(COMPUTERWARE

Speclallsts in Application
and System Software

BEASIC Compiler

/

We Sell Capabilities...

4403 Manchester Ave. Suite 102-Box 668
Encinitas, Calif. 92024 (619) 436-3512

i

Color BASIC Complle

COMPUTERWARE COLOR COMPILER™
Yersion 2.4

1 G Table of Contents

SECTION TITLE ' PAGE

Licanse and Warranty Information « &« + . a1

Introduction D R T R T S+

[How to use the Color Compiler™ . .« + « ¢ « = »w « . #
" Restrictions . . . + &+ &« ¢ ¢« o ¢ s s &« o ¢ o o o 6

ﬂ it Legend for Instructions . . . « ¢« ¢ ¢ & ¢ o oo 0 7

E 1y Instructions allowed « « « « « « o o« o & & w e wow B
L Additional Information . . .-. e s iewmme 12
vi Tips and Tricks . « & ¢« ¢« ¢« ¢« &+ o o o s s o « « T4
vii Error messages . . ¢ + o« « ¢ + ¢ o ¢ o o o » o« 1&.
Yill Sample FURS . . & & o & = & s & o« o »a « o« « « - 18
X Using the Demo Programs . . . « « &« + + ¢ « o+ « 19
X Appendixes - Technical Information

A. Color Compiler™ Subroutines 20
B. Yarliable list ; e e 1 e 3 s s e o« « 22
C. Subroutine Package Pointers . . « « « « « o . 23
D. Hcw the Color Compiler™ Works 29
f. How to add your own Instructions 30

F. Instruction Token Table . . . ¢« « « « &« « « « 32

FI/xT1/xxxy -1 = (C) 1985 Computerwz

Color BASIC Complier™ S

PREFACE:

Computerware® Is making a large Investment In the software future
of the Color Computer. We are working on software products at
both the assembly and Basic Language level, as well as both
serious and entertainment orliented. To achieve this goal, we
need your support... One of the problems that developers of
software have Is that [t takes a lot of Initial time and money to
‘create' the product before any revenue from Its sale . |Is
generated. All too often when It Is finlshed, customers who-are
not famillar with the development cycle for software products,
see a cassetto or disk and a manual and percelve that that :is
what the product cost. NOT TRUEI!

To be able to recover the development costs on lnexpensive
software, the manufacturer has to be able to sell a large number
of coples. This 1Is where you, the customer, can help by not
gliving away (or accepting from others) copyrighted software -
actually any software product that I|s belng offered for sale.

We have a lot of customers who tell us that they actively support
us because they want our support In the years to come. When you
think about that fact it makes sense. |If we can't make enough
sales because people are stealling coples of our products we will
not continue to put our efforts into developing those products.
So the bottom Iline is simply this: respect the copyright of
software and do your part by not giving away or accepting coples
of software that Is offered for sale.

Thank You, Computerware®
L ICENSE:

The Computerware® Color Compiler™, In all machine readable
formats, and the written documentation accompanying them are
copyrighted. The purchase of the Computerware® Color Compiler™
conveys to the purchaser a license to use the Computerware® Color
Complier™ for his/her own use, and not for sale or free
distribution to others. No other license, expressed or Implled
Is granted.

WARRANTY INFORMATION:

The |icense to use the Computerware® Color Compliler™ Is sold AS
IS without warranty. This warranty Is 1In Ileu of all other
warranties expressed or Implied. Computerware® does not warrant
the sultability of +the Color Compller™ for any particular user
appllication and will not be responsible for damages Inclidental to
its use In a user- system. |If this product should fall to load
during the first 90 days of use, simply return the ORIGINAL dIsk
along with a copy of the recelpt for a free replacement. After
90 days please include $8.00 to cover shipping and handling.

2/12/85 : -1 = (C) 1985 Computerware

Color BASIC Compiler™

Computerware®'s Color BASIC Compliier ¥2.4
Program and Manual by: Warren Ulrich (11

If you have ever written a BASIC program only to find that
it runs too slow to provide any actlon and haven't had the
courage to lesrn assembler, then the Color Compiler™ is the
answver to your problem. The Color Compller®™ lets you write vyour
program In easy BASIC and then converts it Into fast machine
language. After you run your compliled program, you may find It
necessary to add some delays because the Color Complier™ will
make your program run an average of 30 to 40 times faster. Some
functions will run as much as 60 to 70 times faster!

TO GET THE MOST OUT OF YOUR COLOR COMPILER,
READ THROUGH THIS MANUAL COMPLETELY...

The Color Compller™ features a total of 69 instructions and
functions. Most of these are a subset of Extended Color BASIC.
AlmosT all of the graphics and sound functlions are supported.
This makes tThe Color Compliler™ ideal for writing graphics games
and educational software which would run too slowly In Extended
BASIC. Except for a few restrictlons and non-implemented
commands, you can program In BASIC and assume that ANYTHING s
legal and the Color Compiler™ will wunderstand. The Ceolor
Compller™ was designed to run on a Color Computer with 32K of
memory and at least one disk drive. The Color Compiler™ leaves
approximately 16K of memory for your machine |anguage program.
The Color Complier™ was made to be modular so Instructions you
may use frequently can be added to Its vocabulary.

The Color Compiler™ generates position independent code so
that you may put the compiled code anywhere In memory, Including
Info a ROM-pack! It Is extremely simple to pass variables back
and forth between a BASIC driver program and the compiled
program. Version 2.x allows string handling Inside the ‘complled
program to make your compliled code more versatile. A speclal
feature of the Color Compiler™ allows machine language code to be
embedded into the compliled program so you c¢an do things tThat
BASIC can't,

Version 2.4 has the following new features:

1) New instructions and functions:

CLEAR
DRAW
LINE [INPUT
MIDS() =
PCLEAR
PLAY
HEXS
INSTR
LEFTS
RIGHTS
STRINGS

([T D DN DN N DR BN B B

(C) 1985 Computerware -2 - 2/12/85

Lt AR i b R R

e oo Rt b

Color BASIC Complier™

New F-ifur-l contd....

2) Enhanced Instructions and fuctions:
= IF ;handles all combinations
= DIM ;allows scalars (String and Numeric) 2 R
= PRINT ;allows PRINT# and TAB{(n) { T
= READ ;gives an 100 ERROR if out of data :
= YAL ;can handle 16 bit signed and unsigned values

i
-

3) Other new features:

Numeric & string arrays can be multi- dIn-n:IunaI
TRACE ;helps debug programs

Loads Source program on complle error

Allows for Relocatable or Compact objJect code
Printer Pagination

Warning for possible undefined simple variables

Expanded more powerful subroutine package
Uses about the same amount of memory as version 2.1

NOTE: Before you do anything else with your Color Compliler™ disk,
MAKE A BACKUP COPY. This will save you a lot of time [f you
should accidentally delete a file or a whole disk. We ask that
you respect the copyright that accompanies this software and not
give away or sell coples. By doing this, we willl be able to
continue to provide good quality software at reasonable prices.

The subroutine packawe that is Included 1In every complled
program Is copyrighted. There is no additional fee to distribute:
a program written with the compiler. You must, however, Include
in the program and any documentation the words:

Parts of +this program uﬁrl created wusing the '"Color BASIC
Compiler? (C)1985 Computervare®

It you write a useful program with the compller, please send
a copy to Computerware® for possible marketing.

2/12/85 -3 = (C) 1985 Computerware

Color BASIC Compiler™

SECTION | = HOW TO USE THE COLOR COMPILER:

Once you have created a BASIC source program and have
checked to be sure that [t obeys all the restrictlions described
Iin section Il and that all the commands follow the syntax
described In sections 11l & 1Y, you are ready to compile It.
Follow the Instructions below to complete This process.

1. SAVE the program to be compiled (your SOURCE code) on any disk
In eny drive. DO NOT USE ASCI| FORMAT. The Color Compller®
reads the BASIC program dlirectiy from the disk and compiles It
into memory.

2. Put your Color Compller™ diskette In drive 0 and TtType
RUN"COMPILER®, The Color Compiler will asutomatically execute a
PCLEAR 0 to free up the maximum amount of memory possible. |If
the compller does exscute a PCLEAR 0, I+ will reload Iitself.
Be sure not to remove the program disk from drive 0 until the
program Is finished. Be sure to PCLEAR the number of graphics
pages you will need. -

3. Enter the address (in HEXIDECIMAL) where your machine code |Is
+o be stored. This will be the EXEC address of the resulting
program (unless ROM is selected). The Coior Compiler™ uses
hexidecimal for all numbers.

NOTE: You do not have to type In the &H before the memory
location you wish to start at. |f you enter an address that
Is too low or too high, you will get a '"BAD ADDRESS' message.
For most programs, using 7000 gives you a‘good starting polnt.

4. Enter the name of the program you saved In step 1. Make sure
you enter the name the same way you saved if, even the drive
number. The compiler will assume the file has the extension
/BAS and that ([t Is on drive O unless you tell It something
else. For example, If you enter 'MAZE', the compllier will
assume you meant "MAZE/BAS:0°'.

5. Enter 'S' (or just press ENTER) for screen output or 'P' for
printer output. The compliler will dalisplay the starting
address of each BASIC Iline and Instruction complled. It will
also display the CLEAR, START, END and EXEC addresses of the
finished OBJECT code and the adéresses of all the varlables.
See section ¥V for an explanation of these addresses.

Be sure to align the printer paper gt This time.

+C) 1989 Ceoputersasre - § = 2/12/85

g T T T

LT et W g el LT el W’“ 1] o

R o RN B el LS B) e e) e P

i
:
;
¥

Color BASI¥ Compiler’

Enter 'M' (or Just press ENTER) for memory resident code or
enter "R' for code that |s ROM-pack compatible. The ROMabl«
code can be relocated Intc the AHCO000 area and the arrays,
strings, and variables (which normally exist Just below thse
complled program) will stay Iin RAM. The first three bytes of
the ROMable code are a BRAnch to the beginning of yaur
program so that when relocated to &HCO000, a call to &HCOOC
wilil start the program (this Is necessary for normal ROM=pack
start wup). Finally, the ROMable code has a JMP to BASIC's
cold start routine at the end of the code. I+ Is NOT
Intended to be used as a subroutine for a BASIC progranm.

NOTE: Options 7,8 and 9 are not available If ROM Is selected.

7.

10.

12.

If you are having trouble with 'your object program, press 'Y!?
to activate the trace function or '*N' (or Just press ENTER)
to skip. The TRACE routine adds 48 bytes to the beglinning of
your program plus six bytes for each |ine of source code. Be
sure to compensate for this so you don't run out of memory.

How t0 cperate the frace:
A. Compile the progranm.
B. CLEAR memory and type EXEC.
C. Hold the 'R' key down to speed through the prugran.
Ilift to pause.
D. Press the 'S'" key to step line by llIne.
E. Press the BREAK key to terminate the prngra-.-
F. The numbers In brackets represent the |[ne numh-r of

the source program just before [T executes.
G. D0 NOT use CONT after a BREAK or ERROR. : o

If you are passing numeric values with the USR routine, enter
a 'Y'., Otherwise, enter a '"N' (or just press ENTER).

Press 'R' (or Just press ENTER) to make +the object code
relocatable or press 'C' Yo make it more compact and execute
Quicker. |If 'C' |s selected, the object code will not be
relocatable.

The Color Compliier™ wlll now compile your program at the
address gliven In step 3. This process may take a few minutes
for longer programs. Just keep thinking how much faster It
will run when the Color Compliler™ Is done with [+!]

When the compiler Is finished, and there were no errors, the

compller will print the CLEAR, START, END, and EXEC addresses
then ask you for the name of the new program, |f you enter 1

name, the compllied program will be saved on the disk. |f you
Just press 'ENTER', the program will not be saved.

At this point, the compiler will! print all the.varkabteh
addresses and set USRO and EXEC +to the executlon address.
For more Information on the USR function, see chapter 15 of
ycur Extended BASIC manual.

2/12/85 -5 = (C) 1985 Computerwer

Color BASIC Compiler™

SECTION 11 - RESTRICTIONS:

The Color BASIC Compller has a number of |Imitations that

Extended Color BASIC does not have. You will probably find that
these won't hinder your programming. In fact, some may even make
programming easler. A |Ist of restrictions follows. '

Maximum program length Is 200 Iines. This can be changed by
setting the variable PL In Iine 0 to whatever value you need.
It you try to make It too big, you will get an ?70M error (Out
of Memory). Remember t0 re=-SAVE the program [f you make any
changes that you want to kesp.

MaxImum number of IIne number references (GOTO's, GOSUB's,
etc.) 1{is 100. This can be changed by setting the variabie LB
Iin Ilne 0 to whatever value you need. As wlith number 1 above,
you are |imited by memory available.

All strings must be DiMensioned to the maximum length you will
need. Strings can be from 0 to 255 characters. See section
IV under DIM for dimensioning strings and string arrays.

'Dnly Integers from -32?63 to +32769 are allowed. The Color

Compiler™ does not understand decimal numbers (like 3.1115f
etc.).

All DATA statements must be the LAST statements (except for
REMarks) in your program. All string data MUST be enclosed In
quotes.

Only Instructions I|Isted In section IY and functions listed In
section (Il are allowed. These must follow the syntax
described In those sections. You will notice that some of the
Instructions syntax are different than that of BASIC's.

Ci. 1983 Computervare -6 - 2/12/85

Color BASIC Compil’

SECTION 11l - LEGEND FOR THE INSTRUCTIONS: £

Section IV contains a Iist of all the Instructions the Co.
Compliler™ understands. This legend should help you understi
the syntax of each of these. &

Following most of the Instructions and functions Is a numl
and letter In brackets Ilke this: [141S]. The number stands
the page In elther the Standard BASIC manual (S) or the Exten
BASIC manual (X) where the Instructlion or function 1is found.
most cases, the Color Compiler will use the same format i
options described In the manuals. If no number appears, .*:
Instruction or function Is not supported by COLOR BASIC:

IE = an In+ig-r Expression (Equation) that may have 3
combination of the following:

The arithmetic operators: + - * / $ () < = >
The logical operators: AND OR NOT

Decimal Constants from -32768 to +32767

Hex Constants from &4HO to &HFFFF

Any length variable names (2 char. significant)
Multi-dimensional Array variables

String comparisons < = >

Any of the functions |isted below:

Numeric Functions:

ABS{n): Absolute value [300S5] *
ASC(n$): ASC!| code [3005] *
INSTR(n,s$,n$): Search string [118Xx] #
INT{n): Acts as a parenthesis [3025] *
JOYSTK(n): Joystick value [3025] &
LEN(n$): String length [3035] *
PEEK(n): Byte value [304S] *

PEEK#(n): Returns the 16 bit value at address n
PPOINT(x,y): Polnt color [29X] *
RND(n): Random number [305S5] *

SGN(n): Sign [3055] #

SQR(n): Square Root [102X] *

TIMER: Timer value [140X] ®

YAL(nS$): String value [3055] #

* Same as Color BASIC.

& Reads one Joystick value at a time.
IC = Integer Constant
V = Simple Yariable

AV = Array Varisble

2/12/85 -7 = (C) 1985 Computerw

Color BASIC Compller™

LN = Line Number

SE = A String Expression (Equation) that may have any combination
of the following:

String Addition: +

String constants contalned within quotes

Any length string varlable names (2 char. signiflcant)
Multi-dimensional string arrays

Any of the functions |isted below:

String Functions:

CHRS$(n): String Character [3005] *

HEX$(n): Hexldecimal value [142X] *

INKEYS: Scan Keyboard [3025] *

LEFTS(n$,n): Left string [3025] *
MIDS$(nS,n,n): Mid-string [3035] ®
RIGHTS(n$,n): Right string [305S] *

STR$(n): Numeric to string [3055] *
STRINGS(n,n$): String of characters [117X] *

-

Same as Color BASIC.

SC = String Constant. These must be encliosed In quotes. For
example, "This Is a string constant®.

SY = String Yarliable

SA = String Array

SECTION IV = INSTRUCTIONS ALLOWED:

With a few exceptlions, all instructions have the same format

and options as in Extended Color BASIC. The exceptions are
detalled with the commands. These modifications should noft
hinder your programming but should in fact, make [t easlier.

R C HW § E
CIRCLE(IE, IE), IE,IE, IE,1E,I1E C41X]

For the H/W ratlo, use 0 to 1024,1Instead of 0 to 4, where
256 equals a perfect circle (128 would equal .5). For 3 and
E (Starting and Ending points), use 0 to 64 iInstead of 0 to
! (32 would equal .5). This change 1Is needed since the
Color Compiler™ does not understand decimals.

CLEAR IE,I1E [300S]

(C) 1985 Computerware - 8 - 2712/ &%

NG el bl

wd T Ll R

;
i
%;

Color BASIC Compljer
R: !

CLs i€ [3018]

COLOR IE,IE [14x] | - f

DATA IC,IC,

Note:

"sc", ... [3015] r
All DATA must be at the end of your program. -

_All string DATA must be enclosed In quotes. Strin

DIM AY(IC,
Note:

constants and numeric constants may be -Iﬁ;ﬁ on: th
same |ine, but should be separated for :Iarlfy. et

ll-J

e

IC, IC),SACIC,IC,IC),SY,SV(IC),Y, ... [301S8].

Dnl* integer Constants may be used. String variable
must be DiMensioned for the maximum length they wli
contaln (0 to 255). Example: DIM SVS$(15) wlil
dimenslion a string varlable for a maximus- of |
characters. I¥# a string variable (SY) appears b
itself, +the compiler will assume [ts |ength to be 12
characters, If a2 numeric variable (V) appears b
itself, the compller will allocate space for *th
varlahln (2 bytes) and clear that space apon executio
of the DIM statement in the compliled code. It 1
recommended that all varlables be defined in this wa
at the beginning of your program.

String arrays are DIMensioned as follows:

10 DIM AAS(c,e,8) 'c' |s the maximum number o
characters per string (0 to 255). 'e' |Is the numbe
of elements per dimension,

DRAW SE [53x]

NOTE :

END [3015]
- NOTE :

All options are supported except the X funtion and th
undocumented = function. |# you do have an X or
function In the DRAW string, the compller will use th
varlables from BASIC's variable table and not th
complled varliables.

The END statement tells the compller where you want 1

jump back to BASIC.

EXEC 1E [3015]

Note:

Exec causes a JSR to the address specifled by IE.

FOR V = |E TO IE STEP IE [3025]

GET(IE,IE)=(IE,I1E),AV (All options are supported) [67X]

2/12/85

- § - {C) 1985 Computerwal

Color BASIC Compiler”™

L

GETY,V=n,AV=n S¥=s SA=s, ...
Note: This command allows you to pass BASIC varliables to
compllied variables. The n and s stand for the BASIC
(n)umerlic and (s)tring variables to be passed. Arrays
may also be passed.

As an example, let's pass BASIC's array BBS to the
compiled array AAS:

Source program:

10 DIM AAS(30,10,10) 'DIM A$ to 30 char, 10 by 10 element

20 FOR XX=0 TO 10 'Set up X loop

30 FOR YY=0 TO 10 'Set up Y loop

40 GETV,AAS(XX,YY)=BBS(XX,YY) 'Transfer variable
50 NEXT YY,XX 'End of loops

60 END 'Back to BASIC

Note that compiled variables always are on the |eft
silde of the equal sign and BASIC's variables are
always on the right. Think of It as V <= n.

GOSUB LN [302s]

GOTO LN [302S]

IF IE THEN ... ELSE ... [302s]
-~ Note: All combinatlons are supported (even nested IF's).

LET and Implted Let [178] [139x]
Note: Any and all combinations are supported.
LINECIE, IE)=(IE, IE) ,PSET (Al options are supported) [9x]
LINEINPUT ON "PROMT™;SV [127x]
NOTE: The ON Is an option that allows you to activate The
BREAK key. |f you leave the ON option out, the BREAK
key wlll act the same as the ENTER key. If the ON Is

Included, the program will be terminated when the
BREAK key Is pressed.

MIDS(SV,IE,IE) = (Same as BASIC) [122X]
MOTOR ON or OFF [3035]
NEXT V¥,¥, ... (All options are supported) [302S]

ON IE GOSUB LN,LN, ... [303s]
ON IE GOTO LN,LN, ... [303s]

(C) 1985 Computerwere - 10 - 2/12/85

PR Ty

3 ~ Color BASIC Compiler
PAINTC(IE,IE),IE,IE (Al]l options are supported) Ca9x] |
PCLEAR IE [26x] ;”i :
PCLS IE [25x] |
PCOPY IE TO IE [28x]

PLAY SE [73x]
NOTE: All options are supported except the X and
functions. See DRAW for more detallils.

PMODE IE, IE (All options are supported) [19X]

POKE I1E,IE (Pokes single bytes) [3045]
POKE# IE,|E (Pokes two byte 16 bit words)

PRESET(IE, IE) [6X]

PRINT IE, IE or PRINT €@ IE or PRINT SE,IE or PRINT FIE etc..[3045
Note: Any and all combinations are valld. TAB(n) Is als
supported. The USING function Is not supported at.thi

time. h

PSET(IE, I1E, 1E) [3Xx]
PUT(IE, IE)-C(IE,IE),AY (All options are supported) [67X]

I

% PUTY,V¥=n,5V¥=s _ AV=n,5A=s, ...

1 Note: This Instruction works +the same as GETV except tThi

! the compliled variable Is passed back to the BAS:
variable. Remember that the variable on the left sit
of the equal sign is always the compiled variable al

‘ the varfable on +the right 1Is always the BAS

varfable. Think of It as ¥ => n., See GETY for moi

} detalls.

4

; READ V,V,AV,SV,SA ... [304s5]
E Note: Any combination is vallid.

REM or ' [3045]

2/12/85 | - 11 = (C) 1985 Computerws

Color BASIC Compiler®™
RESTORE [304S]

RETURN [3045]

SCREEN IE, IE [35X]

SOUND 1E, IE [3055]

Note: A duration of O Is allowed and can be used to create
" some very Interesting sounds.

USR;HC;HC;HC... (HC Is a hex constant)
This Instruction allows you to add machine |language
Instructions within the compliled program. All of the
numbers must be in hexidecimal and must be separated by
semicolons. As an example:

10 USR;27;7;C6;1;4D;2A;1;50;1D0;39

Represents:

TEITETIL

#SGN FUNCTION (from the Subroutine .Package)
HRRRRRREE

2707 BEQ ZIP

C601 LDB #1

4D TSTA

2A01 BPL POSITY

50 NEGB

10 POSITY SEX

39 ZiP RTS

This command will be useful to assembly language programmers
who want to embed machine code directly Into thelr compiled
programs.

SECTION V = ADDITIONAL INFORMATICN:

1. Passing variables to and from BASIC:

To pass variables, whether they are numeric, string, or
arrays of either kind, use the GETY and PUTY Instructions
described In section IV, Any combination, _l.e. numeric
varifable to numerlic array, efc., Is valid. However, there are
two restrictions: :

1. You cannot mix variables (string and numerlic).

2. If you attempt to pass a strirg from BASIC with GETY
whose length exceeds the complled strirg's DIMensiconed
length, you will get an ?CS ERROR.

(C) 1985 Cemputerware - 12 - 2/12/EZ

Color BASIC Cunﬁﬁlir'éﬁ?
Addltional Info contd...

2. Passing the USR value from BASIC:

After answering 'Y' to the question In step 8 In sectionm:. .
|, the variable "U' will automatically contain the USR value-.
at the start of your compliled program. :

i.

Passing the USR value back to BASIC:

After answering 'Y' to the question In step 8 In section
|, assign the varlasble 'U' equal to the value you wish *to
return. This will be passed back to the calling program.

R R T TUTI & Lt LR T r 0 e
]

rl-
.
1
.'

4. Obtaining the remainder from a divide:

By using +the % sign IMMEDIATELY after a divide, you can
obtain the remainder. EXAMPLE: A=B/C+% or A=B/C:B=%

What the CLEAR, START, END, and EXEC addresses are:

When the Color Compiler™ 1Is finished working on your
program, It will display four addresses. The START, END, .and
EXEC addresses are used to save the program to disk.. The
CLEAR address |s the lowest memory used for varlable storage:
by the compiled program. Before executing tThe program, Yyou
should CLEAR memory with:

CLEAR (STRING SPACE),&H(CLEAR)

where (CLEAR) Is the CLEAR address printed by the compller and
(STRING SPACE) is the amount of memory to reserve for strings
used by BASIC. This will insure that BASIC doesn't overwrite
your compliled program or [*ts variable table. Also, |If vyour
new program uses graphics, be sure [t PCLEARs enough graphics
paces., |f you don't, you will get unpredictable results
ranging from a8 ?FC ERROR to a crashed computer. :

All arrays are filled with zeros by tThe DIM statements.
Strings and string arrays are all set To null.

All machine code generated by the Color Compller™ s
completely relocatable (unless the Compact option |I[s
selected). WARNING: The compliler generates code that wuses
some of the routines In EXTENDED COLOR BASIC., Therefore, most
complied programs will not work on a non-extended computer,

2/12/85 - 13 - (C) 1985 Computerware

Color BASIC Compliler™

The following Is @a memory map showing how your program Is
complled Into memory:

$eeeemmmmeeeee-=t FFFFH

+ ROMS +

+ ' .+

+ 1/0 +

e - —— + ﬂﬂﬂﬂ“

U i -+ END Address

+

+ COMPILED +
+ PROGRAM +
+

temeccccccee====t EXEC Address
+SUBROUTINE PKG.+
toeememeeeeee===t START Address (ROM EXEC addr.)

+ VARIABLES, +
+ ARRAYS +
+ & STRINGS +
s e ==+ CLEAR Address

+

+

+ BASIC PROGRAM +

+ (IF PRESENT) +

+ +

+ +
tmmvccccnmce=ee=+ (600H
+ VIDEO RAM +

et mee====+ 0400H
$mmmmmmmm— e o——— + O3FFH
+ STRING BUFFER +

$mmmmemmmm e + 0200H
$oom—me- ———————- + 0100H
+ DIRECT PAGE +

$ommmmmmeme————e + 0000H

SECTICN VI - TIPS & TRICKS: »

(C)

To calculate the array slizes for GET and PUT Instructions:

H = rectangle height W = rectangle width

For PMODE 0 : ARRAY SIZE = H®*W/32+4
1 ¢ ARRAY SIZE = H®*N/16+4
2 : ARRAY SIZE = H®*W/16+4
3 : ARRAY SIZE = H*W/8+4
4 : ARRAY SIZE = H®*W/B+4

H and W are figured using standard 256 X 192 coordinates, and

not by counting the number of actual picture elements. To
obtain the fastest results from GET and PUT, use arrays that

‘have only one dimension and calculate The size using the

formul as above. Arrays used for GET and PUT with more Than
one dimension will give siower results.

1985 Computerware - 14 - 2/12/8°%

Color BASIC Compl|ler™ ™

Do not be afrald of using GOSUB's or ON n GOSUB/GOTO's. These
Instructions will save lots of memory and are extremely fast.

The SOR function is designed to handle unsigned amounts from 0
to 65535 (0 to FFFFH) and give the closest integer result.

[B

If you wish to make good sound effects, use 0 (zero) as Tthe
length In the SOUND Instructlion. Color BASIC does not - accept:
a zero but the compller will. By using zero as the length, a-
very short duration Is sounded. By wmixing different
frequencies, you can make a lot of different sounds.

If you need to add some delays to your program, try using the
TIMER iInstead of a FOR/NEXT Iloop. It will give: you. more
predictable results and smoother animation. The - tTimer
Increments sixty times per second so you can getT accurate
delays from a sixtieth of a second To many minutes. .. For
example, to get a X second delay call this subroutine:

1000 REM DELAY FOR X SECONDS
1010 TIMER=0
1020 IF TIMER<X*60 THEN 1020 ELSE RETURN

To syncronize your graphics with the video screen call this
routine:

2000 REM VIDEO SYNC. ROUTINE
2010 TIMER=0 |
2020 IF TIMER THENM RETURN ELSE 2020

. You may have many subroutines compiled at once Dby putting them

all Into the same program +to be compiled followed with a
RETURN. While the compiler Is working, write down the address
of the flrst line of each subroutine. You may simply EXEC to
these addresses to access any part of the program. Be careful
not to EXEC into the middle of a FOR-NEXT loop In the compl | ed
program.

The JOYSTK function 1In Color Basic [Is handled somewhat
differently than the way the Color Compiler does. iIn Color
Baslc, you are required to find the value of JOYSTK(Q) flirst
before finding the value of 1,2, or I JOYSTK(O0), 1In this
case, reads all the joystick values at once. The Color
Compller, however, only reads the joystick value you ask for.
This way vyou'll get much quicker results because you're not
looking at the other joystick values you don't need:.

2/12/85 - 15 - (C) 1985 Ccmputerwsre

Color BASIC Compiler™

. SECTION Y11 - ERROR MESSAGES (COMPILE-TIME):

I¥f the Color Compller™ cannot compiie a line of the source
program, It will stop, print an error message, and |load the
source program. These error messages are similar To BASIC's
errors, but you can tell them apart because the compller does not
precede the error message with a question mark. Below Is a IlIst
of possible error messages and thelr 1lkely causes:

ERROR POSS IBLE CAUSE

DD Doubie DIimensioned array.
-An array varlable was DiMensioned more than once.
-A string variable was DiMensioned more than once.
-A string array was DIMensioned more than once.

EF ELSE wlthout an IF
-There were more ELSE's than IF's In the same l|lIne.

NE Name does not Exist.
-The program name you gave the compller does no¥
exist on the disk. Check the DIRectory.

0S Out of Space.
-The program complled beyond the 7FFFH limifT.
-There were too many program |lnes,
-There were too many |ine number references.
=-You ware out cf varliable memory space.
-A string became |arger than 255 characters.

ity T

ov Overflow
-A numerlc contant went beyond -32768 to 32767.

PUY Possible Undefined Varlable
-The compiler has found a variable In the
current |ine that may be undefined.
This error Is only a warning and will not
cause the compiler to termlnate.

SN Syntax.
=A typlcal typlng error.
-Instruction format difference.
-A ¢eclmal point In a constant.
-An Illegal Instruction.
-An Illegal function.
-An Instruction (other than REMarks) after DATA,
-Something other than variables In GETV and PUTY.

™ Type Mismatch
i -String and numeric were mixed In the same
. formula.
UA Undefined Array.

-All zrrays must be DIMensioned even [f you
are using 10 or less cells.

(C) 1985 CemcuTerware - 1€ = 2/12/85

L !
Color BASIC Compller™

uL Undefined Line number reference. "
-The number gliven In this case I|s not the Ilne
whare the error occurred, but the line number

the Color Compliler™ cannot find.

us Undefined String.
-All strings must have a DIMension length.

"1

E

SECTION VIl - ERROR MESSAGES (RUN-TIME):

et !

Run-time error checking was kept to a minimum to get The
maximum program speed possible. However, the following errors
will occur when variable data or the compiled program are In
danger of belng changed. When these errors occur, they wlill
resemble standard BASIC errors. In this case, however, the |Ine
number (if shown) refers to the BASIC |ine where the jump was
made to the compiled program. If you are running the TRACE
routine, the I|ine number that appears after the error refers to
the line In your source code.

ERROR POSS IBLE CAUSE

. eess—TEECTRRE T ey W X ¥ N ¥ R N ¥ ¥ % B ¥ E _F 4 B N _RB__BR__L _L _L_ 4 B __J§L _J_J

1BS Bad Subscript u

-An array subscript value went beyond the
DiMensioned |imit. :

=-The number of subscripts Iin the array did't
match up with the number DIMensioned.

1FC Functiaon Call
-Not enough graphics pages PCLEARed.
-MID§ starting point was 0.
-INSTR starting point was 0.
-The array was not large enough for GET or PUT.

70D | Out cf Data
-A READ command went beyond the last data item.

70S OQut cf String space
-A string was larger than the variable's
DiMensioned length.
-Two strings added together became |arger than
255 characters. '

TSN Syntax
=The string used In MIDS()= was not a variable.

In this case, 3 string or string array varlable
are the only type allowed.

18T String expression Too complex
-The string expression (equation) became too

complex to handle. Break it up into smaller
expressions,

2/12/85%5 - 17 = (C) 1985 Ccomputerwzre

Color BASIC Compller®

"SECTION Y111 = SAMPLE RUNS:

The fﬁiluulng program was run with each of the different
line 50's and timed. The timings for both the compllied and BASIC
versions are listed below. :

10 DIM TEST$(20),728(20),TA(36)

20 PMODE4,1:GET(0,0)=-(15,13),TA

30 TESTS="SEE HOW FAST | AMI":A=88:8=20:TIMER=0
40 FOR N=1 TO 10000

0 =

60 NEXT N:PRINT TIMER:END

LINE 50 COMPILED(sec.) BAS IC(sec.) SPEED DIFF.
* REM .68 32.27 47:1
* C=A .92 42.68 46:1
® C=A+B 1.20 55.67 46:1
*» C=A-B 1.50 57.10 38:1
* C=A%B 3.38 58.33 1711
* C=A/B 7.17 88.57 - 1221
* C=ABS(A) 1.15 51.97 45:1
® C=JOYSTK(OQ) 5.18 102.58 20:1
*# C=PEEK(N) 1.32 59.33 45:1
®# C=PPOINT(A,B) 3.30 75.65 23:1
* C=RND(A) 8.75 131.72 15:1
* C=SGN(A) 1.20 55.07 46:1
* C=SQR(A) 9.72 631.07 65:1
* T23=TESTS 5.40 48.65 9:1
* GOSUB 70/70 RETURN .83 47.93 5871
* |FA<B THENGO 1.40 : 58.53 - 42:1
* IFA>B THENG60 1.63 61.60 38:1
* POKE A,B 1.10 54.55 501
* PUT(0,0)=(15,15),TA 37.0 L66.98 5:1
* PSET(A,B) 3.088 61.66 16:1
® RESTORE:READA 1.67 N 129.27 77:1
AVERAGE SPEED INCREASE IS 36;:1

in all of the complled timings, the relocatable option was
used Instead of the compact option. If the compact option s
sejected, the speed will Increase on the average of 10%. You
will notice that while some commands are speeded up
significantly, others (PUT In particular) do not galn much from
belng compiled. This Is because Extended BASIC already handles
these efficiently. Remember, each one of tThese commands IS
executed 10,000 times!

(C) 1985 Ccmputerware - 18 - 2/12/85

jcu!ur BASIC Caipi&tq
SECTION IX - USING THE DEMO PROGRAMS:

Your Color Compliler™ disk contains the following flles:

COMPILER/BAS <= The packed version of the Compliler™
COMPILER/REM <= The REMarked version of the Compiier™ '~
SUBPACKG/BIN <- The subroutine package

SUBPACKG/TXT <= The subroutine package source code

MAZE /BAS <~ A demo program .

BEAM /BAS <= A demo program :

SORTER /BAS <= Calls SORTSUB/BIN (don't cu-plfll
SORTSUB /BAS <~ An array sort subroutine

DIRSUB /BAS <= A subroutine to sort your dqu;inrﬁn
SORTDIR /BAS <= Calls DIRSUB (don't complilie)

SUBPACKG.BIN and SUBPACKG.TXT are the subroutine package that 1
added to the beginning of every compliled program. ' This |Is

position Independent flle and must remain that way I1f you mak
any changes to It. |If you do make any changes, be sure th
length of the package [s the same as the varfable 5P Is set to |
line 40. Also, make sure all the pointers set In llnes 1700 an
1710 are in alignment with each of the routines In the package.

NOTE: When answering the prompts from the compiler, all of +th
demos shoulid be compiled using the compller's defaults. Thi

means (5)creen display, (M)emory, (N)lo trace, (N)o USR value, an
(Rlelocatible.

MAZE.BAS Is an excellent example of the speed dlfference create
by the Color Compliler™. Run the BASIC version first (It take
approx. 45 min. +to finishl). Now, complle the program at 760
and then +type 'EXEC'. This program runs about 45 times faste
once [T has been complled.

BEANM.BAS Is a game that resembles the Tron light cycles. It wa
written only to be compiled (you can't run +the source code)
Compile It at &H7600 then type '"EXEC'. The object is to surroun
Yyour copponent with your trall and make him crash I[nfo a wall
The joystick button controls the speed of your cycle.

SORTER.BAS calls the compiled SORTSUB.BAS to sort array SORTS(n
Iin alphabetical order (quicklyl). NE contalns the number ¢
e¢lements to sort and array SORTS(n) Is replaced with the sorte
elements. This Is an excellent example of the GETY and PUT
commands. DO NOT COMPILE SORTER.BAS!! SORTSUB.BAS should b
compliled at &4H7D00.

SORTDIR.BAS calls the compllied DIRSUB.BAS (DIRSUB.BIN) and wil

sort your disk dlirectory 1Into alphabetical order. DIRSUB.B#
should be compiled at &HTADO.

2/12/85 - 19 - (C) 1985 Computerwa:

Color BASIC Compllier®™

SECTION X = TECHNICAL IHFOHHHTIGH:

The followling pages are provided for advanced programmers
wvho may want to modify the Color Compliler™ to add additional
commands or change the way exlisting ones work. Keep in mind that
once you have modiflied the program, Computerware® cannot help you
with any problems that may arlse.

A. EUEHHUTIHES=

The following Is a IIst of the majJor subroutines used by the
Color Compller™. This will be helpful I[f you Intend to add
additlonal Instructions. NOTE: The |ine numbers here are for the
REMarked version of the program. We suggest that you make any
changes to this version and after testing, remove the REMarks and
RENUM 0,,1 the modifled version. Make sure that, |[f you do make
any changes and save the program, you change the name In line
4190 (RUN"COMPILER/REM®) +to0 match the name you used to save the
new version. Otherwise, when the compller has to reload Itself
after a PCLEAR 0, 1t will load the old version. Also, If you add
any new variables, make sure you define them In the DIM In line
1730. 5

GET NEXT CHARACTER LINE# 60

ENTRY CONDITIONS: Set variable LM to 0 to automatically
skip spaces. Set LM Yo 1 to accept spaces as valld
characters.

EXIT CONDITIONS: Next character is returned In C In
ASCl| form. CC points to the current character.

GET FREYIOUS CHARACTER LINE# 80

ENTRY CONDITIONS: none.

EXIT CONDITIONS: CC points to the previous character.
GOSUB 60 to obtain C. WARNING: This routine |Is only
for obtaining the last character again. GOSUB 60 must
be called between GOSUB 80's.

DECIMAL NUMBER DECOCDE LINEF 130
ENTRY CONDITIONS: CC points to the first digit.
EXIT CONDITIONS: N contains the value. CC points to
the last digift.

HEX NUMBER DECODE LINE# 150
ENTRY CONDITIONS: CC points to the first digit of the
number to decode (not &H).

EXIT CONDITIONS: N contalins the value. CC points to
tThe last digit. '

(C) 1985 Computerwares - 20 = 2/12/65

Color BASIC dh-plllr'

A. SUBROUTINES (contlnued)

POKE

POKE

FIND

BYTE LINE# 190

ENTRY CONDITIONS: P contains the value to poke.

EXIT CONDITIONS: M Is Incremented by one to the next
byte. _

WORD LINEF 200

ENTRY CONDITIONS: P contains the 16 bit value to poke.
EXIT CONDITIONS: M Is Incremented by 2 to the next
word.

VARIABLE ADDRESS LINE# 250

ENTRY CONDITIONS: C contains the ASCIl code of the
first character In the varlable name. ;

EXIT CONDITIONS: VA contains the address for variables
or base address for arrays and strings. W contains the
varlable name + 32768 for strings + 128 for arrays WO
contalins:

0 = Simple numeric i

1 = Numeric array

2 = Simple string

3 = String Array . -

EXPRESSION DECODE LINES# 360,370

2/12/85

ENTRY CONDITIONS: CC points to the character jJust
before the expression. GOSUB360 for numeric
expressions. GOSUB370 for string expressions. ™
error check is at 1560 for strings 1570 for . numerlic.
The error Iis automatically checked 1f 360 and 370 are
called.

EXIT CONDITIONS: The expression value wlill bDe
calculated Into the D register for numerlc. For
strings, the X register points to the beginning of the
string and the B register contains 1Its |length. cC
points to the next character after the expression. C
will contain the character just after the expression.

y »)H"

= 21 = (C) 1985 Cemputerwart

Color BASIC Compller™

VARIABLE

VARIABLE DEFINITIONS:

MEAN ING

Current varlable address pointer.
Memory poke address (double byte).
Next character In ASCIl.

Current character pointer.
Current granule number.
Compact/relocatable flag.

Current sector number.

Current varlable table pointer.
Output device number.

Data flag.

Disk drive number.

End statement flag.

End of program flag.

ELSE table pointer.

Ending sector.

Disk read flag.

IF table pointer.

GOTO flag.

Line number table pointer. .
MaxImum number of l|ine references.
OQutput |lne counter.

Don't sklp spaces flag.

Current |lne number.

Line reference table polnter.

Top of |line number table address.
Current memory poke address.
Program end address.

Lowest save address.

Execute address.

Constant value/Error trap value.
NextT granule.

Next sector flag.

Error type flag.

Poke value.

MaxImum number of program |lnes.
ROM-Pack flag.

String flag/expression type.
Length of the Subroutine Package.
Line number table polinter.

Trace flag.

Varlable tzble base address.
Returned varlable address.

Var. type/ O=simple,1=array,2=string,3=string array.

Working storage.
Store address/mlsc.

ARRAY VARIABLE DEF INITIONS:

—~ X I 3 X 5 R L _L_ R __§8 L

(C)

Line number reference table.
ELSE address table.

IF address table.

Line number table.

1985 Ccmputerware - 22 =

2/12/85

Color BASIC Compi Fer

{

STRING VARIABLE DEFINITIONS:

e b A b 2 1 1 T 1 ¥ ¢ ¢ § % b T T T 7 L 2 ¥ T F FrF T T T TITI R]

&

—

First half of sector contents.
Second half of sector contents.
Program name.

USR value flag.

Number constant/mlisc.

C. SUBROUTINE PACKAGE POINTERS:

YARIABLE
AB

AC

AF

2/12/65

b

¥

SUBROUTINE AND CONDITIONS

DESCRIPTION: Points to the string array subscript
check routine. This routine calculates +the array
pointer, checks 1Its value against the dimensioned
slze, and leaves the pointer on the stack.

ENTRY CONDITIONS: Same as AC below.

EXIT CONDITIONS: The polinter to the array value 1Is
left on the top of the stack. To obtaln the array
pointer use the following Instructon : LDX ,S++ or
equliv. .

DESCRIPTION: Points to the numeric array subscript
check routine. This routine <cailculates the array
pointer, checks the subscipt values against thalr
dimensioned sizes, and |leaves the polnter on the: top
of the stack.
ENTRY CONDITIONS: The stack must be In the following
order:
LOW memory: Subroutine RTS

Subscript N (16bit)

Subscript 2
Subscript 1
HIGH memory: Array base address

The B register must contain the number of subscripts
on the stack.

EXIT CONCITIONS: Same as AB above. Use LDD [,S5++] or
equiv. to obtain the array value.

DESCRIPTION: AND, OR, and NOT operators.
ENTRY CONDITIONS: For AND and OR the first value must
be on the stack and the second value In +the C

register. For NOT the value should be In the L
register.

EXIT CONDITIONS: The result of all s returned: im the
D register.

- 23 - (C) 1985 Ccmputerwar

Color BASIC Compller®

(C)

CH

cl

CP

DA

DS

Dw

EC

DESCRIPTION: CHRS$ function. Creates an ASCII
character.

ENTRY CONDITIONS: The B reglster must contain the
ASCI]1 code of the character.

EXIT CONDITIONS: The X reglister polnts to the
character and B contains a 1. -

DESCRIPTION: CIRCLE command.

DESCRIPTION: Numerlc compare subroutine. Compares
t+wo numerlc value according to the call (<=>) and
leaves elther a true value (FFFFH) or a false value
(0) In the D register.

DESCRIPTION: Divide routine. Divides two signed 16
bit values.

ENTRY CONDITIONS: The dividend (first value) must Dbe
on the stack. The divisor (second value) must be In
D.

EXIT CONDITIONS: The quotient Is returned [n D, and
the remainder Is stored In addresses $77/%78.

DESCRIPTION: DIMension routine. This routine sets up
all arrays at run-time. '
ENTRY CONDITIONS: The U register contains the ending
address of the array. The X register points to the
beginning. The B reglster contains the number of
subscripts on the stack. The stack must be In The
following order:

LOW memory: Subroutine RTS (16bit)
Subscrigt N (16b1%)

L g

Subscript 2 (16bit)
: Subscript 1 (16bitT)
HIGH memory: String length (Bbit) {(zero for numeric)

DESCRIPTION: Read data routine. Reads one 16 bIT
data i(tem into D and Increments the pointer.

ENTRY CONDITICNS: none.

EXIT CONDITIONS: Returns a value In D.

DESCRIPTION: DRAW command.

DESCRIPTION: END command. Gets the original stack
address of BASIC and returns to BASIC.

1985 Computerware - 24 - 2/12/65

Color BASIC Compiler™

GT DESCRIPTION: GET command.

GV DESCRIPTION: Gets a value from a BASIC variable and
stores [T In a compllied varlable.
ENTRY CONDITIONS: The A register must be cleared.
The U register points to the compllied variable. X
contains the name of the BASIC variable. Any " array
subscripts should be stored In reverse order from
address 5400 to lower memory. Call the routine ‘as
follows: '

CALL BASIC variable type

GY - 3 for a string array

GY - 2 for a string variable |
GY - 1 for a numeric array 4

GY ~for a numeric varliable “

EXIT CONDITIONS: None. The variable Is uufnmafl:allr
stored at the address pointed to by U.

HX DESCRIPTION: HEXS functlion. This routine Tiku: the

value In the D register and converts It into a string
that represents the hexldecimal value.

IK DESCRIPTION: Scans the keyboard for a pressed key.
This routine Is the same as INKEYS In BASIC,
ENTRY CONDITIONS: none
EXIT CONDITIONS: The X register polnts to the string
buffer where the character 1[s stored and the B

register contains the length . (0 or 1).
IN°DESCRIPTION: INSTR functlion. Same as Extended
BASIC,

JA DESCRIPTION: Read joystick routline. Reads one
joystick value at a time Instead of all four |lke

Color BASIC.

ENTRY CONDITIONS: D should contaln the value of which
Joystick to read. |

EXIT CONCITIONS: Returns the joystick value In the D

reglister.
LE DESCRIPTION: LINE command.
Ll DESCRIPTION: LINE INPUT command.,

2/12/85 - 25 = (C) 1985 Computerware

Enlnrlhhslc Codplier™

(C)

MA

NA

NE

NO

- DESCRIPTION: Multliply roytine. Multiplies two signed

16 bit values.

ENTRY CONDITIONS: The first value must be on the
stack. The second value must be In D.

EXIT CONDITIONS: The value of the multiply Is
returned In D.

DESCRIPTION: MIDS function. This routine returns a
portion of a string. ENTRY CONDITIONS: The stack
must be In the following order:

LOW memory: Return address for the subroutlne Jump.
Return string length. FFFFH = balance.
Starting point in string.
String total length.

HIGH memory: String address.

EXIT CONDITIONS: The X reglister polnts to the string
portion. B equals the new string length.

DESCRIPTION: MIDS()= :nninnd. This command replaces
a8 portion of a string with the result of the string
expression,

DESCRIPTION: Points to the NEXT routine. This
routine Increments the varliabie given In the FOR
Instruction by the STEP value and checks [+ against
the limit. |If the value Is outside of the limit, the
routine jumps out of the FOR/NEXT loop.

ENTRY CONDITIONS: The stack must be In the following
order:

LOW memory: Return address from the subroutlne jump.,
STEP value (16 bit).
Jump address to the start of the loop.
Limit value (16 bit).

HIGH memory: Polnter to the FOR/NEXT variable.

EXIT CONDITIONS: none

DESCRIPTION: This short routine negates the contents
of D. .

ENTRY CONDITIONS: The value to negate must be in D.
EXIT CONDITIONS: The sign of D is the opposite of
what [t was.

DESCRIPTION: Prints a number on the screen.
ENTRY CONDITIONS: Number to print must be In D.
EXIT CONDITIONS: none :

1985 Computerware - 26 - " /12788

Color BASIC Compiler™
0 DESCRIPTION: ON GOTO/GOSUB commands.

OP DESCRIPTION: OPEN STACK SPACE for array subscripts.
This routine saves the value of the D register (the
last subscript value) on the stack, Increments the
number of subscripts, and opens up two more bytes on
the stack for the next subscript. :

PA DESCRIPTION: PPOINT routine. Gets t+he color.. at the
X/Y point on the screen (same as Extended Color
BASIC).

ENTRY CONDITIONS: The X coordinate must be stored at
$BD/SBE. The Y coordinate must be stored at $BF/$CO.
EXIT CONDITIONS: The color value Is returned In D,

PK DESCRIPTION: PEEK function. 5

PM DESCRIPTION: PMODE command.

PT DESCRIPTION: PAINT command.

PY DESCRIPTION: This routine takes 8 value from a-.

compliied varfable and puts It In a BASIC varlable.
ENTRY CONDITIONS: Same as GV except use PY through PV -
- 3 to call the routine.

EXIT CONDITIONS: none. The value of the variable Is
automatically stored In BASIC's table.

PY CESCRIFTION: PLAY command.

RA DESCRIPTION: Random number generator, Thls routine
calculates a random nurber, using the TIMER, between
one and The value of the argument.

ENTRY CONDITIONS: The maximum value must be In D,
EXIT CONDITIONS: A random number Is returned In D.
The random number seed is at address $FA.

RI CESCRIPTION: RIGHTS function.

RS DESCRIPTION: Read Stfring routine. This routine
: reads a string Into a varfable and Increments +the
pointer to the next data [tem.
ENTRY CONDITIONS: The U register must contaln the
pointer to the variable.
EXIT CONCITIONS: The variable will automatically

contain the string data only If there was no size
conflict.

Zfizfﬁﬁ - 77T PAY o mm e -

Color BASIC Compller®™

RT

SA

SB

SC

S0

SG
Sl
sO

DESCRIPTION: RESTORE command.

DESCRIPTION: Square root routine. This routine
calculates the square root for any number (unsigned)
between 0 and 635535 (0 to FFFF Hex).

ENTRY CONDITIONS: The number to find the square roof
of must be In D.

EXIT CONDITIONS: The nearest Integer square root |[s
returned in D,

DESCRIPTION: String append routine. This routine
addes one string to another creating one long string.
ENTRY CONDITIONS: The first string's polinter and
length must be on the stack. The second string's
pointer must be In X and Its length In B.

EXIT CONDITIONS: The X register contalns the pointer
to the beglinning of the string buffer and the B
register contains the string's length.

DESCRIPTION: String compare routine. This routine
compares two strings and returns a flag that
indicates the resuilt of the comparison.

ENTRY CONDITIONS: The first string's pointer and
length must be on the stack. The second string's
pointer must be in X and 'ts length (n B.

EXIT CONDITIONS: The A register contains a flag and
the CC register refects the contents of A. The
following Is a |ist of what the flags mean:

A Meaning

$FF The 1st string < 2nd string.
0 The 1st string = 2nd string.
1 The i1st string > 2nd string.

DESCRIPTION: STRS function. This routine changes a
16 bit Integer Into an ASCll string.

ENTRY CONDITIONS: The D register must contain the
number. -

EXIT CONDITIONS: The X register polnts to the
beginning of the string and B contains the length.

DESCRIPTION: SGN function.
DESCRIPTION: STRINGS function.

DESCRIPTION: String output routine. This routine
outputs a string of characters.

ENTRY CONDITIONS: The X reglister must contain a
pointer to the beglinning of the strirg. The B
register contains the string length. '

EXIT CONDITIONS: none

(C) 1985 Computerwszrs - 28 = 2/12/85

Color BASIC Gompiter™

I
'

SS DESCRIPTION: PUSH STRING. Anytime a string must be
saved on the stack for later, this routine shosid be
called. If not, and +the string Is in the string
buffer, there Is a possibility of I+ bekng over
written. \

ST DESCRIPTION: String transfer routine. This * routine
transfers a string of characters Info a string
variable.

ENTRY CONDITIONS: The U reglister must point to the
string variable. The X and B registers must contalin
the pointer and length of the string to transfer-. .
EXIT CONDITIONS: Registers U, X, and B are ali
modifled. :

VL DESCRIPTION: YAL function. This routine returns the
signed numerical value of a string.
ENTRY CONDITIONS: The X reglster must point to the
beginning of the string and the B rlglifir mus¥
contaln its length.
EXIT CONDITIONS: The D register contains the signed
Integer value of the string.

D. HOW THE COLOR COMPILER WORKS:

In order to fully understand how the Color Compliler™ works,:
you will have to wunderstand how BASIC works and have some
knowledge of machine |anguage programming. Here [s a qulick
overview of what BASIC does when you type in a program |Ine:

As soon as you press ENTER, BASIC changes your commands and
functions Into codes called tokens. The tokens and the
Iinformation that makes up the rest of the line, Including a code
for the |line number and a two byte offset to the next I|line, are
stored In the program at the appropriate spot. When you SAVE
your program to disk, BASIC does not change this format (UNLESS
you use ASCII| formatl!).

When you compile your program, the Color Compller™ finds the
location on the disk where your program is stored and reads this
Information directly. Here [s what happens:

- First, the Color Compllier™ reads the I|ine offset value,
which Iis generally Ignored.

- Second, It saves the |ine number and the location in memory
where [t starts for an update routine |ater In the program.

- Third, the Color Compliler™ gets an Instruction,”™ I'm tTokem- -

form, and decodes It according to Its syntax.

2/12/85 - 29 - (C) 1965 Computerware

e

alor EHSIFFCnupIIIr‘

#

. = Fourth, after decoding the Instruction and poking the
machine language equivalent [nto memory, the compliler™ |ooks
for a zero, which Is the end of the Ilne, or the code for a
colon which means more Instructions. If It Is a zero, the
compiler returns to the first step. If the code s a colon,
the compliler returns to the third step.

- Fifth, the process continues until the end of program flag
Is found (a zero for the offset code).

= 3ixth, the Color Compller™ now updates . all the jJumps (GOTO's
and GOSUB's) that were accumulated In the first pass.

- Last, the compller prints ail the Important Information
about the compliled program, saves |t to disk, and sets the
USRO polnter to the start address. The EXEC address Is also
automatically set to the start address when the subroutine
package iIs |Inked.

ere |s an example of how a program line looks on the disk:
our program |Ine: 10 READ A(N)

hat BASIC actually

tores Iin memory: 27 FF 00 OA 8D 20 41 28 4E 29 00
=A== ==B== C D E F G H 1

Is the offset o the next |ine.
Is the |Ine number. (10 In HEX)
is the token for READ.

Is the ASCI| code for a space.
the ASCII| code for the A,

Is the ASCI| code for the (.

Is the ASCI| code for the N.

is the ASCII| code for the). .

Is the end of line flag.

_— T O TMOOD ™
"

. HOW TO ADD YOUR OWN INSTRUCTIONS:

If you have I|ittle or no knowledge of how to program In
achine language, this section will be hard to understand. This
nformation |Is provided for experienced programmers only.

If you are going to add an instruction or function to the

olor Compiler's vocabulary, It must already be 1[n BASIC's
ocabulary. |If It isn't, there wlll bea no tokan generated by

ASIC and the compller will see it as a variable. As an example,
et's add the AUDIO ON/OFF Instructions. |

dd the following |lines to the REMARKED compller program:

2055 IFW=161THENS5000 'AUDIO

5000 IFC=13660SUB1210:W=4HA99D:6G0SUB1360:G0TO60
5010 IFC<>170THEN2280
5020 W=4HA974:GO0SUB1360:G0TC60

<) 1985 Computerware - 30 - 2/12/85

Color BASIC Compliler™ -

Line # 2055 tells the complier that the decoding routine for
AUDIO (token 161) Is at |ine 5000.

Line # 5000 checks the next character and If .it Is the token for
ON (token 136) 1t pokes the code for a CLRB (GOSUB1210), pokes a
JSR to the AUDIO ON routine Iin the BASIC ROM (&HA99D), then gets
the next character and returns to the maln |oop.

If C was not the token for ON, Iine # 5010 checks the character
and I+ [t |Is not the token for OFF (token 170) [t reports a SN
(syntax) error.

Line # 5020 pokes the JSR to the AUDIO OFF routine In the BASIC.

ROM (&HA974) and then gets the next character and returns to the
main loop. i

Keep In mind that in this case most of the work was done In
BASIC's ROM. On the other hand, most additions that use more
parameters or equations won't be as simple unless you are good aft
programming In machine language. All of the main subroutines and
some commonly used machine |anguage Instructions are between
iines 60 and 1590. These will help you cut down on adding a:lot
of poke IInes (GOSUB190 & 200's). Functions can be added In " the
same manor as Instructions between |Iines 800 and 1040. See the
next page for a list of Instruction and function tokens. Here [s
what the compiler changes POKE A+1,20 Into: :

LDD >YA,PCR The VA Is Varliable A's location (relativel.
PSHS A,B Save D on the stack.

LDD #1 Constant 1.

ADDD » S++ Add 1 to A,

PSHS A,B Save poke address.

LDD #3514 $14 Is HEX for 20.

STB [,5++] Stores B at the address on the stack

and strips the stack.

To get a better Idea of what the compiler 1Is doing, let's
follow the SQUND instruction through its decoding routine.

2050 IFW=160THEN2990 'SOUND

2980 REM #=SQUND%=
2990 GOSUB350:P=55180:G0SUB200:GOSUB1540:G0SUB360:W=43345:G0T01360

A A e R e c D esrsaaa femeeme—-

[1]J. The tcken for SOUND is 160 which 1Is found at |Iline
2050. [2]. Line 2050 +tells the compiler that the decode
routine for SOUND is on line 2990. [3]. First SOUND calls
the expression decode routine (A) to get the value for the
frequency. Note that [t did'nt call line 360. The reason
for this |Is because Ilne 350 skips getting the first
character In the expression (we already have It; sear the:
GOSUB60 in line 1890). [4]. Next, It pokes the value 55180
(B) Into memory (this saves +the frequency value In a
location required by Color BASIC).

4/12/85 - 31 = (C) 1585 Computerware

Color +8ASIC Compiler™

.'--..

-

[5]. Next, GOSUB1540 (C) checks to make sure the next
character Is a comma. [6]. Next, the routine calls the
expression decode routine again (D) to get the length of the
SOUND command (This +time we called 360). [7]. Last, the
routlne pokes a JSR (E) to the SOUND routine In BASIC ROM.
[8]. One last note. In this case, the expression decoding
routine at |Ine 360 returned with the character Just after
the expression. In some other cases, the next character may
not be returned. Apon returning to the main Joop, It |Is
required that the next character be In C (and It must be a
zero or colon). Make sure your routines do this or you will

keep getting a SN error when you compllie a program with the
new Instruction In I|*t.

F. INSTRUCTION TOKENS:

' a3 DIR CE LOAD D3 RENAME D6
b AD DLGAD CA LSET D4 RENUM CB
+ AB DRAW Cé MERGE D5 RESET 9D
- AC DRIVE CF MOTOR 9F RESTORE 8F
/ AE DSKIS DF NEW 96 RETURN 90
< B4 DSKINI bC NEXT 88 RSET D7
d B3 DSKO$ EO NOT A8 RUN 8E
» B2 EDIT B6 OFF AA SAVE D8
AND BO ELSE 84 ON 88 SCREEN BF
AUDIO Al END 8A OPEN 99 SET 9C
BACKUP DD EXEC A2 OR Bi1 SKIPF A3
CIRCLE C2 FIELD DO PAINT C3 SOUND AO
CLEAR 95 FILES D1 PCLEAR co STEP A9
CLOAD 97 FN cC PCLS BC STOP 91
CLOSE 9A FOR 80 PCOPY c7? suB A6
CLS 9E GET o PLAY c9 TAB(A4
COLOR c1 GO 81 PMODE C8 THEN A7
CONT 93 IF 85 POKE 92 TO A5
COPY DE INPUT 89 PRESET "BE TROFF B8
CSAVE 98 KILL D2 PRINT 87 TRON B7
DATA 86 LET BA PSET BD UNLOAD DB
DEF B9 L INE BB PUT C5 US ING CcD
DEL BS LIST 94 READ 80 YERIFY DA
DIM 8C LLIST 9B REM 82 WRITE D9
. AF

F. FUNCTION TOKENS (preceeded by $FF):

ABS 82 ASC aA ATN 94 CHRS 8B
cos 95 CVYN A2 EOF ac EXP 97
FiIX 98 FREE A3 HEXS 9C INKEY S 92
INSTR 9E INT 81 JOYSTK 8D LEFTS 8E
LEN 87 LOC Ad LOF AS LOG 99
MEM 93 MIDS 90 MKN$ A6 PEEK ‘86
POINT 91 POS 9A PPOINT A0 RIGHTS 8F
RND 84 SGN 80 SIN as STRINGS Al
STRS 88 SQR 9B TAN 96 TIMER SF
USR 83 VAL 89 VARPTR . 9D

(C) 1985 Computerwars . = 32 - 2/12/85

	Color_compiler_manualFC
	Color_compiler_manual0
	Color_compiler_manual1
	Color_compiler_manual2
	Color_compiler_manual3
	Color_compiler_manual4
	Color_compiler_manual5
	Color_compiler_manual6
	Color_compiler_manual7
	Color_compiler_manual8
	Color_compiler_manual9
	Color_compiler_manual10
	Color_compiler_manual11
	Color_compiler_manual12
	Color_compiler_manual13
	Color_compiler_manual14
	Color_compiler_manual15
	Color_compiler_manual16
	Color_compiler_manual17
	Color_compiler_manual18
	Color_compiler_manual19
	Color_compiler_manual20
	Color_compiler_manual21
	Color_compiler_manual22
	Color_compiler_manual23
	Color_compiler_manual24
	Color_compiler_manual25
	Color_compiler_manual26
	Color_compiler_manual27
	Color_compiler_manual28
	Color_compiler_manual29
	Color_compiler_manual30
	Color_compiler_manual31
	Color_compiler_manual32

