BASIC09
Reference

Contents

Chapter 1 Looking At The Basics

Using BASICO9 e 1-2
Requesting More Memoryv.. 1-3
Writing Procedures, 1-5
Modules of Other Languages 1-5
Executing Procedures 1-5
Leaving BASICO9 i i 1-5
The Keyboard and BASIC09ccovvivnn.. 1-5
Chapter 2 Sample Session
Creating a Procedureccoivviiineen.... 2-1
Commands and Program Lines 2-2
Executing a Procedure 2-3
Chapter 3 The System Mode
Renaming Procedures 3-2
Listing Procedure Names PU 3-2
Listing Procedurest 3-2
Listing Procedure Namestoa File 3-4
Listing Procedures to a Printer 3-4
UsingaWildeardccoiiiiiiiii.... 3-5
Saving Proceduresc.iiiiiiiiiiii., 3-5
Loading Procedures 3-6
Deleting Procedures from the Workspace 3-6
Changing Directoriescooviiiiiiii... 3-7
Executing OS-9 Commandscoivnnnn. 3-8
Chapter 4 The Edit Mode
Edit Commandsc.ccviiiiiiiiineriiinnns 4-1
Usingthe Editor 4-2
Searching Through a Procedure 4-4
Using (ENTER] + o v vt ettt i iiinans 4-4
Using the Plus Sign to Move Forward 4-4
. Accessing a Line Using the Line Number 4-5
Using the Minus Sign to Move Backward 4-5
The Global Symbol 4-5
Using LIST e 4-6
Deleting Lines i 4-6
Changing Text, 4-7
Searching for Text 4-9

Contents

Renumbering Linescovveinan. 4-10
AddingLines ...t 4-10
The Next Stepooviiii i 4-12
Chapter 5 The Debug Mode
Entering the Debug Mode 5-1
When Things GoWrongccoevviiininn.. .. 5-4
Using the Trace Function 5-5
What About Loops? i, 5-5
In Multiple Procedures 5-6
Chapter 6 Data and Variables
Data Typesoviiiiiiiii i i e 6-1
The Byte Data Type iiiinnn. 6-2
The Integer Data Typecccccvvviiivn... 6-3
The Real Data Typeccciiinnnn. 6-3
String Variables ...t 6-4
The Boolean Typecoiiiiii., 6-5
Automatic Type Conversion e 6-6
Constantsoovii i e 6-6
String Constantscoiiiiiiiiiiinin... 6-7
Variables ... 6-7
Passing Variables e, 6-8
ATTaYS « 6-9
Complex Data Typesciiiiiinnn.. 6-13
Chapter 7 Expressions, Operators, and Functions
ManipulatingData 7-1
Expressions i i 7-1
TypeConversioncoviiiiiiiinnnnn... 7-2
Operatorsovviiiiii i 7-2
BASIC09 Expression Operators 7-3
Arithmetic Operators 7-3
Hierarchy of Operators 7-4
Relational Operators 7-5
String Operatorscviiiiiiiiiiieneennn. 7-6
Logical Operatorsccieivivinnnnn... 7-7
Functions i 7-7
Chapter 8 Disk Files
Types of Accessfor Files 8-1
Sequential Files 8-2
Sequential File Creation, Storage, and Retrieval8-2
Changing Data in a Sequential File 8-4
INPUT and Sequential Files 8-5

Contents

Random AccessFilesc.cooi i, 8-5
Creating Random Access Files 8-6
Using Arrays With Random Access Files 8-9
Using Complex Data Structures 8-11

Chapter 9 Displaying Text and Graphics

ASCIICodesccoiiiin e 9-1
Low Resolution Graphics Characters 9-4
Special Characters in High-Resolution 9-8

Medium-Resolution Graphics 9-8
Formatsand Colorsot 9-10
The Draw Pointer oot 9-12

High-Resolution Graphics 9-26

Establishing a Hardware Window 9-32
Defining Windows 9-33
ThePalette oo, 9-34

Establishing a Graphics Window 9-35
Starting a Shell ina Window 9-36

Using High-Level Graphics with 128K 9-37

Creating Windows From BASIC09 9-39
Creating Overlay Windows 9-41

The Graphics Cursor and the Draw Pointer 9-42

High Resolution Textcoiiiina.. 9-42
UsingFonts ... i i 9-43

High Resolution Quick Reference 9-44

Chapter 10 BASIC09 Quick Reference

Statements and Functions 10-1

Commands By Type ..., 10-7
Statementsi i 10-7
Transcendental Functions 10-7
Numeric Functionscooiiiiino... 10-7
String Functions 10-7
Miscellaneous Functions 10-7

DataTypescovrriiii e 10-8

Types of Accessfor Files 10-8

Command Mode iiiiiiininennnn, 10-9

Edit Commands, 10-10

Debug Commandscccoeviviia.. 10-11

Chapter 11 BASIC09 Command Reference

Keyword Format oo, 11-11

The Syntax Line i iinn. 11-1

Sample Programsc.iiiiiiiiii.... 11-3

Contents

Chapter 12 Program Optimization
Optimum Use of Numeric Data Types 1
Arithmetic Functions Ranked by Speed 1
Quicker Loops i e 1
Arrays and Data Structures 1
The PACK Commandccooviiiiiiiinnnnnne. 1
Minimizing Constant Expressions and
Subexpressionsiiei i e 1
Input and Output, 1

Appendix A Error Codes
Signal Errorso A-1
BASICO9 Error Codescooviiiivinnnnnnnnnn. A-1
Windowing and System Errors A-3

Appendix B The Inkey Program
Assembly Language Listing of Inkey B-1

Index

Chapter 1

Looking at the Basics

BASICO09 is a computer language created for use with the 0S-9
operating system. Along with standard BASIC language state-
ments and functions, it includes the most useful elements of the
PASCAL computer language.

In brief,‘ BASIC09’s advantages are:

Fast execution speed

Full feature editing

Modular
programming
functions

Interfacing to 0S-9

Structured
programming

BASIC09 compiles procedure lines as
you enter them. When you finish a
procedure, you can compile it further.
The result? Procedures that execute
nearly as fast as machine language.

The text editor features automatic line
formatting, search, search and change,
global search, global search and
change, line renumbering, and much
more. You can move in and out of the
editor quickly and easily.

You can write small, easy-to-under-
stand procedures, then chain them to
create sophisticated programs. You can
call one procedure from another,
regardless of whether the called proce-
dure is in memory or on disk.

Both you and your procedures can
take advantage of almost any OS-9
function from within BASIC, including
the execution of disk management
commands and application programs.

You can structure procedures more
efficiently and clearly by taking advan-
tage of a variety of loop commands,
optional line numbering, and
BASIC09’s ability to call modules
written in other computer languages.

BASIC09 Reference

Memory saving
features

Complex data
structures

Sophisticated
graphics

High speed,
precision math

Simple and fast
debugging

Using BASIC09

Strings can be any length. For each
operation, you can select the most effi-
cient of five available data types. Com-
piled procedures use less space. You
can save several procedures into one
file.

Combine any type of data into a single
dimensioned data structure that you
can move, store, and assign easily and
quickly.

BASIC09 has three levels of graphics.
The high resolution graphics and text
capabilities feature more than 50
functions.

BASIC09 has a full range of fast and
accurate math and transcendental
capabilities including powers, roots,
trigonometry, logic, and Boolean
functions.

BASIC09 provides superior debugging
functions. It checks syntax as you
enter lines. It points to the location of
your errors and tells you what they
are. You can stop programs, enter the
debugger, then continue execution.
Execution errors automatically put you
in a debugging mode where you can
examine values, and step and trace
your way through faulty procedures.

Before anything else, make a backup copy of your BASIC09/
CONFIG diskette. You can do this using the BACKUP command.
If you are not familiar with BACKUP, see Chapter 3 of Geiting

Started With OS-9.

To use BASIC09, boot your computer as described in Geiting
Started With OS-9. Replace the system diskette in Drive /DO
with the BASIC09/CONFIG backup diskette and type:

basic@9 [ENTER

1-2

Looking at the Basics / 1

After a short pause, during which 0S-9 loads BASICO09 from the
diskette, the screen displays the copyright and a new prompt,
like this:

BASICE9
RS VERSION 81.00.81
COPYRIGHT 1986 BY MOTOROLA INC.
AND MICROWARE SYSTEMS CORP.
REPRODUCED UNDER LICENSE
TO TANDY CORP.
ALL RIGHTS RESERVED

Basicl9
Ready
B:

The B: indicates that your computer is in the BASIC09 command
mode. From the command mode, you can issue instructions to
the system executive to manipulate procedures (programs).

Requesting More Memory

Unless you specify otherwise, BASIC09 automatically sets aside
8192 bytes of memory as a workspace into which you can type or
load procedures. BASIC09 reserves approximately 1200 bytes of
the workspace for internal use, leaving you with 6992 bytes for
warkspace.

There are two ways to set aside more memory for BASIC09
operations:

® You can reserve extra memory when you first enter
BASIC09 by using the OS-9 memory size option. For
instance, to reserve 18,176 bytes, enter this command to
initialize BASICO09:

basic89 #18k

@ You can also request additional memory after loading
BASICO09. At the command prompt, B:, type:

mem 18604

This tells BASIC09 to set aside a total of 18,000 bytes of
memory, if they are available.

1-3

BASIC09 Reference

In both cases, because BASIC09 rounds the amount you request
to the next multiple of 256, the actual reserved memory is 18176
bytes.

Note: If your system does not have enough free memory to
reserve the amount you specify, the workspace size does not
change.

You can also use the MEM command to reduce memory. How-
ever, BASIC09 does not reduce the size of the workspace if doing
so destroys resident procedures.

Writing Procedures

BASIC09 is a modular programming language. Several proce-
dures can occupy memory at the same time. Each procedure per-
forms a particular function but can also interact with others to
form a sophisticated program.

To create or change procedures, enter the edit mode by typing
either edit [ENTER) or {ENTER] at the B: prompt. From now on,
when directing you to enter the edit mode, this manual uses the
easier to type (E) command.

Each time you type a procedure line and press (ENTER], the editor
checks for common errors. This automatic checking lets you
catch mistakes before you run the program, saving you testing
and rewriting time. You can even let the automatic checking
help you learn the rules of BASIC09. If you are not sure about a
syntax, go ahead and type it the way you think is correct. If you
guess wrong, BASIC09 shows where the error is and displays a
message to tell what is wrong.

BASIC09’s use of modules lets you divide large and complex proj-
ects into smaller, easily manageable sections. Not only are the
smaller procedures easier to write and understand, they are also
easier to test: As well, because BASIC09 lets you call procedures
that are outside the workspace (the computer’s memory where
you write and edit procedures), you can accumulate libraries of
procedures to incorporate into future programs.

You can work on a program’s procedures either individually or
as a group. For example, to work on the procedures as a group,
save your workspace procedures into a single disk file. When you
subsequently load the file, BASIC09 automatically loads all of
the procedures.

14

Looking at the Basics / 1

Modules of Other Languages

BASICO09 can incorporate procedures from other languages, such
as Pascal, C, or assembly language. Several users can then share
the procedures.

Executing Procedures

You execute or run programs from the command mode. When
you enter a procedure, BASIC09 compiles it. This means that the
procedure is ready for execution as soon as you exit the edit
mode. For instance, if you create a program named Greeting,
you can execute it by typing from the command mode:

run greetling [ENTER

Leaving BASIC09

There are two ways you can exit from BASIC09:
e At the B: prompt, type:
bye
@ Or, at the B: prompt, press [CTRL)(BREAK].

When you use either method, the 0S-9 prompt appears immedi-
ately indicating that the operating system is waiting for a
command.

Note: When you exit BASIC09, you lose all procedures
residing in the workspace. Be sure to save them on disk
before leaving BASIC09.

The Keyboard and BASIC09

You can use some keys and key sequences to produce special
characters and to accomplish special BASIC09 functions. You ini-
tiate a key sequence by pressing one key and holding it down
while pressing a second key. The following list summarizes your
keyboard’s special functions:

1-5

BASICO09 Reference

ALT

or

or

ERD)
TR
)

or

TR

Produces graphic characters. Press char
where char is a keyboard character).

A control key that you use with other keys.
(See below.)

Stops the current program execution and
returns to the B: prompt in BASIC09’s com-
mand mode.

Moves the cursor back one space.

Produces an underscore character.
Produces a left brace ().
Produces a right brace (1).
Produces a tilde (~).

Produces a backslash (\).

Performs an ESCAPE function and sends an
end-of-file message to a program receiving

keyboard input. To be recognized,
must be the first thing typed on a line.

Stops execution of a program and causes
BASICO09 to enter the Debug mode.

Displays the next window.
Displays the previous window.

Deletes the current line.

Activates or deactivates the shift lock function.
Produces a vertical bar (|).

Produces an up arrow (4).

Produces a left bracket (L).

Produces a right bracket (1).

1-6

Looking at the Basics / 1

(CTRL(D)

Redisplays the last line typed, and positions
the cursor at the end of the line, but does not
process the line. Press to process the
line, or edit the line by backspacing. If you
edit, press again to display the edited
line.

Redisplays the current command line.

Temporarily halts video output. Press the
space bar to resume output.

Performs a carriage return or executes the
current command line.

Chapter 2

Sample Session

Although BASIC09 has several functions or modes, they all work
together to make programming as simple as possible. The easiest
way to learn how BASIC09 and its functions operate is to write
and run a program. This chapter provides sample statements
and instructions to help you learn how to use BASIC09.

To create and execute a program:
1. Load BASIC09 and enter the edit mode.
. Type the BASIC program.
. Enter the system mode and test the program’s execution.
. Debug the program. (Correct any programming errors.)

. Save the completed program on disk.

S U > W N

. Load the program into memory and use it.

To begin the program, execute BASIC09. To be sure you have
enough room in which to work, reserve a workspace of 10,000
bytes by typing:

basicf#9 #18K

The BASIC09 system mode prompt, B:, appears after the copy-
right message. In the system mode, you can do such things as
save and load procedures, change workspace size, and rename
and delete procedures.

Creating a Procedure

To write procedures, you must be in the edit mode. You get there
by typing:

e (ENTER]

This causes the screen prompt to change to E:, and the screen
displays:

PROCEDURE Program
Because you didn’t give a program name when you entered e,

BASIC09 selects the name Program for you. Now, you must
write the code to make Program do something.

2-1

BASIC09 Reference

Commands and Program Lines

There are two responses you can give at the edit mode prompt.
You can type an edit command, or you can type a program line.
If you type a program line, you must type a space as the first
character in the line. If you type an edit command, do not pre-
cede it with a space. To make listings easier to read, this man-
ual uses the symbol [] to indicate spaces before every line. It also
uses the [J symbol in some procedure lines to indicate the correct
number of spaces needed. Whenever you see either a space or a []
symbol in a procedure you are typing, press the space bar.

To type the procedure in this chapter, begin each line at the E:
prompt. After typing a line, check it for mistakes. If you make a
mistake, use to move the cursor back. Correct the mistake.
Then, type the remaining portion of the line. If there are no mis-

takes, press [ENTER).

BASICO09 checks each line when you press (ENER). If you make a
mistake in syntax or form, BASIC09 displays an error message.
An arrow points to the place in the program line where the error
occurred, and a message number indicates the type of error.
Refer to Appendix A for an explanation of the error codes.

If, after you enter a line, you find that you made a mistake, type
d to delete the line. Then, retype the line. Later, the man-
ual tells you how to change text in existing lines.

The following program helps you do a bit of arithmetic. To get a
feel for BASIC09, type and execute the program as directed.
Remember, when you see either a space or [, press the space bar.

ODIM NUMBER1T ,NUMBER2:INTEGER

OINPUT “Type Number...";NUMBERT

OINPUT "Type another....";NUMBER2
OPRINT "The sum of the numbers is... '";
OPRINT NUMBER1 + NUMBER2

OEND

Sample Session | 2

Executing a Procedure

To execute the procedure, quit the edit mode by typing q [ENTER].
The compiler further processes your procedure, and the B:
prompt reappears. To execute the program, type:

run [ENTER

Type in numbers when asked, and the procedure produces their
sum. If you want to save the program on disk, the next chapter
tells you how. Chapter 4 introduces several other edit mode com-
mands to search, display, insert, and change programs lines and
text.

2-3

Chapter 3

The System Mode

The BASIC09 command interpreter processes system commands.
At the B: prompt, you can enter system commands in either
upper- or lowercase letters. Some commands operate on the pro-
cedures in the workspace. Others provide functions independent
of any procedures. Following is a list of all system commands
and their purposes.

Command Function

$ Calls the shell command interpreter to execute
an 0S-9 command.

BYE or Returns you to the 0S-9 system or to the pro-

gram that called BASICO09.

CHD Changes the current OS-9 data directory.

CHX Changes the current 0S-9 execution directory.

or DIR Displays the name, size, and variable storage
requirement of each procedure in the

workspace.

EDIT or E Enters the procedure editor-compiler mode.

KILL Erases one or more procedures from the work-
space.

LIST Displays a formatted listing of one or more
procedures.

LOAD Loads all procedures from a disk file into the
workspace.

MEM Displays in bytes the current workspace size,

or reserves a specified amount of memory for
the workspace. »

PACK Condenses (compiles) one or more procedures.

RENAME Changes a procedure’s name.

RUN Causes a procedure in the workspace to
execute.

SAVE Writes one or more procedures to disk.

3-1

BASIC09 Reference

Renaming Procedures

BASIC09’s RENAME function is important for two reasons:
First, it lets you load into the workspace procedures that have
the same name. After you rename the workspace procedure you
can load the second file. Second, if you let BASIC09 use the
default procedure name, “Program,” you can rename the proce-
dure before saving it to disk. By doing this, you avoid writing
over—and destroying—an existing procedure file.

To change the name of the procedure you created in the previous
chapter from Program to Add, type:

rename program add [ENTER

Listing Procedure Names

You can use the DIR command to see if RENAME worked prop-
erly. DIR displays the names and sizes of all procedures in mem-
ory. Because programmers use this command frequently, the
system recognizes a shorthand call. Instead of typing dir (ENTER),
you only need to press (ENTER). This displays a table of the proce-
dures in the following format:

Name Proc-Size Data-Size

*add 182 32

add1 217 42

add2 218 42
2198 free

Proc-Size refers to the number of memory bytes required for the
procedure. Data-Size refers to the number of memory bytes
required for the procedure’s variables and data structures. The
asterisk indicates the current procedure. System commands act
on the current procedure unless you indicate otherwise.

The last line of the DIR display tells you how many free bytes of
memory remain in the BASIC09 workspace.

Listing Procedures

You can use the LIST command to view procedure lines. To dis-
play the current procedure, type:

list [ENTER

3-2

The System Mode / 3

For example, this is the listing of a procedure named Alpha.bak:

PROCEDURE Alpha_bak

geoo DIM A:STRING

pBa7 DIM T:INTEGER

gooE

poar PRINT "Here is the alphabet
backwards:"

pe32 PRINT

p034 FOR T=906 TO &5 STEP -1

pa4A PRINT CHR$(T);

gas1 PRINT ' ';

pes7 NEXT T

po62 PRINT

po64 PRINT

f066 END

When you list a BASIC09 procedure, the system precedes each
line with a relative storage address. The relative address of the
first procedure line is always 0. In the previous example, the
beginning address of the second procedure line in the workspace
is 07 units from the beginning. The beginning address of the
third line is OE hexadecimal (14 decimal) storage units from the
procedure beginning.

These I-Code addresses provide a way for the compiler to let you
know where it finds an error when one occurs.

Because BASIC09 compiles programs into I-Code, it must disas-
semble them before it can display them on the screen. This
means that the lines might not look exactly as typed. For
instance, BASIC09 converts lowercase keywords (command
names) to uppercase. BASIC09 also eliminates some spaces. If
your program uses control statements such as IF/THEN, FOR/
NEXT, and LOOP/ENDLOOP, the lines in these decision mak-
ing or looping structures are indented as shown in the
Alpha.bak example. Regardless of the appearance of your listed
procedures, they execute correctly if you type their commands
correctly.

3-3

BASIC09 Reference

Listing Procedures to a File

There might be times when you want to send a formatted proce-
dure listing, including I-Code addresses, directly to a file. You
can do this using OS-9’s redirection symbol, >. To save the
Alpha.bak procedure on a file named Alpha.list in the current
data directory, type:

list alpha.bak »alpha.list

If you have several procedures in the workspace and want to list
more than one to a disk file, separate the procedure names with
commas, like this:

list alpha.one,alpha.two,alpha.three >alpha.all

In both of the preceding cases, the system creates the Alpha.list
file and stores the specified listings in it. If you use a file name
that already exists, BASIC09 displays the prompt:

Rewrite?:

If you press (Y], the system destroys the original file and over-
writes it with the new listing. If you press (), the LIST process
terminates.

If you wish to list a procedure, or group of procedures, to a file
that is not in the current data directory, be sure to specify the
complete pathlist, such as:

list alpha.bak > /d1/programs/alpha.rev [ENTER]

Listing Procedures to a Printer

In the same manner as you list procedures to a disk file, you can
list one or more procedures to your printer. Make certain your
printer is connected and turned on, then again use the redirec-
tion symbol, but this time specify the printer device, like this:

list alpha.bak >/p [ENTER)
Or:
list alpha.one,alpha.two,alpha.three >/p [ENTER]

34

The System Mode / 3

Using a Wildcard

Using the 0S-9 wildcard, *, you can list all procedures in the
workspace. For instance, if the procedures Alpha.one, Alpha.two,
and Alpha.three exist, list them to the screen by typing:

listx
Send the list to a file by typing:

list» alpha.all
Or send the list to your printer by typing:
list* /p

Note: When you use the wildcard, the name of the file or
device to receive the listing immediately follows the LIST*
command. Do not use the redirection symbol.

Saving Procedures

You can save one or more procedures to disk using the SAVE
command. Unlike LIST, SAVE does not include relative
addresses. However, the syntaxes for the SAVE and LIST com-
mands are identical. To save the procedure Alpha.bak to the cur-
rent data directory, type:

save alpha.bak alpha.bak

If Alpha.bak is the current procedure, you can save it in a file
named Alpha.bak by typing s=ve {ENTER].

To save all of the procedures in the workspace to a file named
All.programs in the current data directory, type:

save* All.programs (ENTER

As with LIST, to save one or more procedures in a file that is
not in the current data directory, make sure you specify a com-
plete pathlist.

To save all the files in the workspace to a disk file with the
same name as the current procedure, type save+ [ENTER].

If the disk file you specify does not exist, BASICO09 creates it. If
it does exist, the system displays the prompt:

Rewrite?:

BASIC09 Reference

Press (Y] to write over the old file with the specified file. The old
file is destroyed.

Press (W] to terminate the SAVE operation.

Loading Procedures

To load a saved procedure back into BASIC09’s workspace, use
the LOAD command and specify the appropriate pathlist. For
instance, if your current directory is still the directory contain-
ing Alpha.bak, load the procedure by typing:

load alpha.bak
To load Alpha.bak from the PROGRAMS directory on Drive /D1,
type:

load /d1/programs/alpha.rev

You can run and edit a loaded procedure in exactly the same
manner as you would a procedure you created.

You can load any number of procedures into the workspace as
long as your computer has sufficient memory. However, be care-
ful that you do not load a procedure with the same name as a
procedure already existing in the workspace. If you do, the new
procedure overwrites (destroys) the original procedure. You can
rename workspace procedures to avoid this problem.

Deleting Procedures from the Workspace

You can clear the workspace of one or more procedures using the
KILL command. For instance, to remove Alpha.bak from the
workspace, type:

kill alpha.bak

To remove more than one procedure from the workspace, sepa-
rate the procedure names with commas. To delete Alpha.one and
Alpha.two, type:

kill alpha.one,alpha.two

To clear the entire workspace, regardless of the number of proce-
dures it contains, use the BASIC09 wildcard, *. Type:

killx (ENTER]

3-6

The System Mode / 3

Changing Directories

You change working directories in BASIC09 and OS-9 in the
same manner, by using the CHD and CHX commands. CHD
changes the data directory, and CHX changes the execution
directory.

BASIC09 saves files in, or loads files from, the data directory,
unless you specify differently in the command pathlist. It stores
packed procedures in, or loads PACKed procedures from, the exe-
cution directory, unless you specify differently in the command’s
pathlist.

Also, if you want to access OS-9 commands from BASIC09, the
system first looks for the commands in memory. If they are not
there, it looks for them in the execution directory, unless you
specify differently.

If your data directory is the ROOT directory, and you wish to
change to a directory named PROGRAMS that is a subdirectory
of the ROOT directory, type the following command from the
command mode B: prompt

chd programs

If your current execution directory is the system’s CMDS direc-
tory, and you want to change to a CMDS directory in the sub-
directory BASIC, type:

chx basic/cmds [ENTER

Whenever you change to a directory other than an immediate
subdirectory, specify a complete pathlist.

Executing 0S-9 Commands

BASICO09 lets you use 0S-9 commands at any time from the sys-
tem mode. To do so, precede the command with a dollar sign ($).
For instance, to look at the current data directory, type:

$dir [ENTER

To view the current execution directory, type:

$dir x (ENTER

3-7

BASICO09 Reference

All OS-9 commands are available, and you can copy files, format
diskettes, list files, or use any other functions from the system
mode. The only restriction is that your computer must have
enough free memory to handle the command you call. If you find
that there is not enough memory, try using the MEM command
to reduce reserved memory. Then, try the command again.

Auto-Execute Procedures

The BASIC09 compiler makes two passes through the procedures
you write. When you enter the command, the compiler performs
an initial compilation, checking for any syntax errors. When you
leave the edit mode, the system compiles the procedure a second
time and checks for any programming errors. With the PACK
command, you can further compile your procedures so that they
are smaller and execute even faster.

PACK causes an extra compiler pass that removes names, line
numbers, and non-executable statements. Before packing a
procedure, be sure you save it. Unless you do so, you can-
not make further changes to the procedure.

Once you pack a file, you cannot list or edit the packed version.
However, if you save the procedure to disk before packing, you
can still list and edit the original file, then pack it again.

When you save a packed procedure on disk, BASIC09 does not
normally store it in the data directory. Because the procedure is
now executable, the system stores it in the current execution
directory.

For instance, to convert Alpha.bak to a packed procedure in the
execution directory, type:

pack alpha.bak

If you want to save a packed procedure under a different file-
name, use the 0S-9 redirection symbol:

pack alpha.bak > backwards (ENTER)

After packing a procedure, you can delete it from the workspace.
If you then run it, BASICO9 automatically loads the file from
disk and executes it.

The following is a sequence of commands that demonstrate pack-
ing and executing a procedure named Alpha.bak:

3-8

The System Mode |/ 3

pack alpha.bak packs the procedure and stores
it in the execution directory.

kill alpha.bak deletes the procedure from the
workspace.

run alpha.bak loads the file into memory
outside the workspace and
executes it.

kill alpha.bak deletes the module from
memory

You do not need to kill the file immediately after execution, but
until you do, the file reduces available memory.

3-9

Chapter 4

The Edit Mode

You briefly used the BASIC09 built-in editor to create the Add
procedure in Chapter 2. In addition to the features you learned
there, the editor has other important functions.

Although you can use any text editor or word processor to write
BASICO09 procedures, the BASIC09 editor offers two handy

features:

e It is both string and line number oriented. You can
search for strings of characters, and replace them, and
you can reference text with optional line numbers.

e It interfaces with the compiler and decompiler. This fea-
ture lets BASIC09 check continuously for syntax errors
and enables you to use procedures that conserve memory.

Edit Commands

The following is a summary of the edit commands:

Command Function

Moves the edit pointer to the next line. Causes
a command to execute.

+ number Moves the edit pointer ahead number lines.

+* Moves the edit pointer to the last line.

-number Moves the edit pointer back number lines.

-k Moves the edit pointer to the first line.

text Inserts an unnumbered text line before the
current line.

ntext Inserts the line numbered n in its correct
numeric position.

n Moves the edit pointer to the line numbered n.

c/strl/str2/ Changes the next occurrence of strl to str2.

4-1

BASIC09 Reference

Command Function

c*/strl/str2/ Changes all occurrences of strl to str2.

d Deletes the current line.

d* Deletes all the lines in the procedure.

1 Lists the current procedure line.

1* Lists all the procedure lines.

q Terminates the edit session.

r Renumbers lines beginning at the current line
in increments of 10.

r* Renumbers all lines in increments of 10.

rn Renumbers lines beginning at Line n in
increments of 10.

r nl n2 Renumbers lines beginning at Line n! in
increments of n2.

s /string/ Searches for the first occurrence of string.

s* /string/ Searches for all occurrences of string.

Using the Editor

The easiest way to understand the edit commands is to use
them. The following sections show you the functions of BASIC09
edit mode.

The manual uses line numbers in the following procedure to
acquaint you with all the functions of the editor. Remember,
however, line numbers are not required with BASIC09. Proce-
dures and programs without line numbers are shorter, faster,
and easier to read.

First, you need a procedure with which to work. Position your-
self in the system mode. Then, type this line:

e prose [ENTER

4-2

The Edit Mode | 4

Now, type the following. (Remember, the small rectangle repre-
sents a space.)

0188 DIM PHRASES(38):STRING

0128 FOR T=1 TO 38

1380 READ PHRASES(1)

0148 NEXT T

168 PRINT

M780 FIRST=RNDC18)

0180 SECOND=RND(9)+11

0198 THIRD=RND(9)+21

0208 PRINT PHRASES(FIRST);

0218 PRINT PHRASES(SECOND);

228 PRINT PHRASESCTHIRD);

0248 PRINT

03886 DATA "Lovel","An orangel",

"HumanityOd","A kiss"

(0318 DATA “A dark cloudd","A goose feather",
"A Popsiclel"

[J328 DATA "Home cookingd","Cold pizzall",

“"Rock n’ RollO"

0336 DATA "is charming like[,"makes me dream of{"
0348 DATA "is as sticky as(",'can ooze
liked",'"smells likeO"

[035¢ DATA "can be as tough to forget as[","can
hurt liked"

(368 DATA "can be as cynical as[]","makes a mockery
OfD"

[137¢ DATA "drives me as crazy asl"

(0388 DATA "a sticky lollipop.™,"a web of
intrigue.™

0398 DATA "castor o0il.","a chocolate bath.","a
broken toe."
0488 DATA "honey and things.","personal

defeat.","a wet diaper."”
(418 DATA "strange happenings.”,"a pennyless
purse."

When you finish typing the procedure, type g to return to
the system mode. Now you can test the program by typing
either:

run [ENTER

or

run prose ENTER

4-3

BASICO09 Reference

After trying the procedure, return to the edit mode by typing e
(ENTER].

After displaying the procedure’s name, the editor displays Line
100 preceded by an asterisk. The asterisk lets you know which
line is the current line (or the line at which the edit pointer is
located).

Searching Through a Procedure

You can examine a procedure in three ways:
® Press to display the procedure one line at a time.
@ Skip through the procedure to a particular line.
e List part or all of the procedure to the screen.

When you use either of the first two methods, the line you select
to display becomes your current line. When you use the third
method, the current line does not change.

Using [ENTER

If you are still positioned at Line 100, but want to examine the
first line of data, Line 300, press 12 times to move down.

Using the Plus Sign to Move Forward

Another method of moving to a specific line is to type a plus
sign followed by the number of lines you need to advance to get
there. Positioned at Line 100, you can type:

+12 [ENTER

Whether you press or use the plus sign, the last line dis-
played is now your current line.

4-4

The Edit Mode / 4

Accessing a Line Using the Line Number

The third way to move to a particular line is to type the line
number, followed by (ENTER]. For instance, to jump back to Line
100, type:

100

The editor displays Line 100 and makes it your current line.

Using the Minus Sign to Move Backward

In the same manner that you move forward in the procedure
using the plus sign, you can move backward using the minus
sign, or hyphen.

Type 300 to return to Line 300. To display Line 240 and
make it your current line, type:

-
To display Line 190 and make it your current line, type:

-4 (E7ER)

The Global Symbol

The BASIC09 editor also makes use of the asterisk as a global
symbol. For instance, following a command with an asterisk
causes that command to affect the entire procedure.

This feature lets you move quickly to the beginning and end of
the procedure. To return to Line 100, the first line, type:

-+ (ENTER]

To move to the end of the procedure, past all the numbered lines,
type:

+* [ENTER)

4-5

BASIC09 Reference

Using LIST

The LIST command lets you select one or more lines for display
on your screen. To see this, make the first line your current line,
then type:

1 (ENTER]

To list one or more lines, type the LIST command followed by the
number of lines you want displayed. For instance, typing 15
causes the current line and four others to appear on the
screen, as shown in the following sequence of commands and the
resulting display:

G

15 [ENTER)
PROCEDURE Prose

10¢ DIM PHRASES(3@): STRING
120 FOR T=1 TO 38

130READ PHRASESC(T)

140 NEXT T

168 PRINT

You can also use LIST with the BASIC09 global symbol, *. Typ-
ing an asterisk after the LIST command produces a listing of
the entire procedure.

Deleting Lines

Earlier, the manual showed that you can delete the current line
by typing d (ENTER). Because this is such a simple process, be
sure you don’t do it by accident. Removing the wrong line, or too
many lines, is very frustrating in a complex procedure.

You can also remove a group of lines from a procedure by typing
d, followed by the number of lines you want to delete. This com-
mand deletes the current line and specified following lines.
Again, be careful.

You can remove all of the lines in a procedure by using the
global symbol, *. Typing d« erases all procedure text.
However, the procedure name still resides in the workspace. To
delete an entire procedure, including the name, use the KILL
command from the system mode.

The Edit Mode / 4

If you decide you don’t like the nouns used in the DATA lines of
the Prose procedure, erase all of the DATA lines containing
nouns (Lines 300-320) and replace them. To do so, make Line
300 your current line by typing:

300 (ENTER]
Then type:

d (ENTER)

Line 300 disappears and Line 310 takes its place as the current
line.

An alternate method of deleting the DATA lines uses only one
command. To delete Lines 300 through 410, follow the DELETE
command with the number of lines you want to remove—in this
case, three:

d3 [ENTER]

Lines 300, 310, and 320 disappear. Line 330 becomes the cur-
rent line. Move back a line to check that the deletions worked.
The line numbers now skip from 240 to 330.

Now, you need new nouns for the procedure. Type them in the
same style as the old lines, such as:

0328 DATA "A Telephonel,™A tickled",

"A girld","A boyd"

0315 DATA "Bad luck@","Moneyd","A bad betd",
"A lumpy bedd"

0328 DATA "A deep thoughtd","SunlightO"

Save a copy of your procedure to disk by exiting the editor and
using the SAVE command. Then return to the edit mode and try
the global delete by typing:

o+ (ENTER]

Changing Text

Using CHANGE tells the editor to search for existing text and
replace it with new text. CHANGE, like DELETE, can easily
cause unwanted results if you are not careful.

4-7

BASIC09 Reference

The CHANGE command requires that you use delimiters to sep-
arate the command from the search text, and to separate the
search text from the new text. You can select any of the following
characters for a delimiter, as long as it does not appear in either
the search text or the new text:

P"# % & ()-+ ={}[]""<>,.7/\|

Do not use the global symbol (*) for search and replace opera-
tions. This manual uses a slash (/) as the CHANGE delimiter.

The following steps outline the correct use of CHANGE:

1. Position the editor either before or on the line in which
you want to make a change.

2. Type ¢ (for CHANGE). Do not use a preceding space.
3. Type a delimiter character, such as /.

4. Type the characters to be changed, following them with
the delimiter.

5. Type the new text, followed by the delimiter.
6. Press [ENTER).

Note: It is a good idea to turn on 0S-9’s upper- and lower-
case function before attempting change or search opera-
tions. If you do not, you cannot tell whether the text you
want to find is upper- or lowercase, or some combination of
the two. If you type the wrong case, the change or search
fails.

In case you didn’t notice when typing the procedure, Line 410
contains an incorrectly spelled word, pennyless. To correct this
error, type the following:

c/pennyless/penniless/

Immediately, the editor displays Line 410, with pennyless
changed to penniless.

Suppose you decide to change the number of sentence combina-
tions available in Prose. The procedure now has 30 data entries.
If you add five subjects, five verb phrases, and five objects, the
procedure also needs other changes (for instance, the DIM state-
ment in Line 100, the loop size in Line 120, and the RND state-
ments in Lines 170 through 190).

4-8

The Edit Mode / 4

A quick way to change the number 30 in Lines 100 and 120 is
to use CHANGE'’s global function. To change all occurrences of
30 to 45, position the editor at Line 100, and type:

c*/30/45/

Use the CHANGE and global CHANGE functions to adjust the
RND statement values in Lines 170, 180, and 190.

As well as making changes, you can use the CHANGE command
to quickly delete portions of text within a line. To do this, type
delimiters without new text, in this fashion:

c/Ofeather//

This command changes the text A goose feather in Line 210
to A goose.

Searching for Text

The editor’s SEARCH command, S, works in the same manner
as the CHANGE command. However, SEARCH only requires
you to specify a block of text to find.

With SEARCH, you use delimiters to enclose the text to find. To
test the function, position the editor at the beginning of text by

typing:
-

Now, search for the word phrases, by typing:
s/phrases/

The screen displays:
*0008 1 DIM phrases(30):STRING

To find all occurrences of phrases throughout the procedure, use
the global symbol. Type:

s*/phrases/ [ENTER

4-9

BASICO09 Reference

Renumbering Lines

The RENUMBER command, R, reorders all numbered lines and
all references to numbered lines. You can give RENUMBER
either one or two parameters. The first is the beginning line
number. The second is the increment you want. The default
increment is 10.

For instance, the Prose procedure line numbers skip from Line
100 to Line 120. You can renumber the entire procedure by mov-
ing the editor to Line 100, and then typing:

r 18 [ENTER

To change the numbering to increments of 5, beginning at Line
100, type:

r 168,5 [ENTER

You can also change line numbering in portions of the procedure.
To do this move the editor to the line where you want the new
numbering to begin. Then, type in the new parameters. To
renumber Line 100 as Line 200 and continue with increments of
10, position the editor at Line 100. Then, type:

r 200,10 (ENTER)

If you are not positioned at the first line of a procedure, but you
wish to renumber all lines, you can use the global symbol to do
the job. From anywhere in the procedure, type:

r* 100,10 [ENTER

This renumbers the entire procedure in increments of 10.

Adding Lines
There are two ways to add new lines to a procedure. You can:

@ Position the editor one line below the position for the new
line. Then, type the new line and press (ENier). When
inserting lines without numbers, be sure to type a space
as the first character of the line to tell the editor that
the following text is a new procedure line.

® Type a new line, giving it a line number that falls
between two existing line numbers.

4-10

The Edit Mode / 4

The following procedure adds more choices to the Prose program.
It also adds a feature that lets you press for additional
output, rather than having to rerun the procedure. Use the
information presented in this section to help you insert the new
lines into your program. Because you must change some lines,
as well as add lines, the following listing includes the entire
procedure.

Referring to the original Prose listing, the lines to change are:
100, 120, 170, 180, and 190.

The lines to add are: 110, 150, 230, 250, 260, 270, 305, 325,
372, 374, 376, 420, 430.

PROCEDURE prose2

168 DIM PHRASES(45):STRING

118 DIM RESPONSE:STRING

120 FOR T=1 TO 45

138 READ PHRASES(1)

148 NEXT T

150 REPEAT

160 PRINT

178 FIRST=RND(C15)

188 SECOND=RND(14)+16

190 THIRD=RND(14)+31

299 PRINT PHRASES(FIRST);

210 PRINT PHRASES(SECOND);

220 PRINT PHRASES(THIRD);

230 PRINT

240 PRINT

258 PRINT "[III000Press ENTER for another
witticism..."

266 INPUT "0000000000r press the SPACEBAR and press
ENTER to end...",RESPONSE

270 UNTIL RESPONSE>"™™

368 DATA "Love[","An orangel™,"“Humanityd",
"A kissO"

385 DATA A computer(”,"A bookd","Miseryd"
318 DATA "A dark cloudd","A goose featherD",
“A Popsiclel" '

32¢ DATA "Home cookingd*,"Cold pizzal",
“Rock n’ Roll(™

325 DATA "Snow in June(","A glass house["
33¢ DATA "is charming like[","makes me dream of("

4-11

BASICO09 Reference

340 DATA "is as sticky asO","can ooze like[",
“"smells like["

350 DATA

""'can be

"can hurt like("

368 DATA
"makes a
370 DATA
372 DATA
likeO"
374 DATA
as{"

376 DATA
380 DATA

intrigue.

39@ DATA

"can be
mockery
"drives

as tough to forget as(",

as cynical as[]",
of{"
me as crazy as("

"can bother me like[",'"blackens my hopes

"can tickle me likel","can be as funny

'"has the effect of(™
"a sticky lollypop.","a web of

"castior

broken toe."
4008 DATA "honey and things.","personal
defeat.","a wet diaper.”

418 DATA '"sirange happenings.","a penniless

purse."

0il.","a chocolate bath.","a

420 DATA "™a slimy snake.","a bad habit."

438 DATA

silly friend."”

The Next Step

Even the best programmers make mistakes—a lot of them.
BASICO9 provides a way to catch programming mistakes quickly
and correct them. The next chapter tells you about BASIC09’s
powerful debugging functions.

a bad memory chip.","a good fight.","a

4-12

Chapter 5

The Debug Mode

The term debug refers to the process of finding programming
errors and correcting them. BASIC09’s debugging features
include symbolic debugging capabilities that let you examine
variable values and test and manipulate procedures.

With Debug, you can:
® Examine and change variables.

@ Trace procedure execution. Debug lets you execute proce-
dures and watch them run in slow motion.

@ Pause procedure execution.
@ Resume procedure execution.

® Set procedure breakpoints that automatically switch to
the debug mode.

@ Select the use of degrees or radians for trigonometric
functions.

® Perform calculations.

e (Call OS-9 system commands.

Entering the Debug Mode
You enter Debug:

@ Automatically, whenever an error occurs during the exe-
cution of a procedure (unless you have included an ON
ERROR GOTO statement to handle the error).

@ Automatically, when a procedure executes a PAUSE

statement.
© When you press during the execution of a
procedure.

You can tell when BASIC(09 enters the Debug mode by the
appearance of the D: prompt. When you see D:, followed by the
cursor, Debug is waiting for your command.

The following is a reference of all the Debug commands and what
they accomplish:

BASICO09 Reference

Command

Function

$

BREAK

CONT

DEG/RAD

Calls 0S-9’s command shell interpreter to run
a program or an 0OS-9 command. From the
Debug prompt, type $, followed by the name of
the program or command you want to execute.

Example: $1ist procedure_one

Sets a breakpoint immediately before the spec-
ified procedure. Use this command to re-enter
Debug when one procedure calls another.

If you have three procedures that call each
other—Procl, Proc2, and Proc3—and Proc3
does not seem to pass the correct values to
Proc2 when it returns, set a breakpoint at
Proc2. This causes BASIC09 to enter Debug
before re-entering Proc2. You can then check
your variable values.

You can use one breakpoint for each active pro-
cedure. Debug removes breakpoints immedi-
ately after encountering them.

A procedure must run before you can set a
breakpoint in it. Use BREAK to stop execution
when a called procedure returns to a proce-
dure previously executed.

Example: BREAK proc?2

Causes procedure execution to continue.

Example: cont [ENTER

Selects either degrees or radians as the unit of
measurement for trigonometric functions. DEG
and RAD affect only the current procedure.

Examples: deg
rad

The Debug Mode / 5

DIR

LET

LIST

PRINT

STATE

Displays the name, size, and variable storage
requirements of each procedure in the work-
space. The current working procedure has an
asterisk before its name. All packed proce-
dures have a dash before their names. DIR
also shows the available memory in the
workspace.

If you provide a pathlist, DIR sends its data to
the specified file.

Example: dir [ENTER
dir procedures [ENTER

Terminates execution of the procedure, closes
any open paths, and exits to the System mode.

Example: q

Assigns a new value to a variable. You must
specify variable names that are already ini-
tialized by your program. In the Debug mode,
you cannot use LET to copy one array to
another array as you can in BASIC
procedures.

Example: let a := @
let fruit := "oranges" (ENTER]

Displays a source listing of the suspended pro-
cedure. The display is formatted and includes
I-code addresses. An asterisk appears to the
left of the last executed statement.

Example: list

Displays the values of variables used in the
suspended procedure. You cannot introduce
new variable names in the Debug mode, and
you cannot display array structures.

Example: print fruit

Lists the nesting order of active procedures.
STATE displays the highest-level procedure at
the bottom of the calling list. The lowest-level
procedure is the suspended procedure.

Example: state

5-3

BASICO09 Reference

STEP

TRON/TROFF

Causes execution of the suspended procedure
in specified increments. For example, typing
STEP & executes the equivalent of the
next five statements. If you enter STEP with-
out an increment value, the step rate is 1.

Using STEP with the trace function lets you
observe the source lines as they execute.

Because compiled I-code contains actual state-
ment memory addresses, the top or bottom
statements of loop structures execute only
once. For example, in FOR/NEXT loops, FOR
executes once, and the statement following
FOR appears to be the top of the loop.

Turns on or turns off the trace function. Trace
on (TRON) causes the system to reconstruct
the compiled code of each statement line into
source code. Debug displays the source code
before the statement is executed. If the state-
ment causes the evaluation of one or more
expressions, Debug displays each result follow-
ing the statement. The result is preceded by
an equal sign.

The trace function is local to the current pro-
cedure. If the suspended procedure calls
another procedure, Debug suspends the trace
function until control returns to the original
procedure. However, once you turn on trace for
a procedure, it continues in effect until you
turn it off. This means that if you turn trace
on in a called procedure, and another proce-
dure subsequently calls it, trace continues to
display the called procedure’s operations.

Example: tron
troff

When Things Go Wrong

Programming errors show up in two ways. Either your procedure
produces incorrect results, or it terminates prematurely.

5-4

The Debug Mode / 5

In the first instance, you can stop your procedure and enter

Debug by pressing (CTRL](C].

However, sometimes your program executes too quickly to allow
you to stop it at the appropriate place. In this case, you can use
the Edit mode to insert a PAUSE command where you wish the
procedure to stop. PAUSE causes the procedure to halt execution
and enter the Debug mode.

Once in Debug, you can use the PRINT command to examine
the procedure variables. You can use LET to manipulate the
variable values to determine where the error or errors occur. Per-
haps you forgot to initialize a variable or forgot to increase a loop
counter.

Using the Trace Function

Sometimes, errors are more difficult to discover. If so, the next
step is to use the trace function. To do this, type:

tron [ENTER

Now press [ENTEr). Each time you press (ENTER), Debug executes
one line of the procedure. You can see the original source state-
ment, and if an expression is evaluated, Debug prints the result
of the expression, preceded by an equal sign.

In this manner, you can step through the entire procedure, or
any part of it, examining variable values as you go.

What About Loops?

The STEP command is helpful if you find yourself tracing the
operation of a loop. Once you determine that the loop works cor-
rectly, you can avoid tedious, step-by-step repetitions by turning
trace off and using STEP to quickly run through the loop. Then,
turn trace back on and resume single-step debugging. For
instance, type:

troff [ENTER
siep 200 [ENTER
tron [ENTER

5-5

BASICO09 Reference

In Multiple Procedures

Although the trace function is local to a procedure, you can
pause and turn on the trace function in as many procedures as
you wish. Trace continues to operate in each procedure until you
turn it off using TROFF.

To cause a procedure to halt execution when it is called by
another procedure, use the BREAK command.

Chapter 6

Data and Variables

Data Types

Data is information on which a computer performs its operations.
Data is always numeric but, depending on your computer appli-
cation, it can represent values, symbols, or alphabetic characters.
This means that the same items of physical data can have very
different logical meanings, depending on how a program inter-
prets it.

For instance, 65 can represent:
@ A numeric value to be used in a calculation.
@ The location of a memory address.
@ The offset of a memory location.
@ The two character symbols 6 and 5.

@ The character A in the ASCII table. ASCII is the abbre-
viation for the American Standard Code for Information
Interchange.

Because of the differences in how BASIC09 uses data, the sys-
tem lets you define five types of data. For instance, there are
three ways to represent numbers. Each has its own advantages
and disadvantages. The decision to use one way or another
depends on the specific program you are developing. The five
BASICO09 data types are byte, integer, real, string, and Boolean.

In addition to the preceding data types, there are complex data
types you can define. The manual discusses complex data struc-
tures at the end of this chapter.

The byte, integer, and real data types represent numbers.

The string data type represents character data (alphabet, punc-
tuation, numeric characters, and other symbols). The default
length of strings is 32 characters. Using the DIM statement, you
can specify strings of both longer and shorter lengths.

The Boolean data type represents the logical value, TRUE or
FALSE.

6-1

BASICO09 Reference

You can create arrays (lists) of any of these data types with one,
two, or three dimensions. The following table shows the data
types and their characteristics:

Memory

Type Allowable Values Requirements
BYTE Whole numbers (0 to 255) One byte
INTEGER Whole numbers (-32768 Two bytes

to 32767)
REAL Floating point Five bytes

(£1*%107= 38)
STRING Letters, digits, One byte per

punctuation character
BOOLEAN True or false One byte

Real numbers appear to be the most versatile. They have the
greatest range and are floating point. However, arithmetic opera-
tions involving real numbers execute much more slowly than
those involving integer or byte values. Real numbers also take
up considerably more memory storage space than the other two
numeric data types.

Arithmetic involving byte values is not appreciably faster than
arithmetic involving integers, but byte data conserves memory.

If you do not specify the type of variable (a symbolic name
for a value) in a DIM statement, BASIC09 assumes the vari-
able is real.

The Byte Data Type

Byte variables hold unsigned eight-bit data (integers in the
range 0 through 255). Using byte values in computations,
BASICO09 converts the byte values to 16-bit integer values. If you
store an integer value that is too large for the byte range,
BASICO09 stores only the least-significant eight bits (a value of
255 or less), and does not return an error.

Data and Variables | 6

The Integer Data Type

Integer variables require two bytes (16 bits) of storage. They can
fall in the range -32768 to 32767. If a calculation involves both
integer values and real values, BASIC09 presents the result of
the calculation as a real number.

You can also use hexadecimal values in integer data. To do so,
precede the value with the dollar sign ($). For instance, to repre-
sent the decimal value 199 as hexadecimal, type $¢7. The hexa-
decimal value range is $0000 through $FFFF.

If you give an integer variable a value that is outside the integer
range (greater than 32767 or less than -32768), BASIC09 does
not produce an error. Instead it wraps around the value range.
For instance, the calculation 32767 + 1 produces a result of
-32768.

This means that numeric comparisons made on values in the
range 32768 through 65535 deal with negative numbers. You
should limit such comparisons to tests for equality or non-
equality. Functions such as LAND, LNOT, LOR, and LXOR use
integer values but produce results on a non-numeric, bit-by-bit,
basis.

Division of an integer by another integer yields an integer.
BASICO09 discards any remainder.

The Real Data Type

If you do not assign a data type to a variable, BASIC09 assumes
the variable is real. However, programs are easier to understand
if you define all variable types.

BASICO09 stores as real values any constants that have decimal
points. If a constant does not have a decimal point, BASIC09
stores it as an integer.

BASICO09 requires five consecutive memory bytes to store real
numbers. The first byte is the exponent, in binary two’s comple-
ment. The next four bytes are the binary sign and magnitude of
the mantissa. The mantissa is in the first 31 bits; the sign of
the mantissa is in the last (least-significant) bit of the last byte.
The following illustration shows the memory storage of a real
number:

6-3

BASIC09 Reference

Internal Representation of Real Numbers

exponent mantissa S
1

1 L

byte: 0 1 2 3 4

The exponent covers the range 2.938735877x10-3° (2-128)
through 1.701411835x10% (2'%") as powers of 2. Operations that
result in values out of the representation range cause an over-

flow or underflow error. You can handle such errors using the ON
ERROR command.

The mantissa covers the range 0.5 through .9999999995 in steps
of 2731, This means that real numbers can represent values
.0000000005 apart. BASIC09 rounds operation values that fall
between these points to the nearest point.

Because floating point arithmetic is inherently inexact, a
sequence of operations can produce a cumulative error. Proper
rounding, as implemented in BASIC09, reduces the effect of this
problem, but cannot eliminate it. When using real quantities in
comparisons, be sure your computations can produce the exact
value you desire.

String Variables

A string is a variable-length sequence of ASCII values. The
length can vary from 0, a null string, to the capacity of the
memory available to BASIC09.

You can define a string variable either explicitly, using the DIM
statement, or implicitly by appending the dollar sign ($) to the
variable identifier (variable name). For example, title$ implicitly
identifies a string variable.

Unless you specify otherwise, BASIC09 assigns a maximum
string length of 32 characters. Using the DIM statement, you
can specify a maximum length either less than or greater than
32. To conserve memory, use DIM to assign only the maximum
length you need for any string variable.

The beginning of a string is always Character 1. The BASE
statement, which sets numeric variable base numbers as either 0
or 1, does not affect string variables.

6-4

Data and Variables / 6

If an operation results in a string too long to fit in the assigned
maximum storage space, the system truncates the string on the
right. It does not produce an error.

String storage is fixed at the dimensioned length. The sequence
of actual string byte values is terminated by the value of zero, or
by the maximum length allotted to the string. Any unused stor-
age after the zero byte allows the stored string to expand and
contract within its assigned length.

The following example shows the internal storage of a variable
dimensioned as string [61 and assigned the value “SAM”.
Note that Byte 4 contains the string terminator 00. The string
does not use bytes following 00.

S A M 00
byte: 1 2 3 4 5 6

If you assign the value “ROBERT” to the variable, BASIC09 does
not need to terminate the string with 00 because the string is
full:

R 0 B E R T
byte: 1 2 3 4 5 6

The way BASIC09 handles string storage is important when you
write programs. If you do not specify a length for strings you
define, the system uses the default length 32. As you can see,
this wastes computer memory if you store strings of only four or
five characters.

The Boolean Type

A Boolean operation always returns either the character string
“TRUE” or “FALSE”. You cannot use the Boolean data type for
numeric computation—only for comparison logic.

Do not confuse the Boolean operations AND, OR, XOR, and NOT
(which operate on the Boolean values TRUE and FALSE) with
the logical functions LAND, LOR, LXOR, and LNOT (which use
integer values to produce numeric results on a bit-by-bit basis).
An attempt to store a non-Boolean value in a Boolean variable,
causes an error.

6-5

BASICO09 Reference

Automatic Type Conversion

When an operation mixes numeric data types (byte, integer, or
real values), BASIC09 automatically and temporarily converts
the values to the type necessary to retain accuracy. This conver-
sion lets you use numeric quantities of mixed types in most
calculations.

The system returns a type-mismatch error when an expression
includes types that cannot legally mix. These errors are reported
by the second compiler pass, which occurs automatically when
you exit the edit mode.

Because type conversion takes additional execution time, you can
speed calculations by using values of a single type.

Constants

Constants are values in a program that do not change. They can
use any of the five data types. The following are examples of con-
stants in a procedure:

HOMES$="Fort Worth"
VALUE$="$25,000
VALUE=25
PAYMENT=99.99
ANSWER="TRUE""
MEMORY=$8CFF

PRINT "The End"

Numeric constants are either integers or real numbers. If a
numeric constant includes a decimal point or uses the “E format”
exponential form, it causes BASIC09 to store the number in the
real format, even if it could store the number in integer or byte
format.

You can use this feature to force a real format. For instance, to
make the number 12 a real number, type it as 12.0. You might
want to force real values in this way when all other values in an
expression are real so that BASIC09 does not have to do a time-
consuming type conversion at run time.

6-6

Data and Variables | 6

BASICO09 also stores as real numbers any numbers that do not
have decimal points but that are too large to store as integers.
Here are some examples of legal real constants:

1.0 9.8433218 -.01
-999.000099 100000000 5644.34532
1.95E +12 1 -99999.9E-33

BASICO09 treats numbers that do not have a decimal point and
are in the range -32768 through +32767 as integers. You must
always precede hexadecimal numbers with a dollar sign.

Following are examples of legal integer constants:

12 -3000 55
$20 $FF $09
0 -12 -32768

String Constants

A string constant consists of a sequence of characters enclosed in
double quotation marks, such as:

“The End"

To place a string constant in a string type variable, use the
equal symbol in this manner:

TITLE$ = "Masters 0f Magic"

To include double quotation marks within a string, use two sets
of double quotation marks, like this:

“An "older man''! is wiser.™

A string can contain characters that have ASCII values in the
range 0 through 255.

Variables

In BASIC09, a variable is local to the procedure in which it is
defined. A variable definied in one procedure has no meaning in
another procedure unless you use the RUN and PARAM state-
ments to pass the variable when you call the other procedure.

The local nature of variables lets you use the same variable
name in more than one procedure and, unless you specify other-
wise, have the variables operate independently of each other.

6-7

BASIC09 Reference

You can assign variables using either the LET statement with
the assign symbol (=), or by using the assign symbol alone. For
instance, both the following command lines are legal:

LET PAYMENT=44.5¢
PAYMENT=44,50

When you call a procedure, BASIC09 allocates storage for the
procedure’s variables. It is not possible to force a variable to
occupy an absolute address in memory. When you exit a proce-
dure, the system returns the storage allotted for variables, and
you lose the stored values.

If you write a procedure to call itself (a recursive procedure), the
call creates separate storage space for variables.

Note: Unlike other BASICS, BASIC09 does not automati-
cally initialize variables by setting them to zero. When you
execute a procedure, all variables, arrays, and structures
have random values. Your procedure must initialize the
variables you specify to the values you require.

Passing Variables

When one procedure passes variable values to another procedure,
BASICO09 refers to the passed variables as parameters. You can
pass variables either by reference or by value.

BASICO09 does not protect variables passed by reference. There-
fore, the called procedure can change the values and return the
new values. BASIC09 does protect variables passed by value, so,
the called program cannot change them.

To pass a parameter by reference, enclose the name of the vari-
able in parentheses as part of the RUN statement in this
manner:

RUN RANDOMC18) passes the value 10 to a procedure
called Random

The system evaluates the storage address of each passed vari-
able, and sends the variable to the called procedure. The called
procedure associates the storage addresses with the names in its
local PARAM statement. It then uses the storage area as though
it had created it locally. This means it can change the value of
the parameter before returning it to the calling procedure.

6-8

Data and Variables / 6

To pass parameters by value, write the value to be passed as an
expression. BASIC09 evaluates the expression at the time of the
call. To use a variable in an expression without changing its
value, use null constants, such as 0 for a number or "" for a
string, in this manner:

RUN ADDCOLUMNCx+@) passes the value of x by
value

RUN TRANSLATECw$+"") passes the contents of w$ by
value

To pass parameters by value, BASICO9 creates a temporary vari-
able. It places the result of the expression in the temporary vari-
able and sends the address to the called procedure. This means
that the value given to the called procedure is a copy of the
result of the expression, and the called procedure cannot change
the original value.

The results of expressions containing numeric constants are
either integer or real values; there are no byte constants. To
send byte-type variables to a procedure, pass the values by refer-
ence. Therefore, if a RUN statement evaluates an integer as a
parameter and sends it to a byte-type variable, the byte variable
uses only the high-order byte of the two-byte integer.

Arrays

An array is a group of related data values stored consecutively
in memory. The system knows the entire group by a variable
name. Each data value is an element. You use a subscript to refer
to any element of the array. For example, an array named Graf
might contain five elements referred to as:

GRAFC1) GRAF(2) GRAF(3) GRAF (4) GRAF(S5)

You can use each of these elements to store a different value,
such as:

GRAF(1Y = 25
GRAF(2) = 47
GRAF(3)> = 39
GRAF(4) = 18
GRAF(5) = &0

6-9

BASICO09 Reference

Note: Normally, array elements start with 1 in BASIC09.
However, you can use the BASE command to cause array
elements to begin at 0.

The previous example illustrates a single-dimensioned array. The
elements are arranged in one row and only one subscript is used
for each element.

The following procedure lets you type values for a GRAF array,
and displays the results in a simple graph.

PROCEDURE GRAF

ODIM GRAF(5):REAL

OSHELL "DISPLAY @C™

OFGBR T=1 TO 5

OPRINT "Value for Item #l's Ty v,
OINPUT GRAF(t)

ONEXT T

OPRINT

OPRINT

OPRINT "This is how your graph stacks up..."
OPRINT

OFOR T=1 TO 5§

OPRINT "Item #"; T3 "0,

OFOR U=1 TO GRAFC(T)

OPRINT CHR$(79);

ONEXT U

OPRINT

ONEXT T

OPRINT

JEND

This program uses a single dimension array—in effect, a list.

You can also create arrays with more than one dimension —
more than one element for each row. You might use a two-dimen-
sioned array in a program to store names and addresses. Instead
of creating separate arrays for the name, address, and zip code,
you could set up one array with two dimensions.

6-10

Data and Variables /| 6

The following program, used to enter the names of a company’s
employees, shows how this might be done. See the second line for
the DIM syntax. When you run the procedure, it asks you for a
name, address, and zip code for each of 10 employees. After you
type the information for all the entries, the procedure displays
the information on the screen.

PROCEDURE Names
ODIM NAMEC10,3):STRING
OSHELL "™DISPLAY @cC"

[OBASE @

[OFOR T=8 TO 9

OPRINT "Type Employee Name No."; Tj; ™: ;
OINPUT NAMECT,2)

OPRINT "Type Employee Address No.'"; T; *: *;
OINPUT NAMECT,1)

OPRINT "Type Employee Zip Code No."; Tj; ": ';
OINPUT NAMECT,2)

ONEXT T

OSHELL *"DISPLAY gcC"

OPRINT *And the names are..."

OPRINT

OFOR T=0 TG 9

OPRINT NAMECT,0)>; "O"; NAMECT,1); "“O'; NAMECT,2)
ONEXT T

OEND

The DIM statement reserves space in memory for a string array
named Name, with two dimensions. As you enter data, the Name
field is stored in Name(8,8), Name(1,8), Name(2,8), and so on.
The Address field is stored in Name(C8,1), NameC1,1),
Name(2,1), and so on. The Zip field is stored in Name(g,2),
Name(1,2), Name(2,2), and so on. This continues until you fill
the grid, 10 entries with three items each.

You can also create arrays with three dimensions. The following
program adds one more dimension that keeps track of each
employee’s company. It dimensions Name$ as Name$(2,18,3).
The first dimension contains either 0 or 1 to indicate to which
company the employee belongs.

6-11

BASICO09 Reference

PROCEDURE names2

ODIM NAME$(2,108,3):STRING

OSHELL "DISPLAY @c™

[OBASE @

OFOR X=6 TO 1

OPRINT

OPRINT

OFOR T=8 TO 9

OPRINT

OIF X=0 THEN

OPRINT "Type a Wiggleworth Company employee
name..."

OELSE

OPRINT “Type a Putforth Company employee name...
OENDIF

OPRINT "Type Name No.'"; T; ": ';
OINPUT NAMES$C(X,T,0)

OPRINT "Type Address No."™; Tj; ™: *;
OINPUT NAME$CX,T,1)

OPRINT "Type Zip Code No."; T; ": ";
OINPUT NAMES$C(X,T,2)

ONEXT T

ONEXT X

OSHELL "DISPLAY a@cC®

OPRINT "“The Wiggleworth employees are...
OPRINT

OXx=0

OFOR T=8 TO 9

OPRINT NAMES$CX,T,8); "O"; NAMES$CX,T,1); "[Ov;
NAMES$(X,T,2)

ONEXT T

OPRINT

OPRINT "The Putforth Company employees are...
OPRINT

0x=1

OFOR T=0 TD 9

OPRINT NAMES$CX,T,8); "O"; NAME$CX,T,1); “O";
NAMES$(X,T,2)

ONEXT T

JEND

6-12

Data and Variables | 6

The easiest way to understand three dimensional arrays is to
consider the first dimension as a page. In other words, if the first
dimension in the string is 0, the employee is on the Wiggleworth
Company’s page. If the first dimension in the string is 1, the
employee is on the Putforth Company’s page.

Complex Data Types

In addition to the five standard data types, you can create your
own data types. Using the TYPE command, you can define a
new data type as a vector (a single-dimensioned array) of any
previously defined type.

For example, in the previous program, the Name variable can
contain only one type of data, the string type. However, using
the TYPE command you can create a variable that accepts sev-
eral data types.

Suppose you create an employee list procedure that uses the fol-
lowing variables, of the following size and types:

Name Length Contents Type
Name 25 employee name string
Street 20 street address string
City 10 city of address string
Zip — address zip code integer
Sex — false = male, true = female Boolean
Age — employee age byte

You can combine all these variables into one complex data type.
To do so, dimension the variables within a TYPE command line,
like this:

TYPE EMPLOYEE=NAME:STRINGI251; STREET:STRINGL261;
CITY:STRING[181; ZIP:REAL; SEX:BOOLEAN; AGE:BYTE

This creates a new BASIC09 type, called Employee. Employee
requires its variables to have six fields of the name, size, and
type shown in the previous chart.

Once you create the new data type, you can define variables to
use it. For instance, the following program line defines Worker as
type employee, with 10 elements in the array:

ODIM WORKERC1@):EMPLOYEE

6-13

BASIC09 Reference

To put the employee data type to work, collect your data with
INPUT commands. Then, store the data into the new Worker
array. The following program demonstrates how you might do
this:

PROCEDURE worker

OREM Dimension variables for input

[ODIM NM:STRINGIL[251]

[DIM ST:STRINGI[28]

ODIM CTY:STRINGL18]

ODIM ZP:REAL

ODIM SX:BODLEAN

ODIM AG:BYTE

OREM Create new type and array using new
type

OTYPE EMPLOYEE=NAME:STRINGI25]1; STREET:STRINGL[261;
CITY:STRINGI[18 13 ZIP:REAL; SEX:BOOLEAN; AGE:BYTE
ODIM WORKERC18):EMPLOYEE

OREM

OFDOR T=1 TO 10

OINPUT "Name:[(",NM

OINPUT "Stireet:0",ST

OINPUT "City:0",CTY

UINPUT "“Zip:0",2ZP

OINPUT "“Sex:[*,S5X

UINPUT *Age:0",AG

UREM Store input in the Worker array using
field names

OWORKERCT) .NAME =NM

OWORKERCT).STREET=ST

OWORKERCT).CITY=CTY

OWORKERCT).ZIP=2P

OWORKERCT).SEX=5X

OWORKERCT).AGE=AG

OPRINT

OPRINT "% % % # % % % % % % % % % ® % % # % % %9
OPRINT

ONEXT T

OSHELL *DISPLAY C0C)O"™

OPRINT "The names in your files now are...™
OPRINT

OFOR T=1 TO 10

OPRINT WORKERCT).NAME

OPRINT WORKERCT).STREET

OPRINT WORKERCT).CITY

6-14

Data and Variables | 6

OPRINT WORKERCT).ZIP
OIF WORKERCT).SEX=TRUE
OTHEN PRINT "Female"

UELSE

OPRINT "Male™

OENDIF

OPRINT WORKERCT).AGE
OPRINT

OPRINT ™% * % % * % % % % % % % % % * % % % % *'"
OPRINT
ONEXT T

Note that the Sex field is defined as Boolean. This means that
you can respond only in two ways, TRUE or FALSE. The method
of input requires only one byte of storage. To use this data you
need to handle it so TRUE and FALSE indicate female and male.

Complex data types can contain more than one field. Each field
can be of any data type. You reference the fields of a complex
data type by typing the variable name, its array index, a period
(), and the field name. The following lines, from the Worker pro-
cedure, show how BASIC09 stores the data from the input lines
into the Worker variable:

WORKERCTY . NAME=NM
WORKER(CT) .STREET=ST
WORKERCT).CITY=CTY
WORKERCT).ZIP=2P
WORKERCT).SEX=5X
WORKERCT).AGE=AG

These lines store the values in the variables NM, ST, CTY, ZP,
SX, and AG into the NAME, STREET, CITY, ZIP, SEX, and
AGE fields of the Worker variable. This operation is within a
FOR/NEXT loop that uses T as a counter. In the procedure, T
can refer to a value in the range 1 to 10.

The procedure uses the same type of operation to extract the
data from the complex data type variable:

6-15

BASICO09 Reference

PRINT WORKERCT).NAME

PRINT WORKERCT).STREET

PRINT WORKERCT).CITY

PRINT WORKERCT).ZIP

IF WORKERCT).SEX=TRUE THEN PRINT "“Female"
ELSE PRINT "Male"

ENDIF

PRINT WORKERCT).AGE

Using the same methods, you can create complex data types that
combine other complex data types and standard data types.

The elements of a complex structure can be copied to another
similar structure. Using a single assignment operator, you can
write an entire structure to, or read an entire structure from,
mass storage as a single entity. For example:

PUT #2, WDRKERCT)

Because the system defines the elements of complex-type storage
during compilation, it need not do so during runtime. This
means that BASIC09 can reference complex structure faster than
it can reference arrays.

6-16

Chapter 7

Expressions, Operators, and
Functions

Manipulating Data

BASICO09 uses expressions to manipulate data. (Expressions are
pieces of data connected by operators.)

An operator is a symbol or a word that signifies some action to
be performed on the specified data. Each data item is a value.

Expressions

When an expression is evaluated, the result is a value of some
data type (real, integer, string, byte, or Boolean).

An expression might look like this:

First First Second Second
Value Operator Value Operator Result
6 + 5 = 11

or like this:

First First Second Second
Value Operator Value Operator Result
“Seaside” + “Villa” = Seaside
Villa

When BASIC09 evaluates an expression, it copies each value onto
an expression stack. Functions and operators take their input
values from this stack and return their results to it. Many
expressions result in assignments, as do the examples shown.
The BASIC09 makes the resulting assignment only after it com-
putes the entire expression. This lets you use the variable that is
being modified as one of the values in the expression, such as in
this example:

X=X+1

BASICO09 Reference

The result of an expression is always one of the five BASIC09
data types. However, you can often mix data types within an
expression and, in some cases, the result of an expression is of a
different data type than any of the values in the expression.
Such is the case if you use the less-than symbol (<), in this
manner:

24 < 108

The less-than operator compares two integer values. The result
of the comparison is Boolean; in this case, the value is TRUE.

Type Conversion

Because BASIC09 performs automatic type conversion of values,
you can mix any of the three numeric data types in an expres-
sion. When you mix numeric data types, the result is always of
the same type as the value having the largest representation, in
this order: real < integer < byte.

You can use any numeric type in an expression that produces a
real number. If you want an expression to produce a byte or inte-
ger type value, the result must be small enough to fit the
desired type.

Operators

BASICO09 has operators to deal with all types of data. Each oper-
ator, except NOT and negation (unary -), takes two values or
operands, and performs an operation to produce a result. NOT
can accept only one value. The following table lists the operators
available and the types of data they accept and produce.

Because the same operators function on the three types of
numeric data (byte, integer, and real), these types are referred to
by the operand type “numeric.”

Expressions, Operators, and Functions | 7

BASIC09 Expression Operators

Operand Result

Operator Function Type Type

- Negation numeric numeric
" or ** Exponentiation numeric numeric
* Multiplication numeric numeric
/ Division numeric numeric
+ Addition numeric numeric
- Subtraction numeric numeric
NOT Logical Negation Boolean Boolean
AND Logical AND Boolean Boolean
OR Logical OR Boolean Boolean
XOR Logical Exclusive OR Boolean Boolean
+ Concatenation string : string

= Equal to all types Boolean
<> or >< Not equal to all types Boolean
< Less than numeric, string? Boolean
<= or =< Less than or equal numeric, stringt Boolean
> Greater than numeric, string? Boolean

>= or => Greater than or equal numeric, stringt Boolean

7 When comparing strings, BASIC09 uses the ASCII values of
characters as the basis for comparison. Therefore, 0 < 1,9 < A,
A<B,A<b,b <z and so on.

Arithmetic Operators

Arithmetic operators perform operations on numeric data. There-
fore, both operands in the expression must be numeric. The fol-
lowing table lists the arithmetic operators.

Negation The single dash negates a number’s sign:
-10 is negative 10.

Exponentiation Use a caret (") or two asterisks (x*) to raise
a number to a power: 2°3 is 8 (2 x 2 x 2).
Similarly, 2#%3 is 8.

" Multiplication A single asterisk causes multiplication:
2 3is 6.
Division A slash causes division: 6 / 2 is 3.

7-3

BASICO09 Reference

Addition The plus sign causes addition: 3 + 3 is 6.

Subtraction A dash causes subtraction: 6 - 3 is 2.

Hierarchy of Operators

BASICO09 uses the standard hierarchy of operations when calcu-
lating expressions with multiple operators. This means that
BASIC09 has an order in which it performs calculations involv-
ing more than one operator.

The following BASIC09 operators are listed in order of
precedence:

NOT - (negate)
~ ek

*
+ -

> < <> = >= <=
AND

OR XOR

Also, BASICO09:

@ Performs operations enclosed in parentheses before oper-
ations not in parentheses.

@ Performs the leftmost operations first when two or more
operations are of equal precedence.

You can use parentheses to override this standard precedence.
For example:

2 + 1 # 3 =5
but
2+ 1) % 3 =29

The following examples show BASIC09 expressions on the left,
and the way BASIC09 evaluates them on the right. You can
enter the expressions in either form, but the decompiler gener-
ates the simpler form, shown on the left.

Expressions, Operators, and Functions | 7

BASIC09 Equivalent
Representation Form
a=b+c#2/d a=b -+ ((c**2)/d)
a=b>c AND d>e OR a=((b>c) AND (d>e))
c=e OR (c=e)
a=(b+c+d)e a=(b+c)+d)e
a = bkcixd/e a= (b##(cixd))/e
a= -(b)#*2 a=(-b)*x2
a=b=c a=(b=c)

Relational Operators

Relational operators make logical comparisons of any type of data
and return a result of either TRUE or FALSE. An explanation of
the relational operators follows. All relational operators have
equal precedence.

<
>
<> or ><
<=o0or =<
>= 0or =>

Equal. Returns TRUE if both operands are
equal, or FALSE if they are not equal.

Less than: Returns TRUE if the first operand is
less than the second, or FALSE if is not.

Greater than: Returns TRUE if the first operand
is greater than the second, or FALSE if it is not.

Unequal: Returns TRUE if the operands are not
equal or FALSE if they are.

Less than or equal to: Returns TRUE if the first
operand is less than or equal to the second

operand. Otherwise, the operation returns
FALSE.

Greater than or equal to: Returns TRUE if the
first operand is greater than or equal to the
second. Otherwise, the operation returns FALSE.,

7-5

BASICO09 Reference

You normally use relational operators in IF/THEN statements.
For example, if your procedure has two numeric variables, Pay-
ments and Income, you might include command lines like this:

IF PAYMENTS > INCOME THEN
PRINT "You’re Broke!™
ENDIF

When you combine arithmetic and relational operators in the
same expression, BASIC09 evaluates the arithmetic operations
first. For example:

IF X*Y/2 <= 14 THEN
PRINT "Average Score is "; X*Y/2
ENDIF

BASIC09 performs the arithmetic operation x#y/2, then compares
the result with the value 14.

When you use relational operators with strings, BASIC09 com-
pares the strings character by character. When it finds two char-
acters that do not match, it checks to see which character has
the lower ASCII code value. The string containing the character
with the lower value comes first.

Consider this example:
PRINT "hunt™ > "hung"

BASICO09 compares each character in each string. Because the
first three characters are the same, the result of the operation is
based on the comparison of t and g. Because t (ASCII value =
116) is “greater than” g (ASCII value = 103), the command
prints TRUE.

String Operators

The string operator is the plus sign (+). This symbol appends
one string to another. All operands must be strings, and the
resulting value is one string. Examine, for example, the follow-
ing line, which appends three strings:

PRINT "My friends are "™ + "Jack and " + "Jill."™

It prints: My friends are Jack and Jill.

7-6

Expressions, Operators, and Functions /| 7

Logical Operators

The logical, or Boolean, operators make logical comparisons of
Boolean values. The following table describes the results yielded
by each logical operator given the specified TRUE/FALSE values:

Meaning of First Second
Operator Operation Operand Operand Result
NOT The result is the opposite of TRUE FALSE
the operand. FALSE TRUE
AND When both values are TRUE, TRUE TRUE TRUE
the result is TRUE. TRUE FALSE FALSE
Otherwise, the result is FALSE TRUE FALSE
FALSE. FALSE FALSE FALSE
OR When both values are TRUE TRUE TRUE

FALSE, the result is FALSE. TRUE FALSE TRUE
Otherwise, the result is FALSE TRUE TRUE

TRUE. FALSE FALSE FALSE
XOR When only one of the values TRUE TRUE FALSE
is TRUE, the result is TRUE FALSE TRUE
TRUE. Otherwise the result FALSE TRUE TRUE
is FALSE. FALSE FALSE FALSE

Use logical operators in IF/THEN statements such as:

IF PAYMENTS < INCOME AND INCOME+SAVINGS >
PAYMENTS THEN

PRINT "You’ll have to use your savings to get
out of this mess."
ENDIF

Functions

Functions are operation sequences the system performs on data.
In a statement, BASIC09 performs functions first. Chapter 11,
“Command Reference,” describes the following functions.

7-7

BASIC09 Reference

Functions returning results of type real

SIN

COs
TAN
ASN
ACS
ATN

LOG

LOG10
EXP

FLOAT

INT

PI
SQR
SQRT

RND

Calculates the trigonometric sine of a number.
Calculates the trigonometric cosine of a number.
Calculates the trigonometric tangent of a number.
Calculates the trigonometric arcsine of a number.
Calculates the trigonometric arccosine of a number.

Calculates the trigonometric arctangent of a
number.

Calculates the natural logarithm (base e) of a
number.

Calculates the logarithm (base 10) of a number.

Calculates e (2.71828183) raised to the specified
positive power.

Converts byte or integer type numbers to real
numbers.

Calculates the largest whole number less than or
equal to the specified number.

Represents the constant 3.14159265.
Calculates the square root of a positive number.

Calculates the square root of a positive number. Its
function is identical to SQR.

Returns a random number.

7-8

Expressions, Operators, and Functions / 7

Functions returning results of any numeric type

The resulting type depends on the input type.

ABS
SGN

5Q
VAL

Calculates the absolute value of a number.

Returns a value to indicate the sign of the specified
number (-1 if the number is less than 0, 0 if the
number is 0, or 1 if the number is greater than 0).

Calculates the square of a number.

Converts a string to a numeric value.

Functions returning results of type integer or type byte

FIX

MOD

ADDR

SIZE

ERR
PEEK

POS

ASC

LEN
SUBSTR

Rounds a real number and converts it to an
integer.

Calculates the modulus (remainder) of two
numbers.

Returns the absolute memory address of a
variable, an array, or a structure.

Returns (in bytes) the storage size of a variable,
an array, or a structure.

Returns the error code of the most recent error.

Returns the byte value at a specified memory
address.

Returns the current character position of the
print buffer.

Returns the numeric value (ASCII code) of a
string character.

Returns the length of a string.

Returns the starting position of the specified
substring within a string, or returns 0 if it
cannot find the substring.

7-9

BASICO09 Reference

Functions performing bit-by-bit logical operations on inte-
ger or byte data and returning integer results. Do not con-
fuse these functions with Boolean type operators.

LAND Calculates the logical AND of two values.

LOR Calculates the logical OR of two values.

LXOR Calculates the logical EXCLUSIVE OR of two
values.

LNOT Calculates the logical NOT of a value.

Functions returning a result of type string

CHRS Returns the character having a specified ASCII
value.

DATES$ Returns the system’s current date and time.

LEFT$ Returns the specified number of characters

beginning at the leftmost character of the
specified string.

RIGHTS$ Returns the specified number of characters
beginning at the rightmost character of the
specified string and counting backward.

MID$ Returns the specified number of characters
starting at the specified position in a string.

STR$ Converts numeric type data to string type.

TRIMS$ Removes trailing spaces from the specified
string.

Functions returning Boolean values

TRUE Always returns TRUE.
FALSE Always returns FALSE.
EOF Tests for the end of a disk file. Returns TRUE

when the end of the file occurs.

7-10

Chapter 8

Disk Files

When you tell OS-9 or BASIC09 to store (save) data on a disk, it
stores the data in a logical block called a file. The term logical
means that, although the system might store portions of a file’s
data in several different disk locations, it keeps track of every
location and treats the scattered data as though it occupied a
single block. It does this automatically and you never need to
worry about how the data is stored. File data can be binary
data, textual data (ASCII characters), or any other useful
information.

Because OS-9 handles all hardware input/output devices (disk
drives, printers, terminals, and so on) in the same manner, you
can send data to any of these devices in the same way. This
means you can send the same information to several devices by
changing the path the data follows. For example, you can test a
procedure that communicates with a terminal by transferring
data to and from a disk drive.

BASIC09 normally works with two types of files—sequential
files and random access files. The following chart shows file-
access options, their purposes, and the keywords with which to
use them:

Types of Access for Files

Access Function Use with

Type

DIR Opens a directory file for reading. OPEN
Use only with READ.

EXEC Specifies that the file to open or OPEN

create is in the execution directory, @ CREATE
rather than the data directory.

READ Lets you read data from the OPEN
specified file or device. CREATE

WRITE Lets you write data to the specified =~ OPEN
file or device. CREATE

UPDATE Lets you read data from and write OPEN
data to the specified file or device. CREATE

81

BASIC09 Reference

Sequential Files

Sequential files send or receive (WRITE or READ) textual data
in order, the second item following the first, and so on. You can
access sequential data only in the same order as you originally
stored it. To read from or write to a particular section of a file,
you must first read through all the preceding data in the file,
starting from the beginning.

BASICO09 stores sequential file data as ASCII characters. Each
block of data is separated by a delimiter consisting of a carriage-
return character (ASCII Character 13). Because BASIC09 uses
this delimiter to determine the end of a record, sequential files
can contain records of varying length.

Use the WRITE and READ commands to store and retrieve data
in sequential files. A WRITE command causes BASIC09 to
transfer specified data to a specified file, ending the data with a
carriage return. A READ command causes BASIC09 to load
from the specified file the next block of data, stopping when it
reaches a carriage return.

Sequential File Creation, Storage, and Retrieval

BASIC09 uses the CREATE command to establish both sequen-
tial and random access files. A CREATE statement contains:

® The keyword CREATE.

® A path number variable in which BASIC09 stores the
number of the path it opens to the new file.

@ A comma, followed by the name of the file to create.

@ An optional colon, followed by the access mode. If you do
not specify an access mode, BASIC09 automatically
opens the created file in the UPDATE mode.

8-2

Disk Files / 8

The following procedure shows how to create a file and write
data into it:

PROCEDURE makefile

[IDIM PATH:BYTE (+ establishes a varisble

[IREM for the path number to the file
[ICREATE #PATH,"test":WRITE (* creates the file TEST

OWRITE #PATH,"This is a {est" (* writes data o the file

[WRITE #PATH,"of sequential files."(+ writes another line of data
[ICLOSE #PATH (¢ closes the path to the file
[ISHELL "LIST TEST" (+ displays the file contenis

[IEND

The first line of the procedure dimensions a variable (Path) to
hold the number of the path that CREATE opens. This variable
should be of byte or integer type.

When you establish a new file with CREATE, you automatically
open a path to the file. You do not need to use the OPEN
command.

The preceding procedure writes two lines into a file named Test.
It then closes the path and uses the OS-9 LIST command to dis-
play the contents of the newly created file. You see that the data
is successfully stored on disk.

The next procedure shows how to reopen an existing file for
sequential access, read the contents of the file, and append data
to the end of the file.

The only way to move the file pointer to the end of a sequential
file is to read all the data already in the file. Once the pointer is
at the end of the file, you can add data.

PROCEDURE append

[IDIM PATH:BYTE (+ dimension variable to hold the number of the
CREM path to ihe opened file,

[JOPEN #PATH,"test":UPDATE (+ open file for reading and writing,

[IREAD #PATH,line$ (* read the firsi element of the file.

[IREAD #PATH,line$ (+ read the next (the last) element.

TCWRITE #PATH,"This is a test" (+ write one new line to the file,
LKRITE #PATH,"of appending to a sequential file." (+ write another,

CCLOSE #PATH (* close the path,
{JSHELL "LIST TEST" (+ display the file with the new lines.
CEND

8-3

BASICO09 Reference

Because the Test file already exists, this procedure uses OPEN
to establish a path to the file. It uses the UPDATE mode of file
access because it needs to both read from and write to the file.

The two READ statements read the file’s contents and, as a
result, move the file pointer to the end of the file. The WRITE
statements then append two new lines. After closing the path,
the procedure calls on the 0S-9 LIST command to display the
contents of the file, with its appended lines.

Changing Data in a Sequential File

You can also change data anywhere in a sequential file. How-
ever, if your changes are longer than the original data, the oper-
ation destroys part of the file. To change data in a sequential
file, read the data preceding what you want to change, and write
the new data to the file in this manner:

PROCEDURE replace

CIDIM PATH:BYTE

(JOPEN #PATH,"test":UPDATE

[READ #PATH,line$

CREAD #PATH,line$

LMRITE #PATH,"Let’s put new" (+ write over existing 3rd and
[IWRITE #PATH,"words into the old sequential file,’’ (* 4th lines.
[OCLOSE #PATH

OSHELL ™CIST TEST®

[JEND

Notice that the total amount of data in the two new lines is
exactly the same as in the two old lines. You can replace an
existing line with fewer characters by padding the new data
with spaces. However, if you try to replace existing lines with
longer lines, the new lines write over and destroy other data in
the file.

Disk Files | 8

INPUT and Sequential Files

Although you can also use the INPUT command with sequential
files, doing so might put unwanted data into them. When a pro-
cedure encounters INPUT, it suspends execution and sends a
question mark (?) to the screen. This feature makes INPUT both
an input and output statement. Therefore, if you open a file
using the UPDATE mode, INPUT writes its prompts to the file,
destroying data. If you specify text to be displayed with the
INPUT command, INPUT writes this text to the file also.

Random Access Files

Random access files store data in fixed- or equal-length blocks.
Because each record in a specific file is the same size, you can
easily calculate the position of a record.

For instance, suppose you have a file with a record length of 50-
bytes (or characters). To access Record 10, multiply the record
number (10) by the record length (50) and move the file pointer
to the calculated position (500).

A random access file sends and receives data (using PUT and
GET) in a binary form, exactly as BASIC09 stores it internally.
This feature minimizes the time involved in converting the data
to and from ASCII representation, as well as reducing the file
space required to store numeric data. You position the random
access file pointer using SEEK. Compared to sequential file
access, random file access using GET and PUT is very fast.

Using random access commands, you can store and retrieve indi-
vidual bytes, strings of bytes, individual elements of arrays or
total arrays with one PUT or GET command. When you GET a
structure, you recover the number of bytes associated with that
type of structure.

This means when you GET one element of byte type data, you
read one byte. When you GET one element of real type data, you
read five bytes. If you GET an array, you read all the elements of
the array. This potential for reading entire arrays at once can
greatly speed disk access.

As well as moving the file pointer to the beginning of individual
records, you can also move it to any position within a record and
begin reading or writing one or more bytes from that point.

8-5

BASICO09 Reference

Creating Random Access Files

You create and open random access files in the same way you
create and open sequential files. The only differences are in the
commands you use to store and retrieve the data and in the
manner you keep track of where elements, or records, of a file
begin and end.

Before you can write data to a random access file, you must
either CREATE it or open it in the WRITE or UPDATE mode.
Once you have a path open to an existing file, use PUT to write
data into the file. If you open the file in the READ or UPDATE
mode, you can then use the GET command to retrieve data from
the file.

The PUT command can use only one parameter, the name of the
data element to store. The parameter can be a string, a variable,
an array, or a complex data structure.

Before storing data, you must devise a method to store it in
blocks of equal size. Knowing the unit size lets you later retrieve
the data in its original form. The following procedure shows one
way to do this:

PROCEDURE putget

CREM This procedure creates a file named Test!, reads 16 data lines,
OREM PUTs them into the file, then closes the file., Nexi it

[REM opens the file in the READ mode, GETS stored lines and lists
[IREM them on the display screen,

ODIM LENGTH:BYTE

ODIM NULL:STRINGL25)

ODIM LINE:STRING[25]

ODIM PATH:BYTE

[LENGTH=25

ONULL=""

[IBASE 8

[JON ERROR GOTO 18

[DELETE "{esti" (+ if the file exists, delete it.
18010N ERROR

[JCREATE #PATH,"test!1":WRITE (* create & file named test?,

CFOR T=0- 70 9

[ISEEK #PATH,LENGTH:T (+ find beginning of each file,
CREAD LINES (* read a line of data.

OPUT #PATH,LINES (+ store the line in the file.
ONEXT T

8-6

Disk Files | 8

[ICLOSE #PATH (* close the file.

[JOPEN #PATH,"test1":READ (+ open the file for reading.

[JFOR T=§ T0 9

[ISEEK #PATH,LENGTH#*T (+ find the beginning of each file,
[IGET #PATH,LINE (+ get a line from the file,
[PRINT LINE (+ display the line,

ONEXT T

[ICLOSE #PATH (+ close the file,

CEND

[DATA "This is test line #1"
ODATA "This is test Line #2"
[DATA "This is test line #3"
ODATA "This is test line #4"
[DATA "This is test line #5"
[IDATA "This is test line #6"
[DATA “"This is test line #7"
[IDATA "This is iest line #8"
[DATA "This is test line #3"
[DATA "This is test line #10"

This procedure creates a file named Testl. The variable named
Length stores the length of each line in the file (25 characters).
The string variable Null, is a string of 25 space characters. The
variable Line contains the data to store in each element (record)
in the file. The variable Path stores the path number of the file.

Next, the procedure contains an ON ERROR routine that deletes
the file Testl, if it already exists. Without this routine, the pro-
cedure produces an error if you execute it more than once.

Next, the routine uses CREATE to open the file Testl. The line
SEEK #PATH, LENGTH*T sets the file pointer to the proper loca-
tion to store the next line. Because Length is established as 25,
the file lines are stored at 0, 25, 50, 75, and so on.

After the routine initializes storage space, it begins to store
data by reading the procedure data lines one at a time, seeking
the proper file location, and putting the data into the file. After
storing all 10 lines, it closes the file.

8-7

BASICO09 Reference

The last part of the routine opens the new file, uses the same
SEEK routine to position the file pointer, and reads the lines
back, one at a time, to confirm that the store routine is
successful.

The next short routine shows how you can use a procedure to
read any line you select in the file, without reading any preced-
ing lines:

PROCEDURE randomread
CIDIM LENGTH:BYTE
[IDIM LINE:STRING[25]
[IDIM SEEKLINE:BYTE
[DIM PATH:BYTE
[LENGTH=25

LOPEN #PATH,"test1":READ (+ open the file for reading.
(Loop

OINPUT "Line number to display...",SEEKLINE (x type a line to get.
UEXITIF SEEKLINE>18 OR SEEKLINEC! THEN (* test if record is valid.

CENDEXIT (+ exil loop if not.

[ISEEK #PATH,(SEEKLINE-1)+LENGTH (+ find the requested record.
OGET #PATH,LINE (* read the record,

[PRINT LINE (+ display the record,

OPRINT

[ENDLOOP

OPRINT "That’s all " (+ end session,

(JCLOSE #PATH (¢ close path.

[END

The procedure asks for the record number of the line to display.
When you type the number (1-10) and press (ENitr), SEEK moves
the file pointer to the beginning of the record you want, GET
reads it into the variable Line, and PRINT displays it. The cal-
culation (SEEKLINE-1)*LENGTH determines the beginning of
the line you want. If you type a number outside the range of
lines contained in the file (1-10), the procedure drops down to
Line 100 and ends.

By changing this procedure slightly, you can replace any line in
the procedure with another line. The altered procedure below
demonstrates this:

8-8

Disk Files | 8

PROCEDURE random__replace
[DIM LENGTH:BYTE

[DIM LINE:STRINGI25]
[DIM SEEKLINE:BYTE

CIDIM PATH:BYTE
[JLENGTH=25

CIOPEN #PATH,"tesi1":UPDATE(+ open the file,

fLoop

OINPUT "Line number to display...",SEEKLINE (¢ type record to find.
CEXITIF SEEKLINEX18 OR SEEKLINE¢H THEN (+ test if valid number.

[ENDEXIT (* exit loop if not

[ISEEK #PATH,(SEEKLINE-1)+LENGTH (* find the requested record.
[JGET #PATH,LINE (+ get the data.

OPRINT LINE (+ print the record.

OPRINT

DINPUT "Type new line... ",LINE (+ type a new line.
[JSEEK #PATH,(SEEKLINE-1)+LENGTH (+ find beginning of the record.

[PUT #PATH,LINE (* store the new line.
[IENDLODOP (+ do it all again,
[PRINT “That’s all " (+ {erminate procedure.
[JCLOSE #PATH (+ close path.

CIEND

This time, the file is opened in the UPDATE mode to allow both
reading and writing. You type the line you want to display. A
prompt then asks you to type a new line. The procedure

exchanges the new line for the original line, and stores it back in
the file.

Using Arrays With Random Access Files

BASIC09’s random access filing system is even more impressive
when used with data structures, such as arrays. Instead of using
a loop to store the 10 lines of the Random_replace procedure,
you could store them all at once, into one record, using an array.
The following procedure illustrates this:

8-9

BASICO09 Reference

PROCEDURE arraywrite

ODIM LENGTH:BYTE

[IDIM LINE:STRING[25]

[IDIM RECORDC1@):STRINGI25]
CIDIM PATH:BYTE

[ILENGTH=25

(0N ERROR G6OTO 18
[IDELETE "testi™ (+ delete Test! if it exists.
180N ERRCR

[ICREATE #PATH,"test1":WRITE (+ create Testi.

[IBASE @

[FOR 7=6 T0 9

CREAD RECORD(T) (* Read data lines into RECORD array.
CINEXT T

[ISEEK #PATH,8 (x sef pointer fo beginning of file.
OPUT #PATH,RECORD (* store the entire array into file,
[ICLOSE #PATH (+ close path to file,

CIOPEN #PATH,"test1":READ (+ open the file to read.

[FOR T=0 70 9

[ISEEK #PATH,LENGTHT (+ find each element.

CIGET #PATH,LINE (» read an element,

OPRINT LINE (+ print the element

ONEXT T

[JCLOSE #PATH

CJEND

CDATA "This is tesi line #1"
[DATA "This is test line #2"
[DATA "This is test line #3"
[DATA "This is tesi line #4"
CDATA "This is test line #5"
[DATA "This is tesi line #6"
[IDATA "This is test line #7"
[DATA "This is test line #8"
[DATA "This is test line #9"
[DATA "This is test line #18"

8-10

Disk Files | 8

This procedure reads the 10 lines into an array named Records.
Then it places the entire array in the Testl file, using one PUT
statement. To show that the structure of the file is still the
same, the original FOR/NEXT loop reads the lines, one at a
time, and displays them.

Notice that, because you need to write only one element, you can
set the file pointer to 0 (SEEK #PATH,). You can rewind a file
pointer (set it to 0) at any time in this manner.

You could save additional programming space by also reading the
10 lines back into memory as an array. The following procedure
uses a new array, Readlines, to call the file back into memory,
and displays the lines.

PROCEDURE arrayread

[1BASE @

ODIM READLINESC18):STRINGI25]
[DIM PATH:BYTE

[JGPEN #PATH,"test{":READ (+ open file.
[IGET #PATH,READLINES (+ read file into array.
[(JCLOSE #PATH

OFOR T=0 70 9

[IPRINT READLINES(T) (+ print each element of the array,
ONEXT T

[JEND

Using Complex Data Structures

In the previous section, you stored and retrieved elements of an
array that were all the same size, 25 characters. Often you need
to store elements of varying sizes, such as when you create a
data base program with several fields in one record.

The following examples create a simple inventory system that
requires a random access file having 100 records. Each record
includes the name of the item (a 25-byte string), the item’s list
price and cost (both real numbers), and the quantity on hand (an
integer).

8-11

BASICO09 Reference

First, you use the TYPE command to define a new data type
that describes such a record. For example:

TYPE INV_ITEM=NAME:STRING[25]1;LIST,COST:REAL;
QTY: INTEGER

Although this statement describes a new record type called
Inv_item, it does not assign variable storage for the record. The
next step is to create two data structures: an array of 100 rec-
ords of type Inv_item named Inv_array and a working record
named

Work__rec. The following lines do this:

DIM INV_ARRAYC188):INV_ITEM
DIM WORK_-REC:INV_ITEM

To determine the number of bytes assigned for each type, you
can use BASIC09’s SIZE command. SIZE returns the number of
bytes assigned to any variable, array, or complex data structure.
For example, the command line S1ZEC(WORKI_REC) returns the
number 37. The command SI1ZECINV_ARRAY) returns the num-
ber 3788 .

You can use SIZE with SEEK to position a file pointer to a spe-
cific record’s address.

The following procedure creates a file called Inventory and
immediately initializes it with zeroes and null strings. Five
INPUT lines then ask you for a record number and the data to
store in each field of the record. You can fill any record you
choose, from 1 through 100.

When one record is complete, the procedure uses PUT to store
the record. Then, it asks you for a new record number. If you
wish to quit, enter a number either larger than 100 or smaller
than 1.

PROCEDURE inventory

[REM Create & data type consisting of a 25-character name field,
[REM & real list price field, a real cost field, and an integer
[REM quantity field.

OTYPE INV_ITEM=NAME:STRINGL251; LIST,COST:REAL; QTY:INTEGER

CDIM INV_ARRAY(188): INV—ITEM (¢ dimension an‘array using new type.

8-12

Disk Files | 8

(DIM WORK__REC: INV__.ITEM
CIREM (+ dimension a working variable of the new type.
CODIM PATH:BYTE

[JON ERROR GOTOD 18
CDELETE "inventory"
100JON ERROR

[ICREATE #PATH,"inventory" (+ create a file named Inventory,
[JWDRK__REC . NAME=" " (* set all data elemenis to null or 4.
[INORK__REC.LIST=#

[WDRK__REC.COST=8#

[WORK_—_REC.QTY=0

OFOR N=1 TO 148

[PUT #PATH,NORK__REC

CINEXT N

fLoagp

TINPUT “Record number? ™,RNUM (+ enter number of record to write.
OIF RNUMCt DR RNUM>18@ THEN (# check if number is valid.
OPRINT

OPRINT “End of Sessien" (+ if not, end session.

CPRINT

[ICLOSE #PATH

CEND

CJENDIF

TJINPUT "Item name? ",WORK_REC.NAME (+ type data for record.
OINPUT "List price? ",WORK_REC.LIST

DJINPUT "Cost price? ",WORK_—REC.COST

DINPUT “Quantity? ",WORK_REC.QTY

[ISEEK #PATH, CRNUM-1)#SI1ZECWORK_REC) (+ find record.

[PUT #PATH,WORK—REC (+ write record to file.
CENDLOOP

Notice that the INPUT statements reference each field sepa-
rately, but the PUT statement references the record as a whole.

The next procedure lets you read any record in your Inventory
file, and displays that record. If you ask for a record you have not
yet filled with meaningful data, the display consists of a null
string and zeroes.

PROCEDURE readinv
COTYPE INV__ITEM=NAME :STRING[25); LIST,COST:REAL; QTY:INTEGER
[DIM WORK_—REC: INV__ITEM

8-13

BASIC09 Reference

ODIM PATH:BYTE

(JOPEN #PATH," INVENTORY":READ

fLoap

OINPUT "Record number 1io display? ",RNUM

[IF RNUM<1 OR RNUM> 188 THEN

OPRINT "End of Session"

OPRINT

[ICLOSE #PATH

[JEND

CENDIF

[ISEEK #PATH, (RNUM-1)#51ZE (WORK__REC)

[GET #PATH,WDRK__REC

OPRINT ™#","Item","List Price","Cost PriCE","Guantity"

PR N T Mmoo e e e e
CPRINT RNUM,NURK_.REC.NAME,N[]RK__REC.LIST,WURK__REC.CUST,.NDRK_REC.GTY
CPRINT

[JENDLOOP

[JEND

This procedure accesses the file one record at a time. It is not
necessary to do so. You can read the entire file into memory at
once by dimensioning an inventory array and getting the whole
file into it:

OTYPE INV__ITEM=NAME :STRINGI2ST; LIST,COST:REAL; QTY:INTEGER
ODIM INV__ARRAYC188): INV__ITEM

[JSEEK #PATH,8 (*rewind the file#)

CIGET #PATH, INV_ARRAY

The examples in this section are simple, yet they illustrate the
combined power of BASIC09 complex data structures and the
random access file statements. They show that a single GET or
PUT statement can move any amount of data, organized in any
way you want. Other advantages are of using complex data struc-
tures are:

® The procedures are self-documenting. You can see easily
what a procedure does because its structures can have
descriptive names.

e Execution is extremely fast.

® Procedures are simple and usually require fewer state-
ments to perform I/O functions than other BASICs.

8-14

Disk Files | 8

@ The procedures are versatile. By creating appropriate
data structures, you can read or write almost any kind
of data from any file, including files created by other pro-
grams or languages.

8-15

Chapter 9

Displaying Text and Graphics

BASICO09 has three levels of graphics capabilities. The first and
third levels can include both graphics designs and text. The sec-
ond level can display only graphics designs.

ASCII Codes

For low-resolution text screens and high-resolution text and
graphic screens, BASIC09 uses ASCII (American Standard Code
for Information Interchange) codes to represent the common
alphanumeric characters. ASCII is the same code that most
small computers use.

A table of the standard codes follows:

Table 9.1
BASIC09 ASCII Codes 0-127
Low- and High-Resolution Screens

Character Decimal Code Hexadecimal Code
03 03
8 08
9 09
10 OA
12 0C
13 0D
Space 32 20
! 33 21
“ 34 22
35 23
$ 36 24
% 37 25
& 38 26
’ 39 27
(40 28
) 41 29
* 42 2A
+ 43 2B
o 44 2C
- 45 2D
46 28
/ 47 2F
0 48 30

BASIC09 Reference

Character Decimal Code Hexadecimal Code
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39
: 58 3A
; 59 3B
< 60 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
I 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4K
0 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53
T 84 54
U 85 55
A\ 86 56

W 87 57
X 88 58
Y 29 59
Z 90 5A
[(GHFD) 91 5B

9-2

Displaying Text and Graphics / 9

Character Decimal Code

\ ([SHIFT](CLEAR])
INEEIE)
4

- ((sHFTJ(4))

®B——~ NI NIt HL2TOBE —~F Qg md Lo TP

92

116
117
118
119
120
121
122
123
124
125
126
127

Hexadecimal Code

You can generate the characters in this chart by pressing the
appropriate key, or you can generate them from BASIC09 using

the CHRS$ function.

9-3

BASIC09 Reference

Low-Resolution Graphic Characters

In addition to alphanumeric characters, low-resolution graphics
also offers graphic characters. Generate these characters by
pressing at the same time you press a keyboard character.
The graphics character codes are in the range 128-255.

Pressing while pressing another key, causes 0S-9 to add
128 to the ASCII value of the second key. (For the technically
minded, 0S-9 sets the high bit of the character code.) Therefore,
if you press (A}, you produce graphics character 193. You can
also generate graphics characters from BASIC09 using the
CHRS$ function, and you can PRINT them in the same manner
as other characters.

Low-level graphics characters follow a pattern that repeats every
16 characters. Table 9.2 shows the first set of graphic characters,
128-143. Subsequent characters produce the same series of con-
figurations but display in different colors, as shown in Table 9.3.

Table 9.2
Low-Resolution Graphic Character Set

Character Code Character Code Character Code Character Code

128 132 136 140
129 133 137 141
130 134 138 142
131 135 139 143

94

Displaying Text and Graphics | 9

Table. 9.3
Low-Resolution Graphics Color Set

ASCII Code Graphics Block Color

128 - 143 Black and Green

144 - 159 Black and Yellow

160 - 175 Black and Blue

176 - 191 Black and Red

192 - 207 Black and Buff

208 - 223 Black and Light Blue

224 - 239 Black and Cyan

240 - 254 Black and Orange
255 Green

Within each color set, you can easily calculate the number for a
particular character. For instance, suppose you want to print a
character that has orange upper left and lower right corners. Pic-
ture the character divided into four sections, numbered as
follows:

To calculate a character that has orange at Sections 8 and 1, add
the section values to the first value in the orange group, 240,
like this:

240 + 8 + 1 = 249
Character 249 is what you want.

The following diagram shows how you might block out a large
letter O on the screen. The shaded portions of the characters are
colored. The unshaded portions are black. In this case we want
the colored portions to be green (the same color as the screen).
You can do this using the color set 128 - 143.

BASIC09 Commands Reference

Because Section 1 in the upper left character is to be colored,
add 1 to the initial character value of 128. The first character
value is 129. Moving right, Sections 2 and 1 are colored in the
second character. Add 3 to 128 to get a second character value of
131. Calculate all 15 characters in this manner.

You could create a letter O in a BASIC09 procedure by printing
each of the five rows of three characters. You could use DATA
lines to store the ASCII codes for each character, then use loops
to read and display the characters they represent.

Although low-level graphics is very rough, it can be useful, and
it lets you mix graphics with text.

The following procedure not only creates the letter O, it adds the
letter S and the number 9 to display the name of your operating
system.

Displaying Text and Graphics / 9

PROCEDURE o0s9prog

ODIM DAT:INTEGER

OPRINT CHR$(C12)

OPRINT

OPRINT

OPRINT

OFDOR Z=1 TO §

OPRINT TABC18);

[JFOR T=1 TO 12

OREAD DAT

OPRINT CHR$(DAT);

ONEXT T

OPRINT

ONEXT 2Z

JEND

ODATA 129,131,130,143,129,131,131,143,129,131,130,
143

ODATA 133,143,138,143,133,143,143,143,132,140,136,
143

ODATA 133,143,138,143,132,140,140,143,131,131,130,
143

ODATA 133,143,138,143,131,131,130,143,143,143,138,
143

ODATA 132,140,136,143,140,140,136,143,143,143,138,
143

BASIC09 Reference

Special Characters in High-Resolution

High-resolution graphics does not have graphic characters but it
does have other international and special characters. These char-
acters are represented by ASCII codes 128 through 159 as shown
in the following table:

Table 9.4
High-Resolution Special Characters
Hex Decimal Hex Decimal
Character Code Code Character Code Code
C 80 128 6 90 144
i 81 129 ® 91 145
é 82 130 & 92 146
a 83 131) 93 147
a 84 132) 94 148
a 85 133 i3 95 149
a 86 134 1 96 150
C 87 135 bl 97 151
é 88 136 4] 98 152
é 89 137 0 99 153
e 8A 138 O 9A 154
i 8B 139 § 9B 155
i 8C 140 £ 9C 156
B 8D 141 + 9D 157
A 8E 142 ° 9E 158
A 8F 143 f 9F 159

Medium-Resolution Graphics

For more sophisticated graphics operations, 0S-9 has built-in
graphics interface modules that provide a convenient way to
access the graphics and joystick functions of the Color Computer
3. The required module for medium-resolution graphics is named
GFX. It must be in your execution directory or resident in mem-
ory when called by BASICO09.

You can either install GFX in memory using the LOAD com-
mand, or wait until BASIC09 calls it for a graphics function.
Once loaded, GFX resides in memory until you remove it using
the OS-9 UNLINK command or the BASIC09 KILL command.

9-8

Displaying Text and Graphics / 9

GFX has a number of functions that you pass to it as parame-
ters with the RUN statement. For instance, the following state-

ment clears the current graphics screen:

RUN GFXC"CLEAR™)

Other tasks need such parameters as position, color, and size.
The following is a quick reference to all of the GFX functions.
Each is explained in detail later:

Function Purpose Parameters

ALPHA Sets the screen to the None.
alphanumeric mode.

CIRCLE Draws a circle. Radius, optional X- and

Y-coordinates, and color.

CLEAR Clears the screen to a Optional color for screen.
color.

COLOR Changes the foreground Foreground and
and background colors. background colors.

GCOLR Reads a pixel’s color. Names of variables in
which to store optional
X- and Y-coordinates.

GLOC Returns a video display =~ None.
address.

JOYSTK Returns the joystick Names of variables in
button and X- and Y- which to return the
coordinate status. values.

LINE Draws a line. Ending X- and Y-
coordinates, optional
beginning coordinates,
optional color.

MODE Switches the screen Format, Color.

between alphanumeric
and graphics, sets the
graphics screen color.
MOVE Positions the invisible X- and Y-coordinates.

graphics cursor.

9-9

BASIC09 Reference

Function Purpose Parameters

POINT Moves graphics cursor X- and Y-coordinates
and sets a point. and optional pixel color.

QUIT Returns screen to None.

alphanumeric mode.
Deallocates graphics
memory.

Formats and Colors

In medium-resolution graphics, you have a choice of two formats.
Format 0 provides 256 horizontal points by 192 vertical points. In
this format, you can have only two colors on the screen at a time.

Format 1 provides a 128 by 192 point screen and a maximum of
four colors on the screen at a time. 0S-9 medium-resolution
graphics treats the screen as if it were a grid, with coordinate
0,0 at the lower left corner as shown in the following illustration.
All points on the grid are positive.

Y-coordinate,0 — ‘
e e e e e e R N

0, X-coordinate

BASIC09 defines colors with numbers or color codes. Many GFX
functions allow or require color codes as parameters. BASIC09
also divides the color codes into color sets. Specifying a color code
outside the current color set automatically initializes the new
set.

9-10

Displaying Text and Graphics | 9

Format 0 Format 1

Cgl(zr (CJolé)r Back- Fore- gol:l)r Back- Fore-
e ode ground | ground oce ground | ground

00 Black Black 00 Green Green
01 Black Green 01 Green Yellow

1 02 02 Green Blue
03 03 Green Red
04 Black Black 04 Buff Buff
05 Black Buff 05 Buff Cyan

2 06 06 Buff Magenta
07 07 | Buff Orange

08 Black Black

09 Black Dk Green
3 10 Black Md Green
11 Black Lt Green

12 Black Black
13 Black Green
4 14 | Black | Red
15 Black Buff

Table 9.5

Use the preceding charts to chose colors for those functions that
let you specify foreground or background colors. For instance, to
initialize a Format 1 graphics screen with a green background
and a red foreground, you type:

run gfx("mode",1,3)

The following reference section describes all the medium-resolu-
tion graphics functions, and provides examples and sample pro-
grams. To understand the organization of the commands
reference, see “The Syntax Line” in Chapter 11.

9-11

BASICO09 Reference

The Draw Pointer

Medium-resolution graphics uses a draw pointer, or invisible
graphics cursor, to determine what area of the screen is affected
by graphics operations. When you establish a graphics screen,
the draw pointer is located at coordinates 0,0. Some graphic
functions automatically change the pointer location on the
screen. For instance, the LINE function moves the draw pointer
from the beginning coordinates to the end coordinates.

Because some functions begin at the draw pointer, you need to
keep track of its location and make certain it is placed properly.
Use the MOVE function to set the draw pointer to new locations.

9-12

Displaying Text and Graphics | 9

ALPHA Select alphanumeric screen

Syntax: RUN GFX(“ALPHA”)

Function: Switches from the graphics screen to the alphanu-
meric (text) screen. The current graphics screen remains
intact.

Parameters: None

Examples:
RUN GFXC™ALPHA™)

Sample Program:

This procedure lets you choose to draw a circle or rectangle of
the size you select. Once you choose the shape and size, it uses
the MODE function to select a graphics screen. When the shape
is complete, you press to return to a text screen. The pro-
cedure uses the ALPHA function to return to the original menu.

PROCEDURE alpha

ODIM XCOR,YCOR,SIDE1,SIDE2,RADIUS,T,X,Y,Z2: INTEGER
ODIM RESPONSE:STRINGIL11]

18 REPEAT

OSHELL 'DISPLAY @cC™

OPRINT "Do you want to draw"

OPRINT "™1) A rectangle"

OPRINT "2) A circle™

OPRINT " -Press 1 or 2...";

OGET #0,RESPONSE

OPRINT

OJIF RESPONSE="1" THEN

OINPUT "Length of Side 1...",SIDE1
OINPUT "Length of Side 2...",SIDE2

ORUN GFX('"MODE",8,8)

ORUN GFXC“CLEAR™)

0OXCOR=140

UYCOR=140

ORUN GFXC"LINE"™,XCOR,YCOR,XCOR+SIDE1,YCOR,1)

9-13

BASICO09 Reference

ORUN GFXC"LINE*,XCOR+SIDE1,YCOR,XCOR+SIDE1,YCOR+
SIDE2,1)

ORUN GFXC™LINE",XCOR+SIDE1,YCOR+SIDE2,XCOR,YCOR+
SIDE2,1)

ORUN GFXC*™LINE",XCOR,YCOR+SIDE2,XCOR,YCOR,1)
OINPUT RESPONSE

OELSE
OIF RESPONSE="2'" THEN
UINPUT "What radius?...",RADIUS

ORUN GFX('"MODE™, 8,1

ORUN GFXC™CLEAR™)

URUN GFXC*™CIRCLE'™,128,98,RADIUS)
OINPUT RESPONSE

OENDIF

UENDIF

OUNTIL RESPONSE<>"1' AND RESPONSE<>"2"
[ORUN GFXC"ALPHA™)

0GoTo 1@

OEND

9-14

Displaying Text and Graphics / 9

CIRCLE Draw a circle

Syntax: RUN GFX(“CIRCLE”[,xcor,ycorl,radius [,color])

Function: Draws a circle of a given radius. If you do not spec-
ify a color, BASIC09 uses the current foreground color. If you
do not specify X- and Y-coordinates, CIRCLE uses the current
graphics cursor position as the circle’s center.

Parameters:
radius The radius of the circle you want to draw.
color The code of the color you want the circle to be.
See the chart earlier in this section for color
information.
xcor,ycor The X- and Y-coordinates for the center of the
circle. Specifying coordinates outside the X-
coordinate range of 0-255 or outside the Y-
coordinate range of 0-191 causes an error.
Examples:

RUN GFXC"CIRCLE"™,188)
RUN GFX('"CIRCLE™,188,3)
RUN GFX("CIRCLE™,125,100,108)

RUN GFXC"CIRCLE™,125,100,108,2)

Sample Program:

This procedure uses CIRCLE to draw and erase a circle. The
location of the circle changes before each draw/erase operation,
causing the circle to move. When it hits the edge of the screen,
it reverses its direction at a random angle and bounces.

PROCEDURE circles

ODIM RADIUS,XCOR,YCOR:INTEGER
DIM XTEMP,YTEMP:INTEGER

ODIM PATH1,PATH2:INTEGER

[DIM FLAG:INTEGER

9-15

BASIC09 Reference

OFLAG=1

OXCOR=5

[JYCOR=5
OPATH1=RNDC(15)+2
[JPATH2=RND(18)+2
OXTEMP=249
OYTEMP=185

ORUN GFXC'MODE"™,0,1)
ORUN GFXC"CLEAR™)
UFOR T=1 TO 2040
OWHILE XCOR<258 AND XCOR>4 AND YCOR<?186 AND YCOR>4
DO

ORUN GFXC'"CIRCLE™,XTEMP,YTEMP,3,8)
URUN GFX(C™CIRCLE",XCOR,YCOR,3,1)
OXTEMP=XCOR
UYTEMP=YCOR
OXCOR=XCOR+PATH1
YCOR=YCOR+PATH2
OENDWHILE
UPATH1=RND(15)+2
OPATH2=RND(C18)+2

UIF XCOR>243 THEN
OXCOR=249

UENDIF

OIF XCOR<5 THEN
OXCOR=5

JENDIF

OIF YCOR>185 THEN
OYCOR=185

UENDIF

OIF YCOR<S THEN
(Jycor=5

CENDIF

OFLAG=FLAG*-1

OIF FLAG<@ THEN
UPATH1=PATH1 *-1
OPATH2=PATH2* -1
JENDIF

ONEXT T

UEND

9-16

Displaying Text and Graphics / 9

CLEAR Clear the screen

Syntax: RUN GFX(“CLEAR”[,color])

Function: Clears the current graphics screen. If you do not
specify a color, CLEAR sets the entire screen to the current
background color. CLEAR also sets the graphics cursor at
coordinates 0,0, the lower left corner of the screen.

Parameters:

color A code indicating the color to set the screen.

Examples:
RUN GFXC™CLEAR™)
RUN GFXC"CLEAR™,14)

9-17

BASIC09 Reference

COLOR Change the foreground color

Syntax: RUN GFX(“COLOR?”,color)

Function: Changes the foreground color (and possibly the color
set). COLOR does not change the graphics format or the cur-
sor position.

Parameters:
color A code indicating the color you want for the
foreground. See the chart earlier in this chap-
ter for color information.
Examples:

RUN GFX('"COLOR"™,18)

Sample Program:

This procedure connects a series of differently colored circles to
produce a necklace effect.

PROCEDURE necklace

0bIM COLOR,T,U,J,R,FLAG,XCOR,YCOR: INTEGER
ORUN GFX('MODE",1,0)
ORUN GFX("CLEAR"™)
JcoLOR=1

OXCOR=1

OYCOR=1

[R=2

OFOR T=1 TO &6

OFOR J=1 TO 48
OXCOR=XCOR+1
OYCOR=YCOR+.8

OIF FLAG<® THEN

OR=R-1

OELSE

OR=R+1

JENDIF

[(OCOLOR=COLOR+1

OIF COLOR>3 THEN COLOR=1

9-18

Displaying Text and Graphics / 9

OENDIF

ORUN GFXC"CIRCLE"™,XCOR,YCOR,R,COLOR)D
ONEXT J

OFLAG=FLAG*-1

ONEXT T

OFOR U=1 TO 10000
ONEXT U

OEND

9-19

BASICO09 Reference

GLOC Find the graphics screen location

Syntax: RUN GFX(“GLOC”,storage)

Function: Determines the location of the graphics screen in
memory and returns the address in the specified variable.
When you know the graphic screen address, you can use
PEEK and POKE to perform special functions not available in
the GFX module, such as filling a portion of the screen with a
color or saving a graphics screen to disk.

0S-9 Level Two maps display screens into a program’s
address space before PEEK and POKE can operate on a dis-
play screen. This means that you must have at least eight
kilobytes of free memory in the user’s address space. Program
and data memory requirements must not exceed 56 kilobytes.

Parameters:
storage An integer or byte type variable in which
GLOC stores the memory address of the
graphics screen.
Examples:

RUN GFX("GLOC",location)

Sample Program:

This procedure uses the GLOC function to locate the current
graphics screen, then uses POKE to paint a series of boxes on
the screen.

PROCEDURE boxin

ODIM LOCATION,PLACE,COLOR,BEGIN,QUIT,X,TERMINATE,
LINE,T,J: INTEGER

ORUN GFX("MODE™,1,0)

ORUN GFXC"™CLEAR'")

URUN GFX("GLOC*",LOCATIOND

OLOCATION=LOCATION+186 \ PLACE=LOCATION

UBEGIN=1

jJauIT=80

9-20

Displaying Text and Graphics [9

[ICOLOR=255
OTERMINATE=10

OLINE=32

OFOR X=1 TO 4

gFOR T=1 TO QUIT

OFOR J=BEGIN TO TERMINATE
JPOKE PLACE+J,COLOR
ONEXT J
OPLACE=PLACE+LINE
ONEXT T
OLOCATION=LOCATION+160
OBEGIN=BEGIN+1
OPLACE=LOCATION
OQUIT=QUIT-148
OTERMINATE=TERMINATE-1
[JCOLOR=COLOR-85

ONEXT X

OINPUT Z$

OEND

9-21

BASICO09 Reference

eJ OYSTK Get joystick status

Syntax: RUN GFX(“JOYSTK?”,stick, fire,xcor,ycor)

Function: Determines the status of the specified joystick fire
button and the X,Y position of the specified joystick handle.
Use this function only with a standard joystick or mouse, not
with the high-resolution mouse adapter.

Parameters:

stick

fire

xcor,ycor

Examples:

The joystick (0 or 1) for which you want to
determine the status. 0 indicates the right joy-
stick, 1 indicates the left joystick.

A variable in which JOYSTK returns the sta-
tus of the specified fire button. Fire can be
byte, integer, or Boolean type. A value other
than 0 or TRUE indicates the button is
pressed.

Byte or integer type variables in which
JOYSTK stores the X- and Y-coordinates of
the joystick handle position. The coordinate
range is 0-63.

RUN GFXC"JOYSTK",#,shoot,x,y)

9-22

Displaying Text and Graphics / 9

Sample Program:

This procedure uses the JOYSTK function to draw on the screen
with the right joystick.

PROCEDURE joydraw

ODIM STICK,FIRE,XCOR,YCOR,XTEMP,YTEMP: INTEGER
ORUN GFX("MODE"™,0,1)

ORUN GFX("CLEAR"™)

0JOY=0 \XCOR=06 \YCOR=0

OREPEAT

OXTEMP=XCOR

OYTEMP=YCOR

ORUN GFX("JOYSTK™,@,FIRE,XCOR,YCOR)
OXCOR=XCOR*4

OYCOR=YCOR*4

[ORUN GFXC(“LINE",XTEMP,YTEMP,XCOR,YCOR)
OUNTIL FIRE<>@

JEND

9-23

BASIC09 Reference

LIN E Draw a line

Syntax: RUN GFX(“LINE”[,xcorl,ycorl],xcor2,ycor2
[,color])

Function: Draws a line in the current or specified foreground
color in one of the following ways:

® From the current draw position to the specified X,Y-
coordinates.

@ From the specified beginning X- and Y-coordinates to the
specified ending X,Y-coordinates.
Parameters:
xcorl ,ycorl Are LINE’s beginning X- and Y-coordinates.
xcor2,ycor2 Are LINFE’s ending X- and Y-coordinates.

color A code indicating the color you want the line
to be. See the chart earlier in this section for
color information.
Examples:
RUN GFX("™LINE™,192,128)
RUN GFXC"LINE",0,0,192,128)

RUN GFXC"LINE",0,0,192,128,2)

9-24

Displaying Text and Graphics / 9

Sample Program:

This procedure draws a sine wave of vertical lines across the
screen.

PROCEDURE waves

pIM A,B,C,D,X,Y,2: INTEGER
[OCALC=0 \ A=108

ORUN GFX{("mode'",8,1)
ORUN GFX("CLEAR"™)

[ORUN GFX("™COLOR"™,2)

OFOR X=0 TO 255 STEP 1
cALC=CALC+.,85
OY=A-SINCCALC)I*15
Jz=Y+25

ORUN GFXCY™LINE",X,Y,X,2)
ONEXT X

JEND

9-25

BASICO09 Reference

MODE Switch to graphics screen

Syntax: RUN GFX(“MODE”,format,color)

Function: Switches the screen from alphanumeric (text) to
graphics, selecting the screen format and color code. You must
run MODE before you can use any other graphics function.
When you do, BASIC09 allocates a six-kilobyte block of mem-
ory for graphics. If your system does not have this amount of
memory available, OS-9 returns an error message.

Parameters:
format Either 0 (a two-color 256 by 192 pixel screen)
or 1 (a four-color, 128 by 192 pixel screen).
color A code indicating the color to set the screen.
See the chart earlier in this chapter for infor-
mation on color sets.
Examples:

RUN GFX("MODE",1,2)

9-26

Displaying Text and Graphics / 9

MOVE Move graphics cursor

Syntax: RUN GFX(“MOVE”,xcor,ycor)

Function: Moves the invisible graphics cursor to the specified
location on the screen. MOVE does not change the display in
any way.

Parameters:

xcor,ycor The coordinates for the cursor.

Examples:
RUN GFX("MOVE™,192,128)

Sample Program:

This procedure draws and pops bubbles on the screen using the
CIRCLE function. It uses MOVE to select the position for the
circles.

PROCEDURE bubbles

ODIM XCOR,YCOR,T,R,ARRAY(3,18@): INTEGER
ORUN GFX('MODE™,1,8)

ORUN GFX("CLEAR'™)

[JFOR T=1 7O 29

OARRAYC1,T>=RNDC(C255)
UARRAY(2,TI>=RNDC(C132)
OARRAYC(3,T>=RND(58)

ORUN GFXC("MOVE™,ARRAYC1,T),ARRAY(2,T))
ORUN GFX("CIRCLE",ARRAY(3,T),3)

ONEXT T

UFOR T=1 TO 29

ORUN GFX("MOVE"™,ARRAYC1,T),ARRAY(2,TI)
URUN GFX('"CIRCLE",ARRAY(3,T),8)

[JSHELL "DISPLAY 87"

ONEXT T

UEND

9-27

BASICO09 Reference

P OIN T Set point to specified color

Syntax: RUN GFX(“POINT”,xcor,ycorl,color])

Function: Displays a dot at the specified coordinates. If you
specify a color, POINT sets the pixel at the new coordinates to
that color. Otherwise, POINT sets the pixel at the new coordi-
nates to the foreground color.

Parameters:
xcor,ycor The X- and Y-coordinates for a pixel.
color The code of the color you want the pixel to be.
See the chart earlier in this section for color
information.
Examples:

RUN GFXC("PDINT'",192,128)
RUN GFX("PDINT",192,128,25

Sample Program:
This procedure uses POINT to draw filled boxes on the screen.

PROCEDURE boxup

UDIM XCOR,YCOR,BEGIN,COLOR,QUIT,TERMINATE,LINE:
INTEGER

ODIM T,X,Y:INTEGER

OXCOR=58 \YCOR=38 \COLOR=1

OBEGIN=1 \START=1 \QUIT=28 \TERMINATE=5D
[JRUN GFX(C"MODE',1,08)

ORUN GFX(™CLEAR'

OFOR T=1 TO 4

OFOR X=BEGIN TO QUIT

OFOR Y=START TO TERMINATE

ORUN GFX("POINT'",XCOR+Y,YCOR,COLOR)
ONEXT Y

OYCOR=YCOR+1

ONEXT X

OSTART=START+180

9-28

Displaying Text and Graphics / 9

OTERMINATE=TERMINATE-10
UCOLOR=COLOR+1

ONEXT T

OINPUT 2%

JEND

9-29

BASIC09 Reference

QUIT Deallocate graphics screen

Syntax: RUN GFX(“QUIT”)

Function: Switches the screen to the alphanumeric (text) mode
and deallocates graphics memory.

Parameters: None

Examples:
RUN GFXC"QUIT™)

9-30

Displaying Text and Graphics | 9

High-Resolution Graphics

BASIC09’s high-resolution graphics greatly expand the capabili-
ties of the Color Computer 3. You can have greater screen resolu-
tion (up to 640 by 192 pixels), as many as 64 colors, and the
ability to mix graphics and text on one screen. In addition, you
can use different text fonts, or styles.

The high-resolution module, GFX2, has many more functions
than its medium resolution counterpart. GFX2 gives you the
ability to:

e Select from 64 colors. 0S-9 provides a palette with 16
default colors. You can change any of these default colors to
any of the 64 colors available on the Color Computer 3.

® Set border colors.

@ Set color patterns.

@ Create different types of graphics screen cursors.
@ Use logic functions.

® Turn an automatic scaling function off or on.

@ Draw outline or filled boxes.

® Draw ellipses and ares.

e Fill specified areas with specified colors.

® GET and PUT sections of the graphics screen.

@ Select character fonts, which include boldfaced, transparent,
and proportionally spaced characters.

@ Move the cursor. Erase portions of a line or of the screen.
@ Select reverse or normal video.
@ Underline text.

Also, high-resolution graphics operate through the OS-9 Win-
dowing System. This means that you can run several procedures
in different windows. You can establish windows to display text,
or to display graphics, or both. You can easily display any
window.

9-31

BASIC09 Reference

Establishing a Hardware Window

For your convenience, OS-9 has a number of predefined or hard-
ware window formats. Hardware windows are text windows, and
you cannot use them for graphic applications. Because hardware
windows are predefined, you can easily establish them with the
INIZ command. For instance, to establish Window 7, type:

iniz w7 [ENTER

However, you cannot see the window until you send a message to
it. Type:

echo Hello Window 7 > /w7 (ENTER]

Now, to see the window and your message press (CLEAR). To
return to the original screen, press [CLEAR) again.

To OS-9, a window is a device and you can send data to it. To
view the Errmsg file in the SYS directory of your system
diskette, list it to Window 7 by typing:

list sys/errmsg > /w7 [ENTER]

Press (CLEAR) to move to Window 7 and see the listing. Press
SHIFT J(CLEAR] to return to the previous screen.

You can also fork a shell (an execution environment) to a win-
dow. To cause a shell to operate in Window 7, type:

shell i=/w7& [ENTER

The i= function of SHELL tells OS-9 that the window is im-
mortal. It does not die after completing a task. To operate 0S-9
from the window, press (CLEAR).

Besides Window 7, you have six other predefined windows. The
following chart shows all the hardware windows and their
parameters:

9-32

Displaying Text and Graphics / 9

Starting
Coordinates
Window Screen Size X-Coord, Window Size
Number Chars/line Y-Coord Cols Rows
1 40 0,0 27 11
2 40 28,0 12 11
3 40 0,12 40 12
4 80 0,0 60 11
5 80 60,0 19 11
6 80 0,13 80 12
7 80 0,0 80 24

Defining Windows

As well as hardware windows, OS-9 also lets you establish win-
dows to your own specifications. You can set definable windows
for either text or graphics, or both. You can locate them any-
where on a screen, and you can make them any size.

You initialize definable windows in the same manner you initial-
ize hardware windows, using INIZ. If you want to have text on
the window, you must merge SYS/Stdfonts (found on your system
diskette) with the window. You can also establish a shell in a
definable window, from which you can use 0S-9 or BASICO09.

To establish definable windows you must supply 0S-9 with infor-
mation about the type of window you want (its graphic format),
its size, and its location on the screen. The easiest way to do this
is with the 0S-9 WCREATE command.

9-33

BASICO09 Reference

WCREATE requires a window format code in the form
- s=format code to tell OS-9 what type of a window you want.
The following chart shows the possible window formats you can
choose:

Table 9.6
Format Screen Size Resolution No. of Memory Screen
Code Cols x Rows Width/Height Colors Required Type

01 40 x 24 —_— 1671 1600 Text
02 80x24 167 4000 Text
05 80 x 24 640 x 192 2 16000 Graphics
06 40 x 24 320 x 192 4 16000 Graphics
07 80 x 24 640 x 192 4 32000 Graphics
08 40 x 24 320 x 192 16 32000 Graphics

00* Specifies the current screen.
FF Current display screen. Use when putting several windows on the same
physical screen.

T You have to reconfigure the palette to get 16 colors rather than the default of
eight colors. The following section provides information on the palette.

Format Codes 01 and 02 select text screens, and Format Codes 5-
8 select graphics screens. The Screen Size column shows the
maximum number of text columns and rows available for each
screen. The Resolution column shows the maximum pixels
(graphic units) available for each of the graphic screens. The
Memory column shows how much memory 0S-9 must set aside
for each screen format. Memory requirements depend on the res-
olution and number of colors selected for a window.

The Palette

BASICO09 has 64 colors you can select for screen displays. The
colors are available through a palette. The Color Computer’s pal-
ette can hold 16 colors at once.

9-34

Displaying Text and Graphics / 9

The following chart shows the default colors for the palette in
Screen Format 7:

Table 9.7

Register Color Register Color
00 Black 08 Black
01 Red 09 Green
02 Green 10 Black
03 Yellow 11 Buff
04 Blue 12 Black
05 Magenta 13 Green
06 Cyan 14 Black
07 White 15 Orange

Instead of the default colors, you can select any of the 64 colors
(0-63) for any of the palette registers. You do this using the PAL-
ETTE command described later in this chapter. The BORDER
and COLOR commands also affect the colors available in the pal-
ette by changing the color in the background and foreground
registers, Registers 02 and 03, respectively.

Note: The information in the next section assumes you have
a Color Computer 3 with 512 kilobytes of memory. If your
computer has 128 kilobytes of memory, skip to the section
“High-Level Graphics With 128K.”

Establishing a Graphics Window

To create any window, you should first initialize it with the INIZ
command. Type:

iniz w1 [ENTER

So that you can later type in the new window, merge the
Stdfonts file with it. Type:

merge sys/sidfonts>/wil

Using the information in the preceding tables, use WCREATE to
establish a graphics window. The following command line creates
a graphics window in Window 1 that has 320 x 192 resolution
and that fills the entire screen. The new window has 16 colors
available and provides 40 column by 24 line text:

9-35

BASICO09 Reference

wcreate /wl -s=8 00 80 40 24 03 82 82
‘9 The screen border color
The screen background
color

The screen foreground
color

L~ The screen length in
rows

L - The screen width in
columns

The Y-Coordinate for the
beginning of the screen

The X-coordinate for the
beginning of the screen

The screen type

The window name

The command name

Starting a Shell in a Window

At this point, the new window exists, and you can send data to
it. However, if you want to operate from the window, you must
install a shell in it. Type:

shell i=/wl&
Press to move to the new window. To load BASIC09, type:

basic@9 #18K

Select either more or less memory, according to your needs.
Using BASIC09 in a graphics window, you can write procedures
to create high-resolution graphics, and you can display the
graphics on the same screen.

9-36

Displaying Text and Graphics / 9

Using High-Level Graphics With 128K

If your computer is equipped with only 128 kilobytes of memory,
you cannot use more than one window with BASIC09. Also, to
use even one window, you must follow certain steps to provide
enough memory for BASIC09 operations.

Refer to Table 9.6. You must select a window mode that does not
use more than 16000 byte of memory—either window Format 5
or Format 6.

To provide enough memory to use BASIC09, you must fork a
shell to the window you create, then kill the shell in TERM.
Doing this means that you can no longer operate from your
TERM screen. However, you can run OS-9 and BASIC09 from
the window.

The following steps show you how to create a Format 6 graphics
screen in Window 1, write a BASIC09 high-resolution graphics
procedure, and execute it using minimum memory.

1. Boot 0S-9. Then, create a graphics window by typing:

iniz w1

wcreate /w1l -s5=06 00 00 490 24 86 61 61 (ENTER)
merge sys/sidfonts>/w1

shell i=/w1é& (ENTER]

ex (ENTER]

2. The system stops, and you can no longer type or issue com-
mands. Press to move to the new window. Then, load
BASIC09 by typing:

basic@9
3. Enter the edit mode, and type the following procedure:

PROCEDURE squeeze

ODIM XCOR,YCOR,X,Y:INTEGER; RESPONSE:STRINGIL11]
ORUN GFX2('"CUROFF'"™)

OXCOR=320 \ YCOR=95 \ X=308 \ FLAG=1
OPRINT CHR$(C12)

gLoor

OFOR Y=1 TD 188 STEP 2

OX=Xx-3

gJcosuB 12

OIF FLAG<«1 THEN

ORUN GFX2(™COLOR"™,2)

9-37

BASICO09 Reference

JELSE

ORUN GFX2("COLOR™,3)
OENDIF

ORUN GFX2C"™ELLIPSE'™,XCOR,YCOR,X,Y)
OFLAG=FLAG*-1

ONEXT Y

ORUN GFX2('"COLDOR"™,1)
OFOR Y=99 TO 1 STEP -2
gcosus 18

OX=X+3

ORUN GFX2("™ELLIPSE™,XCOR,YCOR,X,Y)
ONEXT Y

ORUN GFX2('"COLOR™,8)
OENDLOOP

180RUN INKEY(RESPONSE)
JIF RESPONSE=*" THEN
ORETURN

JENDIF

180PRINT CHR$C12)

ORUN GFX2(C'"COLOR"™,2)
ORUN GFX2C"™CURDN™)
JEND

4. When you have entered the procedure exactly as shown, exit
the edit mode, and from the BASIC09 command mode, save
Squeeze by typing:

save squeeze

5. Compile Squeeze by typing:

pack squeeze

Squeeze is now an executable module saved in your current
execution directory. The following steps assume your execu-
tion directory is /DO/CMDS.

6. Exit BASIC09 by typing:

bye (ENTER

7. Merge Squeeze, RUNB, INKEY, and GFX2 into one module.
To do this, type:

merge /d@/cmds/squeeze /dB/cmds/runb /d8/cmds/
inkey gfx2 > /d@/cmds/yawn (ENTER)

9-38

Displaying Text and Graphics / 9

8. MERGE does not set the new file Yawn as an executable file.
Before you execute it, you must make the file executable by

typing:
attr /d@/yawn e pe (ENTER]

9. To execute Yawn, type:

yawn
10. To terminate the procedure, press the space bar.

The merging procedure in Step 7 saves a considerable amount of
memory. Every module you load uses one or more 8-kilobyte
blocks of storage space. For instance, INKEY is only 94 bytes in
length. However, if you load it as a separate module, it requires
8192 bytes. RUNB is 12185 bytes in length. This means that it
requires two 8-kilobyte blocks, or 16384 bytes of memory. GFX2
is 2190 bytes in length, and Squeeze is 605 bytes in length.
Loaded individually, they also require two memory blocks.

If you load all four modules independently, they use 40960 bytes.
However, by combining them into one file, they load into two
memory blocks, or 16384 bytes.

Using the information in this section, you can write and execute
numerous BASIC09 procedures with only 128 kilobytes of mem-
ory. However, if your computer has 512 kilobytes of memory, you
can bypass many of these steps. Also, the additional memory
enables you to have several windows open at one time. For
instance, you can create one window in which to write BASIC09
procedures, another window in which to execute your procedures,
and a third window from which you can use 0S-9 commands.

Note: The remainder of this chapter assumes you have 512
kilobytes of memory. If you don’t, you can still run many of
the sample procedures by implementing the steps in this
section.

Creating Windows from BASIC09

Using GFX2 routines, BASIC09 provides the means to create
and manage windows. The steps for creating windows from
BASICQ9 are as follows:

1. DIM a variable to hold the path number to the window you
want to create.

9-39

BASIC09 Reference

2. OPEN a path to the window.
3. SELECT the new window as the display window.

4. Send commands, data, or text to the window through the open
path.

5. CLOSE the open path.
6. Use SELECT to return to your original window.

If you do not want to return immediately to the screen or win-
dow of origin, you can skip Steps 5 and 6.

The following sample procedure shows how to open Window 2 as
a 320 x 192 graphics window, draw a circle, then return to the
original screen when you press a key.

PROCEDURE make_win

DIM PATH: INTEGER

DIM RESPONSE:STRINGI11

OPEN #PATH,"/W2"™:WRITE

RUN GFX2 (PATH,"DWSET",08,00,00,40,24,083,02,02)
RUN GFX2 (PATH,"SELECT"™)

RUN GFX2 (PATH,"CIRCLE"™,200,90,88)
GET #1,RESPONSE

CLOSE #PATH

RUN GFX2 (“SELECT"™)

END

This procedure establishes a Format 8 window, beginning at
Coordinates 0,0 and covering the total screen. The foreground
color is green, the background color is black, and the border color
is black.

Because this procedure does not INIZ the window it opens, the
window automatically disappears when the procedure closes its
path. To create a window that stays in the system, even after
you close the path to it, use INIZ before the OPEN statement,
like this:

SHELL "™INIZ /W2"

After you create and define the window, view it by pressing
(CLEAR). To get back to the screen you are working on, press
(cteAR). If you intend to use a window more than once in a proce-
dure, you do not need to close its path until the procedure no
longer needs it.

9-40

Displaying Text and Graphics / 9

Creating Overlay Windows

When you establish a window, you are initializing an OS-9
device. However, an overlay window is only a new screen for an
existing window. An overlay screen can be the same size as its
window, or it can be smaller. OS-9 automatically transfers to the
overlay window any current procedures operating in the device
window.

The process for creating overlay windows lets you select whether
you want to save the contents of the screen covered by the new
window. If you choose to save the contents, the previous screen is
redisplayed when you end the overlay.

The following procedure provides an example of using overlay
windows. It creates six overlays, each smaller than the preceding
window. The procedure then waits for you to press a key. When
you do, it removes the overlay windows.

PROCEDURE overwindows

ODIM X,Y,X1,Y1,T,J,B,L,PLACE: INTEGER
ODIM RESPONSE:STRINGIL11]

OX=8 \Y=0

0X1=80 \Y1=24

OPLACE=33

OFOR T=1 TO &

OIF T=2 DR T=6 THEN

0B=3

JELSE B=2

OENDIF

ORUN GFX2("™OWSET",1,X,Y,X1,Y1,B,T)
OX=X+6 \Y=Y+2

OX1=X1-12 \Y1=Y1-4

OFOR J=1 TO 5

OPRINT TAB(PLACE); "Overlay Screen "; T
ONEXT J

OPLACE=PLACE-B

ONEXT T

OPRINT "Overlay Screen 6"

OPRINT "Press A Key...";

OGET #1,RESPONSE

OFOR T=1 TO 6

ORUN GFX2(C*"OWEND'™)

ONEXT T

OEND

9-41

BASICO09 Reference

The Graphics Cursor and the
Draw Pointer

High-resolution graphics provide a text cursor, a graphics cursor,
and a draw pointer. The text cursor and the graphics cursor can
be either visible or invisible. The draw pointer is always
invisible.

Text functions always begin at the current location of the text
cursor. Whenever you print on the screen, the cursor automati-
cally moves to the end of the text or to the beginning of the next
line, depending on whether or not you use a semicolon after the
print statement. You can reset the text cursor to any place on
the screen with the CURXY function of GFX2.

Many BASIC09 graphics functions also begin operating at a
location pointed to by the draw pointer. When you begin graph-
ics, the draw pointer is located at coordinates 0,0. BASIC09 then
updates the pointer as you execute certain graphics functions.
For instance, the LINE function of GFX2 draws from the draw
pointer position to the specified end coordinates. The draw
pointer is left pointing to the end coordinates.

Because some functions begin at the draw pointer, you need to
keep track of its location and make certain it is placed properly.
Use the SETDPTR function to move the draw pointer to new
locations.

The graphics cursor is for use with joystick or mouse operations.
It provides a pointer for graphics applications. The system
diskette provides patterns that can be loaded into the graphics
cursor buffer. You can select from a variety of pointer images.

High-Resolution Text

When you create a graphics window, you can display either text
characters, graphics characters, or both.

To display graphics, move the draw pointer to the location where
you want the graphics to begin. Then, execute the graphics
routines.

To display text, move the text cursor to the location where you
want the text to begin. Then, use normal BASIC commands to
print text.

9-42

Displaying Text and Graphics | 9

Instructions for the draw pointer relate to a 640 x 192 grid,
numbered 0-639 and 0-191. Instructions for the text cursor
relate to the number of characters per line and the number of
lines on the current screen format.

Using Fonts

0S-9 has built-in fonts (character sets). You can also create your
own fonts and instruct BASIC09 to use them. If you create your
own fonts, you can design any symbols or graphics characters
you want to use.

To use fonts, you must be in a graphics window. See “Establish-
ing a Graphics Screen” earlier in this chapter. Use the FONT
function to tell 0S-9 what font you want. BASIC09 has three
fonts installed in Group 200, Buffers 1, 2, and 3. The following
procedure uses characters in Buffer 3 to draw a border, then
prints a message using the characters in Buffer 2. It then
returns to Buffer 3 and asks you to press a key to end the
procedure.

PROCEDURE borders

ODIM T,B,V,J,K: INTEGER
ODIM RESPONSE:STRINGI11
(B=199

OPRINT CHR$C12)

ORUN GFX2C“"FONT",200,3)
ORUN GFX2(¢"COLOR™,1,2)
OFOR T=@ TO 79

OPRINT CHR$(B);

ONEXT T

OFOR T=1 TO 21

ORUN GFX2C"CURXY"™,8,T)
OPRINT CHR$(B); CHR$(B);
ORUN GFX2("CURXY'"™,78,T)
OPRINT CHR$(B); CHR$(B);
ONEXT T

ORUN GFX2C'"CURXY"™,2,21)
OFOR T=8 TO 79

OPRINT CHR$(B);

ONEXT T

ORUN GFX2C"“FONT™,200,2)
ORUN GFX2('COLOR™,8,2)
ORUN GFX2("CURXY"™,45,9)
OPRINT "A Demonstration"

9-43

BASICO09 Reference

ORUN GFX2("CURXY".,58,18)
OPRINT *Of A"

ORUN GFX2("CURXY"™,43,11)
OPRINT "Buffer Three Border'
ORUN GFX2("CURXY™,51,12)
OPRINT "And"

ORUN GFX2('"CURXY™,45,13)
OPRINT "“Buffer Two Text™
ORUN GFX2(™FONT"™,200,1)
ORUN GFX2(¢"COLOR"™,3,2)
ORUN GFX2("™CURXY",33,15)
OPRINT "Press A Key...";
OGET #1,RESPONSE

OPRINT CHRs$C12)

JEND

High-Resolution Quick Reference

High-resolution functions are all part of the GFX2 module. You
call them in a BASIC09 procedure with the following syntax:

RUN GFX2CLPATH] ,"FUNCTION"I ,PARAMETERL ,...11)

Path is an optional variable name that tells 0S-9 the window in
which you want the function performed. Function is the high-
resolution task you want to perform. Parameter is an essential or
optional value that affects the performance of the function. Dif-
ferent functions require or permit different numbers of
parameters.

The following reference gives a brief description of the high-
resolution graphics functions. This list is organized by function.
Following the quick reference is a detailed reference organized
alphabetically.

9-44

Displaying Text and Graphics | 9

Window Commands

Command

Function

DWSet

OWSet

OWEnd
Select

DWEnd
CWArea

DWProtectSw

Establishes a window and sets its location
on the screen, its size, its background color,
its foreground color, and its border color.

Establishes an overlay window on a device
window that already exists. The function
also sets the overlay window size, back-
ground color, foreground color, and border
color. When using this function, you can
choose whether or not to save the contents
of the original screen.

Deallocates the specified overlay window.
Selects the window to display.
Deallocates an established window.

Changes the size of a window. You can only
reduce the working area of a window, not
increase it.

Lets you unprotect a window and set other
device windows over it. This might destroy
the contents of either or both windows.

9-45

BASICO09 Reference

Drawing Commands:

Command Function

Point Sets the pixel under the draw pointer to the
specified color or to the default color.

Line Draws a line.

Box Draws a rectangle outline.

Bar Draws a filled rectangle.

Circle Draws a circle.

Ellipse Draws an ellipse.

Arc Draws an arc.

Fill Fills the area of the window the same color

as the pixel under the draw pointer.

Clear Clears the window.

9-46

Displaying Text and Graphics / 9

Configuring Commands:

Command Function

Color Sets any of the foreground, background, or
border colors.

DefCol Sets palette registers to the default colors.

Border Sets the border palette register.

Palette Changes colors in the palette registers.

Pattern Establishes a buffer from which BASIC09
gets a pattern for graphics functions.

Logic Turns on AND, OR, or XOR logic functions
for draw functions.

GCSet Establishes a buffer from which BASIC09
gets the graphics cursor.

ScaleSw Turns scaling on or off.

SetDPir Positions the draw pointer.

PutGC Positions the graphics cursor.

Draw Draws an image from directions provided in

a draw string.

Get/Put Commands:

Command Function

Get Saves a specified portion of a window to a
buffer.

Put Places the image stored in a buffer onto a
window.

DefBuff Defines a buffer for storage.

GPLoad Preloads a buffer from a disk file.

KillBuff Deallocates a buffer.

9-47

BASIC09 Reference

Text/Cursor Handling Routines:

Command Function

CurHome Positions the cursor at coordinates 0,0.

CurXY Positions the cursor at specified
coordinates.

ErLine Erases the line under the cursor.

ErEOLine Erases from the cursor to the end of the
line.

CurOff Turns the graphics cursor off.

CurOn Turns the graphics cursor on.

CurRgt Moves the graphics cursor right one space.

Bell Sounds the terminal bell.

CurLft Moves the graphics cursor left one space.

CurUp Moves the graphics cursor up one line.

CurDwn Moves the graphics cursor down one line.

9-48

Displaying Text and Graphics / 9

Font Handling Commands:

Command Function

Font Specifies the buffer from which BASIC09
selects its font characters.

TCharSw Selects or deselects transparent characters.

BoldSw Selects or deselects bold characters.

PropSw Selects or deselects proportional characters.

ErEoWndw Erases from the graphics cursor to the end
of the window.

Clear Erases window and homes the cursor.

CrRtn Performs a carriage return by moving the
cursor down one line and to the extreme left
of the window. '

ReVOn Turns reverse video on.

ReVOff Turns reverse video off.

UndInOn Turns the underline function on.

UndInOff Turns the underline function off.

BinkOn Turns blinking characters on (only for hard-
ware text screens).

BlnkOff Turns blinking characters off (only for hard-
ware text screens).

InsLin Inserts a blank line at the graphics cursor
position.

DelLin Deletes the line at the graphics cursor

position.

9-49

BASICO09 Reference

ARC Draw an arc

Syntax: RUN GFX2([path,]“ARC”[,mx,myl,
xrad,yrad,xcorl,ycorl,xcor2, ycor2)

Function: Draws an arc at the current or specified draw posi-
tion with the specified X and Y radius. If you specify the
same radius for both X and Y, the function draws a circular
arc, otherwise the arc is elliptical. The X coordinates are in
the range 0-639. The Y coordinates are in the range 0-191.

ARC begins drawing from the point on the screen closest to
the first set of coordinates (xcorl, ycorl). It stops at the por-
tion of the screen closest to the second set of coordinates
(xcor2, ycor2). You can determine on which side of the line
ARC draws by selecting which set of coordinates is the begin-
ning and which set is the end.

Parameters:

path
mx, my
xrad

yrad

xcorl,ycorl
xcor2,ycor2

Examples:

The route to the window in which you want to
draw an arc.

The X- and Y-coordinates for the center of the
arc. If you do not specify mx and my, BASIC09
uses the current draw pointer position.

The radius of the arc’s width.
The radius of the arc’s height.

The beginning and ending coordinates for an
imaginary line from which the function draws
an arc. The line is relative to the center of the
arc (the center point is at 0,0 for these coordi-
nates) and extends through the two coordi-
nates from one edge of the screen to the other.

RUN GFX2("ARC",50,100,50,100,50,158)

9-50

Displaying Text and Graphics / 9

Sample Program:

This procedure draws a series of diagonally-cut arcs on a graph-
ics window screen.

PROCEDURE arcing

ODIM MX,MY,XRAD,YRAD,XCOR,YCOR,XCOR2,YCOR2: INTEGER
ODIM T,X,Y,Z2:INTEGER

OPRINT CHR$(C12)

OFOR T=1 TO 98 STEP 2

ORUN GFX2("ARC",318,95,158,T,6,1,8,1)
ORUN GFX2("ARC",324,95,150,T7,1,0,1,1)
ONEXT T

9-51

BASICO09 Reference

BAR Fﬂl a rectangle

Syntax: RUN GFX2([path,]“BAR”[,xcorl, ycorIl,xcor2,
ycor2)

Function: Fills a rectangular area defined by two sets of coor-
dinates. BAR defines its area with an imaginary diagonal
line from the first set of coordinates to the second set of coor-
dinates. The X coordinates are in the range 0-639. The Y
coordinates are in the range 0-191.

Parameters:
path The route to the window in which you want to
draw a bar.
xcorl,ycorl The beginning coordinates of the line defining

the area to fill. If you omit these coordinates,
BAR uses the draw pointer position. See the
previous section “The Graphics Cursor and
The Draw Pointer.” Also see SETDPTR.

xcor2,ycor2 The ending coordinates of the line defining the
area to fill.

Examples:
RUN GFX2("BAR"™,200,100)

RUN GFX2("BAR"™,0,0,160,58)

Sample Program:
This procedure draws a bar chart on a window screen.

PROCEDURE OSgraf

ODIM COLOR,T,X,XCOR1,YCOR1,XCOR2,YCOR2:
INTEGER; RESPONSE:STRINGIL1]

OPRINT CHR$C12)

ORUN GFX2C"DEFCOL™)

OCOLOR=13 \ XCOR1=18 \ YCOR1=188
UXCOR2=XCOR1+4@

ORUN GFX2(™CURDFF'™)

9-52

Displaying Text and Graphics / 9

OFOR T=1 TD 180

UREAD YCOR2

ORUN GFX2("COLOR'",COLOR)

ORUN GFX2("BAR",XCOR1,YCOR1,XCOR2,YCOR2)
ORUN GFX2C¢"COLOR",7)

ORUN GFX2("BOX",XCDR1,YCOR?,XCOR2,YCOR2)
(JCOLOR=COLOR+1 \ XCOR1=XCOR1+58 \ XCOR2=XCOR1+40
ONEXT T

UPRINT \ PRINT " 0S-9 Sales Chart"
ORUN GFX2('"BOX",0,8,510,188)

UGET #1,RESPONSE

ORUN GFX2C"CURON'"

UPRINT CHR$C12)

OEND

[(DATA 178,150,140,130,110,9¢,70,68,50,308

9-53

BASICO09 Reference

BELL Ring the terminal bell

Syntax: RUN GFX2(“BELL”)

Function: Rings the terminal’s bell (produces a beep through
the speaker).

Parameters: None

Examples:

RUN GFX2("BELL'™)

9-54

Displaying Text and Graphics / 9

BLNKON Character blink on
BLNKOFF Character blink off

Syntax: RUN GFX2([path,]“BLNKON")
RUN GFX2([path,]“BLNKOFF”)

Function: Executing BLNKON causes all subsequent charac-
ters sent to a window on a hardware screen to blink. A hard-
ware screen is one of the predefined device windows /W1
through /W7. Executing BLNKOFF cancels a previous blink
command; characters already blinking continue to do so. Blink
does not operate on graphics windows.

Parameters:
path The route to the window in which you want to
blink characters.
Examples:

RUN GFX2("BLNKON'")

RUN GFX2("BLNKOFF*™)

9-55

BASICO09 Reference

BOLDSW Switch bold characters on or off

Syntax: RUN GFX2([path,]“BOLDSW”,“switch”)

Function: Causes characters to display in either regular or
bold typeface. The default is regular typeface. BOLD only
works on graphics screens.

Parameters:
path The route to the window in which you want
bold characters.
switch Can be either “ON” or “OFF.” If switch is
“ON,” subsequent characters are bold. If
switch is “OFF,” subsequent characters are
not bold.
Examples:

RUN GFX2("BOLDSW'","™0ON")

Sample Program:

This procedure demonstrates the BOLDSW function by display-
ing both bold and normal text on a window screen.

PROCEDURE bold

ODIM LINE:STRING

ODIM LETTER:STRINGI[11]
UDIM T,J,K,FLAG: INTEGER
ORUN GFX2("CLEAR'")
UFLAG=1

OFOR T=1 TO 8

OREAD LINE

OFOR J=1 TO LENCLINE)
OLETTER=MID$CLINE,J,1)

UIF LETTER<>"t*™ AND LETTER<>"#" THEN
OPRINT LETTER;

OENDIF

OIF LETTER="!" THEN

UFLAG=FLAG*-1

9-56

Displaying Text and Graphics / 9

OIF FLAG>@® THEN

ORUN GFX2('"BOLDSW","™0OFF™)

JELSE

ORUN GFX2C*"BOLDSW'"™,"0ON"™)

OENDIF

OENDIF

OIF LETTER="#" THEN

OPRINT CHR$(34);

JENDIF

ONEXT J

OPRINT

ONEXT T

OPRINT \ PRINT

JEND

ODATA *"This is a demonstration of"
[DATA *"the !Bold! function of"
ODATA "BASIC09’s GFX2 module.™
ODATA "Use the command"

ODATA "I1RUN GFX2(#BOLDSW#,#0ON#)"
[DATA “io turn boldface on."
ODATA "Use IRUN GFX2(#BOLDSW#,#0FF#)1"
ODATA "io turn boldface off"

9-57

BASICO09 Reference

BORDER Set the border color

Syntax: RUN GFX2([path,]“BORDER”,color)

Function: Resets the palette register that affects a window’s
border color (Register 0) to the specified color code. For infor-
mation on the palette and on screen colors, see “The Palette”
and Table 9.7 earlier in this chapter.

Parameters:
path The route to the window in which you want to
change border color.
color One of the current palette colors. Color can be
either a constant or a variable.
Examples:

RUN GFX2(C"BORDER"™,1)

Sample Program:

This procedure lets you select different border colors by
pressing or (=] to select higher or lower color codes.
Press [q) to end the procedure.

PROCEDURE border

UDIM COLOR:INTEGER

ODIM KEY:STRINGI11

(JCOLOR=8

ORUN GFX2("CLEAR")

OWHILE KEY<>"g"™ AND KEY<>"Q@"™ DO

OGET #1,KEY

OIF KEY="-" OR KEY="='" THEN
OCOLOR=COLOR-1

JENDIF

OIF KEY="+'" QR KEY="';" THEN
[COLOR=COLOR+1

OENDIF

9-58

Displaying Text and Graphics / 9

OIF COLOR>15 OR COLOR<@ THEN COLOR=8
OENDIF

ORUN GFX2("BORDER",COLOR)

ORUN GFX2(*"CURXY".,0,8)

OENDWHILE

LUEND

9-59

BASIC09 Reference

BOX Draw a rectangle

Syntax: RUN GFX2([path,]“BOX”[,xcorl,ycorl],
xcor2,ycor2)

Function: Draws a rectangle. BOX defines its area with an
imaginary diagonal line from the first set of coordinates to
the second set of coordinates. BOX does not reset the draw
pointer. The X coordinates are in the range 0-639. The Y
coordinates are in the range 0-191.

Parameters:
path The route to the window in which you want to
draw a box.
xcorl,ycorl The beginning coordinates for the line that
defines the rectangle to drawn. If you omit
these coordinates, BOX uses the draw pointer
position.
xcor2,cor? The ending coordinates for the line that
defines the rectangular area to be drawn.
Examples:

RUN GFX2("BOX",200,160)

RUN GFX2("BOX",0,0,100,58)

Sample Program:

This procedure draws a series of progressively smaller boxes of
different colors on a window screen. Then, it rapidly changes the
colors of the boxes to produce a hypnotic effect.

PROCEDURE hypbox

ObpIM X,Y,X1,Y1,T,R,COLOR: INTEGER
ODIM KEY:STRINGIL[11

OKEY="n

0X=18 \Y=6

0Y1=185 \X1=621

ORUN GFX2("CLEAR')

9-60

Displaying Text and Graphics /| 9

JFOR T=8 TO 15

{jCOLOR=T

ORUN GFX2('COLOR",3)

ORUN GFX2¢"BOX",X,Y,X1,Y1)
ORUN GFX2("COLOR"™,COLOR)
ORUN GFX2C"FILL",X-1,Y-1)
0X=X+18 \Y=Y+6

0X1=X1-18 \Y1=Y1-6

ONEXT T

OWHILE KEY="' DO

ORUN INKEYCKEY)

OFOR T=1 TO 16

OR=RND(E5)

ORUN GFX2("PALETTE™,T,R)
ONEXT T

OENDWHILE

ORUN GFX2(C"DEFCOL™)

[JEND

9-61

BASIC09 Reference

CIRCLE Draw a circle

Syntax: RUN GFX2([path,]*“CIRCLE”[,xcor,ycor],
radius)

Function: Draws a circle with a specified radius. If you specify
coordinates, CIRCLE uses them for the center point. Other-
wise, CIRCLE locates the center of the circle at the current
draw pointer position. See “The Graphics Cursor and the
Draw Pointer” earlier in this section. Also see SETDPTR.

Parameters:
path The route to the window in which you want to
draw a circle.
xcor,ycor The coordinates for the circle’s center. The X
coordinates are in the range 0-639. The Y
coordinates are in the range 0-191.
radius The radius of the circle.
Examples:

RUN GFX2("CIRCLE",188)

RUN GFX2(“"CIRCLE",100,200,508)

9-62

Displaying Text and Graphics [9

Sample Program:
This procedure uses circles to produce a geometric design.

PROCEDURE ciraround

ODIM T,X,Y:INTEGER

OPRINT CHR$(C12)

ORUN GFX2(*"COoLOR"™,1,2)

OFOR T=1 TO 136
OX=15@8*«SINCT)+320
OYy=25%C0S(T)+96

ORUN GFX2("™CIRCLE"™,X,Y,1088)
ONEXT T

ORUN GFX2("COLOR"™,3,2)

OFOR T=1 TO 45
OX=1560+«SIN(T)+320
OYy=25+*C0S(T)+96

ORUN GFX2("“CIRCLE",X,Y,188)
ONEXT T

OEND

9-63

BASICO09 Reference

CLEAR Clear the screen

Syntax: RUN GFX2([path,]“CLEAR”)

Function: Clears the current working area of a window.
CLEAR does not change the location of the draw pointer but
does set the text cursor and graphics cursor location to the
upper left corner of the window.

Parameters:

path The route to the window you want to clear.

Examples:
RUN GFX2C"CLEAR™)

9-64

Displaying Text and Graphics /' 9

COLOR Set screen colors

Syntax: RUN GFX2([path,]“COLOR?,
foreground|,background]l,border])

Function: Changes any of the foreground, background, or the
border colors. COLOR does not change the draw pointer
position.

Parameters:

path The route to the window in which you want to
change one or more screen or text colors.

foreground The register number for the foreground
palette.

background The register number for the background
palette.

border The register number for the border palette.

Changing the border color for any window on a
screen, changes the border color for all win-
dows on the same screen.

Examples:

RUN GFX2¢*COLOR'",1)
RUN GFX2("COLOR"™,1,2)
RUN GFX2(¢"COLOR"™,1,2,1)

9-65

BASIC09 Reference

Sample Program:

This procedure fills a window screen with multicolored filled
circles.

PROCEDURE bubbles

ODIM X,Y,W,Z,T:INTEGER
0z=1

[JRUN GFX2C"COLOR"™,1,0,8)
ORUN GFX2("CLEAR™)

OFOR T=1 TO 848
OX=RND(635)>+4
dY=RND(185)+5
OW=RND(58+5)

z=2+1

OIF 2>3 THEN Z=1

OENDIF

[JRUN GFX2C"CIRCLE",X,Y,W)
ORUN GFX2("COLOR",2)
[ORUN GFX2C"FILL"™,X,Y)

ONEXT T
ORUN GFX2("COLOR",3,2,2)
OEND

9-66

Displaying Text and Graphics / 9

CRRTN Carriage return

Syntax: RUN GFX2([path,]“CRRTN”)

Function: Causes BASIC09 to send a carriage return to a
window. The cursor moves down one line and to the extreme
left of the window.

Parameters:
path The route to the window in which you want a
carriage return.
Examples:

RUN GFX2('"CRRTN')

9-67

BASIC09 Reference

CURDWN Cursor down

Syntax: RUN GFX2([path,]“CURDWN?”)

Function: Moves the cursor down one text line. The X-coordi-
nate, or column position, remains the same.

Parameters:
path The route to the window in which you want to
move the cursor.
Examples:

RUN GFX2C'"CURDWN")

9-68

Displaying Text and Graphics / 9

CURHOME Cursor home

Syntax: RUN GFX2([path,]“CURHOME”)

Function: Moves the text cursor to the top left corner of the
screen.

Parameters:
path The route to the window where you want to
reset the cursor
Examples:

RUN GFX2('"CURHOME")

9-69

BASIC09 Reference

CURLFT Move cursor left

Syntax: RUN GFX2([path,]“CURLFT”)

Function: Moves the cursor one character to the left.

Parameters:
path The route to the window where you want to
move the cursor.
Examples:

RUN GFX2C"™CURLFT"™)

9-70

Displaying Text and Graphics / 9

CUROFF Turn off cursor

Syntax: RUN GFX2([path,]“CUROFF”)

Function: Makes the cursor invisible.

Parameters:
path The route to the window in which you want to
turn the cursor off.
Examples:

RUN GFX2C"™CURDOFF™)

9-71

BASICO09 Reference

CURON Turn on cursor

Syntax: RUN GFX2([path,]“CURON")

Function: Makes the text cursor visible.

Parameters:
path The route to the window in which you want to
turn the cursor on.
Examples:

RUN GFX2("CURON")

9-72

Displaying Text and Graphics / 9

CURRGT Move cursor right

Syntax: RUN GFX2(“[path,JCURRGT”)

Function: Moves the cursor one character to the right.

Parameters:
path The route to the window in which you want to
move the cursor.
Examples:

RUN GFX2('"CURRGT'")

9-73

BASICO09 Reference

CURUP Move cursor up

Syntax: RUN GFX2([path,]“CURUP”)

Function: Moves the cursor up one line.

Parameters:
path The route to the window in which you want to
move the cursor.
Examples:

RUN GFX2C'"CURUP'")

9-74

Displaying Text and Graphics / 9

CURXY Set cursor position

Syntax: RUN GFX2([path,]“CURXY”,column,row)

Function: Moves the cursor to the specified column and row
position. The column and row coordinates are relative to the
window’s current character width and depth.

Parameters:
path The route to the window in which you want to
move the cursor.
column The column (horizontal) position for the
cursor.,
row The row (vertical) position for the cursor.
Examples:

RUN GFX2("CURXY"™,18,18)

9-75

BASICO09 Reference

CWAREA Change working area

Syntax: RUN GFX2([path,]“CWAREA”,xcor,ycor,sizex,
sizey)

Function: Restricts output in the window to the specified area.
The new area must be the same or smaller than the previous
working area. When a window’s working area is changed,
OS-9 scales graphic and text coordinates and graphic images
to the new proportions. Text characters remain the same size.

Parameters:
path The route to the window in which you want to
change the working area.
xcor,ycor The beginning coordinates (the upper left cor-
ner) for the new working area, relative to the
original window. The coordinates are based on
the character column and row size of the origi-
nal window.
sizex Designates the number of columns in the new
working area.
sizey The number of lines available in the new
working area. ’
Examples:

RUN GFX2(''CWAREA"™,18,0,40,10)

9-76

Displaying Text and Graphics / 9

Sample Program:

This procedure makes the working area in a window progres-
sively smaller, filling each area with a different color. It then
changes the areas’ colors rapidly to produce a hypnotic effect.

PROCEDURE hypnobox

ODIM X,Y,X1,Y1,T,R,COLOR: INTEGER
ODIM KEY:STRINGIL11

OKEY ="t

OX=3 \Y=1

OX1=80-C(X+X) \Y1=24-(Y+Y)
OFOR T=06 TO 18

ORUN GFX2("™COLOR",3,T)

ORUN GFX2("CLEAR")

ORUN GFX2("™CWAREA",X,Y,X1,Y1)
OX=X+3 \Y=Y+1

OX1=80-CX+X) \Y1=24-(Y+Y)
ONEXT T

ORUN GFX2("COLOR",3,2)

OWHILE KEY="" DO

ORUN INKEY(KEY)

OFOR T=1 TO 16

[OR=RND(65)

ORUN GFX2("PALETTE",T,R)
ONEXT T

OENDWHILE

ORUN GFX2("™DEFCOL"™)

ORUN GFX2("CWAREA",0,06,88,24)
JEND

9-77

BASIC09 Reference

DEFBUFFEF Define GET/PUT buffer

Syntax: RUN GFX2(“DEFBUFF”,group,buffer,size)

Function: Defines a buffer for GET/PUT operations.

When you define a buffer, you do so by group number and
buffer number. Each group you define allocates eight kilobytes
of memory. The system needs 30 bytes of the block for over-
head, leaving 8162 bytes free. Within the group, you can allo-
cate one or more buffers. Select a group number and a buffer
number as indicated in the following “Parameters” section.
Use these numbers in future references to the buffer.

A GET/PUT buffer remains allocated until you use the KILL-
BUFF function to remove it from your system’s memory. For
more information on Get/Put buffers, see KILLBUFF, PUT,
GET, and GPLOAD.

Parameters:
group A number you select in the range 1-199.
buffer A number (in the range 1-255) that you
assign to the buffer you create.
size The size of the buffer, in the range of 1 to
8192 bytes, depending on available memory in
its group.
Notes:

One method of selecting a group number is to use SYSCALL
and the Get ID (103F 0C) system call to obtain your user’s
process ID number. Then, use this ID number as a group
number. Using this system for all GET/PUT buffer operations,
ensures against group number overlapping. See the SYS-
CALL command for more information.

Examples:
RUN GFX2C"DEFBUFF"™,1,5,4600H2)

9-78

Displaying Text and Graphics / 9

DEF C OL Set default colors

Syntax: RUN GFX2([path,]“DEFCOL”)

Function: Sets the palette registers back to their default val-
ues. The type of monitor you have determines the actual hues.
See “The Palette” and Table 9.7 earlier in this section.

Parameters:
path The route to the window in which you want to
restore the original palette registers.
Examples:

RUN GFX2(“DEFCOL'™)

9-79

BASIC09 Reference

DE LLIN Delete current line of text

Syntax: RUN GFX2([path,]“DELLIN”)

Function: Deletes the line on which the cursor is resting and
closes the space. DELLIN operates on both text and graphics
screens.

Parameters:
path The route to the window in which you want to
delete a line.
Examples:

RUN GFX2("DELLIN"™)

Sample Program:

This procedure draws a series of various colored concentric cir-
cles, then produces a lemon shape by removing slices of the circle
with DELLIN.

PROCEDURE slice

ODIM X,Y,R,T,COLOR:INTEGER
ORUN GFX2('"CLEAR"™)
gCOLOR=8

Ux=320

dy=96

OFOR T=185 TO 1@ STEP -18
ORUN GFX2C™CIRCLE"™,X,Y,T)
ONEXT T

OFOR T=14@ TO 328 STEP 180
ORUN GFX2(¢"COLOR™,COLOR)
ORUN GFX2C"FILL™,T,96)
OCOLOR=COLDR+1

ONEXT T

ORUN GFX2("CURXY"™,0,8)
OFOR T=1 TO 8

ORUN GFX2("™DELLIN')

ONEXT T
ORUN GFX2(*COLOR"™,3,2)
OEND

9-80

Displaying Text and Graphics / 9

DRAW Draw a polyline figure

Syntax: RUN GFX2([path,|“DRAW”,option list)

Function: Draws in the directions specified, and for the dis-
tances specified, in an option list. The option list is a string of
characters and numbers. You can separate options with spaces
or commas. You must include commas between the two coordi-
nates for the B and U options.

Parameters:
path The route to the window in which you want to
draw.
option list A string consisting of one or more of the fol-
lowing options: :
Options:
Nnum draws north (up) num units.
Snum draws south (down) num units.
Enum draws east (right) num units.
Wnum draws west (left) num units.
NEnum draws northeast (up and right) num units.
NWnum draws northwest (up and left) num units.
SEnum draws southeast (down and right) num units.
SWnum draws southwest (down and left) num units.
Aval rotates the draw axis. Possible values are:
0 = normal
1 = 90 degrees
2 = 180 degrees
3 = 270 degrees
Uxcor,ycor draws a relative vector to the specified coordi-

nates. Xcor and ycor are relative to the cur-
rent draw pointer position. The draw pointer
location does not change. Xcor and ycor must
be separated by a comma.

9-81

BASICO09 Reference

Bxcor,ycor produces a blank line (moves the cursor but
does not draw). The xcor and ycor coordinates
are relative to the current draw pointer loca-
tion. If you specify relative coordinates located
offscreen, you cannot see subsequent lines.

Examples:
RUN GFX2C("DRAW","N108,E10,518,K18")

Sample Program:

PROCEDURE drawing

ODIM T,X,Y,COLOR:INTEGER
[OCOLOR=0

ORUN GFX2("CLEAR"™)

OFOR T=1 TO 96 STEP 6

ORUN GFX2("“SETDPTR",320,96)
OFOR Y=8 TO 3
JCOLOR=MODCY,2)

ORUN GFX2("CcOoLOR™,COLOR)
OFOR X=1 TO 4

(OREAD DR$
[DR$="A"+STR$(YI+DR$+STR$(T)
ORUN GFX2("DRAW",DR$)

ONEXT X

ONEXT Y

[ORESTORE

ONEXT T

ORUN GFX2('"COLOR™,3)

OEND

ODATA MNw g uge apn

9-82

Displaying Text and Graphics / 9

DWE ND Device window end

Syntax: RUN GFX2([path,]“DWEND”)

Function: Deallocates the device window you initialized with
DWSET and INIZ. If the window deallocated is the last device
window on the screen, BASIC09 returns the screen memory to
the system. DWEND automatically positions you in the next
device window, a result similar to pressing (CLEAR). You can
use this function with DWSET to redefine a device window to
a different type.

Parameters:
path The path number of the window you wish to
end. Path can be a constant or variable.
Examples:

RUN GFX2(C"DWEND")
RUN GFX2CPATH,"DWEND")
RUN GFX2(3,"DWEND'")

Sample Program:

From /TERM, this procedure temporarily opens a path to
Window 3, displays the new window, draws a design, then
returns to the /TERM screen and closes the path.

PROCEDURE decorate

ODIM PATH,T,Y:INTEGER

JOPEN #PATH,"/W3":WRITE

ORUN GFX2(PATH,"“DWSET",7,0,06,88,24,3,2,2)
ORUN GFX2(PATH,"™SELECT™)

gy=1

ORUN GFX2(PATH,"COLOR",3,2)

OFOR T=1 TO 185 STEP 3

OYy=Y+1

ORUN GFX2CPATH,"ELLIPSE",320,96,T,Y)
ONEXT T

ORUN GFX2¢(PATH,"COLOR"™,1,2)

OFOR T=18%5 TO 1 STEP -6

9-83

BASICO09 Reference

ORUN GFX2(PATH,“ELLIPSE™,328,96,T,Y)
OIF INTCT/3)=T/3 THEN

gy=y+1

CENDIF

ONEXT T

ORUN GFX2(1,"“SELECT™)

ORUN GFX2C(PATH,"DWEND'™)

OCLOSE #PATH

JEND

9-84

Displaying Text and Graphics / 9

DWPROTSW Device window protect switch

Syntax: RUN GFX2([path,] DWPROTSW”,“switch”)

Function: Lets you unprotect one device window and set other
device windows on top of it.

0S-9 on the Color Computer 3 normally uses a protected win-
dowing system that does not allow window devices to overlap.
Removing the window protection with DWPROTSW lets one
device window exist on the same screen area as another win-
dow device. Because this might destroy the contents of an
unprotected window, you need to use care with this function.

Parameters:
path The route to the window you want to
unprotect.
switch Either OFF to turn off protection, or ON to
turn on protection. The default is ON.
Examples:

RUN GFX2("DWPROTSW! ,0FF)

9-85

BASIC09 Reference

DWSET Device window set

Syntax: RUN GFX2([path,]“DWSET”,format,xcor,ycor,
width,length,foreground, background,border)

Function: Defines a device window. Normally, you first open a
path to a window, then use DWSET to set the window format,
location, size, and colors.

Parameters:

path The route to the window you are defining.

format The code for the type of screen you want to
establish. See Table 9.6 at the beginning of
this section for the formats available.

xcor,ycor The coordinates (character column and row) of
the upper left corner of the screen you want to
create.

width The width (in characters) of the new window.

length The depth (in lines) of the new window.

foreground The code for the window’s foreground color.

background The code for the window’s background color.

border The code for the window’s border color.

Examples:

RUN GFX2(“DWSET",096,50,100,50,10,20,12,9)

Sample Program:

This procedure opens a path to Window 3, uses DWSET to define
the new window, displays the new window, and draws a graphic
lemon shape. It then uses SELECT to return to the /TERM win-
dow or screen, deallocates Window 3, and closes the path.

9-86

Displaying Text and Graphics / 9

PROCEDURE lemon

ODIM PATH,T,X,Y:INTEGER

OJOPEN #PATH,"/W3":WRITE

ORUN GFX2(PATH,"DWSET™,7,06,0,88,24,3,2,2)
ORUN GFX2(PATH,"SELECT"™)

gy=1

ORUN GFX2(PATH,'"COLOR",8,2)

OFOR T=1 TO 185 STEP 3

gy=yY+1

ORUN GFX2(PATH,"ELLIPSE",328,96,T,Y)
ONEXT T

Ox=T

ORUN GFX2(PATH,"COLOR"™,3,2)

OFOR T=62 TO 1 STEP -3

ORUN GFX2(PATH,"ELLIPSE"™,328,96,X,T)
OIF INTCT/3)=T/3 THEN

OX=X+1

OJENDIF

ONEXT T

[ORUN GFX2(1,"SELECT"™)

ORUN GFX2C(PATH,"DWEND'™)

[OCLOSE #PATH

[JEND

9-87

BASICO09 Reference

ELLIP SE Draw an ellipse

Syntax: RUN GFX2(Ipath,]“ELLIPSE”[,xcor,ycor],
xrad,yrad)

Function: Draws an ellipse with the center at the current
draw pointer position or at the specified X,Y coordinates. The
X coordinates are in the range 0-639. The Y coordinates are
in the range 0-191.

Parameters:
path The route to the window in which you want to
draw.
xcor,ycor The coordinates for the ellipse’s center. If you

omit these coordinates, ELLIPSE uses the
current draw pointer position.

xrad,yrad The radii of the ellipse’s length and height.

Examples:
RUN GFX2(“ELLIPSE"™,1088,508)
RUN GFX2("ELLIPSE"™,180,125,186,10)

Sample Program:

This program uses ELLIPSE to draw a graphic design shaped
like a Christmas tree decoration.

PROCEDURE xbulb

ODIM T,Y:INTEGER

Oy=1

ORUN GFX2("COLOR",3,2)
ORUN GFX2("CLEAR™)

OFOR T=1 TO 188 STEP 3
gy=y+1

URUN GFX2('"ELLIPSE"™,320,96,T,Y)
ONEXT T

ORUN GFX2(¢"COLDOR*",1,2)
OFOR T=186 TO 1 STEP -6

9-88

Displaying Text and Graphics / 9

ORUN GFX2("™ELLIPSE",328,96,T,Y)
OIF INTCT/3)=T/3 THEN

Jy=Y+1

OENDIF

ONEXT T

ORUN GFX2("COLOR",3,2)

UEND

9-89

BASIC09 Reference

ERE OLIN E Erase to end of line

Syntax: RUN GFX2([path,]“ERECLINE”)

Function: Deletes the portion of the current line from the cur-
sor to the right side of the window.

Parameters:
path The route to the window in which you want to
erase a portion of a line.
Examples:

RUN GFX2("EREOLINE™)

Sample Program:

This procedure uses EREOLINE to produce a series of steps
down the screen.

PROCEDURE steps

ODIM T,Jd,K:INTEGER
URUN GFX2("COLOR™,2,3)
ORUN GFX2('"CLEAR')
ORUN GFX2(¢'COLOR"™,3,2)
UFOR T=8 TO 22

OJ=T+3

ORUN GFX2("™CURXY",J,T)
ORUN GFX2(C"™EREOLINE™)
ONEXT T

9-90

Displaying Text and Graphics | 9

ERE OWNDW Erase to end of window

Syntax: RUN GFX2([path,] EREOWNDW”)

Function: Deletes all the lines in a window from the line on
which the cursor is positioned to the bottom of the window.

Parameters:
path The route to the window in which you want to
delete screen contents.
Examples:

RUN GFX2("EREOWNDW")

9-91

BASIC09 Reference

ERLINE Delete current line of text

Syntax: RUN GFX2([path,)“ERLINE”)

Function: Deletes the current line (on which the cursor is rest-
ing) from the window but does not close the space.

Parameters:
path The route to the window in which you want to
remove the contents of a screen line.
Examples:

RUN GFX2(C"ERLINE")

Sample Program:

This procedure draws a bull’s-eye design, then slices it
with the ERLINE function.

PROCEDURE cut

ODIM X,Y,R,T,COLOR: INTEGER
(COLOR=8

Ox=329

y=96

CRUN GFX2("CLEAR"™)
OCOLOR=8@

UFOR T=185 TO 16 STEP -140
ORUN GFX2("CIRCLE™,X,Y,T)
ONEXT T

OFOR T=14@8 TO 328 STEP 18
URUN GFX2("COLOR'",COLDR)
ORUN GFX2¢("FILL"™,T,96)
{COLOR=COLOR+1

ONEXT T

OFOR T=2 TO 22 STEP 2
ORUN GFX2C"CURXY"™,8,T)
ORUN GFX2("ERLINE™)

ONEXT T
ORUN GFX2("COLOR"™,3,2)
OEND

9-92

Displaying Text and Graphics / 9

FILL Fill (paint) window

Syntax: RUN GFX2([path,]“FILL”,[xcor,ycor])

Function: Paints an area with the current foreground color.
Paint fills the portion of the window that is the same color as
the pixel under the draw pointer.

Parameters:
path The route to the window in which you want to
use the FILL function.
xcor,ycor Are optional X- and Y-coordinates to reposi-
tion the draw pointer before FILL begins. If
you omit these coordinates, BASIC09 uses the
current draw position.
Examples:

RUN GFX2("FILL"™,1060,1608)

Sample Program:
This procedure draws and fills 100 boxes on a window.

PROCEDURE colorbox

Oopim A,B,C,D,T,COLOR: INTEGER
OCOLOR=0

ORUN GFX2('"CLEAR'")

OFOR T=1 TOD 189
[JA=RND(560)

OB=RND(C151)

iC=A+RND(8G)

UD=B+RND(48)
[(OCOLOR=COLOR+1

ORUN GFX2("™COLOR'",COLOR)
[RUN GFX2('"BOX",A,B,C,D)
ORUN GFX2("FILL™,A+1,B+1)
ONEXT T

9-93

BASIC09 Reference

F ONT Define font buffer

Syntax: RUN GFX2([path,]“FONT”,group, buffer)

Function: Defines a buffer from which BASIC09 gets the char-
acter font (style) for the current screen. Use the text/cursor
handling functions referenced in this section with the font you
load. When you merge the Stdfonts file in your SYS directory
with a graphics window, you have the choice of three fonts
from Buffers 1, 2, and 3, located in Group 200. You can also
create your own fonts. FONT works only on graphics screen.
See “Using Fonts” earlier in this chapter.

You must load the font you want to use into the defined buffer
before using FONT.

Parameters:
path The route to the window in which you want to
use an alternate font. :
group The group number of the buffer containing the
font to use.
buffer The number of the buffer containing the font
to use.
Examples:

RUN GFX2C"“FONT™,2008,2)

9-94

Displaying Text and Graphics / 9

GC SET Set graphics cursor

Syntax: RUN GFX2(“GCSET”,group,buffer)

Function: Defines a buffer from which BASIC09 gets the
graphics cursor. This lets you define your own cursor for
graphics operations. To turn the graphics cursor off, use a
group Number 0. You must execute this command to display a
graphics cursor. Before using GCSET, you must merge the
Stdcur file in the SYS directory to the window.

Parameters:

group The group number of the buffer containing the
cursor image to use. See 0S-9 Windowing
System for information on the group to use.

buffer The number of the buffer that contains the
cursor image to use. See 0S-9 Windowing
System for information on the buffer to use.
Examples:

RUN GFX2('"GCSET",1,5)

9-95

BASIC09 Reference

GET Get a block from the window

Syntax: RUN GFX2([path,]“GET”, group, buffer,xcor,
Yyeor,xsize,ysize)

Function: Saves a window area Get/Put buffer. Use PUT to
replace the image to the window. If you did not previously
define the buffer, BASIC09 creates it. If you store the window
data in a predefined buffer, the data must be the same size or
smaller than the buffer. If not, BASIC09 truncates the data to
the size of the buffer. (Also see PUT and DEFBUFF.)

Parameters:
path The route to the window where you want to
save an image.
group The group number of the Get buffer (1-199).
buffer The Get buffer number (1-255).
xcor,ycor The X- and Y-coordinates of the upper left cor-
ner of the window image to save. The X-
coordinates are in the range 0-639. The Y-
coordinates are in the range 0-191.
xsize The horizontal size of the window section to
save.
ysize The vertical size of the window section to save.
Examples:

RUN GFX2("GET",1,5,0,0,16,15)

9-96

Displaying Text and Graphics / 9

Sample Program:

This procedure draws a character, loads it into a buffer, then
repeatedly replaces the character to the window screen using
PUT. Each new image erases the previous image, giving an
impression of animation.

PROCEDURE putidown

ODIM T,J:INTEGER

ORUN GFX2("CLEAR"™)

ORUN GFX2("ELLIPSE™,320,96,12,4)
ORUN GFX2("“CIRCLE"™,320,92,5)
ORUN GFX2("COLOR"™,1)

ORUN GFX2("FILL",320,96)

ORUN GFX2("COLOR"™,3)

ORUN GFX2("FILL"'",320,90)

ORUN GFX2("™BAR",305,100,335,104)
[ORUN GFX2("“GET",1,1,288,85,50,23)
ORUN GFX2("GET",1,2,1,1,58,23)
ORUN GFX2¢("PUT",1,2,288,85)

0J=18

OJFOR T=286 TO 559 STEP 6
Od=J+2

JRUN GFX2¢"“PUT",1,1,T,d)
ONEXT T

ORUN GFX2("KILLBUFF"™,1,1)
ORUN GFX2C"CURON")
[JEND

9-97

BASICO09 Reference

GP LOAD Load data into Get/Put buffer

Syntax: RUN GFX2(“GPLOAD”,group,buffer,format,
xdim,ydim,size)

Function: Loads a buffer with image data that PUTBLK can
use for window displays. If the Get/Put buffer is not created,
BASICO09 creates it. If it is defined, the size of the data should
not be larger than the buffer.

Parameters:
group The group number you select, in the range 1-
199, to let you group buffers.
buffer A number in the range 1-255 that you assign
to the buffer you create.
format The type code of the screen format. (See Table
94.)
xdim The X (horizontal) dimension of the stored
block.
ydim The Y (vertical) dimension of the stored block.
size The size of the buffer in bytes. A buffer size
can be in the range of 1 to 8 kilobytes,
depending on available memory.
Examples:

RUN GFX2("DEFBUFF",1,5,06,100,50,5000)

9-98

Displaying Text and Graphics | 9

INSLIN Insert line

Syntax: RUN GFX2([path,]“INSLIN”)

Function: Moves the window lines at and below the cursor
down one line.

Parameters:
path The route to the window in which you want a
blank line.
Examples:

RUN GFX2(C™INSLIN')

Sample Program:

This procedure draws a round face on the screen, then uses
INSLIN and DELLIN to make a mouth appear to move.

PROCEDURE chomp

DIM X,Y,T:INTEGER

ODIM RESPONSE:STRING[1]
[JRESPONSE=""

ORUN GFX2('"CLEAR'")

ORUN GFX2(“CIRCLE™,328,96,88)
ORUN GFX2('"COLOR",0,2)

ORUN GFX2(“FILL™,320,96)

ORUN GFX2¢*COLOR"™,2)

ORUN GFX2("CIRCLE"™,285,86,12)
ORUN GFX2("CIRCLE"™,355,88,12)
ORUN GFX2("FILL'",285,88)

ORUN GFX2("™FILL"™,355,88)

ORUN GFX2('"CIRCLE",315,96,3)
ORUN GFX2(™CIRCLE"™,325,96,3)
ORUN GFX2("ARC"™,328,92,14,3,3,1,1,1)
ORUN GFX2("COLOR"™,3,2)

ORUN GFX2("CIRCLE™,289,77,3)
ORUN GFX2("CIRCLE",359,77,3)
ORUN GFX2("CURXY™,0,14)
OREPEAT

9-99

BASIC09 Reference

ORUN GFX2C"™INSLIN'")
UFOR X=1 TO 100
ONEXT X

ORUN GFX2C"DELLIN™)
URUN INKEYCRESPONSE)
OUNTIL RESPONSE>"w
[JEND

9-100

Displaying Text and Graphics / 9

KILLBUFF Deallocate Get/Put buffer

Syntax: RUN GFX2(“KILLBUFF”,group,buffer)

Deallocates the indicated Get/Put buffer. You select group and
buffer numbers when you define a buffer or when you load or
get a window image. For more information on Get/Put buffers,
see DEFBUFF, PUT, GET, and GPLOAD.

Parameters:
group The group number of the buffer you want to
deallocate, in the range 1-199. Buffer Group
Numbers 0 and 200-255 are reserved for OS-9
system use.
buffer The number of the buffer to deallocate, in the
range 1-255.
Examples:

RUN GFX2C"KILLBUFF",1,5)

Sample Program:

This procedure draws a figure on a window screen, loads it
into a buffer, then repeatedly places it in new locations on the
screen. Each new PUT erases the previous image.

PROCEDURE putdown

opim X,Y,T,J: INTEGER

ORUN GFX2C*™CURDOFF™)

ORUN GFX2(¢("™CLEAR™)

ORUN GFX2("™ELLIPSE",326,96,12,4)
ORUN GFX2(“CIRCLE",328,90,5)
ORUN GFX2(¢*COLOR™,1)

ORUN GFX2(C"FILL"™,320,96)

ORUN GFX2(¢'"COLOR"™,3)

ORUN GFX2(“FILL",320,98)

ORUN GFX2("BAR™,3#5,188,335,184)
ORUN GFX2("GET",1,1,288,85,56,23)
ORUN GFX2("GET",1,2,1,1,58,23)
ORUN GFX2("PUT",1,2,288,85)

9-101

BASICO09 Reference

0J=19

OFOR T=28 TO 559 STEP 6
Od=J+2

ORUN GFX2C(“PUT™,1,1,T,d)
ONEXT T

ORUN GFX2("KILLBUFF'",1,1)
ORUN GFX2(C'"CURON'")

UEND

9-102

Displaying Text and Graphics / 9

LINE Draw a line

Syntax: RUN GFX2([path,|“LINE”[,xcorl,ycorl],xcor2,
ycor2)

Function: Draws a line in one of the following ways:

e From the current draw pointer to the specified X- and Y-
coordinates.

e From the specified beginning X- and Y-coordinates to
the specified ending X- and Y-coordinates.

Parameters:
path The route to the window in which you want to
draw a line.
xcorl,ycorl The optional beginning X- and Y-coordinates

for the line.

xcor2,ycor2 The ending X- and Y-coordinates for the line.

Examples:
RUN GFX2(“LINE",192,128)
RUN GFX2C"LINE",0,8,192,128)

Sample Program:

This procedure draws a sine wave of vertical lines across a
window.

PROCEDURE waves

DIM A,X,Y,Z2: INTEGER
[CALC=0

OA=100

ORUN GFX2("™CLEAR'"™)
[JRUN GFX2(("COLOR",3,2)
OFOCR X=8 TO 638 STEP 1
[JCALC=CALC+.85
OY=A-SINCCALC)I*15
0z=Y+25

9-103

BASICO09 Reference

ORUN GFX2C™LINE"™,X,Y,X,2)
ONEXT X
LUEND

9-104

Displaying Text and Graphics | 9

LO GIC Perform logic function

Syntax: RUN GFX2(“LOGIC”,“function”)

Function: Causes BASIC09 to perform the specified logic func-
tion on all data bits used by subsequent drawing functions.
Once set, the logic function remains in effect until you turn
LOGIC off.

Parameters:
function can be one of the following logical functions:
OFF — no logic
AND — performs AND logic
OR — performs OR logic
XOR — performs XOR logic
Examples:

RUN GFX2("™LOGIC","AND™)
RUN GFX2C'"LOGIC","XOR™)

Sample Program:

This procedure uses LOGIC to draw a horizontal bar across a
background of multicolored vertical bars. Using XOR logic, the
procedure causes the horizontal bar to change the color of each
vertical bar.

PROCEDURE logic

(pIM A,2,T,X,Y,COLOR:INTEGER
ORUN GFX2¢“LOGIC","OFF™)
ORUN GFX2("CLEAR™)

[JCOLOR=0

OFDR T=8 TO 619 STEP 28
[JCOLOR=COLOR+1

ORUN GFX2("COLOR'",COLOR)
ORUN GFX2("BAR"™,7,0,T+20,190)
ONEXT T

URUN GFX2("COLOR"™,3,2)

ORUN GFX2(¢"™LOGIC™","XOR"™)

9-105

BASICO09 Reference

OFOR T=1 TO 18

ORUN GFX2("BAR",0,80,639,112)
ONEXT T

URUN GFX2¢"LOGIC"™,"DOFF™)

UEND

9-106

Displaying Text and Graphics | 9

OWSET Establish an overlay window

Syntax: RUN GFX2([path,]“OWSET”,save switch,xpos,
ypos,xsize,ysize,foreground,background)

Function: Creates an overlay window on a previously existing
device window. Reconfigures the current device window paths
to use a new area of the screen as the current device window.

Parameters:

path The route to the window in which you want to
set an overlay.

save switch Either 0 or 1. A value of 0 tells BASIC09 not
to save the overlaid area. A value of 1 tells
BASIC09 to save the overlaid area and restore
it when the new window closes.

xpos The character column in which to start the
new window (upper left corner).

ypos The character row in which to start the new
window (upper left corner).

xsize The width of the new window in characters.

ysize The depth of the new window in rows.

foreground The foreground color of the new window.

background The background color of the new window.

Examples:
RUN GFX2("“OWSET",00,44,10,32,8,80,06)

Sample Program:

This procedure creates six progressively smaller overlay win-
dows, labeling each. It then waits for you to press a key, after
which it erases all the windows and leaves the original window
intact.

9-107

BASIC09 Reference

PROCEDURE overwin

ODIm X,Y,X1,Y1,T,J,B,L,PLACE: INTEGER
ODIM RESPONSE:STRINGIL11]

OX=8 \Y=08

O0X1=88 \Y1=24

OPLACE=33

OFOR T=1 TO &

OIF T=2 OR T=6 THEN

0B=3

JELSE B=2

OENDIF

ORUN GFX2("™OWSET",1,X,Y,X1,Y1,B,T)
OX=X+6 \Y=Y+2

OX1=X1-12 \Y1=Y1-4

OFOR J=1 TO 5

OPRINT TAB(PLACE); "“"Overlay Screen "; T
ONEXT J

OPLACE=PLACE-6

ONEXT T

OPRINT "Press A Key...";

OGET #1,RESPONSE

OFOR T=1 TO 6

ORUN GFX2("DWEND'")

ONEXT T

JEND

9-108

Displaying Text and Graphics / 9

PALE TTE Set color for palette registers

Syntax: RUN GFX2([path,|“PALETTE”,register,color)

Function: Sets palette colors. Lets you install any of the Color
Computer’s 64 colors in the palette for use with text and
graphies.

Parameters:
path The route to the window where you want to
change palette colors.
register The number of the register in which you want
to install a new color.
color The code of the new color you want to install.
Examples:

RUN GFX2("PALETTE"™,13,32)

Sample Program:

This procedure draws a series of bars and circles, then repeat-
edly changes their colors using PALETTE.

PROCEDURE palette

DIM T,K,J,X,Y,COLOR:INTEGER
ODIM RESPONSE:STRINGIL11]

ORUN GFX2(¢("™COLOR"™,3,2,2)
[jcoLOR=9

ORUN GFX2(*"CLEAR")

ORUN GFX2C"CUROFF™)

OFOR Y=6 TO 23 STEP 3

ORUN GFX2("COLOR",COLOR)
ORUN GFX2('"BAR",0,Y,639,Y+3)
UCOLOR=COLOR+1

OIF COLOR=2 THEN
[JCOLOR=COLOR+*1

OENDIF

ONEXT Y

OFOR Y=164 TO 185 STEP 3

9-109

BASICO09 Reference

ORUN GFX2('"COLOR",COLOR)
URUN GFX2("BAR",8,Y,639,Y+3)
[JCOLOR=COLOR+1

ONEXT Y

OCOLOR=0

OFDR K=45 TO 178 STEP 48
OFOR T=1@0@ TO 588 STEP 188
URUN GFX2(*COLOR"™,3)

ORUN GFX2C"“CIRCLE",T,K,38)>
ORUN GFX2("™COLOR",COLOR)
URUN GFX2C"FILL™,T,K)
OCOLOR=CDLOR+1

OIF COLOR=2 THEN
OCOLOR=COLOR+1

OENDIF

ONEXT T

ONEXT K

OREPEAT

OX=RND(63)

OREPEAT

[dY=RNDC16)+1

OUNTIL Y<>2

ORUN GFX2("PALETTE",Y,X)
ORUN INKEY(RESPONSE)
OUNTIL RESPONSE>mm

ORUN GFX2("DEFCOL'™)

ORUN GFX2('"CURON'™)

[JEND

9-110

Displaying Text and Graphics / 9

PATTE RN Select pattern buffer

Syntax: RUN GFX2([path,]“PATTERN”,group,buffer)

Function: Selects the contents of a preloaded Get/Put buffer as
a pattern for graphics functions. Although PATTERN can use
a buffer of any size, it uses a specific number of bytes, depend-
ing on the screen format in use:

Color Pattern Bits
Mode Array Size Per Pel
02 4 bytes x 8 bytes = 32 bytes 1
04 8 bytes x 8 bytes = 64 bytes 2
16 16 bytes x 8 bytes = 128 bytes 4

The pattern array is a 32 x 8 pel representation of graphics
memory. It takes the current color mode into consideration to
define the number of bits per pel and pels per byte. If the
buffer is larger than the number of bytes required, PATTERN
ignores the extra bytes. BASIC09 uses the selected pattern
with all draw commands until you change the pattern or turn
off the pattern function by specifying a group and buffer num-
ber of 0.

Parameters:
path The route to the window in which you want to
use a new graphics pattern.
group The group number of the buffer you want to
use for a graphics pattern.
buffer The buffer number that you want to use for a
graphics pattern.
Examples:

RUN GFX2("PATTERN",1,3)

9-111

BASIC09 Reference

Sample Program:

This procedure loads the current window data at location 0,0
into a buffer to use as a draw pattern. It then draws a circle and
fills the circle with the pattern in the buffer.

PROCEDURE pattern

ODIM X,Y,T:INTEGER

ORUN GFX2("“GET"™,1,1,8,0,5,5)
(RUN GFX2("COLDOR"™,4)

ORUN GFX2("CLEAR™)

ORUN GFX2('"CIRCLE"™,328,96,108)
ORUN GFX2¢("FILL™,328,96)
ORUN GFX2C"PATTERN",1,1)
ORUN GFX2('"COLOR"™,3)

ORUN GFX2(*FILL",320,96)
URUN GFX2("™PATTERN",8,8)
OEND

9-112

Displaying Text and Graphics / 9

P OINT Mark a point

Syntax: RUN GFX2([path,]“POINT”[,xcor,ycor])

Function: Sets the pixel at the current draw pointer position
or at the specified coordinates to the current foreground color.
If you do not specify coordinates, POINT sets the pixel at the
draw pointer.

Parameters:
path The route to the window in which you want to
turn on the specified pixels.
xcor,ycor Optional coordinates for the POINT function.
The X-coordinates are in the range 0-639. The
Y-coordinates are in the range 0-191.
Examples:

RUN GFX2("™POINT")
RUN GFX2("PDOINT*,192,128)

Sample Program:

This procedure uses POINT to produce a swirl design on a win-
dow screen.

PROCEDURE point

[IBASE 8

ODIM XC28),Y(28):INTEGER
DIM T,R,J,K: INTEGER

0J=2

OK=86

ORUN GFX2C"CURGFF'™)

ORUN GFX2(C'"CLEAR™)

OFOR T=1 TO 288 STEP 3
OJ=J+1

UFOR R=86 TO 11
OXCRI=INTC(T*SINC(30*R+K)II+328
OYCRI=INTC(J*COS(38*R+KII+96
ORUN GFX2("POINT",X(R),Y(R))

9-113

BASICO09 Reference

OK=K+1

ONEXT R

ONEXT T

ORUN GFX2("™CURON")
OEND

9-114

Displaying Text and Graphics / 9

PROPSW Proportional space switch

Syntax: RUN GFX2([path,]“PROPSW” “switch’)

Function: Enables or disables the automatic proportional spac-
ing of characters on graphic screens.

Parameters:
path The route to the window in which you want to
use proportional character spacing.
switch Either OFF to turn proportional spacing off, or
ON to turn proportional spacing on. The
default setting of the switch is OFF.
Examples:

RUN GFX2(C'"PROPSW"™,"ON")

Sample Program:

This procedure produces a demonstration of the BASIC09 propor-
tional spacing function.

PROCEDURE proport

ODIM LINE:STRING

ODIM LETTER:STRINGI1]
ODIM T,J,K,FLAG: INTEGER
ORUN GFX2("“CLEAR'
OFLAG=1

OFOR T=1 TO 12

OREAD LINE

OFOR J=1 TO LENCLINE)D
OLETTER=MID$C(LINE,J,1)

OIF LETTER«>'™!" AND LETTER<>"#" THEN
OPRINT LETTER;

[JENDIF

OIF LETTER="!" THEN

UFLAG=FLAG*-1
OIF FLAG>@ THEN
URUN GFX2('"PROPSW","0FF'")

9-115

BASICO09 Reference

JELSE

ORUN GFX2C"™PROPSW™,*"™0ON"™)

OENDIF

OJENDIF

OIF LETTER="#" THEN

OPRINT CHR$(34);

JENDIF

ONEXT J

OPRINT

ONEXT T

OPRINT N\ PRINT

OEND

ODATA "This is a demonstration of"
ODATA "!Proportional Spacing! using"
[DATA "“BASICP9’s GFX2 module.™

ODATA "¢

ODATA "1The quick brown fox jumped...!"
UDATA "The quick brown fox jumped..."
ODATA ©n

ODATA "Use the command"

ODATA “IRUN GFX2(#PROPSW#,#0ON#)1"

ODATA "to turn proportional spacing on.
[IDATA "Use !'RUN GFX2(#PROPSW#,#0FF#)1I"
UDATA "to turn proporiional spacing off"

9-116

Displaying Text and Graphics | 9

P UT Put a saved data block on the window

Syntax: RUN GFX2([path,]“PUT”,group,buffer,
XcCor,ycor)

Function: Places the image in the specified Get/Put buffer on
the window. PUT requires only the group and buffer numbers
and the window coordinates for the upper left corner of the
image. The GET function saves the dimensions of the block in
the buffer. PUT automatically handles window format
conversion.

Parameters:
path The route to the window where you want to
place a pre-saved image.
group The group number of the buffer in which to
save the window data.
buffer The buffer number in which to save the win-
dow data.
xcor,ycor The X- and Y-coordinates of the upper left cor-
ner of the window position. The X-coordinates
are in the range 0-639. The Y-coordinates are
in the range 0-191.
Examples:

RUN GFX2("PUT",1,5,188,56)

9-117

BASICO09 Reference

Sample Program:

This procedure draws a character, loads it into a buffer, then
repeatedly replaces the character to the window screen using
PUT. Each new image erases the previous image, giving an
impression of animation.

PROCEDURE putdown

ODIM X,Y,T,J:INTEGER

ORUN GFX2("CUROFF'™)

URUN GFX2("CLEAR")

ORUN GFX2("™ELLIPSE",320,96,12,4)
URUN GFX2(“"CIRCLE"™,320,90,5)
ORUN GFX2("COLOR",1)

URUN GFX2C("FILL",328,96)

ORUN GFX2(“COLOR",3)

ORUN GFX2C"FILL'",328,920)

ORUN GFX2("BAR"™,365,108,335,1084)
ORUN GFX2(“GET™,1,1,288,85,56,23)
[JRUN GFX2(“GET",1,2,1,1,58,23)
ORUN GFX2("PUT"™,1,2,288,85)

Od=18

OFOR T=286 TOD 559 STEP &
Ud=J+2

ORUN GFX2¢"PUT",1,1,T,J)
ONEXT T

ORUN GFX2("KILLBUFF*",1,1)
ORUN GFX2(™CURON'")
[JEND

9-118

Displaying Text and Graphics / 9

PUTGC Put graphics cursor

Syntax: RUN GFX2([path,]“PUTGC”,xcor,ycor)

Function: Places and displays the graphics cursor at the speci-
fied location. Use screen relative coordinates for this function,
not window relative coordinates. The horizontal range is
0-639. The vertical range is 0-191.

Parameters:
path The route to the window where you want to
display a graphics cursor.
xcor,ycor The screen coordinates for the cursor location.
The X coordinates are in the range 0-639. The
Y coordinates are in the range 0-191.
Examples:

RUN GFX2("“PUTGC'",166,5)

Sample Program:

This procedure displays the available graphic cursors stored in
group 202. Before this procedure can work, you must merge the
Stdptrs file in the SYS directory of your system disk with the
window you are using. For instance, if your system diskette is in
Drive /D0, merge Stdptrs with Window 1, by typing:

merge /d@/sys/stdptrs > /wi

PROCEDURE viewcur

ODIM T,2:INTEGER

ORUN GFX2("™CLEAR')

OFOR T=1 TO 7

ORUN GFX2("GCSET™,202,T)
[IRUN GFX2("PUTGC"™,3208,96)
OFOR Z=1 TOD c@89

ONEXT 2Z

ONEXT T

[ORUN GFX2("“GCSET",9,8)
JEND

9-119

BASIC09 Reference

RE VON Reverse video on
RE VOF F Reverse video off

Syntax: RUN GFX2([path,]“REVON”)
RUN GFX2([path,|“REVOFF”)

Function: Enables or disables reverse video characters. Once
set, reverse video remains in effect until you execute the
reverse video off function.

Parameters:
path The route to the window in which you want to
display reverse characters.
Examples:

RUN GFX2("REVON'™)
RUN GFX2("REVOFF")

9-120

Displaying Text and Graphics / 9

SCALESW Enable/disable scaling

Syntax: RUN GFX2([path,]“SCALESW”,“switch”)

Function: Enables or disables scaling when drawing on var-
iously formatted windows. Scaling in windows is normally on.
If scaling is off, coordinates are relative to the window origin
coordinates. Scaling does not affect text.

Parameters:
path The route to the window where you want to
turn scaling off or on.
switch Either OFF (disable scaling) or ON (enable
scaling).
Examples:

RUN GFX2("SCALESW","0OFF")

Sample Program:

This procedure runs a routine of drawing a design in overlay
windows twice. The routine runs once with scaling off and once
with scaling on. After the first routine pauses, press the space
bar to see the second demonstration.

PROCEDURE scale .
ODIM X,Y,X1,Y1,7,B,J,R,W,Z: INTEGER
ODIM RESPONSE:STRINGL11]
ORUN GFX2("CLEAR'™)

OFOR J=1 TO 2

OIF J=1 THEN

ORUN GFX2("SCALESW","OFF'")
OELSE

ORUN GFX2("SCALESW'","0ON")
JENDIF

OX=0 \Y=0 \X1=80 \Y1=24
OFOR T=1 TO 4

JIF T=2 OR T=6 THEN

0B=3

9-121

BASICO09 Reference

JELSE B=2

JENDIF

ORUN GFX2C"DWSET",1,X,Y,X1,Y1,B,T)
OFOR R=1 TO 35

OW=40+SIN(RI+170

02=25+*COS(R)+45

ORUN GFX2("CIRCLE",W,Z,38)

ONEXT R

OX=X+6 \Y=Y+2 \X1=X1-12 \Y1=Y1-4
ONEXT T

OPRINT "Press A Key...";

OGET #1,RESPONSE

OFOR T=1 TO 4

ORUN GFX2("™0OWEND™)

ONEXT T

ONEXT J

JEND

9-122

Displaying Text and Graphics / 9

SE LE CT Select next window

Syntax: RUN GFX2([pathl,“SELECT”)

Function: SELECT causes a window to display if the proce-
dure is operating in the active window. If the procedure is not
in the active window, the newly selected window displays
when you press (CLEAR). If you do not specify a path, BASIC09
selects the device using the standard input, standard output,
and standard error paths, Paths 0, 1, and 2.

Parameters:

path The path to the window to select.

Examples:
RUN GFX2(“SELECT'")
RUN GFX2C1,"SELECT™)
RUN GFX2(PATH,"SELECT™")

Sample Program:

From /TERM, this procedure temporarily opens a path to
Window 3, creates the window format, and uses SELECT to dis-
play the new window. It draws a design, then returns to the
/TERM screen and closes the path.

PROCEDURE design

ODIM PATH,T,Y:INTEGER

[JOPEN #PATH,"/W3":WRITE

[ORUN GFX2(PATH,"DWSET",5,08,0,80,24,3,2,2)
ORUN GFX2(PATH,"SELECT"™)

gy=1

UFDR T=1 TO 200 STEP 3

dy=Y+1

ORUN GFX2C(PATH,"ELLIPSE"™,320,96,T,Y)
ONEXT T ’

ORUN GFX2C(PATH,"COLOR"™,1,2)
OFOR T=200 TO 1 STEP -6
ORUN GFX2C(PATH,"ELLIPSE",328,96,T,Y)

9-123

BASICO09 Reference

OIF INTCT/3>=T/3 THEN
gy=Y+1

OENDIF

UNEXT T

ORUN GFX2C1,"SELECT™)
ORUN GFX2CPATH,"DWEND')
dCLOSE #PATH

LUEND

9-124

Displaying Text and Graphics / 9

SETDPTR Set draw pointer

Syntax: RUN GFX2([path,]“SETDPTR”,xcor,ycor)

Function: Places the draw pointer at the specified coordinates.
The draw pointer selects the beginning point of the next
graphics draw function (such as CIRCLE, LINE, BOX, and so
on), if you do not supply other coordinates.

Parameters:
path The route to the screen where you want to set
the draw pointer.
xcor,ycor The screen coordinates for the draw pointer
location. The X-coordinates are in the range
0-639. The Y-coordinates are in the range 0-
191.
Examples:

RUN GFX2("SETDPTR"™,108,5)

Sample Program:

This procedure uses coordinates from a DATA statement for set-
ting the draw pointer to create a series of star shapes.

PROCEDURE star

ODIM X,Y,T,J: INTEGER

OPRINT CHR$C12)

OFOR J=1 TO 10

OREAD X,Y

ORUN GEX2(“SETDPTR™,X+J,Y+J+J)
OFOR T=1 TO S

OREAD X, Y

ORUN GFX2C"LINE™,X+J,Y+J+J)
ONEXT T

ONEXT J

ODATA 320,46,440,146,200,84,440,84,200,146,320,46
OEND

9-125

BASIC09 Reference

UN DLN ON Underline characters on
UNDLN OFF Underline characters off

Syntax: RUN GFX2([path,]“UNDLNON”)
RUN GFX2([path,]“UNDLNOFF”)

Function: Enables or disables character underline. After you
execute UNDLNON, all characters displayed are underlined
until you execute UNDLNOFF. The default is UNDLNOFF.

Parameters:
path The route to the window where you want to
use underline characters.
Examples:

RUN GFX2C"UNDLNON™)
RUN GFX2C"UNDLNOFF'")

9-126

Chapter 10

BASIC09 Quick Reference

This chapter contains a quick reference of all BASIC09 com-
mands, statements, and functions. It includes commands for pro-
gramming, editing, and debugging, as well as the Commands
mode commands.

The following chart lists all BASIC09 keywords that you can use
in a procedure.

Statements and Functions

Command Description

ABS Returns the absolute value of a number.
ACS Calculates the arccosine of a number.
ADDR Returns an integer value which is the abso-

lute memory address of a variable, array, or
structure in a process’s address space.

AND Generates the logical AND of two Boolean
values.

ASC Returns the ASCII code of the first charac-
ter in a string.

ASN Calculates the arcsine of a number.

ATN Calculates the arctangent of a number.

BASE Sets the lowest array or data structure sub-
script in a procedure to either 0 or 1.

BYE Ends execution of a procedure and termi-
nates BASIC09.

CHAIN Executes a module, passing arguments if
appropriate.

CHD Changes the current data directory.

CHRS$ Returns the ASCII character represented by
a specified integer.

CHX Changes the current execution directory.

CLOSE Deallocates the specified path to a file or
device.

COSs Calculates the cosine of a number.

10-1

BASIC09 Reference

Command Description

CREATE Opens a path and establishes a new file on
disk.

DATES$ Returns the computer’s current date and
time.

DEG Causes BASICO09 to calculate angles in
degrees.

DATA Stores data in a procedure to be accessed
by the READ statement.

DELETE Deletes a file from disk.

DIM Declares simple variables, arrays or complex
data structure for size and type.

DO See WHILE/DO/ENDWHILE.

ELSE See IF/THEN/ELSE/ENDIF.

END Terminates execution of a procedure.
Returns to the calling procedure or to
BASIC09’s command mode. Displays the
specified text.

ENDEXIT See EXITIF/ENDEXIT.

ENDIF See IF/THEN/ELSE/ENDIF.

ENDLOOP See LOOP/ENDLOOP.

ENDWHILE See WHILE/DO/ENDWHILE.

EQOF Tests for the end of a disk file.

ERR Returns the error code of the most recent
error.

ERROR Generates the specified error.

EXITIF/ Tests conditions in a loop. The procedure

ENDEXIT exits the loop if the condition is true.

EXP Calculates e (2.71828183) raised to the
specified value.

FALSE A Boolean function that always returns
FALSE.

FIX Rounds a real number and converts it to an
integer.

FLOAT Converts a byte or integer value to a real

number,

10-2

BASICO09 Quick Reference / 10

Command Description
FOR/NEXT Creates a program loop of a specified num-
ber of repetitions.
GET Reads an element or a data structure from
a binary file or a device.
GOSUB/ Transfers program control to a specified
RETURN subroutine. RETURN sends execution back
to the calling routine.
IF/THEN/ELSE/ Evaluates an expression and performs an
ENDIF operation if the conditions are met. Includ-
ing ELSE causes an alternate operation if
the conditions are false.
INKEY Stores the character of a keypress in a
string variable.
INPUT Causes a procedure to accept input from
the keyboard or other specified device.
INT Returns the largest whole number less than
or equal to the specified value.
KILL Unlinks a procedure. (Removes it from
BASICO09’s directory.)
LAND Performs a bit-by-bit logical AND on
two-byte, or integer, values.
LEEFTS Returns the specified number of characters,
from the leftmost portion of a string.
LEN Returns the length of the specified string.
LET Assigns a value to a variable.
LNOT Performs a bit-by-bit logical NOT function
on two-byte, or integer, values.
LOG Calculates the natural logarithm.
LOG10 Calculates a base 10 logarithm.
LOOP/ Establishes a loop. Use EXITIF and
ENDLOOP ENDEXIT to test the loop and exit when a
specified condition is true.
LOR Performs a bit-by-bit logical OR on two-

byte, or integer, values.

10-3

BASICO09 Reference

Command

Description

LXOR

MID$

MOD

NEXT
NOT

ON ERROR/

GOTO
ON/GOSUB

ON/GOTO

OPEN
OR
PARAM
PAUSE
PEEK

PI
POKE

POS

Performs a bit-by-bit logical EXCLUSIVE
OR on two-byte, or integer, values.

Returns the specified number of characters,
beginning at the specified position in a
string.

Returns the modulus (remainder) of a divi-
sion operation.

See FOR/NEXT.

Returns the logical complement of a Boolean
value.

Traps errors and transfers control to the
specified line number.

Evaluates an expression. Then, selects from
a list the line number that is in the posi-
tion indicated by the result of the expres-
sion. Procedure execution transfers to the
selected line.

Evaluates an expression. Then, selects from
a list the line number that is in the posi-
tion indicated by the result of the expres-
sion. Procedure execute jumps to the
selected line.

Opens an /O path to an existing file or
device.

Performs a logical OR on two Boolean
values.

Describes the parameters a called proce-
dure expects from a calling procedure.

Suspends execution of a procedure, and
enters the Debug mode.

Returns the byte value of a memory
address.

Represents the constant 3.14159265.

Stores a byte value at a specified memory
address.

Returns the current character position of
the print buffer.

10-4

BASIC09 Quick Reference / 10

Command

Description

PRINT

PRINT USING
PRINT#
PRINT# USING

PUT
RAD

READ

REM

REPEAT/UNTIL
RESTORE

RETURN
RIGHTS

RND

RUN
SEEK
SGN
SHELL

SIN
SIZE

SQ

Sends the specified characters or values to
the display.

Sends characters or values to the display,
using the specified format.

Sends the specified characters or values to
the specified path.

Sends characters or values to the specified
path using the specified format.

Writes data to a random access file.

Causes BASICO09 to calculate angles in
radians.

Accesses data from procedure DATA lines or

“from files or devices.

Indicates that the following characters in a
procedure line are comments and are not to
be executed. Also use (* *), or (*,

Establishes a loop that executes until the
specified condition is met.

Restores the DATA pointer to the first data
item or to a specified line.

See GOSUB/RETURN.

Returns the number of characters specified,
from the rightmost portion of a string.

Returns a random number from a specified
range.

Calls another procedure for execution.
Changes the file pointer address.
Determines the sign of a number.

Calls an OS-9 command or program for
execution.

Calculates the sine of a specified value.

Returns the number of bytes assigned to a
variable, array, or complex data structure.

Calculates a value raised to the power of
two.

10-5

BASIC09 Reference

Command Description

SQR/SQRT Calculates the square root of a positive
number.

STEP Sets the size of increment in a FOR/NEXT
loop.

STOP Terminates the execution of all procedures
and returns to the BASIC09 Command
mode.

STR$ Converts numeric data to string data.

SUBSTRING Returns the starting position of a sequence
of characters in a string.

SYSCALL Executes an 0S-9 System Call.

TAB Begins a print operation at the specified
column.

TAN Calculates the tangent of a value.

TRIMS$ Strips trailing spaces from the specified
string.

TRON/TROFF Turn the trace mode on and off.

TRUE Returns the Boolean value of TRUE.

TYPE Defines a new data type.

UNTIL See REPEAT/UNTIL.

USING See PRINT USING.

VAL Converts a string to an integer.

WHILE/DO/ Executes a loop as long as a specified condi-

ENDWHILE tion is true.

WRITE Writes data in ASCII format to a file or
device.

XOR Performs a logical EXCLUSIVE OR on two

Boolean values.

10-6

BASICO09 Quick Reference / 10

Commands by Type

Statements
BASE 0 DIM GOSUB OPEN RETURN
BASE 1 ELSE GOTO PARAM RUN
BYE END IF/THEN PAUSE SEEK
CHAIN ENDEXIT INPUT POKE SHELL
CHD ENDIF KILL PRINT STOP
CHX ENDLOOP LET PUT TROFF
CLOSE ENDWHILE LOOP RAD TRON
CREATE ERROR NEXT READ TYPE
DATA EXITIF/THEN ON ERROR/GOTO REM UNTIL
DEG FOR/TO/STEP ON/GOSUB REPEAT WHILE/DO
DELETE GET ON/GOTO RESTORE WRITE
Transcendental Functions

ACS COoS LOG10 SIN

ASN EXP PI TAN

ATN LOG
Numeric Functions

ABS LAND MOD S5Q

FIX LNOT RND SQR

FLOAT LOR SGN SQRT

INT LXOR
String Functions

ASC LEFTS$ RIGHTS$ TRIM$

CHR$ LEN STR$ VAL

DATES$ MID$ SUB STR

INKEY
Miscellaneous Functions

ADDR FALSE SIZE SYSCALL

EQOF PEEK TAB

ERR POS TRUE

10-7

BASICO09 Reference

Data Types

The following list shows the BASIC09 data type you can specify
when defining a variable.

Type Function

BOOLEAN Returns TRUE or FALSE

BYTE Specifies that a numeric variable is to store
single-byte values.

INTEGER Specifies that a numeric variable is to store
integer (two-byte) values.

REAL Specifies that a numeric variable is to store
real (five-byte) values.

STRING Specifies that a variable is to store ASCII
characters.

Types of Access for Files

You can use the following parameters with the CREATE and
OPEN commands. Check the individual commands for informa-
tion on which parameter to use with which command.

Parameter Function

DIR Lets BASIC09 access a directory-type file
for reading. Do not use with UPDATE or
WRITE.

EXEC Lets BASIC09 access the current execution
directory rather than the current data
directory.

READ Sets the file access mode for reading.

WRITE Sets the file access mode for writing.

UPDATE Sets the file access mode for both reading

and writing.

10-8

BASICO09 Quick Reference / 10

Command Mode

The following chart lists the commands available from the
BASIC09 Commands mode:

Command Function

$ Calls the shell command interpreter to exe-
cute an 0S-9 command.

BYE or Returns you to the 0OS-9 system or to the

program that called BASICO09.

CHD Changes the current data directory.

CHX Changes the current execution directory.

DIR Displays the name, size, and variable stor-
age requirement of each procedure in the
workspace.

EDIT or E Enters the procedure editor/compiler mode.

KILL Removes one or more procedures from the
workspace.

LIST Displays a formatted listing of one or more
procedures.

LOAD Loads all procedures from a file into the
workspace.

MEM Displays current workspace size or reserves
a specified amount of memory for the
workspace.

PACK Performs a second compilation and stores
the resulting file in the execution directory.

RENAME Changes a procedure’s name.

RUN Causes a procedure to execute.

SAVE Writes one or more procedures to disk.

10-9

BASICO09 Reference

Edit Commands

The following chart lists the commands available from the Edit

mode:

Command Function

Moves the edit pointer to the next line.

+num Moves the edit pointer forward a specified
number of lines.

+ ¥ Moves the edit pointer past the last line.

—num Moves the edit pointer back a specified
number of lines.

—* Moves the edit pointer to the first line.

text A space followed by text inserts an unnum-
bered line before the current line.

line Typing a line number with or without text
following it inserts the line into the
procedure.

line Moves the edit pointer to the line line.

c/strl/str2/ Changes the text strl to the text sir2.

c*/strl/str2 Changes all occurrences of strl to str2.

d Deletes the current line.

d* Deletes all the lines in the procedure.

1 Lists the current line.

I* Lists all the lines in the current procedure.

q Terminates the edit session.

r Renumbers lines from the first line number,
in increments of 10.

r¥ Renumbers all numbered lines in incre-
ments of 10. The first line number is 100.

r line Renumbers lines from line in increments of

r line num

s/str
s*/str

10.

Renumbers lines from line, in increments of
num.

Searches for the first occurrences of str.
Searches for all occurrences of str.

10-10

BASIC09 Quick Reference / 10

Debug Commands
The following table lists all the Debug commands and what they

accomplish:

Command Function

$command Tells BASICO09 to execute the specified OS-9
command or program.

BREAK Sets a breakpoint at the specified
procedure.

CONT Causes procedure execution to continue.

DEG/RAD Selects either degrees or radians as the unit
of angle measurement for trigonometric
functions.

DIR Displays the procedures in the workspace.

Q Leaves the Debug mode for the System
mode.

LET Assigns a new value to a variable.

LIST Displays a source listing of the suspended
procedure.

PRINTvar Displays the value of the specified variable.

STATE Lists the nesting order of all active
procedures.

STEPnum Causes execution of the suspended proce-
dure in specified increments.

TRON/TROFF Turns the trace function on and off.

10-11

Chapter 11

BASIC09 Command Reference

BASICO09 is made of keywords (functions and statements) that
you use, with their parameters, to instruct the computer to per-
form certain operations.

This chapter is a complete reference for all of BASIC09’s
keywords.

Keyword Format
The reference to each keyword is organized in this manner:
® The keyword.

® The proper syntax (spelling and form) for using the
keyword. :

@ A brief description of the keyword’s purpose or effect.

@ Descriptions of any parameters or arguments for the
keyword.

® Notes about special features or requirements of the key-
word, when appropriate.

® One or more examples for using the keyword.
@ One or more sample procedures.

This format can vary slightly, depending on the complexity of
each keyword. For instance, some keywords require parameters
or arguments, and others do not. Some keywords are self-
explanatory and do not require a sample procedure.

The Syntax Line

The second line in each command or keyword reference is the
syntax line. This line uses keyword constants and keyword vari-
ables to show you how to construct a command line. Constants
are words, numbers, or symbols that you type exactly as they
appear. Variables are words that only represent the actual
words, numbers, or symbols that you must supply for the
command.

11-1

BASIC09 Reference

All variables are italic. When you see an italicized word, you
know that you must supply some other word, name, symbol, or
value in place of that word. If a word, symbol, or value is not
italicized, type it exactly the way it appears in the syntax line.

The syntax line also uses symbols to help you understand how to
construct a command line. These symbols are:

[1 Words, names, value, or symbols contained between
right and left brackets are optional. You can use them
or not, depending on what you want to accomplish with
the command.

. Ellipsis indicates that the last parameter can be
repeated.

The following syntax line for DELETE requires only one param-
eter, the variable pathname.

DELETE "pathname"

Because pathname is italicized, you know that you must replace
it with other text—in this case the pathlist to the file you want
to delete. If you wanted to delete a file named Test from the
ROOT directory of Drive /D1, this syntax line tells you that you
must type:

delete "/d1/testi™

Other syntax lines are more complex, such as the line for
CREATE:

CREATE #path,"pathlist" laccess model
[+access modell+...]

This line tells you how to create a path to a file or device.
Because the number symbol (#) is not italicized, you type it
after the blank space following the keyword. However,
path,pathlist, and access mode are all italicized. You must
replace them with other names or values.

The access mode variable is contained within brackets. This tells
you that it is optional. You can include an access mode, or not. If
you don’t, BASIC09 opens the path in the Update Mode.

The second access mode shows that the command allows two
access mode parameters, preceded by a plus symbol. The ellipsis
show that you can have even more access mode parameters.

11-2

BASIC09 Command Reference / 11

Other syntax lines show that no parameters are required, such
as:

DATES

This command returns the current date. There is nothing it
requires, and you can do nothing else with it.

Sample Programs

The sample programs in this chapter are complete. That is, you
can type them, run them, and get a result. The procedures let
you see the syntax and form of a command, as well as showing
you how it might be used in a program.

Because the programs are executable, the manual shows unfor-
matted listings (without relative address, indented control struc-
tures, and so on). This helps eliminate confusion for you when
you type the program. You can type it exactly as it appears, exit
the editor, and run the procedure.

11-3

BASICO09 Reference

ABS Return absolute value

Syntax: ABS(number)

Function: Computes the absolute value of number. A number’s
absolute value is its magnitude without regard to its sign.
Absolute values are always positive or zero.

Parameters:

number Any positive or negative number.

Examples:
PRINT ABS(-66)

X=ABSCY)

Sample Program:

The following procedure asks you to type the temperature, and
makes an appropriate comment. It uses ABS to get the absolute
value of the temperature.

PROCEDURE temperature

ODIM TEMP:INTEGER

UINPUT "What’s the temperature outside? (Degrees
Fl)...",TEMP

OIF TEMP<@® THEN

OPRINT "That’s '; ABS(TEMP); ™ below
zero!OUBrrrrrrpi™

JEND

OENDIF

OIF TEMP=@ THEN

OPRINT "Zero degrees? That’s mighty cold!"

OEND

JENDIF

OPRINT TEMP; " degrees above zero? That’s kind of
balmy..."

OEND

11-4

BASIC09 Command Reference / 11

ACS Return arccosine

Syntax: ACS(number)

Function: Calculates the arccosine of number. Use the DEG or
RAD commands to tell BASIC09 if number is in degrees or
radians. If you do not specify degrees or radians, the default
is radians.

Parameters:
number The number for which you want to compute
the arccosine.
Examples:

PRINT ASC(.6561)

Sample Program:

The procedure calculates the arccosine of a value you type and
expresses the result in degrees.

PROCEDURE arccosine

ODEG

ODIM NUM:REAL

OINPUT "Enter a number between -1 and 1",NUM
OPRINT "The arccosine of *; NUM; "™ is---4".
ACSCNUM)

OEND

11-5

BASICO09 Reference

ADDR Return the location of a variable

Syntax: ADDR(name)

Function: Returns the absolute location in a process’s address
space of the variable, array, or data structure assigned to
name. The address returned is that of the first character in
the variable. If the variable is numeric, one or more of the
locations might contain zero.

For instance, if you use ADDR to obtain the address of an
integer variable that contains the value 44, the first address
location (byte) contains 0, and the second location contains 44.

Parameters:
name The name of a string, a numeric variable, an
array, or a data structure.
Examples:

This procedure displays the memory address where a variable
named X resides:

PRINT ADDR(X)

11-6

BASIC09 Command Reference / 11

Sample Program:

This procedure uses ADDR to tell you the memory location of
the variable that stores your keyboard entry.

PROCEDURE address

ODIM A:INTEGER

ODIM TEST:STRING

OINPUT "Type a string of characters...",TEST'
OA=ADDRCTEST)

OPRINT "The string you typed is stored at address
u; a

OPRINT "This is what it contains:..."

OFOR T=A TO A+LENCTEST)

OPRINT CHRS$C(PEEK(T)Y);

ONEXT T

OPRINT

JEND

11-7

BASIC09 Reference

AND Performs a logical AND operation

Syntax: operandl AND operand2

Function: Performs the logical AND operation on two or more
values, returning a value of either TRUE or FALSE.

Parameters:
operandl Can be either numeric or string values.
operand?2

Examples:
PRINT A>3 AND B>3

PRINT A$="YES" AND B$="YES"

Sample Program:

The following program calculates an insurance premium rate
that is based on the answers to some lifestyle questions. Every
time you press (Y], the premium rate goes up. The procedure
uses AND to increase the rate by two percent if you both smoke
and drink.

PROCEDURE policy

ODIM POLICY_VALUE,RATE:REAL
ODIM SMOKE,DRINK:STRINGIL1]1]
OPOLICY VALUE=10000008.

ORATE=.081
OINPUT "Do you smoke? C(Y/N)...",SMOKE
DINPUT "Do you drink? CY/N)...",DRINK

OIF SMOKE="Y" AND DRINK="Y'" THEN RATE=RATE+.82
OELSE

OIF SMOKE="Y" THEN RATE=RATE+.01

OENDIF

OIF DRINK="Y" THEN RATE=RATE+.#1

OENDIF

ENDIF

OPRINT "Your premium is "; RATE#POLICY_VALUE
[JEND

11-8

BASIC09 Command Reference |/ 11

ASC Returns ASCII code

Syntax: ASC(string)

Function: Returns the ASCII code for the first character of
string.

ASC returns the value as a decimal number. If string is null
(contains no characters) BASIC09 returns Error 67 (Illegal
Argument).

Parameters:

string Any string type variable or constant.

Examples:
PRINT ASC("Hello")
X = ASCCAS$)

Sample Program:

The following procedure determines whether the first character
you enter is a hexadecimal digit. To do this, it gets the ASCII
value of the character and compares it to the ranges for charac-
ters between 1 and 0 and A and F.

PROCEDURE hexcheck
DIM A:INTEGER
ODIM HEXNUM:STRING

grLooep
OINPUT "Enter a hexadecimal value...",HEXNUM
OA=ASCCHEXNUM) (» GET THE ASCII CODE =)

OEXITIF A<48 OR A>57 AND A«<65 OR A>78 THEN
OPRINT "Not a hex number.™

JEND

OENDEXIT

OPRINT "O0k.*

JENDLOGP

JEND

11-9

BASICO09 Reference

ASN Returns arcsine

Syntax: ASN(number)

Function: Calculates the arcsine of number. ASN expresses its
result in radians unless you specify otherwise (see DEG).

Parameters:
number The number for which you want to calculate
the arcsine.
Examples:

PRINT ASC(.6561)

Sample Program:

The following program calculates the arcsine of a number you
enter and expresses the result in degrees.

PROCEDURE arcsine
ODIM NUM:REAL

ODEG

OINPUT "Enter a number (-1 to 1) '",NUM

OPRINT "The arcsine of a ; NUM; "™ jg---";
ASNCNUM)

JEND

11-10

BASIC09 Command Reference / 11

ATN Returns arctangent

Syntax: ATN(number)

Function: Calculates the arctangent of numober.

Parameters:
number The number for which you want to find the
-arctangent.
Examples:

PRINT ASC(.6561)

Sample Program:

This procedure calculates arcsine, arccosine, and arctangent for
a value you enter.

PROCEDURE anglecalc
ODIM NUM:REAL

[ODEG

OINPUT "Enter a number ',NUM

OPRINT

OPRINT " ","Arcsine","Arccosine",“Arctangent“

OPRINT "Number","Degrees","Degrees","Degrees"
OPRINT Mmoo e e e e e oo--
OIF NUM>1 OR NUM<-1 THEN

OPRINT NUM,™UNDEF™,"UNDEF*",ATNCNUMD
OPRINT

OEND

OENDIF

UPRINT NUM,ASNCNUM) ,ACSCNUM)Y ,ATNCNUM)
OPRINT

OEND

11-11

BASICO09 Reference

BASE Set array base

Syntax: BASE 0
BASE 1

Function: Sets a procedure’s lowest array or data structure
index to either 0 or 1. If you want to have the first elements in
arrays set to 0, you must include BASE @ at the beginning of
the procedure.

The BASE statement does not affect string operations such as
MID$, RIGHTS$, and LEFT$. BASIC09 always indexes the
first character of a string as 1.

Parameters:
Oorl If you do not indicate a BASE setting in a pro-
cedure, BASIC09 uses a default of 1.
Examples:
BASE @

Sample Program:

This procedure determines how many times RND selects each
number between 0 and 11 out of 1000 selections. It stores the
results in an array of 12 elements. Because it specifies BASE 0,
one of the elements in the array is 0. Whenever the procedure
picks a random number, it increments the value in the corre-
sponding array number by one.

PROCEDURE randomiest
[IBASE # (+ set the array base at 8.
CIDIM RND__ARRAY(12),X,R:INTEGER (+ dimension array to hold results,

[JFGR X=0 TO 1

CIRND__ARRAY(X)=8 (+ initialize array elements at zero.
ONEXT X

OSHELL "TMODE -PAUSE" (+ turn off screen pause.

[FOR %=1 TO 1408
[R=RND(11) (+ select random number 1068 times.

11-12

BASIC09 Command Reference / 11

LIRND__ARRAY (R =RND__ARRAY (R) +1
(+ add 1 to appropriate element.

[IPRINT 1a81-X (¥ count down from 1088 to 1.
CINEXT X

OFOR X=8 70 1
LPRINT "RND selected "5 X3 ™ "; RND__ARRAY(X); ¥

times. " (sdisplay array

CINEXT X

[JSHELL "TMODE PAUSE" (+ turn scroll lock back on,
[JEND

11-13

BASICO09 Reference

BYE End procedure, terminate BASIC09

Syntax: BYE

Function: Ends execution of a procedure and terminates
BASIC(09. The statement closes any open files, but you lose
any unsaved procedures or data.

Use BYE to exit packed programs that you call from 0S-9 and
especially programs that you call from procedure files.

Parameters: None

Examples:

INPUT "Press ENTER to return to the system.";Z$%
BYE

Sample Program:

This procedure calculates the payments and interest of a loan.
When it is through, it exits the procedure and BASIC09 with a
BYE statement.

PROCEDURE loan

ODIM PRIN,LENG,RATE,MONPAY :REAL

[IDIM RESPONSE:STRINGI1]

OREPEAT

OPRINT "Amoriization Program"

UINPUT "How much do you want to borrow?...",PRIN
UINPUT "For how many months?...",LENG
[JINPUT "At what interest rate?...",RATE
OA=RATE/12080 .

OB=1-1/C1+A) LENG

[IMONPAY=PRIN+A/B
[MONPAY=INT(MONPAY*1080+.5)/108

LPRINT "Monthly payments are...$";

OPRINT USING "R12.2<",MONPAY

OPRINT “The total interest to pay is...$";
[PRINT USING "r12.2¢" ,MONPAY*LENG-PRIN
OPRINT

OINPUT "Do another calculation?...™,RESPONSE
OPRINT

OPRINT

OUNTIL RESPONSE<>"Y"

BYE

OEND

11-14

BASIC09 Command Reference / 11

CHAIN Execute another module

Syntax: CHAIN “module [parameters][...]”

Function: CHAIN performs an OS-9 chain operation, passing
module as the name of a program to execute. If you include
other parameters, CHAIN passes them to the executing mod-
ule. The module must be programmed to expect parameters of
the type you provide.

CHAIN exits BASIC09, unlinks BASIC09, and returns the
freed memory to 0S-9.

CHAIN can begin execution of any module, not only BASIC09
modules. It executes the module indirectly through the shell
in order to take advantage of the shell’s parameter processing.
This has the side effect of leaving the initiated shells active.
Programs that repeatedly chain to each other eventually fill
memory with waiting shells. To prevent this, use the EX
option to initialize a shell.

BASICO09 does not close files that are open when you execute
CHAIN. However, the OS-9 FORK call passes only the stan-
dard I/O paths (0, 1, and 2) to a child process. Therefore, if
you need to pass an open path to another program segment,
use the EX shell option.

Parameters:
module The name of the procedure module you want
BASIC09 to execute.
barameters String data passed to the chained module.

11-15

BASIC09 Reference

Examples:
CHAIN "ex BASICO9 menu"

CHAIN *BASIC@Y9 #18k sort ("'"datafile"",
I."tempfi lellll)ll

CHAIN "DIR /DB"™

CHAIN "Dirj; Echo ##*+ Copying Directory **#; ex
basic@9 copydir'

Sample Program:

This procedure chains to two others to display a directory or a
file. It uses CHAIN to call the procedures.

PROCEDURE chaining

[DIM RESPONSE:BYTE

OPRINT USING "s26~","- MENU -" (* print menu title.

OPRINT

OPRINT "1, List current data directory"” (+ print menu.
OPRINT "2. Display a file"

OPRINT "3. Exit to system"

OPRINT

OINPUT "Select a funciion (1-3) *,RESPONSE (* function you want.
CON RESPONSE GOTD 168,280,388 (+ select appropriate function.
T8OICHAIN "EX BASICE9 dirlook™ (# chain to list directory.
2BB0CHAIN “EX BASIC@9 display" (+ chain to list file.

3#00BYE

PROCEDURE dirlook
[REM Lists the specified directory

[SHELL "DIR" (» execute dir command.
[JCHAIN "EX BASICE3 chaining" (# chain back to calling proc.
JEND

PROCEDURE display
[REM Lists the specified file.

ODIM FILE,JOB:STRING

OINPUT “Path of file to display...",FILE

0J0B="LIST "+FILE

[OSHELL JOB (+ list specified file.

(CHAIN “EX BASIC#9 chaining" (# chain back to calling proc.
CJEND

11-16

BASIC09 Command Reference / 11

CHD Change data directory
CHX Change execution directory

Syntax: CHD dirpath
CHX dirpath

Function: Changes the current data or execution directory.

Parameters:

dirpath An existing data or execution directory.

Examples:
CHD "/D1/ACCOUNTS/RECEIVABLE"
CHX *"/D1/CMDS™
CHD ™.."

Sample Program:

This procedure creates a directory, and makes it the data direc-
tory. Then, it creates a file in the new directory, exits the new
directory, and deletes the file and the directory.

PROCEDURE chdtest

LIDIM PATH:BYTE

[ISHELL "MAKDIR TEST" (+ create new directory named TEST.
LICHD "TEST" (+ make TEST the data directory.

CICREATE #PATH,"samplefile":MRITE (¥ create a file in TEST.
CREM Write data into the new file

LWRITE #PATH,"This file is for testing only."

CMRITE #PATH,"It will be destroyed when this procedure ends."
[JCLOSE #PATH

CSHELL "LIST samplefile" (r list the new file,

LcHp ™, . (+ make the ROOT the data direclory.
OSHELL "DEL TEST/samplefile" (+ delete the file,

[JSHELL "DELDIR TEST" (* delete the directory.

QJEND

11-17

BASIC09 Reference

CHR$ Return ASCII character

Syntax: CHRS$(code)

Function: Returns the ASCII character for the value of code.
CHRS$ is the inverse of the ASC function, which returns the
ASCII code for a given character. For a complete listing of
ASCII codes, see Chapter 9.

Parameters:
code The ASCII value for a keyboard character or
special block graphics character.
Examples:

PRINT CHR$(88)

Sample Program:

By increasing by one the ASCII values of characters you type,
the following program creates a secret code. It uses CHR$ to dis-
play the secret code.

PROCEDURE secret

ODIM TEXT,SECRETLINE:STRING(8E]
[IDIM T,CODECHAR: INTEGER
OTEXT="

[JSECRETLINE=""

LIPRINT “Type a line to code in capital letters..."

CIINPUT TEXT (+ you type & line,

UFOR T=1 70 LENCTEXT)

[ICODECHAR=ASC(MID$(TEXT,T,13} (* look ai each character in line.

[JIF CODECHAR=90 THEN (r is it "Z"? If yes then
[ICODECHAR=64 (+ make it one less than "A",

CENDEF

[JIF CODECHAR=32 THEN v (+ is character a space? If yes then
LICODECHAR=31 (+ decrease its value by one.

CENDIF

[(SECRETLINE=SECRETLINE+CHR$(CODECHAR+1) (* add 1 to characters.
ONEXT T

[IPRINT SECRETLINE (+ print the secret code.
IEND

11-18

BASIC09 Command Reference |/ 11

CHX Change execution directory
CHD Change data directory

Syntax: CHX dirpath
CHD dirpath

Function: Changes the current execution or data directory.

Parameters:

dirpath An existing execution or data directory.

Examples:
CHX ™/D1/CMDS™
CHD "/D1/ACCOUNTS/RECEIVABLE™
CHD "..n

11-19

BASICO09 Reference

CLOSE Deallocate file or device path

Syntax: CLOSE #pathnum

Function: Deallocates the file or device path specified by
pathnum.

When you OPEN or CREATE a file, BASIC09 allocates a path
number to the variable you supply in the OPEN or CREATE
command. The system then knows the path by that number. If
the path you CLOSE is to a non-shareable device (such as a
printer), the system releases the device for other use. Do not
close paths 0, 1, and 2 (the standard I/O paths) unless you
immediately open a new path to take over the standard path
number.

Parameters:
pathnum The name of variable containing the path
number or the actual number of the path to a
file or device.
Examples:

CLOSE #FILEPATH, #PRINTERPATH, #TERMPATH

CLOSE #5, #6, #7

CLOSE #1 \ (* closes the standard output path #)

OPEN #PATH,"/T1" \ (* redirects standard output #)
Sample Program:

This procedure creates a directory named TEST and changes it
to the data directory. It then creates a file named Samplefile and
writes data to the file. Finally it changes back to the parent
directory and deletes Samplefile and TEST.

11-20

BASIC09 Command Reference / 11

PROCEDURE close

[IDIM PATH:BYTE

[ISHELL "MAKDIR TEST"

(OCHD "“TEST"

[JCREATE #PATH,"samplefile":WRITE (+ create a new file.
[MRITE #PATH,"This file is for lesiing only."

CWRITE #PATH,"It will be destroyed when this procedure ends.”
[ICLOSE #PATH (» close the file.

[ISHELL "L1ST samplefile"

[OCHD ™, ."

[ISHELL “DELDIR TEST"

[JEND

11-21

BASICO09 Reference

COS Return cosine

Syntax: COS(number)

Function: Calculates the cosine of number. Unless you specify
DEG, COS interprets the value of number in radians.

Parameters:
number The number for which you want to find the
cosine.
Examples:

PRINT COSC45)

Sample Program:

This procedure calculates sine, cosine, and tangent of a value
you enter.

PROCEDURE ratiocalc
ODIM NUM:REAL

ODEG

UINPUT "Enter a number...',NUM

OPRINT

UPRINT "Number',"SINE","COSINE"™,"TAN"

OPRINT ™= mm o m o m o e oL

OPRINT ANGLE,SINCNUM)I,COSCNUM), TANCNUM)
OPRINT
OEND

11-22

BASIC09 Command Reference / 11

CREATE Establish a disk file.

Syntax:

CREATE #path,“pathlist’ [access mode]
[+ access modell +...]

Function: Creates a file on a disk. When you create a file, you
can select one or more of the following access modes for the

file:

Mode Function

READ Lets you read (receive) data from a file but
does not let you write (send) data to the file.

WRITE Lets you write data to a file but does not let
you read data from a file.

UPDATE Lets you both read from and write to a file.

Parameters:

path The name of the variable in which BASIC09
stores the number of the opened path.

pathlist The route to the file or device to be opened,

access mode

Notes:

including the filename, if appropriate.

The type of access to be allowed for the file or
device. Use plus symbols to allow more than
one type of access with a single file.

@ You can access files either sequentially or randomly. With
random access, you must establish the filing system you
want for a particular application.

@ Files are byte-addressed, and you are not restricted by
explicit record lengths. You can read the data one byte at a
time, or in whatever size portions you want.

11-23

BASICO09 Reference

e A new file has a size of zero. OS-9 then expands the file
automatically when PRINT, WRITE, or PUT statements
write beyond the current end-of-file.

Examples:
CREATE #TRANS,"transportation':UPDATE
CREATE #SPOOL,"/user4/report":WRITE
CREATE #0BUTPATH,name$:UPDATE+EXEC

Sample Program:

This procedure CREATEs a directory named TEST and makes it
the data directory. It creates a file in TEST named Samplefile,
writes data to the file, then resets the parent directory as the
data directory. Finally, it deletes Samplefile and TEST.

PROCEDURE close

(IDIM PATH:BYTE

CISHELL "MAKDIR TEST"

[ICHD "TEST"

CICREATE #PATH,"samplefile™:WRITE (* create a file.

[WRITE #PATH,"This file is for testing purposes only."
CWRITE #PATH,"It will be destroyed when this procedure ends.”
[OCLOSE #PATH (+ close the file.

OSHELL "LIST samplefile”

CCHD ™., "
CISHELL "DELDIR TEST"
CEND

11-24

BASIC09 Command Reference / 11

DATA Store numeric and string information

Syntax: DATA “item”[,item”,...]

Function: Stores numeric and string constants to be accessed
by a READ statement. A DATA line can contain up to 254
characters. Each item in the list must be separated by

commas.

You can place DATA statements anywhere in a procedure that
is convenient. BASIC09 reads sequentially, starting with the
first item in the first DATA statement, and ending with the

last item in the last DATA statement.
The following rules apply to data items:

® You must place all string data between quotation marks.

® To include quotes in string-type data, use consecutive
quotation marks, like this: DATA "He said, "Mgo

home"" to me'.

® You can use RESTORE to reset the data pointer. Using
RESTORE without an argument resets the pointer to the
beginning of the data items. Using RESTORE with a
line number, resets the pointer to the first item in the

specified line.

® The READ statement can support a list of one or more
variable names of various types. The data types in DATA
statements must match the variable types used in the

corresponding READ statements.

® You can include arithmetic expressions in data items.
READ causes the expressions to be evaluated and
returns the result of the expression as the data item.

Parameters:

item Numeric or string characters. Enclose string

characters in quotation marks.

11-25

BASICO09 Reference

Examples:
DATA 1.1,1.5,9999,"CAT","DOG"
DATA SINCTEMP/25), COSCTEMP*PI)
DATA TRUE,FALSE,TRUE,TRUE,FALSE

DATA “The rain in spain®™,"falls mainly on the
plain"

Sample Program:

This procedure calculates the day of the week for a date you
enter. A data statement contains the names of the weekdays.

PROCEDURE weekday

ODIM X,DAY,MONTH,YEAR,CALC:INTEGER

ODIM ANUM,BNUM,CNUM,DNUM,ENUM,FNUM,GNUM,HNUM,INUM:
INTEGER

ODIM WEEKDAY(7):STRINGIS]

OPRINT USING *Seg”*,"Day of ihe Week Program®
OPRINT USING “S68"","For any year after 1752"
OPRINT

JINPUT "Enter day of tihe month as two digits, such
as 08...'",DAY

[JINPUT "Enter month as two digits, such as
12...",MONTH

OINPUT "Enter year as four digits, such as
1986...",YEAR

OFOR X=1 TOQ 7
"OREAD WEEKDAY(X)

ONEXT X

OANUM=INTC.6+1/MONTH)

OBNUM=YEAR-ANUM

OCNUM=MONTH+12*ANUM

ODNUM=BNUM/108

JENUM=INTC(DNUM/4)

OFNUM=INTC(DNUM)

OGNUM=INT(S*BNUM/4)

OHNUM=INTC13*(CNUM+1)/5)
OINUM=HNUM+GNUM-FNUM+ENUM+DAY-1
OINUM=INUM-7*INTCINUM/7)+1

OPRINT
OPRINT “The day of the week on "; DAY; "/*; MONTH;
OPRINT "/*; YEAR; ™ is..."; WEEKDAYCINUM)

[ODATA "Sunday","Monday“,"Tuesday",“Nednesday“,
“"Thursday"

ODATA "“Friday","Saturday"

JEND

11-26

BASIC09 Command Reference / 11

DATE$ Provide date and time

Syntax: DATE$

Function: Returns the date and time. The 0S-9 internal date
is kept in the format;

year/month/day hour:minutes:seconds

If your OS-9 Startup file contains the SETIME command, the
system asks you to enter the date and time whenever it boots.
If it does not contain the SETIME command, the date and
time start from 86/09/01:00:00:00.

You can use the normal string functions to access the data
contained in DATES, but you cannot use functions or opera-
tions that attempt to change or append to its values. To reset
the date or time or both, use the SHELL command, such as:

SHELL "SETIME™
Parameters: None

Examples:
PRINT DATE$

Sample Program:

This program is essentially the same as the sample program for
the DATA statement, except that it gets the day, month, and
year from DATES$.

PROCEDURE date

ODIM X,DAY,MONTH, YEAR,CALC: INTEGER

LIDIM ANUM, BNUM, CNUM, DNUM, ENUM, FNUM , GNUM, HNUM, TNUM: INTEGER
CIDIM WEEKDAY(7):STRING(9]

[IMONTH=VAL(MID$ (DATE$,4,2)) (+ get month from DATES.
CIDAY=VAL(MID$(DATE$,7,2)) (» get day from DATES
LIYEAR=VAL(™19"+LEFT$(DATES, 2)) (+ get year from DATES,

OFOR X=1 TD 7
LIREAD WEEKDAY(X)

11-27

BASICO09 Reference

ONEXT X

CJANUM=INT(.6+1/MONTH)
[IBNUM=YEAR-ANUM
CJCNUM=MONTH+12+ANUM
CIDNUM=BNUM/ 1024
OENUM=TNTCDNUM/4)
CIFNUM=INTCDNUM)

[IGNUM=TNT C5#BNUM/4)
[HNUM=INT(13+(CNUM+1)/5)
CIENUM=HNUM+GNUM-FNUM+ENUM+DAY -1
CINUM=INUM-7+ INTCINUM/7)+1
OPRINT

[PRINT "Today is ™; WEEKDAYCINUM)

[IDATA "Sunday",“Monday","Tuesday“,“Nednesday","Thursday","Friday"
[DATA "Saturday"
[IEND

11-28

BASIC09 Command Reference | 11

DEG

Syntax:

Return trigonometric calculations in
degrees

DEG

Function: Causes a procedure to calculate trigonometric val-
ues in degrees. If you do not include the DEG statement, pro-
cedures produce radian values.

Parameters: None

Examples:

DEG

Sample Program:

This procedure calculates the sine, cosine, and tangent for a
value you enter. Because it uses the DEG statement, it displays
the results in degrees.

PROCEDURE degcale
ODIM NUM:REAL

[DEG

OINPUT
OPRINT
OPRINT
OPRINT

OPRINT
OPRINT
JEND

"Enter a number...",NUM

“Number" ,"SINE™,"COSINE","TAN"

NUM,SINCNUM) ,COSCNUM)Y , TANCNUM)

11-29

BASIC09 Reference

DELETE Erase a disk file

Syntax: DELETE “pathname”

Function: DELETE removes a file from disk storage and
releases the portion of the disk on which it resides. When you
DELETE a file, it is permanently lost.

Parameters:
pathname The complete pathlist to the file you want to
delete, including the drive and one or more
directories, if appropriate. You must surround
the pathlist with quotation marks.
Examples:

DELETE "myfile"
DELETE "/D1/ACCOUNTS/receivables"

Sample Program:

This procedure creates a file named Samplefile, writes data to
the file, then closes it. It then lists the file before deleting it.

PROCEDURE close

ODIM PATH:BYTE

[CICREATE #FATH,"samplefile":WRITE (¢ create a file.

CHRITE #PATH,"This file is for testing purposes only."
CWRITE #PATH,"1t will be desiroyed when this procedure ends.,"
[CLOSE #PATH (+ close the file,

[SHELL “LI1ST samplefile”

[IDELETE “samplefile"

CEND

11-30

BASIC09 Command Reference | 11

DIM Assign variable storage

Syntax: DIM variablel,...][:typell;variablell,...1[: typell...]

Function: Assigns storage space and declares types for vari-
ables, arrays, or complex data structures.

Parameters:
variable A simple variable, an array structure, or a
complex data structure.
type BYTE, INTEGER, REAL, BOOLEAN,
STRING, or user defined.
Notes:

@ You declare simple arrays with DIM by using the variable
name, without a subscript. If you do not explicitly declare
variables, the system makes them type real unless they are
followed by a dollar sign ($). The system dimensions vari-
ables ending with a dollar sign ($) as strings, with a length
of 32 bytes. You must declare types of all other simple vari-
ables as to type.

® You can declare several variables of the same type by sepa-
rating them with commas. To separate variables of differ-
ent types, follow each type group with a colon, the type
name, and then a semicolon.

® Define a maximum length for a string variable by enclosing
the length in brackets following the type, like this:

DIM name:stringl25]

11-31

BASICO09 Reference

I you do not define a maximum length, BASIC09 uses a

default length of 32 characters. You can declare a shorter
length or a longer length, up to the capacity of BASIC09’s
memory. If you try to extend a string beyond its declared
length, or beyond the default length, the system ignores all
extra characters. Thus the following:

DIM name:stringl18@]
name = "Abbernathinsky"

produces the string:

Abbernathi

e Arrays can have one, two, or three dimensions. The DIM
format for dimensioned arrays is the same as for simple
variables, except that you must follow each array name
with a subscript, enclosed in parentheses, to indicate its
size. The maximum array size is 32767.
Arrays can be either of the standard BASIC09 type or of a
user-defined type. For information on creating your own
types for simple variables, arrays, and complex data struc-
tures, see TYPE.

Examples:

DIM logical:BOOLEAN

DIM a,b,c:INTEGER

DIM name,address,zip:STRING

DIM name:STRINGI25]1; address:STRINGI301;

zip:INTEGER

DIM nol1,no02,n03:REAL;no4,n05,n06: INTEGER;

no7:BYTE

11-32

BASIC09 Command Reference / 11

Sample Program:

This procedure randomly selects letters and vowels to create six-
letter words that might look like alien names. It first DIMs nine
string variables to contain the letters selected for each name. It
DIMs two integer variables to provide a loop counter and to store
the number of names you request.

When asked, type the number of names you want to have the
procedure generate.

PROCEDURE alien

ODbIM B,BEGIN,F,FINISH:STRING
UDIM VOWELS,VOWEL1,VOWEL2:STRING
ODIM MID1,MID2:STRING

ODIM T,RESPONSE:INTEGER
OVOWELS="aeiouy"

OINPUT "“How many alien names do you want to
see?...",RESPONSE
UBEGIN="ABCDFGHJKLMNPRSTVWXZ"
OFINISH="ehlmnprstvwyz"

UFOR T=1 TO RESPONSE
OB=MID$(BEGIN,RND(19)+1,1)
UF=MID$CFINISH,RNDC12)+1,1)
OMID1=CHR$(RNDC25)+97)
OMID2=CHR$(RND(253+97)

OVOWEL1=MID$ (VDWELS,RNDC5)+1,1)
UVOWEL2=MID$ (VOWELS,RND(5)+1,1)

OPRINT B; VOWEL1; MID1; MID2; VOWEL2: F,
UNEXT T

OPRINT
LEND

11-33

BASICO09 Reference

DO Execute procedure lines in a loop

Syntax: WHILE expression DO
proclines
ENDWHILE

Function: Establishes a loop that executes the procedure lines
between DO and ENDWHILE as long as the result of the
expression following WHILE is true. Because the loop is
tested at the top, the lines within the loop are never executed
unless expression is true.

Parameters:
expression A Boolean expression (produces a result of
True or False).
proclines Are program lines to execute if the expression

is true.

See WHILE/DOQ/ENDWHILE for more information.

11-34

BASIC09 Command Reference | 11

ELSE Execute alternate action

Syntax: IF condition THEN
action
ELSE

secondary action
ENDIF

Function: ELSE provides access to a secondary action within
an IF/THEN test. When the condition tested by IF is not
true, BASIC09 executes the secondary action preceded by
ELSE.

Parameters:

condition A Boolean expression (produces a result of
True or False).

action A line number to which the procedure is to
transfer execution, or a program statement. If
action is a line number, do not include the
ENDIF statement in the IF test.

secondary One or more program statements.

action

For more information, see IF/THEN/ELSE

11-35

BASIC09 Reference

END Terminate a procedure

Syntax: END [“text’]

Function: Ends procedure execution and returns to the calling
procedure, or to the highest level procedure. If you provide
output text for END, it functions in the same manner as
PRINT. You can use END several times in the same proce-
dure. END is not required as the last statement in a
procedure.

Parameters:

text A literal string or a string-type variable.

Examples:
END "Program Terminated"

LAST$="Session over"
END LASTS

Sample Program:

This procedure calculates a loan’s term, using END to termi-
nate routines.

PROCEDURE loaner

ODIM YBUPAY,PRINCIPLE,INTEREST,NUMPAY,YEARS,
MONTHS : REAL

UDIM RESPONSE:STRINGI1]

OREPEAT

OPRINT

OPRINT USING "S457" .|l ocan Terms"

OPRINT

OINPUT ™ Amount of Regular Payments...",YOUPAY
OINPUT ™ Enter the Principle...",PRINCIPLE
OINPUT * Enter the Annual Interest Rate...™,
INTEREST

OINPUT ™ Enter the Number of Payments

Yearly...",NUMPAY

11-36

BASIC09 Command Reference / 11

OYEARS=-C(LOGC1-PRINCIPLE*CINTEREST/160)/
CNUMPAY*YOUPAY))>/(LOGC1+INTEREST/108/NUMPAY) *
NUMPAY))

OMONTH=INTCYEARS*12+.5)

OYEARS=INT(MONTH/12)

OMONTH=MONTH-YEARS*12

OPRINT ® The Term of Your Loan is " YEARS; "
years and '"; MONTH; " months.™

UOINPUT "“Calculate another or Quit c/Qx7...w,
RESPONSE

UOUNTIL RESPONSE<>"C'"™ AND RESPONSE<>"c"
UEND "Goodbye...I hope I helped you."

11-37

BASIC09 Reference

ENDEXIT Leave loop if a condition is True

Syntax: EXITIF condition THEN
proclines
ENDEXIT

Function: ENDEXIT terminates an EXITIF test. You always
use EXITIF/THEN/ENDEXIT inside a procedure loop. If the
Boolean expression tested by EXITIF is true, BASICO9 exe-
cutes the program statements between THEN and ENDEXIT
and then transfers program operation outside the loop. If the
condition tested by EXITIF is not true, loop execution contin-
ues at the statement following ENDEXIT.

Parameters:
condition A comparison operation that returns either
True or False, such as A=B, A<B, or
A=B=C.
proclines One or more statements to perform if the Boo-

lean expression tested by EXITIF is True.
For more information, see EXITIF/THEN/ENDEXIT

11-38

BASIC09 Command Reference | 11

EN DIF Close IF statement

Syntax: IF condition THEN
action
[ELSE
secondary action]
ENDIF

Function: ENDIF terminates an IF/THEN condition test. If
the condition tested by IF is true, BASICO9 executes the
statements between THEN and ENDIF. If the condition tested
by IF is not true, BASIC09 transfers execution to the proce-
dure line following ENDIF or (optionally) executes the state-
ments following ELSE.

Parameters:

condition A Boolean expression (produces a result of
True or False).

action A line number to which the procedure is to
transfer execution. Action can also be a pro-
gram statement. If action is a line number, do
not include the ENDIF statement in the IF
test.

secondary A program statement.

action

For more information, see IF/THEN/ELSE/ENDIF.

11-39

BASICO09 Reference

ENDLOOP Close LOOP statement

Syntax: LOOP
statement(s)
ENDLOOP

Function: ENDLOOP terminates a procedure loop established
by the LOOP command. BASIC09 endlessly executes all proce-
dure statements between LOOP and ENDLOOP repeatedly
unless a condition test within the loop (such as EXITIF/
THEN/ENDEXIT, or IF/THEN) transfers execution outside of
the loop.

Parameters:

statement(s) One or more procedure lines that execute
within the loop.

For more information, see LOOP/ENDLOOP.

11-40

BASIC09 Command Reference / 11

ENDWHILE Close WHILE statement

Syntax: WHILE condition DO
proclines
ENDWHILE

Function: Forms the bottom of a WHILE loop. WHILE causes
the procedure lines between DO and ENDWHILE to execute
as long as the result of the expression following WHILE is
true. Because the loop is tested at the top, the lines within
the loop are never executed unless the expression is true.

Parameters:
condition A Boolean expression (produces results of True
or False).
proclines Are program lines to execute if the expression
is true.

For more information, see WHILE/DO/ENDWHILE.

11-41

BASICO09 Reference

EOF Test for end-of-file

Syntax: EOF(path)

Function: Tests for the end of a disk file. The function returns
a value of True when it encounters an end-of-file; otherwise, it

returns False. Use EOF with a READ or GET statement.

Parameters:
path The number of the path you are accessing.
BASIC09 automatically stores a path number
into the variable you specify during a
CREATE or OPEN operation.
Examples:

IF EOFC(#PATH) THEN
CLOSE #PATH
ENDIF

Sample Program:

This procedure redirects a listing of the current directory into a
file named Dirfile. It then lists Dirfile to the screen. EOF tells
the WHILE/ENDWHILE loop when the READ operation reaches
the end of the file.

PROCEDURE readfile

ODIM A:STRINGI88]

ODIM PATH:BYTE

OSHELL "DIR > dirfile"
OOPEN #PATH,“dirfile":READ
OWHILE NOT EOF(#PATH) DO
OREAD #PATH,A

OPRINT A

JENDWHILE

[(OCLOSE #PATH

JEND

11-42

BASIC09 Command Reference / 11

ERR Return error code

Syntax: ERR

Function: Returns the error code of the most recent error.
BASIC09 automatically sets the ERR code to zero after you
reference it. ERR is only useful when used in conjunction with
BASIC09’s ON ERROR error trapping functions.

See Appendix A for a list of all BASIC09 error codes.
Parameters: None

Examples:

ERRNUM = ERR

IF ERRNUM = 218 THEN

PRINT "File already exists. Please use another
filename."

ENDIF

Sample Program:

This procedure displays the contents of a file you select. If the
file doesn’t exist (Error 216, Pathname not found), the procedure
uses ERR to tell you. If an error other than Error 216 occurs,
the procedure displays I can’t handle error xx, where xx is
the code of the error.

11-43

BASIC09 Reference

PROCEDURE readfile

[DIM READFILE:STRING; A:STRINGI8E1; PATH:BYTE

10]INPUT "Type the pathlist of the file to read...”,READFILE
CON ERROR GOTO 108 (x if an error occurs, skip to line 16¢,
{JOPEN #PATH,READFILE:READ

[OWHILE EOFC#PATH)<>TRUE DO

OREAD #PATH,A

[PRINT A

CIENDWHILE

[JCLOSE #PATH

[JEND

1§0CJERRNUM=ERR (* store the error code in ERRNUM,

OIF ERRNUM=216 THEN (+ if file doesn’t exist say so.

OPRINT "I can’t find the file...Please try again."

(10N ERROR

006070 19

CENDIF

CPRINT "Sorry, 1 can’t handle error number "; ERRNUM (# other erreor.
(ICLOSE #PATH

CEND

11-44

BASIC09 Commands Reference / 11

ERROR Simulate an error

Syntax: ERROR code

Function: Simulates the error specified by code. You would
mainly use this command to test ON ERROR GOTO routines.
When BASIC09 encounters an ERROR statement, it proceeds
as if the error corresponding to the specified code has
occurred. Refer to Appendix A for a listing of error codes and
their meanings.

Parameters:

code The code of the error you want to simulate.
Examples:

ERROR 2087

ERRNUM = ERR

IF ERRNUM = 287 THEN

PRINT "Memory is full. The current data is being
saved to disk."

ENDIF

Sample Program:

This program creates a file named Testl. Before creating the
file, it checks to see if it already exists. If the file exists, the pro-
cedure deletes it. An error trap catches any error that might
occur. To test if the trap works for Error 216, “Pathname not
found”, the statement ERROR 216 is inserted as the fourth line.
After testing the trap to make sure it works, delete this line to
use the procedure.

11-45

BASIC09 Reference

PROCEDURE errortest

ODIM PATH,ERRNUM:BYTE; RESPONSE:STRINGIL11]
(OBASE @

[JON ERROR GOTO 18 (* set error trap
JERROR 216 (* simulate error
[JDELETE "test1™

OGOTO 1940

1 B0ERRNUM=ERR

OIF ERRNUM=216 THEN

DINPUT "File doesn’t exist...continue?
C(Y/N)" ,RESPONSE

OIF RESPONSE="N'" THEN

OEND "Procedure terminated at your request..
[JENDIF

JENDIF

[JON ERROR (* turn off error irap.
1000CREATE #PATH,"test1":WRITE

OEND

11-46

BASIC09 Commands Reference | 11

EXITIF/THEN/ENDEXIT

Exit from loop if a condition is true

Syntax: EXITIF condition THEN
statement
ENDEXIT

Function: Use these statements with loop constructions (par-
ticularly LOOP and ENDLOOP) to provide an exit for what is
otherwise an endless loop. EXITIF performs a test of a Boo-
lean expression, such as A<B. The THEN statement precedes
any operation you want to execute if the expression is true.
You must always follow EXITIF with an ENDEXIT.

If the Boolean expression following an EXITIF is false, execu-
tion of the program transfers to the statement immediately
following the body of the loop (after the ENDEXIT statement).
Otherwise, BASIC09 executes the statement(s) between
EXITIF and ENDEXIT, then transfers control to the state-
ment following the body of the loop.

You can also use EXITIF and ENDEXIT with types of loop
constructions other than LOOP/ENDLOOQP.

Parameters:
Boolean A comparison operation that returns either
expression True or False, such as A=B, A<B, or
A=B=C. :
statement An operation to be performed if the Boolean

expression tested by EXITIF is True, such as;
PRINT A is less than B.

11-47

BASIC09 Reference

Examples:

LOOP

COUNT=COUNT+1

EXITIF COUNT>106 THEN
DONE = TRUE

ENDEXIT

PRINT COUNT

X = COUNT/2

ENDLOOP

Sample Program:

This procedure simulates a gambling machine by randomly
selecting among several fruit names and displaying them. It
gives you a starting stake of $25 and, depending on the combi-
nation of fruit selected, it adds or subtracts from your stake.

If your stake drops to zero, an EXITIF statement ends the proce-
dure and tells you that you’re broke.

PROCEDURE onearm

ODIM FRUITY,FRUIT2,FRUIT3,STAKE: INTEGER; FRUIT(8):
STRINGIG]

OSTAKE=25

OPRINT \ PRINT "You have $"; STAKE; " to play
with."

OFOR T=1 TO 8

OREAD FRUITCT)

ONEXT T

gLoop

OFRUIT1=RNDC7)+1 \FRUIT2=RND(7)+1 \FRUIT3=RND(7)+1
OPRINT FRUITCFRUIT1Y; ™ "; FRUITCFRUIT2); ™ "3
FRUITCFRUIT3)

OIF FRUITCFRUIT1)=FRUITCFRUIT2) AND FRUITC(FRUIT1)=
FRUITCFRUIT3) THEN STAKE=STAKE+140

OELSE

OIF FRUITCFRUIT1)=FRUIT(FRUIT2) OR FRUITCFRUIT1I=
FRUITCFRUIT3) OR

OFRUITCFRUIT2)=FRUITCFRUIT3) THEN

OSTAKE=STAKE+1

OELSE

OSTAKE=STAKE-1

OENDIF

[ENDIF

11-48

BASIC09 Commands Reference / 11

OREM exit play loop is stake is less than $1.
OEXITIF STAKE<1 THEN

OPRINT

OPRINT "You‘’re Busied...Better go home."
OENDEXIT

OPRINT "Your stake is now $"; STAKE; ".m
OPRINT

OPRINT

OINPUT "Press ENTER to pull again...",Z$
JENDLOOP

JEND

ODATA "DRANGE","APPLE","CHERRY","LEMDN","BANANA"
ODATA “PEAR™,"PLUM"™,"PEACH"

11-49

BASICO09 Reference

EXP Return natural exponent

Syntax: EXP(number)

Function: Returns the natural exponent of number, that is, e
(2.71828183) to the power of number. Number must be
positive.

This function is the inverse of the LOG function. Therefore,
number = EXP(LOG(number)).
Parameters:

number A positive value.

Examples:
PRINT EXP(2)

Sample Program:

This procedure calculates the exponent of values in the range
0-1.

PROCEDURE exprint

OFOR T=8 TO 1 STEP .83

OPRINT EXPCT),EXPCT+.81),EXPCT+.02)
ONEXT T

OEND

11-50

BASIC09 Command Reference |/ 11

FALSE Assign Boolean value

Syntax: variable=FALSE

Function: FALSE is a Boolean function that always returns
False. You can use FALSE and TRUE to assign values to Boo-
lean variables.

Parameters: None

Examples:

DIM TEST:BODOLEAN
TEST=FALSE

Sample Program:

The procedure uses a Boolean variable to store True or False,
depending on whether you answer some questions correctly or
incorrectly.

PROCEDURE quiz

ODIM REPLY,VALUE:BOOLEAN; ANSWER:STRINGL11;
QUESTION:STRINGLBA1

OFOR T=1 TO 5§

OREAD QUESTION,VALUE

OPRINT QUESTION

OPRINT "(T) = TRUEODOOOOOCF)Y = FALSE"™

OPRINT "Select T or F:[O";

OGET #1,ANSWER

OIF ANSWER="T" THEN

OREPLY=TRUE

OELSE

OREPLY=FALSE

OENDIF

OIF REPLY=VALUE THEN

OPRINT \ PRINT "That’s Correct...Good Show!"™
JELSE

OPRINT "Sorry, you’re wrong...Better Luck next
time."™

JENDIF

OPRINT N\ PRINT \ PRINT

11-51

BASIC09 Reference

ONEXT T

ODATA "“In computer talk, CPU stands for Central
Packaging Unit.", FALSE

ODATA "The actual value of 64K is 65536
bytes."™,TRUE

ODATA "The bits in a byte are normally numbered @
through 77" ,TRUE

ODATA "BASICAY has four data types.",FALSE
DATA "The LAND function is a Boolean iype
operator.',FALSE

JEND

11-52

BASIC09 Command Reference / 11

F IX Round a real number

Syntax: FIX(value)

Function: Rounds a real number to the nearest whole number
and converts it to an integer-type number. Fix performs a
function that is the opposite of the FLOAT function.

Parameters:

value Any real number.

Examples:

A=RNDC10)
PRINT FIXCA)

Sample Program:
This procedure displays the FIXed values of seven constants.

PROCEDURE printfix
OPRINT FIXC1.2)
OPRINT FIXC1.3)
OPRINT FIXC1.5)
OPRINT FIX(1.8)
OPRINT FIX(99.566666)
OPRINT FIX(58.1)
OPRINT FIX(.7654321)
OPRINT FIX(-12.44)
OPRINT FIX(-9.99)
[JEND

11-53

BASICO09 Reference

F LOAT Convert from integer or byte to real

Syntax: FLOAT(value)

Function: Converts an integer- or byte-type value to real type.
FLOAT performs a function that is the opposite of the FIX
function.

Parameters:

value An integer- or byte-type number.

Examples:

DIM TEST:INTEGER
TEST=44
PRINT FLOATCTEST)/3

Sample Program:

This procedure uses FLOAT to produce a real number result of
an inch to centimeter conversion.

PROCEDURE converti

ODIM T:INTEGER; MEASURE:STRINGI111
OFOR T=1 TO 180

OIF T=1 THEN

OMEASURE="centimeter "

OELSE

OMEASURE="centimeters"

JENDIF

OPRINT Tj; ™ '; MEASURE; " is "; FLOAT(T)*.3937;
" inches.™

ONEXT T

JEND

11-54

BASIC09 Command Reference / 11

FOR/NEXT/STEP Establish a loop

Syntax:

FOR variable = init val TO end val [STEP value]
[procedure statements]

NEXT variable

Function: Establishes a procedure loop that lets BASIC09 exe-
cute one or more procedure statements a specified number of
times. The variables you use can be either integer or real type
and can be negative, positive, or both. Loops using integer
values execute faster than loops using real values.

BASIC09 executes the lines following the FOR statement until
it encounters a NEXT statement. Then it either increases or

decreases the initial value by one (the default) or by the value
given STEP.

Parameters:
variable Any legal numeric variable name.
init val Any numeric constant or variable.
end val Any numeric constant or variable.
value Any numeric constant or variable.
procedure Procedure lines you want to be executed
statements within the loop.
Notes:

® If you provide an initial value that is greater than the final
value, BASIC09 skips the program loop entirely unless you
specify a negative STEP value. Specifying a negative value
for STEP causes the loop to decrement from the initial
value to the end value.

11-55

BASIC09 Reference

® When execution reaches the NEXT statement in a positive
stepping loop, and the step value is less than or equal to
the end value, BASIC09 branches back to the line after
FOR and repeats the process. When the step value is
greater than the end value, BASIC09 transfers execution to
the statement following the NEXT statement.

® When execution reaches the NEXT statement in a negative
stepping loop, and the step value is greater than or equal
to the end value, BASIC09 branches back to the line after
FOR and repeats the process. When the step value is less
than the end value, execution continues following the NEXT
statement.

Examples:

FOR COUNTER = 1 to 180 STEP .5
PRINT COUNTER
NEXT COUNTER

FOR X = 18 TO 1 STEP -1
PRINT X
NEXT X

FOR TEST = A TO B STEP RATE
PRINT TEST
NEXT TEST

Sample Program:

This procedure uses two nested FOR/NEXT loops to produce a
multiplication table.

PROCEDURE multable
OPRINT USING "S45"~","MULTIPLICATION TABLE"
OPRINT

ObIM I,J:INTEGER

gFOR I=1 TO 9

gFOR J=1 TO 9

OIF J>1 THEN

OPRINT I+J; TAB(5+%J);
OELSE PRINT Ix*Jj; " *;
OENDIF

ONEXT J

OIF I=1 THEN

OPRINT "

11-56

BASIC09 Command Reference / 11

OPRINT ™

UENDIF
OPRINT
ONEXT I
LUEND

11-57

BASICO09 Reference

GET Read a direct-access file record

Syntax: GET #path,varname

Function: Reads a fixed-size binary data record from a file or
device. Use GET to retrieve data from random access files.

Although you usually use GET with files, you can also use it
to receive data for any outputting device, such as a keyboard
or another computer. By dimensioning a string variable to the
length of input you want, you can use GET to read a specified
number of keystrokes, then continue program execution with-
out requiring to be pressed.

For information about storing data in random access files, see
Chapter 8, “Disk Files.” Also see PUT, SEEK, and SIZE.

Parameters:
path A variable name you choose in which BASIC09
stores the number of the path it opens to the
device you specify or one of the standard I/O
paths (0, 1, or 2).
varname The variable in which you want to store the
data read by the GET statement.
Examples:

GET #PATH,DATAS$
GET #1,RESPONSES
GET #INPUT, INDEX(X)

Sample Program:

This procedure directs a directory listing to a file named Dirfile.
GET then reads the file, one character at a time in order to
determine which characters are valid filename characters. The
procedure creates a file containing all the filenames in the
directory.

11-58

BASIC09 Command Reference / 11

PROCEDURE filenames

ODIM DIRECTORY,FILENAME: STRING; CHARACTER:STRINGI11; FILES(125):STRINGI15];
PATH,COUNT, T: INTEGER

[JCOUNT=¢

[OFILENAME=""

OFOR T=1 TO 125 (* initialize array elements to null,

OFILES(T)=mn

[ONEXT T .

[OINPUT “Pathlist of directory to read...",DIRECTORY (+ dir to copy.
[JON ERROR GOTD 18

ODELETE "dirfile" (* if dirfile already exists, delete it.

190J0N ERROR

[ISHELL "DIR "+DIRECTORY+" > dirfile" (+ copy directory into file,
CIOPEN #PATH,"dirfile™:READ (# open the file for reading.

[IREPEAT

[REM Get characters from the file until the first carriage -return - the
beginning of the firsi filename.

[IGET #PATH,CHARACTER (» get characters from the file.

CIUNTIL CHARACTER=CHR$(13)

[IREM

2001Loop

OEXITIF EQFC#PATH) THEN

[060TO 268 (+ quit when end of file,

[JENDEXIT

CIREM get a character from the file until it finds a non-valid filename
character.

[IGET #PATH,CHARACTER

[IREM

QEXITIF CHARACTER¢=" " DR CHARACTER>"z" THEN

[J60To 104

[JENDEXIT

OF ILENAME =F [LENAME +CHARACTER (# build the filename.

[JENDLOOP

18800WHILE NOTCEOF(#PATH)) DO

[JGET #PATH,CHARACTER (#-check for non-valid filename characiers.
OEXITIF CHARACTER>™ ™ AND CHARACTER<="z" THEN (+ check if valid char.
[ICOUNT=COUNT +1

[FILESCCOUNT)=FILENAME (* store filename in array.

OPRINT FILENAME, (s display the extracied filename.

[OFILENAME="" (+ set variable to NULL.

(FILENAME=F ILENAME+CHARACTER (* last character begins new filename,
06070 28 (# go get the rest of filename.

[JENDEXIT

CENDWHILE

2040ICLOSE #PATH

11-59

BASIC09 Reference

CDELETE ™dirfile" (+ names are all in array so delete file.
[(OCREATE #PATH,"dirfile™:WRITE (* create the file again.

[FOR T=1 TO COUNT

OKRITE #PATH,FILESCT) (x fill the file with individual filenames.
[NEXT T

[ICLOSE #PATH

[PRINT

OPRINT “OOOO000#The directory has "; COUNT; ™ entries"
OPRINTOMOOO0OOOThey are now stored in a file named Dirfile."
(JEND

11-60

BASIC09 Command Reference [11

GOSUB/RETURN

Jump to subroutine/ Return from subroutine

Syntax: GOSUB linenumber

Function: Branches program execution to the specified line
number.

BASICO09 lets you write programs with line numbers or with-
out. You can also mix numbered and un-numbered lines
within a single procedure. This means that, to use GOSUB,
you need to number only the first line of the subroutine to
which you want to branch.

Every subroutine you access with GOSUB must contain a
RETURN statement. You can call a subroutine in this man-
ner as many times as you want. When BASIC09 encounters
the RETURN, it transfers program execution to the line fol-
lowing the GOSUB statement.

You can precede GOSUB with a test statement, such as IF or
WHEN, that makes branching conditional.

You can nest GOSUB statements to any depth, depending on
your computer’s free memory.
Parameters:
linenumber The number of the line where procedure exe-
cution is to continue.
Examples:
GOSUB 1080

11-61

BASICO09 Reference

Sample Program:

The following procedure asks you for two numbers and an opera-
tor. It determines the line to jump to by the position of the oper-
ator in a table. GOSUB sends the procedure to execute the
proper routine. RETURN sends the execution back to the main
routine. To quit, enter a negative value.

PROCEDURE calc

ODIM NUM1,NUM2:REAL; OP:STRING[11; A:INTEGER
10INPUT "™NUMBER 1 '";NUM1
OIF NUM1<@ THEN

OEND

UENDIF

OINPUT "NUMBER 2 ";NUM2
OINPUT "OPERATOR *;0P
JA=SUBSTRCOP ,"+-*/"")

OON A GOSUB 10,20,30,40,58
geaTo 1

180PRINT NUM1+NUM2 \ RETURN
280PRINT NUM1-NUM2 \ RETURN
300PRINT NUM1=NUM2 \ RETURN
400PRINT NUM1/NUM2 \ RETURN
S@0PRINT NUM1 NUM2 \ RETURN

OEND

11-62

BASIC09 Command Reference / 11

IF/THEN/ELSE/ENDIF

Test a Boolean expression

Syntax: IF condition THEN linenumber
[ELSE

secondary action
ENDIF]

IF condition THEN
action

[ELSE

secondary action]
ENDIF

Function: Tests a Boolean expression and executes action if the
expression is true. Optionally, the statements execute a sec-
ondary action if the expression is not true. Each IF statement
must be accompanied by THEN. If action is a line number,
you can omit the ENDIF statement. For instance, both of the
following statements operate in the same manner:

IF T=5 THEN 18

IF T=5 THEN

GOTO 18

ENDIF
Parameters:

condition A Boolean expression (produces True or False).

linenumber A line to which the procedure is to transfer
execution if condition is true.

action One or more procedure statements to be exe-
cuted if condition is true.

secondary One or more procedure statements to execute

action if condition is false.

11-63

BASIC09 Reference

Examples:
IF A>B THEN 100

IF A<B THEN 1080
ELSE
A=A-1
ENDIF

IF TEST=TRUE THEN
PRINT "The test is a success..."
ENDIF

IF A ¢ B THEN

PRINT "A is less than B"
ELSE

PRINT "B is less than A"
ENDIF

Sample Program:

The following procedure is a purge procedure. Use it only with
the GET Sample Program to delete one or more files from your
current directory.

The Filenames procedure (see GET) stores the current directo-
ry’s filenames in Dirfile. This procedure reads Dirfile, displays
all the filenames, then asks you for a wildcard. Type in charac-
ters that identify a group of files you want to delete. The pro-
gram deletes all files that contain, in the same order and case,
the characters you type.

For instance, if you have four files named Test, Filel, File2, and
File3, and you type a wildcard of “File,” the procedure deletes
Filel, File2, and File3, but does not delete Test. Delete all of the
files in a directory by typing ‘“*” as the wildcard.

Use this program carefully. Be sure you are in the right
directory and that the wildcard characters you type are not con-
tained in filenames other than the ones you want to delete. You
might want to add a prompt to the procedure that lets you con-
firm each deletion before it happens.

11-64

BASIC09 Command Reference / 11

PROCEDURE purge

ODIM PATH:INTEGER

ODIM NAMEC188):STRING

ODIM WILDCARD:STRING

Ox=0

OOPEN #PATH,"dirfile™:READ

OWHILE NOTCEOFC#PATH)) DD

OX=X+1

OREAD #PATH,NAMECX)

OENDWHILE

OFOR T=1 TO X

OPRINT NAMECT),

ONEXT T

OINPUT "Wildcard Characters...",WILDCARD
OFOR T=1 TO X

00ON ERROR GOTOD 1840

OIF SUBSTRCWILDCARD,NAMECTI)>@ OR WILDCARD="smu
THEN

OPRINT “DELETING '; NAMECTY; "™ "
ODELETE NAMECT)

OENDIF

1B0ONEXT T

OEND

T@B0PRINT "+ % % ERROR * » * ', NAMECT); " cannot
be deleted..continuing."

0GoTD 10

11-65

BASIC09 Reference

INKEY Read a keypress

Syntax: RUN INKEY(string)

Function: Reads a keypress, and stores the character of the
key in the specified string variable.

Parameters:
string is a string variable into which INKEY stores
the character you press.
Examples:
DIM CHAR:STRING[1]
C H A R =N n
WHILE CHAR="" DO
RUN INKEYCCHAR)
ENDWHILE

PRINT ASC(CHAR)

11-66

BASIC 09 Command Reference | 11

Sample Program:

PROCEDURE Calculate

ODIM CHAR:STRINGIL[11]

ODIM LODKUP:STRINGI[7]

ODIM FIRST,SECOND:REAL

ODIM FLAG:INTEGER

OLOCOKUP="+-%/n¢>™

1 FLAG=0 \CHAR='"

OPRINT "Enter the first number to evaluate...";
OINPUT FIRST

OIF FIRST=8 THEN

OG0To 120
OENDIF
OPRINT “Enter the second number to evaluate...";

OINPUT SECOND

OPRINT “Press the key of the operator you want to
use.,."

OPRINT ™ + - % / ~ ¢ > ,, . ,n,

OWHILE CHAR="" DO

ORUN INKEY(CCHAR)

OENDWHILE

OPRINT

OFLAG=SUBSTR(CHAR,LDOOKUP)

UON FLAG GOTO 16,26,30,40,58,60,70

18 PRINT FIRST+SECOND \ 6OTO 1

20 PRINT FIRST-SECOND GOTO
38 PRINT FIRST#+SECOND GOTO
48 PRINT FIRST/SECOND GOTO
58 PRINT FIRST"~SECOND GOTO
68 PRINT FIRST<SECOND GOTO
78 PRINT FIRST>SECOND \ GOTO 1

188 PRINT "Procedure Terminated Due to @
Input..."

JEND

E I
= a3

11-67

BASICO09 Reference

INPUT Get data from a device path

Syntax: INPUT [#path,] [prompt,] variable [,variable...]

Function: INPUT accepts input from the specified path. (The
default is the keyboard.) When a procedure encounters
INPUT, it displays a question mark and awaits data from the
specified path. If you provide a string type prompt for INPUT,
it displays the text of the prompt, rather than a question
mark.

INPUT stores the data it collects in the variable you specify.
The type of the receiving variable must match the type of
data received.

Because INPUT sends data (the question mark prompt or the
user-specified string prompt), it is really both an input and an
output statement. This means that, if you use a path other
than the standard input path, you should not use the
UPDATE mode. If you do, the prompts produced by INPUT
write to the file specified by the path number.

If the data received does not match the type of data INPUT
expects, it displays the message:

#** INPUT ERROR - RETYPE=+«

followed by a new prompt. You must then enter the entire
input line, of the correct type, to satisfy INPUT. For more
information, see GET.

11-68

BASIC09 Command Reference / 11

Parameters:
path Either a variable containing the path number,
or the absolute path number to the file or
device from which you want to receive input. If
you want to receive input from the keyboard,
do not include a path number.
prompt Text you type as a message to be displayed
when BASICO09 executes an INPUT statement.
variable The variable name in which you want to store
the data received by INPUT. The type of vari-
able must match the type of input.
Examples:

INPUT NUMBER,NAMES$,LOCATION
INPUT #PATH,X,Y,Z
INPUT "What is your selection: ";CHOICE

INPUT #HOST,"What’s your ID number? *,IDNUM

Sample Program:

This procedure calculates the day of the week for a specified
date. It asks you for the date using the INPUT command.

PROCEDURE weekday

ODIM X,Y,D,M,CALC:INTEGER; DAY ,MONTH:STRING[21;
YEAR:STRING[41; WEEKDAY (7):STRINGIL9]

ODIM ANUM,BNUM,CNUM,DNUM,ENUM,FNUM,GNUM, HNUM,
INUM: INTEGER

OPRINT USING *S88 ™,"Day of the Week Program","For
any year after 1752"

OPRINT
OPRINT "Enter day Ce.g. €8): "; \ INPUT DAY
OPRINT "™ Enter month Ce.g. 12): "; \ INPUT MONTH

OPRINT " Enter year Ce.g. 1986): *; \ INPUT YEAR
OY=VALCYEARY \M=VALC(MONTH) \D=VALCDAY)

OFBR X=1 TO 7

OREAD WEEKDAY(X)

ONEXT X

OANUM=INTC.6+1/M)

OBNUM=Y-ANUM

11-69

BASIC09 Reference

OCNUM=M+12+*ANUM
ODNUM=BNUM/180
OENUM=INTC(DNUM/4)
OFNUM=INTCDNUM)
OGNUM=INT(5#BNUM/4)
OHNUM=INTC13*(CNUM+1)/5)
OINUM=HNUM+GNUM-FNUM+ENUM+D-1
OINUM=INUM-7+INTCINUM/7)+1

OPRINT
OPRINT "The day of the week on ne Ms /M5 Dy
wym. oy moyg, " WEEKDAY CINUMD

ODATA "Sunday","Monday","Tuesday","Nednesday",
"Thursday","Friday","Saturday"
JEND

11-70

BASIC09 Command Reference / 11

IN T Convert real number to whole number

Syntax: INT(value)

Function: Converts a real number to a whole number by trun-
cating any fractional part of the real number.
Parameters:

value Any negative or positive real number.

Examples:
PRINT INT(77.89)
PRINT INTCNUM)
PRINT INTC-8.12)

Sample Program:

The RND function produces real numbers. This procedure uses
INT to convert the real RND output to integer values.

PROCEDURE integer
ODIM T:INTEGER
OFOR T=1 TO 19
[JR=RND(5B)-25
OPRINT R,INTCR)
ONEXT T

OEND

11.71

BASICO09 Reference

KILL Remove a procedure from memory

Syntax: KILL procedure

Function: Unlinks (removes) an external procedure from the
BASICO09 procedure directory. If the procedure is not external,
but resides in BASIC09’s workspace, KILL has no effect.

Use KILL to remove auto-loaded (packed) procedures that are
called by RUN or CHAIN. You can also use KILL with auto-
loading procedures as a method to overlay programs within
BASICO09.

Warning: Be certain you do not KILL an active proce-
dure. Also be certain that when you use RUN and KILL
together, that both statements use the same string vari-
able that contains the name of the procedure to RUN

and KILL.
Parameters:
procedure The name of the external procedure you want
to KILL. Procedure can either be a name or a
variable containing the procedure name.
Examples:
PROCEDURENAMES$ = "AVERAGE"

RUN PROCEDURENAMES
KILL PROCEDURENAMES$

INPUT *“Which test do you want to run? “,TESTS
RUN TESTS$
KILL TESTS$

11-72

BASIC09 Command Reference | 11

Sample Program:

This procedure calls a procedure named Show to display ASCII
values on the screen. When it no longer needs the Show proce-
dure, it removes Show from memory using KILL.

PROCEDURE produce

ODIM T,U:INTEGER

ODIM NUM,NUM1 ,NUM2,TABLE ,PROCNAME: STRING
[IPROCNAME=SHOW

[JTABLE="123456789ABCDEF"

[JFOR T=8 TO 15

QOFOR U=1 TO 15

[ONUM1=MID$(TABLE,T,1)

[NUM2=MID$(TABLE,U,1)

ONUM=NUMI+NUM2 (+ parameter to pass to Show.
CORUN PROCNAMECNUM)

ONEXT U

ONEXT T

DOKILL "PROCNAME" (* remove Show from the workspace.
[JEND

PROCEDURE SHOW
[JPARAM NUM:STRING
OSHELL "DISPLAY "™+NUM
UEND

11-73

BASICO09 Refeérence

LAND Returns the logical AND of two numbers

Syntax: LAND(numl,num?2)

Function: Performs the logical AND function on a byte- or
integer-type value. The operation involves a bit-by-bit logical

AND of the two numbers you specify. For instance, if you
LAND 5 and 6, the logic is like this:

Decimal 5 = Binary 0101
Decimal 6 = Binary 0110

0101
AND 0110

= 0100 = 4 Decimal

Parameters:
numl A byte- or integer-type number.
num2 A byte- or integer-type number.
Examples:

PRINT LANDC11,12)
PRINT LANDC$20,$FF)

Sample Program:

The following procedure asks eight questions and uses the eight
bits of one byte (contained in the variable STORAGE) to indicate
either a “yes” or “no” answer. If the answer is “yes,” it sets a
corresponding bit to 1. If the answer is “no,” it sets a corre-
sponding bit to 0, using LAND. This procedure operates in con-
junction with the sample program for LXOR.

11-74

BASIC09 Command Reference / 11

PROCEDURE questions

[JDIM QUESTION:STRINGIGA); T:INTEGER: X,STORAGE:BYTE

[DIM ANSWER:STRING(1)

x=1

OFOR T=1 T0 8

[JREAD QUESTION

OPRINT QUESTION: ™ C(Y/N)? %

[GET #8,ANSKER

OPRINT

OIF ANSWER="y" OR ANSWER="Y" THEN

[ISTORAGE=LOR(STORAGE,X) (DR STORAGE if yes.

JELSE

[ISTORAGE=LAND(STORAGE ,LNOT(X)) (* LAND STORAGE with NOT value if no.
CENDIF

OX=X+2

ONEXT T

CRUN summary(STORAGE)

CEND

ODATA "Da you have more than one Color Computer”

[IDATA “Do you use your Coelor Computer for games"

LDATA "Da you use your Color Computer for word processing”
ODATA "Do you use your Color Computer for business applications"
[IDATA "Do you use your Celor Computer at home"

[IDATA Do you use your Color Computer at the office”

[IDATA "Da you use your Color Computer more than two hours a day"
[IDATA "Do you share your Color Computer with others"

11-75

BASICO09 Reference

LEFT Returns characters from the left portion
of a string

Syntax: LEFTS$(string,length)

Function: Returns the specified number of characters from the
specified string, beginning at the leftmost character. If length
is the same as or greater than the number of characters in
string, then LEFT$ returns all the characters in the string.

Parameters:
string A sequence of ASCII characters or a string
variable name. A
length The number of characters you want to access.
Examples:

PRINT LEFT$('"HOTDOG",3)

PRINT LEFTCA,6)

Sample Program:

The following procedure extracts the first name from a list of ten
names with the LEFT$ function.

PROCEDURE firstiname

OIDIM NAMES:STRING; FIRSTNAME:STRINGI183

[JPRINT "Here are the first names:"

OFOR T=1 TO 19

[IREAD NAMES

CPOINTER=SUBSTR(™ “,NAMES) (+ find space between first and lasi names
OFIRSTNAME=LEFT$(NAMES,POINTER-1) (+ extract first name.

CIPRINT FIRSTNAME (* print first name.

(NEXT T

CEND

(IDATA "Joe Blonski","Mike Marvel™,"Hal Skeemish","Fred Laungly"
CDATA "Jane Misiey","Wendy Paston","Martha Upshong","Jacqueline Rivers"
(DATA "Susy Reeimore","Wilson Creding"

11-76

BASIC09 Command Reference / 11

LEN Returns the length of a string

Syntax: LEN(string)

Function: Returns the number of characters in a string.
Counts blanks or spaces as characters.

Parameters:
string A literal string or a variable containing string
characters.
Examples:

PRINT LENC"ABCDEFGHIJKLM")
PRINT LENCNAMES$)
NAME$ = “JOE"

ADDRESS$ = "2244 LANCASTER"
TOTALLEN = LENCNAME$)+LENCADDRESSS$)

Sample Program:

The following procedure uses LEN to determine which name in a
list is longest.

PROCEDURE longname

ODIM NAMES,LNAME:STRING; LONGEST,LENGTH:INTEGER

ONAMES="" \LNAME="" \LENGTH=8 \LONGEST=0

OFOR T=1 T0 18

[READ NAMES

OLENGTH=LENCNAMES)

[IF LONGEST<LENGTH THEN

[ILONGEST=LENGTH

[LNAME=NAMES

CENDIF

ONEXT T

LPRINT “The longest name is "; LNAME; " with "; LONGEST; " characters.”
[IEND

[IDATA *Joe Blonski","Mike Marvel™,"Hal Skeemish","Fred Laungly"

CDATA "Jane Misty","Wendy Paston","Mariha Upshong","Jacqueline Rivers"
[CIDATA "Susy Reeimore","Wilson Creding"

11-77

BASIC09 Reference

LET Assigns a variable’s value

Syntax: [LET] variable = expression

Function: Assigns a value to a variable. BASIC09 does not
require the LET statement to assign values but does accept it

in order to be compatible with versions of BASIC that do
require it.
Parameters:
variable The variable to which you want to assign a
value.
expression Either a numeric or string constant or a
numeric or string expression.
Notes:
@ The result of the LET expression must be of the same type

as, or compatible with, the variable in which it is stored.

BASIC09’s assignment function accepts either = or := as
assignment operators. The := form helps to distinguish
assignment operations from comparisons (test for equality)
and is compatible with Pascal programming.

Use BASIC09’s assignment function to copy entire arrays or
complex data structures to another array or complex data
structure. The data structures do not need to be of the
same type or shape, but the size of the destination struc-
ture must be the same as or larger than the source struc-
ture. This means the assignment function can perform
unusual type conversions. For example, you can copy a
string variable of 80 characters into a one-dimensional
array of 80 bytes.

11-78

BASIC09 Command Reference / 11

Examples:
LET A = 5
LET A := B
ANSWER = A * B

LET NAME$:= "“JDE"

NAME $ = FIRSTNAMES$ + ' ™ + LASTNAMES$

Sample Program:

This procedure uses LET to assign a random value to the vari-
able R.

PROCEDURE getint
ODIM T:INTEGER
OFOR T=1 TO 10
OLET R=RND(58)-25
UPRINT R, INT(R)
ONEXT T

[JEND

11-79

BASICO09 Reference

LNOT Performs a logical NOT on a number

Syntax: LNOT(value)

Function: Performs the logical NOT function on an integer or
byte type number. The operation involves a bit-by-bit logical
complement operation of the number you specify. For instance,
if value is 188, the logic looks like this:

188 Decimal = 10111100 Binary

NOT 10111100
= 01000011

01000011 Binary = 67 Decimal

LNOT changes each bit in a binary number to its complemen-
tary binary value—all 1 values become 0 and all 0 values
become 1. LNOT returns an integer result; it is not a Boolean
operator.

Parameters:
value Any decimal or hexadecimal integer or byte
number. Precede hexadecimal numbers with $.
Examples:

PRINT LNOT(88)
A = LNOTC(B)

A = LNOT($44)

Sample Program:

This procedure uses one byte (contained in the variable STOR-
AGE) to indicate the results of eight questions. Each bit in the
byte indicates a Yes or No answer (Yes=1 and No=0). The com-
bination logic of LAND and LNOT masks the byte X so that it
affects only the appropriate bit of STORAGE to set it to O if the
answer is No. LOR sets the appropriate bit to 1 if the answer is
Yes. The procedure operates in conjunction with the LXOR sam-
ple program.

11-80

BASIC09 Command Reference / 11

PROCEDURE questions

[IDIM QUESTION:STRING{GB1: T:INTEGER; ¥,STORAGE:BYTE

[IDIM ANSWER:STRING(1)

%=1

OFOR T=1 TO 8

[IREAD QUESTION

OPRINT QUESTION; ™ {Y/N)? "

CJGET #8,ANSWER

[PRINT

CIF ANSWER="y" OR ANSWER="Y" THEN

[JSTORAGE=LOR(STORAGE ,X) (+ Answer is yes, set bit to 1.
[ELSE

(JSTORAGE=LAND(STORAGE ,LNOT{X)) (+ Answer is no, set bit to 6.
CIENDIF

[X=Xs2

ONEXT T

[IPRINT STORAGE

ORUN summary(5TORAGE)

[JEND

[DATA "Da you have more than one Color Computer®

[IDATA "Do you use your Color Computer for games”

CDATA "Do you use your Color Computer for word processing"
LIDATA "Do you use your Color Computer for business applicaiions”
CDATA "Do you use your Color Computer at home"

[IDATA "Do you use your Color Computer at the office"

CIDATA "Do you use your Color Computer more than two hours a day"
LIDATA "Do you share your Color Computer with others"

11-81

BASIC09 Reference

LOG Returns natural logarithm

Syntax: LOG(number)

Function: Computes the natural logarithm of a number that
is greater than zero. BASIC09 returns the logarithm as a real
type result.

Parameters:

number Any integer, byte, or real number.

Examples:
PRINT LOG(3.14159)
LOGVALUE = LOG(88/PI)

Sample Program:

This procedure calculates the natural log and the log to base 10
of the values 1-7.

PROCEDURE logs

ODIM NUM,T:INTEGER

OFOR T=1 TO 7

OPRINT "The LOG of "; T; "™ to the natural base =
. LOGCT)

OPRINT “The LOG of "; T; " io base 186 = ";
LOG18CT)

OPRINT

ONEXT T

JEND

11-82

BASIC09 Command Reference / 11

LOG].O Returns base 10 logarithm

Syntax: LOG10(number)

Function: Calculates the base 10 logarithm of a number.
BASICO9 returns the logarithm as a real number.

Parameters:

number Any byte, integer, or real value.

Examples:
PRINT LOG108($45)
PRINT LOG1ECA)
PRINT LOG18CA/12)

Sample Program:

This procedure calculates the natural log and the log to base 10
of the values 1-7.

PROCEDURE logs

ODIM NUM,T:INTEGER

OFOR T=1 TO 7

OPRINT "The LOG of "™; T; "™ to the natural base =
" LOGCT)

OPRINT "“The LOG of "; T: " to base 180 = "
LOG1OCT)

OPRINT

ONEXT T

OEND

11-83

BASICO09 Reference

LOOP/ENDLOOP

Establishes/Closes a loop

Syntax: LOOP
statement(s)
ENDLOOP

Function: Establishes a loop in which you can install EXITIF
tests at any location. The LOOP and ENDLOOP statements
define the body of the loop. EXITIF tests for a condition
which, if TRUE, causes alternate actions, the transfer of pro-
cedure execution to another routine, or both.

If you do not include an EXITIF statement, the loop cannot
terminate.

Parameters:
statement(s) One or more procedure lines to execute within
the loop.
Examples:
LOOP

COUNT = COUNT+1

EXITIF COUNT > 188 THEN
DONE = TRUE

ENDEXIT

PRINT COUNT

X=COUNT/2

ENDLOOP

INPUT X,Y

LOOP

PRINT

EXITIF X<@8 THEN

PRINT "X became 8 first™
END

ENDEXIT

X = X-1

EXITIF Y=8 THEN

PRINT "Y became @ first"

11-84

BASIC09 Command Reference / 11

END
ENDEXIT
Y=Y-1
ENDLOOP

Sample Program:

This procedure simulates a gambling machine that awards cash
returns depending on a random selection of kinds of fruits. You
begin with a stake of $25 and win or lose according to random
selections of the procedure.

The program uses LOOP/ENDLOOP to keep operating until you
run out of cash.

PROCEDURE bandit

ODIM FRUITY,FRUIT2,FRUIT3,STAKE: INTEGER;
FRUITC1@8):STRINGIG]

OSTAKE=25

OPRINT N PRINT "You have $"; STAKE:; " to play
with."

OFOR T=1 TO 10

OREAD FRUITCT)

UNEXT T

gLooe

OFRUIT1=RND(9)+1 \FRUIT2=RND(8)+1 \FRUIT3=RND(29)+1
OPRINT FRUITCFRUIT1); ™ "™; FRUITC(FRUIT2); ™ ",
FRUITCFRUIT3)

OIF FRUITCFRUIT1I=FRUITC(FRUIT2) AND FRUITC(FRUIT1)=
FRUITCFRUIT3) THEN

OSTAKE=STAKE+18

JELSE

OIF FRUITCFRUIT1)=FRUIT(FRUIT2) OR FRUIT(FRUIT2)=
FRUITCFRUIT3) THEN

OSTAKE=STAKE+2

JELSE

OIF FRUITCFRUIT1)=FRUITCFRUIT3) THEN
OSTAKE=STAKE+1

OELSE STAKE=STAKE-1

OENDIF

OENDIF

OENDIF

OEXITIF STAKE<1 THEN

OPRINT

OPRINT "You’re Busted...Better go home.™

11-85

BASICO09 Reference

PROCEDURE questions
ODIM QUESTION:STRINGIGOI; T:INTEGER;

X,STORAGE:BYTE

ODIM ANSWER:STRINGIL1]

OX=1

OFOR T=1 TO 8
OREAD QUESTION
OPRINT QUESTION;
OGET #8,ANSWER
OPRINT

CY/NY? "y

OIF ANSWER="y" OR ANSKWER="Y" THEN

OSTORAGE=LORCSTORAGE, XD

OELSE

OSTORAGE=LANDCSTORAGE ,LNOTCX))

OENDIF

OX=X=2

ONEXT T

OPRINT STORAGE

ORUN summary(STORAGE)

OEND

[DATA "Do you have more than

CDATA "Do you use
[DATA "Do you use
processing"

[DATA "Do you use
applications”
[DATA "Do you use
[DATA "Do you use
office"

ODATA "Do you use
two hours a day"

your
your

your

your
your

your

Color Computer
Color Computer

Color Computer

Color Computer
Color Computer

Color Computer

one Color Computer

for games"

for word
for business

at home"
at the

more than

ODATA "Do you share your Color Computer with

others"

11-86

BASIC09 Command Reference / 11

LXOR Returns logical XOR of two numbers

Syntax: LXOR(valuel,value2

Function: Performs the logical XOR function on two-byte, or
integer-type, values. For instance, if you LXOR the numbers 5
and 6 the logic is like this:

Decimal 5 = Binary 0101
Decimal 6 = Binary 0110

0101
LXOR 0110

= 0011 = 3 Decimal

If one bit or the other bit in the evaluation is 1, but not both,
LXOR returns a result of 1. Otherwise, LXOR returns a
result of 0.

Parameters:
valuel A byte or integer number.
value2 A byte or integer number.
Examples:

PRINT LXORC11,12)
PRINT LXORC$20,$FF)

Sample Program:

The following program summarizes the results of the sample
program for LOR. The LOR program stored the answers to eight
questions in a single byte. This procedure reads the byte and
displays appropriate comments. LXOR checks to see if two of the
answers are “yes” or “no.”

11-87

BASICO09 Reference

OENDEXIT

OPRINT "“Your stake is now $'; STAKE; "."

OPRINT

OPRINT

OINPUT "Press ENTER to pull again...",Z$
JENDLOOP

OEND

ODATA "DRANGE"™,"APPLE',"CHERRY™,"LEMON","BANANA"
ODATA “PEAR®"™,“PLUM","PEACH","GRAPE","™APRICOT"

11-88

BASIC09 Command Reference / 11

LOR Returns logical OR of two numbers

Syntax: LOR(valuel,value2)

Function: Performs the logical OR function on a byte- or
integer-type value. The operation involves a bit-by-bit logical
OR operation on two values. For instance, if you LOR the
numbers 5 and 6, the logic is like this:

Decimal 5 = Binary 0101
Decimal 6 = Binary 0110

0101
OR 0110

= 0111 = 7 Decimal

If one bit or the other bit is 1, LOR returns a result of 1.
Otherwise, LOR returns a result of 0.

Parameters:
valuel A byte or integer number.
value2 A byte or integer number.
Examples:

PRINT LORC11,12)
PRINT LOR($20,$FF)

Sample Program:

This procedure stores the answers to eight “yes” or “no” ques-
tions in one byte, named STORAGE. If you answer “yes” to a
prompt, the procedure sets a corresponding bit to 1. If you
answer “no” to a prompt, the procedure sets a corresponding bit
to 0. The procedure uses LOR to set bits to 1 by masking all bits
except the one it needs to set. The procedure operates in con-
Jjunction with the LXOR sample program.

11-89

BASIC09 Reference

PROCEDURE summary

ODIM T:INTEGER; A,B,X,TEST,TEST2:BYTE; SUMMARY:
STRINGLSA]

(PARAM STDRAGE:BYTE

[0A=0 \B=0

OPRINT N PRINT

OPRINT "The following is a summary of the
questionnaire answers:"

OPRINT

OPRINT "The surveyee: "

OX=1

OFOR T=1 TO 8

OTEST=LAND(STORAGE, X)

OREAD SUMMARY

OIF TEST>@ THEN

OPRINT TABC18)>; SUMMARY

OENDIF

OX=X*2

ONEXT T

OIF LANDC(STORAGE,128)>8 THEN

OAa=1

OENDIF

0JIF LAND(CSTODRAGE,54)>8 THEN

B=1

JENDIF

OTEST2=LX0ORCA,B)

OIF TEST2=1 THEN

OPRINT "“This computer owner either uses the
computer®

OPRINT "more than two hours & day or shares it
with others.™

OPRINT “This is a heavy use situation.™
OENDIF

OTEST2=LANDCA,B)

OIF TEST2=1 THEN

OPRINT "This compuier user uses the computer more
than two"

OPRINT “hours per day and shares it with others.
This is a"

OPRINT "“super heavy use situation."

OENDIF

OEND

ODATA "Use=z more than one computer™

ODATA "Plays games"

11-90

BASIC09 Command Reference | 11

[IDATA
UDATA
[DATA
ODATA
UDATA
dayll

[IDATA

"Uses the computer for word processing"
"Uses the computer for business"

"“Keeps a Color Computer at home"

"Keeps a Color Computer at the office"
"Uses the computer more than two hours a

"Shares the computer with others"

11-91

BASICO09 Reference

MID$ Returns characters from within a string

Syntax: MID$(string,begin,length)

Function: Returns a substring length characters long, begin-
ning at begin. Use MID$ to “take apart” a string consisting
of a number of elements.

Parameters:
string A sequence of string type characters or a
string type variable.
begin The position (an integer value) in string of the
first character to retrieve.
length The number of characters you want to retrieve.
Examples:
NAMES$ = *JONES, JOHN M.*"

LASTNAMES = MID$(NAMES$,8,6)
FIRSTNAMES = MIDSCNAMES$,1,5)
INITIALS = MID$(NAMES$,15,2)

Sample Program:

This procedure reverses a word or phrase you type. MID$ reads
each character in your phrase from the end to the beginning.

PROCEDURE reverse

ODIM PHRASE:STRING; T,BEGIN:INTEGER
OPRINT "Type a word or phrase you want fo
reverse:';

OPRINT

OINPUT PHRASE

OBEGIN=LENCPHRASE)

OPRINT "This is how your phrase looks backwards:"
OFOR T=BEGIN TO 1 STEP -1

OPRINT MID$C(PHRASE,T,1);

ONEXT T

OPRINT

JEND

11-92

BASIC09 Command Reference / 11

MOD Returns modulus of a division

Syntax: MOD(numberl,number2)

Function: Returns the modulus (remainder) of a division.
MOD divides numberl by number2 and calculates the remain-
der. You can use MOD to put a limit on a numeric variable.
For instance, regardless of the value of X, MOD(X,3) produces
numbers only in the range 0 through 2. MOD(X,5) produces
numbers only in the range of 0 through 4.

You can use MOD to cause repeating sequences. For instance,
in a loop, MOD(X,3) produces a repeating sequence of 0, 1, 2,
where X increases by 1 in each step of the loop.

Parameters:
numberl A Dbyte, integer or real number dividend.
number2 A byte, integer or real number divisor.
Examples:

PRINT MOD(99,5)

11-93

BASICO09 Reference

Sample Program:

This procedure uses MOD to execute repeatedly routines that
display asterisks on the screen. There are eight subroutines that
the MOD function selects over and over through 100 passes.

PROCEDURE stardown

ODIM T:INTEGER

OSHELL "TMODE -PAUSE"™

OFOR T=1 TO 1040

OON MODCT,8>+1 GDSUB 108,20,30,40,50,60,70,80
ONEXT T

OSHELL "“TMODE PAUSE"™

JEND

100PRINT USING "s1@""™,"*" \ RETURN
200PRINT USING ™"S1@”","+x" \ RETURN
3@0PRINT USING "S1@~", M«x%x" \ RETURN
490PRINT USING "S1@"*,"*xx+" \ RETURN
5@0PRINT USING "S1g~","**xx%+" \ RETURN
G6O0PRINT USING "S1@~","*xx+" \ RETURN
7080PRINT USING *"S1@"","xx+" \ RETURN
8POPRINT USING "s187~","#+'" \ RETURN
JEND

11-94

BASIC09 Command Reference | 11

NE XT Causes repetition in a FOR loop

Syntax: FOR variable = init val TO end val [STEP
value]
[procedure statements]
NEXT variable

Function: NEXT forms the bottom end of a FOR/NEXT loop.
Any program statements between FOR and NEXT are exe-
cuted once for each repetition of the loop, from the initial
value to end value.

Parameters:
variable
init val
end val
value

procedure
Sstatements

Any legal numeric variable name.
Any numeric constant or variable.
Any numeric constant or variable.
Any numeric constant or variable.

Procedure lines you want to execute within
the loop.

For more information, see FOR/NEXT/STEP.

11-95

BASIC09 Reference

NOT Returns the complement of a value

Syntax: NOT(value)

Function: Returns the logical complement of a Boolean value
or expression.

Parameters:
value A Boolean value (True or False), or an expres-
sion resulting in a Boolean value.
Examples:

DIM TEST:BOOLEAN
WHILE NOTC(TEST) DO
A=A+1

TEST=A=B

ENDWHILE

Sample Program:

This procedure redirects the current directory listing to a file
named Dirfile. It then opens Dirfile and reads the contents, dis-
playing each line on the screen. It uses NOT in a WHILE/END-
WHILE loop to make sure that the end of the file has not been
reached before trying to read another entry.

PROCEDURE readfile

ODIM A:STRINGI[8E]

ODIM PATH:BYTE

OSHELL "DIR > dirfile"
OOPEN #PATH,"dirfile":READ
OWHILE NOT EOF(#PATH)Y DO
[IREAD #PATH,A

OPRINT A

OENDWHILE

JCLOSE #PATH

OEND

11-96

BASIC09 Command Reference / 11

ON ERROR/GOTO

Establishes an error trap

Syntax: ON ERROR [GOTO linenuml]

Function: Sets an error trap that transfers control to the spec-
ified line number in a procedure. This lets your program
recover from an error and continue execution. To use these
commands, your program must have at least one numbered
line-—the line to branch to in the event of an error.

Parameters:
linenum The line to which you want BASIC09 to
branch should an error occur.
Notes:

¢ ON ERROR GOTO is effective only with non-fatal, run-
time errors. If such an error occurs without a preceding ON
ERROR GOTO statement, BASIC09 enters the DEBUG
mode. You must specify ON ERROR GOTO before an error
occurs.

® You turn on error trapping by specifying ON ERROR
GOTO linenum. You turn off error trapping by specifying
ON ERROR without a line number.

® Use ON ERROR GOTO with the ERR function (that
returns the code of the last error) to specify a particular
action for a particular error. You can also use ERROR to

simulate an error to test error trapping. For more informa-
tion on this, see ERROR.

11-97

BASICO09 Reference

Examples:

DIM FILENAME:STRING

ODIM PATH:INTEGER

1B80INPUT "Name of file to create? ",FILENAME
OON ERROR GOTOD 1290

[OCREATE #PATH,FILENAME:UPDATE

JEND

18080PRINT "That file already exisis...please
choose anotiher name..."

geoTo 18

JEND

Sample Program:

If you created a directory file with the GET sample program,
you can use this procedure to delete files from the original direc-
tory using key characters. For instance, you might type XX as
key characters. This means that any filename containing the
character group XX is deleted. You can select any key characters
you wish, but be sure they apply only to files you want to
delete.

If you want to delete all the files in the directory, type an aster-
isk (*) when asked for key characters.

This procedure uses ON ERROR to let the procedure continue,
even if a directory entry cannot be deleted—if an entry is a sub-
directory. Without the ON ERROR function, the procedure
would produce an error and cease execution when it tried to
delete a subdirectory.

PROCEDURE purge

OREM Use caution with this procedure
OREM Be sure to specify key characters
OREM that exist only in the files you
OREM want to delete!

ODIM PATH:INTEGER

ODIM NAMEC1868):STRING

ODIM WILDCARD:STRING

UX=0

(JOPEN #PATH,"dirfile":READ
OWHILE NOTCEOFC#PATH)) DO
OX=X+1

OREAD #PATH,NAMECX)

11-98

BASIC09 Command Reference / 11

OENDWHILE

OFGR T=1 TO X

OPRINT NAMECT),

ONEXT T

OINPUT *Wildcard Characters...",WILDCARD

OFOR T=1 TO X

0JON ERROR GOTO 120

OIF SUBSTRCWILDCARD,NAMECT))>@ OR WILDCARD='"#"
THEN

OPRINT "DELETING '"; NAMECTY; ™ "
ODELETE NAMECT)

OENDIF

180ONEXT T

OEND

1800PRINT "+[«O+«JERROR,O"™; NAMEC(T); “Ocannot be
deleted...continuing."

gcoTo 10

JEND

11-99

BASICO09 Reference

ON/ GOSUB Jumps to subroutine on a

specified condition

Syntax: ON pos GOSUB linenum [,linenum,...]

Function: Transfers procedure control to the line number
located at position pos in the list of line numbers immediately
following the GOSUB command. For example, if pos equals 1,
BASIC09 branches to the first line number it encounters in
the list. If pos equals 2, BASIC09 branches to the second line
number it encounters in the list. If pos is greater than the
number of items in the list, execution continues with the next
command line. To use ON/GOSUB you must have numbered
lines to match the line numbers in your list. End the routines
accessed by ON/GOSUB with a RETURN statement.

Parameters:
pos An integer value pointing to a line number in
a list of line numbers.
linenum Any numbered line in the procedure.
Examples:

PRINT "You can now: (1) End the preogram (2) Print
the results"

PRINT ™ (3) Try again (4) Start
a new program"
INPUT "Type the letter of your choice: " ,CHOICE

ON CHOICE GOSUB 1860, 280, 380, 4060

11-100

BASIC09 Command Reference / 11

Sample Program:

This procedure uses MOD to execute repeatedly a sequence of
GOSUB commands. A loop of index of 80 causes execution to
jump to each line number in the list 10 times.

PROCEDURE repeat

OSHELL "TMODE -PAUSE™

ODIM T:INTEGER

OFOR T=1 TO 88

0JON MOD(T,8>+1 GOSUB 10,20,30,40,50,608,70,80
ONEXT T

OSHELL "TMODE PAUSE"

JEND

100PRINT USING "S1@~","+" \ RETURN
200PRINT USING "sS18~"™,"x+" \ RETURN
3B0PRINT USING "S1@”',"*#+" \ RETURN
400PRINT USING "S18"'","#*xx'" \ RETURN
SBOPRINT USING "S187" “sxx%xx" \ RETURN
GOOPRINT USING "S19"" "sxxx" \ RETURN
7BOPRINT USING "S1@2" “xxx" \ RETURN
8@OPRINT USING "S1@7" , "««" \ RETURN
JEND

11-101

BASIC09 Reference

ON/ GOTO Jump to line number on a

specified condition

Syntax: ON pos GOTO linenum [,linenum,...]

Function: Transfers procedure control to the line number
located at position pos in the list of line numbers immediately
following the GOTO command. For example, if pos equals 1,
BASICO09 branches to the first line number it encounters in
the list. If pos equals 2, BASIC09 branches to the second line
number it encounters in the list. If pos is greater than the
number of items in the list, execution continues with the next
command line. To use ON/GOTO you must have numbered
lines to match the line numbers in the list.

Parameters:
pos An integer value in a range from 1 to the
number of items in the list following GOTO.
linenum Any numbered line in the procedure.
Examples:

PRINT "You can now: (1) End the program (2) Print
the results"

PRINT *) (3) Try again (4) Siart
a new program"
INPUT "Type the letier of your choice: ",choice

ON CHOICE GOTO 106, 206, 3060, 400

Sample Program:

This procedure converts decimal numbers to binary. It uses ON
GOTO to execute the operation you select from a menu: Convert
a number, display the result of all conversions, or end the
program.

PROCEDURE bicalc

ODIMONUMBER ,NUM, X ,STORAGE : INTEGER;BI : STRING;
JARRAY(50,2):STRING

OCOUNT=8

11-102

BASIC09 Command Reference / 11

180BI="" \NUMBER=0 \NUM=8 \X=8 \STORAGE=0
OINPUT "Number to convert to binary " ,NUMBER
OIF NUMBER=0 THEN END

OENDIF

ONUM=L0OG18(NUMBER)/ .3

ONUM=2~NUM \STORAGE=NUMBER

OREPEAT

OX=NUMBER/NUM

OIF X>@ THEN BI=BI+'{™
ONUMBER=MODCNUMBER ,NUM)

OELSE BI=BI+"g"

OENDIF

ONUM=NUM/2

OUNTIL NUM<=1

OIF NUMBER>®# THEN

OBI=BI+"1"

OELSE"”BI=BI+"g"

OENDIF

OPRINT STORAGE; " = '"; BI: "™ in binary."
OPRINT

OCOUNT=COUNT+1

OARRAY(COUNT,1)=STR$(STORAGE)
OARRAYCCOUNT,2)=BI

120PRINT "Do you want to: (1) Convert another
number "

OPRINT "D <2y Display ail calculations
thus far."

OPRINT "O0ODOOOOOCOOOOC3) End the program.™

UINPUT "Enter 1, 2, or 3...",choice
OON choice GOTO 18,208,308

JEND

200FOR T=1 TO COUNT

OPRINT ARRAYCT,1); ' = ": ARRAY(T,2)
ONEXT T

OGoTo 12

360PRINT N PRINT ™ Program Terminated"
JEND

11-103

BASICO09 Reference

OPEN Opens a path to a device

Syntax: OPEN #path,“pathlist’ [access mode][+ access
model[+...]

Function: Opens an input/output path to a disk file or to a
device. When you open a file, you can select one or more of the
following access modes:

Mode

Function

READ

WRITE
UPDATE
EXEC

DIR

Parameters:

path
pathlist

access mode

Lets you read (receive) data from a file or
device but does not allow you to write (send)
data.

Lets you write data to a file or device but does
not allow you to read data.

Lets you both read from and write to a file or
device.

Specifies that the file you want to access is in
the current execution directory.

Specifies that the file you want to access is a
directory-type file.

The variable in which BASIC09 stores the
number of the newly opened path.

The route to the file or device to be opened,
including the filename if approepriate.

The type of access the system is to allow for
the file or device. Use a plus symbol to specify
more than one type of access.

11-104

BASIC09 Command Reference / 11

Notes:
@ The access mode deﬁnes the direction of I/O transfers.

® Because 0S-9 files are byte-addressed and are unformat-
ted, you can set up the filing system you want for a partic-
ular application. Your system can read the data contained
in a file as single bytes or in groups of any size you want.

@ You can expand a file using PRINT, WRITE, or PUT state-
ments to write beyond the current end-of-file.

Examples:
OPEN #TRANS,"transportation'":UPDATE
OPEN #SP0OOL,"/userd4/report™:URITE
OPEN #0UTPATH,name$:UPDATE+EXEC

Sample Program:

This procedure opens a path to both the SYS directory on Drive
/DO and the error message file.

PROCEDURE readerr

ODIM A:STRINGIL881]

ODIM PATH:BYTE

JOPEN #PATH,*"/DB/SYS/ERRMSG":READ
OWHILE EOFC(#PATH)<>TRUE DO

OREAD #PATH,A

OPRINT A

OENDWHILE

CLOSE #PATH

JEND

11-105

BASICO09 Reference

OR Performs a Boolean OR operation

Syntax: operandl OR operand2

Function: Performs an OR operation on two or more values,
returning a Boolean value of either TRUE or FALSE.

Parameters:
operandl Either numeric or string values.
operand2

Examples:
PRINT A>3 0OR B»>»3

PRINT A$="YES'" or B$="YES"

11-106

BASIC09 Command Reference / 11

Sample Program:

This procedure asks you to type a word or phrase, then converts
all lowercase characters to uppercase. It uses OR to test for a
character in your word or phrase that is outside of the ASCII
values for lowercase letters. If it is, the character does not need
converting.

PROCEDURE uppercase

ODIM PHRASE,NEWSTRING:STRING[881; CHARACTER:
STRINGI11; T,X:INTEGER
ONEWSTRING="""" \PHRASE=""
OPRINT "Type a phrase in lowercase and I will make
it uppercase.*

OINPUT PHRASE

OFOR T=1 TO LENCPHRASE)
OCHARACTER=MID$(PHRASE,T,1)
[0X=ASCCCHARACTER)

OIF X<97 OR X>122 THEN
ONEWSTRING=NEWSTRING+CHARACTER
OELSE

OX=%x-32
ONEWSTRING=NEWSTRING+CHRS$(X)
JENDIF

ONEXT T

OPHRASE=NEWSTRING
ONEWSTRING=""

OPRINT PHRASE

OEND

11-107

BASICO09 Reference

PARAM Establishes variables to receive from
another procedure

Syntax: PARAM variablel,...1:typell; variablell,...l[: typel
[...]

Function: Defines the parameters that a called procedure
expects to receive from the procedure that calls it. When
using PARAM, be sure that the total size of each parameter
in the calling procedure’s RUN statement is the same as the
defined size in the called procedure’s PARAM statement.

Parameters:
variable A simple variable, an array structure, or a
complex data structure.
type Byte, Integer, Real, Boolean, String, or user
defined.
Notes:

@ BASICO09 checks the size of each parameter to prevent acci-
dental access to storage other than that assigned to the
parameter. However, BASIC09 does not check that parame-
ters are of the proper type. In most cases you must be sure
that types evaluated in RUN statements match the types
defined in the PARAM statements.

However, because BASIC09 does not perform type checking,
it is possible to perform useful but normally illegal type
conversions of identically-sized data structures. For example,
you could pass a string of 80 characters to a procedure
expecting a byte array of 80 elements. Each character in
the string is assigned a corresponding position in the
array.

® You declare simple arrays by using the variable name,
without a subscript, in a PARAM statement.

11-108

BASIC09 Command Reference / 11

® You can declare several variables of the same type by sepa-
rating them with commas. To separate variables of differ-
ent types, follow each type group with a colon, the type
name, and then a semicolon.

® If you do not include a maximum length for a string vari-
able enclosed in brackets following the type, like this:

DIM name:stringl25]

BASIC09 uses a default length of 32 characters for strings.
You can declare shorter or longer lengths, to the capacity of
BASIC09’s memory.

@ Arrays can have one, two, or three dimensions. The
PARAM format for dimensioned arrays is the same as for
simple variables except you must follow each array name
with a subscript, enclosed in parentheses, to indicate its
size. The maximum array size is 32767.

Arrays can be either of the standard BASIC09 type, or of a
user-defined type. To create your own data types for simple
variables, arrays, and complex data structures, see TYPE.

Examples:
PARAM NUMBER: INTEGER

PARAM NAME:STRING[251;ADDRESS:STRINGI3081;ZIP:
INTEGER

PARAM NO1,N0O2,NO3:REAL;NO4,NO5,NO06: INTEGER;NO7:
BYTE

Sample Program:

The first procedure asks you to enter a decimal number. Then, it
asks you to choose whether you want to convert the number to
binary or hexadecimal. Depending on your choice, the procedure
calls (using RUN) either a procedure named Binary or a proce-
dure named Hex. It passes the number you typed to the appro-
priate procedure for conversion.

11-109

BASICO09 Reference

PROCEDURE convert

ODIM NUMBER,CHOICE:INTEGER

OPRINT USING "sS88"'"; "Hexadecimal - Binary
Conversion Program"

OPRINT

180INPUT "Number to convert...",NUMBER

OIF NUMBER=2 THEN

JEND

OENDIF

UINPUT "Choose: (1) Binary or (2) Hex...",CHOICE

[JON CHDICE GOTO 20,30
200RUN BINARY(NUMBER)
gcoTo 19

380RUN HEX(NUMBER)
gcoTo 1@

LUEND

PROCEDURE binary

ODIM NUM,X,STORAGE:INTEGER; BI:STRING;
ARRAY(58,2):STRING

UPARAM NUMBER:INTEGER
OCOUNT=8

OBI="1" \NUM=@ \X=0 \STORAGE=0
ONUM=L0OG1B8(NUMBER)/ .3
ONUM=2"NUM \STORAGE=NUMBER
OREPEAT

OX=NUMBER/NUM

OIF X>@ THEN

OBI=BI+"1™
ONUMBER=MODCNUMBER , NUM)

COELSE

OBI=BI+"0"

DENDIF

ONUM=NUM/2

OUNTIL NUM<=1

OIF NUMBER>Z THEN

OBI=BI+"™1"

OELSE

UBI=BI+"g"

OENDIF

OPRINT STORAGE; ™ = "™; BI; " in binary."
OPRINT

UEND

11-110

BASIC09 Command Reference | 11

PROCEDURE hex

ODIM NUM,X,STORAGE: INTEGER; TABLE,HX:STRING;
ARRAY(58,2):STRING

OPARAM NUMBER:INTEGER
OTABLE="123456789ABCDEF"
OHX="" \NUM=8 \X=0 \STORAGE=0
ONUM=L0OG18C(NUMBER) /1.2
ONUM=16"NUM \STORAGE=NUMBER
OREPEAT

OX=NUMBER/NUM

JIF X>8 THEN
OHX=HX+MID$(TABLE,X,1)
ONUMBER=MOD(NUMBER ,NUM)

JELSE HX=HX+"g" :
CENDIF

ONUM=NUM/16

OUNTIL NUM<=1

OIF NUMBER>2 THEN
OHX=HX+MID$(TABLE,NUMBER,1)
OELSE

OHX=HX+"g"

OENDIF

OPRINT STORAGE; " = ": HX; " in hexadecimal."
OPRINT

JEND

11-111

BASICO09 Reference

| ¥ AUSE Suspends execution and enters Debug

Syntax: PAUSE text

Function: Suspends the execution of a procedure and causes
BASIC09 to enter the DEBUG mode. If you include text with
the PAUSE command, it is displayed on the screen.

Place PAUSE statements in a program temporarily to observe
the way in which the procedure operates and to track down
programming errors. When the procedure is operating cor-
rectly, remove the PAUSE statement.

After using DEBUG, you can continue execution of the paused
procedure with the CONT command.

Parameters:
text A message you want PAUSE to display on the
screen when BASIC09 executes the statement.
Examples:
PAUSE

PAUSE The array is now full.

11-112

BASIC09 Command Reference / 11

P EEK Returns the value in a memory location

Syntax: PEEK(mem)

Function: Returns the value of a memory byte as a decimal
integer. The value returned is in the range 0 to 255. PEEK is
the complement of the POKE statement.

See also ADDR.

Parameters:
mem An integer value representing the location of
the memory byte you want to examine. The
memory byte is relative to the current pro-
cess’s address space.
Examples:

PRINT PEEK(15258)
MEMVAL = PEEK(4458)

11-113

BASICO09 Reference

Sample Program:

This procedure asks you to type a phrase in uppercase charac-
ters. It then uses ADDR to locate the area in memory where
BASICO09 stores the phrase. Next, it reads each character from
memory with PEEK, converts it to lowercase if necessary, and
pokes the new value back into the same location. When the pro-
cedure displays the contents of the phrase, it is all lowercase.

PROCEDURE lowercase

ODIM LOC,T:INTEGER; PHRASE:STRINGI881]
OPRINT "Type a phrase in UPPERCASE and 1’11 make
it lowercase."

OINPUT PHRASE

JLOC=ADDR(PHRASE)

OFOR T=LOC TO LOC+LENCPHRASE)
OX=PEEKCT)

OIF X>32 AND X<9t THEN

OX=X+32

OPOKE T,X

OENDIF

ONEXT T

OPRINT PHRASE

OEND

11-114

BASIC09 Command Reference [11

PI Returns the value of pi

Syntax: PI

Function: Returns the constant value 3.14159265.
Parameters: None

Examples:

PRINT "The area of a circle with a radius of 6
inches is ";Pl+*6"2

Sample Program:

This procedure uses the formula (PI+2)/15 as a basis for calcu-
lating a screen position. Taking the sine of the formula, it prints
a sine wave of asterisks down the screen.

PROCEDURE picalc

ODIM FORMULA,CALCULATE,PDSITION:REAL
OSHELL "“DISPLAY ac"
OFORMULA=CPI+2)/15
OCALCULATE=FORMULA

OSHELL "“TMODE -PAUSE"™

OFOR T=8 TO 100
OCALCULATE=CALCULATE+FORMULA
OPOSITION=INTC(SINCCALCULATE)*18+16)
OPRINT TABC(POSITION); "«

ONEXT T

OSHELL "“TMODE PAUSE"™

JEND

11-115

BASICO09 Reference

POKE Stores a value in a memory location

Syntax: POKE mem,value

Function: Stores a value at the specified memory address, rel-
ative to the current process’s address space. Mem is an abso-
lute address at which BASIC09 stores a byte type value.
POKE is the complement of the PEEK statement.

You should use care when using POKE. Because it changes
the value in memory, a POKE to the wrong portion of memory
could cause 0S-9, BASIC09, or your procedures to malfunction
until you reboot the system.

See also ADDR.

Parameters:
mem An integer value representing the location of
the memory byte you want to change.
value The value to store in the specified memory
location.
Examples:

POKE 15258,13

11-116

BASIC09 Command Reference / 11

Sample Program:

This procedure asks you to type a phrase in uppercase charac-
ters. It then uses ADDR to locate the area in memory where
BASICO09 stores the phrase. Next, it reads each character from
memory, converts it to lowercase if necessary, and uses POKE to
store the new value back in the same location. When the proce-
dure next displays the contents of the phrase, it is all lowercase.

PROCEDURE lowercase

ODIM LOC,T:INTEGER; PHRASE:STRINGI8E]
OPRINT "Type a phrase in UPPERCASE and I‘ll make
it lowercase."

OINPUT PHRASE

O.0C=ADDRCPHRASE)D

OFOR T=LOC TO LOC+LENCPHRASE)
OX=PEEKCT)

OIF X>32 AND X<91 THEN

Ox=X+32

OPOKE T,X

UENDIF

ONEXT T

UPRINT PHRASE

OEND

11-117

BASIC09 Reference

P OS Returns cursor’s column position

Syntax: POS

Function: Returns the current column position of the cursor.
Parameters: None

Examples:
PRINT POS

Sample Program:

This procedure is a simple typing program that uses POS to
make sure that words are not split when you type to the end of
the screen. After you type 25 characters on a line, the procedure
breaks the line at the next space character.

PROCEDURE wordwrap

ODIM CHARACTER:STRINGI[11]

OPRINT USING "s32~'":; "Word Wrap Program"
OPRINT USING 'S32”"; "Press [CTRLIIC] to Exit™
OPRINT

OSHELL *TMODE -ECHO™

OWHILE CHARACTER<>" * D0

OGET #1,CHARACTER

OPRINT CHARACTER;

OIF P0OS>25 AND CHARACTER=" " THEN

OPRINT CHR$(13)

OENDIF

OENDWHILE

(OSHELL *"TMODE ECHO™

JEND

11-118

BASIC09 Command Reference | 11

PRINT Displays text

Syntax: PRINT [#path] [TAB(pos);] datal;data...]

Function: Prints numeric or string data on the video display
unless another path is specified.

Parameters:

path

pos

data

Notes:

The number corresponding to an opened device
or file. If you do not specify path, the default
is #1, the video screen (standard output
device). To print to another device or file, first
OPEN a path to that file or device (see
OPEN).

A column number that tells TAB where to
begin printing. Specify any number from 0 to
the width of your video display.

Any numeric or string constant or variable.
Enclose string constants within quotation
marks. All data items must be separated by a
semicolon or comma.

@ If you specify more than one data item in the statement,
separate them with commas or semicolons.

e If you use commas, PRINT automatically advances to the
next tab zone before printing the next item. In BASICO09,
tab zones are 16 characters apart.

e If you use semicolons or spaces to separate data items,
BASICO09 prints the items without any spaces between
them. BASIC09 begins the next print item immediately fol-
lowing the end of the last print item.

@ If you end a print item without any trailing punctuation,
PRINT begins printing at the beginning of the next line.

11-119

BASIC09 Reference

@ If the data being printed is longer than the display screen
width, PRINT moves to the next line and continues print-
ing the data.

© TAB causes BASICO09 to begin displaying the specified data
at the column position specified by TAB. If the output line
is already past the specified TAB position, PRINT ignores
TAB.

® You can concatenate items for printing using the plus (+)
symbol, for example: print "hello "+name$+" *
+lastname$.

@ PRINT displays REAL numbers with nine or fewer digits
in regular format. It displays REAL numbers with more
than nine digits in exponential format. For example,
1073741824 is displayed as 1.67374182E+09.

® You must enclose string constants within quotation marks.

Examples:
PRINT A$
PRINT "Menu Items"
PRINT COUNT
PRINT VALUE,TEMP+(n/2.5),L0CATIONS
PRINT #PRINTER_PATH,"The resuli is ";NUMBER
PRINT #0BUTPATH FMT$,COUNT,VALUE
PRINT "what is"+NAMES$+"’s age? '";
PRINT "INDEX: '";I;TAB(25);"VALUE: *";VALUE

11-120

BASIC09 Command Reference / 11

Sample Program:

This procedure asks you to type a word or phrase, then displays
it backwards by reading each character from end to beginning
and using PRINT to display it on the screen.

PROCEDURE reverse

ODIM PHRASE,TITLE:STRING; T,BEGIN:INTEGER

ODIM INSTRUCTIONS:STRINGIL431

OTITLE="Word Reversing Program")
OINSTRUCTIONS="Type a word or phrase you want to
reverse: "

OPRINT TITLE

OPRINT ™ "

OWHILE PHRASE<>"'" DO

OPRINT

OPRINT INSTRUCTIONS

OINPUT PHRASE

OBEGIN=LEN(PHRASE)

OPRINT "This is how your phrase looks backwards:"
[OFOR T=BEGIN TO 1 STEP -1

OPRINT MID$(PHRASE,T,1);

ONEXT T

OPRINT

OENDWHILE

JEND

11-121

BASICO09 Reference

PRINT USING Displays formatted text

Syntax: PRINT [#path] USING [format,] datal;data...]

Function: Prints data using a format you specify. This state-
ment is especially useful for printing report headings,
accounting reports, checks, or any document requiring a spe-
cific format. USING is actually an extension of the PRINT
statement; therefore, the same rules that apply to the PRINT
statement also apply to the PRINT USING statement (see

PRINT).

Parameters:

path

format

data

Notes:

The number corresponding to an opened device
or file. If you do not specify path, the default
is #1, the video screen (standard output
device). To print to another device or file, first
OPEN a path to that file or device (see
OPEN).

An expression specifying the arrangement of
the displayed data.

Any numeric or string constant or variable.
Always enclose string constants within quota-
tion marks. Each data item must be separated
by semicolons or commas.

Each PRINT USING format specifier begins with a single identi-
fier letter that specifies the type of format, as shown in the fol-

lowing table:

nE-mEw

Boolean format
exponential format
hexadecimal format
integer format

real format

string format

11-122

BASIC09 Command Reference / 11

Follow the identifier letter with a constant number that specifies
the field width. This number indicates the exact number of print
columns the output occupies. It must allow for both the data and
any overhead characters, such as sign characters, decimal points,
exponents, and so on.

Optionally, you can add a justification indicator to the format
expression. The indicators are <, >, and ". The meaning of these
indicators varies, depending on the format type in which you use
them. See the format type descriptions for specific information.

Note: Do not use any spaces within format expressions.
The following are the format type descriptions:
Real

Use this format for real, integer, or byte type numbers. The total
field width specification must include two overhead positions for
the sign and decimal point. The field width has two parts, sepa-
rated by a period. The first part specifies the integer portion of
the field. The second part specifies how many fractional digits to
display to the right of the decimal point.

If a number has more significant digits than the field allows,
BASICO09 uses the undisplayed digits to round the number
within the correct field width.

The justification modes are:

< Left justify with leading sign and trailing spaces. This is
the default if you omit a justification indicator.

> Right justify with leading spaces and sign.

A Right justify with leading spaces and trailing sign
(financial format).

Some examples and their results are:

PRINT USING "R8.2¢",5678.123 5678.12
PRINT USING "R8.2>",5678.123 5678.12
PRINT USING "R8.2>",12.3 12.380
PRINT USING "R8.2>",-555.9 -555.940

PRINT USING "R18.27",-6722.4599 6722.46-

11-123

BASIC09 Reference

Exponential

Use this format to display real, integer, or byte values in the sci-
entific notation format—using a mantissa and decimal exponent.
The field has two parts: the first part must allow for six overhead
positions for the mantissa sign, decimal point, and exponent
characters.

The justification modes are:

< Left justify with leading sign and trailing spaces. This is
the default if you omit a justification indicator.

> Right justify with leading spaces and sign.
Some examples and their results are:

PRINT USING "E12.3",1234.567 1.235E+83

PRINT USING "E13.6>",-.0801234 -1.234000E-063
PRINT USING "E18.5>",123456789 1.23457E+08
Integer

Use this format to display integer, byte, or real type numbers in
an integer or byte format. The field width must allow for one
position of overhead for the sign.

The justification modes are:

< Left justify with leading sign and trailing spaces. This is
the default if you omit a justification indicator.

> Right justify with leading spaces and sign.
A Right justify with leading sign and zeroes.
Some examples and their results are:

PRINT USING "I14<",180 10
PRINT USING "I4<",180 10
PRINT USING "14"",-18 -0180

Hexadecimal

Use this format to display any data type in hexadecimal nota-
tion. The field width specification determines the number of
hexadecimal characters BASIC09 displays. If the data to display
is string type, this function displays the ASCII value of each
character in hexadecimal.

11-124

BASIC09 Command Reference | 11

The justification modes are:

< Left justify with trailing spaces. This is the default if
you omit a justification indicator.

> Right justify with leading spaces.
n Center digits.

The number of bytes of memory used to represent data varies
according to data type. The following chart suggests field widths
for specific data types:

Memory Field Width

Type Bytes To Specify

Boolean and Byte 1 2

Integer 2 4

Real 5 10

String 1 per 2 times the string
character length

Some examples and their results are:
PRINT USING "H4",100 ggc4
PRINT USING '"H4", -1 FFFF

PRINT USING '"H8"'","ABC'" 414243
String

Use this format to display string data of any length. The field
width specifies the total field size. If the string to display is
shorter than the field size, PRINT USING pads it with spaces
according to the justification mode. If the string to display is
longer than the specified field width, PRINT USING truncates
the right portion of the string.

The justification modes are:

< Left justify with trailing spaces. This is the default if
you omit a justification indicator.

> Right justify with leading spaces.

" Center characters.

11-125

BASICO09 Reference

Some examples and their results are:

PRINT USING "S9«<',"HELLO" HELLO

PRINT USING "S9>'" "“HELLO" HELLD
PRINT USING "g9a" "“HELLO" HELLO
Boolean

Use this format to display Boolean expression results. BASIC09
converts the result of the expression to the strings “True” or
“False.” The format and results are identical to STRING formats.
The justification modes are:

< Left justify with trailing spaces. This is the default if
you omit a justification indicator.

> Right justify with leading spaces.
~ Center characters.
If A=5 and B=6, some examples and their results are:

PRINT USING "B9<",A<B True
PRINT USING "B9>",A>B False
PRINT USING *B9"",A=B False

Control Specifiers

You can also use control specifiers within PRINT USING for-
mats. The three specifiers are:

Tn Tab. n specifies a tab column at which to display
the next data.

Xn Spaces. n specifies a number of spaces to insert.

‘text’ Constant string. text is a string that is constant to
the format.

An example and its result is:

PRINT USING "‘Address’,X1,H4,X4,’Data’,X1,H2",
10006,108

Address G3ES8 Data 64

11-126

BASIC09 Command Reference / 11

Repeat

You can repeat identical sequences of specifications using paren-
theses within a format specification. Enclose the group of speci-
fications you wish to repeat, preceded by a repetition count, such
as:

"2(X2,r10.5)" in place of *X2,R16.5,X2,R18.5"

"2(12,2(X1,54))" in place of *12,%1,54,%1,54,12,X1,
S4,X1,54"

Sample Program:

This program looks at memory locations 32000 to 32010 and dis-
plays their contents in decimal, hexadecimal, and binary. PRINT
USING formats the display in columns.

PROCEDURE memlook

ODIM NUMBER,T,MEM,VALUE:INTEGER

ODIM X,NUM: INTEGER; CHARACTER,BI:STRING
OPRINT "OAddr .0Dec.OHex.OBinOOOOASCII™
OFOR Z=320606 TO 320810

OBI=1un

ONUMBER=PEEK(2Z)

OIF NUMBER>8 THEN

0JGOSUEB 108

JENDIF

JIF PEEK(Z)><32 THEN

OCHARACTER="'"

JELSE

OCHARACTER=CHR$(PEEK(Z))

OENDIF

OIF PEEK(Z)>>0 THEN

OPRINT USING "™I6¢<,T7,14<¢,X2,H4<,X1,58¢<,X2,51",2,
PEEK(Z) ,PEEK(Z),BI,CHARACTER

OELSE PRINT USING "16¢<,T7,14<,X2,H4<,X1,58>,%X2,
s1'",2,8,6,"60080"™," "

JENDIF

ONEXT Z

JEND

11-127

BASICO09 Reference

1800NUM=LOG18(NUMBER)/.3
ONUM=2"NUM

OREPEAT

UX=NUMBER/NUM

OIF X>@ THEN BI=BI+"1"
ONUMBER=MODCNUMBER ,NUM)
OELSE BI=BI+"@"

OENDIF

[ONUM=NUM/2

OUNTIL NUM<=1

UIF NUMBER>8 THEN
OBI=BI+'"i"

OELSE BI=BI+"g"

OENDIF

ORETURN

OEND

11-128

BASIC09 Command Reference / 11

PUT Writes to a direct access file

Syntax: PUT #path,data

Function: Writes a fixed-size binary data record to a file or
device. Use PUT to store data in random access files.

Although you usually use PUT with files, you can also use it
to send data to a device.

For information about storing data in random access files, see
Chapter 8, “Disk Files”. Also, see GET, SEEK, and SIZE.

Parameters:
path A variable name you chose to use in an OPEN
or CREATE statement that stores the number
of the path to the file or device to which you
are directing data.
data Either a variable containing the data you
want to send or a string of data.
Examples:

PUT #PATH,DATAS$
PUT INPUT,ARRAYS

Sample Program:

This procedure is a simple inventory data base. You type in the
information for an item name, list cost, actual cost, and quan-
tity. Using PUT, the procedure stores data in a file named
Inventory.

PROCEDURE inventory

OTYPE INV_ITEM=NAME:STRING[251; LIST,COST:REAL;
QTY: INTEGER

ODIM INV_ARRAYC186):INV__ITEM

ODIM WORK_REC:INV__ITEM

ODIM PATH:BYTE

(BN ERROR GOTD 18

11-129

BASICO09 Reference

ODELETE *"inventory"

1B00N ERROR

OCREATE #PATH,"inventory"
OWORK_REC.NAME="'"

(WORK_REC.LIST=8

OWORK__REC.COST=0

[IWORK_REC.QTY=0

OFOR N=1 TO 106

OPUT #PATH,WORK__REC

OMEXT N

JLoarP

OINPUT "Record number? '",recnum

OIF recnum<? OR recnum>188 THEN
OPRINT

OPRINT "End of Session"

OPRINT

[OCLOSE #PATH

[JEND

JENDIF

OINPUT "Item name? ",WORK_REC.NAME
OINPUT "List price? " OWORK_REC.LIST
JINPUT “Cost price? " WORK__REC.COST
OINPUT "Quantity? " WORK__REC.QTY
OSEEK #PATH,C(recnum=-1)*SIZECWORK_REC)
OPUT #PATH,WORK_REC

JENDLOOP

JEND

11-130

BASIC09 Command Reference | 11

RAD Returns trigonometric calculations in
radians

Syntax: RAD

Function: Set a procedure’s state flag so that a procedure uses
radians in SIN, COS, TAN, ACS, ASN, and ATN functions.
Because this is the BASIC09 default, you do not need to use
the RAD statement unless you previously used a DEG state-
ment in the procedure.

Parameters: None

Examples:
RAD

Sample Program:

This program calculates sine, cosine, and tangent for a value you
supply. It calculates one set of results in degrees, using DEG,
and the second set of results in radians using RAD.

PROCEDURE trigcalc
ODIM ANGLE:REAL

ODEG

OINPUT "Enter the angle of iwo sides of a
triangle...",ANGLE

OPRINT

OPRINT "IIIMAngle',"SINE™,"COSINE"™,"TAN"
OPRINT “OOOOOTII- - === == == === === === mmmmmmmmmm o

OPRINT "Degrees = "™; ANGLE,SINCANGLE),COSCANGLE)D,
TANCANGLE)

ORAD

UPRINT "Radians = '"; ANGLE,SINCANGLE),COSCANGLE),
TANCANGLE)

OPRINT

OEND

11-131

BASIC09 Reference

RE AD Reads data from a device or DATA

statement

Syntax: READ [#path,] varname

Function: Reads either an ASCII record from a sequential file

or device, or an item from a DATA statement.
Parameters:
path A variable containing the path number of the
file you want to access. You can also specify
one of the standard I/O paths (0, 1, or 2).
varname The variable in which you want to store the
data read from a file, device, or DATA line.
Notes:
The following information deals with reading sequential disk
files:
® To read file records, you must first dimension a variable to

contain the path number of the file, then use OPEN or
CREATE to open a file in the READ or UPDATE access
mode. The command begins reading records at the first
record in the file. After it reads each item, it updates the
pointer to the next item.

Records can be of any length within a file. Make sure the
variable you use to store the records is dimensioned large
enough to store each item. If the variable storage is too
small, BASIC09 truncates the record to the maximum size
for which you dimensioned the variable. If you do not indi-
cate a variable size with the DIM statement, the default is
32 characters.

BASICO09 separates individual data items in the input
record with ASCII null characters. You can also separate
numeric items with comma or space character delimiters.
Each input record is terminated by a carriage return
character.

11-132

BASIC09 Command Reference / 11

The following information deals with reading DATA items:

@ READ accesses DATA line items sequentially. Each string
type item in a DATA line must be surrounded by quotation
marks. Jtems in a DATA line must be separated with
commas.

® Each READ command copies an item into the specified
variable storage and updates the data pointer to the next
item, if any.

® You can independently move the pointer to a selected DATA
statement. To do this, use line numbers with the DATA
lines See the DATA and RESTORE commands for more
information on using this function of READ.

Examples:
READ #PATH,DATA
READ #1,RESPONSES$

READ #INPUT,INDEXCX)

FOR T=1 TO 10

READ NAMES$(T)

NEXT T

DATA "JIM"™, "“JOE"™,"SUE","TINA™,"WENDY"

DATA "SALL"™,"MICKIE","FRED","MARV" ,"WINNIE"

11-133

BASICO09 Reference

Sample Program:

This procedure puts random values between 1 and 10 into a disk
file, then READS the values and uses asterisks to indicate how
many times RND selected each value.

PROCEDURE randlist

ODIM SHOW,BUCKET:STRING

ODIM T,PATH,SELECTC18),R: INTEGER
[BUCKET="# %%k ¥ %% X% ¥ ¥ XA X XK ¥ XK XXt ¥ 21
OFOR T=1 TO 10

OSELECTC(T)=0

ONEXT T

0JON ERROR GOTOD 180

OSHELL *"DEL RANDFILE™

1800N ERROR

OCREATE #PATH,"randfile":UPDATE
OFOR T=1 TO 188

OR=RND(9)+1

OWRITE #PATH,R

ONEXT T

OPRINT "Random Distribution"
OSEEK #PATH, B

OFOR T=1 TO 1040

OREAD #PATH,NUM
OSELECTCNUM)=SELECTC(NUM)I+1

ONEXT T

OFOR T=1 TO 10
OSHOW=RIGHT$(BUCKET,SELECT(T))
OPRINT USING "S6¢,13¢,52¢,528<","Number™,
T,":",SHOW

ONEXT T

[OCLOSE #PATH

JEND

11-134

BASIC09 Command Reference / 11

REM Inserts remarks in a procedure

Syntax: REM [text]
(* [text][*)]

Function: Inserts remarks inside a procedure. BASIC09
ignores these remarks; they serve only to document a proce-
dure and its functions. Use remarks to title a procedure, show
its creation date, show the name of the programmer, or to
explain particular features and operations of a procedure.

Parameters:
text Comments you want to include within a
procedure
Notes:

® You can insert remarks at any point in a procedure.

® The second form of REM, using parentheses and asterisks,
is compatible with Pascal programming structure.

® When editing programs, you can use the exclamation char-
acter “!” in place of the keyword REM.

® BASIC09’s initial compilation retains remarks, but the
PACK compile command strips them from procedures.
Examples:
REM this is a comment

(* Insert text between parentheses and
asterisks*)

(¥ or use only one parenthesis and asterisk

11-135

BASICO09 Reference

Sample Program:

This procedure uses the various forms of REM to explain its
operations.

PROCEDURE copydir

CREM Use this program with the

OC+ GET sample program to +)

O(+ create a file of directoryt)

OC+ filenames, then copy the)

O(+ files to another directory®)

[JDIM PATH,T,COUNT: INTEGER; FILE,JOB,DIRNAME:STRING
[IOPEN #PATH,"dirfile™:READ (+ open the file
OINPUT "Name of new directory...”,DIRNAME (# get the directory
(SHELL "MAKDIR "+DIRNAME (# creaie a newdirectory
[JSHELL “LCAD COPY"

OWHILE NOTCEDF(#PATH)) DD

CREAD #PATH,FILE (+ get a filename

[JJOB=FILE+" "+DIRNAME+"/"+FILE (# create the COPY syntax
[JON ERRCR GOTO 14

CPRINT “COPY "3 JOB (+ display the operatien
CSHELL “COPY "+JOB (* copy the file

1800N ERRCR

[JENDWHILE

(CLOSE #PATH

{JEND

11-136

BASIC09 Command Reference / 11

REPEAT/UNTIL

Establishes a loop/Terminates on specified condition

Syntax: REPEAT
procedure lines
UNTIL expression

Function: Establishes a loop that executes the encompassed
procedure lines until the result of the expression following
UNTIL is true. Because the loop is tested at the bottom, the
lines within the loop are executed at least once.

Parameters:
expression A Boolean expression (returns either True or
False).
procedure Statements you want to repeat until expression
lines returns False.
Examples:
REPEAT

COUNT = COUNT+1
UNTIL COUNT > 1080

INPUT X,V

REPEAT

X = X-1

Y = Y-1

UNTIL X<1 OR Y«@

11-137

BASIC09 Reference

Sample Program:

The procedure sorts a disk file. In this case, it is written to sort
the diskfile created by the GET sample program—a directory
listing. It uses a REPEAT/UNTIL loop to compare a string in
the file with the first string in the file. If the first string is
greater than the comparison string, the procedure swaps them.

PROCEDURE dirsort

ODIM BTEMP:BODOLEAN; TEMP,FILESC125):STRING; TOP,
BOTTOM,M,N: INTEGER

ODIM T,X,PATH: INTEGER

OFDR T=1 TD 125

OF TLES(T)="tm

ONEXT T

OT=9

ODPEN #PATH,'"dirfile":READ
OPRINT "LOADING:™

WHILE NOTCECOF(#PATH)Y) DO
O7=T+1

OREAD #PATH,FILESCT)
OENDWHILE

OToP=T

OBOTTOM=1

OPRINT “SORTING: “;
180N=BOTTOM

OM=TOP

OPRINT ™.";

gLoap

OREPEAT
OBTEMP=FILES(N)<FILESCTOP)
ON=N+1

OUNTIL NOTCBTEMP)

ON=N-1

OEXITIF N=M THEN

OENDEXIT

OTEMP=FILESC(M)
OFILESC(M)=FILESCN)
UFILESCN)=TEMP
ON=N+1

UEXITIF N=M THEN
OENDEXIT

11-138

BASIC09 Command Reference / 11

CENDLOOP

OIF N<>TOP THEN

(JIF FILESC(N)<>FILESCTOP) THEN
OTEMP=FILESCN)
UFILESCN)=FILESCTOP)
OFILESCTOP)=TEMP

OENDIF

[JENDIF

OIF BOTTOM<N-1 THEN
OTOP=N-1

OG0TO 10

OENDIF

OIF N+1<TOP THEN
CBOTTOM=N+1

JcoTo 148

JENDIF

[ICLOSE #PATH

ODELETE *dirfile"
[ICREATE #PATH,"“dirfile™:WRITE
OPRINT

OFOR Z2=1 TO T

OWRITE #PATH,FILESCZ)
OPRINT FILESCZ),
ONEXT 2

OCLOSE #PATH
UEND

11-139

BASICO09 Reference

RE STORE Resets READ pointer

Syntax: RESTORE linenumber

Function: Sets the pointer for the READ command to the
specified line number. RESTORE without a line number sets
the data pointer to the first data statement in the procedure.

READ assigns the items in a DATA statement to variable
storage. When you read an item, the pointer automatically
advances to the next item. Using RESTORE you can skip
backward or forward to data items at a specific line number.

Parameters:

linenumber The line number of the DATA items you want
READ to access next.

Examples:

RESTORE 188

Sample Program:

This procedure draws a box on the screen. It uses RESTORE to
repeat the data in line 20 to create the sides of the box.

PROCEDURE box

ODIM LINE:STRING

OREAD LINE

OPRINT LINE

gFOR T=1 TO 1@

ORESTORE 280

OREAD LINE

OPRINT LINE

ONEXT T

[JRESTORE 10

[OREAD LINE

OPRINT LINE

180DATA M-----mmmmmmmm oo "
28[DATA "IODOOOCOCOoOoOCooo
OEND

11-140

BASIC09 Command Reference | 11

RE TURN Returns from subroutine

Syntax: RETURN

Function: Returns procedure execution to the line immedi-
ately following the last GOSUB statement.

Every subroutine you access with GOSUB must contain a
RETURN statement. You can call a subroutine in this man-
ner as many times as you want.

Parameters: None

Sample Program:

This procedure draws a design of asterisks down the display
screen. It uses MOD to send execution to a series of PRINT
USING routines over and over. Each PRINT USING routine
sends execution back to the main routine with a RETURN
statement.

PROCEDURE stars

ODIM T:INTEGER

OSHELL "TMODE -PAUSE"™

OFOR T=1 TO 1680

UON MODCT,8>+1 GOSUB 18,29,30,48,50,60,70,88
ONEXT T

(JSHELL *"TMODE PAUSE"

OEND

TBOPRINT USING "“S18~™,"«" \ RETURN
280PRINT USING "S1@~","+*" \ RETURN
3BOPRINT USING "S1@~","%#+" \ RETURN
4B0PRINT USING "“S1@7","x%xxx" \ RETURN
SOOPRINT USING "“S1g°","*x+x+" \ RETURN
GOOPRINT USING "S18°","xxx+x" \ RETURN
780PRINT USING "S1@~","+«+" \ RETURN
S8OUPRINT USING *S1@8~","*x+" \ RETURN
JEND

11-141

BASICO09 Reference

RIGHT$ Returns specified rightmost portion
of a string

Syntax: RIGHT$(string,length)

Function: Returns the specified number of characters from the
right portion of the specified string. If length is the same as or
greater than the number of characters in string, then RIGHT$
returns all of the characters in the string.

Parameters:
string A sequence of string type characters or a vari-
able containing a sequence of string type
characters.
length The number of characters you want to access.
Examples:

PRINT RIGHT$("HOTDOG",3)
PRINT RIGHT$(AS$,06)

Sample Program:

PROCEDURE lastname

ODIM NAMES:STRING: LASTNAME:STRINGL181
OPRINT "Here are the last names:*

OFOR T=1 TO 1@

OREAD NAMES

OPOINTER=SUBSTR("™ " ,NAMES)
OPOINTER=LENC(NAMES)-POINTER
OLASTNAME=RIGHT$(NAMES,POINTER)

OPRINT LASTNAME

ONEXT T

ODATA "Joe Blonski®™,"Mike Marvel',"Hal Skeemish",
“Fred Langly"

DATA "Jane Misty","Wendy Paston","Martha

Upshong","Jacqueline Rivers"
[DATA "Susy Reetmore","Wilson Creding"
OEND

11.142

BASIC09 Command Reference / 11

RND Returns a random value

Syntax: RND(number)

Function: Returns a random real value in the following
ranges:

If number = 0 then range = 0to 1
If number > 0 then range = 0 to number

The values produced by RND are not truly random numbers,
but occur in a predictable sequence. Specifying a number less

than 0 begins the sequence over.

Parameters:

number A numeric constant, variable, or expression.

Examples:
PRINT RND(5)
PRINT RNDCA)
PRINT RNDCA*5)

Sample Program:

This procedure presents addition problems for you to solve.
It uses RND to select two numbers between 0 and 20.

11-143

BASICO09 Reference

PROCEDURE addition

ODIM A,B,ANSWER,C:INTEGER

OFOR T=1 TO 5

JA=RNDC(28)

0B=RND(28)

dc=A+B

[OPRINT USING "‘What is:[0’,13>",A
OPRINT USING "™/[0IO+0’,13>",B
UPRINT "0OO0------ "

OINPUT *'000000000", ANSHER

OIF ANSWER=C THEN

[JPRINT *"CORRECT™

[ELSE

OPRINT *"WRONG"

OENDIF

OPRINT

ONEXT T

[JEND

11-144

BASIC09 Command Reference | 11

RUN Executes another procedure

Syntax: RUN procname [(param]|,param,...])]

Function: Calls a procedure for execution, passing the speci-
fied parameters to the called procedure. When the called pro-
cedure ends, execution returns to the calling procedure,
beginning at the statement following the RUN statement.

RUN can call a procedure existing within the workspace, a
procedure previously compiled by the PACK command, or a
machine language procedure outside the workspace.

Parameters:
procname The name of the procedure to execute. The
procname can be the literal name of the proce-
dure to execute, or it can be a variable name
containing the procedure name.
param One or more parameters that the called pro-
gram needs for execution. The parameters can
be variables or constants, or the names of
entire arrays or data structures.
Notes:
® You can pass all types of data to a called program except

byte type. However, you can pass byte arrays.

If a parameter is a constant or expression, BASIC09 passes
it by value. That is, BASIC09 evaluates the constant or
expression and places it in temporary storage. It passes the
address of the temporary storage location to the called pro-
cedure. The called program can change the passed values,
but the changes are not reflected in the calling procedure.

If a parameter is the name of a variable, array, or data
structure, BASIC09 passes it to the called program by ref-
erence. That is, it passes the address of the variable storage
to the called procedure. Thus, the value can be changed by
the receiving procedure, and these changes are reflected in
the calling procedure.

11-145

BASICO09 Reference

@ If the procedure named by RUN is not in the workspace,
BASIC09 looks outside the workspace. If it cannot find it
there, it looks in the current execution directory for a disk
file with the proper name. If the file is on disk, BASIC09
loads and executes it, regardless of whether it is a packed
BASICO09 program or a machine language program.

If the program is a machine language module, BASIC09
executes a JSR (jump to subroutine) instruction to its entry
point and executes it as 6809 native code. The machine
language program returns to the original calling procedure
by executing a RTS (return from subroutine) instruction.

@ After you call an external procedure, and no longer need it,
use KILL to remove it from memory to free space for other
operations.

@ Machine language modules return error status by setting
the C bit of the MPU condition codes register, and by set-
ting the B register to the appropriate error code.

Examples:
RUN CALCULATEC10,26,ADD)

RUN PRINTCTEXTS)

Sample Program:

Makelist creates and displays a list of fruit. Next, it asks you to
type a word to insert. After you type and enter a new word,
Makelist uses RUN to call a second procedure named Insert to
look through the list and insert the new word in alphabetical
order. After each insertion, the procedure asks for another word.
Press only to terminate the program.

PROCEDURE makelist

ODIM LISTC25),NEWORD, TEMPWORD:STRINGI15]1
ODIM T,LAST:INTEGER

OLAST=12

OPRINT "This is your list..."

OFOR T=1 TO LAST

OREAD LISTC(T)

OPRINT LISTC(T),

ONEXT T

JLocoP

11-146

BASIC09 Command Reference [11

OPRINT

OPRINT

OINPUT "Type a word to insert...",NEWORD
OEXITIF NEWORD="" THEN

OPRINT

OEND "I’ve ended the session at your request..."™
OJENDEXIT

ORUN Insert(LIST,NEWORD,LAST)

OPRINT

UPRINT "This is your new list..."
OFOR T=1 TO LAST

OPRINT LISTCT),

ONEXT T

OPRINT

JENDLOOP

UDATA "APPLES™,"BANANAS","CANTALOUPE™
ODATA "DATES",“"GRAPES","LEMONS"

ODATA "MANGOS'","PEACHES","PLUMS™
ODATA "PEARS™

PROCEDURE insert

OPARAM LIST(25),NEWORD:STRINGI15]
OPARAM LAST:INTEGER

O0DIM TEMPWORD:STRING[151]
ODIM T,X:INTEGER

OT=1

OWHILE NEWORD>LISTC(T) DO
O7T=T+1

OENDWHILE

OFOR X=T TO LAST
OTEMPWORD=LIST(X)
OLISTCX)=NEWORD
ONEWORD=TEMPWORD

ONEXT X

OLAST=LAST+1
OLISTCLAST)=NEWORD

OEND

11-147

BASIC09 Reference

SEEK Resets the direct-access file pointer

Syntax: SEEK #path,number

Function: Changes the file pointer address in a disk file. The
pointer indicates the location in a file for the next READ or
WRITE operation.

You usually use SEEK with random access files to move the
pointer from one record to another, in any order. You can also
use SEEK with sequential access files to rewind the pointer
to the beginning of the file (to the first item or record).

For information about storing data in random access files, see
Chapter 8, “Disk Files.” Also see PUT, GET, and SIZE.

Parameters:
path A variable name you choose in which BASIC09
stores the number of the path it opens to the
file you specify.
numaber The item or record number you want to access.
If you are rewinding a sequential access file,
specify a number of 0.
Examples:

SEEK #PATH,O
SEEK #DUTFILE,A

SEEK #INDEX,LOCATION*SIZECINVENTORY)

Sample Program:

This procedure creates a file named Testl, then writes 10 lines
of data into it. Next, it reads the lines from the file and displays
them. It uses SEEK to both store and extract the lines in blocks
of 25 characters.

11-148

BASIC09 Command Reference | 11

PROCEDURE makelines
ODIM LENGTH:BYTE
ODIM LINE:STRINGI25]
ODIM PATH:BYTE
OLENGTH=25

[(OBASE @

JON ERROR GOTO 10
ODELETE "test1™
16800N ERROR

[JCREATE #PATH,"test1":WRITE

OFOR T=0 TO 9

OREAD LINES

OSEEK #PATH,LENGTH+T
[JPUT #PATH,LINES$
ONEXT T

UCLOSE #PATH

[ODPEN #PATH,"test1":READ
OFOR T=9 TO 8 STEP -1
OSEEK #PATH,LENGTH=*T
OGET #PATH,LINE

UOPRINT LINE

ONEXT T

JCLOSE #PATH

DEND

ODATA "This is test line #1"
[DATA "This is test line #2"
ODATA "This is test line #3"
[DATA "This is test line #4"
ODATA "This is5 test line #5"
ODATA "This is test line #6"
ODATA "This is test line #7"
ODATA "This is test line #8"
ODATA "This is test line #9"
ODATA "This is test line #1@"

11-149

BASIC09 Reference

SGN Returns a value’s sign

Syntax: SGN(number)

Function: Determines whether a number’s sign is positive or
negative.

If number is less than 0, then SGN returns -1. If number
equals 0, then SGN returns 0. If number if greater than 0,
then SGN returns 1.

Parameters:
number The value for which you want to determine the
sign.
Examples:

PRINT SGN(-22)
PRINT SGNCA)
PRINT SGN(44-A)

Sample Program:

This procedure uses SGN to create half sine waves down the
screen. SGN tests when the SIN calculation results are positive.

11-150

BASIC09 Command Reference | 11

PROCEDURE halfsine

ODIM FORMULA,CALCULATE,POSITION:REAL
OSHELL "DISPLAY @c"
OFORMULA=C(PI+2)/15
[ICALCULATE=FORMULA

OSHELL *"TMODE -PAUSE™

OFOR T=0 TO 1086
OCALCULATE=CALCULATE+FORMULA
OPOSITION=INTCSINCCALCULATE)*108+16)
OIF SGNCSINCCALCULATE))>@ THEN
OPRINT TABC(POSITION); ™"«

OENDIF

ONEXT T

OSHELL "“TMODE PAUSE™

JEND

11-151

BASIC09 Reference

SHE LL Forks another shell

Syntax: SHELL [“string”][+ “string”...][+ variable]
[+ variable...]

Function: Executes 0S-9 commands or programs from within
a BASIC09 procedure. Using SHELL, you can access 0S-9
functions, including multiprogramming, utilities, commands,
terminal and input/output control, and so on.

When you use the SHELL command, OS-9 creates a new pro-
cess to handle the commands you provide. If you specify an
operation, BASIC09 evaluates the expression and passes it to
the shell for execution. If you do not specify an operation,
BASIC09 temporarily halts, and the shell process displays
prompts and accepts commands in the normal manner. In this
case, press to return to BASIC09.

When the shell process terminates, BASIC09 becomes active
and resumes execution at the statement following the SHELL
statement.

Parameters:
string Any OS-9 command or function. String con-
stants must be enclosed in quotation marks.
Concatenate string constants and string vari-
ables using a plus symbol (+).
variable Any string variable containing an 0S-9 com-

mand or function.

11-152

BASIC09 Command Reference / 11

Examples:
SHELL "COPY FILE1 FILE2"

SHELL "COPY FILE1 FILE2a&"™
SHELL '"COPY "+FILE$+"™ “+DIRNAME+"/"FILES
SHELL "LIST DOCUMENT™

SHELL "KILL "™+STR$(N)

Sample Program:

You must use this procedure with the GET sample program.
Using the two programs together enables you to copy all the files
from one directory to another directory. The GET sample pro-
gram reads the files in a directory and stores them in a file
named Dirfile. This procedure reads the filenames from Dirfile
and uses SHELL to copy them to the directory you specify.

PROCEDURE copyutil

ODIM PATH,T,COUNT:INTEGER; FILE,JOB,DIRNAME:STRING
[JOPEN #PATH,"dirfile'":READ

OINPUT "Name of new directory...",DIRNAME
OSHELL "MAKDIR "+DIRNAME

OSHELL "LOAD cOPY"

OWHILE NOTCEOFC#PATH)) DO

OREAD #PATH,FILE

0JJOB=FILE+" “+DIRNAME+"/"+FILE

0ON ERROR GOTO 18

OPRINT '"cCOPY *"; JOB

OSHELL "COPY '"+J0B

1800N ERROR

OENDWHILE

OCLOSE #PATH

JEND

11-153

BASICO09 Reference

SIN Returns the sine of a number

Syntax: SIN(number)

Function: Calculates the trigonometric sine of number. You
can use the DEG or RAD commands to cause number to rep-
resent a value in either degrees or radians. Unless you specify
DEG, the default is radians. SIN returns a real number.

Parameters:
number The angle of two sides of a triangle for which
you want to find the ratio.
Examples:

PRINT SINC45)

Sample Program:

This procedure calculates sine, cosine, and tangent values
for a number you type.

PROCEDURE ratiocalc

ODEG

[DIM ANGLE:REAL

OINPUT “Enter the angle of two sides of a

triangle...",ANGLE

OPRINT

OPRINT "Angle',"SINE","COSINE"™,"TAN"

[PRINT M---mm e mmmmm s m o s m e e e m o m s s s mm——— -

OPRINT ANGLE,SINCANGLE),COSCANGLE),TANCANGLE)
OPRINT
OEND

11-154

BASIC09 Command Reference | 11

SIZE Returns the size of a data structure

Syntax: SIZE(variable)

Function: Returns the size in bytes of a variable, array, or
data structure. SIZE is especially useful with random access
files to determine the size of records to store in a file. You can
also use SIZE to determine the size of variable storage for
other purposes.

SIZE returns the size of assigned storage, not necessarily the
size of a string. For example, if you dimension a variable for
15 characters, and assign a 10-character string to it, SIZE
returns 15, not 10. SIZE returns the total size of arrays. That
is, it returns the number of elements multiplied by the size of
the elements.

Parameters:
variable The variable, array, or data structure for
which you want to find the size.
Examples:

RECORDLENGTH = SIZECAS$)

PRINT "YOUR NAME IS5 STORED IN A '"; SIZECNAME$);
" CHARACTER STRING.*"

Sample Program:

This procedure creates a simple inventory, stored in a
file named Inventory. It uses SIZE to calculate the size
of each element to be stored in the file, and to move
the pointer to the beginning of each record’s storage
space.

11-155

BASICO09 Reference

PROCEDURE inventory

OTYPE INV__ITEM=NAME:STRING[251; LIST,COST:REAL;
QTY:INTEGER

ODIM INV__ARRAY(188):INV__ITEM

ODIM WORK_REC:INV_ITEM

ODIM PATH:BYTE

OON ERROR GOTOD 10

ODELETE "inventory"

1800N ERROR

OCREATE #PATH,"inventory™
OWORK_REC.NAME="""

OWORK__REC.LIST=0

OWORK__REC.CDST=0

OWORK_REC.QTY=02

OFOR N=1 TO 1040

OPUT #PATH,WORK__REC

ONEXT N

gLoaopr

OINPUT “Record number? *,recnum

OIF recnum<1 OR recnum>1@@ THEN
OPRINT

OPRINT "End of Session"

OPRINT

OCLDSE #PATH

JEND

JENDIF

OINPUT "Item name? ",WORK_REC.NAME
OINPUT “List price? " ,WORK_REC.LIST
UINPUT “Cost price? " ,WORK__REC.COST
JINPUT "Quantity? ",WORK_REC.QTY
OSEEK #PATH,C(recnum=-1)*SIZE(WORK__REC)
OPUT #PATH,WORK__REC

JENDLOOP

OEND

11-156

BASIC09 Command Reference | 11

SQ Returns the value of a number raised to the
power of 2

Syntax: SQ(number)

Function: Calculates the value of a number raised to the
power of 2.

Parameters:

number The number you want raised to the power of 2.

Examples:
PRINT 5Q(188)

PRINT PI+SG(R)

Sample Program:

This procedure uses SQ in a formula that positions asterisks on
the screen in a sine wave pattern.

PROCEDURE sinedown

ODIM FORMULA,CALCULATE,POSITION:REAL
USHELL "DISPLAY @C"
OFORMULA=CPI+2)/15
UCALCULATE=FORMULA

OSHELL *TMODE -PAUSE®

OFOR T=06 TO 200
OCALCULATE=CALCULATE+SQCFORMULA)D
OPOSITION=INTCSINCCALCULATE)*12+16)
OPRINT TABCPOSITIOND); ™=

ONEXT T

USHELL "TMODE PAUSE™

OEND

11-157

BASICO09 Reference

SQR/ SQRT Returns the square root of a

number

Syntax: SQR(number)
SQRT(number)

Function: Calculates the square root of a number. SQR and
SQRT serve the same function.

Parameters:
number The number for which you want the square
root.
Examples:

PRINT SQR(188)

PRINT PI*SQRT(R)

Sample Program:

This procedure uses SQRT in a formula to position asterisks on
the screen in a sine wave pattern.

PROCEDURE sqgrdown

ODIM FORMULA,CALCULATE,POSITION:REAL
[OSHELL “DISPLAY BC"

OFORMULA=PI/15

OCALCULATE=FORMULA

OSHELL "TMODE -PAUSE™

OFOR T=0 TO 208
OCALCULATE=CALCULATE+SQRTC(FORMULA)
OPOSITION=INTCSINCCALCULATE)*12+16)
OPRINT TABC(POSITION); "«

ONEXT T

OSHELL "TMODE PAUSE™

JEND

11-158

BASIC09 Command Reference / 11

STEP Establishes the size of increments in a
FOR loop

Syntax:

FOR variable = init val TO end val [STEP value]
[procedure statements]

NEXT variable

Function: STEP provides an increment value in a FOR/NEXT
loop. If you do not specify a STEP value, the loop steps in
increments of 1.

BASIC09 executes the lines following the FOR statement until
it encounters a NEXT statement. Then it either increases or
decreases the initial value by 1 (the default) or by the value
given by STEP. If you give the loop an initial value that is
greater than the final value, and specify a negative value for
STEP, the loop decreases from the initial value to the end
value.

Parameters:
variable Any legal numeric variable name.
nit val Any numeric constant or variable.
end val Any numeric constant or variable.
value Any numeric constant or variable.
procedure Procedure lines you want to be executed
statements within the loop.

11-159

BASIC09 Reference

Examples:

FOR COUNTER = 1 to 188 STEP .&
PRINT COUNTER
NEXT COUNTER

FOR X = 18 70 1 STEP -1
PRINT X
NEXT X

FOR TEST = A TO B STEP RATE
PRINT TEST
NEXT TEST

Sample Program:

This procedure reverses the order of characters in a word or
phrase you type. It uses STEP to decrement a counter that
points to each character in the string in reverse order.

PROCEDURE reverse

ODIM PHRASE:STRING; T,BEGIN:INTEGER
OPRINT "Type a word or phrase you want io
reverse:*;

OPRINT

OINPUT PHRASE

OBEGIN=LENCPHRASE)

OPRINT "This is how your phrase looks backwards:"
OFOR T=BEGIN TO t STEP -1

OPRINT MID$(PHRASE,T,1);

ONEXT T

OPRINT

JEND

11-160

BASIC09 Command Reference / 11

STOP Terminates a procedure

Syntax: STOP [“string”]

Function: Causes a procedure to cease execution, print the
message “STOP Encountered”, and return control to
BASIC09’s command mode. You can also specify additional
text to display when BASIC09 encounters STOP.

Use stop when you want a procedure to terminate without
entering the DEBUG mode.

Parameters:

string Text to display when STOP executes.

Examples:
STOP "Program terminaied before completion.”
IF RESPONSE = "y"™ THEN STOP "Program iterminated

al your request."™
ENDIF

11-161

BASICO09 Reference

STR$ Converts numeric data to string data

Syntax: STR$(number)

Function: Converts a numeric type to a string type. This lets
you display the number as a string or use string operators on
a number. The conversion replaces the numeric values with
the ASCII characters of the number. STR$ is the inverse of
the VAL function.

Parameters:

number Any numeric-type data.

Examples:
PRINT STR$C1818)

DIM 1:INTEGER
1=44
PRINT STR$CI)

DIM B:BYTE
B=68@1
PRINT STR$(B)

DIM R:REAL
R=1234.56
PRINT STR$(R)

Sample Program:

This procedure calculates an exponential value, then adds the
necessary number of zeroes to convert it to standard notation. It
uses STR$ to convert the number you type to a string type value
so that it can use string functions to add the zeroes.

11-162

BASIC09 Command Reference | 11

PROCEDURE bignum

ObIm C,PLACES,B,SIGN:STRING; EX,COUNT,NEWCOUNT,
DECIMAL: INTEGER

[ODIM NEW,ZERO,NEWEST:STRING[1881
OCOUNT=-1
[JZERD="0000000000000P0P00000000A000C00BOBADG"
ONEW="""" \NEWEST ="

UINPUT "What number do you want to raise to the
power of 147...'", NUM

OJA=NUM"14

OB=STR$CA)

OJEX=SUBSTRC"E",B)
OSIGN=MID$(B,EX+1,1)
OPLACES=RIGHT$(B,LEN(B)-EX-1)
OFOR T=1 TO LENCB)
OJC=MID$(B,T,1)

OIF C=%." THEN

ODECIMAL=82

OcoTO 12

OENDIF

ODECIMAL=DECIMAL +1

OIF C="E'" THEN 108

ONEW=NEW+C

1O0ONEXT T
18A0NEWCOUNT=VALCPLACES)-DECIMAL
ONEW=NEW+LEFT$(ZERDO,NEWCDUNT+1)
OFOR T=LENCNEW) TO 1 STEP -1
OCOUNT=COUNT +1
ONEWEST=MID$(NEW,T,1I+NEWEST

OIF MODCCOUNT,3)=2 AND T>1 THEN
ONEWEST="","+NEWEST

JENDIF

ONEXT T

OPRINT NUM; * to the power of 14 = "; a
OPRINT "= *; NEWEST

JEND

11-163

BASIC09 Reference

SUBSTR Searches for specified characters in
a string

Syntax: SUBSTR(targetstring,searchstring)

Function: Searches for the first occurrence of targetstring
within searchstring and returns the numeric value of its loca-
tion. SUBSTR counts the first character in searchstring as
character Number 1. Therefore, if you searched for the string
“worth” in the string “Fortworth”, SUBSTR returns a value of
5.

If SUBSTR cannot find targetstring, it returns a value of 0.

Parameters:
targetstring The group of characters you want to locate.
searchstring The string in which you want to find
targetstring.
Examples:

PRINT SUBSTR(™THREE*®,"™ONETWOTHREEFOURFIVESIX'")

X=SUBSTR(" " ,FULLNAMES$)

Sample Program:

This procedure selects the last name from a string con-
taining both a first name and a last name. It uses
SUBSTR to find the space between the two names in
order to determine where the last name Dbegins.

11-164

BASIC09 Command Reference / 11

PROCEDURE lastname

ODIM NAMES:STRING; LASTNAME:STRINGI[101]
OPRINT "Here are the last names:"

OFOR T=1 TO 182

OREAD NAMES

OPOINTER=SUBSTR(C'"™ ",NAMES)
OPOINTER=LENCNAMES)-POINTER
OLASTNAME=RIGHT$(NAMES,POINTER)

OPRINT LASTNAME

ONEXT T

ODATA "Joe Blonski'","Mike Marvel®,"Hal
Skeemish","Fred Laungly"

[DATA "Jane Misty","Wendy Paston","Martha

Upshong","Jacqueline Rivers"
ODATA "Susy Reetimore”,"Wilson Creding"
JEND

11-165

BASIC09 Reference

SYSCALL Executes an 0S-9 System Call

Syntax: SYSCALL callcode registers

Function: Lets you execute any 0S-9 system call from
BASIC09. Use this command to directly manipulate your sys-
tem or data or to directly access devices.

Be careful! Used improperly, SYSCALL can cause undesira-
ble results—you might unintentionally format a disk or
destroy disk or memory data. Before using SYSCALL, you
should be familiar with assembly language programming and
should understand the system call information in the OS-9
Technical Reference manual. The 0OS-9 Technical Reference
manual provides information about all 0S-9 system calls.

To pass required register values to the SYSCALL command,
create a complex data structure that contains values for all
registers. For example:

TYPE REGISTERS=CC,A,B,DP:BYTE; X,Y,U:INTEGER
DIM REGS:REGISTERS
DIM CALLCODE:BYTE

The complex data type REGISTERS contains values for all
registers. Unless you specifically assign values to variables
(for instance, REGS.CC, REGS.A, and REGS.B in the pre-
vious example), they contain random values. See the TYPE
command for further information.

Parameters:
callcode is the request code of the system call you wish
to use. All system call codes are referenced in
the OS-9 Technical Reference manual.
registers is a list of the register entry values required

for the system call you are using.

Examples: see “Sample Programs.”

11-166

BASIC 09 Command Reference | 11

Sample Programs:

The following programs set up a data type (REGISTERS) for the
register variables. Before executing SYSCALL, the procedures
store the required register entry values in the complex data
structure REGS. The procedures also establish CALLCODE as a
variable to hold the request code of the system call you want to
use.

The Writecall procedure uses the string variable TEST to store
text that it writes to the screen through Path 0 (the standard
output path) using System Call $8A, I$Write. Before the proce-
dure calls I$Write, it stores the appropriate path number (0) in
Register A. The ADDR command calculates the address of the
variable TEST, and the LEN command determines the length of
the variable. The procedure stores these two values in Registers
Xand Y.

The Readcall uses System Call $8B, I$ReadLn to perform a
function that is the opposite of Writecall. Readcall establishes
TEST as a string variable into which it writes the characters
you type. Because the length of TEST is restricted to ten charac-
ters (DIM TEST:STRINGL181), the terminal bell sounds if you
attempt to type more than 10 characters. Pressing [ENTER]
terminates the call and the procedure prints the contents of
TEST—the characters you typed.

11-167

BASIC09 Reference

PROCEDURE WriteCall

OTYPE REGISTERS=CC,A,B,DP:BYTE; X,Y,U:INTEGER
ODIM REGS:REGISTERS

ODIM PATH,CALLCODE:BYTE

ODIM TEST:STRINGISQ1]

OTEST="This is a test of I$Write, System call
$8A..."

OREGS.A=0

[JREGS.X=ADDR(TEST)

OREGS.Y=LENCTEST)

OCALLCODE=$8A

[ORUN SYSCALLCCALLCODE,REGS)

OPRINT

OEND

PROCEDURE Readcall

OTYPE REGISTERS=CC,A,B,DP:BYTE; X,Y,U:INTEGER
ODIM REGS:REGISTERS

DIM PATH,CALLCODE:BYTE
ODIM TEST:STRINGL[181
OREGS.A=0
OREGS.X=ADDRCTEST)
OREGS.Y=10

[(0CALLCODE=$8B

[ORUN SYSCALL(CALLCODE,REGS)
OPRINT

OPRINT TEST

OEND

11-168

BASIC09 Command Reference / 11

TAB cCauses PRINT to jump to the specified
column

Syntax: TAB(number)

Function: Causes PRINT to display the next PRINT item to
display in the column specified by number. If the cursor is
already past the desired tab position, BASIC09 ignores TAB.

Use POS to determine the current cursor position when dis-
playing characters on the screen.

Screen display columns are numbered from 1, the leftmost col-
umn, to a maximum of 255. The size of BASIC09 output
buffer varies according to the stack size.

You can also use TAB with PRINT USING statements.

Parameters:
number The column at which you want PRINT to
begin.
Examples:

PRINT TABC2B);TITLES

PRINT TABCX); ITEMNUMBER; ITEMS$

Sample Program:

This procedure uses asterisks to simulate a sine wave on the
screen. It uses TAB to position each asterisk in the proper
location.

11-169

BASICO09 Reference

PROCEDURE sinewave

ODIM FORMULA,CALCULATE,PDSITION:REAL
OSHELL "DISPLAY @C™
OFORMULA=(PI+2)/15
OCALCULATE=FORMULA

OSHELL *TMODE -PAUSE™

OFOR T=@ TO 200
OCALCULATE=CALCULATE+SQCFORMULA)
OPDSITION=INTC(SINCCALCULATE)*12+16)
OPRINT TABCPOSITIONDY; *®s®

ONEXT T

OSHELL "“TMODE PAUSE™

JEND

11-170

BASIC09 Command Reference | 11

TAN Returns the tangent of a value

Syntax: TAN(number)

Function: Calculates the trigonometric tangent of number.
Using DEG or RAD, you can specify the measure of the angle
(number) in either degrees or radians. Radians are the default
units.

Parameters:
number The angle for which you want to find the
tangent.
Examples:

PRINT TANC45)

Sample Program:

This procedure calculates sine, cosine, and tangent values for a
number you type.

PROCEDURE ratiocalc

ODEG

ODIM ANGLE:REAL

OINPUT "Enter the angle of two sides of a

triangle...",ANGLE

OPRINT

OPRINT "Angle™,"SINE"™,"COSINE"™,"TAN"

OPRINT Mo m e s oo e e o e e e e o

OPRINT ANGLE,SINCANGLE)Y,COSCANGLE)Y,TANCANGLE)D
OPRINT
LEND

11-171

BASIC09 Reference

TRIM$ Removes spaces from the end of a string

Syntax: TRIMS$(string)

Function: Removes any trailing spaces from the end of the
specified string. This function is particularly useful for trim-
ming records you recover from a random access file.

Parameters:
string The string or string variable from which you
wish to remove trailing spaces.
Examples:

PRINT TRIMCA)

GET A$,B$,C$
PRINT TRIMCA)I,TRIM$(B$), TRIMS(CS)

Sample Program:

This program takes names you type and puts them in a
random access disk file. Because random access files use
the same amount of storage for each item, short names
are padded with extra spaces. When reading the names
back from the file, the procedure uses TRIM$ to remove
these extra spaces.

PROCEDURE namestor

ODIM NAMES,TEMP1,NAMEC188):STRING[261; FIRST,LAST:
STRINGIL151; INITIAL:STRINGLC1]1
ODIM PATH,T:INTEGER

ONAMES=""

O0ON ERROR GOTO 18

ODELETE ™"™namelist"

1800N ERROR

OCREATE #PATH,'"namelist'":UPDATE
OFOR T=1 TO 1680

ONAMECT) ="

ONEXT T

O7T=0

11-172

BASIC09 Command Reference / 11

gLoop

OINPUT "First Name: "“,FIRST
OEXITIF FIRST="" THEN
[OCLOSE #PATH

0GOTO 168

OENDEXIT

UOINPUT "Initial: ",INITIAL
OINPUT "Last: ",LAST
OT=T+1

ONAMECT)=FIRST+" "“"+INITIAL+" "+LAST
OPUT #PATH,NAMECT)

OSEEK #PATH,T*26

DENDLOOP

18000PEN #PATH,"namelist™:READ

OPRINT \ PRINT

OPRINT "Lastiname","Firsiname™,"Initial"
OREM Print underline (40 characters)
OPRINT ® "
OPRINT

OSEEK #PATH,®

OT=0

OWHILE NOTCEQF(#PATHY>)> DO

OGET #PATH,NAMES

OT=T+1
INAMES=TRIM$ (NAMES)
OX=SUBSTRC" *,NAMES)

OF IRST=LEFT$(NAMES,X-1)
OTEMP1=RIGHT$(NAMES,LENCNAMES)-X+1)
OINITIAL=MID$CTEMP1,2,1)
OLAST=RIGHT$(TEMP1 ,LENCTEMP1)-3)
OPRINT LAST,FIRST,INITIAL

[JSEEK #PATH,T+26

OENDWHILE

JCLOSE #PATH

JEND

11-173

BASICO09 Reference

TRON/ TROF F Turns on/off trace function

Syntax: TRON
TROFF

Function: Turns on or off the BASIC09 trace mode. When
trace is turned on (TRON), BASIC09 decompiles and displays
each statement in a procedure before execution. BASIC09 also
displays the result of each expression after evaluation. This
function lets you follow program flow and is helpful in debug-
ging and analyzing the execution of a procedure. After the
procedure is debugged, remove the TRON statement.

If you want to view only a portion of a procedure’s execution,
surround that portion with TRON and TROFF. Tracing
begins immediately after the TRON statement and ends at
the TROFF statement. The rest of the program executes
normally.

Parameters: None

Examples:

Bs="00000000000000000000" +B$%
N=1+LENCB$)

FOR I=4 TO 1t STEP -1

TRON

N=N-4

ACII=VALIMID$(B$,N,4))

TROFF

NEXT 1

11-174

BASIC09 Command Reference / 11

TRUE Returns a Boolean TRUE value

Syntax: variable=TRUE

Function: TRUE is a Boolean function that always returns
True. You can use TRUE and FALSE to assign values to Boo-
lean variables.

Parameters:
variable The Boolean storage unit you want to set to
True.
Examples:

DIM TEST:BOOLEAN
TEST=TRUE

Sample Program:

This procedure asks five questions. If your answer is correct, it
stores the Boolean value TRUE in a Boolean type variable. If
your answer is incorrect, it stores the Boolean value FALSE in
the variable.

PROCEDURE quiz

ODIM REPLY,VALUE:BOOLEAN; ANSWER:STRING[11;
QUESTION:STRINGI8S]

OFOR T=1 TO 5

OREAD QUESTION,VALUE

OPRINT QUESTION

OPRINT "(T)> = TRUEOOOOCF)Y = FALSE™

OPRINT "Select T or F:[[I'";

OGET #1,ANSWER

OIF ANSWER="T"™ THEN

OREPLY=TRUE

OELSE

OREPLY=FALSE

OENDIF

OIF REPLY=VALUE THEN

OPRINT \ PRINT "™That’s Correct...Good Show!"
[JELSE

11-175

BASICO09 Reference

[OPRINT "Sorry, you’re wrong...Better Luck next
time."

JENDIF

OPRINT N\ PRINT \ PRINT

ONEXT T

ODATA "In computer talk, CPU stands for Central
Packaging Unit.", FALSE

ODATA "“The actual value of 64K is 65536
bytes.",TRUE

(DATA "The bits in a byte are normally numbered @
through 7.",TRUE

[ODATA "BASICA2 has four data types.'",FALSE
ODATA "“The LAND function is a Boolean type
operator.",FALSE

JEND

11-176

BASIC09 Command Reference / 11

TYPE Defines a data type

Syntax: TYPE name = typedeclar [;typedeclarf;...]]

Function: Defines new data types (complex data structures).
New data types are vectors (one-dimensional arrays) of previ-
ously defined types. Structures created by TYPE differ from
arrays in that they can consist of elements of different types,
and BASICO09 accesses elements by field names rather than by
an indexed position.

Parameters:
name The name you select for the new data type.
typedeclar One or more type declarations, which can con-
sist of field names, type declarations, and sub-
scripts. Separate different types or different
lengths of string declarations with semicolons.
Notes:

® Complex data structures allow you to create data types that
are appropriate for a specific task. You can organize, read,
and write associated data naturally. Also, BASIC09 estab-
lishes and defines element positions at compilation time.
This saves time and overhead at run time because
BASICO09 can access the elements of a data structure faster
than it can access the elements of an array.

@ When you define new data structures using TYPE, you can
include any of the five existing data types (string, real,
integer, byte, and Boolean), or you can include data struc-
ture types that you previously defined with TYPE. This
means that your structures can be simple or very complex,
such as non-rectangular data lists or trees.

® TYPE does not create storage. You create storage using the
DIM statement, after using TYPE.

® To access elements of a data structure, use the field name
as well as any appropriate element index.

11-177

BASICO09 Reference

@ For more information on creating and using complex data
types, see “Complex Data Types” in Chapter 6.

Examples:

TYPE LIBRARY=TITLE,AUTHOR,PUBLISHER:STRINGI[251;
REFERENCE: INTEGER
DIM BOOK(588):LIBRARY

TYPE PARTS=I1TEM,LOCATION:STRINGI201; CAT:REAL;
QUANTITY; INTEGER
DIM INVENTORYC1868):PARTS

Sample Program:

This procedure builds an array to contain a book reference list,
including the book title, the author’s name, the publisher, and a
reference number. It does so by using TYPE to create a special
data structure to store all the information for each book.

PROCEDURE books

OTYPE LIBRARY=TITLE,AUTHOR,PUBLISHER:STRINGL[381;
REFERENCE: INTEGER

(ODIM BOOKSC1@@):LIBRARY

OT=9

jLocoP

OT=T+1

OINPUT "BOOK TITLE...",BT$

[(BOOKSCT).TITLE=BT$

OEXITIF BOOKSCT).TITLE="" THEN

0GOTO 168

OENDEXIT

OINPUT "Book Author...",BA$

0BOOKS(T).AUTHOR=BAS$

OINPUT "Book Publisher...',BP$
[BODKS(T)>.PUBLISHER=BP$

OINPUT "Reference Number...",BOOKSCT).REFERENCE
JENDLODP

1600FOR X=1 TO T-1

OPRINT BOOKSCX).TITLE; ' , '"; BOOKSC(X).AUTHOR; " ,

",
?

- 0OBODKSCX).PUBLISHER; "™ , '"; BOOKSCX).REFERENCE
ONEXT X
UEND

11-178

BASIC09 Command Reference / 11

UN TIL Terminates a REPEAT loop on specified
condition

Syntax: REPEAT
procedure lines
UNTIL expression

Function: Ends a REPEAT loop. REPEAT establishes a loop
that executes the encompassed procedure lines until the
result of the expression following UNTIL is true. Because the
loop is tested at the bottom, the lines within the loop are exe-
cuted at least once.

Parameters:
procedures Statements you want to execute in the loop.
lines
expression A Boolean expression (the result must be
either True or False).
Examples:
REPEAT

COUNT = COUNT+1
UNTIL COUNT > 100

INPUT X,Y

REPEAT

X = X-1

Y = Y-1

UNTIL X<1 OR Y«<@

See REPEAT for more information.

11-179

BASICO09 Reference

USING Formats PRINT output

Syntax: PRINT [#path] USING [format,] datal;data...]

Function: Prints data using a format you specify. This state-
ment is especially useful for printing report headings,
accounting reports, checks, or any document requiring a spe-
cific format.

USING is actually an extension of the PRINT statement. The
same rules that apply to the PRINT statement also apply to
the PRINT USING statement (see PRINT).

Parameters:

path The number to an opened device or file. If you
do not specify path the default is #1, the video
screen (standard output device). To print to
another device or file, first OPEN a path to
that file or device (see OPEN).

format An expression specifying the arrangement of
the displayed data.

data Any numeric or string constant or variable.
Always enclose string constants within quota-
tion marks. Separate all data items with
semicolons or commas.

See PRINT USING for more information.

11-180

BASIC09 Command Reference | 11

VAL Converts string data to numeric data

Syntax: VAL(string)

Function: Converts string-type data to numeric-type. VAL is
the inverse of the STR$ function. It returns the real value
represented by the characters in a string. If any character in
the specified string is not numeric, BASIC09 returns an error.

Parameters:
string An ASCII string containing one or more of the
following characters: 0123456789, + $-.
Examples:

PRINT VAL(C123)

A$=""44.66"
PRINT VALCAS$)

Sample Program:

This procedure calculates an exponential value, then adds the
necessary number of zeroes to convert it to standard notation. It
uses STR$ to convert the original number to a string, then uses
VAL to convert the exponent into a value to determine the cor-
rect decimal place.

PROCEDURE bignum

ODImM C,PLACES,B,SIGN:STRING; EX,COUNT,NEWCOUNT,
DECIMAL : INTEGER

ODIM NEW,ZERO,NEWEST:STRINGI[10661

JCOUNT=-1
(ZERC="000000000000P00000000000000C0000000B0B"
ONEW=""" \NEWEST="*"

OINPUT "What number do you want to raise to the
power of 147?...",NUM

O0A=NUM"14

OB=STR$(A)

OEX=SUBSTR("E",B)

OSIGN=MID$(B,EX+1,1)

11-181

BASIC09 Reference

JPLACES=RIGHT$(B,LENC(B)-EX-1)
OFOR T=1 TO LENCB)
Oc=MID$(B,T,1)

JIF C="." THEN

[(DECIMAL=0

JcaTo 10

OENDIF

ODECIMAL=DECIMAL +1

OiIF C="E" THEN 100

UONEW=NEW+C

TBONEXT T
1@0UNEWCDUNT=VALCPLACES)-DECIMAL
ONEW=NEW+LEFT$(ZERDO,NEWCOUNT+1)
OFOR T=LENCNEW) TO 1 STEP -1
OCOUNT=COUNT+1
ONEWEST=MID$CNEW, T, 1) +NEWEST
OIF MODCCOUNT,3)=2 AND T>1 THEN
UNEWEST="","+NEWEST

OENDIF

ONEXT T

OPRINT NUM; ™ to the power of 14 = ";
OPRINT "= "; NEWEST

JEND

11-182

BASIC09 Command Reference / 11

WHILE/DO/ENDWHILE Establishes

a loop

Syntax: WHILE expression DO
procedure lines
ENDWHILE

Function: Establishes a loop that executes the encompassed
procedure lines while the result of the expression following
WHILE is true. Because the loop is tested at the top, the
lines within the loop are never executed unless the expression
is true.

Parameters:
expression A Boolean expression (has a result of True or
False).
procedure Program lines to execute if the expression is
lines true.
Examples:

WHILE COUNT < 12 DO
COUNT = COUNT+1
ENDWHILE

Sample Program:

You must create a file of directory names using the GET sample
program before you can use the following procedure. Copyutil
uses the filenames created by the GET sample program to copy a
directory’s files to another directory you specify. You must spec-
ify a directory name that does not exist. Copyutil uses a
WHILE/DO/ENDWHILE loop to continue copying until BASIC09
reaches the end of the file.

11-183

BASIC09 Reference

PROCEDURE copyutil

ODIM PATH,T,COUNT:INTEGER; FILE,JOB,DIRNAME:STRING
OOPEN #PATH,"dirfile®™:READ

OINPUT "MName of new directory...“,DIRNAME
OSHELL "MAKDIR "+DIRNAME

OSHELL *LOAD COPY"®

OWHILE NOTCEOFC(#PATH)>) DO

OREAD #PATH,FILE

0JOB=FILE+"™ “+DIRNAME+"/"+FILE

0OON ERROR GOTO 10

OPRINT "™cCOPY '; JOB

OSHELL *cOrPY *"+J0OB

1800N ERROR

DJENDWHILE

[ICLOSE #PATH

JEND

11-184

BASIC09 Command Reference / 11

WRITE Writes data to a sequential file or
device

Syntax: WRITE [#path,] data

Function: Writes an ASCII record to a sequential file or to a
device.

Parameters:
path A variable containing the path number of the
file or device to which you want to send data.
Path can be one of the the standard I/O paths
0,1, 2).
data The data you want to send over the specified
path.
Notes:

The following information deals with writing sequential disk
files:

® To write file records, you must first dimension a variable to
contain the path number of the file, then use OPEN or
CREATE to open a file in the WRITE or UPDATE access
mode.

@ Records can be of any length within a file.

© Individual data items in the input record are separated by
ASCII null characters. You can also separate numeric items
with comma or space character delimiters. Each input
record is terminated by a carriage return character.

Examples:
WRITE #PATH,DATAS
WRITE #1,RESPONSE$

WRITE #0UTPUT, INDEX(X)

11-185

BASICO09 Reference

OPEN #PATH,"namefile'":WRITE

FOR T=1 TO 18

READ NAMES

WRITE #PATH, NAMES$

NEXT T

CLOSE #PATH

DATA "JIM™,"“JOE'","SUE","TINA", "WENDY"

DATA "SALL","MICKIE"™,"™FRED"™,"MARV" ,"WINNIE"

Sample Program:

This procedure selects 100 random values between 1 and 10. It
uses WRITE to place the values into a disk file. Next, it reads
the values from the file and uses asterisks to indicate how many
times RND selected each value.

PROCEDURE randlist

ODIM SHOW,BUCKET:STRING

OpiM T,PATH,SELECTC18),R: INTEGER
TBUCKET=""% %% %% ¥ ¥ X% ¥ ¥ XX X ¥ X % ¥ ¥k % % %"
OFOR T=1 TO 10

OSELECT(T)>=8

ONEXT T

0JON ERROR GOTO 14

OSHELL "DEL RANDFILE™"

180 ON ERROR

OCREATE #PATH,"randfile'":UPDATE
OFOR T=1 TO 108

OR=RND(9)+1

[WRITE #PATH,R

ONEXT T

OPRINT "Random Distribution™
OSEEK #PATH,0

OFOR T=1 TO 108

OREAD #PATH,NUM
OSELECTC(NUM)=SELECTC(NUM) +1

ONEXT T

OFOR T=1 TO 18
[(JSHOW=RIGHT$(BUCKET ,SELECT(T))
OPRINT USING "S6¢,13¢,52¢,S20<","Number",T,":",
SHOW

ONEXT T

OCLOSE #PATH

JEND

11-186

BASIC09 Command Reference | 11

XOR Returns the exclusive OR of two values

Syntax: operandl XOR operand2

Function: Performs the logical exclusive OR operation on two
or more values, returning a value of either TRUE or FALSE.

Parameters:
operandl Boolean values or expressions (that result in
operand2 values of True or False).

Examples:

PRINT A>2 XOR B>3

PRINT A$="YES'" XOR B$="YES"

Sample Program:

This procedure lets two people type numbers until one of them
guesses the number that the computer picks. It uses XOR to
determine that one of the numbers typed is the correct number,
but not both.

PROCEDURE drawstraw

ODIM NUM1,NUM2,R:INTEGER; A:BOCLEAN

OPRINT "This program will help you pick"
OPRINT "between two people. Choose who will be"
OPRINT "Person 1 and who will be Person 2.9
OPRINT "Then, enter numbers between 1 and 18"
OPRINT "when requested."

OPRINT

OR=RNDC18)

1@0INPUT "Person 1, type a number and press
ENTER...",NUM1

OINPUT "Person 2, type a number and press
ENTER...*,NUM2

JA=NUM1=R XOR NUM2=R

OIF A=FALSE THEN

OPRINT "You’ll have to try again..."

OPRINT

11-187

BASICO09 Reference

G070 10

JENDIF

OIF NUM1=R THEN

OPRINT "You win, Person 1"
JENDIF

OIF NUM2=R THEN

OPRINT "“You win, Person 2"
[JENDIF

OPRINT "The Number was..."; R
OEND

11-188

Chapter 12

Program Optimization

BASIC09’s multipass compiler produces a compressed and optim-
ized low-level I-code for execution. Compared to other BASIC lan-
guages, BASICO09 greatly decreases both the storage space
required for program code and the execution speed of programs.

Because BASIC09 produces I-code at a powerful level, it can
handle numerous MPU (micro processor unit) instructions with a
single interpretation. Therefore, for complex programs, there is
little performance difference between the execution of I-code and
pure machine-language instructions.

Most BASIC languages have to compile from text as they run, or
search tables of tokens in order to execute code. Instead,
BASIC09 I-code instructions contain direct references to vari-
ables, statements, and labels. BASIC09 fully utilizes the power of
the 6809 instruction set, as well, which is optimized for efficient
execution of compiler-produced code.

Because BASICO09 interprets I-code, you have a variety of entry-
time and run-time tests and development aids. The editor reports
syntax errors immediately when they are entered. The debugger
lets you debug using original program source statements and
names. The I-code interpreter performs run-time error checking
of array structures and BASIC09 functions.

Optimum Use of Numeric Data Types

The following notes apply to the use of BASIC09 numeric data
types:

® BASIC09 includes several different numeric representa-
tions (real, integer, byte), and performs automatic type
conversions between them. This means that without
care, your code might contain expressions or loops that
take more than ten times longer to execute than is
necessary.

12-1

BASIC09 Commands Reference

@ Some BASIC09 numeric operators, such as +,-,* and /,

and some BASICO09 control structures include versions for
both real and integer values. Integer versions execute
much faster and can have slightly different properties.
For instance, integer division discards any remainder.

Integer operations are faster because they use corre-
sponding 6809 instructions. Using integers increases
speed and decreases storage requirements. Integer opera-
tions use the same symbols as real operations, but
BASIC09 automatically selects the integer operations
when when all operands of an expression are of byte or
integer type.

Type conversion takes time. Using expressions with oper-
ands and operators of the same kind is most efficient.

BASIC09’s real (floating point) math provides excellent
performance. It includes a 40-bit binary floating point
representation and uses the CORDIC technique to derive
all transcendental functions. This integer shift-and-add
technique is faster and more consistent than the common
series-expansion approximations.

At times, you can obtain similar or identical results in a
number of different ways and at different execution
speeds. For example, if the variable Value is an integer,
then Value*2 is a fast integer operation. However, if the
expression is Valuex2.0, 2.0 is represented as a real
number and the operation requires real multiplication.
BASIC09 must transform the integer Value into a real
value. If the result of the expression is assigned to an
integer type variable, BASIC09 must transform the
result back to an integer type. The decimal point can
slow the operation by about ten times.

12-2

Program Optimization / 12

Arithmetic Functions Ranked by Speed
Typical Speed

Operation in MPU Cycles
Integer add or subtract 150
Integer multiply 240
Real add 440
Real subtract 540
Integer divide 960
Real multiply 990
Real divide 3870
Real square root 7360
Real logarithm or exponential 20400
Real sine or cosine 32500
Real power 39200

Referring to the previous table can help you in your program-
ming. For instance, notice that it is quicker to add a value to
itself rather than multiplying it by 2. Similarly, multiplying a
value by itself or using SQ on a value is much faster than rais-
ing a value to the power of 2.

Notice that a real divide takes 3870 cycles, while a real multipli-
cation takes only 990 cycles. Multiplying a value by 0.5 is four
times quicker than dividing the value by 2.

Quicker Loops

BASIC09 has two versions of FOR/NEXT loops, one for integer
loop counter variables and one for real loop counter variables. It
automatically uses the appropriate version. Integer FOR/NEXT
loops are much faster than real FOR/NEXT loops.

Other kinds of loops also run faster if you use integer type vari-
ables for the loop counters. When writing program loops, remem-
ber that statements inside the loop can execute many times for
each execution outside the loop. Whenever possible, compute val-
ues before entering loops.

12.3

BASIC09 Commands Reference

Arrays and Data Structures

The internal workings of BASIC09 use integer numbers to index
arrays and complex data structures. This means that BASIC09
must convert real type variable or expression subscripts before it
can handle them. Using integer expressions for subscripts
increases execution speed.

Using the assignment statement LET to copy identically sized
data structures is much faster than copying arrays or structures
element-by-element inside a loop.

The PACK Command

PACK causes a second compilation of a specified procedure.
Depending on such variables as the number of procedure com-
ments and the inclusion of line numbers, packed procedures exe-
cute from 10 to 30 percent faster. Line numbers cause unpacked
procedures to run slower.

Minimizing Constant Expressions
and Subexpressions

For maximum execution speed, precalculate constant expres-
sions. For instance, x = x+5 produces the same result as x =
x+sqrtC180)/2. However, the first expression requires approxi-
mately 150 MPU cycles while the second expression requires
11,650 MPU cycles. If you use such an expression inside a loop,
the additional execution time is enormous.

Input and Output

Accessing data one line or record at a time is much faster than
accessing it one character at a time. Also, the GET and PUT
statements are much faster than READ and WRITE statements
when accessing disk files. This is because GET and PUT use the
same binary format as BASIC09’s internal operations. READ,
WRITE, PRINT, and INPUT must perform binary-to-ASCII or
ASCII-to-binary conversions, which take more time.

12-4

Appendix A

Error Codes

Signal Errors

Code Meaning

1 Unconditional termination
2 Keyboard termination

3 Keyboard interrupt

BASIC09 Error Codes

Code Meaning

10 Unrecognized symbol

11 Excessive verbiage

12 Illegal statement construction

13 I-code overflow, need more workspace memory
14 Illegal channel reference, bad path number given
15 Illegal mode (read/write/update) - directory only
16 Tllegal number

17 Illegal prefix

18 Tllegal operand

19 Illegal operator

20 Illegal record field name

21 Illegal dimension

22 Tllegal literal

23 Illegal relational

24 Illegal type suffix

25 Too-large dimension

26 Too-large line number

27 Missing assignment statement

28 Missing path number

29 Missing comma

30 Missing dimension

31 Missing DO statement

32 Memory full, need more workspace memory
33 Missing GOTO

34 Missing left parenthesis

35 Missing line reference

36 Missing operand

37 Missing right parenthesis

38 Missing THEN statement

39 Missing TO

A-1

BASIC09 Commands Reference

Code Meaning

40 Missing variable reference
41 No ending quote

42 Too many subscripts

43 Unknown procedure

44 Multiply-defined procedure
45 Divide by zero

46 Operand type mismatch

47 String stack overflow

48 Unimplemented routine

49 Undefined variable

50 Floating overflow

51 Line with compiler error

52 Value out of range for destination
53 Subroutine stack overflow

54 Subroutine stack underflow
55 Subscript out of range

56 Parameter error

57 System stack overflow

58 I/0 type mismatch

59 I/O numeric input format bad
60 I/O conversion: number out of range
61 Illegal input format

62 1/0 format repeat error

63 1/0 format syntax error

64 Illegal path number

65 Wrong number of subscripts
66 Non-record-type operand

67 Tllegal argument

68 Illegal control structure

69 Unmatched control structure
70 Illegal FOR variable

71 Illegal expression type

72 Illegal declarative statement
73 Array size overflow

74 Undefined line number

75 Multiply-defined line number
76 Multiply-defined variable

77 Illegal input variable

78 Seek out of range

79 Missing data statement

Error Codes | A

Windowing and System Errors
Code Meaning

183 Illegal window type

184 Window already defined
185 Font not found

186 Stack overflow

187 Illegal argument

188 (unused)

189 Illegal coordinates

190 Internal integrity check

191 Buffer size is too small
192 Illegal command
193 Screen or window table is full

194 Bad/undefined buffer number
195 Illegal window definition
196 Window undefined

197 (unused)

198 (unused)

199 (unused)

200 Path table full

201 Illegal path number

202 Interrupt polling table full
203 Illegal mode

204 Device table full

205 Illegal module header

206 Module directory full

207 Memory full

208 Illegal service request

209 Module busy

210 Boundary error

211 End of file

212 Returning non-allocated memory
213 Non-existing segment

214 No permission

215 Bad path name

216 Path name not found

217 Segment list full

218 File already exists

219 Illegal block address

220 Phone hangup data carrier detect lost
221 Module not found

223 Suicide attempt

BASIC09 Commands Reference

Code Meaning

224 Illegal process number

226 No children, can’t wait for nonexistent child process
227 Illegal SWI code

228 Process aborted, signal 2

229 Process table full, can’t fork a process
230 Illegal parameter area

231 Known module

232 Incorrect module CRC

233 Signal error

234 Non-existent module

235 Bad name

237 System RAM full

238 Unknown process 1D

239 No task number available

240 Illegal unit error

241 Bad sector number

242 Write protected disk

243 CRC error

244 Read error

245 Write error

246 Not ready, device not ready

247 Seek error

248 Media full

249 Wrong type, incompatible media type
250 Device busy

251 Disk ID change, disk changed with open files
252 Record is locked out

253 Non-sharable file busy

A4

Appendix B

The Inkey Program

Assembly Language Listing of Inkey

An assembled version of Inkey is included on the CONFIG/
BASIC09 diskette. Use Inkey from BASIC09 with the RUN
statement.

FRERERERRRERARER RS

INKEY - & subroutine for BASICHY by Reberi Doggett

+

+ Called by: RUN INKEY(StrVar)

t RUN INKEY(Path,StrVar)

* INKEY determines if & key has been typed on the given path
(Standard Inpul if not specified), and if so, relurns the next
character in the String Variable. If no key has been typed, the
null string is returned. If a path is specified, it nust be
either type BYTE or INTEGER,

-

-

-

-

NAM INKEY
IFP1
USE /DB/DEFS/0SIDEFS
ENDC
ge21 TYPE set SBRTN+DBJCT
0881 REVS set REENT+
dpee 87CDEASE mod InKeyEnd, [nKeyNam, TYPE ,REVS

, [nKeyEnt,S12E
888D 496EGBBS [nKeyNam fcs "Inkey"

D 068 org] Parameters
D 8448 Return rmb 2 Return addr of caller
D dee2 PCount rmb 2 Num of params following
D Bed4 Param! rmb 2 15t param addr
D 6086 Lengtht rmb 2 5ize
D dde8 Param2 rmb 2 2nd param addr
D 088A Length2 rmb 2 size
6aac E$Param equ $38
pgec SIZE equ #
fet2 3064 InKeyEnt leax Param!,S

B-1

BASIC09 Commands Reference

6014
8616
g01A
pe1c
920
pa22
625
go27
829
028
82D
go2r
p83t
8033
835
6037
0833
6638
pa3F
841
8043
#1845
048
844
g04E
g851
052
0854
6956
2657
059
0854
g058B
pesE

EC62
16830801
2727
168386402
2635
ECFB84
AEGE
301F
2746
301
2628
1F98
3068
Les2
AEB4
CoFF
£784
11836642
502
E701
0601
183F8D
2508
106E6081
163r83
39

C1F6
2603

39

(638

43

39
186916

ldd
capd
beq
cmpd
bne
ldd
ldx
leax
beq
leax
bne
tfr
InKeyld leax
InKey2d ldu
ldx
idb
5tb
cmpu
ble
sth
InKey38 ldb
0s9
bes
ldy
059
rts
InKey38 cmpb
bne
ris
ParamErr ldb
[nKeyErr coma
rts
emod
InKeyEnd equ

Pcount,S
#1
InKey2d
#2
ParamErr
[Parami,5]
Lengtht,$
-1,
InKey1d
-1,
Paramtrr
B,A
Param2, S
2,%

g,%

#$FF

g%

#2
InKey30
1%
#55,Ready
1$6etStt
InKey9d
#1

[$Read

#E$NotRdy
InKeyErr

#E$Param

*

Get parameter count
just one parameter?
..Yes; default path A=@
Are there two params?
No, abort

Get path number

byte variable?

..Yes; (A)=Path number
Integer?

,.Noy abort

length of string
gddr of string

Initialize o null str
at leasi two-byte sir?
. No

put str terminator

15 there any data ready?
.Noy exit

Read one byte

returns error status

(carry clear)
Parameter Error

Index

ABS command 11-4
absolute value 11-4
accessing
files 8-1, 10-8
lines (editor) 4-4 - 4-5
0S-9 commands from
BASIC 3-7
ACS command 11-5
adding lines 4-10 - 4-12
addition 7-3 -7-4
ADDR command 11-6
address
of variable 6-8, 11-6
space 11-6
advantages of BASIC09 1-1 -
1-2
ALPHA (medium-res) 9-9,
9-13
alphanumeric
mode 9-10
screen 9-9, 9-13, 9-30
ALT key 1-6, 9-4
AND
command 11-8
logical AND
command 11-84
operator 7-3, 7-4, 7-7
appending
data to files 8-3
strings 7-6
ARC command (high-res)
9-50
arccosine 11-5
arcsine 11-10
arctangent 11-11
arithmetic
function speed 12-2
operators 7-3
array 6-9-6-13
address 11-6
element 6-9
index 11-12
with random access
files 8-9

ASC command 11-9
ASCII
character value 11-18
codes 9-1-9-6, 11-9
ASN command 11-10
assign
variable storage 11-31
variable values 11-78
variables (debug) 5-3
ATN command 11-11
auto execution 3-8
automatic error checking 1-4

background color
high-resolution 9-34
medium-resolution 9-11
backslash 1-6
BAR command (high-res)
9-52 - 9-53
base 10 logarithm 11-83
BASE command 11-12 -
11-13
BASIC09
advantages 1-1-1-2
graphics with 128K
9-37 - 9-39
quitting 1-5, 3-1
starting 1-2-1-4
starting windows
from 9-39 - 9-41
beep 9-54
beginning debug 5-1
BELL command (high-res)
9-54
binary data record 11-58
BLNEKOFF command (high-
res) 9-55
BLNKON command (high-
res) 9-55
BOLDSW command (high-
res) 9-56

BASIC09 Reference

Boolean
data 6-1-6-2, 6-5
functions 7-10
OR 11-106
TRUE 11-175-11-176
value 11-51
border color (high-res) 9-58,
9-65
BORDER command (high-
res) 9-58
BOX command 9-60 - 9-61
brace characters 1-6
BREAK
command (debug) 5-2
key 1-6,5-2
breakpoint (debug) 5-2
buffer
defining 9-78
font (high-res) 9-94
get/put (high-res) 9-117
group (high-res) 9-101
pattern (high-res) 9-111
button, joystick (medium-
res) 9-9,9-22
BYE command 1-5, 3-1, 10-9,
11-14
byte
data type 6-1-6-2
numeric range 6-2
retrieval from a file 8-5
type functions 7-9

calculate
low-res characters 9-5
sine 11-154
square root 11-158
call a shell command 10-9
carriage return 1-7
high-resolution 9-67
CHAIN command 11-15 -
11-16
changing
a procedure name 10-9
color (high-res) 9-65 -
9-66

changing (cont’d)
color (medium-res) 9-9
directory 3-1, 3-7, 10-9,
11-17,11-19
file pointer 11-148
procedures 1-4
scale (high-res) 9-121 -
9-122
text 4-7 -4-9
text (editor) 4-1 - 4-2
working area (high-res)
9-76
character
backslash 1-6
blink ¢high-res) 9-55
braces 1-6
brackets 1-6
fonts 9-43 - 9-44
graphic 1-6
high-resolution 9-8, 9-94
reverse video (high-
res) 9-120
tilde 1-6
underline (high-res)
9-126
underscore 1-6
up arrow 1-6
value 11-18
vertical bar 1-6
CHD command 3-1, 3-7,
10-9, 11-17, 11-19
CHX command 3-1, 3-7,
10-9, 11-17 - 11-19
CIRCLE
high-resolution 9-62
medium-resolution 9-9,
9-15 - 9-16
CLEAR
high-resolution 9-64
key 1-6
medium resolution 9-9,
9-17
close a window (high-res)
9-83 - 9-84

Index

CLOSE command 11-20 -
11-21
code
ASCI 9-1-9-6,11-9
error 11-43, Al - A4
COLOR
high-resolution 9-65
medium resolution 9-9,
9-18, 9-19
color
codes (medium-res)
9-10 - 9-11
default 9-79
high-resolution 9-31,
9-109 - 9-110
medium-resolution 9-11
of border (high-res)
9-58 - 9-59
of pixel (medium-res)
9-28 - 9-29
of screen (medium-
res) 9-26
palette default 9-79
set (medium-res) 9-18 -
9-19
command
interpreter 3-1
line storage area 3-3
line symbols 11-2
lines using spaces 2-2
mode 1-3
mode reference 10-9
commands
by type 10-7
configuring (high-res)
9-47
debug 10-11
drawing (high-res) 9-46
editing 10-10
executing 0S-9 3-7 - 3-8
font (high-res) 9-49
quick reference 10-1 -
10-6
system 3-1

commands {(cont’d)
text/cursor (high-res)
9-48
using wildcards 3-5
window (high-res) 9-45
comments in a procedure
11-135 - 11-136
compile procedure 3-1, 3-8 -
3-9,10-9
compiler, multipass
compiling
procedures 1-5
saving space 1-2
complement, logical 11-96
complex
data structure 1-2,
8-11 - 8-12, 11-177 -
11-178
data types 6-1, 6-13 -
6-16
compressed procedures
concatenation 7-3
condensed procedures 3-1
configuring commands (high-
res) 9-47
constant expressions
constants, string 6-7
control key 1-6
converting
data types 6-6, 7-2
numeric types 11-54,
11-71, 11-162 - 11-163
string data 11-181 -
11-183
copying structure elements
6-16
COS command 11-22
cosine 11-22
create
data types 11-177
overlay windows (high-
res) 9-107
procedures 2-1
random access files 8-6 -
8-9

12-1

12-1

12-4

BASICO09 Reference

create (cont’d)
sentences procedure 4-3
sequential files 8-2 - 8-3
windows 9-35 - 9-36
CREATE command 8-2 - 8-3,
8-6 - 8-7,11-23 - 11-24
CRRTN command (high-
res) 9-67
CTRL key 1-6 - 1-7
CTRL-BREAK key
sequence 1-6, 3-1
CURDWN command (high-
res) 9-68
CURHOME command 9-69
CURLFT command (high-
res) 9-70
CUROFF command (high-
res) 9-71
CURON command (high-
res) 9-72
current command line 1-7
CURRGT command (high-
res) 9-73
cursor
graphics (high-res) 9-95,
9-119
graphics (medium-
res) 9-27
invisible (high-res) 9-71
movement 1-6, 9-67 -
9-68, 9-74 - 9-75
position 11-116
CURUP command (high-
res) 9-74
CURXY command (high-
res) 9-75
CWAREA command (high-res)
9-76 - 9-77

data
changing in sequential
file 8-4
complex types 6-1,
6-13 - 6-16
constants 6-6 - 6-7

data (cont’d)
directory 3-7
items 6-1
manipulation 7-1 - 7-2
meaning 6-1
pointer 11-140
reading 11-132 - 11-133
structure 1-2, 11-177 -
11-178, 12-2
structure address
to files 8-1
type, Boolean 6-5
type, byte 6-2
type, conversion 7-2
type, integer 6-3
type, real 6-3 - 6-4
types 6-1, 10-8, 11-177 -
11-178, 12-1
types, creating 11-177 -
11-178
DATA command 11-25 -
11-26
DATES$ command 11-27 -
11-28
day 11-27
deallocate
buffer (high-res) 9-101 -
9-102
graphics memory 9-30
windows (high-res)
9-83 - 9-84

11-6

debug
beginning 5-1
breakpoint 5-2
commands 5-2 - 5-4,
10-11
display procedure 5-3
quitting 5-3
starting 5-1, 5-4 - 5-5,
11-112
tracing 5-4
debug command
$ 5-2
BREAK 5-2
CONT 5-2

Index

debug command (cont’d)
DEG 5-2
DIR 5-3
LET 5-3
LIST 5-3
PRINT 5-3
Q 53
RAD 5-2
STATE 5-3
STEP 5-4
TROFF 5-4
TRON 5-4
default colors 9-79
DEFBUFF command (high-
res) 9-78
DEFCOL command (high-
res) 9-79
define a window (high-res)
9-86 - 9-87
defining string variables
DEG command 11-29
degrees, selecting in debug
5-2,11-29 ,
DELETE command 11-30
delete line 1-6, 2-2
editor 4-2
high-resolution 9-80,
9-92
deleting
procedure lines 4-6 - 4-7
procedures 3-6
delimiter 4-8
in sequential files 8-2
symbols (editor) 4-8
DELLIN command (high-
res) 9-80
device path 11-104
DIM command 11-31 - 11-32
DIM statement 6-2, 11-31
DIR
command 3-1-3-2, 10-9
debug 5-3
file access 8-1

6-4

directory
change 3-1, 3-7, 11-17,
11-19
data 3-7
execution 3-7
ROOT 3-7
disassembled procedure 3-3
disk file 8-1
creation 11-23
deletion 11-30
display
a formatted listing 10-9
a window 1-6, (high-
res) 9-123 - 9-124
clearing (medium-
res) 9-17
current command
line 1-7
last line 1-7
previous window 1-6
procedure 3-1
procedure from debug
5-3
procedure
information 3-1, 10-9
text 11-119 - 11-120
workspace size 3-1, 10-9
division 7-3
remainder 11-93
DO command 11-34
dot, graphics (medium-res)
9-28 - 9-29
draw
a circle (high-res) 9-62 -
9-63
a circle (medium-res)
9-9, 9-15 - 9-16
a line (high-res)
9-104
an ellipse 9-88 - 9-89
arcs (high-res) 9-50 -
9-51
command (high-res)
9-46, 9-81 - 9-82
pointer (high-res)

9-103 -

9-125

5

BASIC09 Reference

draw (cont’d)
pointer (medium-res)
9-12
lines (medium-res)
9-24 - 9-25, 9-103
rectangles (high-res)
9-52 - 9-53, 9-60 - 9-61
DWEND command (high-
res) 9-83-9-84
DWPROTSW command (high-
res) 9-85
DWSET command (high-
res) 9-86 - 9-87

edit
compiler 3-1
mode, entering 1-4
pointer 4-1
terminating 2-3
EDIT command 3-1, 10-9 -
10-10
editor 4-1 - 4-9
element 6-9
elements
of a structure,
copying 6-16
of an array 6-9
ELLIPSE command (high-
res) 9-88 - 9-89
ELSE command 11-35
END command 11-36 - 11-37
end execution 11-14
end-of-file
message 1-6
test 11-42
ENDEXIT command 11-38
ENDIF command 11-39
ENDLOOP command 11-40
ENDWHILE 11-41
ENTER
command (editor) 4-1
in the editor 4-4
key 1-7

entering
debug 5-4 - 5-5
the edit mode 1-4
EOF command 11-42
equal operator 7-5
erase
a disk file 11-30
procedures 3-1, 11-72
to end of line 9-90
to end of window 9-91
EREOLINE command (high-
res) 9-90
EREOWNDW command (high-
res) 9-91
ERLINE command (high-
res) 9-92
ERR command 11-43 - 11-44
error
checking, automatic 1-4
code 11-43 - 11-44,
A-1-A4
in a program line 2-2
simulation 11-45 - 11-46
trapping 11-97 - 11-99
ERROR command 11-45
escape function 1-6
establishing a window 9-32,
9-41, 9-86 - 9-87
evaluating expressions 7-1 -
7-2
evaluation, order of
operators 7-4 -7-5
examine
a procedure 4-4
memory 11-113
exclusive OR 11-187 - 11-188
EXEC file access 8-1
executable procedures 3-8
execute
a procedure 2-3, 3-1,
3-8, 10-9,
11-145 - 11-147
an 0S-9 command 3-1,
3-7-3-8

Index

execute (cont’d)
modules
procedure lines
execution
automatic 3-8 - 3-9
directory change 3-1,
speed 1-1
stepping 5-5 - 5-6
stopping 11-161
termination 11-14
EXITIF/THEN/ENDEXIT
commands 11-47
exiting
BASIC09 1-5
debug 5-3
EXP command 11-50
exponent, natural 11-50
exponentiation 7-3
expression 7-1

11-15 - 11-16
11-34

FALSE
command 11-51 -11-52
value 7-7
faster loops 12-2
file
listing procedures to 3-4
path 11-104
pointer 8-3, 8-5,
11-148 - 11-149
pointer, rewinding 8-11
retrieving bytes 8-5
writing 11-129 -
11- 130, 11-185-
11-186
8-1
accessing 8-1, 10-8
appending data 8-3
closing 11-20-11-21
creating random
access 8-6 - 8-9
creating sequential 8-2 -

files

creation 11-23 - 11-24
opening 11-104 - 11-105

files (cont’d)
random access 8-5 -
8-11
writing to 8-3
FILL command (high-res)
9-93
filled rectangles (high-res)
9-52 - 9-53
finding
graphics screen (medium-
res) 9-20 - 9-21
lines 4-5
fire button (medium-res)
FIX command 11-53
FLOAT command 11-54
FONT command (high-res)
9-94 A
font-handling commands (high-
res) 9-49
fonts 9-43 - 9-44
FOR/NEXT loops 11-159 -
11-160
FOR/NEXT/STEP
commands 11-55 - 11-57
foreground color
high resolution 9-65 -
9-66
medium resolution 9-11,
9-18 - 9-19
fork a shell 11-152 - 11-153
to a window 9-32
format
medium resolution 9-10
of screen (medium-
res) 9-26
of windows 9-34
formatted procedure 3-1
formatting
display screen 11-180
screen display 11-122 -
11-127
functions 7-7 - 7-10
Boolean type 7-10
byte type 7-9
integer type 7-9

9-22

BASIC09 Reference

functions (cont’d)
logical 7-10
numeric type 7-9, 10-7
real type 7-8
string 7-10, 10-7
trace 5-5-5-6
transcendental 10-7

GCOLR (medium-res) 9-9
GCSET command ¢high-
res) 9-95
GET command 8-5, 11-58
high-resolution 9-96
GET/PUT buffer 9-78
high-resolution 9-101
GET/PUT commands (high-
res) 9-47
global symbol (editor) 4-5
GLOC (medium-res) 9-9,
9-20
GOSUB/RETURN
commands 11-61
GPLOAD command (high-
res) 9-98
graphics
characters 1-6
cursor (high-res)
9-119
cursor (medium-res)
9-9, 9-27
high-resolution 9-31 -
9-126
levels 9-1
logic functions 9-105
low resolution 9-4 - 9-8
medium-resolution 9-8 -
9-30
memory deallocate 9-30
number of levels 1-2
pattern (high-res)
9-111 - 9-112
pointer (high-res) 9-42
screen (medium-res)
9-26

9-95,

graphics (cont’'d)
screen location (medium-
res) 9-20-9-21
window 9-35 - 9-36
with 128K 9-37 - 9-40
greater than 7-3, 7-5
grid format (medium-res)
9-10
group
buffer (high-res) 9-101 -
9-102
number 9-78

hardware window 9-32 - 9-35
high-resolution 9-31 - 9-126
adapter 9-22
characters 9-8

colors 9-109 - 9-110
quick reference 9-44 -
9-49
text 9-42
hour 11-27

I-Code 3-3, 12-1
IF/THEN/ELSE loop 11-35
IF/THEN/ELSE/ENDIF
commands 11-63 - 11-65
image, get (high-res) 9-98
immortal shell 9-32
initialize a disk file 11-23 -
11-24
INIZ command 9-32 - 9-33
Inkey program B-1-B-2
INPUT command 8-5, 11-68 -
11-70
input/output 12-4
insert
a line (high-res) 9-99 -
9-100
text (editor) 4-1
INSLIN command (high-

res) 9-99 - 9-100
INT command 11-71
integer

constants 6-7

Index

integer (cont’d)
data type 6-1, 6-2, 6-3
functions 7-9
numeric range 6-2
interfacing with 0S-9 1-1
invisible cursor (high-res)
9-71

JOYSTK 9-9, 9-22
jump
to line number 11-102 -
11-103
to subroutine 11-100 -
11-101

key
AIT 1-6,9-4
BREAK 1-6,5-2
CLEAR 1-6
CTRL 1-6-1-7
ENTER 1-7
key sequence
CTRL with other
keys 1-6 - 1-7
SHIFT with other
keys 1-6
keyword 11-1
KILL command 3-1, 3-6,
10-9, 11-72 - 11-73
KILLBUFF command (high-
res) 9-101
killing a procedure 3-6

LAND command 11-74 -
11-75

language modules 1-5

last line, displaying 1-7

left brace 1-6

left bracket 1-6

LEFT$ command 11-76

LEN command 11-77

length of string variables 6-4

less than 7-3 - 7-4,7-5

LET command 6-8, 11-78 -
11-79
debug 5-3
LINE (medium-res) 9-9
line
accessing (editor) 4-5
adding 4-10 - 4-12
adding (editor) 4-10
erasing 9-90
see also line, deleting
inserting (high-res)
9-99 - 9-100
jumping to 11-102 -
11-103
numbers 4-5
renumbering 4-2, 4-10
LINE command
high-resolution 9-103
medium-resolution 9-24
line deleting 1-6, 2-2, 9-92
editor 4-2
high-resolution 9-80
in procedures 4-6 - 4-7
LIST command 3-1, 3-2 - 3-5,
4-6, 10-9
listing
procedures 3-2 - 3-5,
6-6, 10-9
procedure lines
(editor) 4-2
to a file 3-4
to a printer 3-4
LNOT command 11-80 -
11-81
LOAD command 3-1, 3-6,
10-9
loading
a buffer (high-res) 9-98
BASIC09 1-2-1-4
procedures 3-1, 3-6,
10-9
window image (high-
res) 9-101 - 9-102
local variable 6-7
LOG command 11-82

BASICO09 Reference

LOG10 command 11-83
logarithm 11-82, 11-83
logic comparison 6-5
LOGIC command (high-
res) 9-105 - 9-106
logical
AND 11-8,11-74 -
11-75
block (file) 8&-1
complement 11-96
functions 7-10
NOT 11-80-11-81,
11-96
operators 7-7
OR 11-87-11-88
XOR 11-89-11-91
loop
EXITIF/ENDEXIT/
ENDEXIT 11-38,
11-47 - 11-49
FOR/NEXT 11-55,
11-57, 11-95,
11-159 - 11-160
IF/THEN/ELSE/ENDIF
11-35, 11-39,
11-63 - 11-65
LOOP/ENDLOQOP
11-40, 11-84 - 11-86
REPEAT/UNTIL
11-137 - 11-139,
11-179
WHILE/DO/
ENDWHILE 11-34,
11-41, 11-183 - 11-184
loop repetition 11-95
LOR command 11-87 - 11-88
low-resolution 9-1 - 9-7
LXOR command 11-89 -
11-91

math 1-2
medium-resolution 9-8 - 9-30
format 9-10 - 9-11
MEM command 1-3 - 1-4,
3-1, 10-9

memory

changing 11-116 -
11-117

examining 11-113 -
11-114

in the workspace 3-1
requesting 1-3 - 1-4
saving 1-2
size 1-3,1-4
message, end-of-file 1-6
MID$ command 11-92
minimizing storage 12-1
minutes 11-27
mistakes in program lines
2-2
mixing data types 7-2
MOD command 11-93
MODE (medium-res) 9-9,
9-26
modes
command 1-3
edit 1-4
module
execution 11-15
high-resolution 9-31
medium-resolution 9-8 -
9-9
modulus 11-93 11-94
month 11-27
mouse (medium-res) 9-22
MOVE (medium-res) 9-9,
9-27
move cursor 1-6
high-resolution 9-68,
9-70, 9-73 - 9-75
move
backward (editor) 4-5
draw pointer (high-
res) 9-125
graphics cursor high-
res) 9-95
the edit pointer 4-1
multipass compiler 12-1
multiplication 7-3 - 7-4

10

Index

natural exponent 11-50
negation 7-3
nesting order (debug) 5-3
NEXT command 11-95
NOT command 11-96
not equal to 7-3, 7-4, 7-5
NOT, logical 11-80 - 11-81
operator 7-4, 7-7
null constants 6-9
numbers for lines 4-5
numeric
constants 6-6
data conversion 11-162 -
11-163
data types 12-1-12-2
functions 10-7
type conversion 11-54,
11-71
type functions 7-9

ON ERROR/GOTO
command 11-97 - 11-99
ON/GOSUB command
11-100 - 11-101
ON/GOTO command 11-102 -
11-103
OPEN command 8-3,
11-104 - 11-105
operands 7-2
operators 7-1
arithmetic 7-3 - 7-4
equal 7-5
greater than 7-5
hierarchy of 7-4
less than 7-5
logical 7-7
relational 7-5-7-6
string 7-6
types 7-3
unequal 7-5
OR
command 11-106
logical 11-87 - 11-88
operator 7-7

order
of nesting (debug) 5-3
of operators 7-4 - 7-5
0S-9 commands 11-152
accessing 3-7 - 3-8
overlay windows 9-41, 9-107 -
9-108
OWSET command (high-
res) 9-107 - 9-108

PACK command 3-1, 3-8, 3-9,
10-9, 12-4
paint (high-res) 9-93
PALETTE command (high-
res) 9-109 - 9-110
palette
default colors 9-79
high-resolution 9-34 -
9-35
registers 9-35
PARAM command 6-8,
11-108 - 11-111
passing variables 6-8,
11-108 - 11-111
path
input 11-68
opening 11-104 - 11-105
PATTERN command ¢high-
res) 9-111-9-112
PAUSE command 5-5, 11-112
PEEK command 9-20,
11-113 - 11-114
PI command 11-115
pixel 9-34
color (medium-res)
9-28 - 9-29
set (high-res) 9-113 -
9-114
plus sign 7-6
POINT
high-resolution 9-113 -
9-114
medium-resolution 9-10,
9-28 - 9-29

11

BASIC09 Reference

pointer
draw (hi-res) 9-42,
9-125
draw (medium-res)
edit 4-1
file 8-5
graphics 9-42
READ 11-140
POKE command 9-20, 11-116
POS command 11-118
position
graphics cursor (medium-
res) 9-9
of a record in a file 8-5
of cursor 11-118
power of 2 11-157
predefined windows
9-33
PRINT command 11-119 -
11-120
debug 5-3
PRINT USING command
11-122 - 11-128,
11-180 - 11-182
printer, listing files 3-4
printing (tabs) 11-166 -
11-167
procedure
changing 1-4
comments 11-135 -
11-136
compilation 10-9
compiling 1-5
compressing 12-1
condensing 3-1
data size 3-2
deleting 3-6
disassembling 3-3
display 3-1
displaying information
about 3-1
erasing 3-1, 11-72 -
11-73
examining 4-4
executing 1-5

9-12

9-32 -

procedure (cont’d)
execution 2-3, 3-1
grouping 1-4
listing 3-2 - 3-3, 4-6
loading 3-6
renaming 3-2
returning from 11-141
saving 3-1, 3-5 - 3-6,
10-9
size 3-2
suspending 11-112
terminating 11-36 -
11-37, 11-161
tracing 11-174
writing 2-1 - 2-2
procedures
executable 3-8
executing 11-145 -
11-147
loading 3-1
program
execution termination
1-6
mistakes 2-2
modular 1-1
proportional text (high-res)
9-115 - 9-116
PROPSW command (high-
res) 9-115-9-116
protect window switch (high-
res) 9-85
PUT command 8-5, 8-6,
9-117 - 9-118,
11-129 - 11-130
PUTGC command 9-119

QUIT (medium-res) 9-10,
9-30
quit
BASIC09 1-5, 3-1
debug 5-3
the editor 2-3, 4-2

RAD command 5-2, 11-131
radians 5-2, 11-131

12

Index

random access files 8-5 - 8-11
and arrays 8-9 - 8-11
creating 8-6 - 8-9

random value 11-143 -

11-144
range of numbers 6-2
READ 8-4, 11-25, 11-132 -
11-133
file access
read
input 11-66 - 11-70:
pixel color (medium- -
res) 9-9

read a record 11-58 - 11-60

real

8-1

constants 6-7
data type 6-1 - 6-4
functions 7-8
number conversion
11-71
number range 6-2
number rounding 11-53
record 8-2
binary data 11-58
position 8-5
rectangle, drawing (high-
res) 9-52 - 9-53, 9-60 -
9-61
reduce memory size 1-4
registers palette 9-35, 9-109 -
9-110
relational operators 7-5 - 7-6
relative storage area 3-3
REM command 11-135 -
11-136
remainder (division)
removing
disk files
procedures
11-72
spaces 11-172 - 11-173
RENAME command 3-1
renaming procedures 3-2
renumbering lines (editor)
4-2, 4-10

11-93

11-30
3-6, 10-9,

REPEAT/UNTIL
commands 11-137 -
11-139, 11-179
requesting memory 1-3 - 1-4
reset file pointer 11-148 -
11-149
RESTORE command 11-140
retrieving bytes from a file

RETURN command 11-141
returning
from subroutine 11-61 -
11-62
to 0OS-9 10-9

reverse video (high-res) 9-120
REVON command (high-

res) 9-120
rewind a file 8-11
right brace 1-6
right bracket 1-6
RIGHTS command 11-142
ring bell 9-54
RND command 11-1483 -

11-144
ROOT directory 3-7
rounding a real number

11-563
RUN command 3-1, 6-8, 10-9,

11-145 - 11-147

SAVE command 3-1, 3-5, 10-9
saving
a window area 9-96 -
9-97
graphic images (high-
res) 9-117 - 9-118
memory 1-2
procedures 3-1, 3-5
space by compiling 1-2
SCALESW command (high-
res) 9-121 - 9-122
screen
alphanumeric 9-30
blink (high-res) 9-55
clearing (high-res) 9-64

13

BASICO09 Reference

screen (cont’d)

clearing (medium-
res) 9-9, 9-17

color (medium-res) 9-26

display 11-122

format (medium-res)
9-26

formatting 11-180

location (medium-res)
9-20 - 9-21

resolution 9-31

selecting (medium-

res) 9-13-9-14
switching (medium-
res) 9-9
searching
for text (editor) 4-2, 4-9
in strings 11-164 -
11-165
seconds 11-27

SEEK command 11-148 -
11-149
select a window 9-32 - 9-33
SELECT command (high-
res) 9-123 - 9-124
selecting memory 1-3
sending a carriage return
9-67
sentence-creating
procedure 4-3
sequential file writes
11-185 - 11-186
SETDPTR command (high-
res) 9-125
setting
a point (medium-res)
9-10, 9-28 - 9-29.
border color (high-
res) 9-58 - 9-59
color (medium-res) 9-18
pixel (high-res) 9-113 -
9-114
READ pointer 11-140
screen (medium-res) 9-9
SGN command 11-150 -
11-151

SHELL command 11-152 -
11-153
shell commands 10-9
SHIFT-« key sequence 1-6
SHIFT-BREAK key
sequence 1-6
SHIFT-CLEAR key
sequence 1-6
show text 11-119-11-121
sign of a value 11-150 -
11-151
simulating an error 11-45 -
11-46
SIN command 11-154
sine 11-154
single-diménsioned array
6-9 - 6-10
SIZE command 11-155 -
11-156
size
data 3-2
memory 1-3
procedure 3-2
space
removing 11-172 -
11-173
saving by compiling 1-2
spaces in command lines 2-2
special keys 1-5 - 1-7
speed
of arithmetic
functions 12-2
of execution 1-1
SQ command 11-157
SQR/SQRT commands
square root 11-158
starting
a shell in a window 9-36
BASIC09 1-2-1-4
STATE command (debug) 5-3
statements 10-7
status of joystick (medium-
res) 9-22 - 9-23
STEP command 5-4, 11-159 -
11-160

11-158

14

Index

step rate (debug) 5-4
stepping through
procedures 5-5 - 5-6

STOP command 11-161
stop program execution 1-6
storage
area of command
lines 3-3
minimization 12-1
of variables 11-31 -
11-33
storing
data 11-25-11-26
in memory 11-116 -
11-117
STR$ command 11-162 -
11-163
string
constants 6-7
data conversion 11-181 -
11-182
data type 6-1 - 6-2
functions 10-7
length 6-4, 11-77
operators 7-6
storage 6-5
variables 6-4 - 6-5
strings
appending 7-6
portioning 11-76, 11-92,
11-142
searching 11-164
structured programming 1-1
structures, complex data
8-11 - 8-15
subroutine
commands 11-61 - 11-62
jumps 11-100 - 11-101
SUBSTR command 11-164 -
11-165
substrings 11-92
subtraction 7-3 - 7-4
suspending execution 11-112
switching screens (medium-
res) 9-9,9-13 -9-14

symbolic debugging 5-1
syntax 11-1
system
commands 3-1
interfacing 1-1

TAB command 11-166 -
11-167
TAN command 11-168
tangent 11-168
terminating
a procedure 11-36 -
11-37,11-161
the editor 4-2
test for end-of-file 11-42
text
changing 4-2, 4-7 - 4-9
characters (high-res)

9-94
display 11-119 - 11-121
fonts 9-43 - 9-44
formatting 11-122 -
11-128
high-resolution 9-42 -
9-44
proportional 9-115 -
9-116

searching 4-2, 4-9
cursor commands (high-
res) 9-48
three-dimension arrays 6-13
tilde 1-6
time 11-27 - 11-28
tracing
execution 5-4 - 5-6,
11-174
transcendental functions 10-7
trapping errors 11-97 - 11-99
TRIM$ command 11-172 -
11-173
TROFF command (debug)
5-4,11-174
TRON command 5-4 - 5-6,
11-174

15

BASICO09 Reference

TRUE command 11-175 -
11-176
turning off the cursor 9-71
two-dimension array 6-9
type
conversion 6-6, 7-2
mismatch 6-6
of data 6-1 - 6-16, 10-8
of file access 8-1
of operators 7-3
TYPE command 8-12,
11-177 - 11-178

underscore 1-6

UNDLNOFF command (high-
res) 9-126

UNDLNON command (high-
res) 9-126

unequal 7-5

UNTIL 11-137 - 11-139,
11-180

up arrow 1-6

UPDATE 8-1, 8-4

USING command 11-180 -
11-182

using debug 5-4 - 5-5

VAL command 11-181 -
11-182
value
absolute 11-4
Boolean 11-51 - 11-52
random 11-143 -11-144
variable
address 6-8, 11-6
initialization 6-8
local 6-7
passing 6-8 - 6-9,
11-108 - 11-111
size 11-155-11-156
storage 11-31 - 11-33
value of 11-78 - 11-79
variables 11-2
assigning (debug) 5-3

local 6-7
string 6-4 - 6-5

_vector 6-13

vertical bar 1-6
video
address (medium-res)
9.9
reverse (high-res) 9-120
visible cursor (high-res) 9-72

WCREATE command 9-33 -
9-34
WHILE/DO/ENDWHILE
loop 11-34, 11-41,
11-180 - 11-181
whole number, range 6-2
wildcard
editor 4-1
using with commands
3-5
window
area, saving 9-96 - 9-97
commands (high-res)
9-45
deallocating (high-
res) 9-83-9-84
defining (high-res)
9-86 - 9-87
display 1-6, 9-123 -
9-124
erasing 9-91
establishing 9-32 - 9-41
formats 9-34
graphics 9-35 - 9-36
hardware 9-32 - 9-35
image (high-res) 9-101 -
9-102
overlay (high-res)
9-107 - 9-108
protect switch (high-
res) 9-85
shell 9-36
working area (high-res)
9-76 - 9-77

16

Index

windows
defining 9-33 - 9-34
from BASIC09 9-39 -
9-41
overlay 9-41
predefined 9-32 - 9-33
with high-resolution
9-31
working area (high-res)
workspace 1-3, 3-1
WRITE command 11-185 -
11-186

9-76

writing
a procedure 2-1 - 2-2
to files 8-3, 11-129

XOR command 11-187 -
11-188
XOR operator 7-7

year 11-27

17

