lbra READ
lbra WRITE
lbra GETSTA
lbra PUTSTA
bra TRMNAT

*Actual mask information for F$IRQ call for the

345

Appendices NitrOS-9 EOU Technical Reference Manual

*hardware interrupt MASK fcb 0 no flip bits
fcb IRQReg Irq polling mas
fcb 10 (higher) priority

*Init
*Initialize the device
*Includes setting up the IRQ and VIRQ entries
*
INIT

*Install IRQ polling Table Entry first
*Use the hardware status register and the hardware
*mask
ldd V.PORT,U get port address in D
addd #Status point to hardware status byte
leax MASK,PCR get the hardware interrupt mask
leay MIRQ,PCR address of interrupt service routine
OS9 F$IRQ Add to IRQ polling table
bcs INIT9 error - return it

*Install VIRQ in Clock Module second
*
leay VIRQBUF,U get the 5 byte VIRQ buffer pointer
lda #$80 get reset flag for repeated VIRQ's
sta Vi.Stat,y put it into buffer
ldd #VIRQCNT get count for number of ticks for the VIRQ
std Vi.Rst,y put in initial reset value
ldx #1 put onto table
os9 F$VIRQ make the service request
bcs INIT9 Error - return it
INIT9 rts
READ
WRITE
GETSTA
PUTSTA

*Subroutine TRMNAT
*Terminate device, including removal from tables
TRMNAT

*remove from VIRQ table first
ldx #0 remove from VIRQ table
leay VIRQBUF,U get address
os9 F$VIRQ remove modem from VIRQ table

346

Appendices NitrOS-9 EOU Technical Reference Manual

*next remove from IRQ table
ldx #0
OS9 F$IRQ remove modem from polling tbl
rts

*MIRQ
*process Interrupt
MDIRQ

<actual interrupt service routine>

rts
emod Module Crc
MEND egu *

•VIRQ Example #2 - Device Driver without hardware interrupts

*STATIC STORAGE DEFINITION
*

VIRQBF rmb 5 buffer for VIRQ
DMEM equ .

*Module Header

mod DEND,DNAM,DRIVR+OBJCT,REENT+REV,DENT,DMEM
fcb UPDAT. mode byte
fcb 3 EDITION BYTE

*Driver entry table
DENT lbra INIT initialize
lbra READ
lbra WRITE
lbra GETSTAT get status
lbra SETSTAT set status
lbra TERM terminate

*Mask information packet for F$IRQ call
*NOTE: uses the virtual interrupt flag, Vi.IFlag, for
*the mask byte

347

Appendices NitrOS-9 EOU Technical Reference Manual

DMSK fcb 0 no flip bits
fcb Vi.IFlag polling mask for VIRQ
fcb 10 priority

*INITIALIZE STORAGE AND CONTROLLER
*Includes setting up the IRQ and VIRQ table entries

INIT

*set up IRQ table entry first
*NOTE: uses the status register of the VIRQ buffer for
*the interrupt status register since no hardware status
*register is available

leay VIRQBF+Vi.Stat,U get address of status byte
tfr y,d put it into D reg
leay DIRQ,PCR getaddress of interrupt routine
leax DMSK,PCR get VIRQ mask info
os9 F$IRQ install onto table
bcs INIT9 exit on error

*now set up the VIRQ table entry
leay VIRQBF,U point to the 5-byte packet
lda #$80 get the reset flag to repeat VIRQ's
sta Vi.Stat,y save it in the buffer
ldd #VIRQCNT get the VIRQ counter value
std Vi.Rst,y save it in the reset area of buffer
ldx #1 code to install the VIRQ
os9 F$VIRQ install on the table
bcs INIT9 exit on error

INIT9 rts

READ
WRITE
GETSTAT
PUTSTAT

*TERM - terminate the device and remove entries from
*tables
TERM

348

Appendices NitrOS-9 EOU Technical Reference Manual

*remove from VIRQ table first
ldx #0 get zero to remove from table
leay VIRQBF,U get address of packet
os9 F$VIRQ

*then remove from IRQ table
ldx #0 get zero to remove from table
os9 F$IRQ
rts

*DIRQ-interrupt service routine
*NOTE : The service routine must be sure to reset the
*status byte of the VIRQ packet so that t he interrupt
*looks as if it is cleared.
DIRQ

lda VIRQBF+Vi.Stat,U get status byte
anda #$FF-Vi.IFlag mask off interrupt bit
sta VIRQBF+Vi.Stat,U put it back

rts
EMOD
DEND equ *
END

349

	NitrOS-9 EOU Technical Reference Manual
	Table of Contents
	Chapter 1. System Organization
	Layer 1: The Kernel
	Layer 2: Input Output Mananger (IOMan)
	Layer 3: File Managers
	Layer 4: Device Drivers
	Layer 5: Device Descriptors
	Beyond Layer 5: Applications

	Chapter 2. The Kernel
	System Initialization
	System Call Processing
	OS9.D and Symbolic Names
	Types of System Calls

	Memory Management
	Memory Use in NitrOS-9
	NitrOS-9 Level 1 Memory Specifics
	NitrOS-9 Level 2 Memory Specifics

	Color Computer 3 Memory Management Hardware

	Multi-programming (Multitasking)
	Process Creation
	Process States
	Execution Scheduling
	Signals
	Interrupt Processing
	Virtual Interrupt Processing

	Chapter 3. Memory Modules
	Module Types
	Module Format
	Module Header
	Module Body
	CRC Value
	Module Headers: Standard Information
	Sync Bytes
	Module Size
	Offset to Module Name
	Type/Language Byte
	$6x-$Bx
	Attributes/Revision Level Byte
	Header Check

	Module Headers: Type-Dependent Information

	Chapter 4. NitrOS-9’s Unified Input/Output System
	The I/O Manager
	File Managers
	File Manager Structure
	Create, Open
	
	
	
	MakDir
	ChgDir
	Delete
	
	Seek
	Read
	Write
	ReadLn
	WriteLn
	GetStat, SetStat
	Close

	Interfacing with Device Drivers
	Device Driver Modules
	Device Driver Module Format

	NitrOS-9 Interaction with Devices
	Suspend State (NitrOS-9 Level 2 only)
	Device Descriptor Modules
	Path Descriptors
	Path Descriptor: Standard Information

	Chapter 5. Random Block File Manager
	Logical and Physical Disk Organization
	Identification Sector (LSN 0)
	Disk Allocation Map Sector (LSN 1)
	Root Directory
	File Descriptor Sector

	Directories
	The RBF Manager Definitions of the Path Descriptor
	RBF-Type Device Descriptor Modules
	RBF Record Locking
	Record Locking and Unlocking
	Non-Shareable Files
	End-of-File Lock
	Deadlock Detection

	RBF-Type Device Driver Modules
	The RBF Device Memory Area Definitions
	RBF Device Driver Subroutines
	Init
	Read
	Write
	GetStats and SetStats
	Term
	IRQ Service Routine
	Boot (Bootstrap Module)

	Chapter 6. Sequential Character File Manager
	SCF Line Editing Functions
	Read and Write
	Read Line and Write Line
	SCF Definitions of the Path Descriptor

	SCF-Type Device Descriptor Modules
	SCF-Type Device Driver Modules
	SCF Device Driver Subroutines
	Init
	Read
	Write
	GetSta and SetSta
	Term
	IRQ Service Routine

	Chapter 7. The Pipe File Manager (PIPEMAN)
	Chapter 8. VIRQ / RAM / NIL Driver (VRN)
	Chapter 9. System Calls
	Calling Procedure
	I/O System Calls
	System Call Descriptions
	User Mode System Calls Quick Reference
	System Mode Calls Quick Reference
	User System Calls
	Set an Alarm
	Allocate Bits
	Allocate RAM
	Chain
	Clear Specified Block
	Compare Names
	Copy External Memory
	CRC
	CRC Module Checking
	Debug (Reboot)
	Deallocate Bits
	Deallocate RAM blocks
	Exit
	Fork
	Get System Block Map
	Get Module Directory
	Get Process Descriptor
	Intercept
	Get ID
	Link
	Load
	Map Specific Block
	Memory
	Link to a module
	Load a module
	Print Error
	Parse Name
	Search Bits
	Send
	Sleep
	Set Priority
	Set SWI
	Set Time
	Set User ID Number
	Time
	Unlink
	Unlink a Module By Name
	Wait

	I/O User System Calls
	Attach
	Change Directory
	Close Path
	Create File
	Delete File
	Delete A File
	Detach Device
	Duplicate Path
	Get Status
	Make Directory
	Modify Descriptor in Memory
	Open Path
	Read
	Read Line With Editing
	Seek
	Set Status
	Write
	Write Line

	Privileged System Mode Calls
	Allocate 64
	Allocate High RAM
	Allocate Image
	Allocate Process Descriptor
	Allocate Process Task Number
	Insert Process
	Bootstrap System
	Bootstrap Memory Request
	DAT to Logical Address
	Deallocate Image RAM Blocks
	Deallocate Process Descriptor
	Deallocate Task Number
	Link Using Module Directory Entry
	Find Module Directory Entry
	Find 64
	Get Free High Block
	Get Free Low Block
	Compact Module Directory
	Get Process Pointer
	I/O Delete
	I/O Queue
	Set IRQ
	Load A From Task B
	Get One Byte
	Get Two Bytes
	Move Data
	Next Process
	Release a Task
	Reserve Task Number
	Return 64
	Set Process DAT Image
	Set Process Task DAT Registers
	System Link
	Request System Memory
	Return System Memory
	Set SVC
	Store A Byte In A Task
	Install Virtual Interrupt
	Validate Module

	Get Status System Calls
	Set Status System Calls

	Appendices
	A. System Module Diagrams
	Executable Memory Module Format
	Device Descriptor Format
	INIT Module Format

	B1. Standard Floppy Disk Format
	Physical Track Format Pattern

	B2. 20 Sector per Track Floppy Disk Format
	Physical Track Format Pattern

	C. System Error Codes
	D. Basic09 Error Codes
	E. Device Driver Error Codes
	F. VIRQ Example Code

