°*DEFT Pascal
Workbench

User’s Guide

TRS-80™ Color Computer Software Series

Version 3 Second Printing

DEFT Pascal Warkbench User’s Guide
Copyright ® 1983, 1984 DEFT Systems, Ine.
Damascus, Maryland 20872, .8 A.

All Rights Reserved

Reproduction of any portion of this manual. without cxpress written
permission from DEFT Systems, Inc. iz prohibited. While reason-
able efforts have been taken in the preparation of the manual (o
assure its accuracy, DEFT Systems, lnc. assumes no liability
resulting {rom any errors or omissions in this manual or from the
use of the information obtained herein.

DEFT Pascal
DEFT Edit
DEFT Macro/6809
DEFT Linker
DEFT Dehugger
DEFT Lib
Copyright ® 1983, 1984 DEF'I' Syslems, Inc.
Damascus, Maryland 20872, U.S.A.
All Righls Reserved

The software is retained on a 5 % inch diskette in 2 binary format.
All portions of this software, whether in the binary format or other
source code format, unless otherwise stated, are copyrighted by
DEFT Systems, Inc. Reproduction or publication of any portion of
this materiul, without the prior written authorization by DEFT
Systems, Inc., is stricily prohibited.

TRS5-80™ is a Trademark of Tandy Corporation

Software License

DEFT Systems, Inc. grants to ¥ou, the customer, a non-exclusive,
paid-up license to use the DEFT Systems software on one computer,
subject to the following provisions:

1.

=

Exceptasotherwise provided in the Software License, applicable
copyright laws shall apply to the Software.

Title to the medium on which the Software is recorded (cassette
and/or diskette) or stored (ROM) is transferred to you, hut not
title to the Software.

Y ou may use the Software on one host computer and access that
Software through one ar more terminals if the Software permits
this function.

. You shall nol uge, make, manufacture, or reproduce copies of

Software except for use on one computer and as is specifically
provided in the Software License. You arc expressly prohibited
from disassemnbling the Software.

You are permitted to make additional copics of the Software only
for backup or archival purposes or il additional copies are
required in the operation of one computer with the Software, but
only to the extent the Software allows a backup copy to he made,

You may resell or distribute unmodified copies of the Software
provided you have purchased one copy of the Software for each
one sold or diziributed. The provisions of this Software License
shall also be applicable to third parties receiving copies of the
Software from you.

. All copyright notices shall be retained on all coples of the

Software.

Term

This License ig effective until terminated. You may terminate this
License at any time by destroying the Software together with all
copies in any form. It will also terminate if you fail to comply with
any term or condition of the License.

ii

Warranty

These programsg, their ingtruction manual and reference materials
are sold AS IS, without warranty as to their performance,
merchantability, or fitness for any particular purpose. The entire
risk astothe resultsand performance of these programs is assumed
by vou.

However, to the original purchaser only, DEFT Systems, Inc.
warrants the magnetic diskette on which these programs are
recorded to be free from defeets in materials and faulty work manship
under normal use for a period of thirty days from the date of
purchase. If during this thirty day peried the diskette should
become defective, it may be returned to DEFT Systems, Inc. for a
replacement without charge, provided vou have previously sent in
vour limited warranty registration notice to DEFT Systems, Inc.
or send proof of purchase of these programs.

Your sole and exclusive remedy in the event of a defect is expressly
limited to replacement of the diskette as provided above. If Failure
of a diskette has resulted from accident or abuse INEFT Systems,
Inc. shall have no responsibility to replace the diskette under the
terms of this limited warranty.

Any implied warranties relating to the diskette, including any
implied warranties of merchantability and fithess Tor a purticular
purpose, are limited to a period of thirty days from the date of
purchase. DEFT Systems, Ine. shall not be liable for indirect,
special, or consequential damages resulting from the use of this
product. Some states do notl alluw the exclusion or limitation of
incidental or consequential damages, so the above limitations might
not apply to you. This warranty gives you specific legal rights, and
you may alse have other rightls which vary from state to state.

Support

DEFT Systems, Inc. {and not Radio Shack) is completely
responsible for the Warranty and all maintenance and support of
the Softwarc. Any questions concerning the Software should be
directed to:

DEFT Systems, Inc.
P.O). Rox 359
Damascus, Md, 20872

1ii

DEFT Pascal Workbench User’s Guide

Introduction

Familiarization Exercise

DEFT Edit

DEFT Pascal Compiler

DEFT Macro/6809 Assembler

DEFT Linker

DEFT Debugger

DEFT Lib

DEFT Pascal Language

Advanced Pascal Language Extensions

DEFT Macro/6809 Assembler Language

I_ﬁdex

DEFT Pascal Workbench

1 DEFT Pascal Workbench 1
11DEFT Paseal ... e i 1
L2DEFT EdIL .. i i e it 1
1L3DEFT Macro/6808 i i, 2

. 1LADEFT Linker ... oottt i it e e e 2
1.5 DEFT Debugger ... i 2
1B DEFT Lib ... e i 2

2 DEFT Pascal Workbench Users Guide 4
21 Document Divisions ...t 4
2.2 Document Scetion Deseriptions ... oo, 4

3 Software Development 6
3.1 Program Design Development ..o oo oL, 6
3.2 Source Code Development. oo, 7
3.3 Object Code Development.ot i, 7
3.4 Load Module Development ... oo e R
3.5 Program Kxecution and Debuggingo 0. 8

4 Getting Started ... i e e 9
4.1 Program Executiono iiiiivnin e, 9
4264K Operation e 10

. 4.8 32K Operationtuiii i e e 11
A4 DEFT Files oo e e 11
4.5 DEFT Pascal Workbench Diskette Contents, 12
4.6 Single Dizk Drive Operation 11

Intro

1 DEFT Pascal Workbench

DEFT Pascal Workbench is a set of soltware development tools
designed to support a programmer through the process of creating
computber programs; from entering source code through executing
the resulting machine program. DEFT Pascal Workbench is
comprised of the following software packages:

DEFT Pascal
DEFT Edit
DEFT Macro/6809
DEFT Linker
DEFT Debugger
bERT Lib

DEFT FPascal Workbhenceh requires a TRS-80 Color Computer to
be configured with at least. 32K of memory, Exlended Disk BRASIC,
and one floppy disk drive. DEFT Pascal Workbench utilizes a
device independent file structure which 1s fully compatible with
Disk Extended BASIC. Disk and tape files ereated with DEEFT
Pascal Workbench are of the same internal [ormat as those
produced and supported hy BASIC.

1.1 DEFT Pascal

The DEFT Paseal Compiler isa fully recursive, single-pass Pascal
language compiler for the TRS-80 Color Computer. It compiles
Paseal programs directly into machine language code that can be
executed by the 6809 microprocessor in the CoCo,

DEFT Pascal generally supports most standard Paseal language
construcls, In addition, DEFT Pascal supporis many extengions to
the standard language which makes text processing, multi-language
and systems {ype programs easier to write.

1.2 DEFT Edit

DEFT Edit is a secreen mode, in-memory, ext cditor which
provides its users with a selectively moveable window into a text
file. DEFT Edit was designed primarily for the development of
program source code, but it can also be used for the production of
software documentation.

Introduction 1

1.3 DEFT Macro/6809

DEFT Macro/6809 is a device-independent software package
designed to translate Motorela 6809 Assembler source programs
into 6809 micro-processor machine programs in two passes.
Program source filex may be read from either cassette or disk with
the resulting machine program abject files written to either
cassette, disk, or the serial I/Q port, DEFT Macro/6809 parses and
cvaluates Motorola 6809 Assembler language statements and
declarations, and generates the corresponding 6809 micro-processor
machine programs according to Motorela 6809 Assembler language
svntactical rules and conventions.

1.4 DEFT Linker

DEFT Linker is a program which reads the program object files
produced by both DEFT Pascal and DEFT Macro/6809 and
converts them into machine executable binary image files suitable
for loading with the Color Computer's LOADM command. DEFT
Linker can also read multiple program object files and combine
them into one larger machine executable binary Load Module so as
to allow Color Computer users to develop very large programs one
picec at a time.

1.5 DEFT Debugger

DEFT Debugger iz an excellent ool for debugging machine
programs developed in either I’ascal or Assembler. DEFT
Debugger allows you to stop and start a program under lest al
almost any poinl. Onece the program under test has been stopped,
you ¢an display and/or change any memory location or micro-
processor register.

When used with DEFT Pascal, DEFT Dcbugger provides
symbolic access to your program as well as a trace facility for
digplaying currently active procedures,

1.6 DEFT Lib

NDEFT Lib is an excellent tool for the development of objeet module
libraries using objeet modules produced by either DEF'T Paseal or
DEFT Macro/680%. DEFT Lih is a device independent software
package capableof creating and maintaining up to 50 chject module
sectionsinonelibrary file, Onec ercated, these libraries can be used

2 Introduction

as input to DEFT Linker which will only uze those sections which
have been referenced by the particular program which is being
linked.

Introduction 3

2 DEFT Pascal Workbench Users Guide

The DEFT Pascal Workbhench Uszers Guide is structured to be
helpful in understanding and using DEFT Pascal Workhench,
The Users Guide is notintended tohe a self teaching guide in how to
program butralher a tutorial on how to use the programs in DEFT
Pascal Workbench.

If you already have an understanding of programming, then the
User’s Guide should contain more than enough information for you
to immediately begin programming. If you have only programmed
in BASIC. then vou should be able to begin programming bat you
may need @ Pageal text book when tackling some of the more
advanced portions of the language. In gither case, practice makes
perfect, and no one should expect too muceh of themselves without
some experience.

2.1 INocument Divisions

The DEFT Pascal Workbench User’s Guide is presented in three
parts: Mntraduction, How To and Buckground. Fach section was
written with two specific objeetives in mind.

® Tosupport DEFT Pascal Workbench users according Lo their
operation of a DEFT softwarce product. .

* To provide background information for reference,

2.2 Documeni Seetion Desceriptions

The Introduction section informs the reader of two things. First, it
tescribes the contents of the User’s Guide iwsell and second, it
dezeribes how, in general terms, to use DEFT Pasecal Workbench
o develop programs.

The Hme: T section deseribes in operational detail how to execute
euch tool provided in DEFT IPascal Workbench. This scetion
starts with 2 Familiarization Exercise designed to be perfermed
by you when you are first becomingacquainted with DEFT Paseal.
This exercise provides a working example program. IFollowing the
excreise are individual sections which describe the operation and
use of each program in the DEFT Paseal Worltbeneh.

The Buaelkyrownd section presents the reader with reference
information. The first part summarizes the standard language
elements of DEFT PPascal and includes a brief explanation of each.
The second part sumrmarizes the language extensions that are

1 Introduction

contained in DEFT Paseal, with an explanation of each element.
The last part summarizes the language elements of DEFT
Macro/680% assembly language.

Regardless of how much experience & you may have, we highly
recommend that vou read the entire User’s Guide. Good Tuck and
have fun with DEFT PPascal Workbench.

Introduetion 5

3 Software Development

Developing programs with the DEFT Pascal Workbench is
somewhat different from the procedure for developing programs in
BASIC. With BASIC, you cssentially {ype in the program and then
tvpe RUN, Debugging usually consists of hitting the RREAK key at
appropriate points, PRINTing variables and turning the trace on
and off.

Thisis a very good cnvironment in which to develop small Programs
which do not have o execute with exeeptional speed. However, as
the programs you writc hecome larger and more complex, some of
the limitations imposed by the BASIC language will come in 1o play.
These are primarily the small ideniifier size, lack of. program
structure, and cxecution performance of the interpreter.

DEFT Pascul Workbench takes up where BASIC leaves aff. It
should be seen as a powertul addition to your existing program
tools, It is ideal for thuse programs which heeome very large,
complex, and which execute for relatively long periods of time. All
the programs in the DEFT Pascal Workbenceh were themselves
developed using the workbench.

In general, the DEF'I' Pascal Workbench allows you to divide and
conguer a large problem in smaller pieces. The linkage facilities
found in DEFT Pascal and DEFT Macro/6809 provide 2 very
simple and straightforward method for combining the program
picees. This linkage facility is an exira siep in the program
develupment process and for amall programs may not provide many
benefits. [lowever, in lurger programs, the ahility to modularize
and compile or assemble only 2 small piccs of a program at a time
can be invaluable.

Since you are producing 6809 micro-processor instruetions with
DEFT Pascal, you will be dealing directly with the CP11 when you
begin debugging your resulting machine languape program. You
will use the DEFT Debugger to perform this step.

3.1 Program Design Development

Diesygn. This step is one that you consciously or uncomsciously
perform before typing in a program. Al the very least you should:

® Decide exuctly what things the program is supposed todao. These
are the program’s functions.

G Introduction

e Decide how 1o organize (he program around these major
funetions. This will identify what vour major program pieces
are.

® Decide how each piece should be organized to perform its
funetion.

For very large programs, you may wanl to go ta even more detailerd
design before beginning your coding. Remember that vrganizing
the program is hall the job of solving the preblem. This usually
involves defining ull of the major data elements that you will be
using before wriling the code that manipulates them,

3.2 Source Code Development

INdit. This familiar step is the entry of a program’s instructions
which usually begins about halfway through the design stage. At
this point, von wil!l be creating svurce modufe files; that is, each
program that is entered is stored in its textual form in a file, This
slep is performed by the programmer using a lexl editor such as
DEFT Edit. The resulling text file containing the program
statements is referred to as 8 sowree file or sowrce sodule file.

This step is very similar to that in BASIC, cxeept that in BASIC
onee the program is entered, it can then be immediately executed by
the BASIC interpreter. With DEFT Pascal. the program
stulemenis in text form must first be translated into machine
ingtructions for execution by the 62809 micro-processar. This leads
ua to the next phase of program development.

3.3 Object Code Development

Compile/Assenbie. This is a new step for those used to BASIC. This
step involves transforming the souree module files that you ereated
wilth DEFT Edit into ebject module files which coniain two things:
#® The machine lgnguage version of your programs

¢ Linkage information that will allow one ohjeet moduls file to be
combined with others

DEFT Pascal and DEFT Macro/680% ure bath used to perform
this step. Both programs prompt the user for both the name ol the
sowrce module file which it nses for input and the object module file
which it produces.

Introduction 7

3.4 Load Module Development

Liwnk. This is the last step before actually executing your program.
This step converts the previously created object modafe files into
single binory load module files.

When DEFT Pascal creates its object module files, it includes ealls
to machine language routines in other objeet modules which were
included on your DEFT Pascal diskette. These ahject modules are
in aspecial filecalled a runtime library and provide services such as
/0, string and set handling as well as floating point arithmetic. All
of these object modules must be combined together and all of the
address references between these modules must he adjusted
appropriately in order to ereate a working program.

DEFT Linker performs this whole operation. It prompts you for
the nameis)of the objeet module file(s) tobe linked, which it uzes for
input, and the name of the lood modide ftle which il produces. This
step Lakes all of those object module files and combines them into a
single file that ean be laaded via the BASIC LOADM command.

3.5 Program Execution and Debugging

Erecute/Debugy. This step involves actually testing your program hy
providing it with test data developed during the design step 1o
determine it the program is producing the correct results. The
DEFT Debugger permits a programmer to stop and restart a
program under tezt at any point within the program. The
programmer may then examine any memory localion and/or micro-
processor register and change its contents if desired. With the
DEFT Debugger, the user may specify up to eighl program
stopping or breck poinls al one time,

DEFT Debugger 15 an object module that is linked into your
progrant’s load module by DEFT Linker and therefore becomes a
part of it. 1t initially gains control when your program begins
execution so that you can use it to control subscquenl executior.
Onece your program ig debugged, you ean re-link it without the
debugger which will make your program smaller and faster.

For most large programs, the first and last sleps, design and
debugying, Luke the majority of the total time spent on a program.
In fact, invery large projects the first and last steps are broken into
anumber of sub-steps in order to keep the joh to a manageable size,

] Introduction

4 Getting Started

This section of the DEFT Pascal Workbench User's Guide is

meant to provide you with the nperational details required to use

DEFT softwarc products on the TRS-80 Color Computer. This

section iz required reading hefore vou should attempt anything
. with a DEFT software product.

4.1 Program Execution

All DEFT programs for the TRS-80 Color Computer are binary
machine language programs that are loaded into memory with the
LOADM command and executed with the EXEC eommand. Before
cxecuting any DEFT program or any program that you ereate with
the DEFT Pascal Workhench, it is absolutely necessary to proteet
it from BASIC. This is done with the following set of 4 BASIC
Monitor commands, These commmands need to be entered only once,
just before the first time thatyou load a DEFT program. Subsequent
loads of DEFT software will not reguire the re-entry of these
BASIC Monitor commands.

1. NEW-Thiscommand 13 nat necessary if vou have juzt turned on
yvour Color Compuler. It is used to initialize the memory area
narmally used by the BASIC Interpreter inthe Color Computer’s

. ROM.

2, POLEAR ! -'This command causes Extended BASIC to reserve
Lthe minimumn nuomber of 1.5K byte pages for graphics, Since no
DEFT software product uses BASIC's graphics for preseniation,
this command rcleases otherwise unused memory for use by the
program being loaded.

8. FILESG,6- Thiscommand tells BASIC that vou donot intend to
access uny disk [1les via BASIC. Note that even after executing
this command you can still DIR, KILL and RENAME. However,
vou will not be able to COPY. Since cach program of the DEFT
Pascal Worlkibench is an independent machine program. none
of the BASIC Interpreter's file facilities are required, therehy
frocing up oven more otherwise unused memory.

1, CLEAR 16,4349 - This reserves the upper SOK (27K in a 32K
ayatem) bytes of memaory for nse by DEFT software products. It

. will leave a little over 300 hytes of memory for use by BASIC.
This Color Computer BASIC Monitor direclive musl be enlered

exactly as presented in this example. The first directive
argument, 16, tells the BASIC Monitor how many hytes of

Introduction 9

memory to reserve for BASIC strings. Since no DEFT software
produets use the Color Computer’s BASIC language, 16 bytes of
memory is more than ¢cnough. The comma (.} preceding this next
number is required. the nexi number, 4959, tclls the RASIC
Monitor the last or highest value “address” in memory that it is
allowed to use. This number is expressed in decimal, thereby
reserving the rest of the Color Computer's memory, from
decimal address 5000 on np, for any DEFT software produet.

It is absolutely essential that you perform these commands before
executing any of the programs in the DEFT Pascal Workbench. I
you do not, BASIC may “over-write” portions of any program that
you may load. If that were to happen, the loaded program’s
execution will produce unpredictable regults.

The BASIC command for exceuting any of the programs in the
DEFT Pascal Workbench is LOADM “Zfilenwme>""EXFE(and
the possible filenames are:

PASCAL DEFT Pascal
EDITOR DEFT Edit
ASSEMBLE DEFT Macroa/6809
LINKER DEFT Linker

LIB DEFT Lib

4.2 64K Operation

Whenever any DEFT program first begins execution, it
immediately changes the Color Computer's memory map to unmap
the BASIC ROM and map inany RAM thatmay exist in the top 32K
of memory. DEFT programs areall fully sulf-contained and so don't
need the BASIC ROM (o operate.

After changing the memory map, the program will check to see
whether you have a 32K or 64K system und then adjust the size of its
main data structure to whatever memory is available. The result of
this is that these programs can aceess up to 64K bytes of memory in
your Color Computer.

With DEFT Pascal, or any other DEFT high level language
compiler, any programs that you creale will be able to use all the
available memory in the system for your data variahles. The only
restriction is thal the program instructions (not stack) must fit in
the lower 32K of memory sinee this is loaded via BASIC.

14 Introduetion

4.3 32K Operation

some 32K systems may show the same EAM memory size as a 64K
svstem. This will canse 2ll programs lo switch to memory map 1
which will cause the system to hang. If vou have such a TRS-80
Color Computer, you will want to do the following:

1. Pawer on your Color Computer,
p

2. Make a backup of your distribution diskette and put the
distribution diskette in a safe place.

3. Pul the wn-write-protected copy of the distribution disketle that
you just made into drive (.

4. Bnter the 4 BASIC commands found in the Progrom Eveewdion
scetion.

5 Enter RUN"MAKE 7K <enter™>

The program will run for about a minute and afler it finishes, the
diskette in drive 0 will conlain a 32K version of the software.

If vou have a 64K system and want to write I*ascal programs that
access the BASIC ROMs, you can rename PASROOT/ORI o
PASBGOT/64K and PASBOOT/22K to PASBOOT/OE.J. By doing
ouly this, your DEFT software will still run using all 64K but any
program linked using this new version of PASBOOTOR.) will
opcerate with the BASIC ROMs in place.

4.4 DEFT Files

Onoof the advantages of using the DET'T Pascal Workbench is the
device independent file structure which is supported while
remaining fully compatible with the TR8-80 Disk Extended Color
BASTC Syslem Software. Disk or tape files created with BASIC,
DEFT softwarc products or programs developed with DEFT
I"ascal arc all of the same fundamental format.

When executing DEFT software development tools you will have to
specify the names of the sewrce module, object module and binury
load modaule files. The file naming conventions used with the DEFT
Pascal Workbench are only slightly different. from that of BASIC
and allow complele device independence. The format of the names
are ax follows:

Intraduction 11

0.1y

<filename>/<ext><devices >

This is the same format thal BASIC uses for Disk files. However, hy
extending the device numbers, DEFT Paseal Workbench also
uses it for the keyboard, sereen, tape and printer. The <filename> is
0 to & ASCII characters. The extension is 0 to 3 ASCIT characters.
The device numbers range from -3 to 3 with the following meanings:

-3 Keyboard/Screen
-2 Printer
-1 Casselte Tape

0 Disk drive D

1 Disk drive 1

2 Disk drive 2

3 Disk drive 3

As can be seen, the positive device numbers correspond to BASIC's
drive numbers. The negative device numbers correspond to BASIC’s
device numbers with the exception that the Keyboard/Screen is -3
rather than 0.

Al of the fields are optional in diffcrent cirecumstances. When a
deviec number of -8 or -2 is specified, there is no need for a
<filename> or <exlension>>. When a device number of -1 is
specified, the <extension> i not required. For device numbers 0
thru 3, a default <lextension’> is always present depending on the
program being run. When a4 device number is not specified, 0 is
assumed. Following are some examples:

-3 Keyboard/Screen
-2 Printer
MYFILE:-2 Printer (filename ignored but allowed)

TAPEFILE:-1 Casselte Tape File

DISKFILE/ASM Assembler source file on disk drive 0

F2ZNAME:1 File ig on disk drive 1, defauit
extension used

4.5 DEFT Pascal Workbench Diskeite Contents

The following files are contained on the diskette that you received.
You arc encouraged to make a copy of the distribution disketie for
your own bhackup purposes and to execute from the backup rather
than Lhe original diskette.

1. PASCAL/BIN - This file contains the executable image of the
DEFT Pascal Compiler.

12 Introduction

ot

g

10

FEDITOR/BIN -This [1le contains the executable image of DEFT
Edit.

LINKER/EIN - This file containg the executable image of the
DEXFT Linker.

. ASSEMEBLE/BIN - This file contains the execeutable image of

DEFT Macro/6809,

. LIB/BIN -This{ile contains the executable image of DEFT Lib.
CPASCALIB/EXT - This is a4 Pascal source file which is

antomatically copied by DEFT Paseal at the beginning of all
programs which it compiles. This file contains the declarations of
all of the predefined procedures and funections provided with
DEFT I*aseal. This file must be present on disk drive 0
whenever DEFT Pascal is executed.

PASBOOT/OEB.F - Thisis the object file for the standard doot code
for all Pascal programs. All programs produced by DEFT
Software have a first anstruction. I'or DEFT Pascal programs
these first instructions are kept in this file, This object module
file contains the machine language routines for I'aseal program
initialization. "I'his file must bo present on disk drive O when
linking a Pascal program with the DEFT Linker.

. RUNTIME/LIB - This is the objeet module library file which

containg all the Paseal BEuntime routines for Fascal programs
developed with DEFT PPascal. Each library section conlains
machine language rontines which are automatically called by
DEFT Pascal when you use various parts of the language. This
file must be present on digk drive O when linking a Pasecal
program with DEFT Linker.

DEBUGGER/LIB - This is the library file which containg
DEFT Debugger for debugging any program created with
DEFT Paseal Workbench. This file must be present on disk
drive (0 when linking any program which is to include DEFT
Debugger. S3ee DEFT Debugger for more information,

FORMAT/PAS & FORMAT?:PAS - These arc the two source
files which.contain the Text Formaiter DEF'[Pascal program.
You will use these sourve files in the Famdiorizalion Exercise
part of the HOW TO section, to create your own text processing
system.

Introduction 13

onug

11, FORMATSP/ASM -This is asource file which contains the 6809
Macro Assembler language portiem aof the Tewl Formatter
program.

12, FORMATSP/OBJ - This is an object file produced by DEFT
Macro/6809 from the FORMATSP/ASM source file. It ig
ineluded onthe distribution diskette in case you donot wish to use
Lhe assembler,

13. FORMAT/TXT - This is an ASCIL file thal the FORMAT
program uses for input. The FORMAT program will produce a
sct of instruetions deseribing how to use itself.

11. PASEOOT ASM - This iz a source file which eontains 6309
Macro Assembler language instruetions which ure the very first
instructions executed by any Pascal program developed via the
DEFT Pascal.

15, MAKE32K/PAS This is a BASIC program that converts a
distribution disketle o 32K operation,

4.6 Single Disk Drive Operation

When using asingle disk drive system you will have to create a work
diskefte thal contains a couple of files from the distribution diskette
as well as your own source, object and binary files. To execute a
program you will insert the distribution disketie into vour disk
drive, load the proper binary image, insert your work diskette into
the drive and then exeeute the loaded program.

The files thal need w be copied onto vour work diskette arc:

DEBUGGER/LIB
PASGCALIB/EXT
PASBOOT/OBJ
RUNTIME/LIB

You can copy these files by using the COPY command in BASIC.
Although single drive operation is not documented, this command
works the same way BACKUP does in single drive mode.

On some early versions of Disk 1nxtended Basic the COPY eommand
will not work on a single disk drive. If vou have nne of thege, use
BACKUP to ereate a work disketie and then KILL all the files on
the diskelte except those named above,

14 Introduction

Familiarization Exercise

IIntroduclion o i e e e 1
g B T Ty A AU AP 2
A ERd . 3
4 Compile/Assemble 4

4.1 Executing the DEFT Pascal Compileroovvvunn.. 4

4.2 Execuling the 6309 Macro Azsembler 5
%0 1 131 7

6 Exccute/Debuig)

Exer

1 Introduction

In order to illustrale the use of the DEFT Pascal Workbench, a
sample program has been included on the diskette. This program is
madec up primarily of a PASCAL program which is contained in the
files FORMAT/PAS and FORMATZ/PAS. An assembler modble
FORMATSP/ASM contains a pre-initialized lookup table that is
used by the Pasecal program. The assembler module has already
been assembled into an object file (FORMATSP/OBJ), however, if
you also have DEFT Bench, then you can also perform the zection
on assembling a program.

How To)|

2 Design

This siep has already been performed for you. The purpose of the
program is to read an ASCI] file, which can be ereated by DEFT
Edit, and to produce a professional looking document. The inpul [ile
for this program contains text und text proeessing commands
which control how the resulting document.is tolook. Text processing
commands are recognized by having a period (.} as the first
character ina line. The document that will be produced as a resull of
this exercise, containg a Detailed Functional Deseription of what
the program is to do.

The program is broken down into the Iollowing major procedures:

® [nitvalize initializes ail variables and prompts for [ile names
required.
® ReadNextline reads the next line of input and determines

whether it is acormmmand or text. If itisa command. it delermines
which command that it is.

® NeaxlSymbol parsesan input command for each parameter of that
command.

¢ FillOutput and NoFillOutput ereate normal vutput text from an
input text line.

¢ One procedure per command will be used o process each
command type.

2 How To

3 Edit

This phase has also been performed. As mentioned before, the files
FORMAT/PAS and FORMAT2/PAS contain the Paseal program.
The file FOBMATSP/ASM contains the assembly language support
for the program. With DEFT Edit or your own ASCII file text
editor, you can edit these files to see what Lhey look like. We
recornmend that you don't make any changes to the program until
after vou have made a backup and have executed the final program
at least once successfully.

How 'T'o 3

4 Compile/ Assemble

We are now ready to eompile the Pasecal program and agsemble the
assemhbler supporl code. This section agsumes that yon are using a
two disk drivesystem with the DEFT Paseal Workbench diskette
in drive 0 and your work diskette in drive 1.

If vou haveonly a single drive system, then you will have to copy Lthe
following files onto your work diskette (see the section on Single
Dirive Operalton):

FORMAT/PAS
FORMAT2/PAS
FORMATSP/ASM
FORMATSP/QBJ
FORMAT/TXT

Before starting make sure that you have performed the steps
described under Getting Started to prolect the machine language
programs from BASIC.

4.1 Executing the DEFT Pascal Compiler

The command LOADM “"PASCAL-EXFEC will lead the DEFT
Pascal Compiler [rom disk drive 0 and begin execution. You will
see the DEFT Pascal Compiler sereen with all of its prompts. If you
have only a zingle dizsk drive, then remove the DEFT Pascal
Workbench dizkette [rom the drive and insert your work disketls,
Each promptl and its possible replics are deseribed below:

® SOURCE requires Lhe name of the souree file which is to be
compiled. The default extension is PAS. Your response for this
sample program will be FORMAT, FORMAT0. FORMAT/PAN
or FORMAT/PAS:0 all of which arc cquivalent.

¢ OBJECT requircs the nameof the aliject file that is to be ereated
by the compiler. This ean he either on tape or disk or the name
can be ommilled entirely if you do not wish to create an object
file. The default extension is OBJ. Your response for this sample
program will be FORMAT:1 or FORMAT/OLF:1 both of which
are equivalent. If you have a single drive system, your response
will be FORMAT, FORMAT/OBJ or FORMAT/OBJ0.

¢ LIST requiresthenameofthelist [ile whichis to be ereated by the
enmpiler. This can be tape, disk. sereen or printer or the name
cun be ommitted entirely if you do not wish to create a ligt file.
Thedefaultextensionis LT, Y our response fur this sample program

4 ITow To

will be :-2 if you have a printer or nothing if you don't.

e DEBUGY asks you whether you wish to have debug information
included in the resulling object file. You ean answer this either
with N, 7 or anything else. Anything olher than N orn(for No)is
taken to he ¥ (for Yoes).

The debug information will make your program significantly
bigger bul will allow you to symbolically debug your resulting
program if you answer the DEFT Linker’s debug? queslion with
a Y. If you specify ¥ to DEFT Pascal’s debug? question and N to
the DEFT Linker'sdebug question, then the debug informaltion
will 5till be in the {inal hinary image even though the DEFT
Debugger module is not present.

Il you want to try out the debugger, then you can answer this
guestion Y, otherwize answer it N,

& DIRECTIVE requires any DEFT Pascal direclive that you
would like to include belore any sonreelines are read. The section
Compiler Controls deseribes all the possible compiler eantrols
that vou could enter here. Y our response for this sample program
will be T<your name>> which will cause <your name> to be
printed at the top of cach page of the program listing.

After you answer the DIRECTTV £ prompt., the program will begin
executing. The compiler requires that the file PASCALIB/EXT be
present on disk drive 0 at this point. When the compiler is linished
exceuting, control will return to BASIC and you will get the OK
prompt.

This execution of the DEFT Pascal Compiler will read both the
FORMAT/PAS and FORMAT2/TAS source [iles and create the
FORM A'T/OB. object file. The FORMATZ/TAS file will be reul
because of a compiler directive at the end of the FORMAT/TAS
source file.

4.2 Executing the 6809 Macro Assembler

If vou want to try out the DEFT Maecro/6809 assembler then you
can also assemble FORMATSF/ASM into the FORMATSP/OBJ
file. If you don’t, then go to the next seclion.

First put the DEFT Pascal Workbench diskelte indisk drive (0 and
enter the command LOA DM “ASSEMBLE":EXEC tnload DEFT
Macro/6809 and hegin its exceution. If you have a single drive

How To 5

gyvster, put your work diskette into disk drive 0.

You will see the assemhbler’s sereen appear along with 1tz first
prompt. Each prompt and ils pussible replies are deseribed below:

® TITLE: requires the string of characters that you want to see at
the top of each page of your assembly listing. You do not have to
enter a title but for this sample proagram vou can enter vour
name.

¢ SOURCE FILE: requires the name of the source file which is to
be assembled. The default extension is ASM. Your response for
thizs sample program will be FORMATSP, FORMATSF:0,
FORMATSIVASM or FORMATSF/ASM:N all af which are
eguivalent.

¢ OBJECT FILE: requircs the name of the object file thatis to be
created by the assembler. Thiscan be eitheron tapeor disk or the
name can be ommitted entirely if vou do not wish to create an
object file. The default extension is OBJ. Yaur response for this
sample program will be FORMATSP:1 or FORMATSP/0BJ:1
both of which are equivalent. Il you have a single disk drive
syatem, yvou responsc will be FORMATSP, FORMATSP:N,
FORMATSP/OBJ or FORMATSP/ORIA).

¢ LIST FILI: requires the name of the list Tile which is fo he
created by the assembler. This can be tape, disk, scereen or
printer or the name can be ommitted entirely if youdo not wish to
create alist file. The default extension 1s LST. Your respanse for
this sample program will be :-2if you have a printer or nothing if
you don’t.

After von answer the LIST FILE: prompt, the assembler will begin
its first pass. During this first pass only the disk will appear to be
doing anything. For this sample program, the first pass should last
only a few seconds. The assembler will begin printing on ils secnnd
pass through the seurce code. During this zecond pass DEFT
Macro/6809 will read the FORMATSFP/ASM source file and
produce the FORMATSF/OBJT object file and a listing on your
printer.

6 How To

L

5 Link

Onece vou have created the necessary object files with the compiler
and assembler, you are ready to link them together into your final
binary image. Make sure that yom have the DEFT Pascal
Waorkhench diskette in disk drive 0 and Lhen enter the command
LOADM “TANKER™£XEC to load DEFT Linker and begin s
execution. IT you have a single drive system, put your work disketle
in disk drive 0. The Operation section in the DEFT Linker
dvcumentation deseribes how to operate the Linker. For your
sample program, the responses required will be:

ORIGIN - no response, this will invoke the default origin.
o LIST FILE: - ;-2 if you have « printer, otherwise nothing.

» BINARY FILE: - FORMAT:1 or FORMAT/BIN:1 both of
which are equivalent. If you have a single drive system, enter
FORMAT, FORMAT:0, FORMA'T/BIN or FORMAT/BIN 0 all
of which are equivalent.

o PASCAL? (Y)- Y.

e DEBUGGER? (Y)- Y if you want to try out DEFT Debugger,
otherwise N,

» ORJ NAMES FILE: - no response, this is because you do nol
have a text filethat contains the file names of all theobjeet files to
be linked.

s OBJECT FILE: - FORMAT: { or FORMAT:ORBJ:! both of
which are equivalent. If vou have a single drive system, chter
FORMAT, FORMAT-0, FORMAT;OBJ or FORMAT/OBJ 0 all
of which arc equivalent.

¢ QBJECT FILE: - FORMATSI:? or FORMATSFE/QORJ:1 both
of which are eguivalent. If you have a single drive system, enter
FORMATSPE, FORMATSF-n, FORMATSFP,GIJ or
FORMATSP/GBJT:0 all of which are equivalent,

e OBJECT FILE: - no response to indicate that you have entered
all the nhject file names that you wish to link.

The Linker will then begin operation and produce both the final
binary image in the file FORMAT/BIN und a listing on your
printer.

How To

-1

J3XY

6 Execute/Debug

The vcommand LOADM “FORMAT:1"EXEC (LOADM
SFORMAT:EXEC on a single drive system) will load the sample
program and begin ilg execution. If vou specified Y to the
LERUGGER? prompt from DEFT Linker then vou will see the
DETFT Debugger screcen, The DEFT Debugger documentaiion
provides a complete description of how to operate the debugweer. If
you did not specily ¥ or if you give DEFT Debugger the GO
command, then you will see the FORMAT screen with its first
prompt. Yo should answer the prompts as follows:

1. INPUT FILE: - FORMAT, FORMAT:0, FORMAT/TXT or
FORMAT/TXT:0 all of which are equivalent,

2. OUTPUT FILE: - :-2 if vou have a printer. If not, put the output
on disk by entering FORMA'T:1 or FORMAT/LST:1 both of
which are equivaleni. Il you have a single disk system usc
FORMAT, FORMAT:0, FORMAT/LSTor FORMAT/LST 1 all
of which are equivalent.

Onece you answer the last prompt the program will begin executing
and produce a document showing you how to use the program,

8 How To

DEFT Edit

Ilintroduction i i 1
2BRasicOperation it 2
21 Text Bereen o . viii i it i e e 2
. S3Cursor Pesitioning 5
48crolling ... o . e e 6
T FURCHIONS .. i i e e e 7
11 The CLEARKeY ..ooivii e 7
1.2 Mujor Cursor Positioning 7
1.3 UIp Arrow Character Entryot 8
1.4 Deleling Characterso i -. s
L5 Deleting Lines ...oooirr i e 8
1.6 Replace/Insert Modes ..o v 8
e .. e e 10
21Getting AFile .. oo 10
22Writing AFile .. .o e 10
2.3 Quitting and Reentering i0
bR (54 17 12T 11
2B il EBrrors i e e e 11

3 Pattern Processingt 12
21 FindingaTextPattern ...t 12
3.2 Changing Text Patlerns PP .12

4 Copyving and Moving Textccoiivivit. 14
4,1 Marking and Saving Text ...,o i i 14
4.2 Appending The Saved Text 14
4.4 Additional Mark Funetionsccoiiiiiiieiinninnns 15

1 Introduction

DEFT Edit is a program that allows vou to ereate and modify
PASCAL and Assembler source programs as well as any type of
ASCII texi file. Its features include:

® ‘T'ext is maintained in memory to provide excellent command
response.

Files can be read and merged from either cassette or disk, They
may he written to cassette, disk or printer.

® The user interface is a screen-mode “window” into Lhe texl wilh
automatic up/down and left/right scrolling.

® All keys are auto-repeat.

® The FIND command allows you to search for specific patterns,
CHANGE provides for changing the pattern in 1 or more
inslances.

o MARK and APPEND commands allow copying and moving ol
purtions of text to either other places in the working textor toa
file.

How To 1

npi

2 Basic Operation

After LOADMing and £XFECing DEFT Edit you will sec DEFT
Edit’s copyright screen which has the INITIALIZE? (YY) prompt.
The editor uses the answer to this queslion to determine whether Lo
initialize its in-memory text buffer. When you have just loaded the
cditor. you must answer this question yes. This can be done by
entering anything other than N or » (including nothing) and then
depressing the ENTER key. The only times Lhat you would answer
this question with a N or » is when you have previously used the
editor, exited and did nothing to alter the eomputer’s memory, and
ihen re-entered DEFT Kdit. Sce the QUIT command for more
information.

Onee the editoris loaded and initialized, you are now ready to enter
toxt. The following sections will deseribe and explain what you see
and what vou can do.

2.1 Text Screen

Once you have answered the INITALIZE?(Y) question, you will see
the text screen. This screen will be green with a blue square at the
top left-hand corner and some numbers and letters on the boliom
line in reverse video. The blue squarc is blinking and if you type
some characters, they appear on Lhe top line followed by a blinking
orange square, The blue square has moved down te the seeond line.
If you hold down a key, you see the carresponding character repeat.
Fach element on this sereen is discussed in detail in the following
subsections:

Blinking Square

There is always one square on the top 15 lines of the screen which
blinks. This may be either a colored square, a character ora blank.
The place on the screen which is blinking is the cursor. This is the
point at which any text that you type in will appear. In addition,
many commands that you can enter will affect text relative to the
position of the cursor.

Blue Square

The blue square indicates the end of the text held in memory.
Anytime the enrsor is on a line which is within 14 lines of the end of
the text, the blue square will appear at the left hand side of the
screen on the line following the last line of text.

2 How To

Orange Square

The orange square indicates the end of the line. [t appears on the
screen in the position that a carriage return is stored in memory.
Every line, inciuding the last line, always has a carriage return at
the end.

Status Line

The line in reverse video at the bottom of the sereen is the status line.
This line provides infarmation about the current status of your
editting session. The information provided (in order} is:

1.

The three characters at the left-hand side of the sereen indicate
the mode that the editor is in. INS (for insert) is the mode Lthat the
editor initially comes up in and causes each character typed tobe
inserted before the charaecter pointed to by the curzor. The other
modes are REP (for replace) and MARK which are discussed in
later sections.

. The number followed by the character L is the line number on

which the cursor is currently positioned. The first line is
numbered zero,

. The number followed by the character Cigthe colomn number at.

which the cursor is currently positioned. The first ecolumn on a
line is zero.

. The number followed by the characters LS is the line size of the

line on which the cursor is eorrently positioned. This count
includes the carriage return at the end of the line,

. The number folluwed by the character T is the number of

remaining characters of text which cun slill be sntered in
memary. This number is updated cach time the cursor is
positivned to a new line.

Auto-Repeat

The auto-repeat feature allows you repeat the entry of any keyon the
kevhoard by merely holding the key down lor a ful! second. After
this, the keyv will repeat at about 6 charaeters per second.

How To 3

ENTER Key

The ENTER kev is used to enter a carriage return into the text. This
effectively splits the line at the cursor pesition and so ereates two
new lines.

SHIFT-0 Keys

The SHIFT-0 combination of keying, togegles the TRS-80 Color
Computer from UPPER CASE into UPPER/lower case and from
UPPER/lower case into UPPER CASE depending on what state
the computer wag in prior to the sitnultaneous entry of the SHIFT
and 0 keys,

4 How Ta

3 Cursor Positioning

As noted above, each character entered at the keyhoard is displayed
on the sereen atthe positionof the cursor. The cursor then roves one
column to the right. If the eursor is not currently positioned where
vau want it, you can use the four arrew keys to mave the cursor. By
depressing the appropriate up, down, left or right arrow key, the
cursor will move in the same direetion.

The eursor will always be positioned within the text of some line.
This has the following side-effects:

1. When moving the cursor up or down, il the curser moves from a
long line to a short line such that 1t would be positioned heyond
the end of the short line then the cursor will be posilioned at Lhe
end of that line.

2. When movingthe cursor to theright, if the cursoriz at thecend of
the line then it will be positioned to the beginning of the next line.

3. When moving the cursor to the left, if the corsor is at the
beginning of the line then it will be positioned to the end of the
previous line,

4, When the cursor is pogitioned at the end of the text (blue sguare),
the right and down arrows will not mave it.

5. When the cursor is positioned at the beginning of the text (line 0,
column () then the left and up arrows will not move it.

Ilow To 5

4 Serolling

DEFT Edit lets vou enter lines up 1o 255 characters long. This ig
considerably more than can be displayed on a 32 column by 15 line
sereen. The way that you view all of this text is by screlling it past
the sereen. The screen becomes a window into the text.

This serolling sceurs automatically as you position the cursor by
either entering text or by using the arrow keys. If the cursor is at the
bottom of the sereen and you force the cursor down to the next line,
then zll the lines on the screen move up 1 line with the top line
disappearing and a new line appearing at the bottom of the screen.
The reverse occurs when the cursor is posilioned al the top of the
sereen and vou foree i1t to move up.

DEFT Edit also provides left and right scrolling in a similar
manner. When the eursor is positioned at the rightmost column on
the screen and vou foree it to move right, all the text on the screen
shifts to the left by 12 columns. This prevents eye fatigue when
entering data and having the textcontantly scrolling tothe left. The
Lext will seroll o Lthe right by 12 columng when the cursor is at the
leftmost side of the sereen and vou foree it to the lefi.

6 How To

1 Functions

In addition to entering text, DEFT Edit provides many powerful
functions thatspeed text editing. The general purpose funetions are
described in this section.

1.1 The CLEAR Key

The CLEAR key is used to invoke editor funetions., When the
CLEARkey isdepressed, the cursor ehanges from a reverse video of
the character that it is over to a white square. When the cursor
changes to this white square, the next key entered is interpreted as a
function rather than as a character lo be entered into the text. Once
the funetion is performed, the cursor returns to its normal reverse
video state.

The CLEAR key itself becomes an unCLEAR function when it is
depressed a second time, which returns the cursor to its normal
mode without performing any function.

1.2 Major Cursor Positioning

By using the CLEAR key in conjunction with the arrow keys you
can quickly position to a specific area of text. The CLEAR-arrow
functions are as follows:

1. CLEAR-Up Arrow makes the cursor go UP by 15 lines to the
beginning of that line. In addition, the line that the cursor is
rositioned to will be at the top of the sereen.

2. CLEAR-Down Arrow makes the cursor go DOWN by 15 lines to
the beginning of that line. In addition, the line that the cursor is
positioned to will be at the top of the sereen.

8. CLEAR-Left Arrow makes Lhe cursor go to the beginning of the
line that it is currently positioned un.

4. CLEAR-Right Arroo makes the cursor gothe end of the line that
it is currently positioned on.

5. CLEAR-£ makes the eursor go to the beginning of the text,

. CLEAR I makces the cursor go to 15 lines before the end of the
text. Thisline iz positioned at the top of the screen with the cursor
at the beginning of the line. This allows you to see the last 15 lines
in the text. This command may take a couple of seconds on large
files due to counting carriage returns in the text in order to
maintain the line number.

How To T

1.3 Up Arrow Character Entry

The Up Arrow charaeter is used in Pascal to denote pointer and file
dereferencing. It iz also used for eursor positioning by DEFT Edit.
By firsttypingthe CLEAR key and then depressing the SHIFTkey
while typing the Up Arrow, the Up Arrow character will be entered
into the text.

1.4 Deleting Characters

There are two wayvs of deleting characters. The first is with the
(LEAR-1 Tunclion. When you use Lhis function the character that
the cursor is positioned over is deleted and all the characters to the
right of the cursor are shifted to the left one eharacter.

Il vou delete the carriage return al the end of the line, the line
following will be appended to the end of the line. You cannot delete
the last carriage return in the text.

A second way to delete characters is with the shifted left arrow key.
In this case the cursor 15 moved one position to the left and the
character there is deleted as previcusly described.

A third way isto delete all charaeters from the position of the cursor
(inclusive) to the end of the line. First vou position the cursoer over
the first charaeter in the line from where you wish to hack-off the
rest of the line, then you enter (L.AAR-H. This function will Anck
thal section of the line away and delele those characters,

1.5 Deleling Lines

A complete line can be deleted by positioning the cursor to any
character on the line to he deleted (ineluding the carriage return)
and entering CLEAR-L. This Tunction allows you tao delete the last
carriage return (as well as the last line) in the text.

1.6 Replace/Insert Modes

When DEFT Edit is first executed, it 1s in the éngert mode of text
entry. Inthis mode, when a charaeter iz entered at thekevhoard it is
ingerted in frontof the characler thal the eurzor is positionsd over.
A second mode that the editor can be placed in is the replace mode.
In this mode, when a character is entered at the keyboard-it replaces
the character that the cursor s posilioned over. However, if the
cursor 13 positioned over a earriage return then the character is

8 How T'n

inserted in front of it.

You can switch between these modes with the CLEAR-f and

CLEAR-R functions, CLEAR-I puts you in the insert mode and

CLIAR-E puts vou in replace mode. The modeis always displayed
. on the status line.

How To 9

npa

2 Files

DEFT Edit allows you to load text from ASCII files on tape or disk,
edit the text and then write back to cassette or disk. In addition, you
can nse the write function to write to the printer.

2.1 Gelting A File

The CLEAR-G{Get) function allows you 1o insert the contents of 4
file into the current text in front of the character that the cursor is
currently positioned over. This allows you to both initially load a file
and to merge several files in memory.

When you enter CLEA £-(you are prompted for a file name on the
status line. When typing on the status line the only thing that you
can do is enter characters, the lefi-arrow to backspace and the
ENTER key to terminate the entry, The default suffix used by the
editoer is blanks. If you enter no file name then the function is
aborted and you return to the editing session.

2.2 Writing A File .

The CLKAE-Wfunction is used to write the in-memory text to a file.
Likethe CLEAR-G youare prompted for afile name. However, you
are given the default of the file name used in the last CLEAR-(;
operation. If you enter any key other than ENTER then the default
entry is erased and the character you entered is processed. Likc the
{LKAR-(function, if you enter a null file name the function is
aborted.

2.3 Quitting and Reentering

The CLEAR-Q function is used to quit the editor and return to
BASBIC. Afterentering the function, you should immediately get the
OK prompt.

When Icaving DEFT Edit. the contents of the texl area are not
changed (unless you forgot to protect memory from BASIC with
BASICs CLEAR statement). You can reenter the editor and
answer the INITIALIZE? (Y} question with cither an N or » and
return to the point in your edit session that you left. This is
canvenient when you wish to doa DIR Lo determine which files are
on the disk before savinyg off the text in memory.

10 How To

2.4 Exiting

The CLEAR-X function allows you to combine the CLEAR-Wand
CLEAR-() functions with a single [unction. The write function is
performed followed by the quit function. The text in memory is left
un-changed.

2.5 File Errors

When reading from or writing to a file, a number of errors can
veeur. Whenever an I/0 error occurs the message #7110 ERROE ...
is displayed on the status line and the editor waits for you to
acknowledge seeing the message by depressing any key on the
kevboard. This means that the first key depressed aller the display
of an error message will yield nothing more than the
re-establishment of a normal status line presentation. Normal
_operation is then resumed. The possible error numbers are as
follows:

e -1, End of File - You should not get this error number since an
end of file is an expecled oceurence for DEFT Edit.

e -2, [/ Evror - This indicates that some hardware oricnted
problem occeured.

o -3 File Not Found - The file specified was not found.

8 -4, Hiegal Operation - This may eceur if you try to read from the
printer.

e -5, Device Fuli- There is no more space available on the specified
device.

How 'l'o 11

3 Pattern Processing

DETFT Edit contains commands lor finding and changing text
patterns.

3.1 Finding a Text Pattern

The CLEAR-Ffunction is used to find a specific patlerninthetexi.
After entering the CLEAR-F you are prompted on the stalus line
for the string, of up to 24 characters, that you want 1o find. When
typing on the status line the only things that vou can type are
characters, the lefi-arrow to backspace, and the ENTIR key to
terminate the entry.

When you depress the ENTER key the search will bogin at the point
in the text where the cursor was when you entered the CLEAR-F
and will continue down tothe end of the text. Tl a matching string is
found then theline containing the string will e positioned at the top
of the sereen and the cursor will be positioned on the next character
following the matching characters.

It you invoke the CLEAR-F function again, you will see that the
prompt for thedesired string defaults to the string that you cntered
on the last CLEAR-F or CLEAE-C funciion. You cun just depress
the ENT'FE key to find the nextinstance of the string in the text, [f
you type anything other than the ZNTAK kev the old string wil]
erase and you will be able to enter a new string.

If you enter no characters at all, no search will be made. If a search
is made and the string is not found, the ecursor will return tn the
point at which vou entered the CLAAR-F.

3.2 Changing Text Patterns

In addition to [inding a specific character pattern, voucan change 1
or more oceurances of one patlern to a sccond patlern. You use the
CLIEAR-C funetion 1o invoke this capahility.

After entering the CLEAR- € vou are prompted for the slring to be
scarched for. After entering the string to be searched for, you are
then prompted for the siring that the first slring isto be changed to.
This can be 0 10 24 characters long. Finally, vou are prompted for
the number of oceurances that are to be changed, If you don’t enter
any number, then the editor defaults to 1 oecurance,

As each occurance is found and changed, it is displaved on the
sereen. When no more of the first string can be found, the function
slops at the point where the last change was made. As in the

12 How To

CLEAR-F [lunction, if no first strings are found, the cursor will
return to the point where it was when vou entered the CLEAR-CUIf
you don't enter a first string. no changes are made.

How To 13

4 Copying and Moving Text

There are 3 functions and a separate editor mode used to copy
and/or move porlions of text.

4.1 Marking and Saving Text

Before a portion of text can be copied and/or moved it must first, be
marked off and saved. This is done by positioning the cursor at
cither the first character or on the character following the last
character of the text urea to besaved. You then use the CLEA R-M
function to mark that end of the area.

When you mark one end of a textarea, two things happen. First. the
mode changes to MARK to indicate thal vou are now marking an
area of text ralher than entering it. Second, the character that you
marked is changed to a solid white square on the sereen, This
character will remain marked until vou mark the other end of the
text area.

Once you are in the mark mode, you cannot enter lexl. However, you
can positinn the cursor with the arrows, CLEAR-Arrows, CLEAR-
B, CLEAR-E and CLEAR-F funetions. Once vou have positioned
the cursor to the other end of the texl. you can mark it with the
CLEAR-M{unction. The textthat issaved starts with the mark that
is closest to the beginning of the text and includes all characters
down to but not including the mark closest to the end of text.

The mark funetion allows you to save up to 1.5K hytes of texi, in a
separate in-memory mark buffer. If the marked area of text is
greater than 15K bytes, then DEFT Edit prompts vou for a name
ts give the file which it will create tosave the marked text. This file
name prompt ocenrs, provided the marked area is greater than
1.5K, immediately after the entry of the last CLEAR-M funetion. [f
4 blank file name is entered then no action is taken and normal
editing may be resumed.

4.2 Appending The Saved Text

(f course justsaving the text away in a separale mark buffer or file
dnesn’t do you much good unless you ean do something with it. The
CLEAR-A function allows you to append the text in the mark bulfer
into the sereen texl beginning in frontof the current cursor position.
The CLE A R-A function is not used to append text saved in a file, the
CLEAR-Gfunction is used instead when the text was saved in a file,

14 How To

The contents of the mark buffer remain unchanged after this
operation.

A typical copy operation would invelve marking off the area of text
to he copied, and then positioning the cursor to the point that it was
o be copied to and invaking the CLEAR-A function.

If a section of text larger than 1.5K bytes needs to be copied into
another area of a document, then the CLEAR-M function would be
used to mark the text for eopy. This would then yield a file name
prompt for the file into which the saved text would be stored. Once
the marked text is saved away, then the user would positon the
cursor at the point in the document where the saved text was 1o he
copied. The saved text would then be brought in with a CLEAR-G
function lollowed by the name of the file containing the saved text.

4.3 Additional Mark Functions

When marking off a text area you can terminate the mark operation
in 3 additional ways:

1. CLEAR-Dmay be used tomark the end of a text area. When used
in this manner CLEAR-D is exactly like the CLEA R-M except
thatafter saving away the textineither the mark buffer or a file,
the area marked is deleted from the text. This provides the {irst
half of a move operation rather thana copy. It can alsobe used to
just delete areas of text.

2. CLEAE-Q} lerminates the mark operation without saving away
any text. When the CLEAL-G function is entered while the
editor is in the mark maode, the mark operation is terminated
with no action taken. The previous contents of the mark buffer
are retained.

3. CLEAR-Wallows you tosave areasofl lex{ on aseparate file or to
print them on the printer. In this case the CLEAE-W function is
entered to mark the ending point of a text arca. After entering
CLEAR-W you are prompted for a file name to which the
marked off text is to be written. The contents of the mark buffer
are not affected. This funetion allows the user to save any size of
texitobe [led, whereas the normal mark operation will anly put
text into a file if the text area being saved is larger than 16K
hytes.

How To 15

DEFT Pascal Compiler

TIntroductionc.0 . i e, 1
2 DEFT Pascal Compiler Operation 2
O R . L. e e e 2
22 OBIEC T e 2
. 2 LI i 2
A DEBUG: . e e 3
2SS DIRECTIVE: i e e 3
2.6 Compiler Executionoco i 3
3Bource Listing ... i 4
4 Compiler Contrals ciiiiiian.. 8
41 Listing Control ... i e g
4.2 Assembler Listing Control iiiiiin.. 8
d3Topof Page i i e 8

44 Titleand Subtitle et 4

1 Introduction

The DEFT Pascal Compiler is a program that allows you Lo ereate
machine language programs rom Pascal language souree programs
created with DEFT Edit or your aown ASCII file text editor. The
DEFT Paseal Compiler’s features include:

. @ (Generation of machine language programs, directly executable
by the 8809 micro-processor, from Pasecal language statements
and declarations. Caornpiled programs can run many Limes faster
than interprelive BASIC programs,

e Practically all of standard Paseal’s lanpuage elements are
supporied.

® Program source files may be read from either cassetle or disk
with the resulting object [iles written to either caszsette, disk, or
the printer.

» Powerful compiler directives which provide the user with
valuable compilation and source listing options, such as the
option of having the assembler language representalions of
Fascal statements printed between the Pascal statements on the
compiled program’s sourec listing.

& Fully recursive compilalion, which vields such flexibility ag no
. fixed limitations on the number of dimensions to an array ar
tahle.

Supports generation of recursive applications: programs that
contain procedures that call themselves.

How o 1

2 DEFT Pascal Compiler Operation

The command LOADM “PASCAL"IXEC will load the DEFT
Pascal Compiler into memory from disk drive 0 and begin ils
execution, which is in two phases. In the first phase you will see the
DEFT Paseal Compiler’s sereen with all of its prompts. This phase
prompis the user to enter information recquired by the compiler for
program compilation.

Upon the entry of the last prompted ficld, DEFT Pascal begins its
second phase of operation. In this phase DEFT Pasral reads the
source module file, parses the program statements, generales the
corresponding machine instructions, saves the machine program
version in an object medule file, and generates the program source
listing. After completing this phase DEFT Paseal has finished its
execution which is marked by the returnofthe BASIC OK prompt.,

Euach DEFT Pascal Compiler prompt and its possible replies are
deseribed in the following sections.

2.1 SOURCE:

SOURCH requires the enlry of the name of the source file which
containg the Paseal language program that is to be compiled. The
default file name extension is PAS. This means that if there is no
extension spevified with the entered file name, then the compiler
adds the default extension of PAS to the file name before scarching
for that file.

2.2 OBJECT:

OBRJECT requires the name of the object file that is to be ereated by
the DEFT IPascal Compiler to hold the newly ercated program
object module. This can he either on tape or disk or the name ean he
ommilled entirely il you do nol wish 1o create an object file. The
default extensionis OBJ. If vou do not specifyan extension with the
file name entered here, then the DEFT Pascal Compiler will add
the default “OHB.J}” extension to your file name prior to actually
ereating that {ile.

2.3 LIST:

LI8T requires the name of the sourec listing file which is to bhe

created by DEFT Paseal in itz secand phase of operation. This can

be tape, disk, screen or prinler or the name can be ommilted

entirely if vou do not wish to create a list file. In this eaze only source
lines

2 How To

with crrors and the corresponding error messages wiil be outbpul Lo
the screen,

The default exiension is LST. If vou do not specify an extension with
the file name entered here, then DEFT Pascal will add the default
. 1.8T extension Lo your file name prior to actually creating that file.

2.4 DEBUG?:

DEBUG? asks you whether you wish to have debug information
in¢luded in the resulting ohjeet file. If you intend lo use DEFT
Debugger Lo debug this program, then a Y response should be
entered. A yves response to this question results in DEFT Pascal
adding the debugger gymbolic linkages 1o your program, therefore
making the resulting object module larger than it otherwise would
have heen. If you don’t want the debug information ineluded, you
can answer this prompt with either an “N”, or “n”. Anything other
than “N” ar “n" (for No} is taken to be “Y” (for Yes).

The debug information will make your program significantly
bigger but will allow vou to symbolically debug your resulting
program if you answer the DEFT Linker's dehugger? question yes.
If you specify yes 1o the DEFT Pascal compiler’s dehug? guestion

. and No to the DEFT Linker's debugger? question, then the debug
information will still he in the final binary image even Lhough Lhe
dehugger module is not present.

2.5 DIRECTIVE:

DIRECTIVE requires any DEFT I*ascal Compiler directive that
vou would hike te include before any source lines are read. The
following section Cowmpiler Conirols describes all the possible
compiler controls that you could enter here.

2.6 Compiler Execution

After youanswer the DIRECTIVE prompt, the program will begin

cxceuting. The compiler requires that the file PASCALIRB/EXT be

prezent on disk drive 0 when the SOURCE: prompt is answered.

When the compiler is finished executing, contral will refurn to
. BASIC and you will get the OK prompl,

How To 3

-~
Y
=
-
=
e
=.
—_
o

3 Source Listing

The following is a brief deseription of the DEFT Pascal Compiler’s
source listing.

1.

[T]

Header - This is the first line at the top of the source listing
follawed by the page number for that page of the listing

Title - This is the second line from the top of the source listing.
The eontents of this line are diclated hy the programmer with a
tille directive.

_ Subtitle - Thig is the third line from the top of the source listing.

The contents of this line are dictated by the programmer with a
subtitle directive.

. Nesting Levels - The first column of numbers prinled with each

line is actually two separate nesting levels:

® The first one is the procedure nesting level. This identifics
what level of procedure the current line of code is known i,

® The second number is the begin nesting level. Thig identifics
how many begins have been encountered so far with no
matching ends.

Program Location Counter - Thissecond eolumn is a hexadecimal
representation of the program address al which that linc's
executable statement will hegin. All other numbers printed on
the listing arc decimal.

. Symbol Table- Alistof all the symbols that were defined withina

Pascal block is produced al the end of each block, This list
contains 4 number of fields for each of these sy mbols. Following
arc all the eolumn headings and a deseription of the information
printed under cach heading:

e SYMIO. - This is the symbol name.

® ULASS - This identifies what kind of Pascal language
alement this symbol represents.

e STRUCT - For struciured types and variahles, this column
identifies what their strueture is farruy. vecord, zef, pointer oy
file).

e A/.1.0C-Forvariahles, thiscelumn represents the allocation
of that variahle. Any ewfernal procedures or functions will
have EXTERNAT, printed here. Symbols which are felds

How To

within a record will have the name of the corresponding reenrd
printed here.

e DATA TYPE' - For variables, types and constants, The Paseal
type specified for the data clement represenied by thissymbol
is printed under this heading,

e VALUE - This identifies the value of the symbol. For stotic
variables, procedures, functions, labels and string constants it
is the relative offset from the beginning of the module. For
antormnatic variables itis the affzet within the stack frame. For
non-string constants, it is the value of the constant.

e LOW - This heading identifies the lowest or smallegt valucio
which the data in 4 type or variable may be set. For arrays, it
is the lowest possible subseript.

& HIGH - This heading identifies the highest or largest value to
which the data in a type or variable may be set. For arrays, it
is the highest possible subseript.

e STZLE - I'or variables, tvpes and constants, this is the number
of bytes of memory represented by the Pascal dype.

e STACK REQUIREMENTS: - This title precedes the
estimatinn of the number of hytes of stack space required to
aclivate this block.

L C'ODE 814K - 'I'his is the fifth from the last line printed an the
source listing. Following is the number of byvtes of memory that
the program will require when it is loaded.

. UNUSED STACK - The following number is the amount of
staclk space available but unused by the compiter itself. As vou
create more symhbols and deeper levels of nesting in your
program, this number will grow smaller. This stack space
essentially represents the limits of the compiler for number of
symhbols and levels of nesting (of all kinds).

9. MAX SYMBOILS - The following number is the maximum

number of symbols known at any point in the Pascal source
program, Due to pre-defined symbols and the definitions in
PasealIB/EXT, there will always be over 60 symbels defined ina
program. Note that each symbol definition takes up ahout 30
bytes of compiler stuck space,

How To 53

10, TOTAL ERRORS - This is the number of compilation errors.

1. SOUERECE FILE - Following this i3 the name of the source file
containing the program source statements whieh generated this
ligling.

12, OBJECT FILE - Following this iz the name of the file which .
contained the program object at the end of this compilation.

[
-
-]
=
-d
=1
—
-
-
Fanl

6 How To

Sample Listing

T et il b1 i€y 139N LEFT SYETRS, TES. WO M2

]
L2
- e ——x
4. “—-—..___‘______ Lo GRRA BEGLE
01 gEsd Initialise:
L1 T%9
] True BE BEGTH
€57 Pemdheciiine CF
i

Brulngaczendy
Cloae |LutTexs!,

THER FiODGLUL ELsE BeXRllIMURUL)
SbuFagelnar;

n
n

L3
‘__.-_F______,_,——- 2 P53 STALTT dLLOC SAIN IYRE LOIRY Loy 195
6. M_—uay oE FROCELLAL Vo
FILL TiLIAELD ACTGRATIC BOIIIAN =13 o 1
F1:coans. 2P
-] FIH1en Tt b aur
hertee PLELEE BUTORATIC Alrch Tt LU
e " st mulemiae e - v u
E
1ML LG it
» 4 . LI
B =35TEE AT
¢ i

& & & & & @ A B & B & B

"3 @ 2 & 6 B

=,

a
-
=
=1
—
=
-

4 Compiler Controls

Compiler controls arc those instruetions included in yvour source
code or in the DIEECTIVE: prompt which direct the compiler's
operation ratherthan the resulting program’s operation. A compiler
control i3 a source line with a percent sign (%) as the first character
in the line. The eontrol itself is & single character fullowing the %.
Any required parameters then follow the control character, For
those controlsnot requiring parameters, additiong) controls may be
included in consecutive eolumns. The % is not required in the
IMRECTIVE prompt.

4.1 Listing Control

DEFT Pascalnormally produees a source line listing file. The List
(L) and Nolist (N) eompiler controls allow you to contral which
portions of the source lines are included In this listing, These
controls are additive; that is, if you include more than one list or
nolist control in a row, it takes an equivalent number of the other 1o
cancel its effects.

This additive nature gives vou the ahility to pre-cancel an imbedded
nolisl command with a preceding list command and vice-verza. This
is verv convenient when using copy files (sec below), For example,
DEFT Paseal copies by defanlt the file PASCATIB/RX'T which
has 4 nolist control at the beginning of the file and a list command at
the end. You can “unsuppress” its listing by including a list (L)
control in response to the DIRKECTIVE prompt in the compiler
slari-up sereen.

4.2 Assembler Listing Control

DEFT Pascal is 3 true Paseal souree to 6809 objeet code compiler.
As such, it ean produce a listing of the corresponding assembly
langnage code that would be required to produce the same object.
The default condition for the compiler iz to not produce this
assembly language listing. The compiler contrel used to turn on this
listing is the plus sign (+). The compiler cantrol uzed to turn il off is
the minus sign («),

4.3 Top of Page

The spurce listing produced by the DEFT IMascal Compiler
normally prints 55 lines per page. However, you can foree the
compiler to start a new page at any point by including the gject (E)
compiler conlrol,

8 How To

4.4 Title and Subtitle

Included at the top of each page produced by the compiler is the
compiler’s name, copyright notice and page number. In addilion, on
the following two lines you can specify a title (T) and subtitle ().
The remainder of the line on which the control is specified becomes
the title or subtitle. Following are examples:

%T This is a Title Siring
%35 This is a Subtitle String

Nate that the presence of either control implies an eject {E). Blanks
immediately following the control up {o the first non-blank are
suppressed in the actual title or subtitle.

Inaddition to printing at the top of each page, the title stringis also
included as a comment statement in Lthe resulting object file. It will
then alsa appear in DEFT Linker’s listing file.

4.5 Copy

Sometimes il is desirable not to include vour entire program in a
single source file even though you wish to compile it as a single unit.
This may he due to limitations of the editor or to allow common
definitions for tnterface modules (see Sepnrate Commlation).

The copy (C) compiler control allows you to tell the compiler where
additional saurce lines should he taken from. The remainder of the
control line is considered to be the [ile name of a Paseal source file.
The compiler will read all the lines in the specified source file before
reading the next line in the current source file. Example:

%C GRAPHINT:1

This line causes the file GRAPHINT/PAS on disk drive 1 to be
completely read before reading the next line in the current file.
Note that copy controls ean be nested. That is, a file that is copied
may itself contain a copy control. This nesting isonly allowed totwo
levels,

How To 9

DEFT Macro/6809 Assembler

TIntroductiono it i ettt 1

2 6R09 Macroe Assemhler Operation 2

p A T 0 & 7 2

2 SOURCE FILE: ... e e e e 2

. 23 0RJECT FILE: oot aaaenn 2
A LIST FILE: o i i it e e e ans 3

25 Assembler Executlon ..o oo e 3
S8ource Listingot e 4

1 Introduction

The DEFT Macro/6809 Assembler isa program thatallows you to
create machine language programs from Motorola 6809 Assembler
language source programs created with DEFT Edit. DEFT
Macro/6809's features include:

® (Generalion of machine language programs, directly executable
by the 6809 microu-provessor from Motorola 6809 Assembler
language statements. Assemhled programs can run up to 1000
times faster than interpretive BASIC programs,

¢ Separate assembly facililies which enable you tnbreakupa large
program and assemble it in pieces, These pieces can be written in
either DEFT Macro/6809 assembly language or DEFT Pascal.

® Assembler directives which provide the user with valuable
assembly and source lisling options.

e Powerful maero facilities which allow the user to define inline
code sequences with one macro tnstruction in the spurce program.

2 6809 Macro Assembler Operation

The command LOADM “"ASSEMBLE:EXEC will load DEFT
Macro/6809 into memory from disk drive 0 and begin its exceution,
which is in two phases. In the first phase you will see the DEFT
Macro/6809 screen with all of its prompts. This phase prompts the
user to enter information required by the assembler for program
assembly.

Upon the entry of the last prompted field, DEFT Macro/6809
begins its seeond phase of operation. In this phase it assembles the
source language program statements into a machine program in
two passes. In the first pass, DEFT Maero/6309 reads the source
module file and generates the symbol table. In the second pass, it
generales the corresponding machine instructions, saves the
machine program version in an object module file, and generates
the program source listing. After comploting this pass, DEFT
Macra/6809 has finished its exccution which is marked by the
return of the BASIC QK prompt.

Each DEFT Macro/6809 prompt and its possible replies are
desceribed in the following sections.

2.1 TITLE:

TITLE: requiresthestring of churactersthat you want tosee at the
lopof each page of your assembly listing. You donot have toentera
Litle if you don’t want to, but it does come in handy when you want tn
identify a source listing {ile ut a glance.

2.2 SOURCE FILE:

SOQURCE FiLE: requires the entry of the name of the source [ile
which containg the 6809 assembler language program that is to be
assembled. The defaunlt file name extension is ASM. This means
that if there is no extension specified with the entered [ile name,
then DEFT Maero/6809 adds the default extension of ASM tothe
file name hefore scarching far that file,

2.3 OBJECT FILE:

OBJECT FILE requires ihe name of the object file that is to be
created by DEFT Macro/6809 to hold the newly created program
object module. This can he either on iape or disk or the name can be
ommitted cntirely if you do not wish to ereate an ohject file. I'he
default extension is OBJ. If youdo not specify an extension with the

2 How To

file name entered here, then DEFT Macro/6809 will add the
default OBJ extension to your file name prior 1o actually creating
that file.

2.4 LIST FILE:

LIST FILE: requires the name of the source listing file which is to
be created by DEFT Macro/680% in iis second phasc of operalion.
This can be tape, disk, sereen or prinler or the name can be
ommitted entirely if vou do not wish to ereate a list file, The default
extension is LET. If you do not specify an extension with the file
name centered here, then DEFT Macro/6809 Assembler will add
the default L.S7T extension to your file name prior to aetually
creating that file.

2.5 Assembler Execulion

After you have answered the LIST FILE: prompt the assembler
will begin its first pass. During this first pass only the disk will
appear 1o be doing anything. T'he assembler will begin printing on
its second pass through the source code.

wsy

3 Source Listing

The following is a brief description of the DEFT Macro/6809
Assembler's source listing.

=1

 Header - This is the first line at the top of the source listing

fallowed by the page number for that page of the listing.

. Title - The contents of thiz line are dictaled by the programmer

with a ftle direclive.

. Subtitle- The contents of this line are dictated by the programmer

wilh a subtitle directive.

. Addressing Indicator - This is an alphabetic characler which

prefixes Lhe Location Cownter to indicale how the instruction at
that location is making a reference. An R indicales that an
exlernal relative reference is being made. An X indicates thatan
axternal absolute reference is being made. An N indicates thata
local relative location is being referenced in an absolute maode.

. Location Counter - This is the four digit number which

immediuately follows the line number. This four digit number is
the hexadecimal representation of the program relative address
at which this source code instruction would begin.

(hject Representation -~ The set of numbers which immediately
follows the location counter is & hexadecimal representation of
the assembler instruction after the instruction has been converted
into the object file machine language format. The very first twa
digils of this ficld represent the instruction’s opeode. The
remaining digitsof this ficld represent the instruction’soperands,
wherc applicable.

. Symbot Table - At the end of every assembler program, a symbol

table is produced. Printed under this heading are the names of
the symbols referenced by Lhat program. Each element of this
table 1z as follows:

s Symbol Value - This is a four digit number which precedes
every symbol table entry. Thiz four digit number is
hexadecimal representation of the value or program relative
address which the symbal is used to reference.

o Symbol Type - This is the one to three character field which
immediately Iullows the symbol value. This field identifics
whether a symbol represents an absolute value (A), a program
relative valuc (R), an external address (X), a public address

How To

1,

1t.

(P), ar a duplicate reference (D),

o Symbol Nawme - This field immediately follows the symhol
type. The symhol name is the string of characters used to
reference a program value.

Position Tndependence - This is the third from the last line
printed on the saniree listing, The character expression found on
this line identifies whether the assembled program is pesition
independent or non-position independent. PIC indicates that the
resulling machine program contained in the program’s chject
file is Position Independent Code.

SOURCE FILE - This is the name of the source file containing
the program source statements which generated thig listing.

OBJEXT Fil:FE - Thigisthe name of the file which contained the
program object al the end of this assembly.

Total Errors- Thisisthe last line printed on the program source
listing and iz the decimal number of errors cnecountered by
DEFT Macro/6809 during program asssembly.

How Tu b

1_————-@—— DEFT MACRO/6809 ASSEMBLER, ¥3.0 (C) 1684 DEFT SYSTEMS, INC. PACE
—
2

g——

® PORMAT COMMAKD NAMES
.

0000 COMMANLNAMES EQU
PUELIC COMMANDNAMES
FCB 3
Fce JEG)/
FCB 3
FCC /TXT/
FCB 3
FCC /PGE/
FCB 3
FCC /HDR/
FCB 3
FCC /FTR/
FCB 3
FCC /SKE/
¥CB 3
FCC /FLL/
EN
DEFT MACRO/6809 ASSEMBLER, V3.0 (C) 19b4 DEFT SYSTEMS, INC. PAGE

SYMBOL TABLE

1 —_—

\ 0000 PF COMMAKDNAMES

]

8.
FIC
9 b SCURCE FILE: FORMATSP

10. CRJECT FILE: FCRMATSP:1
1] e & 7OTAL EWRORS)

e & & & &

How To

1

2

& ® & & ® © o & @& & @& e ® e o o & @ 2 o O

DEFT Linker

LIntrodactionciiri i i nns 1
2O0peration e 2
2L ORIGIN L. e e, 2
b I 1 L 1 Y O 3
@ caBRINARYFILE: ... 3
2 A PASCALI (Y e e 3
25 DEBUGGER? (Y) ot 3
28 ORI NAMES FILK: . 4
2T OBRJECT FILE: e, 4
GLinker Map o i e e 5
A Error Messamesovt e e 8
41 BINARYFILEL/OERRORo e 8
42 DUPLICATE - . IN o o e 8
43 DUPLICATE MAINIGNORED ... iiiiaat, o
44 HEXWORDPARMMISSINGINORBJECTRECORD ... 8
ASINVALIDDEBUGMODULEcovv. 8
46 INVALIDMARKER et g
4.7 INVALID OBJECT RKCORD ..., 9
A4BMODULETOO BIG . ot e it 9
49 K0 MAIN ENRY e e e e 9
. 410 0BJECTFILELOERROR Yy
411 PHASE ERROR ..ttt Y
412 SYMBOL MISSING IK ORJECT RRCORD b
113 8YMBOL TABRLE FULL- .. INo itiannnn, 9
414 UNDEFINED - . IN .. e 9

Blamitations 10

1 Introduction

DEFT Linker is a program which reads the object files produced
by the DEFT Macro/6809 Assernbler or DEFT Pascal Compiler
and produees an executable binary image suitable for loading with
Disk Extended Bosie’s LOADM eommand. DEFT Linker features
the following facilities:

® Object code reloeation
¢ Automatic Paseal runlime modules inclusion
e Builtin DEFT Debugger interface

¢ Support for objecl module libraries. Object module libraries
constructed hy DEFT LIB, consisting of many object module
files can be specified as input to DEFT Linker. Only those
library sections referenced by your program will be included in
the resulting binary.

e Multipleohject file input, cither explicitor via a separate ASCII
file.

o [iisk Ertended Basic ecompatihle hinary outpus file.

2 Operation

Once you have ereated the necessary object files with the compiler
and assembler, you are ready to link them together into your final
binary imagc. The ecommand LOADM “LINKER"EXEC will load
DEFT Linker from disk drive 0 and begin execution.

DEFT Linker operates in three phases. During the first phase it
displays the DEFT Linker screen and prompts vou for the
information required in subsequent phases.

The second phase starts after all the prompling is completed.
During this phase it reads the object files, builds its symbel tahle of
publiwe symbols (relocating those symbols that need it), prints the
module by module portion of its list file and reports any errors found
in the object [iles.

The third phase involves DEFT Linker once again reading all the
object files. On this last phase it performs all necessary relocation,
fixups and eclernal reference resolution while creating the final
binary image. At the end of this phase DEFT Linker prints the
symbol table.

The following provides an explanation of each prompt made by
DEFT Linker,

2.1 ORIGIN

This 1% the decimal memory address where the resulling binary
image is to be loaded by the LA M commaund. For non-position
independent files, this is the position from which the binary must
execnte. I the resulting image 13 position independent then a
parameter can he added to the LOADM command to load the
resulting file at a higher memory address.

If nooriginis specified, then it defaults to 5000 {decimal), When vou
PCLEAR 1, FILES 6,00 and CLEAR 16,5999, the 4999 of the last
command tells BASIC thal 4994 (decimal) iz the highest memary
location that BASIC is allowed touse. Therefore the lowest remory
tocation available for your use starts at 5000 (decimal). From this
memory location on up is now availuble for your specific use. This
then, 5000 (decimal), becomes the lowest memory address which is
pratected from BASIC.

If you wish 1o write programs that are called from BASIC
programs, then you will have to determine how much memory
BASIC will need and enter an ORIGIN which is high cnough to

2 How Tao

provide that much memory,

2.2 LIST FILE:

This is the standard file name (with a default suffix of L.8T)of u file
to be ereated hy DEFT Linker which reports the results of the link,
DEFT Linker will not produee any file if no file name is entered for
thiz prompt.

2.3 BINARY FILE:

This is the standard file name (with a defaullsuffix of BIN}of a disk
file Lo be ereated by the DEFT Linker. This file name must be
given and it must be a disk [ile.

2.4 PASCAL? (Y)

This prompt requires a ¥ or N response. Actually, any response
other than N or n (including noresponse) is interpreted as ves. When
this question is answered yes, the Pascal hoot module
(PASBOOT/0OBJ) and runtime library (RUNTIME/f.{53) are
included. Only those segmentsof the runtime library referenced by
your program will be included in the resulting hinary load module.
This means that the resulting program will be no larger than it has
to be. Unused Paseal runtime features will not be included.

RUNTIME/LIB and PASBOOT/OBJ must both be presenton disk
drive 0.

2.5 DEBUGGER? (Y)

Likethe PASCAL? guestion, the assumed answer isyes unless an N
or # is entered. When this is answered affirmatively, the module
DEBUGGER/LIB:0 is included in the binary. In addition, any
PPascal modules which were compiled with the debug option turned
on will have breakpnints generated and a module table will be
included for use by the debugger.

If this question is answered negatively, then DEFT Debugger is
not included, Pascal modules with the detg option turned on will
have NOD's generated in place of breakpoinls and no module table
will be produced.

NOTE: if you have the DEFT Pastvul Workbench and answer the
PASCAL? question NO and the DEBUGIER? question YES, then

How Tu 3

Mur

vou will have lo enter EUNTIME/LIB as one of the object files in
either vour OBJ NAMES FILE or tw ¢nc of the OBIECT FILE
prompts, This ig because DEFT Debugger uses some of the
facilities in the Pascal runtime library. If you have only DEFT
Bench, then you do nat have to do this since everything iz included
inthe DEBUGGHER/LIB library,

2.6 OBJ NAMES FILE:

When a large program has been divided into a number of modules,
it iz sometimes convenient to create a text file with the editor that
lists the names of the ahject files to be ineluded so that. you don’L have
1o individually type them in each time you link the program. This
prompt allows vou to specify the name of such a file.

This file musl have 1 standard [ile name per line. The defaultsuffix
for the file names included in the file iz OBJ. The default suffix for
the OBJ NAMES FILE itself is LNK, When vou enter a file name
for this prompt, DEFT Linker does not prompl you for individual
object file names,

2.7 OBJECT FILE:

This promptis made if you did not provide an OBJ NAMES FILE.
You provide avéngle object file nume, DEFT Linker will verify that
it ¢an open the file and then prompt you for another file name. If
more than one objeet file is to be included, enter the additional
objeet file names one at each prompt. Onee you have entered all the
names, jusl hit the ENTER key on the last prompt and DEFT
Linker will begin its second phase.

4 How To

3 Linker Map

The following is a brief description of the Linker Map listing
produced by DEFT Linker during linking operations.

1.

[

Header - This is the first line of every page of the linker listing.
The Header includes the page number.

. Module Nawme - Every object [le or module linked in a linker

operation is identificd by object file name. Proceding each
module name, the following is printed:

» Ohjert Generator-This [irst line fol lowing the object file name
identifies the compiler or assembiler that produced the object
file.

& Titlefs) - Al titles produced withina program source file, with
the title diractives for bath the compiler and assembler, are
printed following the object generator identification. If a
program contains no ticle(s) then none are printed.

o MODULE ORIZN - The four digit number following Lhis
title is the hexadecimal representation of the address in
memory where that module will begin within the program.

o MODULE SIZE - The four digil number following this title iz
the hexadecimal represeniation of the the number of bytes in
mcmory that this module requires.

Syrnhel Table - Atthe end of every linker operation a sy mbol table
ig produced. Prinied under this heading are the names of the
symbhols referenced by thal program. Fach element of this table
15 as [ollows:

o Symbol Value - This is a four digit number which precedes
every symbol lable entry. This four digit number iz a
hexadecimal representation of the value or program address
which the symbol is used 1o reference.

® Symbol Type - This is the one or Lwo character field which
immediately follows the symbol value. This field identifies
whether 4 symbol represents an absolute value{A), a program
relative value (R), or a duplicate reference (17).

o Symbol Name- thig Iield immediaccly follows the symbol ty pe.
The symbol name is the string of characters uzed to reference
a program value.

How To 5

=3

10.

11,

. Pagition Independence - This 1s the seventh from the lasl line

printed on the linker map listing. The characler exprossion
found on this line indicates whether the linked program is
position idependent or non-position independent. PIC indicates
that the resulting machine program contained in the program’s
load module file is Position Independent Code.

ORIGIN - The four digit number fallowing this title is the
hexadeeimal representation of the address in memory where this
program begins.

LAST ADDR - The four digit number following this title is the

hexadecimal representation of thelast address in memory where
this program resides.

MAIN ENTRY - The four digit number following this title is the
hexadecimal representation of the first address in memory
where this program begins its execution.

. VOTAL SIZE - The four digit number following this title is the

hexadecimal representation of the total number of bytes of
memory required to hold the program’s cxecutable instructions.

. STACK REQUIRED - The four digit number fullowing thistitle

iz the hexadecimal representation of the worst eaze number of
bytes of stack memory required to execute the resulting muchine
program. It is the sum of the stack requirements of each
individual module.

TOTAL MEMGRY - thigis thenext tothe lastline printed on the
linker map listing. The four digit number following this title is
the hexadecimal representation of the total number of hytes of
memory required to cxecute the resulting machine program.

TOTAL ERROKS - This is the last line printed on the linker map
listing and is the number of errors cncountered by DEFT
Linker during its execution.

How To

L@ DEFT LINKER VERSION 3.1 (C) 1984 DEFT SYSTEMS, INC. PAGE 1

@ PASBCOT

DEFT MACRO/(B09 ASSEMBLER, V3.0

PASBOCT V3.0

MODULE ORIGIN 1388

MODULE ‘STZE 00EL

FORMAT: 1
9 T—@ " DEFT RASCAL V3.3
MOLULE ORIGIN 1445
MCDULE SIZE oc1c
FORMATSP: 1
DEFT MACRO/6809 ASSEMBLER, V3.0
MCDULE ORIGIN 2061
MODULE SIZE oo1c
RUNTINE/LIE
® LIBRARY ¢
*EASDISK
DEFT MACKG/6809 ASSEMBLER, V3.0
PASDISK 5/18/B4 V3.2
MODULE ORIGIM 207D
MODULE SIZE o405
*PASIC
DEFT MACRO/680§ ASSEMBLER, V3.0
PASIO ¥3.1
MCDULE ORIGIN 248z
WCDULE SIZE ousE
#PASKEYRD
DEFT MACRC/EB0G ASSEMBLER, V3.C
PASKEYBD V3.0
HDEULE ORIGIN 2BEC

e & 6 e e 9 o

SYHB OL TAELE

25CC R CLOSE 2061 R COMMANDNAMES 2AFG b CURSOR
2F95 R DECODE 2076 R DPTCHRSIRAPF 2075 R DFTCKRETRCPY

2016 R DFTHFITEDSX 27C5 R R
2780 B DFTWRTCHAK 2765 R DFTWRTINT 2708 K
265E B DFTWATTYPE 2FF3 R EKCODE 258E R EOF
2545 B EOLN 2566 B FILEERROR 2BBF A FILETYPE
5F8 R GET 2FR3 B HEX 3057 B MARK

R 13

R B

R R

BFTH TELN 209C DFTWRITETAPE
DFTWRTSTRG

3066 R MEMAVAIL 28AF PAGE 2884
305F R RELEASE 2807 SETFILETYPE 2DAD
2DCF B STRINGDELETE 2E02 STRINGINSERT ~ 2E3F

STRINGCCFY
STRIKGFCS

PIC

GRIGIN 1388
LAST ADDR 3o7C
MAIM ENTRY 1388

R

11, TOTAL MEMORY 3516

2 2 € o e o & s e & & &6 2 & 6 & 2 2 e @

9.
_Q\ TCTAL SIZE 1CFS
10. STACK RECUIREL 089A

TOTAL ERRCRS 0

4 Error Messages

The DEFT Linker generates error megsages during its second
phase. These messapes usually involve duplicate or missing public
variable definitions. The error messages sturt with*“**¥ and are ag
follows:

4.1 BINARY FILE I/O ERROR

An I/0 error was detected while attempting to write to the binary
output file, This could be ecansed by a full disk or the write protect
being left on the diskette.

4.2 DUPLICATE - ... IN ...

The specified publie symhbol being defined in the speeified objecet file
has already been defined.

4.3 DUPLICATE MAIN IGNORED

More than une main object module hag been found, any main
modules found after the first one will be assumed to be a non-main
module. There can be only one place in the program wherc
exceution 18 v start, that is in the main module.

4.4 HEX WORD PARM MISSING IN OBJECT
RECORD

An invalid furmal object record has been detected. This may be due
to the wrong type of file heing input (o the Linker.

4.5 INVALID DEBUG MODULE

The necessary public symbols have not been defined when the
DEBUCGGRKR? question has heen answered with yes. This is
probably due to not having the lile DEBUGGREE/LIR present on
drive 00 while linking.

4.6 INVALID MARKER

An invalid format language marker record hus been found in the
object file. This may he due to the wrong type of file being input to
the Linker.

8 How To

4.7 INVALID OBJECT RECORD

Aninvalid formatobject file record has been found. This may be due
10 Lhe wrong type of file being input to the Linker.

4.8 MODULE TOO BlG

The module being processed is too big to be processed by the Linker.

4.9 NO MAIN ENTRY

No main medulehas been included, The entry point iz assumed to be
the beginning of the binary image.

4.10 OBJECT FILE 1/O ERROR

An [/} error was detected while attempting to read an object file,
This error also oecurs if vou don’t have RUNTIME/IIE or
PASROOT/GBJT un drive 0 when linking a Pascal program.

4.11 PHASE ERROR

The value of a symbol is different in the Linker’s second and third
phases. This error should not oceur and indicates some fundamental
problem with either the Linker or the object Iiles.

4.12 SYMBOL MISSING IN OBJECT RECORD

An invalid formatohject record haus been detected. This may be duc
to the wrong type of file being input to the Linker.

4.13 SYMBOL TABLE FULIL.- ... IN ...

The specified publicsy mbal heing defined inthe specified objeet file
cannot be put in the Linker's symbul table because it is full.

4.14 UNDEFINED - . IN ..

The speeified publie symbol being referenced in the speeificd objeet
file has not been defined.

How Tuo Y

5 Limitations

In addition to the abave facilities, this version of DEFT Linker has
the following limitations:

32K Memory Operation -

When running DEFT Linker in only 32K bytes of memory the
following limitations apply:

1. A maximum of 50 chjeet files can be linked together.
2. No obhject file can be larger than 4K byles.

3. No more than a total of 400 public symbols can be defined in all
the modules to be linked. The Paseal runtime package has about
8(in this version.

64K Memory Operation -

When running DEFT Linker in 64K bytes of memory the following
limitations apply:

1. A maximum of 50 object files can be linked together.
2. No ohject file can be larger than 36K bytes.

3. No more than a total of 400 public symhaols ean be defined in all
the modules (o be linked. The Paseal runtime package has about
30 in this version.

10 How To

DEFT Debugger

1Introduction i i i 1
2General Operation i 2
2.1 Linking in DEFT Debuggerot 2
R T 3 o W 2
. 2.8 Betting Breakpoints oo 3
24 Executing Your Program ... i iiaananns 3
2.5 [nterrupting Program Execution 3
2.6 Displaying/Modifying Memory and Registers 4
2.7 Checking Program State o i il 4
BCommandsooviii i e e b
3.1 Display Register (DR} ... oo o
32Display Word (DW) .o i e 5
B3R Msplay Byte (DB) ... i e i 6
3.4 Display Floating Point (DF)Y o e H
3.5 Display String (DS} ..o e 6
3.6 Display Variable (DV) i ... B
AT Display Hex (DH) ..o i i T
3.8 Display Next (DN ... i 7
3.9 Modify Register (MR)o e e 7
310 Modify Woerd (MW .o e e et 8
. 311 Modify Byte tMB) ..o et]
3.12 Modify Floating Pomt (MF)Y .o, ... oo o 23
3.3 Modify String (MS) ... 4
3.14 Modify Variable (MV) ... g
3.15 Clear Breakpoints (CB)Y ..o i iie et 9
316 User Screen (LIS) . oo e e Yy
1T Evaluate (EV) o e e i et g
BB Trace (TR . ovr et et ren e naivamees 10
Q10 Ge(GOY ... e 1)

B 20 8tep (BT . e 11
0 5 A {1 11 T 11
FEXpressions e 12
4.1 Constantso e e 12

F A e 117 o) o 12
4.3 8ymbols e 1+
4.4 Terms and Indirectioncciiiiiiiien o, 15

. 001 1 74) - N 15

Debhug

1 Introduction

The DEFT Debugger is a software module which can be linked

into any program produced by DEF T software products. [t becomes

the main module in the resulting program and allows the

programmoer 1o control its resulting execution. DEFT Debugger
. includes the following featuares:

¢ Likeother debuggers, this one provides for memary and register
display and modification as well as instruction hreakpoints.
Memary display and modification can occur in hex, decimal,
floating poinl, ASCII and string formats.

s Single Pascal statement execution is available when the DEBUG
option is specilied al compile time.

® Normal program operation can be interrupted and the Debugger
activated when the BRKAK key is depressed.

e Symbolic access Lo memory areas is automatically provided by a
special interface to the DEFT Pascal Campiler. This symbolic
access ineludes automatie as well as static variables,

o A general expression capability allows the Debugger Lo perform
all arithmetic and type and hase conversions for vou.

. & Atracefacility provides you with a procedure call history so Lthat
you can see how you got to a specific point in a Pascal program.

e Automatic sercen preservation restores the screen area and
attributes anyvtime program execution is resumed. Thissimplifies
debugping of graphic programs.

How To 1

2 (zeneral Operation

Although there are a1 number of features built into the DEFT
Debugger specifically o debug Pascal programs, any program
produced with DEPT software products ean be debugped with it.

2.1 Linking in DEFT Debugger

Inorder to use DEFT Debugerer vou answer the DEFT Linker's
DEEBT/G?(Y) guestion with anything other than N or » when you
link the program. DEFT Debugger is automatically included in
the resulting binary and gets initial control of the 6809 micro-
pracessor when your program is executed. DEFT Linker provides
DEFT Debugger with a table of all the module names and offsets
in the resulting program along with the address where your
program would normally begin execution. DEFT Debugger is
loaded, as a part of your program, when you lead your program with
the LOADM “myprogm' . EXEC commanid.

2.2 Debug Screen

After linking your program you are ready to execute it. When you
begin execution DEFT Debugger will gain controt and present
you with its sereen. This initial sereen looks like this:

SYMBOLIC ONLINE DEBUGGER V3.x
(C) 1983 DEFT SYSTEMS, INC.
COMMAND:

PS 02 B0 0000

vD 00 B1 0000

vC 0 B2 0000

B3 000D

CC B4 0000

A xx B5 0000

B xx B6 0000

DP xx B7 0000

X xxxx
Y oaoxxx
U xxxx
PC xxxx
S xxxx

DEFT Debugger is now waiting for a ecommand to execute and has
displayved the camplete sel of regislers it maintains for the program
heing debugged. You will normally enter atwo echaracter command.
DEFT Debugger then prompts yon for any additional

2 How To

parameters required by the particular command,

The ehapter on Cominands deseribes all the commands and their
required parameters. The chapter on Expressions deseribes the
rules for forming expressions which are used in most parameters.
Whal you see un the sereen when the Debugger is fivst activated or
anytime you hit a breakpoint ig the automatic cxecution of the DR
command. Following is a short deseription of the types of operations
for which you might use DEFT 1)ehugger.

2.3 Setting Breakpoints

One of the first things that you will want to do with the Debugger
will be tosct a breakpoint. A breakpoint is a place in your program
where you want your program’s execution to be suspended and
DEFT Debugger activated. This allows you to examine variables
or in the casc of assembler language, registers. You can then see if
the pragram has produced the proper intermediale resulls.

You set a breakpoint by using the Debugger’'s modify register
command to set the value of one of the eight Breakpoint registerstn
the address of the place in your program where you want the
breakpoint to cecur. You have 8 breakpoint registers which allows
you to specify up to 8 different places 1n your program uat one lime.
This 1s especially convenient when you are notsure which place your
program will go to first. The section on Symbols under Kepressions
deseribes how 1o specily a symbolic address.

2.4 Executing Your Program

After having set some {possibly no) breakpeints, you may then use
DEFT Debuggers 0 command to begin (or eontinue) your
program’s execution. Another possible command i DHEFET
Debugger’s ST (Single Step) command which will allow vou to
specify the number of 'ageal statements that you want to execute,
Note that this option is only available when vou have previeusly
enabled the debug? option when the Pasecal program was compiled.

2.5 Interrupting Program Execution

[¥ you used the (GO command o start execulion, it will stop
executing when one of the breakpoints that you specified is
encountered. If you used the 87 command, then execution will stop
when the specilied number of Pascal stutements have been executed.

How Tho 3

=
]
o2
~
o)

In cither ease you may stop the program’s execution by depressing
the BREAK key. [f the program was compiled with the DEBRTU(
option enabled then execution will stop on the next Pascal statement
that is execnted. Depressing the BREA K key while the program is
prompting [or keyboard input will cause it Lo slop even if the Debuy
option was not enabled at compile time.

2.6 Displaying/Moedifying Memory and Registers

After your program stops, the Debugger is re-activated and you can
use the display eommands to determine what your program has
done so {ar. Youran change any variable or regisler thal you wish
before resuming exceution again in order to change the way that
your program iz executing. Nate that if your program stopped
because itencountered a breakpointthat you specified via one of the
breakpoint registers, then you will have to clear that breakpoeint
hefore resuming vour program. Otherwise, the program will
immedialely breakpoint again.

2.7 Checking Program State

In addition tovariables (memory)and registers, you ean also use the
/8 {(User Screen) command 1o see what the sereen is supposed to
look like when DEFT Debugger is not using it. In addition, the TR
{'I'Race) command will follow the chain of pointers that Pascal
builds on the stack. This trace of all the current activation hlocks
will tell vou what Pascal procedures are currently active and where
they were ealled from.,

4 How To

3 Commands

This section describes all the eommands available on DEFT
Debugger, The title of each subsection names the corresponding
eommand and contains the two character command representation
in parentheses,

3.1 Display Register (DR)

Thiz command causes all the DEFT Dehugger registers to be
displayed. All registers are displayed in hexadecirmal, Those which
are 18 bit registers are also displayed as module offsets with the
module name and hex offsel displaved following the absolute hex
value.

The registers BOthrough B7 are the breakpoint registers whichcan
he set to addresses in your program at which you want execution to
stop. The registers CC, A, B, DP, X, Y, 1], PC and S are the 6809
machine registers, The remaining three registers relale to the
graphic capabilitics of the TRS-80 Color Computer and are as
fellows:

® PS s the Page Select register, The {ower 7 bits of this register
specify the upper 7 bits of the memory address at which the
sereen page beging. This value is initially 2 indicating that the
screen page beging at address $400 or 1024.

& 171} is the Video Display Generator register. The lower 3 bitz of
this register speeify the graphies mode that is to be used.

& (] is Lhe Video Contral register. The wpper 6 bits of this register
specify the color set and qualily the graphics mode selected by
the VDR.

Unlike the 6809 registers, the graphics registers cannot be read and
saved by DEFT Debugger. Therefore anytime your program
modifies these values at a pointat which you are breakpointing, you
will have to tell the Debugger whal these values should be. This is
donc via the Modify Register (ME) command.

3.2 Display Word (DW)

This command allows you to display 1 or more 16 bit words in
memory in both decimal and ASCIT formats. There are two
parameters:

* ADDRASS: - This parameter requires an cxpression which
gpecifies the address of the firsl 16 bit word to display.

How To 5

=
byl
—
-
=
i

& (COUNT:-This parameter requires an expression which specifies
the number of 16 bit words to display. 1f you enter nothing then
the count defaults tn 1.

3.3 Display Byte (DB)

Thigcommand allows you to display 1 or more 8 bithytes in memory
in both decimal and ASCII formats. There are two parameters:

® ADDRESS: - This parameter requires an expression which
specifies the address of the first 8 bit byte to display.

¢ COUNT:-Thisparameler requiresan expression which specifies
the number of 8 bit bytes to display. If vou enter nothing then the
count defaultsto 1.

3.4 Display Floating Peint (DF)

This command allows you to dizplay s Pascal floatling point (real
type) number variable. There is one parameter:

® ADDRESS: - Thig parameter requires an expression which
specifies the address of the floating point variable.

The floating point variahie is displayed in decimal format.

3.5 Display String (DS)

This command aliows you Lo display a Pascal string variable. There
is one parameler:

¢ ADDRESS: - This parameter requires an expression which
specifies the address of the string variable.

The string variable is displayed in ASCII format. In addition, the
decimal length nf the string is displayed.

3.6 Display Variable(DV)

This command allows vou 1o display 4 variable as cither a word,
bytle, floating point or string. You must use a symbol as pari of the
ADDRESS parameter. DEFT Debugger uses the type of the
symbol used to delermine which type of display to perform. There
dre two parameters;

6 How To

o ADDRESS: - This parameter requires an expression which
specifies the address of the variable.

o COUNT: - This parameter is prompted for only when the symbol
type isan ARRAY. [t requires an expression which specifies the
number of 8 hit bytes or 18 bil words lo display. If you enter
nothing then the count defaults to 1.

3.7 Display Hex (DH)

This command allows you to display 80 bytes of memeory in both hex
and ASCII representation. There iz one parameter:

o ADDRESS: - This parameter requires an expression which
specifies the address of memory Lo begin the display.

This command displays the memaory as 10 lines of & bytes each. The
lagt 3 hex digits of the mermory address is displayed at the beginning
of each lne [ollowed by the hex representation of the 8 memory
hytes at that location. Finally, the ASCII representation of those
same bytes ig displayed at the end of the line.

3.8 Display Next (DN)

This command is almost exactly the same as Displuy Hex {DH)
exceptthat youare not prompted for an address, The display beging
atthe point wherethe last Display Hex or Display Next left off. This
command provides a convenient means to page through memary.

3.9 Modify Register (MR)

This command allows you W modily any of DEFT Debugger’s
registers. All registers digsplayed on the Display Register sereen ¢an
be maodified. This cammand has two parameters:

e REGISTER: - This parameter reguires the 1 or 2 character
name of the register that i3 to be modified,

¢ VALUN: - This parameter requires an expression which is the
value that the register is to bu set to.

3.10 Modify Word (MW)

This command allows you to modify a 16 bit word in memory. It
requires two parameters:

e ADDRESS: - This parumeter requires an expression which
speeifics the address of the 16 bit word to modify.

o WORD wrox VALUK: - This prompt shows the hexadecimal
address thal will be modified (the “xxxx"). It requires an
cxpression which specifies the value that the word at that
location i to be set to. If nothing is entered, the command is
terminated and the word 1s not modified. If 1 value is entered,
then the word is modified and DEFT Debugger continues to
prampl for subseguent words until nothing is entered,

3.11 Modify Byte (MB)

This command allows you to modify an 8 bil byle in memory. It
requires twa paramcters;

o ADDRESS: - This parameler requires an expression which
specifies the address of the 8 bit byte to modify.

o BYTE xrxxxe VALUE: - This prompt shows the hexadecimal .
address that will be medified (the “xxxx™). It requires an
expression whichapecifies the value that the byte atthat location
is to be sel Lo, If nething is enlered, the command is terminated
and the byte is not modified. If u value is entered, then the byte is
madified and DEFT Debugger continues to promnpt for
subsequent byles until nathing is entered.

-
1:.
-
—
=4
I

3.12 Modify Floating Point (MF)

Thiz command allows you to modify a Pascal floating point (real
type) number variable in memeory. It requires two parameters:

® ADDRESS: - This parameter requires an expression which
specifies the address of the flvatling point number to modify.

& VA LIR: - This parameter requires the decimal representation
of the fluating point value that is to be inserted. .

8 How To

3.13 Modify String (MS)

This command allows you to modify a Pascal string in memury. IL
requires two paramelers:

® APDDRESS: - This parameter requires an expression which
specifies the address of the string to modify.

o yuoxie STRING: - This parameter requires a number of ASCII
characters to be entered. These are stored directly in the string
with the numhber of characters enlered becoming the string's
length. If nothing is entered, the command is terminated and the
string is not modified.

3.14 Modify Variable (MV)

This command allows you tomadify a Pascal variable by identifying
it symbolically. Thiz command allows DEFT Debugger to
determine whether to execute a Modify Word, Modify Byte, Modafy
Floating or Mudify String command depending on the type of the
variable named in the A DBRESSS: parameter.

3.15 Clear Breakpoints (CB)

This command is used o clear all the breakpoint registers to zero.
You can set a breakpoint by using the Modify Register (MR)
command to set one or more of these repistars to a non-zero value.
You can also elear an individual breakpoint by using the same
command 10 set a breakpoint register to zero,

3.16 User Screen (US)

Thiz command allows vou 1o view the sereen currently being
displayed