
DEFT
Pascal

TRS-80TM Color Computer Software Series

TMTandy Corporation

TM

SYSTEMS

DEFT Pascal
Workbench

User’s Guide

TRS-80TM Color Computer Software Series

Version 3 Second Printing

TMTandy Corporation

DEFT Pascal Workbench User’s Guide
Copyright© 1983, 1984 DEFT Systems, Inc.

Damascus, Maryland 20872, U.S.A.
All Rights Reserved

Reproduction of any portion of this manual, without express written
permission from DEFT Systems, Inc. is prohibited. While reason-
able efforts have been taken in the preparation of the manual to
assure its accuracy, DEFT Systems, Inc. assumes no liability
resulting from any errors or omissions in this manual or from the use
of the information obtained herein.

DEFT Pascal
DEFT Edit

DEFT Macro/6809
DEFT Linker

DEFT Debugger
DEFT Lib

Copyright© 1983, 1984 DEFT Systems, Inc.
Damascus, Maryland 20872, U.S.A.

All Rights Reserved

The software is retained on a 5 ¼ inch diskette in a binary format.
All portions of this software, whether in the binary format or other
source code format. unless otherwise stated, are copyrighted by
DEFT Systems, Inc. Reproduction or publication of any portion of
this material, without the prior written authorization by DEFT
Systems, Inc., is strictly prohibited.

TRS-80™ is a Trademark of Tandy Corporation

i

Software License

DEFT Systems, Inc. grants to you. the customer, a non-exclusive.
paid-up license to use the DEFT Systems software on one computer,
subject to the following provisions:

1. Except as otherwise provided in the Software License, applicable
copyright laws shall apply to the Software.

2. Title to the medium on which the Software is recorded (cassette
and/or diskette) or stored (ROM) is transferred to you. but not
title to the Software.

3. You may use the Software on one host computer and access that
Software through one or more terminals if the Software permits
this function.

4. You shall not use, make, manufacture, or reproduce copies of
Software except for use on one computer and as is specifically
provided in the Software License. You are expressly prohibited
from disassembling the Software.

5. You are permitted to make additional copies of the Software only
for backup or archival purposes or if additional copies are
required in the operation of one computer with the Software. but
only to the extent the Software allows a backup copy to be made.

6. You may resell or distribute unmodified copies of the Software
provided you have purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License
shall also be applicable to third parties receiving copies of the
Software from you.

7. All copyright notices shall be retained on all copies of the
Software.

Term

This license is effective until terminated. You may terminate this
License at any time by destroying the Software together with all
copies in any form. It will also terminate if you fail to comply with
any term or condition of the License .

ii

Warranty

These programs, their instruction manual and reference materials are
sold AS IS, without warranty as to their performance, merchantability.
or fitness for any particular purpose. The entire risk as to the results
and performance of these programs is assumed by you.

However, the original purchaser only, DEFT Systems, Inc. Warrants
the magnetic diskette on which these programs are recorded to be free
from defects in materials and faulty workmanship under normal use
for a period of thirty days from the date of purchase. If during this thirty
day period the diskette should become defective, it may be returned to
DEFT Systems, Inc. for a replacement without charge, provided you
have previously sent in your limited warranty registration notice to
DEFT Systems, Inc. or send proof of purchase of these programs.

Your sole and exclusive remedy in the event of a defect is expressly lim-
ited to replacement of the diskette as provided above. If failure of a disk-
ette has resulted from accident or abuse DEFT Systems, Inc. shall
have no responsibility to replace the diskette under the terms of this
limited warranty.

Any implied warranties relating to the diskette, including any implied
warranties of merchantability and fitness for a particular purpose, are
limited to a period of thirty days from the date of purchase. DEFT Sys-
tems, Inc. shall not be liable for indirect, special, or consequential dam-
ages resulting front the use of this product. Some states do not allow
the exclusion or limitation of incidental or consequential damages, so
the above limitations might not apply to you. This warranty gives you
specific legal rights, and you may also have other rights which vary from
state to state.

Support

DEFT Systems, Inc. (and not Radio Shack) is completely responsible
for the Warranty and all maintenance and support of the Software. Any
questions concerning the Software should be directed to:

DEFT Systems, Inc.

P.O. Box 359
Damascus, Md. 20872

 iii

DEFT Pascal Workbench User’s Guide

 Introduction

 Familiarization Exercise

 DEFT Edit

 DEFT Pascal Compiler

 DEFT Macro/6809 Assembler

 DEFT Linker

 DEFT Debugger

 DEFT Lib

 DEFT Pascal Language

 Advanced Pascal Language Extensions

 DEFT Macro/6809 Assembler Language

 Index

Intro
D

ebug
Link

C
om

pile
Edit

Pascal
Lib

Asm
Asm

Lang
Index

Exer
Adv

DEFT Pascal Workbench

1 DEFT Pascal Workbench . 1
 1.1 DEFT Pascal . 1
 1.2 DEFT Edit . 1
 1.3 DEFT Macro/6809. 2
 1.4 DEFT Linker . 2
 1.5 DEFT Debugger . 2
 1.6 DEFT Lib. 2

2 DEFT Pascal Workbench Users Guide 4
 2.1 Document Divisions . 4
 2.2 Document Section Descriptions . 4

3 Software Development . 6
 3.1 Program Design Development . 6
 3.2 Source Code Development . 7
 3.3 Object Code Development. 7
 3.4 Load Module Development . 8
 3.5 Program Execution and Debugging 8

4 Getting Started . 9
 4.1 Program execution . 9
 4.2 64K Operation. 10
 4.3 32K Operation. 11
 4.4 DEFT Files . 11
 4.5 DEFT Pascal Workbench Diskette Contents 12
 4.6 Single Disk Drive Operation . 14

Intro

1 DEFT Pascal Workbench

DEFT Pascal Workbench is a set of software development tools de-
signed to support a programmer through the process of creating com-
puter programs; from entering source code through executing the
resulting machine program. DEFT Pascal Workbench is comprised
of the following software packages:

DEFT Pascal
DEFT Edit

DEFT Macro/6809
DEFT Linker

DEFT Debugger
DEFT Lib

DEFT Pascal Workbench requires a TRS-80 Color Computer to be
configured with at least 32K of memory, Extended Disk BASIC, and one
floppy disk drive. DEFT Pascal Workbench utilizes a device inde-
pendent file structure which is fully compatible with Disk Extended
BASIC. Disk and tape files created with DEFT Pascal Workbench
are of the same internal format as those produced and supported by
BASIC.

1.1 DEFT Pascal

The DEFT Pascal Compiler is a fully recursive, single-pass Pascal lan-
guage compiler for the TRS-80 Co1or Computer. It compiles Pascal pro-
grams directly into machine language code that can be executed by the
6809 microprocessor in the CoCo.

DEFT Pascal generally supports most standard Pascal language con-
structs. In addition, DEFT Pascal supports many extensions to the
standard language which makes text processing, multi-language and
system type programs easier to write.

1.2 DEFT Edit

DEFT Edit is a screen mode, in-memory, text editor which provides its
users with a selectively moveable window into a text file. DEFT Edit
was designed primarily for the development of program source code, but
it can also be used for the production of software documentation.

 Introduction 1

Intro

1.3 DEFT Macro/6809

DEFT Macro/6809 is a device-independent software package designed
to translate Motorola 6809 Assembler source programs into 6809 micro-
processor machine programs in two passes. Program source files may
be read from either cassette or disk with the resulting machine program
object files written to either cassette, disk, or the serial I/O port. DEFT
Macro/6809 parses and evaluates Motorola 6809 assembler language
statements and declarations, and generates the corresponding 6809 mi-
croprocessor machine programs according to Motorola 6809 Assembler
language syntactical rules and conventions.

1.4 DEFT Linker

DEFT Linker is a program which reads the program object files pro-
duced by both DEFT Pascal and DEFT Macro/6809 and converts
them into machine executable binary image files suitable for loading
with the Color Computer’s LOADM command. DEFT Linker can also
read multiple program object files and combine them into one larger
machine executable binary load module so as to allow Color Computer
users to develop very large programs one piece at a time.

1.5 DEFT Debugger

DEFT Debugger is an excellent tool for debugging machine programs
developed in either Pascal or assembler. DEFT Debugger allows you
to stop and start a program under test almost any point. Once the pro-
gram under test has been stopped, you can display and/or change any
memory location or microprocessor register. When used with DEFT
Pascal, DEFT Debugger provides symbolic access to your program
as well as a trace facility for displaying currently active procedures.

1.6 DEFT Lib

DEFT Lib is an excellent tool for the development of object module li-
braries using object modules produced by either DEFT Pascal or
DEFT Macro/6809. DEFT Lib is a device independent software pack-
age capable of creating and maintaining up to 50 object module sections
in one library file. Once created, these libraries can he used as input to

2 Introduction

Intro

DEFT Linker which will only use those sections which have been ref-
erenced by the particular program which is being linked.

 Introduction 3

Intro

2 DEFT Pascal Workbench Users Guide

The DEFT Pascal Workbench Users Guide is structured to be helpful
in understanding and using DEFT Pascal Workbench. The User’s
Guide is not intended to be a self teaching guide in how to program but
rather a tutorial on how to use the programs in DEFT Pascal Work-
bench.
If you already have an understanding of programming, then the User’s
Guide should contain more than enough information for you to imme-
diately begin programming. If you have only programmed in BASIC,
then you should he able to begin programming but you may need a Pas-
cal text book when tackling some of the more advanced portions of the
language. In either case, practice makes perfect, and no one should ex-
pect too much of themselves without some experience.

2.1 Document Divisions
The DEFT Pascal Workbench User’s Guide is presented in three
parts: Introduction, How To, and Background. Each section was written
with two specific objectives in mind.
 • To support DEFT Pascal Workbench users according to their
 operation of a DEFT software product.
 • To provide background information for reference.

2.2 Document Section Descriptions
The Introduction section informs the reader of two things. First, it de-
scribes the contents of the User’s Guide itself and second, it describes
how, in general terms, to use DEFT Pascal Workbench to develop
programs.
The How-To section describes in operational detail how to execute each
tool provided in DEFT Pascal Workbench. This section starts with a
Familiarization Exercise designed to be performed by you when you
are first becoming acquainted with DEFT Pascal. This exercise pro-
vides a working example program. Following the exercise are individual
sections which describe the operation and use of each program in the
DEFT Pascal Workbench.

The Background section presents the reader with reference inform-
ation. The first part summarizes the standard language ele-
ments of DEFT Pascal and includes a brief explanation of each.
The second part summarizes the language extensions that are

4 Introduction

Intro

contained in DEFT Pascal, with an explanation of each element. The
last part summarizes the language elements of DEFT Macro/6809 as-
sembly language.

Regardless of how much experience a you may have, we highly rec-
ommend that you read the entire User’s Guide. Good luck and have fun
with DEFT Pascal Workbench.

 Introduction 5

Intro

3 Software Development

Developing programs with the DEFT Pascal Workbench is somewhat
different from the procedure for developing programs in BASIC. With
BASIC, you essentially type in the picogram and then type RUN, De-
bugging usually consists of hitting the BREAK key at appropriate
points, PRINTing variables and turning the trace on and off.

This is a very good environment in which to develop small programs
which do not have to execute with exceptional speed. However, as the
programs you write become larger and more complex, some of the lim-
itations imposed by the BASIC language will come in to play. These are
primarily the small identifier size. lack of, program structure, and ex-
ecution performance of the interpreter.

DEFT Pascal Workbench takes up where BASIC leaves off. It should
be seen as a powerful addition to your existing program tools. It is ideal
for· those programs which become very large, complex, and which ex-
ecute for relatively long periods of time, All the programs in the DEFT
Pascal Workbench were themselves developed using the workbench.

In general, the DEFT Pascal Workbench allows you to divide and
conquer a large problem in smaller pieces. The linkage facilities found
in DEFT Pascal and DEFT Macro/6809 provide a very simple and
straightforward method for combining the program pieces. This linkage
facility is an extra step in the program Development process and for
small programs may not provide many benefits. However, in larger pro-
grams. the ability to modularize and compile or assemble only a small
piece of a program at a time can be invaluable.

Since you are producing 6809 micro-processor instructions with DEFT
Pascal, you will be dealing directly with the CPU when you begin de-
bugging your resulting machine language program. You will use the
DEFT Debugger to perform this step.

3.1 Program Design Development

Design. This step is one that you consciously or unconsciously perform
before typing in a program. At the very least you should:

• Decide exactly what things the program is supposed to do. These
are the program’s functions.

6 Introduction

Intro

• Decide how to organize the program around these major functions.
 This will identify what your major program pieces are.

• Decide how each piece should be organized to perform its function.

For very large programs, you may want to go even more detailed design
before beginning your coding. Remember that organizing the program
is half the Job of solving the problem. This usually involves defining all
of the major data elements that you will be using before writing the
code that manipulates them.

3.2 Source Code Development

Edit. This familiar step is the entry of a program’s instructions which
usually begins about halfway through the design stage. At this point,
you will be creating source module files; that is, each program that is
entered is stored in its textual form in a file. This step is performed by
the programmer using a text editor such as DEFT Edit. The resulting
text file containing the program statements is referred to as a source
file or source module file.

This step is very similar to that in BASIC, except that in BASIC once
the program is entered, it can then be immediately executed by the
BASIC interpreter. With DEFT Pascal, the program statements in text
form must first be translated into machine instructions for execution
by the 6809 micro-processor. This leads us to the next phase of program
development.

3.3 Object Code Development
Compile/Assemble. This is a new step for those used to BASIC. This
step involves transforming the source module files that you created with
DEFT Edit into object module files which contain two things:

• The machine language version of your programs
• Linkage information that will allow one object module file to be
 combined with others.
DEFT Pascal and DEFT Macro/6809 are both used to perform this
step. Both programs prompt the user for both the name of the source
module file which it uses for input and the object module file which it
produces.

 Introduction 7

Intro

3.4 Load Module Development
Link. This is the last step before actually executing your program. This
step converts the previously created object module files into single bi-
nary load module files.
When DEFT Pascal creates it’s object module files. it includes calls to
machine language routines in other object modules which were included
on your DEFT Pascal diskette. These object modules are in a special
file called a runtime library and provide services such as I/O, string and
set handling as well as floating point arithmetic. All of these object mod-
ules must be combined together and all of the address references be-
tween these modules must be adjusted appropriately in order to work
in order to create a working program.
DEFT Linker performs this whole operation. It prompts you for the
name(s) of the object module file(s) to be linked, which it uses for input,
and the name of the load module file which it produces. This step takes
all of those object module files and combines them into a single file that
can be loaded via the BASIC CLOADM command.

3.5 Program Execution and Debugging
Execute/Debug This step involves actually testing your program by pro-
viding it with test data developed during the design step to determine
if the program is producing the correct results. The DEFT Debugger
permits a programmer to stop and restart a program under test at any
point within the program. The programmer may then examine any
memory location and/or microprocessor register and change its contents
if desired. With the DEFT Debugger, the user may specify up to eight
program stopping or break points at one time.
DEFT Debugger is an object module that is linked into your program’s
load module by DEFT Linker and therefore becomes a part of it. It ini-
tially gains control when your program begins execution so that you can
use it to control subsequent execution. Once your program is debugged,
you can re-link it without the debugger which will make your program
smaller and faster.
For most large programs the first and last steps, design and debugging,
take the majority of the total time spent on a program. In fact, in very
large projects the first and last steps are broken into a number of sub-
steps in order to keep the job to a manageable size.

8 Introduction

Intro

4 Getting Started

This section of the DEFT Pascal Workbench User’s Guide is meant
to provide you with the operational details required to use DEFT soft-
ware products on the TRS-80 Color Computer. This section is required
reading before you should attempt anything with a DEFT software pro-
duct.
4.1 Program Execution

All DEFT programs for the TRS-80 Color computer are binary machine
language programs that are loaded into memory with the LOADM com-
mand and executed with the EXEC command. Before executing any
DEFT program or any program that you create with the DEFT Pascal
Workbench, it is absolutely necessary to protect it from BASIC. This
is done with the following set of 4 BASIC Monitor commands. These
commands need to be entered only once, just before the first time that
you load a DEFT program. Subsequent loads of DEFT software will
not require the re-entry of these BASIC Monitor commands.

 1. NEW- This command is not necessary if you have just turned on
 your Color Computer. It is used to initialize the memory area nor-
 mally used by the BASIC Interpreter in the Color Computer’s
 ROM.

 2. PCLEAR1- This command causes Extended BASIC to reserve the
 minimum number of 1.5K byte pages for graphics. Since no DEFT
 software product uses BASIC’s graphics for presentation, this com-
 - mand releases otherwise unused memory for use by the program
 being loaded.

 3. FILES0,0- This command tells BASIC that you do not intend to
 access any disk files via BASIC. Note that even after executing
 this command you can still DIR. KILL and RENAME. However,
 you will not be able to COPY. Since each program of the DEFT
 Pascal Workbench is an independent machine program, none of
 the BASIC lnterpreter’s file facilities are required. thereby freeing
 up even more otherwise unused memory.

 4. CLEAR 16,4999- This reserves the upper 59K (27K in a 32K
 system) bytes of memory for use by DEFT software products. It
 will leave a little over 300 bytes of memory for use by BASIC.
 This Color Computer BASIC monitor directive must be entered
 exactly as presented in this example. The first directive
 argument, 16, tells the BASIC monitor how many bytes of

 Introduction 9

Intro

memory to reserve for BASIC strings. Since no DEFT software products
use the Color Computer’s BASIC language, 16 bytes of memory is more
than enough. The comma (,) preceding this next number is required.
the next number, 4999, tells the BASIC Monitor the last or highest
value “address” in memory that it is allowed to use. This number is ex-
pressed in decimal, thereby reserving the rest of the Color Computer’s
memory, from decimal address 5000 on up, for any DEFT software pro-
duct.

It is absolutely essential that you perform these commands before ex-
ecuting any of the programs in the DEFT Pascal Workbench. If you
do not, BASIC may “over-write” portions of any program that you may
load. If that were to happen, the loaded program’s execution will pro-
duce unpredictable results.

The BASIC command for executing any or the programs in the DEFT
Pascal Workbench is LOADM “<filename>”:EXEC and the possible
filenames are:

 PASCAL DEFT Pascal
 EDITOR DEFT Edit
 ASSEMBLE DEFT Macro/6809
 LINKER DEFT Linker

 LIB DEFT Lib

4.2 64K Operation
Whenever any DEFT program first begins execution, it immediately
changes the Color Computer’s memory map to unmap the BASIC and
map in any RAM that may exist in the top 32K of memory. DEFT pro-
grams are fully self-contained and so don’t need the BASIC ROM to op-
erate.
After changing the memory map, the program will check to see whether
you have a 32K or 64K system and then adjust the size of its main data
structure to whatever memory is available. The result of this is that
these programs can access up to 64K bytes of memory in your Color
Computer.
With DEFT Pascal, or any other DEFT high level language compiler,
any programs that you create will be able to use all the available mem-
ory in the system for your data variables. The only restriction is that
the program instructions (not stack) must fit in the lower 32K of mem-
ory since this is loaded via BASIC.

10 Introduction

Intro

4.3 32K Operation

Some 32K systems may show the same RAM memory size as a 64K sys-
tem. This will cause all programs to switch to memory map 1 which will
cause the system to hang. If you have such a TRS-80 Color Computer,
you will want to do the following:
1. Power on your Color Computer.
2. Make a backup of your distribution diskette and put the
 distribution diskette in a safe place.
3. Put the un-write-protected copy of the distribution diskette that
 you just made into drive 0.
4. Enter the 4 BASIC commands found in the Program Execution
 section.
5. Enter: RUN“MAKE32K” <enter>
The program will run for about a minute and after it finishes. the disk-
ette in drive 0 will contain a 32K version of the software.

If you have a 64K system and want to write Pascal programs that access
the BASIC ROMS you can rename PASBOOT/OBJ to PASBOOT/64K
and PASBOOT/32K to PASBOOT/OBJ. By doing only this, your
DEFT software will still run using all 64K but any program linked
using this new version of PASBOOT/OBJ will operate with the BASIC
ROMS in place.

4.4 DEFT Files

One of the advantages of using the DEFT Pascal Workbench is the
device independent file structure which is supported while remaining
fully compatible with the TRS-80 Disk Extended Color BASIC System
Software. Disk or tape files created with BASIC, DEFT software pro-
ducts or programs developed with DEFT Pascal are all of the same
fundamental format.

When executing DEFT software development tools you will have to
specify the names of the source module, object module and binary load
module files. The file naming conventions used with the DEFT Pascal
Workbench are only slightly different from that of BASIC and allow
complete device independence. The format of the names are as follows:

 Introduction 11

Intro

<filename>/<ext>:<device#>

This is the same format. that BASIC uses for Disk files. However, by
extending the device numbers, DEFT Pascal Workbench also uses it
for the keyboard, screen, tape and printer. The <filename> is 0 to 8
ASCII characters. The extension is 0 to 3 ASCII characters. The device
numbers range from -3 to 3 with the following meanings:
 -3 Keyboard/Screen
 -2 Printer
 -1 Cassette Tape
 0 Disk drive 0
 1 Disk drive 1
 2 Disk drive 2

 3 Disk drive 3
As can be seen, the positive device numbers correspond to BASICs drive
numbers. The negative device numbers correspond to BASIC’s device
numbers with the exception that the Keyboard/Screen is -3 rather than
0.
All of the fields are optional in different circumstances. When a device
number of -3 or -2 is specified, there is no need for a <filename> or <ex-
tension>. When a device number of 1 is specified, the <extension> is not
required. For device numbers 0 thru 3, a default <extension> is always
present depending on the program being run. When a device number
is not specified. 0 is assumed. Following are some examples:
 :-3 Keyboard/Screen
 :-2 Printer
 MYFILE:-2 Printer (filename ignored but
 allowed)
 TAPEFILE:-1 Cassette Tape File
 DISKFILE/ASM Assembler source file on disk drive 0
 F2NAME:1 File is on disk drive 1, default
 extension used
4.5 DEFT Pascal Workbench Diskette Contents
The following files are contained on the diskette that you received. You
are encouraged to make a copy of the distribution diskette for your own
backup purposes and to execute from the backup rather than the orig-
inal diskette.
1. PASCAL/BIN - This file contains the executable image of the DEFT

Pascal compiler.

12 Introduction

Intro

2. EDITOR/BIN - This file contains the executable of DEFT Edit.

3. LINKER/BIN - This file contains the executable image of the

DEFT Linker .

4. ASSEMBLE/BIN - This file contains the executable image of DEFT

Macro/6809.

5. LIB/BIN -This file contains the executable image of DEFT Lib.

6. PASCALIB/BIN - This is a Pascal source file which is automatically

copied by DEFT Pascal at the beginning of all programs which it
compiles. This file contains the declarations of all of the predefined
procedures and functions provided with DEFT Pascal. This file
must be present on disk drive 0 whenever DEFT Pascal is executed.

7. PASBOOT/OBJ -This is the object file for the standard boot code for

all Pascal programs. All programs produced by DEFT Software have
a first instruction. For DEFT Pascal programs these first instruc-
tions are kept in this file. This object module file contains the ma-
chine language routines for Pascal program initialization. This file
must be present on disk drive 0 When linking a Pascal program with
the DEFT Linker.

8. RUNTIME/LIB - This is the object module library file which con-

tains all the Pascal Runtime routines for Pascal programs developed
with DEFT Pascal. Each library section contains machine language
routines which are automatically called by DEFT Pascal when you
use various parts of the language. This file must be present on disk
drive 0 When linking a Pascal program with DEFT Linker.

9. DEBUGGER/LIB - This is the library file which contains DEFT

Debugger for debugging any program created with DEFT Pascal
Workbench. This file must be present on disk drive 0 when linking
any program which is to include DEFT Debugger. See DEFT De-
bugger for more information.

10.FORMAT/PAS & FORMAT2/PAS - these are the two source files

which contain the Text Formatter DEFT Pascal program .You will
use these source files in the Familiarization Exercise part of the
HOW TO section, to create your own text processing system.

 Introduction 13

Intro

11. FORMATSP/ASM - This is a source file which contains the 6809

Macro assembler language portion of the Text Formatter pro-
gram.

12. FORMATSP/OBJ - This is an object file produced by DEFT
Macro/6809 from the FORMATSP/ASM file. It is included on
the distribution diskette in ease you do not wish to use the as-
sembler.

13. FORMAT/TXT - This is an ASCII file that the FORMAT pro-
gram uses for input. The FORMAT program will produce a set of
instructions describing how to use itself.

14. PASBOOT/ASM - This is a source file which contains 6809
Macro Assembler language instructions which are the very first
instructions executed by any Pascal program developed via the
DEFT Pascal.

15. MAKE32K/PAS This is a BASIC program that converts a distri-
bution diskette to 32K operation.

4.6 Single Disk Drive Operation

When using a single disk drive system you will have to create a work
diskette that contains a couple of files from the distribution diskette as
well as your own source, object and binary files. To execute a program
you will insert the distribution diskette into your disk drive, load the
proper binary image, insert your work diskette into the drive and then
execute the loaded program.
The files that need to be copied onto your work diskette are:

DEBUGGER/LIB
PASCALIB/EXT
PASBOOT /OBJ

RUNTIME/LIB
You can copy these files by using the COPY command in BASIC. Al-
though single drive operation is not documented, this command works
the same way BACKUP does in single drive mode.
On some early versions of Disk Extended Basic the copy command will
not work on a single disk drive. If you have one of these, use BACKUP
to create a work diskette and then KILL all the files on the diskette ex-
cept those named above.

14 Introduction

Intro

Familiarization Exercise

1 Introduction . 1

2 Design. 2

3 Edit . 3

4 Compile/Assemble . 4

4.1 Executing the DEFT Pascal Compiler 4
4.2 Executing the 6809 Macro Assembler 5

5 Link. 7

6 Execute/Debug . 8

Exer

1 Introduction

In order to illustrate the use of the DEFT Pascal Workbench, a sam-
ple program has been included on the diskette. This program is made
up primarily of a PASCAL program which is contained in the files
FORMAT/PAS and FORMAT2/PAS. An assembler module FOR-
MATSP/ASM contains a pre-initialized lookup table that is used by the
Pascal program. The assembler module has already been assembled
into an object file (FORMATSP/OBJ), however, if you also have DEFT
Bench, then you can also perform the section on assembling a program.

 How To 1

Exer

2 Design

This step has already been performed for you. The purpose of the pro-
gram is to read an ASCII file, which can be created by DEFT Edit, and
to produce a professional looking document. The input file for this pro-
gram contains text and text processing commands which control how
the resulting document is to look. Text processing commands are rec-
ognized by having a period (.) as the first character in a line. The doc-
ument that will be produced as a result of this exercise, contains a
Detailed Functional Description of what the program is to do.

The program is broken down into the following major procedures:

• Initialize initializes all variables and prompts for file names re-

quired.

• ReadNextLine reads the next line of input and determines whether

it is command or text. If it is a command, it determines which com-
mand that it is.

• NextSymbol parses an input command for each parameter of that

command.

• FillOutput and NoFillOutput create normal output text from an

input text line.

• One procedure per command will be used to process each command

type.

2 How To

Exer

3 Edit

This phase has already been performed. As mentioned before. the files
FORMAT/PAS and FORMAT2/PAS contain the Pascal program. The
file FORMATSP/ASM contains the assembly language support for the
program. With DEFT Edit or your own ASCII file text editor, you can
edit these files to see what they look like. We recommend that you don’t
make any changes to the program until after you have made a backup
and have executed the final program at least once successfully.

 How To 3

Exer

4 Compile/Assemble

We are now ready to compile the Pascal program and assemble the as-
sembler support code. This section assumes that you are using a two
disk drive system with the DEFT Pascal Workbench diskette in drive
0 and your work diskette in drive 1.
If you have only a single drive system. then you will have to copy the
following files onto your work diskette (see the section on Single Drive
Operation
 FORMAT/PAS
 FORMAT2/PAS
 FORMATSP/ASM
 FORMATSP/OBJ

 FORMAT/TXT
Before starting make sure that you have performed the steps described
under Getting Started to protect the machine language programs from
BASIC.
4.1 Executing the DEFT Pascal Compiler
The command LOADM “PASCAL”:EXEC will load the DEFT Pascal
Compiler from disk drive 0 and begin execution. You will see the DEFT
Pascal Compiler screen with all of its prompts. If you have only a single
disk drive, then remove the DEFT Pascal Workbench diskette from
the drive and insert your work diskette.
Each prompt and its possible relies are described below:
• SOURCE requires the name of the source file which is to be com-

piled. The default extension is PAS. Your response for this sample
program will be FORMAT, FORMAT:0, FORMAT/PAS or FOR-
MAT/PAS:0 all of which are equivalent.

• OBJECT requires the name of the object file that is to be created
by the compiler. This can be either on tape or disk or the name can
be omitted entirely if you do not wish to create an object file. The de-
fault extension is OBJ. Your response for this sampleprogram will
be FORMAT:l or FORMAT/OBJ:1 both of which are equivalent. If
you have a single drive system, your response will be FORMAT,
FORMAT/OBJ or FORMAT/OBJ:0.

• LIST requires the name of the list file which is to be created by the
compiler. This can be tape, disk, screen or printer or the name can
be omitted entirely if you do not wish to create a list file. The default
extension is LST. Your response for this sample program will be :-2

4 How To

Exer

if you have a printer or nothing if you don’t.

• DEBUG? asks you whether you wish to have debug information in-
cluded in the resulting object file. You can answer this either with
N, n or anything else. Anything other than N or n (for No) is taken
to be Y (for Yes).
The debug information will make your program significantly bigger
but will allow you to symbolically debug your resulting program if
you answer the DEFT Linker’s debug? question with a Y. If you
specify Y to DEFT Pascal’s debug? question and N to the DEFT
Linker’s debug question, then the debug information will still be in
the final binary image even though the DEFT Debugger module is
not present.
If you want to try out the debugger, then you can answer this ques-
tion Y, otherwise answer it N.

• DIRECTIVE requires any DEFT· Pascal directive that you would

like to include before any source lines are read. The section Compiler
Controls describes all the possible compiler controls that you could
enter here. Your response for this sample program will be T<your
name> which will cause <your name> to be printed at the top of each
page of the program listing.

After you answer the DIRECTIVE prompt, the program will begin ex-
ecuting. The complier requires that the file PASCALIB/EXT be present
on disk drive 0 at this point. When the compiler is finished executing,
control will return to BASIC and you will get the OK prompt.
This execution of the DEFT Pascal compiler will read both the FOR-
MAT/PAS and FORMAT2/PAS source files and create the
FORMAT/OBJ object file. The FORMAT2/PAS file will be read because
of a compiler directive at the end of the FORMAT/PAS source file.

4.2 Executing the 6809 Macro Assembler
If you want. to try out the DEFT Macro/6809 assembler then you can
also assemble FORMATSP/ASM into the FORMATSP/OBJ file. If you
don’t, then go to the next section.
First put the DEFT Pascal Workbench diskette in disk drive 0 and
enter the command LOADM“ASSEMBLE”:EXE to load DEFT
Macro/6809 and begin its execution. If you have a single drive system,
put your work diskette into disk drive 0.

 How To 5

Exer

You will see the assembler’s screen appear along with its first prompt.
Each prompt and its possible replies are described below:

• TITLE: requires the string of characters that you want to see at
the top of each page of your assembly listing. You do not have to
enter a title but for this sample program you can enter your name.

• SOURCE FILE: requires the name of the source file which is to

be assembled. The default extension is ASM. Your response for this
sample program will be FORMATSP, FORMATSP:0, FOR-
MATSP/ASM or FORMATSP/ASM:0 all of which are equivalent.

• OBJECT FILE: requires the name of the object file that is to be

created by the assembler. This can be either on tape or disk or the
name can be omitted entirely if you do not wish to create an object
file. The default extension is OBJ. Your response for this sample
program will be FORMATSP:1 or FORMATSP/OBJ:1 both of
which are equivalent. If you have a single disk drive system, you
response will be FORMATSP, FORMATSP:0, FORMATSP/OBJ
or FORMATSP/OBJ:0.

• LIST FILE: the name of the list file which is to be created hy the

assembler. Thus can be tape, disk, screen or printer or the name
can ommitted entirely if you do not wish to create a list file. The
default extension is LST. Your response for this sample program
will be :-2 if you have a printer or nothing if you don’t.

After you answer the LIST FILE: prompt, the assembler will begin its
first pass. During this first pass only the disk will appear to be doing
anything. For this sample program, the first pass should last only a few
seconds. The assembler will begin printing on its second pass through
the source code. During this second pass DEFT Macro/6809 will read
the FORMATSP/ASM source file and produce the FORMATSP/OBJ
object file and a listing on your printer.

6 How To

Exer

5 Link

Once you have created the necessary object files with the compiler and
assembler, you are ready to link them together into your final binary
image. Make sure that you have the DEFT Pascal Workbench disk-
ette in disk drive 0 and then enter the command LOADM
“LINKER”:EXEC to load DEFT Linker and begin its execution. If you
have a single drive system, put your work diskette in disk drive 0. The
Operation section in the DEFT Linker documentation describes how
to operate the Linker. For your sample program, the responses required
will be:

• ORIGIN - no response, this will invoke the default origin.
• LIST FILE: - :-2 if you have a printer, otherwise nothing.
• BINARY FILE: - FORMAT:1 or FORMAT/BIN:1 both of are

equivalent. If you have a single drive system, enter FORMAT, FOR-
MAT:0. FORMAT/BIN or FORMAT/BIN:0 all of which are equiv-
alent.

• PASCAL? (Y) - Y.
• DEBUGGER? (Y) - Y if you want to try out DEFT Debugger,

otherwise N.
• OBJ NAMES FILE: - no response. this is because you do not have

a text file that contains the file names of all the object files to be
linked.

• OBJECT FILE: - FORMAT:1 or FORMAT/OBJ:1 both of which
are equivalent. If you have a single drive system, enter FORMAT,
FORMAT:0, FORMAT/OBJ or FORMAT/OBJ:0 all of which are
equivalent.

• OBJECTFILE: - FORMATSP:1 or FORMATSP/OBJ:1 both of
which are equivalent. If you have a single drive system, enter FOR-
MATSP, FORMATSP:0, FORMATSP;OBJ or FORMATSP/OBJ:0
all of which are equivalent.

• OBJECT FILE: - no response to indicate that you have entered
all the object file names that you wish to link.

The Linker will then begin operation and produce both the final binary
image in the file FORMAT/BIN and a listing on your printer.

 How To 7

Exer

6 Execute/Debug

The command LOADM “FORMAT:1”:EXEC (LOADM “FORMAT”
:EXEC on a single drive system) will load the sample program and
begin its execution. If you specified Y to the DEBUGGER? prompt from
DEFT Linker then you will see the DEFT Debugger screen. The
DEFT Debugger documentation provides a complete description of
how to operate the debugger. If you did not specify Y or if you give
DEFT Debugger the GO command, then you will see the FORMAT
screen with its first prompt. You should answer the prompts as follow:

1. INPUT FILE: FORMAT, FORMAT:0, FORMAT/TXT or FOR-
MAT/TXT:0 all of which are equivalent.

2. OUTPUT FILE: - :-2 if you have a printer. If not, put the output

on disk by entering FORMAT:l or FORMAT/LST:1 both of which
are equivalent. If you have a single disk system use FORMAT,
FORMAT:0, FORMAT/LST or FORMAT/LST:0 all of which are
equivalent.

Once you answer the last prompt the program will begin executing and
produce a document. showing you how to use the program.

8 How To

Exer

DEFT Edit

 1 Introduction . 1

 2 Basic Operation . 2
 2.1 Text Screen . 2
 3 Cursor Positioning . 5

 4 Scrolling. 6

1 Functions . 7
 1.1 The CLEAR Key . 7
 1.2 Major Cursor Positioning . 7
 1.3 Up Arrow Character Entry . 8
 1.4 Deleting Characters. 8
 1.5 Deleting Lines . 8
 1.6 Replace/Insert Modes . 8

 2 Files . 10
 2.1 Getting A File . 10
 2.2 Writing A File . 10
 2.3 Quitting and Reentering . 10
 2.4 Exiting . 11
 2.5 File Errors . 11

 3 Pattern Processing . 12
 3.1 Finding a Text Pattern . 12
 3.2 Changing Text Patterns . 12

4 Copying and Moving Text . 14
 4.1 Marking and Saving Text . 14
 4.2 Appending The Saved Text . 14
 4.3 Additional Mark Functions . l5

Edit

1 Introduction

DEFT Edit is a program that allows you to create and modify PASCAL
and Assembler source programs as well as any type of ASCII text file.
Its features include:

• Text is maintained in memory to provide excellent command re-

sponse.

• Files can be read and merged from either cassette or disk. They may

be written to cassette, disk or printer.

• The user interface is a screen-mode “window” into the text with auto-

matic up/down and left/right scrolling.

• All keys are auto-repeat.

• The FIND command allows you to search for specific patterns.

CHANGE provides for changing the pattern in 1 or more instances.

• MARK and APPEND commands allow copying and moving of portions

of text to either other places in the working text or to a file .

 How To 1

Edit

2 Basic Operation

After LOADMing and EXECing DEFT Edit you will see DEFT Edit’s
copyright screen which has the INITIALIZE? (Y) prompt. The editor
uses the answer to this question to determine whether to initialize its
in-memory text buffer. When you have just loaded the editor, you must
answer this question yes. This can be done by entering anything other
than N or n (including nothing) and then depressing the ENTER key.
The only times that you would answer this question with a N or n is
when you have previously used the editor, exited and did nothing to
alter the computer’s memory. and then re-entered DEFT Edit. Sec the
QUIT command for more information.
Once the editor is loaded and initialized, you are now ready to enter
text. The following sections will describe and explain what you see and
what you can do.

2.1 Text Screen
Once you have answered the INITIALIZE?(Y) question, you will see
the text screen. This screen will be green with a blue square at the top
left-hand corner and some numbers and letters on the bottom line in
reverse video. The blue square is blinking and if you type some char-
acters, they appear on the top line followed by a blinking orange square.
The blue square has moved down to the second line. If you hold down a
key, you see the corresponding character repeat. Each element on this
screen is discussed in detail in the following subsections:

Blinking Square
There is always one square on the top 15 lines of the screen which
blinks. This may be either a colored square, a character or a blank. The
place on the screen which is blinking is the cursor. This is the point at
which any text that you type in will appear. In addition, many com-
mands that you can enter will affect text relative to the position of the
cursor.

Blue Square
The blue square indicates the end of the text held in memory. .Anytime
the cursor is on a line which is within 14 lines of the end of the text,
the blue square will appear at the left hand side of the screen on the
line following the last line of text.

2 How To

Edit

Orange Square

The orange square indicates the end of the line. It appears on the screen
in the position that a carriage return is stored in memory. Every line,
including the last line, always has a carriage return at the end.

Status Line

The line in reverse video at the bottom of the screen is the status line.
this line provides information about the current status of your editing
session. The information provided (in order) is:

1. The three characters at the left-hand side of the screen indicate the

mode that the editor is in. INS (for insert) is the mode that the editor
initially comes up in and causes each character typed to be inserted
before the character pointed to by the cursor. The other modes are
REP (for replace) and MARK which are discussed in later sections.

2. The number followed by the character L is the line number on which

the cursor is currently positioned. The first line is numbered zero .

3. The number followed by the character C is the column number at

which the cursor is currently positioned. The first column on a line
is zero.

4. The number followed by the characters LS is the line size of the line

on which the cursor is currently positioned. This count includes the
carriage return at the end of the line.

5. The number followed by the character T is the number of remaining

characters of text which can still be entered in memory. This number
is updated each time the cursor is positioned to a new line.

Auto-Repeat

The auto-repeat feature allows you repeat the entry of any key on the
keyboard by merely holding the key down for· a full second. After this,
the key will repeat at about 6 characters per second.

 How To 3

Edit

ENTER Key

The ENTER key is used to enter a carriage return into the text. This
effectively splits the line at the cursor position and so creates two new-
lines.

SHIFT-0 Keys

The SHIFT-0 combination of keying, toggles the TRS-80 Color Com-
puter from UPPER CASE into UPPER/lower case and from
UPPER/lower case into UPPER CASE depending on what state the
computer was in prior to the simultaneous entry of the SHIFT and 0
keys.

4 How To

Edit

3 Cursor Positioning

As noted above. each character entered at the keyboard is displayed on
the screen at the position of the cursor. The cursor then moves one col-
umn to the right. If the cursor is not currently positioned where you
want it. you can use the four arrow keys to move the cursor. By depress-
ing the appropriate up, down, left or right arrow key, the cursor will
move in the same direction.

The cursor will always be positioned within the text of some line. This
has the following side-effects:

1. When moving the cursor up or down, if the cursor moves from a long

line to a short line such that it would be positioned beyond the end of
the short line then the cursor will be positioned at the end of that
line.

2. When moving the cursor to the right, if the cursor is at the end of the

line then it will be positioned to the beginning of the next line.

3. When moving the cursor to the left, if the cursor is at the beginning

of the line then it will be positioned to the end of the previous line.

4. When the cursor is positioned at the end of the text(blue square), the

right and down arrows will not move it.

5. When the cursor is positioned at the beginning of the text (line 0 col-

umn 0) then the left and up arrows will not move it.

 How To 5

Edit

4 Scrolling

DEFT Edit lets you enter lines up to 255 characters long. This is con-
siderably more than can be displayed on a 32 column by l5 line screen.
The way that you view all of this text is by scrolling it past the screen.
The screen becomes a window into the text.

This scrolling occurs automatically as you position the cursor by either
entering text or by using the arrow keys. If the cursor is at the bottom
of the screen and you force the cursor down to the next line, then all
the lines on the screen move up l line with the top line disappearing
and a new line appearing at the bottom of the screen. The reverse oc-
curs when the cursor is positioned at the top of the screen and you force
it to move up.

DEFT Edit also provides left and right scrolling in a similar manner.
When the cursor is positioned at the rightmost column on the screen
and you force it to move right. all the text on the screen shifts to the
left by 12 columns. This prevents eye fatigue when entering data and
having the text constantly scrolling to the left. The text will scroll to
the right by 12 columns when the cursor is at the leftmost side of the
screen and you force it to the left.

6 How To

Edit

1 Functions

In addition to entering text, DEFT Edit provides many powerful func-
tions that speed text editing. The general purpose functions are de-
scribed in this section.

1.1 The CLEAR Key
The CLEAR key is used to invoke editor functions. When the CLEAR
key is depressed, the cursor changes from a reverse video of the char-
acter that it is over to a white square. When the cursor changes to this
White square. the next key entered is interpreted as a function rather
than as a character to be entered into the text. Once the function is per-
formed, the cursor returns to its normal reverse video state.
The CLEAR key itself becomes an unCLEAR function when it is de-
pressed a second time, which returns the cursor to its normal mode
without performing any function.

1.2 Major Cursor Positioning
By using the CLEAR key in conjunction with the arrow keys you can
quickly position to a specific area of text. The CLEAR-arrow functions
are as follows:
1. CLEAR-Up Arrow makes the cursor go UP by 15 lines to the
beginning of that line. ln addition, the line that the cursor is
positioned to will be at the top of the screen.
2. CLEAR-Down Arrow makes the cursor go DOWN by 15 lines to the
beginning of that line. In addition, the line that the cursor is positioned
to will be at the top of the screen.
3. CLEAR-Left Arrow makes the cursor go to the beginning of line that
it is currently positioned on.
4. CLEAR-Right Arrow makes the cursor go the end of the line that it
is currently positioned on.
5. CLEAR-B makes the cursor go to the beginning of the text.
6. CLEAR E makes the cursor go to 15 lines before the end of the text.
This line is positioned at the top of the screen with the cursor at the
beginning the line. This allows you to see the last 15 lines in the text.
This command may take a couple of seconds on large files due to count-
ing carriage returns in the text in order to maintain the line number.

 How To 7

Edit

1.3 Up Arrow Character Entry

The Up Arrow character is used in Pascal to denote pointer and file de-
referencing. It is also used for cursor positioning by DEFT Edit. By
first typing the CLEAR key and then depressing the SHIFT key while
typing the Up Arrow, the Up Arrow character will be entered into the
text.

1.4 Deleting Characters
There are two ways of deleting characters. The first is with the CLEAR-
D function. When you use this function the character that the cursor is
positioned over is deleted and all the characters to the right of the cur-
sor are shifted to the left one character.
If you delete the carriage return at the end of the line, the line following
will be appended to the end of the line. You cannot delete the last car-
riage return in the text.
A second way to delete characters is with the shifted left arrow key. In
this case the cursor is moved one position to the left and the character
there is deleted as previously described.
A third way is to delete all characters from the position of the cursor
(inclusive) to the end of the line. First you position the cursor over the
first character in the line from where you wish to hack-off the rest of
the line, then you enter CLEAR-H. This function will hack that section
of the line away and delete those characters.

1.5 Deleting Lines
A complete line can he deleted by positioning the cursor to any charac-
ter on the line to be deleted (including the carriage return) and entering
CLEAR-L. This function allows you to delete the last carriage return
(as well as the last line) in the text.

1.6 Replace/Insert Modes
When DEFT Edit is first executed, it is in the insert mode of text entry.
In this mode, when a character is entered at the keyboard it is inserted
in front of the character that the cursor is positioned over. A second
mode that the editor can he placed in is the replace mode. In this mode,
when a character is entered at the keyboard it replaces the character
that the cursor is positioned over. However, if the cursor is positioned
over a carriage return then the character is inserted in front of it.

8 How To

Edit

You can switch between these modes with the CLEAR-I and CLEAR-R
functions. CLEAR-I puts you in the insert mode and CLEAR-R puts
you in replace mode. The mode is always displayed on the status line.

 How To 9

Edit

2 Files

DEFT Edit allows you to load text from ASC11 files on tape or disk,
edit the text and then write back to cassette or disk. In addition, you
can use the write function to write to the printer.

2.1 Getting A File

The CLEAR-G (Get) function allows you to insert the contents of a file
into the current text in front of the character that the cursor is cur-
rently positioned over. This allows you to both initially load a file and
to merge several files in memory.

When you enter CLEAR-G you are prompted for a file name on the
status line. When typing on the status line the only thing that you can
do is enter characters, the left-arrow to backspace and the ENTER key
to terminate the entry. The default suffix used by the editor is blanks.
If you enter no file name then the function is aborted and you return to
the editing session.

2.2 Writing A File

The CLEAR-W function is used to write the in-memory text to a file.
Like the CLEAR-G you are prompted for a file name. However, you are
given the default of the file name used in the last CLEAR-G operation.
If you enter any key other than ENTER then the default entry is erased
and the character you entered is processed. like the CLEAR-G function,
if you enter a null file name the function is aborted.

2.3 Quitting and Reentering

The CLEAR-Q function is used to quit the editor and return to BASIC.
After entering the function, you should immediately get the OK prompt.

When leaving DEFT Edit. the contents of the text area are not changed
(unless you forgot to protect memory from BASIC with BASIC’s CLEAR
statement). You can reenter the editor and answer the INITIALIZE? (
Y) question with either an N or n and return to the point in your edit
session that you left. This is convenient when you wish to do a DIR to
determine which files are on the disk before saving off the text in mem-
ory.

10 How To

Edit

2.4 Exiting

The CLEAR-X function allows you to combine the CLEAR-W and
CLEAR-Q functions with a single function. The write function is per-
formed followed by the quit function. The text in memory is left un-
changed.

2.5 File Errors

When reading from or writing to a file, a number of errors can occur.
Whenever an 1/O error occurs the message FILE ERROR ... is displayed
on the status line and the editor waits for you to acknowledge seeing
the message by depressing any key on the keyboard. This means thar
the first key depressed after the display of an error message will yield
nothing more than the re-establishment of a normal status line pres-
entation. Normal operation is then resumed. The possible error
numbers are as follows:

• -1, End of file - You should not get this error since an end of file is an

expected occurrence for DEFT Edit.

• -2, I/O Error - This indicates that some hardware oriented problem

occurred.

• -3, File Not Found - The file specified was not found.

• -4, Illegal Operation - This may occur if you try to read from the

printer.

• -5, Device Full - There is no more space available on the specified de-

vice .

 How To 11

Edit

3 Pattern Processing

DEFT Edit contains commands for finding and changing text patterns.

3.1 Finding a Text Pattern
The CLEAR-F function is used to find a specific pattern in the text.
After entering the CLEAR-F you are prompted on the status line for
the string, of up to 24 characters, that you want to find. when typing on
the status line the only things that you can type are characters, the left-
arrow to back space, and the ENTER key to terminate the entry.
When you depress the ENTER key the search will begin at the point in
the text where the cursor was when you entered the CLEAR-F and will
continue down to the end of the text.. If a matching string is found then
the line containing the string will be positioned at the top of the screen
and the cursor will be positioned on the next character following the
matching characters.
If you invoke the CLEAR-F function again, you will see that the prompt
for the desired string defaults to the string that you entered on the last
CLEAR-F or CLEAR-C function. You can just depress the ENTER key
to find the next instance of the string in the text. If you type anything
other than the ENTER key the old string will erase and you will be able
to enter a string.
If you enter no characters at all, no search will be made. If a search is
made and the string is not found, the cursor will return to the point at
which you entered the CLEAR-F.

3.2 Changing Text Patterns
In addition to finding a specific character pattern, you can change 1 or
more occurrences of one pattern to a second pattern. You use the
CLEAR-C function to invoke this capability.
After entering the CLEAR-C, you are prompted for the string to be
searched for. After entering the string to be searched for, you are then
prompted for the string that the first string is to be changed to. This
can be 0 to 24 characters long. Finally, you are prompted for the number
of occurrences that are to be changed. If you don’t enter any number,
then the editor defaults to 1 occurrence.
As each occurrence is found and changed, it is displayed on the screen.
When no more of the first string can be found, the function stops at the
point where the last change was made. As in the CLEAR-F function, if

12 How To

Edit

no first strings are found, the cursor will return to the point where it
was when you Entered the CLEAR-C. If you don’t enter a first string,
no changes are made.

 How To 13

Edit

4 Copying and Moving Text
There are 3 functions and a separate editor mode used to copy and/or
move portions of text.
4.1 Marking and Saving Text
Before a portion of text can be copied and/or moved It must first. be
marked off and saved. This is done by positioning the cursor at either
the first character or on the character following the last character of the
text area to be saved. You then use the CLEAR-M function to mark that
end of the area.
When you mark one end of a text area, two things happen. First. the
mode changes to MARK to indicate that you are now marking an area
of text rather than entering it. Second, the character that you marked
is changed to a solid white square on the screen. This character will re-
main marked until you mark the other end of the text area.
Once you are in the mark mode, you cannot enter text. However, you
can position the cursor with the arrows, CLEAR-Arrows, CLEAR-B,
CLEAR-E and CLEAR-F functions. Once you have positioned the cursor
to the other end of the text. you can mark it with the CLEAR-M func-
tion. The text that is saved starts with the mark that is closest to the
beginning or the text and includes all characters down to but not in-
cluding the mark closest to the end of text.
The mark function allows you to save up to 1.5K bytes of text in a sep-
arate in-memory mark buffer. If the marked area of text is greater than
1.5K bytes, then DEFT Edit prompts you for a name to give the file
which it will create to save the marked text. This file name prompt oc-
curs, provided the marked area is greater than 1.5K, immediately after
the entry of the last CLEAR-M function. If a blank file name is entered
then no action is taken and norma1 editing may be resumed.
4.2 Appending The Saved Text
Of course just saving the text away in a separate mark buffer or file
doesn’t do you much good unless you can do something with it. The
CLEAR-A function allows you to append the text in the mark buffer into
the screen text beginning in front of the current cursor position. The
CLEAR-A function is not used to append text saved in a file, the
CLEAR-G function is used instead when the text was saved in a file.

14 How To

Edit

The contents of the mark buffer remain unchanged after this operation.

A typical copy operation would involve marking off the area of text to
be copied, and then positioning the cursor to the point that it was to be
copied to and invoking the CLEAR-A function.

If a section of text larger than 1.5K bytes needs to be copied into another
area of a document, then the CLEAR-M function would be used to mark
the text for copy. This would then yield a file name prompt for the file
into which the saved text would be stored. Once the marked text is saved
away. then the user would position the cursor at the point in the doc-
ument where the saved text was to be copied. The saved text would then
be brought in with a CLEAR-G function followed by the name of the file
containing the saved text.

4.3 Additional Mark Functions

When marking off a text area you can terminate the mark operation in
3 additional ways:

1. CLEAR-D may be used to mark the end of a text area. when used in

this manner CLEAR-D is exactly like the CLEAR-M except that after
saving away the text in either the mark buffer or a file, the area
marked is deleted from the text. This provides the first half of a move
operation rather than a copy. It can also be used to just delete areas
of text.

2. CLEAR-Q terminates the mark operation without saving away any

text. When the CLEAR-Q function is entered while the editor is in
the mark mode, the mark operation is terminated with no action
taken. The previous contents of the mark buffer are retained.

3. CLEAR-W allows you to save areas of text on a separate file or to

print them on the printer. In this case the CLEAR-W function is en-
tered to mark the ending point of a text area. After entering CLEAR-
W you are prompted for a file name to which the marked off text is to
be written. The contents of the mark buffer are not affected. This
function allows the user to save any size of text to be filed, whereas
the normal mark operation will only put text into a file if the text
area being saved is larger than 1.5K bytes.

 How To 15

Edit

DEFT Pascal Compiler

1 Introduction . 1

2 DEFT Pascal Compiler Operation . 2
 2.1 SOURCE: . 2
 2.2 OBJECT: . 2
 2.3 LIST: . 2
 2.4 DEBUG?:. 3
 2.5 DIRECTIVE:. 3
 2.6 Compiler Execution . 3

3 Source Listing. 4

4 Compiler Controls . 8
 4.1 Listing Control . 8
 4.2 Assembler Listing Control . 8
 4.8 Top of Page . 8
 4.4 Title and Subtitle . 9
 4.5 Copy. 9

C
om

pile

1 Introduction

The DEFT Pascal Compiler is a program that allows you to create ma-
chine language programs from Pascal language source programs
created with DEFT· Edit or your own ASCII file text editor. The DEFT
Pascal compiler’s features include:

• Generation of machine language programs, directly executable by

the 6809 micro-processor. from Pascal language statements and dec-
larations. Compiled programs can run many times faster than in-
terpretive BASIC programs.

• Practically all of standard Pascal’s language elements are supported.

• Program source files may he read from either cassette or disk with

the resulting object files written to either cassette, disk, or the
printer.

• Powerful compiler directives which provide the user with valuable

compilation and source listing options, such as the option of having
the assembler language representations of Pascal statements
printed between the Pascal statements on the compiled program’s
source listing.

• Fully recursive compilation. which yields such flexibility as no fixed

limitations on the number of dimensions to an array or table.

• Supports generation of recursive applications; programs that con-

tain procedures that call themselves .

 How To 1

C
om

pile

2 DEFT Pascal Compiler Operation

The command LOADM “PASCAL”:EXEC will load the DEFT Pascal
compiler into memory from disk drive 0 and begin its execution, which
is in two phases. In the first phase you will see the DEFT Pascal Com-
piler’s screen with all of its prompts. This phase prompts the user to
enter information required by the compiler· for program compilation.
Upon the entry of the last prompted field. DEFT Pascal begins its sec-
ond phase of operation. In this phase DEFT Pascal reads the source
module file, parses the program statements, generates the correspon-
ding machine instruction’s, saves the machine program version in an
object module file, and generates the program source listing. After com-
pleting this phase DEFT Pascal has finished its execution which is
marked by the return of the BASIC OK prompt.
Each DEFT Pascal Compiler prompt and its possible replies are de-
scribed in the following sections.

2.1 SOURCE:
SOURCE requires the entry of the name of the source file which con-
tains the Pascal language program that is to be compiled. The default
file name extension is PAS. This means that if there is no extension
specified with the entered file name, then the compiler adds the default
extension of PAS to the file name before searching for that file.

2.2 OBJECT:
OBJECT requires the name of the object file that is to be created by
the DEFT Pascal Compiler to hold the newly created program object
module. This can he either on tape or disk or the name can be ommitted
entirely if you do not wish to create an object file. The default extension
is OBJ. If you do not specify an extension with the file name entered
here, then the DEFT Pascal Compiler will add the default “OBJ” ex-
tension to your file name prior to actually creating that file.

2.3 LIST:
LIST requires the name of the source listing file which is to be created
by DEFT Pascal in its second phase of operation. This can be tape,
disk, screen or printer or the name can be ommitted entirely if you do
not wish to create a list file. In this case only source lines

2 How To

C
om

pile

with errors and the corresponding error messages will be output to the
screen.

The default extension is LST. If you do not specify an extension with
the file name entered here, then DEFT Pascal will add the default
LST extension to your file name prior to actually creating that file.

2.4 DEBUG?:

DEBUG? asks you whether you wish to have debug information in-
cluded in the resulting object file. If you intend to use DEFT Debugger
to debug this program, then a Y response should be entered. A yes re-
sponse to this question results in DEFT Pascal adding the debugger
symbolic linkages to your program, therefore making the resulting ob-
ject module larger than it otherwise would have been. If you don’t want
the debug information included, you can answer this prompt with either
an “N”, or “n”. Anything other than “N” or “n” (for No) is taken to be “Y”
(for Yes).

The debug information will make your program significantly bigger but
will allow you to symbolically debug your resulting program if you an-
swer the DEFT Linker’s debugger? question yes. If you specify yes to
the DEFT Pascal compiler’s debug? question and No to the DEFT
Linker’s Debugger? question, then the debugging information will still
be in the final binary image even if the compiler module is not present.

2.5 DIRECTIVE:

DIRECTIVE requires any DEFT Pascal Compiler directive that you
would like to include before any source lines are read. The following
section Compiler Controls describes all the possible compiler controls
that you could enter here.

2.6 Compiler Execution

After you answer the DIRECTIVE prompt, the program will begin ex-
ecuting. The compiler requires that. the file PASCALIB/EXE be present
on disk drive 0 when the SOURCE: prompt is answered. When the com-
piler is finished executing, control will return to BASIC and you will
get the OK prompt.

 How To 3

C
om

pile

3 Source Listing

The following is a brief description of the DEFT Pascal Compiler’s
source listing.
1. Header - This is the first line at the top of the source listing followed
by the page number for that page of the listing.

2. Title - This is the second line from the top of the source listing. The
contents of this line are dictated by the programmer with a title direc-
tive.

3. Subtitle - This is the third line from the top of the source listing. The
contents of this line arc dictated by the programmer with a subtitle di-
rective.

4. Nesting Levels - The first column of numbers printed with each line
is actually two separate nesting levels:
 • The first one is the procedure nesting level. This identifies what

level of procedure the current line of code is known in.
 • The second number is the begin nesting level. This identifies how

many begins have been encountered so far with no matching ends.

5. Program Location Counter - The second column is a hexadecimal rep-
resentation of the program address at which that line’s executable
statement will begin. All other numbers printed on the listing arc dec-
imal.

6 . Symbol Table - A List of all the symbols that were defined within a
Pascal block is produced at the end of each block. This list contains a
number of fields for each of these symbols following are all the column
headings and a description of the information printed under each head-
ing:
• SYMBOL - ·this is the symbol name.
• CLASS This identifies what kind of Pascal language element this

symbol represents.
• STRUCT - For structured types and variables, this column identifies

what their structure is (array, record, set, pointer or file).
• ALLOC - For variables, this column represents the allocation of that

variable. Any external procedures or functions will have EXTERNAL
printed here. Symbols which are fields within a record will have the

4 How to

C
om

pile

 name of the corresponding record printed here.
 • DATA TYPE - For variables. types and constants, The Pascal types

specified for the data element represented by this symbol is printed
under this heading.

 • VALUE - This identifies the value of the symbol. For static vari-
ables, procedures, functions, labels and strings constants it is the
relative offset from the beginning of the module. For automatic vari-
ables it is the offset within the stack frame. For non-string con-
stants, it is the value of the constant .

 • LOW - This heading identifies the lowest or smallest value to which
the data in a type or variable may be set. For arrays. it is the lowest
possible subscript..

 • HIGH - This heading identifies the highest or largest value to which
the data in a type or variable may be set. For arrays, it is the high-
est possible subscript.

 • SIZE - For variables, types and constants, this is the number of
bytes of memory represented by the Pascal type.

 • STACK REQUIREMENTS: - This title precedes the estimation of
the number· of bytes of stack space required to activate this block.

7. CODE SIZE - This is the fifth from the last line printed on the source
listing. Following is the number of bytes of memory that the pro-
gram will require when it is loaded.

8. UNUSED STACK - The following number is the amount of stack
space available but unused by the compiler itself. As you create
more symbols and deeper levels of nesting in your program, this
number will grow smaller. This stack space essentially represents
the limits of the compiler for number of symbols and levels of nest-
ing (of all kinds).

9. MAX SYMBOLS - The following number is the maximum number
of symbols known at any point in the Pascal source program. Due
to pre-defined symbols and the definitions in PASCALIB/TXT, there
will always be over 60 symbols defined in a program. Note that each
symbol definition takes up about 30 bytes of compiler stack space.

 How To 5

C
om

pile

10. TOTAL ERRORS - This is the number of compilation errors.

11. SOURCE FILE - Following this is the name of the source file con-
taining the program source statements which generated this listing.

12. OBJECT FILE - Following this is the name of the file which con-
tained the program object at the end of this compilation.

6 How To

C
om

pile

Sample Listing

 How To 7

C
om

pile

1.

2.

3.

4.

5.

6.

7.
8.
9.
10.
11.
12.

4 Compiler Controls
Compiler controls are those instructions included in your source code
or in the DIRECTIVE: prompt which direct the compiler’s operation
rather than the resulting program’s operation. A compiler control is a
source line with a percent sign (%) as the first character in the line. The
control itself is a single character following the % . Any required pa-
rameters then follow the control character. For those controls not re-
quiring parameters, additional controls may be included in consecutive
columns. The % is not required in the DIRECTIVE prompt.
4.1 Listing Control
DEFT Pascal normally produces a source line listing file. The List (L)
and Nolist (N) compiler controls allow you to control which portions of
the source lines are included in this listing. These controls are additive;
that is. if you include more than one list or no list control in a row, it
takes an equivalent number of the other to cancel its effects.
This additive nature gives you the ability to pre-cancel an imbedded
nolist command with a preceding list command and vice-versa. this is
very convenient when using copy files (see below). For example, DEFT
Pascal copies by default the file PASCALIB/EXT which has a nolist
control at the beginning of the file and a list command at the end. You
can “unsuppress” its listing by including a list (L) control in response
to the DIRECTIVE: prompt in the compiler start-up screen.
4.2 Assembler Listing Control
DEFT Pascal is. a true Pascal source to 6809 object code compiler. As
such, it can produce a listing of the corresponding assembly language
code that would be required to produce the same object. The default
condition for the compiler is to not produce this assembly language list-
ing. The compiler control used to turn on this listing is the plus sign
(+). The compiler control used turn it off is the minus sign (-).
4.3 Top of Page
The source listing produced by the DEFT Pascal Compiler normally
prints 55 lines per page. However, you can force the compiler to start a
new page at any point by including The eject (E) compiler control

8 How To

C
om

pile

4.4 Title and Subtitle

Included at the top of each page produced by the compiler is the com-
piler’s name, copyright notice and page number. In addition, on the fol-
lowing two lines you can specify a title (T) and subtitle (S) . The
remainder of the line on which the control is specified becomes the title
or subtitle. Following are examples:
 %T This is a Title String

 %S This is a Subtitle String

Note that the presence of either control implies an eject (E). Blanks im-
mediately following the control up to the first non-blank are suppressed
in the actual title or subtitle.

In addition to printing at the top of each page, the title string is also
included as a comment statement in the resulting object file. It will
then also appear in DEFT Linker’s listing file.

4.5 Copy

Sometimes it is desirable not to include your entire program in a single
source file even though you wish to compile it as a single unit. This may
be due to limitations of the editor or to allow common definitions for in-
terface modules (see Separate Compilation).

The copy (C) compiler control allows you to tell the compiler where
additional source lines should be taken from. The remainder of the
control line is considered to be the file name of a Pascal source file.
The compiler will read all the lines in the specified source file before
reading the next line in the current source file. Example:

 %C GRAPHINT:1

This line causes the file GHAPHINT/PAS on disk drive 1 to be com-
pletely read before reading the next line in the current file. Note that
copy controls can be nested. That, is a file that is copied may itself con-
tain a copy control. This nesting is only allowed to two levels.

 How To 9

C
om

pile

DEFT Macro/6809 Assembler

1 Introduction . 1
2 6809 Macro Assembler Operation . 2

2.1 TITLE: . 2
2.2 SOURCE FILE: . 2
2.3 OBJECT FILE . 2
2.4 LIST FILE:. 3
2.5 Assembler Execution . 3

3 Source Listing . 4

Asm

1 Introduction

The DEFT Macro/6809 Assembler is a program that allows you to
create machine language programs from Motorola 6809 Assembler lan-
guage source programs created with DEFT Edit. DEFT Macro/6809’s
features include:

• Generation of machine language programs, directly executable by the

6809 micro-processor from Motorola 6809 Assembler language state-
ments. Assembled programs can run up to 1000 times faster than in-
terpretive BASIC programs.

• Separate assembly facilities which enable you to break up a large pro-

gram and assemble it in pieces. These pieces can be written in either
DEFT Macro/6809 assembly language or DEFT Pascal.

• Assembler directives which provide the user with valuable assembly

and source listing options.

• Powerful macro facilities which allow the user to define inline code

sequences with one macroinstruction in the source program .

 How To 1

Asm

2 6809 Macro Assembler Operation

The command LOADM “ASSEMBLE”:EXEC will load DEFT Macro/
6809 into memory from disk drive 0 and begin its execution, which is
in two phases. In the first phase you will see the DEFT Macro/6809
screen with all of its prompts. This phase prompts the user to enter in-
formation required by the assembler for program assembly.
Upon the entry of the last prompted field, DEFT Macro/6809 begins
its second phase of operation. In this phase it assembles the source lan-
guage program statements into a machine program in two passes. In
the first pass, DEFT Macro/6809 reads the source module file and gen-
erates the symbol table. In the second pass, it generates the correspon-
ding machine instructions, saves the machine program version in an
object module file, and generates the program source listing. After com-
pleting this pass, DEFT Macro/6809 has finished its execution which
is marked by the return of the BASIC OK prompt.
Each DEFT Macro/6809 prompt and its possible replies are described
in the following sections.

2.1 TITLE:
TITLE: requires the string of characters that you want to see at the top
of each page of your assembly listing. You do not have to enter a title if
you don’t want to, but it does come in handy when you want to identify
a source listing file at a glance.

2.2 SOURCE FILE:
SOURCE FILE: requires the entry of the name of the source file which
contains the 6809 assembler language program that is to be assembled.
The default file name extension is ASM. This means that if there is no
extension specified with the entered file name, then DEFT
Macro/6809 adds the default extension of ASM to the file name before
searching for that file.

2.3 OBJECT FILE:
OBJECT FILE requires the name of the object file that is to be created
by DEFT Macro/6809 to hold the newly created program object mod-
ule. This can he either on tape or disk or the name can be omitted en-
tirely if you do not wish to create an object file. The default extension
is OBJ. If you do not specify an extension with the file name entered

2 How To

Asm

here, then DEFT Macro/6809 will add the default OBJ extension to
your file name prior to actually creating that file .

2.4 LIST FILE:

LIST FILE: requires the name of the source listing file which is to be
created by DEFT Macro/6809 in its second phase of operation. This
can be tape, disk, screen or printer or the name can be omitted entirely
if you do not wish to create a list file. The default extension is LST. If
you do not specify an extension with the file name entered here, then
DEFT Macro/6809 Assembler will add the default LST extension to
your file name prior to actually creating that file.

2.5 Assembler Execution

After you have answered the LIST FILE: prompt the assembler will
begin its first pass. During this first pass only the disk will appear to
be doing anything. The assembler will begin printing on its second pass
through the source code.

 How To 3

Asm

3 Source Listing

The following is a brief description of the DEFT Macro/6809 Assem-
bler’s source listing.
1. Header - This is the first line at the top of the source listing followed

by the page number for that page of the listing .
2. Title -The contents of this line are dictated by the programmer with

a title directive.
3. Subtitle - The contents of this line are dictated by the programmer

with a subtitle directive.
4. Addressing Indicator - This is an alphabetic character which prefixes

the Location Counter to indicate how the instruction at that location
is making a reference. An R indicates that an external relative ref-
erence is being made. An X indicates that an external absolute ref-
erence is being made. An N indicates that a local relative location is
being referenced in an absolute mode.

5. Location Counter - This is the four digit number which immediately
follows the line number. This four digit number is the hexadecimal
representation of the program relative address at which this source
code instruction would begin.

6. Object Representation - The set of numbers which immediately fol-
lows the location counter is a hexadecimal representation of the as-
sembler instruction after the instruction has been converted into the
object file machine language format. The very first two digits of this
field represent the instruction’s opcode. The remaining digits of this
field represent the instruction’s operands, where applicable.

7. Symbol Table - At the end of every assembler program, a symbol table
is produced. Printed under this heading are the names of the symbols
referenced by that program. Each element of this table is as follows:
• Symbol Value - This is a four digit number which precedes every

symbol table entry. This four digit number is a hexadecimal rep-
resentation of the value or program relative address which the
symbol is used to reference.

• Symbol Type - This is the one to three character field which im-
mediately follows the symbol value. This field identifies whether
a symbol represents an absolute value (A), a program relative
value (R), an external address (X), a public address (P), or a du-
plicate reference (D).

4 How To

Asm

• Symbol name - This field immediately follows the symbol type.

The symbol name is the string of characters used to reference a
program value .

8. Position Independence - This is the third from the last line printed

on the source listing. The character expression found on this line
identifies whether the assembled program is position independent
or non-position independent. PIC indicates that the resulting ma-
chine program contained in the program’s object file is Position In-
dependent Code.

9. SOURCE FILE - This is the name of the source file containing the

program source statements which generated this listing.

10. OBJECT FILE -This is the name of the file which contained the

program object at the end of this assembly

11. Total Errors· This is the last line printed on the program source list-

ing and is the decimal number of errors encountered by DEFT
Macro/6809 during program assembly.

 How To 5

Asm

6 How To

Asm

1.
2.
3.

7.

8.
9.
10.
11.

4.

5.

6.

DEFT Linker

1 Introduction . 1

2 Operation. 2
 2.1 ORIGIN . 2
 2.2 LIST FILE: . 3
 2.3 BINARY FILE: . 3
 2.4 PASCAL? (Y) . 3
 2.5 DEBUGGER (Y) . 3
 2.6 OBJ NAMES File . 4
 2.7 OBJECT FILE: . 4

3 Linker Map . 5

4 Error Messages. 8
 4.1 BINARY FILE I/O ERROR . 8
 4.2 DUPLICATE- ... IN. 8
 4.3 DUPLICATE MAIN IGNORED. 8
 4.4 HEXWORDPARMMISSINGINOBJECTRECORD 8
 4.5 INVALID DEBUG MODULE. 8
 4.6 INVALID MARKER . 8
 4.7 INVALID OBJECT RECORD . 9
 4.8 MODULE TOO BIG . 9
 4.9 NO MAIN ENTRY . 9
 4.10 OBJECT FILE I/O ERROR . 9
 4.11 PHASE ERROR . 9
 4.12 SYMBOL MISSING IN OBJECT RECORD 9
 4.13 SYMBOL TABLE FULL - ... IN . 9
 4.14 UNDEFINED - ... IN . 9

5. Limitations . 10

Link

1 Introduction

DEFT Linker is a program which reads the object files produced by
the DEFT Macro/6809 Assembler or DEFT Pascal Compiler and
produces an executable binary image suitable for loading with Disk Ex-
tended Basic’s command. DEFT Linker features the following facil-
ities:

• Object code relocation

• Automatic Pascal runtime modules inclusion

• Built-in DEFT Debugger interface

• Support for object module libraries. Object module libraries con-

structed by DEFT LIB, consisting of many object module files can
be specified as input to DEFT Linker. Only those library sections
referenced by your program will be included in the resulting binary.

• Multiple object file input, either explicit or via a separate ASCII file.

• Disk Extended Basic compatible binary output file.

 How To 1

Link

2 Operation

Once you have created the necessary object files with the compiler and
assembler, you are ready to link them together in to your final binary
image. The command LOADM“LINKER”:EXEC will load DEFT
Linker from disk drive 0 and begin execution.
DEFT Linker operates in three phases. During the first phase it dis-
plays the DEFT Linker screen and prompts you for the information
required in subsequent phases.
The second phase starts after all the prompting is completed. During
this phase it reads the object files, builds its symbol table of public sym-
bols (relocating those symbols that need it), prints the module by mod-
ule portion of its list file and reports any errors found in the object files.
The third phase involves DEFT Linker once again reading all the ob-
ject files. On this last phase it performs all necessary relocation, fixups
and external reference resolution while creating the final binary image.
At the end of this phase DEFT Linker prints the symbol table .
The following provides an explanation of each prompt made by DEFT
Linker.

2.1 ORIGIN
This is the decimal memory address where the resulting binary image
is to be loaded by the LOADM command. For non-position independent
files, this is the position from which the binary must execute. If the re-
sulting image is position independent then a parameter can be added
to the LOADM command to load the resulting file at a higher memory
address.
If no origin is specified, then it defaults to 5000(decimal). When you
PCLEAR 1, FILES 0,0 and CLEAR 16,4999 of the last command tells
BASIC that 4999 (decimal) is the highest memory location that BASIC
is allowed to use. Therefore the lowest memory location available for
your use starts at 5000 (decimal). From this memory location on up is
now available for your specific use. This then, 5000 (decimal), becomes
the lowest memory address which is protected from BASIC.
If you wish to write programs that are called from BASIC programs,
then you will have to determine how much memory BASIC will need
and enter an ORIGIN which is high enough to provide that much mem-
ory.

2 How To

Link

2.2 LIST FILE
This is the standard file name (with a default suffix of LST) of a file to
be created by DEFT Linker which reports the results of the link.
DEFT Linker will not produce any file if no file name. is entered for
this prompt.

2.3 BINARY FILE:
This is the standard file name (with a default suffix of BIN) of a disk
file to be created by the DEFT Linker. This file name must be given
and it must be a disk file.

2.4 PASCAL? (Y)
This prompt requires a Y or N response. Actually, any response other
than N or n (including no response) is interpreted as yes. When this
question is answered yes, the Pascal boot module (PASBOOT/OBJ) and
runtime library (RUNTIME/LIB) are included. Only those segments
of the runtime library referenced by your program will be included in
the resulting binary load module. This means that the resulting pro-
gram will be no larger than it has to be. Unused Pascal runtime fea-
tures will not he included.
RUNTIME/LIB and PASBOOT/OBJ must both be present on disk
drive 0.

2.5 DEBUGGER? (Y)
Like the PASCAL? question, the assumed answer is yes unless an N or
n is entered. When this is answered affirmatively, the module DE-
BUGGER/LIB:0 is included in the binary. In addition, any Pascal mod-
ules which were compiled with the debug option turned on will have
breakpoints generated and a module table will be included for use by
the debugger.
If this question is answered negatively. then DEFT Debugger is not
included, Pascal modules with the debug option turned on will have
NOPs generated in place of breakpoints and no module table will be
produced.
NOTE: if you have the DEFT Pascal Workbench and answer the PAS-
CAL? question NO and the DEBUGGER? question YES, then you will

 How To 3

Link

have to enter RUNTIME/LIB as one of the object files in either your
OBJ NAMES FILE or to one of the OBJECT FILE prompts. This is be-
cause DEFT debugger uses some of the facilities in the Pascal run-
time library. If you have only DEFT Bench, then you do not have to do
this since everything is included in the DEBUGGER/LIB library.

2.6 OBJ NAMES FILE:

When a large program has been divided into a number of modules, it is
sometimes convenient to create a text file with the editor that lists the
names of the object files to be included so that you don’t have to indi-
vidually type them in each time you link the program. This prompt al-
lows you to specify the name of such a file.

This file must have 1 standard file name per line. The default suffix for
the file names included in the file is OBJ. The default suffix for the OB-
JECT NAMES FILE itself is LNK. When you enter a file name for this
prompt, DEFT Linker does not prompt you for individual object file
names.

2.7 OBJECT FILE:
•
This prompt is made if you did not provide an OBJ NAMES FILE. You
provide a single object file name. DEFT Linker will verify that it can
open the file and then prompt you for another file name. If more than
one object file is to be included, enter the additional object file names
one at each prompt. Once you have entered all the names, just hit the
ENTER key on the last prompt and DEFT Linker will begin its second
phase.

4 How To

Link

3 Linker Map

The following is a brief description of the Linker Map listing produced
by DEFT Linker during linking operations.
1. Header - This is the first line of every page of the linker listing. The
Header includes the page number .
2. Module Name - Every object file or module linked in a linker opera-
tion is identified by object file name. Proceeding each module name, the
following is printed:
 • Object Generator - This first line following the object file name iden-

tifies the compiler or assembler that produced the object file.
 • Title(s) - All titles produced within a program source file, with the

title directives for both the compiler and assembler, are printed fol-
lowing the object generator identification. If a program contains no
title(s) then none are printed.

 • MODULE ORIGIN - The four digit number following this title is
the hexadecimal representation of the address in memory where
that module will begin within the program.

 • MODULE SIZE-The four digit number following this title is the
hexadecimal representation of the number of bytes in memory that
this module requires.

3. Symbol Table - At the end of every linker operation a symbol table is
produced. Printed under this heading are the names of the symbols ref-
erenced by that program. Each element of this table is as follows:

• Symbol Value - This is a four digit number which precedes every
symbol table entry. This four digit number is a hexadecimal rep-
resentation of the value or program address which the symbol is
used to reference.

• Symbol Type - This is the one or two character field which immedi-
ately follows the symbol value. This field identifies whether a sym-
bol represents an absolute value (A), a program relative value (R),
or a duplicate reference (D) .

• Symbol Name - This field immediately follows the symbol type. The
symbol name is the string of characters used to reference a program
value.

 How To 5

Link

4. Position Independence - This is the seventh from the last line printed

on the linker map listing. The character expression found on this line
indicates whether the linked program is position independent or non-
position independent. PIC indicates that the resulting machine pro-
gram contained in the program’s load module file is Position
Independent Code.

5. ORIGIN - The four digit number following this title is the hexadec-

imal representation of the address in memory where this program
begins.

6. LAST ADDR - The four digit number following this title is the hexa-

decimal representation of the last address in memory where this pro-
gram resides

7. MAIN ENTRY - The four digit number following this title is the hexa-

decimal representation of the first address in memory where this pro-
gram begins its execution.

8. TOTAL SIZE - The four digit number following this title is the hexa-

decimal representation of the total number of bytes of memory re-
quired to hold the program’s executable instructions.

9. STACK REQUIRED - The four digit number following this title is the

hexadecimal representation of the worst case number of bytes of
stack memory required to execute the resulting machine program. It
is the sum of the stack requirements of each individual module.

10. TOTAL MEMORY- This is the next to the last line printed on the

linker map listing. The four digit number following this title is the
hexadecimal representation of the total number of bytes of memory
required to execute the resulting machine program.

11. TOTAL ERRORS - This is the last line printed on the linker map

listing and is the number of errors encountered by DEFT Linker
during its execution.

6 How To

Link

 How To 7

Asm

4 Error Messages
The DEFT Linker generates error messages during its second phase.
These messages usually involve duplicate or missing public variable
definitions. The error messages start with “***” and are as follows:
4.1 BINARY FILE I/O ERROR
An I/O error was detected while attempting to write to the binary out-
put file. This could be caused by a full disk or the write protect being
left on the diskette.
4.2 DUPLICATE - ... IN ...
The specified public symbol being defined in the specified object file has
already been defined.
4.3 DUPLICATE MAIN IGNORED
More than one main object module has been found, any main modules
found after the first one will be assumed to be a non-main module.
There can be only one place in the program where execution is to start,
that is in the main module.
4.4 HEX WORD PARM MISSING IN OBJECT
 RECORD
An invalid format object record has been detected. This may be due to
the wrong type of file being input to the Linker.
4.5 INVALID DEBUG MODULE
The necessary public symbols have not been defined when the DE-
BUGGER question has been answered with yes. This is probably due
to not having the file DEBUGGER/LIB present on drive 0 while link-
ing.
4.6 INVALID MARKER

An invalid format language marker record has been found in the object
file. This may be due to the wrong type of file being input to the Linker.

8 How To

Link

4.7 INVALID OBJECT RECORD
An invalid format object file record has been found. This may be due to
the wrong type of file being input to the Linker.
4.8 MODULE TOO BIG
The module being processed is too big to be processed by the Linker.
4.9 NO MAIN ENTRY
No main module has been included. The entry point is assumed to be
the beginning of the binary image.
4.10 OBJECT FILE I/O ERROR
An I/O error was detected while attempting to read an object file. This
error also occurs if you don’t have RUNTIME/LIB or PASBOOT/OBJ
on drive 0 when linking a Pascal program.
4.11 PHASE ERROR
The value of a symbol is different in the Linker’s second and third
phases. This error should not occur and indicates some fundamental
problem with either the Linker or the object files.
4.12 SYMBOL MISSING IN OBJECT RECORD
An invalid format object record has been detected. This may be due to
the wrong type of file being input to the Linker.
4.13 SYMBOL TABLE FULL - ... IN ...
The specified public symbol being defined in the specified object file can-
not be put in the Linker’s symbol table because it is full.
4.14 UNDEFINED- ... IN ...
The specified public symbol being referenced in the specified object file
has not been defined .

 How To 9

Link

5 Limitations

In addition to the above facilities, this version of DEFT Linker has the
following limitations:

32K Memory Operation -

When running DEFT Linker in only 32K bytes of memory the follow-
ing limitations apply:

1 A maximum of 50 object files can be linked together.

2. No object file can be larger than 4K bytes.

3. No more than a total of 400 public symbols can be defined in all the

modules to be linked. The Pascal runtime package has about 80 in
this version.

64K Memory Operation -

When running DEFT Linker in 64K bytes of memory the following
limitations apply:

1. A maximum of 50 object files can be linked together.

2. No object file can be larger than 36K bytes.

3. No more than a total of 400 public symbols can be defined in all the

modules to be linked. The Pascal runtime package has about 80 in
this version.

10 How To

Link

DEFT Debugger

1 Introduction. 1
2 Genera1 Operation . 2
 2.1 Linking in DEFT Debugger. 2
 2.2 Debug Screen . 2
 2.3 Setting Breakpoint . 3
 2.4 Executing Your Program . 3
 2.5 Interrupting Program Execution . 3
 2.6 Displaying/Modifying Memory and Registers 4
 2.7 Checking Program State . 4
3 Commands . 5
 3.1 Display Register (DR) . 5
 3.2 Display Word (DW) . 5
 3.3 Display Byte (DB) . 6
 3.4 Display Floating Point (DF) . 6
 3.5 Display String (DS) . 6
 3.6 Display Variable (DV) . 6
 3.7 Display Hex (DH). 7
 3.8 Display Next (DN) . 7
 3.9 Modify Register (MR) . 7
 3.10 Modify Word (MW). 8
 3.11 Modify Byte (MB). 8
 3.12 Modify Floating Point (MF). 8
 3.13 Modify String (MS) . 9
 3.14 Modify Variable (MV) . 9
 3.15 Clear Breakpoints (CB) . 9
 3.16 User Screen (US) . 9
 3.17 Evaluate (EV).
 3.18 Trace (TR) . 10
 3.19 Go (GO). 10
 3.20 Step (ST). 11
 3.21 Quit (QU) . 11
4 Expressions . 12
 4.1 Constants . 12
 4.2 Registers. 12
 4.3 Symbols . 13
 4.4 Terms and Indirection. 15
 4.5 Operators . 15

D
ebug

1 Introduction

The DEFT Debugger is a software module which can be linked into
any program produced by DEFT software products. It becomes the
main module in the resulting program and allows the programmer to
control its resulting execution. DEFT Debugger includes the following
features

• Like other debuggers. this one provides for memory and register dis-

play and modification as well as instruction breakpoints. Memory dis-
play and modification can occur in hex, decimal, floating point, ASCII
and string formats.

• Single Pascal statement execution is available when the DEBUG op-

tion is specified at compile time.

• Normal program operation can be interrupted and the Debugger ac-

tivated when the BREAK key is depressed.

• Symbolic access to memory areas is automatically provided by a spe-

cial interface to the DEFT Pascal Compiler. This symbolic access in-
cludes automatic as well as static variables.

• A general expression capability allows the Debugger to perform all

arithmetic and type and base conversions for you.

• A trace facility provides you with a procedure call history so that
you can see how you got to a specific point in a Pascal program.

• Automatic screen preservation restores the screen area and attrib-

utes anytime program execution is resumed. This simplifies debug-
ging of graphic programs.

 How To 1

D
ebug

2 General Operation

Although there are a number of features built into the DEFT De-
bugger specifically to debug Pascal programs, any program produced
with DEFT software products can be debugged with it.
2.1 Linking in DEFT Debugger
In order to use DEFT Debugger you answer the DEFT Linker’s
DEBUG(Y) question with anything other than N or n when you link the
program. DEFT Debugger is automatically included in the resulting
binary and gets initial control of the 6809 micro-processor when your
program is executed. DEFT Linker provides DEFT Debugger with a
table of all the module names and offsets in the resulting program along
with the address where your program would normally begin execution.
DEFT Debugger is loaded as a part of your program when you load
your program with the LOADM“myprogam”:EXEC command.
2.2 Debug Screen
After linking your program you are ready to execute it. When you begin
execution DEFT Debugger will gain control and present you with its
screen. This initial screen looks like this:
 SYMBOLIC ONLINE DEBUGGER V3.x

 (C) 1983 DEFT SYSTEMS, INC.

 COMMAND:

 PS 02 B0 0000

 VD 00 B1 0000

 VC 00 B2 0000

 B3 0000

 CC xx B4 0000

 A xx B5 0000

 B xx B6 0000

 DP xx B7 0000

 X xxxx

 Y xxxx

 U 0000

 PC 0000

 S 0000
DEFT Debugger is now waiting for a command to execute and has dis-
played the complete set of registers it maintains for the program being
debugged. You will normally enter a two character command. DEFT
Debugger then prompts you for any additional parameters required
by the particular command.
2 How To

D
ebug

The chapter on Commands describes all the commands and their re-
quired parameters. The chapter on Expressions describes the ru1es for
forming expressions which are used in most parameters. What you see
on the screen when the Debugger is first activated or anytime you hit a
breakpoint is the automatic execution of the DR command. Following
is a short description of the types of operations for which you might use
DEFT debugger.
2.3 Setting Breakpoints
One of the first things that you will want to do with the Debugger will
be to set a breakpoint. A breakpoint is a place in your program where
you want your program’s execution to be suspended and DEFT De-
bugger activated. This allows you to examine variables or in the case
of assembler language, registers. You can then see if the program has
produced the proper intermediate results.
You set a breakpoint by using the Debugger’s modify register command
to set the value of one of the eight Breakpoint registers to the address
of the place in your program where you want the breakpoint to occur.
You have 8 breakpoint registers which allows you to specify up to 8 dif-
ferent places in your program at one time. This is especially convenient
when you are not sure which place your program will go to first. The
section on Symbols under Expressions describes how to specify a sym-
bolic address.
2.4 Executing Your Program
After having set some (possibly no) breakpoints, you may then use
DEFT Debugger’s GO command to begin (or continue) your program’s
execution. Another possible command is DEFT Debugger’s ST (Single
Step) command which will allow you to specify the number of pascal
statements that you want to execute. Note that this option is only avail-
able when you have previously enabled the debug? option when the
Pascal program was compiled.
2.5 Interrupting Program Execution
If you used the GO command to start execution, it will stop executing
when one if the breakpoints that you specified is encountered. If you
used the ST command, then execution will stop when the specified
number of Pascal statements have been executed.

 How To 3

D
ebug

In either case you may stop the program’s execution by depressing the
BREAK key. If the program was compiled with the DEBUG option en-
abled then execution will stop on the next Pascal statement that is ex-
ecuted. Depressing the BREAK key while the program is prompting for
keyboard input will cause it to stop even if the Debug option was not
enabled at compile time.

2.6 Displaying/Modifying Memory and Registers

After your program stops, the Debugger is re-activated and you can use
the display commands to determine what your program has done so far.
You can change any variable or register that you wish before resuming
execution again in order to change the way that your program is execut-
ing. Note that if your program stopped because it encountered a break-
point that you specified via one of the breakpoint registers, then you
will have to clear that breakpoint before resuming your program. Other-
wise, the program will immediately breakpoint again.

2.7 Checking Program State

In addition to variables (memory) and registers, you can also use the
US (User Screen) command to see what the screen is supposed to look
like when DEFT Debugger is not using it. In addition. the TR (TRace)
command will follow the chain of pointers that Pascal builds on the
stack. This trace of all the activation blocks will tell you what Pascal
procedures are currently active and where they were called from.

4 How To

D
ebug

3 Commands
This section describes all the commands available on DEFT Debugger.
The title of each subsection names the corresponding command and
contains the two character command representation in parentheses.
3. l Display Register (DR)
This command causes all the DEFT Debugger registers to be dis-
played. All registers are displayed in hexadecimal. Those which are 16
bit registers are also displayed as module offsets with the module name
and hex offset displayed following the absolute hex value.
The registers B0 through B7 are the breakpoint registers which can be
set to addresses in your program at which you want execution to stop.
The registers CC, A, B, DP, X, Y, U, PC and S are the 6809 machine
registers. The remaining three registers relate to the graphic capabil-
ities of the TRS-80 Color Computer and are as follows:

 •PS is the Page Select register. The lower 7 bits of this register specify

the upper 7 bits of the memory address at which the screen page be-
gins. This value is initially 2 indicating that the screen page begins
at address $400 or 1024.

 •VD is the Video Display Generator register. The lower 3 bits of this

register specify the graphics mode that is to be used •

 •VC the Video Control register. The upper 5 bits of this register specify

the color set and qualify the graphics mode selected by the VDR.

Unlike the 6809 registers, the graphics registers cannot be read and
saved by DEFT Debugger. Therefore anytime your program modifies
these values at. a point at which you are breakpointing you will have to
tell the Debugger what these values should be. This is done via the
Modify Register (MR) command

3.2 Display Word (DW)
This command allows you to display l or more 16 bit words in memory
in both decimal and ASCII formats. There are two parameters:
• ADDRESS: This parameter requires an expression which specifies
the address of the first 16 bit word to display.

 How To 5

D
ebug

• COUNT: -This parameter requires an expression which specifies the

number of 16 bit words to display. If you enter nothing then the count
defaults to 1

3.3 Display Byte (DH)
This command allows you to display 1 or more 8 Bit Bytes in memory
in both decimal and ASCII formats. There are two parameters:
• ADDRESS: - This parameter requires an expression which specifies

the address of the first 8 bit byte to display.
• COUNT:- This parameter requires an expression which specifies the

number of 8 bit bytes to display. If you enter nothing then the count
defaults to 1.

3.4 Display Floating Point (DF)
This command allows you to display a Pascal floating point (real
type) number variable. There is one parameter:
• ADDRESS: - This parameter requires an expression which specifies

the address of the floating point variable.
The floating point variable is displayed in decimal format.
3.5 Display String (DS)
This command allows. you to display a Pascal string variable. There is
one parameter:

• ADDRESS: This parameter requires an expression which specifies
the address of the string variable

The string variable is displayed in ASCII format. In addition, the dec-
imal length of the string is displayed.
3.6 Display Variable (DV)
This command allows you to display a variable as either a word, byte,
floating point or string. You must use a symbol as part of the ADDRESS
parameter. DEFT Debugger uses the type of the symbol used to de-
termine which type of display to perform. There are two parameters:
• ADDRESS: - This parameter requires an expression which specifies
the address of the variable.

6 How To

D
ebug

Lib

• COUNT:-This parameter is prompted for only when the symbol type

is an ARRAY. It requires an expression which specifies the number of
8 bit bytes or 16 bit words to display. If you enter nothing then the
count defaults to 1.

3.7 Display Hex (DH)
This command allows you to display 80 bytes of memory in both hex
and ASCII representation. There is one parameter:
• ADDRESS: - This parameter requires an expression which specifies

the address of memory to begin the display.

This command displays the memory as 10 lines of 8 bytes each. The last
3 hex digits of the memory address is displayed at the beginning of each
line followed by the hex representation of the 8 memory bytes at that
location. Finally, the ASCII representation of those same bytes is dis-
played at the end of the line.

3.8 Display Next (DN)

This command is almost exactly the same as Display Hex (DN) except
that you are not prompted for an address. The display begins at the
point where the last Display Hex or Display Next left off. This command
provides a convenient means to page through memory.

3.9 Modify Register (MR)

This command allows you to modify any of DEFT Debugger’s reg-
isters. All registers displayed on the Display Register screen can be
modified. This command has two parameters:

• REGISTER: - This parameter requires the 1 or 2 character name of

the register that is to be modified.

• VALUE: - This parameter requires an expression -which is the value

that the register is to be set to .

 How To 7

D
ebug

3.10 Modify Word (MW)
This command allows you to modify a 16 bit word in memory. It requires
two parameters:
• ADDRESS: - This parameter requires an expression which specifics

the address of the 16 bit word to modify.
• WORD xxxx VALUE: - This prompt shows the hexadecimal address

that will be modified (the “xxxx”). It requires an expression which
specifies the value that the word at that location is to be set to. If
nothing is entered, the command is terminated and the word is not
modified. If a value is entered, then the word is modified and DEFT
Debugger continues to prompt for subsequent words until nothing
is entered.

3.11 Modify Byte (MB)
This command allows you to modify an 8 bit byte in memory. It requires
two parameters:

• ADDRESS:- This parameter requires an expression which specifies

the address of the 8 bit byte to modify.

• BYTE xxxx VALUE: - This prompt shows the hexadecimal address

that will be modified (the “xxxx”). It requires an expression which
specifies the value that the byte at that location is to be set to. If noth-
ing is entered, the command is terminated and the byte is not mod-
ified. If a value is entered, then the byte is modified and DEFT
Debugger continues to prompt for subsequent bytes until nothing
is entered.

3.12 Modify Floating Point (MF)
This command allows you to modify a Pascal floating point (real type)
number variable in memory. It requires two parameters:
• ADDRESS: - This parameter requires an expression which specifies

the address of the floating point number to modify.
• VALUE: - This parameter requires the decimal representation of the

floating point value that is to be inserted.

8 How To

D
ebug

3.13 Modify String (MS)
This command allows you to modify a Pascal string in memory. It re-
quires two parameters:
• ADDRESS: - This parameter requires an expression which specifies
the address of the string to modify.
• xxxx STRING - This parameter requires a number of ASCII char-
acters to be entered. These are stored directly in the string with the
number of characters entered becoming the string’s length. If nothing
is entered, the command is terminated and the string is not modified.
3.14 Modify Variable (MV)
This command allows you to modify a Pascal variable by it symbolically.
This command allows DEFT Debugger to determine whether to ex-
ecute a Modify Word, Modify Byte Modify Floating or Modify String
command depending on the type of the variable named in the AD-
DRESS: parameter.
3.15 Clear Breakpoints (CB)
This command is used to clear all the breakpoint registers to zero. You
can set a breakpoint by using the Modify Register (MR) command to
set one or more of these registers to a non-zero value. You can also clear
an individual breakpoint. by using the same command to set a break-
point register to zero.
3.16 User Screen (US)
This command allows you to view the screen currently being displayed
by the program under test. The values of the PS, VD and VC registers
are used to determine what the display is to look like. The display per-
sists until you type any character.
3.17 Evaluate (EV)
This command allows you to evaluate an expression and display its re-
sults in decimal, hexadecimal and ASCII. It requires one parameter:

• VALUE: - This parameter requires an expression which is to be eval-
uated.

 How To 9

D
ebug

3.18 Trace (TR)
This command allows you to see all the procedures which are currently
active. The absolute address and module offset of the current program
counter (PC) and each return address on the stack (beginning with the
most recent) is displayed on each line. For those modules which also
have symbols, the name of the procedure or function to which the return
address points is also displayed. This then provides you with a list of
each active Procedure/Function and the point in the calling
Procedure/Function from which they were called.
Since this command relies on the standard Pascal frame structure,
there are some limitations on its use:
• Only those Procedure/Function activations that have been completed

will be displayed. If you set a breakpoint at the address of a Proce-
dure or Function and then do a TR, you will not see that Procedure
or· Function in the list. You must set the breakpoint at (or Single
Step to) the first statement in the Procedure or Function. Note that
the Single Step (ST) command will not breakpoint in the middle of a
Procedure/Function activation (unless you have set an explicit break-
point).

• The command is not meaningful until after the complete activation
of the main Pascal program. This is done the same as a Procedure or
Function described above.

• Only the most recent 12 (or fewer) activations are listed.
• Calls to Assembly language routines will be listed only if they con-

struct a Pascal frame structure on the stack.
3.19 Go (GO)
This command allows you to execute your program. If any of the break-
point registers are non-zero then breakpoints are set at those points be-
fore program execution begins. DEFT Debugger will not regain control
until one of the specified breakpoints is encountered. If one of the break-
points is the same as the PC register then control will return immedi-
ately to the Debugger. This command has no parameters.
Once a breakpoint is encountered. the DR command is automatically
executed and you are prompted for another command.

10 How To

D
ebug

3.20 Step (ST)

This command is similar to the GO command except that it uses the
breakpoints inserted into the program by Pascal when you specified
debug at compile time. Not only does the DEFT Pascal compiler in-
clude symbol tables, hut it also generates a breakpoint instruction at
the beginning of every Pascal statement when you specify the debug op-
tion. The Step command then lets you step through the Pascal state-
ments by counting the corresponding breakpoints in the resulting code.

Note that this command will operate the same as the GO command if
there are no Pascal modules with the debug option enabled. This com-
mand has 1 parameter:

• COUNT: -This parameter· requires an expression which is the number
of Pascal statements to execute before returning control to DEFT De-
bugger. If no expression is entered, a value of 1 is assumed.

3.21 Quit (QU)

This command allows you to terminate your program and return control
to BASIC.

 How To 11

D
ebug

4 Expressions

Most DEFT Debugger commands will prompt you for some additional
information such as an address of a field or a value which is to be used
by the command. Most of these additional prompts require a general
expression to be entered. This expression can be as simple as a single
digit or as complex as several numbers in various bases with symbols
combined with different operators. This section describes the rules for
forming these expressions.

The DEFT Debugger deals entirely in 16 bit units. All components of
an expression have 16 bit values and any resulting expression also has
a full 16 bit value.

4.1 Constants

A constant used by itself is a legal expression. The DEFT Debugger
supports 4 types of constants.

l. A decimal constant is a set of numbers in the range of -32768 to

32767.

2. A hexadecimal constant is a dollar sign ($) followed by up to 4 hexa-

decimal digits (0 9,A F). If the constant is less than 4 digits long,
leading zeroes are assumed.

3. An ASCII constant is a single quote (‘) followed by a single ASCII

character. The value of this constant is the binary value of the ASCII
character as the low 8 bits with the high 8 bits being zero.

4. A double ASCII constant is a double quote(“) followed by two ASCII

characters. The value of the constant is the binary value of the first
ASCII character as the high 8 bits and the second as the low 8 bits.

4.2 Registers

The current contents of any of the registers cab be referenced by enter-
ing a percent sign (%) followed by a one or two character register name.
The available registers are those displayed via the first Display Register
(DR) command. They are as follows:

12 How To

D
ebug

Mnemonic BitSize Description

 PS 8 Page Select

 VD 8 Video Display Generator

 VC 8 Video Control

 CC 8 6809 Condition Code

 A 8 6809 Accumulator A

 B 8 6809 Accumulator B

 DP 8 6809 Direct Page

 X 16 6809 Index X

 Y 16 6809 Index Y

 U 16 6809 User Stack

 PC 16 6809 Program Counter

 S 16 6809 System Stack

 B0 16 Breakpoint 0

 .

 .

 .

 B7 16 Breakpoint 7

4.3 Symbols
Symbols are the names or identifiers that you used in your source code
program to reference variables, procedures and functions. If the pro-
gram that you are debugging has some Pascal modules in it, you can
have the compiler include the symbols found in these modules by an-
swering its DEBUG? prompt with anything other than N or n. This will
cause the compiler to include the names of all the variables, procedures
and functions in specially formatted tables. These tables are imbedded
in the resulting object module code.

Object modules created with this option will be larger due to the pres-
ence of the symbols which will be part of the final load module binary
code. When you have several Pascal modules in a single program, you
can reduce the symbol table memory requirements by specifying debug
symbols in only the modules that you wish to debug. The debugger
knows which modules have symbols and which ones don’t so that you
only get the symbols that you need.

There are three types of symbols which are referenced in three different
ways:

 How To 13

D
ebug

1. A Module symbol is the filename (not including the extension) of an

object file or library section which was linked with the debugger. You
indicate a module symbol with a leading less than sign(<) followed by
the symbol itself. The names of all the object modules that are linked
together are known to DEFT Debugger regardless of whether sym-
bols internal to the corresponding module are present. This means
that you can use module symbols even with assembly language mod-
ules. The value of a module symbol is the absolute memory address
of the first instruction at the beginning of the module.

One of the most common uses of a module symbol is to specify an ad-
dress within a module. This is usually done as follows:

 <MYMODULE+$1A3

This form can be used to set breakpoints in either Pascal or assembly
language modules. In this case 01A3 is the offset within the module
where the Pascal statement starts on which you want to breakpoint.

2. A module symbol can he further qualified with a static symbol. This

is done by immediately following the module symbol with a greater
than sign (>) followed by the static symbol. This static symbol can
represent any Pascal procedure, function or statically allocated vari-
able. The value of a static symbol is the beginning memory address
of the program element represented by the symbol.

 A static symbol can be further qualified to any level required by en-

tering additional greater than signs (>) followed by the qualifier. For
example:

 <MYMODULE>UTILPROC>LCLFUNC>X

 This entry :specifies the static symbol X which is local to the function

LCLFUNC which is contained within the procedure UTILPROC. This
procedure in turn is in the module MYMODULE.

 After a module has been referenced (either by itself or as part of a

static symbol reference) the next static symbol can he specified with-
out specifying that same module name. DEFT Debugger will use
the last module reference, as a basis for its search, anytime a static
symbol is specified -without a leading module name.

14 How To

D
ebug

3. An automatic symbol is indicated when a leading alphabetic char-

acter is detected. In this case DEFT Debugger will automatically
scope the symbol by following the static procedure call links in the
stack. This type of symbol specification will find the symbol which is
known at the current point in the program. You can use this type of
specification for procedure, function and static variable symbols as
well as automatic variable symbols.

4.4 Terms and Indirection

The elements or arguments of an expression, constants, registers and
symbols, are generically known as terms. You can add a level of indirec-
tion to a term by prefixing it with an at sign(@). This means that the
value of the term is used identify the location of, or to address, a 16 bit
word in memory. The contents of that memory word are then used as
the value of the term. This is known as an Indirect Term.

4.5 Operators

Terms and Indirect Terms can be combined with the use of operators.
The operators which are available are the four arithmetic operators: ad-
dition (+), subtraction (-), multiplication (*), and division (/). There is
no precedence between operators and all expressions are evaluated from
left to right.

 How To 15

D
ebug

DEFT Lib Object Librarian

1 Introduction. 1
2 Operation . 2
 2.1 OLD LIBRARY: . 2
 2.2 NEW LIBRARY: . 2
 2.3 DELETE SECTION: . 3
 2.4 ADD OBJECT FILE. 3
 2.5 Adding an Object File . 3
 2.6 Adding a Library File . 4
3 Error Messages . 5
 3.1 FILE IS NOT OBJECT OR LIBRARY . 5
 3.2 I/O ERROR ON NEW LIBRARY. 5
 3.3 I/O ERROR ON OBJ/LIB FILE. 5
 3.4 I/O ERROR ON OLD LIBRARY . 5
 3.5 OPEN ERROR: n . 5

Lib

Introduction

DEFT Lib is a program that creates and maintains libraries of object
files. These object file libraries are then conditionally used by DEFT
Linker when creating a binary load module file.

The purpose of linking with an object file library is to include only those
portions of object code used by a given program. For example, if you
have an object file created with one of the DEFT high level language
compilers, then that particular program might not use strings or real
arithmetic. When that object file is linked with the corresponding li-
brary, the object files for strings and real arithmetic will not be included
in your final binary load module. However, object files for. say, I/O would
be included.

DEFT Lib provides the following major features for library mainte-
nance:

• Separate input and output libraries means that mistakes can be cor-

rected by starting over.

• Object files can be added to a library in the form of library sections.

• DEFT Lib ensures that duplicately named sections are not added to

the same library.

• Library sections can be deleted.

• Complete libraries can be merged together.

• A library can contain up to 50 sections.

 How To 1

Lib

2 Operation

Whenever you wish to create or update object libraries you can run
DEFT Lib. The command LOADM “LIB”:EXEC will load DEFT Lib
from disk drive 0 and begin its execution. Once the program is loaded
and the disk drive light has gone off, you may change diskettes if you
wish.
DEFT Lib operates by reading in an old library file (if one exists) and
copying it to a new library file. It is during the copy that the changes
that you wish to make are actually performed. The old library file, is
never modified by DEFT Lib, DEFT Lib operates in three phases.
During the first phase it prompts you for the old and new library files.
It then prompts you for all the sections that you wish to delete from the
old library as it is copied lo the new library.
The second phase involves doing the actual copy and performing the re-
quested deletes. It is during this phase that you will find out if any of
the specified sections to be deleted were actually in the old library to
begin with.
Once the copy is completed, the third phase will begin. DEFT Lib will
prompt you for the names of the object files and object libraries that you
wish to add to the new library. As you specify each name, DEFT Lib
will make sure that it is not a duplicate and then add it to the new li-
brary, DEFT Lib will display each section name and ask if you want
that section added to the new library. When duplicate section names
arc encountered, DEFT Lib will let you specify a new section name.
Following is a description of each prompt made by DEFT Lib.

2.1 OLD LIBRARY:
This is the name of an existing library file which is to be the primary
source of information for creating the new library file. You do not have
to enter an old library if you are creating a new library from scratch.
The default file extension for this prompt is LIB.
2.2 NEW LIBRARY:
This is the name of the new library that DEFT Lib is going to create
and which will I contain the results of this update. You must enter a
new library name and it must be different from the file name that you
entered for old library. If you enter the same name as the old library,
you will destroy the old library file.

2 How To

Lib

The default file extension for this prompt is LIB.
2.3 DELETE SECTION:
This is the name of a section in the old library that is not to be copied
to the new library. You will only get this prompt if you specified an old
library file name. After entering a section name (up to 8 characters),
DEFT Lib will prompt you again for another section not to copy. DEFT
Lib will let you enter up to 50 sections in this manner.
Once you have entered all the names that you wish not to appear in the
new library, enter a null section name (just depress the ENTER key
without entering any characters) to indicate that there are no more sec-
tion names to be deleted.
2.4 ADD OBJECT FILE:
After the copying is completed, DEFT Lib prompts you for any object
files that you would like to have added to the new library. At this point,
DEFT Lib has finished using the old library file and you may remove
the diskette Containing it if you wish.
You may enter the name of either an object file, a library file or no file
at all. If no filename is entered, DEFT Lib closes the new library and
terminates execution. This is how you will tell DEFT Lib that you have
no more object files or libraries to add. The default file extension is OBJ.
2.5 Adding an Object File
If you enter the name of an object file, DEFT Lib will open the file and
then prompt you for the name of the section to use in the library. The
prompt that you will get is:
 SECTION NAME (nnnnnnnn):
The default section name is the name of the object file. This will be used
if you do not enter a section name. You may use the CLEAR key to stop
DEFT Lib from doing the add at this point if you wish. If the section
name used (either the default or the one that you specified) is the same
as one that is already in the new library, then you will receive the fol-
lowing prompt:
 nnnnnnnn IS A DUPLICATE SECTION

 NEW NAME
You can enter a different name or you may use the CLEAR key to abort
the add.

 How To 3

Lib

Once the section is added (or the add operation is aborted) you will get
the ADD OBJECT FILE: prompt again.

2.6 Adding a Library File

If you enter the name of a library file, DEFT Lib will open the file and
begin reading each section of the specified library. For each section
found, DEFT Lib will then prompt you for the name of the section to
use in the new library. The prompt that you will get is:

 SECTION NAME (nnnnnnnn):

The default section name is the name of the section in the library file
that you are adding from. This will be used if you do not enter a section
name. You may use the CLEAR key to stop DEFT Lib from doing the
add at this point if you wish. If the section name used (either the default
or the one that you specified) is the same as one that is already in the
new library, then you will receive the following
prompt:

 nnnnnnnn IS A DUPLICATE SECTION

 NEW NAME:

You can enter a different name or you may use the CLEAR key to abort
the add for this particular section.

After each section is added (or the add operation is aborted) you will
get the SECTION NAME: prompt until all the sections have been read
from the library that you are adding from. Once all the sections have
been read, you will get the ADD OBJECT FILE: prompt again.

4 How To

Lib

3 Error Messages
3.1 FILE IS NOT OBJECT OR LIBRARY
The file specified to an ADD OBJECT FILE: prompt was not a legal ob-
ject or library file. The file is ignored.

3.2 I/O ERROR ON NEW LIBRARY
An I/O error occurred while DEFT Lib was writing to the new library
file. If this occurs. DEFT Lib terminates execution. This error may be
due to a bad diskette or because the diskette is full.

3.3 I/O ERROR ON OBJ/LIB FILE
An I/O error occurred while DEFT Lib was reading from the object or
library file specified to the ADD OBJECT FILE: prompt. If an add was
in progress, then it was only partially completed.

3.4 I/O ERROR ON OLD LIBRARY
An I/O error occurred while DEFT Lib was reading from the old library
file. If this occurs, DEFT Lib terminates execution.

3.5 OPEN ERROR: n
An I/O error occurred while DEFT Lib was opening the specified old
library, new library or object file. DEFT Lib will prompt for another
file name. The n is an error number with one of the following values:

• -1, End of File- You should not get this error number since an end of

file is an expected occurrence for DEFT Lib.

• -2, I/O Error- This indicates that some hardware oriented problem

occurred.

• -3, File Not Found- The file specified was not found.

• -4, Illegal Operation- This may occur if you try to read from the

printer.

• -5, Device Full- There is no more space available on the specified de-

vice.

 How To 5

Lib

DEFT Pascal Language

 l Introduction . 1

 2 The Pascal Program . 2
 2.1 Block Structure . 2
 2.2 Scope. 3
 2.3 Declaration Statements. 5
 2.4 Executable Statements . 6
 2.5 Program Statement . 7
 3 Language Elements . 8
 3.1 Reserved Words . 8
 3.2 Identifiers . 9
 3.3 Labels . 9
 3.4 Constants . 9
 3.5 Special Operators. 11
 3.6 Comments. 11

 4 CONST Statement . 12

 5 Types . 13
 5.1 Type Identifier . 13
 5.2 Enumerated . 14
 5.3 Subrange . 15
 5.4 Sets . 15
 5.5 Arrays . 16
 5.6 Records . 17
 5.7 Pointers . 19
 5.8 Files . 20
 5.9 PACKED Types . 21

 6 Variables. 22
 6.1 Automatic Allocation . 22
 6.2 VAR Declaration . 22

 7 Procedures and Functions . 23
 7.1 PROCEDURE Declaration . 23
 7.2 Procedure Invocation . 24
 7.3 FUNCTION Declaration . 25
 7.4 Function Invocation . 26
 7.5 FORWARD References. 27

Pascal

8 Expressions and Assignments . 28
 8.1 Factors. 28
 8.2 Arithmetic Operators . 29
 8.3 Integer/Real Expressions . 30
 8.4 Arithmetic Precedence . 31
 8.5 Set Expressions . 32
 8.6 Boolean Expressions . 33
 8.7 Assignment Statement. 34

9 Compound and Control Statements . 36
 9.1 BEGIN Statement . 36
 9.2 IF Statement. 36
 9.3 WHILE Statement . 37
 9.4 REPEAT Statement . 38
 9.5 FOR Statement. 38
 9.6 CASE Statement . 40
 9.7 GOTO Statement . 41
 9.8 EXIT Statement . 41
 9.9 WITH Statement . 42

10 Input/Output. 44
 10.1 File Names . 44
 10.2 File Variables . 45
 10.3 INPUT and OUTPUT File Variables. 45
 10.4 Overall Example . 46
 10.5 Lazy Keyboard Input . 47
 10.6 CLOSE Statement . 48
 10.7 EOF Function . 48
 10.8 EOLN Function . 48
 10 9 FILEERROR. 49
 10.10 GET Statement. 49
 10.11 PAGE . 50
 10.l2 PUT Statement . 50
 10.13 RESET and REWRITE Statements 51
 10.14 Read Statement . 51
 10.15 READLN Statement. 52
 10.16 WRITE Statement . 52
 10.17 WRITELN Statement. 54

Pascal

11 Built-in Procedures and FUNCTIONS 55
 11.1 ABS . 55
 11.2 ARCTAN . 55
 11.3 CHR. 55
 11.4 COS . 55
 11.5 CURSOR . 56
 11.6 EXP . 56
 11.7 LN . 56
 11.8 MARK . 56
 11.9 MEMAVAIL. 56
 11.l0 NEW. 57
 11.11 ODD. 57
 11.12 ORD. 57
 11.13 PRED. 58
 11.14 RELEASE . 58
 11.l5 ROUND . 58
 11.16 SIN . 58
 11.17 SIZEOF . 59
 11.18 SQR . 59
 11.19 SQRT . 59
 11.20 SUCC. 59
 11.21 TRUNC . 59

12 DEFT vs. Standard Pascal. 60

13 Error Messages . 62

Pascal

1 Introduction

The DEFT Pascal Compiler is a program which reads lines of source
code produced with DEFT Edit (or any ASCII compatible editor) and
produces a listing file and an object file. The object file produced con-
tains actual machine codes which can be directly executed by the 6809
CPU in the CoCo after being linked by the DEFT Linker. This differs
from a compiler which produces pseudo-code in the following respects:

1. The resulting program does not require an interpreter to execute. It

is a self-sufficient program that requires only the Color Computer
hardware.

2. The runtime execution environment is closer to assembler than

BASIC. However, the DEFT Debugger provides some very powerful
features which can make debugging the resulting machine language
program almost as easy as debugging a BASIC program using the
interpreter.

3. The performance of your program will be vastly better since each line

of Pascal will result in only a few machine language instructions
being executed. With an interpreter, several machine language sub-
routines within the interpreter will generally be executed per line or
source code.

4. The program can be easily linked with DEFT Macro/6809 assembly

language modules and other DEFT high level language modules.

A Color Computer with 32K or 64K of RAM memory and 1 or 2 disk
drives is a fairly powerful computer capable of most tasks being done
on large micros and minicomputers. Using DEFT Pascal allows you to
exploit that power to its fullest.

This section of the User’s Guide describes those portions of DEFT Pas-
cal which are ISO Standard. The following section, Advanced Pascal,
describes The language extensions and assembler interface.

 Background 1

Pascal

2 The Pascal Program
When programming in BASIC, there is almost no restriction on what
order any of the statements must be placed. This is because almost all
BASIC statements are executable statements. The only exception is the
DIM statement, which is a declaration statement that defines arrays
before they are used. DATA statements are neither executable nor dec-
laration statements but they do represent a portion of the programs
data. One of the primary aspects of the Pascal language is the presence
of a very powerful declaration syntax, which requires that all Pascal
programs he written in a specific format.
2.1 Block Structure
In Pascal a program’s structure is defined via a number of different
types of declaration statements. These declaration statements allow a
programmer to create an environment, or program structure, in which
to get his job done with any number of the different types of executable
statements. This provides the programmer with the ability to create a
customized program structure that can match the problem structure of
each program that he writes.
Pascal programs require the following elements in this order:

 PROGRAM <program heading>;

 <declaration statements>

 BEGIN

 <executable statements>

 END.
Throughout this manual, words or phrases enclosed in <> are non-ter-
minators. That is, they refer to a class of objects any one or more of
which may be substituted at the place where the non-terminator is
found. In the example above, PROGRAM is a terminator which repre-
sents exactly itself, whereas <program heading> is a non-terminator
and represents some overall program information which will vary from
program to program.
The important items in the structure are the <declaration statements>
which define elements of your program and the <executable state-
ments> which actually perform work on the defined elements.
Another way of describing the structure of a Pascal program is as fol-
lows:

2 Background

Pascal

 PROGRAM <program heading>; <block>.

where <block> is equivalent to:

 <declaration statements>

 BEGIN

 <executable statements>

 END
This concept of block is central to the overall philosophy of Pascal With
this structure, <declaration statements> can define sub-blocks which
in turn can themselves contain <declaration statements> which can
further define sub-sub-blocks, and so forth and so on. It is with this
hierarchy of blocks that the overall program is broken down into man-
ageable pieces and implemented.
Block execution is initiated when that block is invoked or activated. Ex-
ecution within a block starts with the first statement following the begin
and proceeds sequentially with each of the following statements.
(NOTE: in the section on Compound and Control. Statements you will
see how the order of execution can be altered. When the end statement
is executed, the block is deactivated and control returns to the point at
which the block was invoked.
Program execution starts at the last begin statement defined in the pro-
gram. the program’s execution will terminate at the last end statement
defined in the program. Another way of putting it is that the last section
of executable statements defined within a program is the first section
to be executed. the sub-blocks, sub-sub-blocks, etc., Which are the de-
fined procedures and functions of the program, are activated by being
invoked or called during the execution of the program or one of the pre-
viously executing procedures or functions.
2.2 Scope
The <declaration> statements within a block define <identifiers>, or
data names, which are used by the <executable statements> within that
block. When the block is activated, these <identifiers> are activated and
become known. When the block is deactivated, the <identifiers> are
deactivated and become unknown.
Identifiers used by <executable statements> may be either those defined
by <declaration statements> within the same <block> or those defined
in an enclosing <block>. All <identifiers> defined within a11 other
blocks of the program become unknown.

 Background 3

Pascal

Note also, that the same identifier may be redefined in different levels
of blocks. At any point in the program the innermost definition known
at that point will be used. The following is an example.

PROGRAM Example;
VAR I,J: Integer;

 PROCEDURE Proc1;

 VAR I : lnteger;

 PROCEDURE Proc2;

 VAR J : Integer;

 BEGIN (* Proc2 BEGIN*)

 I:= J

 END;

 BEGIN (* Proc1 BEGIN *)

 Proc2;

 I:= J

 END;

BEGIN (* PROGRAM Example BEGIN *)

 Proc1;

 I:= J

END.
The above statements are discussed in detail later in the manual, but
for purposes of this example, short definitions are provided here. The
var statements declare integer variables named I and/or J. the I:= J
means that the value in J is assigned to I. The Proc1; and Proc2; state-
ments invoke the corresponding procedures.

When the program first begins execution (just after the last begin) only
the I and J and the procedure Proc1 declared within the program Ex-
ample are known. When Proc1 is invoked and begins executing, Proc2
becomes known, the I declared within proc1 becomes known, the I
within the program Example becomes unknown (because of the tempo-
rary redefinition of J) and the J defined in the program Example re-
mains known. When Proc2 is invoked and begins executing, the J
definition in Proc2 temporarily replaces the J defined within program
Example.

4 Background

Pascal

When Proc2 returns and is deactivated, the previous J definition is re-
stored. When Proc1 is deactivated the previous I definition is restored
and Proc2 becomes unknown. Note that the above definitions and re-
definitions apply to any type of <declaration statement> described
below.
In Advanced Pascal you will find extensions to this fundamental struc-
ture.
2.3 Declaration Statements
As shown above, declaration statements come before the executable
statements and are separated from them with the begin reserved word.
the following are the <declaration statements>:
 LABEL <identifier>, ... ,<identifier>;

 CONST <identifier> = <constant>;

 .

 .

 .

 TYPE <identifier> - <type definition>;

 .

 .

 .

 VAR <identifier> : <type definition>;

 .

 .

 .

 PROCEDURE <identifier> <parameter definition>;

 <block> ;

 FUNCTION <identifier> <parameter definition>;

 <type definition> ; <block> ;

As in most Pascals, the above <declarations may occur in any order; al-
though according to standard Pascal, the above order must be followed
with the exception of the PROCEDURE and FUNCTION declarations,
which can be mixed with each other. Note that the above definition is
recursive in that <declaration statements> are part of both procedures
and functions, both of which are themselves types of <declaration state-
ments>.

 Background 5

Pascal

More detailed information about each of the above declaration state-
ments can be found in the chapter on each statement.
2.4 Executable Statements
Executable statements are placed after the begin. The first statement
following the begin is the first statement actually executed by the re-
sulting program. Following is a list of the executable statements:
 <Identifier> := <expression>

 BEGIN <executable statements> END

 CASE <expression> OF

 <constant list> : <executable statement>;

 ...

 <constant list> : <executable statement>

 ELSE <executable statement>

 END

 FOR <identifier> := <expression> TO <expression> DO

 <executable statement:>

 FOR <identifier> := <expression> DOWNTO <expression> DO

 <executable statement>

 GOTO <label>

 IF <boolean expression> THEN <executable statement>

 ELSE <executable statement>

 READ (<file specifier> <input list>)

 READLN (<file specifier> <input list>)

 REPEAT <executable statements> UNTIL <boolean expression>

 WHILE <boolean expression> DO <executable statement>

 WITH <record variable> DO <executable statement

 WRITE (<file specifier> <output list>)

 WRITELN (<file specifier> <output list

 <procedure identifier> <parameter specification>

6 Background

Pascal

Anywhere that you see <executable statements> (plural) you can use
the following:

 <executable statement>;
 .

 .

 .

 <executable statement>

Note that the semicolon (;) is used to separate rather than terminate in-
dividual statements. Multiple statements separated by semicolons are
allowed in both begin and repeat statements. The else clauses in both
the if and case statements are optional and may be omitted.

Complete details on each of the above statements can be found in Ex-
pressions and Assignments, Control, Procedures and Functions, and
Input/Output.

2.5 Program Statement

As shown above, the program statement is the first statement of your
Pascal program. It has the following format:

 PROGRAM <identifier> [(<identifier>, ... , <identifier>)];

The first <identifier> is the program name and serves no other purpose
within the program. Following this is an optional parameter list en-
closed in parentheses. In standard Pascal, this list identifies those file
variables declared within the program which represent external files.
the pre-defined file variables input and output must be present in this
list if used (explicitly or implicitly) within the program.

In DEFT Pascal, the optional parameter list is allowed but ignored.
This is because all files within a DEFT Pascal program are assumed
to be external.

 Background 7

Pascal

3 Language Elements
Before describing a Pascal program, it is necessary to describe the fun-
damental elements which make up one. Like BASIC, the Pascal lan-
guage is constructed from the ASCII character set used on the Color
Computer. These are as follows:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ <upper case characters>

 abcdefghijklmnopqrstuvwxyz <lower case characters>

 0123456789 <numbers>

 !”#$%^&’()*+,-./:;<=>?@[] <special characters>

All the following definitions will be in terms of these characters. Note
that except in character and string constants (defined below), there is
no distinction between upper and lower case characters for those lan-
guage elements using letters.
3.1 Reserved Words
Reserved words are groups of upper or lower case characters whose
meaning has been predefined in the language. The following is a list of
all the reserved words used in DEFT Pascal:
 ABS AND ARRAY

 BEGIN BYTE* CALL*

 CASE CHAR CHR

 CONST DIV DO

 DOWNTO ELSE END

 EXIT* EXTERNAL* FILE

 FOR FORWARD FUNCTION

 GOTO IF IN

 INTERFACE* LABEL LSL*

 LSR* MOD MODULE*

 NEW NOT ODD

 OF OR ORD

 PACKED PRED PROCEDURE

 PROGRAM PUBLIC* READ

 READLN RECORD REPEAT

 RESET REWRITE SET

 SIZEOF* STATIC* SUCC

 THEN TO TYPE

 UNTIL VAR WHILE

 WITH WORD* WRITE

 WRITELN XOR*
Those reserved words which are suffixed with an asterisk are part of
the language extensions of DEFT Pascal.
8 Background

Pascal

3.2 Identifiers
Identifiers are groups of letters and numbers which begin with a letter
(either upper or lower case) and contain up to 12 upper or lower case
letters and numbers which are not the same as any of the above listed
reserved words, As in BASIC, these identifiers are used to represent
variables. However, in Pascal they can also be used to represent con-
stants, types, procedures and functions as well.
3.3 Labels
Labels are used to uniquely identify executable statements so that an
executable statement may be referenced with the GOTO statement. A
Pascal label functions much in the same way as line numbers do in
BASIC. A label is a number which can be up to four digits long, which
prefixes an executable statement with a colon(:) in between. the follow-
ing is an example:
 100: I:= J
All labels within a block of executable statements must be declared with
the LABEL declaration statement prior to the block of executable state-
ments. the following is an example:
 LABEL 100;
3.4 Constants
There are five types of constants supported by the DEFT Pascal com-
piler. They are individually described be below:
Decimal Integer Constant - A decimal integer constant is a group of
numbers which may be optionally preceded with either a + or -. The al-
lowable range for decimal integer constants is -32768 to 32767. the fol-
lowing are some examples:
 -45

 45

 +10234

 +32768 (illegal, too large)
Hexadecimal Integer Constant - A hexadecimal integer constant is
a group of up to 4 hexadecimal digits that is preceded with a $. A hexa-
decimal digit may be any of the following: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D. E, F. Note that only upper case characters can be used. The range
of hexadecimal integer constants is $0000 to $FFFF.

 Background 9

Pascal

The following are some examples:

 $ABC

 $12A5

 $5

Hexadecimal integer constants are not part of standard Pascal but a
form of it can be found in many Pascal implementations.

Character Constant - A character constant is a single ASCII charac-
ter (other than carriage return) contained between single quotes(‘). Fol-
lowing are some examples:

 ‘A’

 ‘a’

 ‘&’

 ‘“‘

The last example is a character constant that represents a single quote.
the single quote is doubled.

String Constant - A string constant is similar to a character constant
except that more than one character is contained between the quotes.
the following are some examples:

 ‘PAGE HEADING TITLE’

 ‘Sam and Joe’’s Sub Shop’

Note that in the last example, two single quotes in Joe’’s actually is in-
terpreted as one single quote in the string. In addition, a character con-
stant can be used anywhere a string constant is required but the reverse
is not true.

Real Constant - A real constant is a signed, decimal, fractional
number, optionally raised to a signed decimal power. the general form
of a real constant is:

 <sign><number>.<number>E<sign><number>

The allowable range of real constants is 1E-64 to 9F.63 both positive
and negative. Following are some examples:

10 Background

Pascal

 1.

 -6.74

 56.3E6

 1.2E-3

The only required elements in a real constant are the first <number>
and the decimal point(.). NOTE: Standard Pascal requires at least one
decimal digit after the decimal point.

Constant Identifiers - Through the use of the CONST statement de-
scribed later, identifiers can be defined as constants of some type. Three
constant identifiers are predefined: true, false and nil. Later sections
on Constants, Types and Expressions and Assignments provide more in-
formation on these constants.

3.5 Special Operators

As in BASIC the characters +, -, * and / are used as operators. However.
Pascal also has several two character operators. These are as follows:

 <> not equal

 >= greater or equal

 <= less or equal

 .. range

 := assignment

3.6 Comments

Comments may be interspersed between (but not in the middle of) any
of the above language elements. A comment starts with the characters
(* and ends with the characters *). Unlike BASIC, Pascal comments can
extend through more than one line. All the characters following the (*
are considered comments until the *) is found later on the current or
subsequent line.

 Background 11

Pascal

4 CONST Statement

Constants as language elements are a part of practically every program-
ming language. BASIC contains both real number and string constants.
As described in the section on Language Elements Pascal contains dec-
imal integer, hexadecimal integer, character, string and real constants
as well as constant identifiers.

There are two ways to create constant identifiers. One way is through
the definition of enumerated types described in the section on Types.
The other is through the use of the const statement. The general form
of the const statement is as follows:

 CONST <identifier> = <constant>;
 .
 .
 .

Following are some examples:

 CONST MinSize = -3;
 MaxSize = 3451;

 Charlit = ‘G’;

 Stringlit = ‘This is a STRING constant’;

 ExtraSize = MaxSize;

 Yes= True;

The purpose of the CONST statement is to allow the programmer to
symbolically define a particular constant value for use later in the pro-
gram. Note that any type of constant including a previously defined con-
stant identifier may be used on the right hand side of a constant
statement.

12 Background

Pascal

5 Types

The concept of type is not entirely unique to Pascal. However, the exis-
tence of a TYPE statement is a new concept for those programmers
used to BASIC. When using BASIC, you have four kinds (types) of data:
numbers, strings, number arrays and string arrays. You have different
operations that can be performed with each and their internal represen-
tations are different.
A type refers to a data structure rather than any particular allocation
of that structure. It has both a size and a set of operations that can be
used on it. See the section on Variables for the actual allocation of mem-
ory for a given type.
In DEFT Pascal, real numbers and strings are both available along
with a number of other types, including some types that you can define
yourself. There are three classes of types: simple. structured and pointer.
Those types which refer to indivisible entities are referred to as simple.
An example is the set of whole numbers. Those which are made up of
groups of simple types are referred to as structured. An array is an ex-
ample of a structured type. A pointer type refers to those entities (such
as memory addresses) which identify an occurrence of a type.
As shown in the chapter on Program Structure the general form of the
TYPE statement is as follows:
 TYPE <identifier = <type definition>;

 .
 .
 .
This statement causes the <identifier> to be associated with the <type
definition>. Following are descriptions of all the possible type defini-
tions.
5.1 Type Identifier
A previously defined type identifier can be used as a type definition.
These identifiers include all those defined in previous TYPE statements
as well as a number of pre-defined types that are available. These
predefined types are as follows:

• Integer - This is a 16 bit(2 bytes) Ordinal type which can range in
value from -32768 to 32767.
• Real - This is a 6 byte floating point number. the high-order bit of
the first byte is the sign of the number. the low-order 7 bits of the first
byte is the signed exponent. The last 5 bytes contain the mantissa in

 Background 13

Pascal

form of 10, BCD digits. the range of the exponent is 63 to -64 and re-
flects powers of 10.
• Char - This is an 8 bit (1 byte) ordinal type. which can range in value
from NUL to DEL. These are the ASCII characters with binary values
from 0 to 127. In addition, the characters that correspond to the bi-
nary values from 128 to 255 are also included.
• Boolean - This is an 8 bit (1 byte) Ordinal type which can have only
two possible values: 0 (false) or 1 (true).
• String - This is an 81 byte structured type which can contain a vari-
able number of Char types. A minimum of 0 and a maximum of 80
Chars can be contained in a String type. See Advanced Pascal for
more information on strings.
• Text - This is a structured type which defines a FILE OF Char. This
type occupies 286 bytes. See the section on Input/Output for more in-
formation.

One additional term is that of ordinal type. All simple types except real
are also ordinal types. Ordinal types are simple types that have explicit,
discrete values.
See the section on Expressions and Assignments for a discussion of the
kinds of operations that can be performed on these various types. An
example of a TYPE statement using a type identifier:
 TYPE Number - Integer;

Number is a new type that is fully compatible in expressions with In-
teger.
5.2 Enumerated
One way you define your own type is by listing a set of values that are
to be associated with a type. This defines a new ordinal type. The gen-
eral form of an enumerated type definition is as follows:
 (<identifier>, ... , <identifier>)
An example of a TYPE statement using an enumerated type
definition is the following:
 TYPE Color = (Red, Green, Yellow, Blue, Orange, Brown);
Color becomes a new independent type and any variables of this type
will be protected from variables of other types in an expression. All enu-
merated types are 8 bit values where the identifiers contained in the

14 Background

Pascal

the list are implicitly defined as constants of that type. The order of the
identifiers in the list is important. The internal representation of the
first value is always 0, the second is 1 and so forth. See the section on
Expressions and Assignments for a description of the operations that
can be performed on an Enumerated type.
5.3 Subrange
A Subrange is a subset of values of an Ordinal type. The general form
of a Subrange definition is as follows:
 <constant>..<constant>
Where the first <constant> must be less than or equal to the second
<constant>. Some examples of subrange TYPE statements are as fol-
lows:
 TYPE SmallColor = GreenBlue;

 SmallInt = -128..127;
Note that in case of a Subrange of integers, a subrange or -128..127 or
less will result in an 8 bit type which is fully compatible with the full
16 bit integer types.
5.4 Sets
A set is a collection of specific occurrences of objects of the same type.
The general form of a set definition is as follows:
 SET OF <type identifier>
Where the <type identifier> specifies the types of objects comprising the
set. The following is an example of use:
 TYPE SmallColor = (Green,Yellow,Red,Blue);

 Semicolons = SET OF SmallColor
SmallColor is an enumeration, and SomeColors is a set type. Variables
of the type SomeColors are sets with 0 to 4 members which were listed
in the declaration for the type SmallColor.
All Sets are 32 byte structured types. Each bit position within those 32
bytes represents each member of the set. where bit 0 of byte 0 repre-
sents member 0. Bit 1 of byte 0 represents member 1, and so on up to
255. All Sets may have up to 206 members. Sets are given values by
specifying a set constant as a list of constants enclosed by []s. If a set
has no values assigned. it is called an empty set, which is denoted by
two empty brackets [].

 Background 15

Pascal

 BriteColors := [Yellow, Red];

 DarkColors := [Green, Blue};

 NoColors := [];
5.5 Arrays
An array is a familiar concept to most programmers. In Pascal, it is a
list of types (which themselves can be arrays). The general form of an
Array definition is as follows:
 ARRAY[<ordinal type definition>] OF <type definition>;
where the <ordinal type definition> defines not only the quantity of
<type definitions> in the ARRAY but also how each element is identified
by type. The following examples should make this clear.

 TYPE ColorList = ARRAY[1.6] OF Color;

 Numbers = ARRAY[Green..Orange] OF Integer;

 Flags = ARRAY[Color] OF Boolean;

 ColorPlane = ARRAY[0..200] OF ColorList;

In the first example, a list of colors is being defined. Elements of the list
are identified by the integers 1 through 6 for a total of 6 elements. Note
that one of the most frequent uses of subrange types are in array defi-
nitions.

The second example shows one of the unique properties of Pascal. In
this case we are defining a 4 element list of numbers where elements of
the list are identified, in order, by the colors Green through Orange.
The third example is similar where the number of Boolean elements is
equal to the total number of colors and each element of the list is iden-
tified by a different color.

The final example shows a definition of a two-dimensional array. In this
example there are 201 lists defined. Variables of this type would have
memory organized as follows:

16 Background

Pascal

 zeroth Colorlist (elements 1 through 6)

 first Colorlist (elements 1 through 6)

 second Colorlist (elements 1 through 6)

 .

 .

 .

 two hundredth Colorlist (elements 1 through 6)
Alternate (equivalent) forms of multiple dimension ARRAY declarations
are as follows:
 TYPE ColorPlane = ARRAY[0..200] OF ARRAY[1..6] OF Color;

 or

 TYPE ColorPlane =-ARRAY[0..200, 1..6] OF Color;
Note that there is no limit to the number of dimensions allowed and
that each dimension can be of a different ordinal type.
The predefined type string is actually an array[0..80] OF char. DEFT
Pascal supports a number of language extensions associated with this
type. See Advanced Pascal for language extensions on both strings and
arrays.
5.6 Records
A record is a collection of data of diverse types which are located con-
tiguously in memory in the order in which they appear in the record.
Each data element or item is referred to as a field. A field may be of any
type. This means that a record field may be an array, another record, a
set, and so on. The general form of a record definition is as follows:
 RECORD

 <field list>

 END
Where the <field list> has a <fixed part> and/or a <variant part>. The
<fixed part> is a group of fields which are declared very much like a
variable. The following is an example of a RECORD with only a <fixed
part>:

 Background 17

Pascal

 TYPE Employee= RECORD

 Name : String (20);

 Street, City : String (20);

 State : String (2);

 ZipCode : String (5);

 Number : Integer

 END;

In addition to a <fixed part> a RECORD can also have a <variant part>
This part describes several alternative <field list>s which are located
in the same area of memory. This allows you to describe the same area
of memory in more than one way. The general form of the <variant
part> is as follows:

 CASE [<identifier>:] <type identifier> OF

 <constant>, ... ,<constant>: (<field list>);

 .

 .

 .

 <constant>, ... ,<constant>: (<field list>)

The <identifier>: following the CASE keyword is optional and if present
defines the last fixed field in the record. The <constant>s must all be of
the same type as the <type identifier>. Each (<field list>) begins at the
same position in the record. The size of the record will be determined
by the size of the largest (<field list>). The following example should
make things more obvious:

18 Background

Pascal

TYPE Job Type = {Manager, Worker, Secretary);

 Employee = RECORD

 (* Fixed Part Starts Here *)

 Name: String {20);

 Address: RECORD

 Street, City : String (20);
 State : String (2);

 ZipCode: String (5);

 END;

 Number: Integer;

 (* Variant Part Starts Here *)

 CASE EmployeeType: JobType OF
 Manager: (TotalWorkers: Integer;

 SecName: String (20));

 Worker: (ManagerNbr: Integer;

 TotalTools: Integer;

 RoomNumber: Integer);

 END;
In this case we have a <variant part> based on the employee’s job type.
The fields following the manager constant describe the information re-
quired for a manager. The fields following the worker constant describe
the information required for a worker. Only one <field set> or the other
will be present in any given occurrence of an employee type.
Note that the size of Employee is 21 (Name)+ 51 (Address) + 2 (Number)
+ 1 (EmployeeType) + the size of the largest variant which is the one
represented by the manager constant (which is 23). Although not shown
here, the <field lists> in the <variant part> can themselves have <vari-
ant parts>.
5. 7 Pointers
A pointer is a reference to a specific instance of a type. In standard Pas-
cal, this instance is created via the NEW procedure. A pointer is basi-
cally the memory address of a variable of a specific type. You can create
a pointer type by preceding any type definition with an uparrow (^).
The general form of a pointer type is:
 <type definition>

 Background 19

Pascal

An example pointer type definition is:

 TYPE EmployeePtr = ^Employee;

This defines a type called employeeptr which is a pointer to a record type
called employee. You can create an instance of employee using the NEW
procedure as follows:

 NEW (EmployeePtrVar);

This allocates memory for an instance of employee and sets the memory
address of that instance in the variable called employeeptrvar which is
of type employeeptr.

The size of a pointer type is always 2 bytes regardless or the size of the
type that it is referencing. See Advanced Pascal for DEFT Pascal ex-
tensions on the use of pointer types.

5.8 Files

In Pascal, both files and arrays are lists of elements. With an array each
element can be randomly accessed. With a file each element can be only
sequentially accessed. Files are the structured type that represent pe-
ripheral devices such as tape, disk, printer, keyboard and screen.

In Pascal. each element of a file can be of any type. File types other than
file of char are used to transfer occurrences of the binary image of the
type’s internal representation to and from I/O devices. A file of char has
special (but standard Pascal) properties which provides for automatic
conversion between the internal binary representation of data and the
external ASCII representation A complete explanation can be found in
the section on Input/Output. The standard predefined type identifier
text (file of char) can be used in file type declarations:

 TYPE ThisType = FILE OF Char;

 ThatFile = Text;

Both of these declarations define equivalent type identifiers. Note that
a FILE of a given type has a size which is equal to the size of the type
plus 286 bytes.

20 Background

Pascal

5.9 PACKED Types

The reserved word PACKED may precede either set, array, record or file
in a type declaration. In standard Pascal, this reserved word indicates
that the corresponding structured type should be organized to occupy
the least possible amount of memory. There are subsequently some re-
strictions on the use of the these packed types.

With the DEFT Pascal Compiler, the keyword PACKED is allowed but
ignored in set, array, record and file type declarations. This means that
the memory requirements don’t change and the restrictions are not im-
posed on the resulting types. An example of use is as follows:

 TYPE Colorlist = PACKED ARRAY[1..6] OF Color;

 Background 21

Pascal

6 Variables

A variable in Pascal represents a specific memory allocation of a type.
More important is when that memory allocation is made.
6.1 Automatic Allocation
In BASIC, a variable is allocated memory when it is first used. In as-
sembly language a variable is allocated memory when the program is
loaded into memory (provided it was declared with an RMB opcode).
In the section on The Pascal Program, the block structure of Pascal is
explained. Constants, types, procedures, functions and variables be-
come known only when the block in which they are declared is acti-
vated. For variables, this also causes the memory for them to be
allocated. When the block is deactivated, not only do the identifiers be-
come unknown but the memory allocated to the variables is deallocated.
The implications of this allocation scheme are two-fold:
1. The value of any variable is undefined when the block is first acti-

vated. This is true even if the block was previously activated and
deactivated. Variables will not assume the value that they had when
the block was last deactivated.

2. An active block can activate itself causing a second allocation of its
variables. Each concurrent activation of a block therefore has its own
independent copy or each variable. This allows for recursive proce-
dures and functions.

6.2 VAR Declaration

Variables are declared with the var statement. The general form of the
statement is as follows:

 VAR <identifier> : <type definition.>;

 .

 .

 .

For example:

 VAR I : Integer;

 ThisEmployee : Employee;

22 Background

Pascal

7 Procedures and Functions

The concept of a group of statements which perform a given operation
is certainly not new to a BASIC programmer. The gosub statement al-
lows exactly this type of operation. In Pascal, the procedure statement
allows a programmer to set aside a group of statements explicitly for
this purpose.
In BASIC the concept of a function is provided by the DEF FN state-
ment. This statement provides the ability to define single line functions.
In Pascal. The function statement (which is almost identical to the
procedure statement) provides a general function definition capability.
The facilities found in Pascal for defining procedures and functions are
very powerful and constitute one of the major characteristics of the Pas-
cal language. As described in the section on The Pascal Program. Pascal
is a block structured language with procedures (and functions) at the
heart of this structure. It is important to read and understand this sec-
tion in order to use the features of the language to their fullest.
7.1 PROCEDURE Declaration
The procedure statement is a declaration statement which provides the
ability to construct a complete subprogram which may itself contain
subordinate subprograms (procedures and functions). The general form
of the declaration is as follows:
 PROCEDURE <identifier> <formal parameter definition>;

 <declaration statements>

 BEGIN

 <executable statements>

 END
As mentioned in the sections on Block Structure the <declaration state-
ments> BEGIN <executable statements) END constitute a <block>
which is exactly the same as program’s <block>. The <formal parameter
definition> can be null if there are no parameters to pass to the proce-
dure or can have the following form if parameters are present:
 (<parameter>; <parameter>; <parameter>)

 Background 23

Pascal

Where the form of <parameter> is:
 VAR <identifier>, ... ,<identifier> : <type identifier>

 OR

 <identifier>, ... ,<identifier>: <type identifier>
The var keyword is present when the parameter is a reference parame-
ter and is not present when the parameter is a value parameter. The
difference between these two classes of parameters is important and is
discussed in full in the next section on Procedure Invocation. Following
are some examples:
 PROCEDURE TestProc (VAR Parm1 : Integer; Parm2, Parm3 :Integer);

 BEGIN

 Parm1 := Parm2 + Parm3

 END;

 PROCEDURE TestProc2;

 BEGIN

 IF GlobalVar1 > 0 THEN Globa1Var2 := 5;

 GlobalVar3 := GlobalVar1 + 3

 END;
You notice in the first example that Parm1 is a reference parameter and
Parm2 and Parm3 are value parameters. In the second example Glob-
alVar1, GlobalVar2 and GlobalVar3 are all variables declared outside
the procedure TestProc2. See the section on The Pascal Program for a
discussion of scope.
7.2 Procedure Invocation
Unlike BASIC’s gosub statement, Pascal has no call statement for in-
voking a procedure. In Pascal. a procedure is invoked by name. That is,
a procedure declaration implicitly defines a new executable statement
which is the procedure name and is formatted according to the <param-
eter definition> provided ln the declaration. The general form of a proce-
dure invocation is:
 <identifier><actual parameters>
If the corresponding <formal parameter definition> in the procedure
statement was null then the <actual parameters> must also be null.
Otherwise the actual parameters must agree with the formal parame-
ters in ordering, type and number. Some examples:
 TestProc1 (I, 3, J*5);

 TestProc2

24 Background

Pascal

Before explaining the above examples. it is necessary to define what ref-
erence and value parameters are. A formal reference parameter repre-
sents the actual variable used when the procedure is invoked. The
parameter used in the procedure invocation must be a variable. In this
case, all references to the formal parameter (the one in the procedure
declaration statement) will reference the actual parameter (the one in
the procedure invocation statement). This means that the actual pa-
rameter’s value will be changed if the procedure modifies the formal
parameter’s value.
A formal value parameter represents the value of a general expression
used when the procedure is invoked. In this case, any type compatible
expression is allowed as the actual parameter since a separate alloca-
tion of memory is made when the procedure is invoked and is initialized
to that value. The formal parameter in this case represents its own
memory area rather than that of another variable. Changing the formal
parameter in this case does not change the value of any other variable.
In the first example above, I is a reference parameter and 3 and J*5 are
value parameters. When TestProc1 is invoked in this case, I is assigned
the value 3 + J*5. Since TestProc2 has no formal parameters, it there-
fore has no actual parameters.
7.3 FUNCTION Declaration
The function statement is almost identical to the procedure statement
described above. This is because a function is a special type of procedure
which is invoked in a different manner from a regular procedure and
has a typed value associated with it. The syntax of the function state-
ment is as follows:
FUNCTION <identifier> <formal parameter definition>:

 <type identifier>;

 <declaration statements>

 BEGIN

 <executable statements>

 END
The only difference between the function statement and the procedure
statement is the beginning keyword (FUNCTION instead of PROC-

 Background 25

Pascal

EDURE) and the presence of the <type identifier> following the param-
eter definition. Following are some examples:
 FUNCTION TestFunc (VAR Parm1 : Integer; Parm2, Parma : Integer)

 : Boolean;

 BEGIN

 Parm1 := Parm2 + Parm3;

 TestFunc := (Parm2 > Parm3)

 END;

 FUNCTION TestFunc2 : Integer;

 BEGIN

 IF GlobalVar1 > 0 THEN GlobalVar2 := 5;

 GlobalVar3 := GlobalVar1 + 3;

 TestFunc2 := GlobalVar3 * 2;

 END;
You’ll notice that these examples are similar to those used in the Proce-
dure section except that there is an extra assignment statement at the
end of each function. These statements use the function name on the
left side of the assignment symbol to assign a value to be returned by
the function. Every function is required to have at least one assignment
statement which performs this task. If more than one assignment takes
place, The last assignment made before the function terminates is the
one that will be used. A function can only be of a simple type.
7.4 Function Invocation
A function is invoked by referencing its name (and supplying any re-
quired actual parameters) in an expression. In this form the function
reference is similar to a reference to a variable. Following are some ex-
amples:

 IF TestFunc (I, 3, J*5) THEN I:= 0;

 GlobalVar2 := TestFunc2 * 5

Note that for purposes of recursion there is no ambiguity as to whether
a function is being recursively invoked or having its returned value set
for its current invocation. An invocation occurs when the function’s
name(and actual parameter list) are found in an expression. A func-
tion’s returned value is set when its name alone is found on the left side
of an assignment statement.

26 Background

Pascal

7.5 FORWARD References

In Pascal, a function or procedure may be referenced by another proce-
dure or function only if the function or procedure being referenced has
been defined previous to the procedure or function making the refer-
ence. There are times when this restriction is undesirable. The forward
declaration in Pascal solves this little problem.

A forward reference is allowed only if the procedure or function being
referenced has been defined using the forward declaration. The follow-
ing is an example:

 PROCEDURE TestProc (VAR Parm1 : Integer; Parm2, Parm3 : Integer);

 FORWARD;

 PROCEDURE TestProc2;

 VAR I, K, M : Integer

 BEGIN

 K := 17; M := 23;

 IF GlobalVar1 < 0 then TestProc (K, M);

 IF Globa1Var1 > 0 THEN GlobalVar2 := 5;

 GlobalVar3 := GlobalVar1 + 3

 END;

 PROCEDURE TestProc;

 BEGIN

 Parm1 := Parm2 + Parm3

 IF Parm1 <> 40 THEN TestProc2

 END;

Note that TestProc has been declared as forward and is referenced by
TestProc2, even though TestProc is defined after TestProc2. The same
rules and conventions apply for functions as well.

 Background 27

Pascal

8 Expressions and Assignments

Expressions are the combination of constants, variables and functions
with operators to form some result. This result can then be stored (as-
signed) in a variable, used as a parameter to a procedure or function,
used as a subscript in an array specification, used to control the ex-
ecution of the program or output to a file.

8.1 Factors
The fundamental elements of an expression are called factors. Factors
are the constants, variables, and functions previously mentioned. fol-
lowing are some examples of factors:

(* Constants *)

2

‘A’

‘JOE’’S PLACE’

(* Variables *)

I

My Colors[1]

OurColors[137 ,3]

MyRecord.HsColor

(* Functions *)

CHR (65)

ABS (-3)
The value of a factor is dependent on what kind of factor that it is. A
constant has a single given value that is always used whenever that
constant is referenced.
A variable’s value will be potentially different each time that it is refer-
enced. The last value that was stored (assigned} to that variable before
a given reference will be the value of that variable for that reference.
In the example above you can see a reference to an array type variable.
The value contained in the square brackets([]) (which can be a full ex-
pression) is called a subscript and identifies which element of the array
is being referenced. Note that every element of an array is considered
to be an independent variable. When an array has more than one di-
mension, the subscripts are ordered according to the type definition for
that array and are separated from each other by commas.
28 Background

Pascal

A reference to a field within a record is also a factor. This is done by
naming the record, appending a period (.) and then naming the field. If
the record is an element of an array, then the period follows the right
bracket. For Example:
 ArrayO1Rec[i].Field1

 Record1 Arrayfield[i].Subfield1
Notice that arrays of records and records of arrays can be referenced by
following the above rules.
A reference to a function will actually cause the function to be invoked
at the point of reference. The value returned by that invocation will be
the function’s value for that reference.
Another type of factor is the inline set:
 (* In-Line Sets*)

 [Green..Blue, Yellow]

 [‘0’..’9’, ‘A’..’Z’]

 [1,5,7,10..50]
An inline set is a set value that is built from a list of itemized ordinal
expressions and subranges as shown above. Note that an inline set must
always be preceded in an expression with some indication as to that
type it should assume. Therefore. it cannot be used as the first factor in
a boolean expression.
A final type of factor is a dereferenced pointer. This is a reference to a
variable whose address is in a pointer type variable and can be made
by naming the pointer variable and following it with an up-arrow (^).the
same syntax is used to reference the window of a file type variable. For
example:
 PtrVar

 FileVar

8.2 Arithmetic Operators
An expression does not have to have any operators so that a single factor
can be considered to be a full expression. However, frequently we wish
to combine one or more integer or real type factors arithmetically. This
is done with the use of the following operators:

 Background 29

Pascal

 + Addition

 - Subtraction

 * Multiplication

 / Real Division

 DIV Integer Division - quotient result

 MOD Integer Division - remainder result
In addition to the above standard arithmetic operators, the DEFT Pas-
cal Compiler also provides the following additional arithmetic oper-
ators:

AND Bitwise logical AND

OR Bitwise logical inclusive OR

XOR Bitwise logical exclusive OR

LSR Bitwise shift right (zero fill)

LSL Bitwise shift left (zero till)
Some examples of simple arithmetic expressions are as follows

I + R {* sum of I and R, real result *)

2 * 3 (* product of 2 and 3 *)

J / 6 (* real quotient of J divided by 6 *)

J DIV 6 {* integer quotient of J divided by 6 *)

I AND $1FF (* value of I with high 7 bits cleared *)

J LSL 3 (* value of J shifted left 3 bit positions *)
8.3 Integer/Real Expressions

All of the above operators (except the slash) can be used with integer
types to create integer type expressions. The plus(+), minus (-), asterisk
(*) and slash (/) can also be used with real types to create real type ex-
pressions.

You can also include integer types in real expressions and DEFT Pascal
will automatically convert the integers to reals. However, you must use
either the TRUNC or ROUND built-in functions to convert from real
lo integer. These are described in the section on Built-In Procedures and
Functions. Following are some examples of expressions mixing integers
and reals:

R := 1; (* legal *)

I := 1.0; (* illegal *)

R := I+ R; (* legal *)

IF R + I = 0 THEN ... (* legal *)

IF I + R = 0 THEN ... (* illegal *)
30 Background

Pascal

In DEFT Pascal the last expression is illegal because the expression
started out as integer before the R was encountered. In standard Pas-
cal, this would be a legal expression.
8.4 Arithmetic Precedence
In the above examples we saw how two factors could be combined with
an arithmetic operator. In general, there is no limit to the number of
factors that can be combined in a single expression. For example:
 I * J + 5 DIV 3 OR $FF00
The above example is a legal expression. Unfortunately it is not imme-
diately clear how it might be evaluated. This is because it is not clear
which order the operations are performed in. In Pascal, as in most lan-
guages. This is resolved via rules of precedence. For arithmetic expres-
sions the operators are divided into two categories: multiplying
operators and addition operators as shown below:
 Multiplying Operators: I DIV MOD AND XOR LSR LSL

 Addition Operators: + - OR
Expressions are generally evaluated from left to right with the multi-
plying operations performed before the addition operations. In the ex-
ample above. The evaluation would occur in the following order:
 I * J (* result1 *)

 5 DIV 3 (* result2 *)

 result1 + result2 (* result3 *)

 result3 OR $FF00 (* final result *)
Parentheses can be used to change this default order of operations. In
fact, the above expression, although legal, is generally considered poor
programming practice since it is not immediately clear how The expres-
sion is to be evaluated. All operations (both multiplying and addition)
within a set of parentheses are performed before the result is combined
with operators outside the parentheses. By inserting parentheses in
the above example we can change order of evaluation as follows:
 I * (J + 5) DIV (3 OR $FF00)

 Background 31

Pascal

The parentheses have changed the order of evaluation to the following:
 J + 5 (* result 1 *)

 I * result1 (* result 2 *)

 3 OR $FF00 (* result 3 *)

 result2 DIV result3 (* final result *)
Note in the above example that the * operation takes place before The
OR operation. That is due to the left-right nature of the expression eval-
uation. Note that parentheses may be nested to form even a different
evaluation as follows:
 I * ((J + 5) DIV (3 OR $FF00))
The new parentheses have changed the order of evaluation to the fol-
lowing:
 J + 5 (* result 1 *)

 3 OR $FF00 (* result 2 *)

 result1 DIV result2 (* result 3 *)

 I * result3 (* final result*)

Note that an expression inside a set of parentheses is actually consid-
ered a factor and is treated as such in all expressions.
8.5 Set Expressions
Set factors can be combined into expressions with the following oper-
ators:
 + Union

 - Difference

 * Intersection
As in arithmetic expressions, two set factors are combined with a single
operator to produce a single set result. The above operators produce the
following results:
• The Union of two sets produces a set which contains all the elements

present in either the first or second set.
• The Difference of two sets produces a set which contains all the ele-

ments of the first set which are not also in the second set.
• The Intersection of two sets produces a set which contains only those

elements which are in both the first and second sets.

32 Background

Pascal

Intersection has precedence over Union and Difference.
8.6 Boolean Expressions
A Boolean expression has a true or false boolean result (this is actually
an 8 bit result). As in arithmetic and set expressions, boolean expres-
sions are formed with factors and operators. The boolean operators are
as follows:
 NOT logical NOT (* Unary *)

 AND logical AND (* Multiplying *)

 OR logical OR (*Addition *)

 IN Set Membership

 = Equals (* Relational *)

 > Greater than

 < Less than

 >= Greater than or Equal (* Simple Types*)

 Containment (*Set Types *)

 <= Less than or Equal (* Simple Types*)

 Inclusion (* Set Types *)

 <> Not Equal
Unlike arithmetic and set expressions, boolean expressions can take any
type factor as an argument the only restriction is that they be combined
with relational operators and that the types of both factors are the
same. The not, and and or logical operators require boolean type factors
(in order to produce a boolean result). For example:
 BoolVar1 AND BoolVar2

 Integer1 = Integer2

 MyColor1 > MyColor2
The in operator is used to determine whether a given ordinal value in
the range 0..255 is contained within a set of the same ordinal type. For
example:
 MyChar IN (‘A’..’Z’)
The <= and >= operators have a special meaning when applied to sets.
• Set Containment(>=) produces a true result if all the elements of the

second set are also elements of the first set.
• Set Inclusion(<,=) produces a true result if all the elements of the first

set are also elements of the second set.

 Background 33

Pascal

Precedence in boolean expressions is about the same as in arithmetic
expressions with the following addition: after all multiplying and ad-
dition operations have been performed, a single relational or set mem-
bership operation may be performed. Note that as in arithmetic
expressions. parentheses can be used to alter the order of evaluation
and to break the expression down into a number of factors. The follow-
ing examples illustrate this:
 J = I AND K <= L (* illegal expression *)

 (J = I) AND (K <= L) (* legal expression *)
Where I, J, K and L are all integer variables. The following evaluation
takes place:
 J = I (* boolean result1 *)

 K <= L (* boolean result 2 *)

 result1 AND result2 (* final boolean result *)
In the following example, changing parentheses changes not only the
order, but also the required intermediate expression types:
 J = I AND (L <= K)
The above expression is illegal unless I and J are boolean type factors.
Evaluation is as follows:
 L <:=- K (* boolean result1 *)

 I AND result 1 (* boolean result2 *)

 J - result 2 (* final boolean result *)
Not on]y factors, but arithmetic, set and boolean expressions may be
combined via relational operators as follows:

1*3 >= J+2

Set1 <= Set2 + Set3

(I IN [5, 6, 20..30]) = Omnivora

(L+2)*1 >= K AND $1F0
In the last example, the AND operator is an arithmetic operator rather
than a boolean operator.
8. 7 Assignment Statement
This statement is similar to that found in BASIC. The symbol of assign-
ment is different than BASIC’s to distinguish it from the equals sign.
The general form is as follows:

<Identifier> := <expression>

34 Background

Pascal

The <identifier> on the left must be a variable whose value is to be set
to that of the expression on the right after the expression is evaluated.
Following are some examples:

I := I * ((J + 5) DIV (3 OR $FFDD))

BoolVar1 := I = J

In the second example, BoolVar1 is assigned either a True or False
value depending on whether I is equal to J.

 Background 35

Pascal

9 Compound and Control Statements

Statement execution normally starts with the statement immediately
following the BEGIN keyword in the main program block. Execution
proceeds sequentially with each subsequent statement until the END
at the end of the main program block is reached. If any other blocks are
activated in the interim. execution within that block proceeds in a sim-
ilar fashion.
This section primarily describes the statements that allow you to alter
this general flow of execution.
9.1 BEGIN Statement
This statement allows a programmer to include more than one state-
ment in a place in the program where normally only one statement
would be allowed. This statement does not cause any change in the
order of statement execution but is frequently used in conjunction with
the control statements described below which do. The following is the
general form of the BEGIN statement:

BEGIN

 <executable statement>;

 <executable statement>

END
Note that the semi-colon is used to separate rather than terminate
statements. Since the DEFT Pascal Compiler supports a null state-
ment, you can put a semi-colon after the last executable statement be-
fore the END.
9.2 IF Statement
The IF statement provides the capability to execute either one of two
statements based on the value of a boolean expression. following is the
general form of an IF statement:

IF <boolean expression> THEN <executable statements>

 ELSE <executable statement>
If the boolean expression is true then the <executable statement> fol-
lowing the THEN keyword is executed otherwise the <executable state-
ment> Following the ELSE is executed. The else clause is optional and
if it is not present, no statement is explicitly executed when the boolean
expression is false. In any case, after the then or else clause (if present)

36 Background

Pascal

is executed, control falls through to the next statement following the IF
statement. Following are some examples:

IF I < J THEN I := I + 1 ELSE J := J + 1;

IF J * 2 = 50 THEN BEGIN

 J := 5;

 I := I * 3

 END

The last example shows how the BEGIN statement can be used with
The IF statement

9.3 WHILE Statement

The WHILE statement provides the capability of repetitively executing
a given statement while a boolean expression is true. This is one of Pas-
cal’s structured looping constructs. The general form of The WHILE
statement is as follows:

 WHILE <boolean expression> DO <executable statement>

In the WHILE statement the <boolean expression> is evaluated and if
found to be true, the <executable statement> following the DO is ex-
ecuted and the process is repeated. This continues until the <boolean
expression> is found to be false. At that time, the <executable state-
ment> is not executed and control falls through to the statement fol-
lowing the WHILE statement. Note that if the <boolean expression> is
false when the WHILE statement is first executed, the <executable
statement> following the DO is not executed at all.

Normally, the <executable statement> will change the value of one or
more of the variables used in the <boolean expression>. Following are
some examples:

WHILE I < J DO I := I + 3;

WHILE J > 1 + 3 DO BEGIN

 J := J / 3;

 I := I + 1

END

 Background 37

Pascal

9.4 REPEAT Statement
The REPEAT statement provides the capability of repetitively executing
a given statement until a boolean expression is false. The general form
of the REPEAT statement is as follows:

REPEAT <executable statement>;

.

.

.

 <executable statement>

UNTIL <boolean expression>
In the REPEAT statement the <executable statement>s following The
REPEAT are executed. The <boolean expression> is then evaluated and
if false the process is repeated. This continues until The <boolean ex-
pression> is found to be true. At that time, control falls through to the
statement following the UNTIL. Note that if the <boolean expression>
is false when the REPEAT statement is first executed, the <executable
statement>s following the REPEAT are still executed one time.
Normally, the <executable statement>s will change the value of one or
more of the variables used in the <boolean expression>. The following
are some examples:

REPEAT I := I + 3 UNTIL I > J;

REPEAT

 J := J / 3;

 I := I + 1

UNTIL J < I + 3
9.5 FOR Statement
The FOR statement provides the capability of repetitively executing a
statement while explicitly varying an ordinal variable. The general form
of the FOR statement is as follows:

FOR <assignment statement> TO <expression> DO

 <executable statement>

 or

FOR <assignment statement> DOWNTO <expression> DO

 <executable statement>

38 Background

Pascal

In both the TO and DOWNTO versions the <assignment statement> is
executed first. The ordinal variable identifier to which the assignment
is made is used as the loop counter. The testing and varying of the loop
counter is different in the TO and DOWNTO versions.
In the TO version, the following sequence is performed:
1. If the loop counter is greater than the <expression>, processing in

the FOR loop is terminated and control falls through to the next
statement following the FOR loop. Otherwise, the following ad-
ditional steps are performed.

2.The <executable statement> (which may be a compound statement)
is executed.

3.The loop counter is advanced to the next higher value (see SUCC
built-in function).

4.Control goes back to the first item in this sequence.
In the DOWNTO version, the following sequence is performed:
1. If the loop counter is less than the <expression>, processing in The

FOR loop is terminated and control falls through to the next state-
ment following the FOR loop. Otherwise, the following additional
steps are performed.

2. The <executable statement> (which of course may be a compound
statement) is executed.

3. The loop counter is reduced to the next lower value (see PRED built-
in function).

4. Control goes back to the first item in this sequence.
Normally the <executable statement> will reference the loop counter
although this isn’t always the case. Following are some examples:

FOR I := 1 TO 3 DO MyColors[i]:= Red;

FOR J := 0 TO 200 DO

 FOR I:= 1 TO 6 DO OurColors[J,I] := Yellow;

FOR ColorVar := Green TO Orange DO

 NumbersVar[ColorVar] := 3;
In the second example. The <executable statement> of the first FOR
statement was itself a FOR statement. The second FOR loop will ex-
ecute completion (6 iterations) for each iteration of the first FOR loop.
In the last example, the loop counter is an enumerated type and is used
as the subscript of an array type variable.

 Background 39

Pascal

9.6 CASE Statement

The CASE statement provides the ability to execute one of several state-
ments depending of the value of an ordinal expression. This ordinal ex-
pression is called a selector. Following is the general form of the CASE
statement:

CASE <ordinal expression> OF

 <constant list> : <executable statement>

 .

 .

 .

 <constant list> : <executable statement>

 ELSE <executable statement>

 END

The <constant list> is a list of type compatible constants separated with
commas. The <ordinal expression> is evaluated and compared with
each constant sequentially in each <constant list>. If the <ordinal ex-
pression> is found to equal a constant, the comparing is stopped and
the <executable statement> immediately following that particular con-
stant is executed and control is then passed to the next statement fol-
lowing the CASE expression. If none of the constants match the
<ordinal expression> and the ELSE clause is present, then the state-
ment following the ELSE is executed.

The ELSE clause is a common extension found in most Pascals (some-
times as an OTHERWISE clause). It is optional, but if present must fol-
low the last case and precede the END. Following is an example:

40 Background

Pascal

CASE I * 5 + J OF

 7,9 : J:=15;

 11,12,13,14: BEGIN I := 3; J := 2 END;

 1 + I ;= J + 5

 ELSE J := 0

 END;

CASE MyColors[I] OF

 Red, Orange: MyColors[I] :=Green;

 Blue : I := 3

 END
In both examples, you will notice at least one case which has only 1 con-
stant in its <constant list>. In the second example, the ordinal expres-
sion is of an enumerated type.
9.7 GOTO Statement
The GOTO statement provides the ability to cease program execution
at the point of the GOTO statement, and then resume program ex-
ecution at the point in the program identified with the corresponding
label specified in the GOTO statement. For those used to programming
in BASIC, this feature is very familiar. The DEFT Pascal Compiler,
however, only allows a GOTO to reference a label that is defined within
the same block as the GOTO. The following is an example:

GOTO 580;
Where 580 is a labe1 used to identify an executable statement within
The same block as the GOTO statement
9.8 EXIT Statement
The EXIT statement provides the ability to deactivate a block before
coming to the block’s END statement. The EXIT statement is not part
of standard Pascal but a form of it is found in a number of commercially
available compilers. The syntax is as follows:

EXIT

When this statement is encountered, the active block in which it is
found is deactivated and no further statements within that block are
executed. Note that the block being referred to is one associated with a
procedure, function or program.

 Background 41

Pascal

Typically, the EXIT statements used in conjunction with one of the
other control statements in order to conditionally continue execution
within a block. EXIT can be used to deactivate the program block in
which case program execution terminates and control returns to
BASIC.
9.9 WITH Statement
The WITH statement provides the ability to reference multiple fields
within the same record with one statement. One or more fields of a
record can be referenced within a WITH statement by their field names
alone provided the remaining part of the name, i.e. The record name
(eventually qualified by field names), is mentioned in The WITH state-
ment. The syntax is as follows:
 WITH <variable> DO <statement>;
For example:
 WITH RecordName DO Field1 := X;
This example is equivalent to:

 RecordName.Field1 := X;
The following is another example:
 WITH RecordName.GroupName DO

 BEGIN

 Field1 := X:

 Field2 := Y;

 Field3 := Z;

 END;
This example is equivalent to:

RecordName.GroupName.Field1 := X;

RecordName.GroupName.Field2 := Y;

RecordName.GroupName.Field3 := Z;
Several WITH statements can be nested. But since field identifiers are
local to the record in which they are defined, different records can have
identical field identifiers. In the case of nested WITHs, ownership of
like field identifiers is determined by the innermost WITH statement.
This is consistent with the Pascal rules of scope. As example of nested
WITH is as follows:

42 Background

Pascal

WITH Record1 DO

 WITH Record2 DO

 WITH Record3 DO Field1 := X;

DEFT Pascal allows up eight levels of WITH nesting. Also, the <vari-
able> in a WITH statement cannot contain a pointer dereference or a
subscripted array.

 Background 43

Pascal

10 Input/Output
Any program is totally useless unless it can, in some way, change some-
thing external to the processor. Input/Output statements allow a pro-
gram to receive outside stimulus (Input) and provide a response
(Output).
With DEFT Pascal, the primary input statements are reset, get, read,
readln and the built-in functions eof and eoln. The primary output
statements are rewrite, put, write, writeln and close. These statements
and built-in functions provide a device independent mechanism for
reading data from the keyboard, cassette and disks, and for writing data
to the screen, printer, cassette and disks.
10.1 File Names
The device or file (a portion of the total storage on a cassette or disk) to
be used in a series of Input/Output operations is identified with a file
name. The format of a filename is as follows:
 <filename>/<ext>:<device#>
This is the same format that BASIC uses for Disk files. However, by ex-
tending the device numbers. DEFT Pascal also uses it for the key-
board, screen, tape and printer. The <filenames> is 0 to 8 ASCII
characters. The extension is 0 to 3 ASCII characters. The device
numbers range from -3 to 3 with the following meanings:
 -3 Keyboard/Screen

 -2 Printer

 -1 Cassette Tape

 0 Disk drive 0

 1 Disk drive 1

 2 Disk drive 2

 3 Disk drive 3
As can be seen, the positive device numbers corresponds to BASIC’s
drive numbers. The negative device numbers correspond to BASIC’s de-
vice numbers with the exception that the Keyboard/Screen is -3 rather
than 0.
All of the fields are optional in different circumstances. When a device
number of -3 or -2 is specified, there is no need for a <filename> or <ex-
tension>. When a device number of -1 is specified, the <extension> is
not used. For device numbers 0 thru 3 a default <extension>, is always
present depending on the program being run. When a device number
is not specified, 0 is assumed.
Following are some examples:

44 Background

Pascal

:-3 Keyboard/Screen

:-2 Printer

MYFILE:-2 Printer (filename ignored but allowed)

TAPEFILE:-1 Cassette Tape File

DISKFILE/ASM Assembler source file on disk drive 0

F2NAME:1 File is on disk drive 1, default extension used

10.2 File Variables
Rather than giving the file name in each Input/output statement and
function, a file type variable is used. This file type variable is initialized
by a reset or rewrite statement which associates it with a file name.
Other statements and functions which subsequently reference this vari-
able then cause operations to be performed to the corresponding device
or portion thereof.
A file variable has a window which can be read (input) or written to
(output) depending on how the file variable was originally initialized
(using the reset or rewrite statements). You access this window by de-
referencing the file variable much like the way a pointer variable is de-
referenced. The procedures and functions described below provide the
ability to move data between this file window and an external device or
file.

10.3 INPUT and OUTPUT File Variables
There are two predefined file of char (text) variables available with
DEFT Pascal. The variable input is pre-initialized for access to the
keyboard as though a RESET(INPUT,‘:-3’) statement (see below) had
been executed before your program began. The variable output is pre-
initialized for access to the screen as though a REWRITE (OUTPUT,’:-
3’) statement (see below) had been executed before your program began.
The existence of these two pre-defined and pre-initialized variables pro-
vides the following benefits:
1. You do not need to use reset or rewrite to initialize these variables be-

fore using them in readln, writeln, etc.
2. When using read, readln, eoln and eof you can omit the <file variable>

parameter in the statement and the default file variable input will
be used.

 Background 45

Pascal

3. When using writeln, write, page and close you can omit the <file vari-

able> parameter in the statement and the default file variable output
will be used. Note that although it is permissible to use close with
output, it is not necessary.

NOTE: The input and output files are actually the same file which has
been specially initialized to allow both input from the keyboard and out-
put to the screen. For this reason, it is recommended that you do not
use the reset or rewrite statements with these files. When you wish to
do I/O to the printer, cassette or disk, setup a separate file variable as
shown in the general I/O examples further on.
10.4 Overall Example
Below is an example of a simple program that prompts at the screen for
a filename to be entered and then reads that file and writes it to The
printer. The filename that is entered can be any of those described above
in the section on File Names.

PROGRAM CopyFile (Input, Output);

VAR InFile, OutFile: Text;

 FileName : String;

 Data : String(255);

BEGIN

 Page;(* clear the screen *)

 WRITE (‘FILE NAME: ‘);

 READLN (FileName);

 RESET (InFile, FileName);

 REWRITE (OutFile, ‘:-2’);

 WHILE NOT EOF (Infile) DO BEGIN

 READLN (Infile, Data);

 WRITELN (Outfile, Data);

 END;

 CLOSE (OutFile);

 END;
In this example, InFile and OutFile are file variables and ‘:-2’ is a string
constant which contains a file name. The reset statement. associates
the file whose name has been entered into the string variable FileName
with the file variable InFile and initializes it for reading. The rewrite
associates the printer (device number -2) with the file variable Outfile
and initializes it for writing.

46 Background

Pascal

The while loop causes a check for end of file on Infile BEFORE reading
the first record. The close statement at the end forces any remaining
buffered data to be written. When writing to the printer or the screen
it is not absolutely necessary to do the close, but it is recommended in
case the program may be changed to output to the disk or cassette.

10.5 Lazy Keyboard Input

In order to provide an easy to use interface for the keyboard, DEFT
Pascal incorporates the concept of lazy keyboard input. This involves
waiting until a read or readln statement is executed before actually per-
forming an input from the keyboard.

Standard Pascal requires that the internal buffer be prefilled so that
the eof and eoln and file dereferencing operations can be performed. If
this were done for keyboard input, you would have to enter data into
the keyboard immediately after executing any Pascal program (before
your program actually begins executing any statements). This would
make it very difficult for you to synchronize your prompts (via write and
writeln statements) with The corresponding inputs (via read and readln
statements).

The result of the lazy keyboard input is that eof and eoln reflect the
status as of the end of the last read or readln statement. For example:

WHILE NOT EOF DO BEGIN

 WHILE NOT ELON DO BEGIN

 READ (X);

 WRITE (X);

 END;

 READLN;

 WRITELN;

 END;

If the first key that you hit is the CLEAR key (to indicate eof and eoln
on the keyboard) the inside loop will still execute once since the prompt
does not appear until the READ (X), statement is being executed . X
will retain whatever value it had before the read unless X is a char in
which case it will contain a CHR(13).

 Background 47

Pascal

Remember, lazy keyboard input is only used with the keyboard. Your
cassette and disk input operations are pre-buffered and conform to the
Pascal standard.
10.6 CLOSE Statement
This statement is required for output files (initialized via rewrite) to
cassette or disk in order to ensure that all data has been written to the
device and the directory or trailer has been written. It may also be used
for screen and printer files but has no effect. Once this statement is ex-
ecuted. The file variable is considered uninitialized and must be initial-
ized again (with either rewrite or reset in order to be used. The format
of the statement is:

CLOSE (<file variable>)
As mentioned above, if <file variable> is omitted, the output file is as-
sumed.
10.7 EOF Function
This is a Boolean function which specifies whether end of file has been
reached on a particular file. This function can be used on a file of any
type. Its definition is:

FUNCTION EOF (VAR FileVar: Text): Boolean;
It can also be used as though it had no parameter and the default file
input will be assumed. Note that eof can be indicated from the keyboard
by terminating the last line with the CLEAR key instead of the ENTER
key.
10.8 EOLN Function
This is a boolean function which specifies whether an end of line char-
acter is next in the window on a file of char. Its definition is:

FUNCTION EOLN (VAR FileVar: Text): Boolean;
It can also be used as though it has no parameter and the default file
input will be assumed.

48 Background

Pascal

10.9 FILEERROR

This is an integer function which returns an indication of whether a file
I/O error occurred on a particular file and what the error was if it did
occur. This function can be used with a file of any type. Its definition is:

 FUNCTION FILEERROR (VAR FileVar: Text) : Integer

It can also be used as though it had no parameter and the default file
input will be assumed. The integer return is a number from 0 to -5. The
possible error numbers are as follows:

• 0, No Error
• -1, End of File - the end of a given file has been reached.
• -2, I/O Error - This indicates that some hardware oriented problem

occurred.
• -3, File Not Found - The file specified was not found.
• -4, Illegal Operation - This indicates that you attempted a read oper-

ation on an output file or a write operation on a input file. It can also
occur if you attempt to do a reset to the printer.

• -5, Device Full - while doing a rewrite or other write operation, the
device became full.

NOTE: eof will return a true anytime fileerror would return a non-zero.
Fileerror is a DEFT Pascal extension and is not part of standard Pas-
cal.

10.10 GET Statement

This statement (implemented as a built-in procedure) is used to input
data from cassette or disk via a file that was previously initialized with
the reset procedure. The format of the statement is:

 GET (<file variable>)

The action of this procedure is to move the file window over the next
element in the file. The get statement cannot be used in DEFT Pascal
with a file of char.

 Background 49

Pascal

10.11 PAGE
This procedure is used to output an ASCII formfeed to the specified file.
When a formfeed is output to the screen. The equivalent of BASIC’s
CLEAR is performed. When a formfeed is output to the printer. it will
skip to the top of the next page. The format of the statement is:
 PAGE (<file variable:>)
As mentioned previously, if <file variable> is omitted, the OUTPUT file
variable is assumed.
10.12 PUT Statement
This statement (implemented as a built-in procedure) is used to output
data to cassette or disk via a file that was previously initialized with
the rewrite procedure. The format of the statement is:
 PUT (<file variable>)
The action of this procedure is to output the contents of the file window
to the external device or file and then empty the window. The put state-
ment cannot be used in DEFT Pascal with a file of char.
10.13 RESET and REWRITE Statements
These statements are used to initialize file type variables for use with
subsequent Input/Output statements and functions. You can think of
these statements as procedures with the following definition:

PROCEDURE RESET (VAR FileVar : Text;

 VAR Filename : String;

 VAR DefExtension : String);

PROCEDURE REWRITE (VAR FileVar : Text;

 VAR Filename : String;

 VAR DefExtension : String);

You will only need to use one or the other of the two statements. Reset
initializes the FileVar for input from the specified Filename. When using
reset with a disk or cassette file, a file by the name of Filename must al-
ready exist on that device.

50 Background

Pascal

Rewrite initializes the FileVar for output to the specified Filename.
When using rewrite for output to disk, if the specified disk already has
a file by the name of Filename, it will be deleted. A new file is then
created by the name of Filename. On cassette, a file is created by the
name of filename at the current spot on the tape.

The DefExtension specifies the default filename extension to use if one
is not included as part of the Filename string. This parameter is op-
tional and if not present the default extension is blank.
10.14 READ Statement
This statement is used to input data from the keyboard, cassette or disk
via a file that was previously initialized with the reset procedure. The
format of the statement is:
 READ ([<file variables>,] <variable>, ... ,<variable>)
As mentioned above, if <file variable> is omitted, the file input is as-
sumed to be referenced.
Reading from a Typed File - When using read to read from a file of
<type> where <type> is not char, the <any variable>, must be of the
same type as the file. When the read is executed, the size of the <type>
is used to determine the number of bytes to transfer. Essentially each
read returns the next sequential occurrence of the <type> in the file.
For example, READ(F,X) is exactly the same as:

X := F;
GET (F);

Note that typed files can only be used with cassette and disk.
Reading from a FILE OF Char - If the <file variable> is a file of char
then the file is assumed to consist of a set or lines and the action of the
READ (F,X) statement depends on the type of X. The following describes
the legal types of X and the associated actions of The read statement:

1. Char - The next byte of the line is directly assigned.

2. String - The value of the string becomes the value of the remainder
of the line. The line is truncated if necessary to fit in the string.

3. Real - The next group of characters delimited by blanks and/or end
of line characters is processed by encodereal and the result is stored in

 Background 51

Pascal

the variable.

4. Integer - The next group of characters delimited by blanks and/or
end of line characters is processed by encode and the result is stored
in the variable.

5. Boolean - The same as integer except that only the numbers 0 (for
FALSE) and 1 (for TRUE) are legal. You will get unpredicrable re-
sults with other values.

6. Enumerated - The same as integer except that only the subset of
numbers 0 through 255 that apply to the given type are legal. Other
values will convert to non-existent members of the type.

Some examples of use:
READ (IntVar, IntVar2); (* integer from keyboard *)

READ (TapeFile, StringVar); (* string from cassette *)

READ (Diskfile, CharVar); (* char from disk *)

READ (KeyBoardfile, ColorVar) (* enumerated from keyboard *)
10.15 READLN Statement
This statement is identical to the read statement when used with typed
files and is almost the same when used with a file of char except that
after all the variables are read, the window is moved past the next end
of line character.
The readln statement can be used with no <variables> in order to posi-
tion the file window past the next end of line character without reading
a data before that point.
10.16 WRITE Statement
This statements is used to output data in the screen, printer, cassette
or disk. The format of the statement is:

WRITE (<file variable>, <data>:<width>:<decimal>,...,

 <data>:<width>:<decimal>)
As mentioned above, if <file variable> is omitted, the file output is as-
sumed to be referenced. The action of the write statement depends on
the type of the <file variable>.
Writing to a Typed file - If the <file variable> is not a file of char then
the file is referred so as a typed file and the action of the write (F,X)
statement is exactly the same as:

52 Background

Pascal

F^ := X;

PUT (F);
where the type of the file F must be the same as the type of the variable
X. Essentially, the current value of the variable X is assigned to the
next element in the file F. The <width> and <decimal> parameters can-
not be specified.
Note that typed files can only be used with cassette and disk.
Writing To a File of Char (Text) - If the <file variable> is a file of
char then the action of the write(F,X) statement depends on the type of
X. The following describes the legal types of X and the associated actions
of the write statement:
1. Char - the next byte of the file is directly assigned from the contents

of the character followed by <width>- l blanks. The <decimal> pa-
rameter must not be specified.

2. String - The value of the string is output. If the <width> is zero or
not present, the number of columns reserved will be the size of The
string. If the <width> is less than the size of the string, only The first
<width> characters will be output. If <width> is greater than the size
of the string, blanks will be output following The string. The <dec-
imal> must not be specified.

3. Real - The decodereal procedure is used to convert the real to the

string of characters to output. The <width> specifies the size of the
ASCII representation to output. If the <width> is too small to fit. The
number, asterisks are output to indicate overflow. The default value
is 6.
The <decimal> specifies the number of places to the right of the dec-
imal point that should be output. If <decimal> is not present or neg-
ative. Scientific notation will be used.

4. Integer - The decode procedure is used to convert the integer to the
string of characters to output. The <width> parameter specifies The
size of the string to output with the number right-justified within the
string. If <width> is not specified it defaults to 6. The <decimal> pa-
rameter must not be specified.

5. Boolean - The same as integer except that only the numbers 0 (for
false) and 1 (for true) are be output.

6. Enumerated - The same as integer except that only the subset of
numbers 0 through 255 that apply to the given type are output.

 Background 53

Pascal

Some examples of use:

WRITE (IntVar); (* Integer to screen *)

WRITE (TapeFile, StringVar); (* String to cassette *)

WRITE (DiskFile, CharVar); (* Char to disk *)

WRITE (PrntrFile, ColorVar); (* Enumerated to printer *)

WRITE (IntVar:3}; (* 3 column output spec *)

WRITE (‘The answers are ’,R*3.4:10:2, ‘ and ’,S/4.2::0);

 (*multiple items in one*)

WRITE (Printer, “:30, ‘Centered Title”);

 (* forcing blank padding *)
Since write does not output. a carriage return at the end (as writeln
does) it is usually used for prompting and for multiple writes to a single
line followed by a writeln (see following section).
10.17 WRITELN Statement
This statement is used to perform the same operations as a write state-
ment. When used with a typed file it is identical to the write statement.
When used with a file of char (Text) it is almost the same except that
after all the specified outputs have been made, a carriage return (end
of line character) is also output. This statement also allows no <data>
items at all to be specified so that only the carriage return will be out-
put. All the examples shown for write also apply for writeln. Following
are some additions:

WRITELN; (* carriage return to OUTPUT file *)

WRITELN (DiskFile); (* carriage return to DiskFile file *)

WRITE (CHR(13)) (* equivalent of WRITELN; *)

54 Background

Pascal

11 Built-in Procedures and Functions

This section describes a number or predefined functions and procedures
that are available with DEFT Pascal. Although definition statements
are shown in each of the descriptions these are purely for informational
purposes and are not to be used in your
11.1 ABS
This is an integer or real function that returns the absolute value of the
value parameter that is passed to it. The function definition is:
 FUNCTION ABS (Value: Integer): Integer

 or

 FUNCTION ABS (Value: Real) : Real
11.2 ARCTAN
This is a real function which is used to compute the size of an angle
whose tangent is passed to the function. The size of the angle returned
by the function is in the form of a number of radians. The function defi-
nition is:

 FUNCTION ARCTAN {Tangent : Real): Real
11.3 CHR
This is a character function that returns the ASCII character for the bi-
nary value specified in the passed value parameter. The function defi-
nition is:
 FUNCTION CHR (Value: Integer) : Char
This function allows you to break type from integer to char. See Ad-
vanced Pascal for a more general and structured type breaking lan-
guage extension.
11.4 COS
This is a real function which is used to compute the cosine of an angle.
The size or the angle is passed to the function in the form of a number
of radians. The function definition is:
 FUNCTION COS (Radians : Real): Real

 Background 55

Pascal

11.5 CURSOR
This is a built-in procedure that allows you to position the cursor to any
of 512 positions on the screen. The upper left-hand corner is position 0.
Consecutive positions proceed horizontally across the screen with the
beginning of each line being a multiple of 32. The lower right-hand
comer is position 511. The procedure definition is:
 PROCEDURE CURSOR (Position : Integer) Note that position is taken modulo 512 when used.
11.6 EXP
This is a real function which is used to compute the value of e
(2.718281828) to a specific power. The function definition is:
 FUNCTION EXP (Power: Real) : Real
11.7 LN
This is a real function which is used to compute the natural logarithm
of a positive number. The function definition is:
 FUNCTION LN (Number: Real) : Real
11.8 MARK
This is a general procedure which is used to mark the current state of
the heap for use later by the release procedure. The procedure definition
is:
 PROCEDURE MARK (VAR PtrVar: Ptr)

where PtrVar can be a pointer to any type. Any variables allocated by
the new procedure after saving the heap state in PtrVar will be deallo-
cated when release is later called using the saved PtrVar.
11.9 MEMAVAIL
This is an integer function which is used to determine the number of
bytes of memory remaining in the heap. The memavail function is a
DEFT Pascal extension and is not a part of standard Pascal. The func-
tion declaration is as follows:
 FUNCTION MEMAVAIL: Integer;

56 Background

Pascal

For example:

WHILE MEMAVAIL >= SIZEOF (Struct) DO

 BEGIN

 NEW (Struc1 = Ptr);

 NumCopy := SUCC (NumCopy);

END;
This example is using the value of memavail to determine how many
copies of a data structure can be dynamically allocated. NOTE: If the
heap available is greater than 32767 bytes, then memavail will return
32767.
11.l0 NEW
This is a general procedure which is used to dynamically allocate a vari-
able from the heap and assign its reference to a pointer type variable.
The type of variable allocated is dependent on the type of the pointer.
The procedure definition is:
 PROCEDURE NEW (VAR PtrVar: Ptr)
where PtrVar can be a pointer to any type.
11.11 ODD
This is a boolean function that returns a true if the integer value that
is passed is an odd number (not evenly divisible by 2) or a false if the
value is even. The function definition is:
 FUNCTION ODD (Value : Integer): Boolean
11.12 ORD
This is a general integer function that can take any ordinal type expres-
sion and convert it to an integer. The internal binary value of the speci-
fied type is created as though it were an integer. The function definition
is:
 FUNCTION ORD (Value: OrdinalType) : Integer
where Value can be any type of ordinal expression. see Advanced Pascal
for a more general and structured type breaking language extension.

 Background 57

Pascal

11.13 PRED
This is a general ordinal function that returns the next lower ordinal
value of the same type as its argument. For integers, it is the equivalent
of subtracting 1 from the number. For chars, it is the ASCII character
with the next lower binary value. For booleans, it is only legal when the
argument is true returning false. For enumerated types, it is the next
preceding enumerated value. Using our color type example:
 ColorVar := Green;

 ColorVar := PRED (ColorVar)
ColorVar is now Red.
11.14 RELEASE
This is a general procedure which is used to deallocate variables from
the heap which were originally allocated via the new procedure. The
procedure definition is:
 PROCEDURE RELEASE (PtrVar : Ptr)
where PtrVar can be a pointer to any type. Any variables allocated by
the new procedure after saving the heap state in PtrVar (via the mark
procedure) will be deallocated when release is later called using the
saved PtrVar.
11.15 ROUND
This is an integer function which is used to round a real value to the
nearest integer value. The function definition is:
 FUNCTION ROUND (VAR Value: Real) : Integer
11.16 SIN
This is a real function which is used to compute the sine of an angle.
The size of the angle is passed to the function in the form of a number
of radians. The function definition is:
 FUNCTION SIN (Radians : Real) ; Real

58 Background

Pascal

11.17 SIZEOF
This is a general integer function which is used to compute the size (in
bytes) of a variable or type. The function definition is:

 FUNCTION SIZEOF (GenVar : AnyType) : Integer
NOTE: Sizeof a DEFT Pascal extension and is not part of standard
Pascal.
11.18 SQR
This is a real function which is used to compute the square of a number.
The function definition is:
 FUNCTION SQR (Number : Real): Real
11.19 SQRT
This is a real function which is used to compute the squareroot of a
number. The function definition is:
 FUNCTION SQRT (Number: Real): Real
11.20 SUCC
This is a general ordinal function that returns the next higher ordinal
value of the same type as its argument. For integers, it is the equivalent
of adding 1 from the number. For chars, it is the ASCII character with
the next higher binary value. For booleans, it is only legal when the ar-
gument is false returning true. For enumerated types, it is the next suc-
ceeding enumerated value. Using our color type example:
 ColorVar := Red;

 ColorVar := SUCC (ColorVar)
ColorVar is now Green.
11.21 TRUNC
This is an integer function which is used to truncate a real value to its
integer value. The function definition is:
 FUNCTION TRUNC (VAR Value: Real): Integer

 Background 59

Pascal

12 DEFT vs. Standard Pascal

DEFT Pascal conforms closely to the ISO Draft Proposal for standard
Pascal. The following list identifies the major areas where DEFT Pas-
cal differs from the standard. In many of these areas, DEFT Pascal
differs because it has features similar to those in UCSD Pascal.

• Program parameters are allowed but ignored. The predefined fi1es

INPUT and OUTPUT are always defined and opened.

• Heap management is via MARK and RELEASE rather than DIS-

POSE.

• Strings are variable length and implemented via the predefined type

STRING (n) rather than being fixed length and implemented as
PACKED ARRAY[l..n] OF CHAR.

• GOTOs may only reference LABELs within the current block.

• Lazy Keyboard Input is implemented in order to allow interactive I/O.

• RESET and REWRITE require a second parameter and may op-

tionally take a third parameter for specifying external filenames and
default extensions.

• Procedural parameters are not supported. A procedural parameter is

a parameter which is itself a procedure.

• PACK and UNPACK statements are not supported. However, since

DEFT Pascal does not have the standard restrictions on the use of
PACKed variables, the major reason for the use of these statements
is non-existent.

• GET and PUT cannot be used with TEXT files.

• The <record variable> in the WITH statement cannot include a sub-

scripted array or pointer dereference.

• Conformant arrays are not supported. However, extensions to ARRAY

typing provide a facility for passing actual parameters of varying
numbers of elements to an individual procedure.

60 Background

Pascal

In addition, DEFT Pascal provides a number of minor and major en-
hancements. The minor enhancements are as follows:

• The bitwise integer operators XOR, LSL, LSR, AND and OR are sup-

ported .

• Equality comparisons between like structured types is allowed.

• I/O of enumerated types to and from TEXT files; is allowed.

• An EXIT statement for prematurely returning from a procedure or

function.

• FILEERROR and SIZEOF built-in functions and CURSOR built-in

procedure.

A complete definition of all the major enhancements is contained in
the section on Advanced Pascal Extensions.

 Background 61

Pascal

13 Error Messages

The DEFT Pascal compiler generates error messages in the source list-
ing at those points where it detects either syntax errors or encounters
I/O errors while processing a source file. The compiler prints a line of
dashes followed by an up arrow and the message. The arrow indicates
where the error was detected which is not necessarily where it occurred.
There are a number of different error messages which are listed below:
COPY NESTING TOO DEEP
A %C compiler control has been found in a source file at the maximum
copy depth. See How To for information on the %C compiler control.
DUPLICATE SYMBOL
The constant type, variable, procedure or function name being defined
has already been used at the current block level to define another con-
stant, type variable, procedure or function.
EXPECTING ...
This message will have various words or symbols following it depending
on what the compiler was expecting to find next in the source file. This
token was not found at this point.
EXPR TYPE ERROR
This message indicates that the expression type expected at this point
was not what was encountered. You may have to use a type transfer
function (see Advanced Pascal) to let the compiler know that you want
to use a different type.
FILE OPEN ERROR
The source file specified on the DEFT Pascal Compiler’s screen, the
PASCALIB/EXT:0 file or a file specified in a %C compiler control re-
sulted in an error when an open was attempted.
INVALID CONSTANT
At a point in the program where a constant was expected, a legal con-
stant was not found.

62 Background

Pascal

INVALID FACTOR
While processing an expression, an invalid factor was encountered.
INVALID IDENTIFIER
At a point in the program where an identifier was expected, a legal iden-
tifier was not found.
INVALID ORDINAL TYPE
An error was detected at this point while processing an ordinal type.
INVALID SIGNED TERM
A signed term was encountered while processing an expression that
was not of type integer or real.
INVALID STATEMENT
An unknown type of statement was encountered at this point in the pro-
gram.
INVALID TYPE DECLARATION
An error was encountered while processing a type declaration.
INVALID TYPE IDENTIFIER
At a point in the program where a type identifier was expected, a legal
type identifier was not found.
INVALID VARIABLE REFERENCE
At a point in the program where a variable identifier was expected, a
legal variable identifier was not found.
LABEL ERROR
An illegal label declaration was encountered, or a label was incorrectly
specified .

 Background 63

Pascal

OBJ I/O ERROR
An I/O error was encountered while trying to open or write to the object
file.
OUT OF RANGE
The explicit upper bound specified with an array type identifier was
outside of the range of the original array declaration. See Advanced
Pascal for more information.
SKIPPING TO
Due to a previous error, the compiler has begun skipping source code
until a semicolon is encountered. This message may also indicate that
a semicolon is expected at this point in the program.
SOURCE I/O ERROR
An I/O error was encountered while trying to read the current source
file.
STRING CONSTANT TOO BIG
This error usually results from an unmatched quote. The maximum
length of string constants is 128 bytes. The first quote is 1288 bytes be-
fore the point of the error.
SYMBOL TABLE FULL
The number of symbols known at this point in the program has com-
pletely filled the available symbol table space. You must restructure
your program to reduce the number of known symbols at this point in
order to get it to compile within the current memory constraints.
SYNTAX ERROR
This is a catch-all error for any syntax error not explicitly covered with
another error message.

64 Background

Pascal

UNDEFINED SYMBOL
A reference is being made to a symbol which has not been previously
defined.
UNEXPECTED END
An END statement was encountered when it was not expected.
UNEXPECTED EOF
End of file on the main source file was reached before the end of the pro-
gram was reached. This may be caused by a mis-matched BEGIN-END,
unmatched (* or an unmatched quote (*).

** UNDEFINED **
This message appears in the symbol table listing. A procedure was de-
clared as forward but was never eventually defined, a pointer definition
referenced a type identifier which was never defined or a label was de-
clared but never defined.

WITH ERROR
Either the compiler’s maximum WITH nesting level (8) was exceeded
or the <record variable> portion of the statement was not a record vari-
able or was an element of an array or the result of a pointer derefer-
ence.

 Background 65

Pascal

DEFT Macro/6809 Assembly Language
1 Introduction . 1
2 Language Syntax . 2
 2.1 Line Format . 2
 2.2 Identifiers . 2
 2.3 Location Counter . 3
 2.4 Constants . 3
 2.5 Expressions . 4
 2.6 Strings . 4
 2.7 Registers . 4
 2.8 Addressing Modes . 5
3 6809 Instruction Summary . 7
4 General Directives . 16
 4.1 COPY . 16
 4.2 END . 16
 4 3 EQU . 16
 4.4 FCC . 16
 4.5 FCB . 17
 4.6 FDB . 17
 4.7 MAIN . 17
 4.8 RMB . 17
 4.9 SETDP . 18
5 Macros . 19
 5.1 General Operation . 19
 5.2 Macro Definition . 19
 5.3 Macro Invocation . 20
6 Linkage Directives. 23
 6.1 PUBLIC . 23
 6.2 EXT and EXTA . 24
 6.3 STACK . 24
7 Listing Control Directives . 25
 7.1 EJECT . 25
 7.2 LIST . 25
 7.3 NOLIST . 25
 7.4 MLST . 25
 7.5 NOMLST . 26
 7.6 SKIP . 26
 7.7 STITLE. 26
 7.8 TITLE . 26
8 Error Messages . 27

Asm
Lang

1 Introduction

DEFT Macro/6809 is a program which reads assembly language
source code and produces object code suitable for linking by DEFT
Linker. This assembler features the following facilities:

• Motorola compatible source conventions and directives

• Built-in macro facility provides for substitution of up to 9 parameters

• Copy facility provides the ability to include several source files in a

single assembly (very convenient for common equate and macro defi-
nition files)

• Object code format provides relocation, separate assembler and easy

interfacing to Pascal via DEFT Linker

This section describe’s the DEFT Macro/6809 assembly language.
Readers are expected to already be familiar with the 6809 instruction
set, registers and addressing modes.

 Background 1

Asm
Lang

2 Language Syntax

The syntax used in the DEFT Macro/6809 is generally compatible with
those found in other assemblers for the 6809.
2.1 Line Format
Assembly language source code is interpreted as a series of lines read
from the source file (or copy files). Each line is made up of up to 4 fields.
These fields are separated from each other with 1 or more blanks.

1. The label field is an optional field which, when present, contains an

identifier that is to be defined (see below). This field is present when
the first character in a line is non-blank.

2. The opcode field is a required field which begins with the first non-
blank character following the first blank character in the line. It con-
tains either a 6809 opcode, directive or macro and is used to control
how the other fields in the line are used.

3. The operand field is the next field after the OPCODE field. It is a re-
quired field for some opcodes and is not present for others. Most of
the discussion of language syntax describes the way that this field
is used. Note that this field may contain blanks in some circum-
stances (see below).

4. The comment field is the last field in the line and consists of the re-
mainder of the line following the operand field (or opcode field if the
operand field is not present).

Note that in the listing produced by the assembler. These fields are
automatically lined up on predetermined column boundaries. The use
of the label, opcode and operand fields is more fully explained in the fol-
lowing sections.
2.2 Identifiers
An identifier is a name used to represent either an absolute or relative
value. It is a set of up to 12 letters and numbers which must begin with
a letter. Lower case letters are accepted and printed as such on the list-
ing even though they are kept internally as upper case letters.
An identifier is defined when used in the label field in exactly 1 source
line. The opcode field of that source line will determine what value is
assigned to the identifier. This identifier can be used in the operand
field of a source line where the identifier’s value will be used. In Gen-
eral, an identifier can be used as an operand even in source line preced-
2 Background

Asm
Lang

ing the one in which it is defined. For all opcodes except EXT, EXTA
and EQU the identifier acquires the value of the location counter (see
below) at the point in the program where the identifier is defined.
An identifier which is defined in this manner has a relative value. This
value is one which will be relocated by DEFT Linker into an absolute
value when the final binary file is created. The eventual value of a rel-
ative identifier is determined by adding the location in memory where
the object code is located to the relative value determined by the assem-
bler.
An identifier may be defined with an absolute value by using an EQU
opcode and an absolute expression in the operand field. See Expression
and EQU for more information.
2.3 Location Counter
The Location Counter is a 16 bit value Which is kept by the assembler
that represents the number of bytes of object code produced so far. You
can think of it as a relative memory address (relative to the beginning
of the program). This value always starts at zero and increases in value
as each source line is processed. The value of the location counter is
printed at. the left-hand side of the page for each line of source code
printed.
The location counter is represented in the operand field via the symbol
*.
2.4 Constants
A constant is always an absolute 16 bit value that is represented in
some specific way. The following constants are supported by DEFT
Macro/6809:
1. Decimal constants are numbers in the range from -32768 to + 32767.

Base 10 is the default base.
2. Hexadecimal constants numbers in the range from $0 to $FFFF. A

hexadecimal constant is identified with a leading dollar sign ($).
3. A Single ASCII character constant is an ASCII character preceded

with a single quote (‘). The value of the resulting constant is the bi-
nary value of the ASCII character. Example: ‘A

4. Double ASCII character constants are two ASCII characters pre-
ceded with a double quote (”). The value of the resulting constant is
the binary value of the first character in the high 8 bits and the value
of the second character in the low 8 bits. Example: “A

 Background 3

Asm
Lang

2.5 Expressions

Identifiers and constants can be combined into expressions with the use
of the arithmetic operators plus(+), minus(-). multiply(*) and divide (/).
Expression evaluation is strictly left to right with no operator prece-
dence. There are some restrictions on the creation of expressions:
• Relative values cannot be multiplied or divided.
• You can add or subtract an absolute from a relative. This results in a

relative value.
• You can subtract a relative from a relative. This results in an absolute

value.
• You cannot subtract a relative from an absolute.
• You cannot add a relative to a relative.
2.6 Strings
A string is a set of 1 or more ASCII characters delimited by slashes (/)
or double Quotes(“). The opcodes sec, title and are the only ones that
use strings for operands. Strings cannot be combined into expressions.

2.7 Registers
The 6809 registers are named as follows:

• A - high order 8 bits of the general accumulator
• B - low order 8 bits of the general accumulator
• CC - 8 bit condition code register
• D - 16 bit general accumulator
• DP - 8 bit direct page register
• PC or PCR - 16 bit program counter. Both designations result in

equivalent code.
• S - 16 bit system stack register
• [] - 16 bit user stack register
• X -.16 bit index register
• Y - 10 hit index register

4 Background

Asm
Lang

2.8 Addressing Modes
There are a number of addressing modes which may be used with The
6809 instruction opcodes. These are used in the operand field and are
as follows:

• Inherent - this addressing mode has no operand field. The given
opcode has all the addressing information necessary to complete the
instruction.

•Immediate - this addressing mode is designated with a leading #.
The expression following the # is the object of the instruction.

•Direct - this addressing mode is determined by DEFT Macro/6809
when the operand expression is absolute and its high 8 bits are
equal to the value in the most recent SETDP.

• Extended - this addressing mode is determined by the assembler
when the operand expression is either relative, or its absolute and
the high 8 bits are not equal to the value in the most recent instruc-
tion.

• Relative - this addressing mode is determined by the opcode and
requires a relative expression.

• Indexed- this addressing mode is determined when the operand is
of one of the following forms:

Zero Offset ,<reg>

Constant Offset <absolute expression>,<reg>

Accumulator Offset <accumulator>,<reg>

Auto Increment ,<reg>++

Auto Decrement ,-<reg>

Program counter relative <relative expression>,PCR

 <relative expression>,PC

Indirect [<Indexed mode>]

 Background 5

Asm
Lang

• Register-Register - this addressing mode is determined by the op-

code and requires the following form: <reg>,<reg>

• Multi-Register - this addressing mode is determined by the opcode

and requires the following form: <reg>,...,<reg>

6 Background

Asm
Lang

3 6809 Instruction Summary

The following summary lists the 6809 instruction opcodes supported by
the DEFT Macro/6809 Assembler. The first column is the assembler
opcode. The second column contains the addressing modes available for
this opcode. The third column is the title of the instruction.

ABX Inherent Add B to X

ADCA Immediate Add Memory with Carry to A
 Direct
 Indexed
 Extended

ADCB Immediate Add Memory with Carry to B
 Direct
 Indexed
 Extended

ADDA Immediate Add Memory to A
 Direct
 Indexed
 Extended

ADDB Immediate Add Memory to B
 Direct
 Indexed
 Extended

ADDO Immediate Add Memory to D
 Direct
 Indexed
 Extended

ANDA Immediate AND Memory to A
 Direct
 Indexed
 Extended

ANDB Immediate AND Memory to B
 Direct
 Indexed
 Extended

ANDCC Immediate AND Memory to CC

ASL Direct Arithmetic Shift Left Memory
 Indexed
 Extended

 Background 7

Asm
Lang

ASLA Inherent Arithmetic Shift Left A

ASLB Inherent Arithmetic Shift Left B

ASR Direct Arithmetic Shift Right Memory
 Indexed
 Extended

ASRA Inherent Arithmetic Shift Right A

ASRB Inherent Arithmetic Shift Right B

BCC Relative Branch on Carry Clear

BCS Relative Branch on Carry Set

BEO Relative Branch on Equal

BGE Relative Branch on Greater Than or Equal

BGT Relative Branch on Greater Than

BHI Relative Branch on Higher

BHS Relative Branch on Higher or Same

BITA Immediate Bit Test Memory with A
 Direct
 Indexed
 Extended

BITB Immediate Bit Test Memory with B
 Direct
 Indexed
 Extended

BLE Relative Branch on Less Than or Equal

BLO Relative Branch on Lower

BLS Relative Branch on Lower or Same

BLT Relative Branch on Less Than

BMI Relative Branch on Minus

BNE Relative Branch on Not Equal

BPL Relative Branch on Plus

BRA Relative Branch Always

8 Background

Asm
Lang

BRN Relative Branch Never

BSR Relative Branch to Subroutine

BVC Relative Branch on Overflow Clear

BVS Relative Branch on Overflow Set

CLR Direct Clear Memory
 Indexed
 Extended

CLRA Inherent Clear A

CLRB Inherent Clear B

CMPA Immediate Compare Memory from A
 Direct
 Indexed
 Extended

CMPB Immediate Compare Memory from B
 Direct
 Indexed
 Extended

CMPD Immediate Compare Memory from D
 Direct
 Indexed
 Extended

CMPS Immediate Compare Memory from S
 Direct
 Indexed
 Extended

CMPU Immediate Compare Memory from U
 Direct
 Indexed
 Extended

CMPX Immediate Compare Memory from X
 Direct
 Indexed
 Extended

CMPY Immediate Compare Memory from Y
 Direct
 Indexed
 Extended

 Background 9

Asm
Lang

COM Direct Complement Memory

 Indexed

 Extended

COMA Inherent Complement A

COMB Inherent Complement B

CWAI Immediate Mask CC and Wait for Interrupt

DAA Inherent Decimal Adjust A

DEC Direct Decrement Memory

 Indexed

 Extended

DECA Inherent Decrement A

DECB Inherent Decrement B

EDRA Immediate Exclusive Or Memory with A

 Direct

 Indexed

 Extended

EORB Immediate Exclusive Or Memory with B

 Direct

 Indexed

 Extended

EXG Reg-Reg Exchange Registers

INC Direct Increment Memory

 Indexed

 Extended

INCA Inherent Increment A

INCB Inherent Increment B

JMP Direct Jump

 Indexed

 Extended

JSR Direct Jump to Subroutine

 Indexed

 Extended

10 Background

Asm
Lang

LBCC Relative Long Branch on Carry Clear

LBCS Relative Long Branch on Carry Set

LBEQ Relative Long Branch on Equal

LBGE Relative Long Branch on Greater Than or Equal

LBGT Relative Long Branch on Greater Than

LBHI Relative Long Branch on Higher

LBHS Relative Long Branch on Higher or Same

LBLE Relative Long Branch on Less Than or Equal

LBLO Relative Long Branch on Lower

LBLS Relative Long Branch on Lower or Same

LBLT Relative Long Branch on Less Than

LBMI Relative Long Branch on Minus

LBNE Relative Long Branch on Not Equal

LBPL Relative Long Branch on Plus

LBRA Relative Long Branch Always

LBRN Relative Long Branch Never

LBSR Relative Long Branch to Subroutine

LBVC Relative Long Branch on Overflow Clear

LBVS Relative Long Branch on Overflow Set

LOA Immediate Load Memory into A

 Direct

 Indexed

 Extended

LOB Immediate Load Memory into B

 Direct

 Indexed

 Extended

LDD Immediate Load Memory Into D

 Direct

 Indexed

 Extended

 Background 11

Asm
Lang

LDS Immediate Load Memory into S
 Direct
 Indexed
 Extended

LDU Immediate Load Memory into U
 Direct
 Indexed
 Extended

LDX Immediate Load Memory into X
 Direct
 Indexed
 Extended

LDY Immediate Load Memory into Y
 Direct
 Indexed
 Extended

LEAS Indexed Load S with Effective Address

LEAU Indexed Load U with Effective Address

LEAX Indexed Load X with Effective Address

LEAY Indexed Load Y with Effective Address

LSL Direct logical Shift Left Memory
 Indexed
 Extended

LSLA Inherent Logical Shift Left A

LSLB Inherent Logical Shift Left B

LSR Direct Logical Shift Right Memory
 Indexed
 Extended

LSRA Inherent Logical Shift Right A

LSRB Inherent Logical Shift Right B

MUL Inherent Multiply

NEG Direct Negate Memory
 Indexed
 Extended

12 Background

Asm
Lang

NEGA Inherent Negate A

NEGB Inherent Negate B

NOP Inherent No Operation

ORA Immediate Inclusive Or Memory with A

 Direct

 Indexed

 Extended

ORB Immediate Inclusive Or Memory with B

 Direct

 Indexed

 Extended

ORCC Immediate Inclusive Or Memory with CC

PSHS Multi-Reg Push Registers on System Stack

PSHU Multi-Reg Push Registers on User Stack

PULS Multi-Reg Pull Registers from System Stack

PULU Multi-Reg Pull Registers from User Stack

ROL Direct Rotate Left Memory

 Indexed

 Extended

ROLA Inherent Rotate Left A

ROLB Inherent Rotate Left B

ROR Direct Rotate Right Memory

 Indexed

 Extended

RORA Inherent Rotate Right A

RORB Inherent Rotate Right B

RTI Inherent Return from Interrupt

RTS Inherent Return from Subroutine

SBCA Immediate Subtract Memory with Borrow from A

 Direct

 Indexed

 Extended

 Background 13

Asm
Lang

SBCB Immediate Subtract Memory with Borrow from B
 Direct
 Indexed
 Extended

SEX Inherent Sign Extend B into A •

STA Immediate Store Memory from A
 Direct
 Indexed
 Extended

STB Immediate Store Memory from B
 Direct
 Indexed
 Extended

STD Immediate Store Memory from D
 Direct
 Indexed
 Extended

STS Immediate Store Memory from S
 Direct
 Indexed
 Extended

STU Immediate Store Memory from U
 Direct
 Indexed
 Extended

STX Immediate Store Memory from X
 Direct
 Indexed
 Extended

STY Immediate Store Memory from Y
 Direct
 Indexed
 Extended

SUBA Immediate Subtract Memory from A
 Direct
 Indexed
 Extended

14 Background

Asm
Lang

SUBB Immediate Subtract Memory from B

 Direct

 Indexed

 Extended

SUBD Immediate Subtract Memory from D

 Direct

 Indexed

 Extended

SWI Inherent Software Interrupt 1

SWl2 Inherent Software Interrupt 2

SWl3 Inherent Software Interrupt 3

SYNC Inherent Synchronize to Interrupt

TFR Reg-Reg Transfer Register to Register

TST Direct Test Memory

 Indexed

 Extended

TSTA Inherent Test A

TSTB Inherent Test B

 Background 15

Asm
Lang

4 General Directives

In addition to the opcodes listed in the preceding section, which trans-
late directly into 6809 opcodes, DEFT Macro/6809 contains a number
of directives which provides memory initialization, reservation and as-
sembly control.
4.1 COPY
This directive allows you to copy source lines from another file into The
current assembly. The standard file name found in the operand field is
opened (with a default suffix of ASM) and read to end of file, In the cur-
rent version of the assembler, files that have been copied cannot them-
selves contain COPY directives. Example:
 COPY RECRDEQU:1

 COPY MYMACROS
4.2 END
This directive is provided in order to allow the programmer to terminate
his program with an END. The END directive has no OPERAND and
does not result in code generation. The assembler will continue process-
ing any source lines following an END. The assembler does not require
a program to have an END since source lines are fetched until end or
file is reached. Example:
 END
4.3 EQU
This directive provides the capability of defining an identifier to have a
specific value. The identifier found in the label field is assigned the
value of the expression found in the operand field. Example:

LABEL1 EQU $50

LABEL2 EQU LABEL1*3

LABEL3 EQU *-EARLIERLABEL
4.4 FCC
This directive creates an ASCII string of characters. The operand field
contains the ASCII string to be created enclosed in either slashes(/) or
double quotes(“). Example:

NAME FCC /John Q. Smith/

NAME2 FCC “Mary Jones/MD”

16 Background

Asm
Lang

4.5 FCB
This directive creates individual bytes with the values of the expres-
sion(s) found in the operand field. More than one byte may be defined
by separating the expressions with commas (,). Example:

 BYTES FCB 6,$F,LABEL1,‘A

 FCB *-BYTES

4.6 FDB
This directive creates individual words with the values of the expres-
sion(s) found in the operand field (high bits in low order byte). More
than one word may be defined by separating the expressions with com-
mas (,). Example:

WORDS FDB 5,6

 FDB WORDS+3
4.7 MAIN
This directive tells The DEFT Macro/6809 (and subsequently DEFT
Linker) where execution should begin. Only one main directive should
be included in a set of modules to be linked together. Main has no oper-
and, so execution will be at the value of The location counter. Example:
 MAIN

 START ...

4.8 RMB
This directive reserves memory which is preinitialized to zero. The ab-
solute expression found in the operand field specifies the number of
bytes of memory to reserve. Example:
 WRKAREA RMB $200

 Background 17

Asm
Lang

4.9 SETDP
This directive specifies to the assembler what page number should con-
stitute the direct page. This directive should generally follow a TFR in-
struction that loads the DP register with a new value. The expression
(evaluated at assembly time) in the operand field is used as the new di-
rect page number. If no setdp directive is given, page number 0 is as-
sumed to be the direct page. Example:

 LOA #DATATABLE/256 A=Page Number

 TFR A,DP Put in DP

 SETDP #DATATABLE/256 Tell assembler

Note that the above example works only if DATATABLE is an absolute.

18 Background

Asm
Lang

5 Macros

When writing a program in assembly language, you frequently en-
counter situations where a group of instructions is repeated throughout
your program with only minor variations. Subroutine calls which re-
quire parameters to be setup are a typical example. In this case, only
the arguments are different. What is needed is a way to define a tem-
plate of instructions which could then be invoked at those points in the
program where they are needed. Macros are exactly these templates.
5.1 General Operation
Before a macro can be used it must first be defined. This definition must
be processed by the assembler on source lines that are read before the
source lines on which the macro is used. This definition includes the
name of the macro, a body which includes the fixed elements as well as
where parameters are to be substituted and finally an ending which
tells the assembler that the definition is complete.
Once the definition is completed the macro may be used. The name of
the macro used in the opcode field of a subsequent source line is what
actually invokes the macro. The substitution parameters are placed in
the operand field separated with commas. The previous macro defini-
tion now is included at this point in the program very much like a copy.
The main difference is that the parameters included on the invocation
line are substituted throughout the source lines as defined in the tem-
plate. These lines are then assembled and optionally listed.
5.2 Macro Definition
A macro is defined with a MACRO directive. The operand field must
contain a macro name of up to 6 characters. Note that the assembler
can distinguish between an identifier and a macro with The same name.
However, the assembler cannot distinguish between a macro and a
predefined assembler opcode or directive of the same name. Following
the MACRO directive is a number of source lines that constitute the
template. The definition ends with an ENDM directive which has no
operand field. Up to 30 macros may be defined whose templates use no
more than a total of 1.5K bytes of memory.
Substitution parameters are indicated in the template lines with the
percent sign (%) followed by single digit number (0 through 9). Up to 9
parameters numbered from 1 to 9 can be used. The zeroth parameter
is a macro expansion count which is automatically kept by the assem-
bler.

 Background 19

Asm
Lang

Use of this parameter can guarantee a unique value for each expansion
of the macro. This is useful when including LABEL fields in the tem-
plate. Example:
 MACRO PASFUN
 LDD STATICBASE,PCR

 LEAY %1,PCR

 LEAX %2,PCR

 PSHS U,Y,X,D

 LBSR PASFUN

 LEAS 6,S

 LDD ,S++

 BEQ PASFUN%0

 ADDO #0%3

 PASFUN%0 EQU *

 ENDM
The above example generates a position-independent call sequence to a
Pascal function. The function requires two parameters whose addresses
are loaded into the Y and X registers respectively. The D register is al-
ways Loaded with a given base value. The PSHS sets up the stack with
the U register push used only to reserve space for the value returned
by the function.
On return, the macro cleans up the stack and gets the returned value
in the D register via a LDD rather than a PULS in order to set The CC
register. A check then follows which adds a third macro parameter to
the result if a non-zero was returned by the function. Note that the third
macro parameter is optional in that if it is not present, a zero is added
to the result. This macro also makes use of The macro expansion
counter to create an identifier for the macro’s own use.
Note that the macro definition itself does not result in any code gener-
ation. Neither does the assembler try to parse the template so assembly
errors may occur when the macro is invoked.
5.3 Macro Invocation
A macro is invoked by using its name in the opcode field of a source line
that follows the definition. Up to 9 parameters may be included in the
operand field separated with commas. Not all parameters need be in-
cluded in a given invocation. All parameters following the last one speci-
fied, as well a11 those that are explicitly not included via placeholder
commas, are assigned a null value.
20 Background

Asm
Lang

The previous macro definition is then included at this point in the pro-
gram. The parameters included (or not included as the case may be) on
the invocation line are substituted throughout the source lines as de-
fined in the template. These lines are then assembled and optionally
listed.
An example invocation of the macro defined above follows:
 PASFUN STRING,COUNT,7

 + LDD STATICBASE,PCR

 + LEAY STRING,PCR

 + LEAX COUNT,PCR

 + PSHS U,Y,X,D

 + LBSR PASFUN

 + LEAS 6,S

 + LDD ,S++

 + BEQ PASFUN1

 + ADDD #07

 + PASFUN1 EQU *
In the above example, the three arguments are substituted where The
%1, %2, and %3 are found in the template. The macro expansion count
is l and is substituted where %0 is found in the template. The following
example shows a second invocation of the same macro:
 PASFUN STRING1,COUNT+2

 + LDD STATICBASE,PCR

 + LEAY STRING1,PCR

 + LEAX COUNT +2,PCR

 + PSHS U,Y,X,D

 + LBSR PASFUN

 + LEAS 6,S

 + LDD ,S++

 + BEQ PASFUN1

 + ADDD #0

 + PASFUN2 EQU
Notice that the third parameter was not included on the invocation line.
Since the macro was constructed with a leading zero before the %3 in
the ADDD line, its presence is not required for an error-free assembly.
In addition, %0 was substituted with a 2 instead of a 1 providing a
unique label for both macro expansions. Note that in this macro a
unique label is not absolutely required since the length of the branch is
always the same and could be indicated by *+5.

 Background 21

Asm
Lang

22 Background

Asm
Lang

6 Linkage Directives

DEFT Macro/6809 provides directives that allow the object code pro-
duced by one assembly to be combined with that of others. The primary
uses of this separate assembly facility are:

• A very large program can be divided into manageable pieces which
are then individually coded and assembled.

• A frequently used routine or set of routines can be written and tested
once. Any programs that subsequently need these routines can
merely reference them and then include them with the DEFT
Linker.

• Assembly language programs can be easily combined with PASCAL
programs.

When talking about separate assembly the term module is used to refer
to the code that is assembled via one execution of the assembler. Link-
ing these modules together is accomplished by declaring a given iden-
tifier as public in the module in which it is defined. Other modules
which wish to use the routine or data area defined with this identifier
declare it as external. DEFT Linker then inserts the correct absolute
address or offset into the code when the final binary image is created.
6.1 PUBLIC
The public directive is used to declare an identifier as public. The iden-
tifier must be defined elsewhere in the same module. The operand field
contains the identifier that is to be declared public. Example:

 PUBLIC MYSUBR

 .

 .

 .

MYSUBR PSHS Y,X,D Save Registers

 .

 .

 .

As with any other reference to an identifier, a public directive can come
either before or after the identifier is defined. Note that an identifier
which is defined as ext or exta cannot be given the public attribute.

 Background 23

Asm
Lang

6.2 EXT and EXTA
The ext and exta directives are used to define an identifier and to declare
it as external to this module. Ext defines a relative identifier. Exta de-
fines an absolute identifier. The distinction does not affect the code that
is generated by the assembler. but it does allow the assembler to cor-
rectly flag PIC and non-PIC code. The identifier to be defined is in the
label field. Example:

YOURSUBR EXT

YOURCONST EXTA

 .

 .

 .

 LDD #YOURCONST

 LBSR YOURSUBR
6.3 STACK
This directive allows you to specify how much stack space this module
will require at execution time. This is convenient when linking assembly
language with DEFT Pascal so that a total stack requirement can be
determined by DEFT Linker. If this directive is not present, the as-
sembler assumes a zero stack requirement. The absolute expression in
the operand field is the amount. Example:

 STACK $20

24 Background

Pascal

7 Listing Control Directives

This section describes the assembler directives available to control the
source listing produced by the assembler. Although these directives con-
trol the source listing, they are not included in the listing themselves.
7.1 EJECT
The assembler normally prints 55 source lines on a page before starting
a new page. This directive specifies that the next source line should
begin at the top of a page. There is no operand field. Example:
 EJECT
7.2 LIST
This causes the assembler list level to be incremented by one. The list
level is a value that starts at zero and determines whether source lines
should be included in the list file. When this value is greater than or
equal to zero, lines are included. When it is negative, source lines are
not included. If a previous NOLIST (see below) made the list level go
negative, then this directive will cause the listing to be turned back on.
If the list level is already zero, this LIST will cancel The next following
NOLIST. This directive has no operand. Example:
 LIST
7.3 NOLIST
This causes the assembler list level to be decremented by one. See LIST
for a description of the list level. Its general purpose is to prevent source
lines from being listed. This directive has no operand. Example:
 NOLIST
7.4 MLST
This directive causes macro expansions to be listed. Unlike the
LIST directive, the MLST directive does not have a level. It is either
on or off. This directive has no operand. Example:
 MLST

 Background 25

Asm
Lang

7.5 NOMLST
This directive suppresses macro expansions from being listed. This di-
rective has no operand. Example:
 NOMLST
7.6 SKIP
This directive causes 1 or more blank lines to be included in the source
listing. The number of blank lines included is the absolute expression
in the operand field. If the operand field is not present or The expression
is less than 1, then a value of 1 is used. Example:
 SKIP 2

 SKIP
7.7 STITLE
This directive specifies the string that is to be the subtitle string printed
at the top of the listing starting with the next page. The string found in
the operand field is used. This directive does an implicit EJECT. Exam-
ple:
 STITLE /Important Subroutine Name/
7.8 TITLE
This directive specifies the string that is to be the title string printed
at the top of the listing starting with the next page. The string found in
the operand field is used. This directive does an implicit EJECT. Ex-
ample:
 TITLE /Important Program Name/

26 Background

Asm
Lang

8 Error Messages

The DEFT Macro/6809 Assembler generates error messages in the
source listing at those points where it detects either syntax errors or
encounters I/O errors while processing a source file. Error messages
are distinguished by the ***ERROR - at the beginning of the line and
follow the line that they are referencing. Following are the error mes-
sages and a short explanation of each.
ADDRMODE
An invalid addressing mode was used.
BAD OPCODE
An unknown opcode or macro was used.
BAD RMB
An RMB instruction must have a positive absolute expression for an op-
erand.
COPY NEST
A copied file may not have a COPY instruction in it.
DUPLMACRO
There is already a macro defined with this name.
DUPLSYMBL
There is already a symbol defined with this name.
PUBLC->EXT
An external symbol is being declared as public. This is illegal.
EXPRESSION
An illegal expression has been detected.
LABEL RQ’D
This opcode requires a symbol in the label field and there is none.

 Background 27

Asm
Lang

MAC SPACE
This macro definition exhausts all the available macro space and so is
rejected.
MACRO NEST
You cannot invoke a macro from within a macro.
OPRND RQ’D
This opcode requires an operand and there is none.
OPRND SIZE
This opcode requires an 8 hit operand and the one that is present re-
quires 16 bits.
PHASE
This label is being assigned a different value on the assembler’s second
pass than it received on the first pass. This is usually due to using a
symbol in an RMB statement before the symbol is defined.
REGISTER
An unknown or illegal register has been specified.
UNDEF SYM
An unknown or illegal symbol has been used.

28 Background

Asm
Lang

Advanced Pascal Language Extensions

1 Introduction...1
2 Strings ...2
 2.1 String Assignments..2
 2.2 String Relations..3
 2.3 STRINGCOPY Procedure ..3
 2.4 STRINGDELETE Procedure ...3
 2.5 STRINGINSERT Procedure ..4
 2.6 STRINGPOS Functions ...4
 2.7 ENCODE Function...4
 2.8 ENCODEREAL Function ..5
 2.9 DECODE Procedure...6
 2.10 DECODEREAL Procedure...6
 2.11 HEX Procedure...6
3 Type Extensions..7
 3.1 Type Conversions ...7
 3.2 Pointer/Integer Conversions ..8
 3.3 Arrays..8
4 Absolute Memory Access ..10
 4.1 BYTE and WORD Arrays...10
 4.2 Absolute Address Operator (@)..10
 4.3 CALL Function ..10
5 Static Variable Allocation...12
 5.1 STATIC Attribute...12
 5.2 PUBLIC Attribute ..12
 5.3 EXTERNAL Attribute..13
6 Separate Compilation..14
 6.1 Rationale...14
 6.2 MODULE Block..15
 6.3 PUBLIC Procedures and Functions ..17
 6.4 EXTERNAL Procedures and Functions....................................17
 6.5 PUBLIC and EXTERNAL Variables...18
 6.6 INTERFACE Block...18
 6.7 Use of INTERFACE Block ..l9
7 Assembler Interface ...22
 7.1 Code Generation Strategy..22
 7.2 Procedure Frame Structure...25
 7.3 Linkage ...27
 7.4 Initialization ...27
 7.5 PIC and ROM ...27

Adv

1 Introduction

This section describes a number of facilities in the DEFT Pascal Com-
piler which are not found in standard Pascal. These facilities provide
the programmer with significant additional capabilities which allow
easier text processing, ROM and absolute memory access, and separate
compilation with both DEFT Pascal and DEFT Macro/6809 assembly
language.

Before deciding whether to use these facilities, the purpose of the pro-
gram to be to written must be considered. If portability is essential then
only those facilities described in Pascal should be used. If the program
is to run only on the Color Computer and you wish to take maximum
advantage of the machine’s capabilities. Then by all means use the Ad-
vanced Pascal features.

Note that even when using these advanced features the resulting pro-
gram may still be moved to other machines since many other Pascals
have corresponding features. This is especially true in the areas of
string handling, separate compilation and compiler controls.

 Background 1

Adv

2 Strings

In standard Pascal, a string is little more than an array of char. DEFT
Pascal allows you to treat a string in exactly the same way. However, a
string is not exactly the same as an array of char in that you can also
treat this type as a true variable length structure. This allows you to
access individual elements of the string by including a subscript or ac-
cess the entire structure by not including a subscript. Note that since
array of string is allowed, the number of subscripts determine the type
of the resulting factor.
A string, in DEFT Pascal, contains a string length in element 0. The
remaining elements are the string itself. The default maximum length
of a string is 80. Other maximums can be declared (up to 255) by in-
cluding a constant in parentheses following the type identifier STRING.
See the section on Type Extensions for a complete explanation.
Note that this structure is maintained in string constants as well as
string variables.
2.1 String Assignments
The assignment statement not only allows you to assign a string vari-
able or constant to a string, but also a general string expression. The
syntax of a string assignment statement is as follows:
 <string variable>:= <string term> +...+ <string term>
Where <string variable> is a simple variable, record member, array ele-
ment or dereferenced pointer variable with a base type of string. <string
term> is any of the following:

• A string variable
• A string constant
• A char type expression

The result of the assignment is to set the <string variable> on the left
of the assignment sign to the ordered concatenation of the <string
term>s on the right side. Some examples:

 StringVar := OtherString + ‘suffix string’;

 StringVar := ‘First line’ + CHR(13) + ‘Second line’;

 StringVar := StringVar + ‘A’
The last example shows how to append <string term>s to the end of an
existing value in a <string variable>.

2 Background

Adv

2.2 String Relations
As mentioned in Pascal, strings may be combined with relational oper-
ators in boolean expressions. When comparing two strings, DEFT Pas-
cal generates code that compares the strings on a character by
character basis from left to right. When two characters that are not
equal, or the end of a string is encountered the compare stops. If un-
equal characters are found, the binary value of the corresponding char-
acters determines the result. If the end of a string is encountered, the
longer string is considered greater. Only if the current length and all
corresponding characters are equal are the strings themselves consid-
ered equal.
2.3 STRINGCOPY Procedure
This predefined procedure is used to copy a portion of one string into
another. The procedure declaration is:
PROCEDURE STRINGCOPY (VAR SOURCE : STRING;

 INDEX, LENGTH : INTEGER;

 VAR DESTINATION: STRING);
The string variable DESTINATION is set to the string contained in
SOURCE starting with INDEXth character and continuing for
LENGTH characters. If the length of SOURCE is less than INDEX then
DESTINATION will be null. If the length of SOURCE is less than
INDEX + LENGTH - 1 then the length of DESTINATION will be the
length of SOURCE less INDEX-1.
2.4 STRINGDELETE Procedure
This predefined procedure is used to delete a portion of a string variable.
The procedure declaration is:
PROCEDURE STRINGDELETE (VAR SOURCE: STRING;

 INDEX, LENGTH : INTEGER);
The string variable SOURCE has the string starting at the INDEXth
character and continuing for LENGTH characters removed from it. If
the length of SOURCE is less than INDEX then no change is made. If
the length of SOURCE is less than INDEX + LENGTH - 1 then all the
characters in SOURCE following the INDEXth character will be deleted
and the new string length will be INDEX - 1.

 Background 3

Adv

2.5 STRINGINSERT Procedure
This predefined procedure is used to insert one string into another at a
specified point. The procedure declaration is:
PROCEDURE STRINGINSERT (VAR SOURCE: STRING;

 VAR DESTINATION: STRING;

 INDEX: INTEGER);
The string variable SOURCE is inserted into the string DESTINATION
starting in front of the INDEXth character. If the length of DESTINA-
TION is less than INDEX then SOURCE is appended to DESTINA-
TION.
2.6 STRINGPOS Function
This predefined function is used to find the location of one string within
another. The function declaration is:
FUNCTION STRINGPOS [VAR IMAGE, TARGET: STRING): INTEGER;
A search of string TARGET is made to try to find string IMAGE. If
IMAGE is found in TARGET then STRINGPOS returns the character
position in TARGET where IMAGE was found. If IMAGE is not found
in TARGET. STRINGPOS returns a zero.
2.7 ENCODE Function
The predefined function is used to convert a string containing an integer
constant to an integer. The function declaration is:
FUNCTION ENCODE {VAR ASCII: STRING): INTEGER;
The string ASCII is scanned and the binary representation of the ASCII
characters is returned. The following rules are used during the scan:
l. Leading blanks are ignored
2. A leading + or - sign is allowed
3. The scan stops when the end of the string or a non-numeric character

is encountered
If no numeric characters are encountered before The scan stops, EN-
CODE returns zero.

4 Background

Adv

2.8 ENCODEREAL Function
This predefined function is used to convert a string containing a real
constant to a real. The function declaration is:
FUNCTION ENCODEREAL (VAR ASCII: STRING): REAL;
The string ASCII is scanned and the binary representation of the ASCII
characters is returned. The following rules are used during The scan:
1.Leading blanks are ignored
2.A leading + or - sign is allowed
3.The first set of digits are the mantissa and may contain an imbedded

decimal point.
4.The letter E may follow the mantissa to indicate that an exponent fol-

lows.
5.The exponent may have a leading sign but cannot have an imbedded

decimal point
6.The scan stops when the end of the string or a non-numeric character

is encountered
If no numeric characters are encountered before the scan stops, EN-
CODEREAL returns zero.
2.9 DECODE Procedure
This predefined procedure is used to construct a string containing the
external representation (base 10) of an integer. The procedure declara-
tion is:
PROCEDURE DECODE (NUMBER, SIZE: INTEGER;

 VAR ASCII; STRING);
The string ASCII is constructed. NUMBER is the binary value to use
during the conversion and SIZE is the resulting string length of ASCII.
The external (base 10) representation of NUMBER is right justified in
ASCII. If SIZE is larger than required, leading blanks are appended on
the left. If SIZE is too small, the leftmost characters are truncated.

 Background 5

Adv

2.10 DECODEREAL Procedure
This predefined procedure is used to construct a string containing the
external ASCII representation (decimal or scientific) of a real. The
procedure declaration is:
PROCEDURE DECODEREAL (NUMBER : REAL;

 SIZE, FRACTION : INTEGER;

 VAR ASCII : STRING),
The string ASCII is constructed. NUMBER is the binary value to use
during the conversion, SIZE is the resulting total string length of ASCII
and FRACTION is the number of fractional digits to the right of the
decimal point. The external (base 10) representation of NUMBER is
right justified in ASCII. If SIZE is larger than required. leading blanks
are appended on the left. If SIZE is too small, the string is filled with
asterisks. If FRACTION is negative. then scientific notation is used,
otherwise a decimal display is used.
2.11 HEX Procedure
This predefined procedure is used to construct a string containing the
ASCII hex representation of a specified area of memory. The procedure
declaration is:
PROCEDURE HEX (ADDRESS: INTEGER;

 BYTECOUNT: INTEGER;

 VAR ASCII: STRING),
The memory area beginning at ADDRESS and continuing for BYTE-
COUNT bytes is converted to a hex string which is placed in ASCII. The
hex representation is a pair of hex digits followed by a blank for each
byte except the last. The resulting length of ASCII is (BYTECOUNT*3)-
1.

6 Background

Adv

3 Type Extensions

A strongly typed language like Pascal can help a programmer gain and
maintain control of his program. It can ensure that variables of differ-
ent types are not inadvertantly combined in an expression or the wrong
type expression is passed as a parameter to a procedure or function.
However, there are occasions when a programmer wants to treat some
datum as usually of one type and sometimes to treat it as another type.
The extensions pertaining to type found in DEFT Pascal provide a
sorely needed type breaking function that is only partially found in
standard Pascal.
3.1 Type Conversions
Provided in standard Pascal are the type conversion functions chr, odd
and ord. DEFT Pascal supports these functions, but also provides a
more regular type breaking capability. This capability is implemented
with implicit built-in function definitions based on ordinal type defini-
tions.
When any ordinal type is defined, DEFT Pascal also implicitly defines
a conversion function with the same name as the type. This function
has a value parameter which is of any ordinal type. It returns (in the
same way that chr and ord do) The equivalent value with a type equal
to the named type identifier. For example:
 .
 .
 .
 TYPE Color = (Red, Green, yellow);

 Fruit = (Apple, Lime, Lemon);

 VAR ColorVar: Color;

 FruitVar : Fruit;

 .

 .

 .

 .
 FruitVar : Fruit (ColorVar);
 .
 .
 .
In the above example, ColorVar produces an expression of type Color.
This expression is used as a parameter to the function Fruit (implicitly
declared in the type definition) which converts it to a Fruit type expres-
sion. Operation of the assignment statement is to set FruitVar equal to

 Background 7

Adv

the fruit whose corresponding color is in ColorVar.
Note that as a result of this extension, The built-in function integer is
equivalent to ord and char is equivalent to chr.
3.2 Pointer/Integer Conversions
In order to allow full use of the addressing capability of the 6809, DEFT
Pascal provides the ability to convert between integer and pointer types.
The builtin function ptr will convert an integer type to a pointer type. In
addition, a pointer can be converted to an integer via the ord and integer
builtin functions. These facilities make it possible to manipulate
pointers arithmetically. For example:

TYPE BigRecord = RECORD ... END;

VAR BigPtr : ^BigRecord;

 ...

BEGIN

 ...

 BigPtr := PTR (ORD (BigPtr) + SIZEOF (BigRecord));

 ...
In the above example, BigPtr is incremented to point to the next BigRe-
cord in memory.
3.3 Arrays
In standard Pascal all array type definition includes both the upper and
lower bounds of the array as well as the element type. This of course is
also true with DEFT Pascal. However, when using a previously defined
array type identifier, you may specify a different upper bound than the
default contained in the original type declaration. Example:

TYPE MyArray = ARRAY[1..200] OF Integer;

VAR Array1 : MyArray;

 Array2 : MyArray(150);
In the above example, Array1 and Array2 are equivalent types. However,
Array1 has 200 elements and Array2 has 150 elements. This variable
size capability is useful when creating procedures and functions which
process arrays of a given type but with varying sizes. However. for all
arrays except strings, the new upper bound must be less than or equal

8 Background

Adv

to the upper bound of the original array. Standard Pascal has a confor-
mant array facility which provides an equivalent capability when used
in procedures and functions.

Note that since the type string can be used as an array of char type, you
can also specify an upper bound (up to 255) when declaring strings. This
upper bound will determine the amount of memory reserved for the
string variable and the maximum length string value that can be stored.

 Background 9

Adv

4 Absolute Memory Access

This section describes the DEFT Pascal Compilers facilities for acces-
sing specific areas of the 6809 address space. In addition to the facilities
shown here, specific areas of memory can be accessed in DEFT
Macro/6809 assembly language via the separate compilation facilities
and the Assembler Interface. However. The facilities described in this
section can be used entirely within Pascal and results in position inde-
pendent code (PIC).
4.1 BYTE and WORD Arrays
Absolute memory can be accessed as BYTEs or WORDs by using the
corresponding pre-defined array. BYTE is ARRAY[$0000..$FFFF] OF
0..255 and WORD is ARRAY[$0000..$FFFF] OF INTEGER. The sub-
script used represents the actual memory address that is used. Exam-
ple:

IF BYTE[1024] = $41 THEN BYTE[1024] := $42;

WORD[$7FFE] := $FFFF
4.2 Absolute Address Operator(@)
The absolute integer address of any variable can obtained with the
unary operator @. Example:

WORD[@I] := 5;

I:= 5
The above two statements are equivalent. This facility can be combined
with the ptr built-in function to put the address of any variable into a
pointer type variable.
4.3 CALL Function
The predefined function CALL provides the ability to invoke the ma-
chine language functions and subroutines typically found in the Color
Computer’s ROM. The Function definition is:

TYPE ROMAddress = Integer;

 ARegister = 0255;

FUNCTION CALL (RtnAddress: ROMAddress;

 Parm : ARegister) : Aregister
When using the CALL function, the first parameter is the absolute
memory address of the subroutine to be invoked. The second parameter
is the value to be passed in the A register. The value returned by the

10 Background

Adv

function is the value that the subroutine returned in the A register. Ex-
ample:
 REPEAT Key := CALL (WORD[$A000],0) UNTIL Key <> 0
The above example invokes the ROM subroutine whose address is lo-
cated at absolute memory WORD $A000 (POLCAT). A zero is passed
to this routine in the A register and the value returned by the subrou-
tine is stored in the variable Key. The effect of the repeat statement is
to wait until a keystroke is entered at the keyboard and to store the key-
stroke in Key. NOTE: In order to access ROM routines, you will have to
run your program in 32K mode.

 Background 11

Adv

5 Static Variable Allocation

In the section Variables in the Pascal Language Summary, the standard
automatic allocation scheme of Pascal is described. This is the default
variable allocation incorporated into DEFT Pascal. However, it is also
possible to statically allocate a variable.
When a variable is statically allocated, memory is reserved at compile
time. This means that every time the variable is accessed, the same
memory area is accessed even if the block that the variable is defined in
has been deactivated and then reactivated.
This allows you to store a value into a statically allocated variable that
is local to a procedure, before exiting from the procedure. Then when
the procedure is subsequently invoked, be able to access that variable
and retrieve the previously stored value. This can’t be done with auto-
matically allocated variables since the specific memory location occu-
pied by the variable may change on each allocation.
5.1 STATIC Attribute
Variables are statically allocated when one of several attributes are
added to the var statement in which they are defined. An attribute is a
keyword which immediately follows the var keyword. The simplest of
these attributes is the keyword static. The only result of this attribute
is to cause all variables defined in the current var statement to be stat-
ically allocated. Example:

VAR A: Char;

VAR STATIC B, C : Integer;

 D: Char;

VAR E, F: Integer;

 G: Char;
In the above example. variables B, C and D are all statically allocated.
variables A, E, F and G are all dynamically allocated. The scope of all
the variables is the same.
5.2 PUBLIC Attribute
The public attribute, like the static attribute, causes all the variables
defined in the corresponding var statement to be statically allocated.
However, the public attribute can only be used in var statements at the
PROGRAM or MODULE (see Separate Compilation) level and may not
be used in var statements in procedures or functions.

12 Background

Adv

In addition to causing a variable to be statically allocated. The public
attribute extends the scope of the affected variables to other separately
compiled modules. These other modules reference these public variables
by declaring the same variables using the external attribute (see below).
Example:

VAR PUBLIC A, B: Char;

C: Integer;
In the above example all three variables are statically allocated and
made public. See the section on Separate Compilation for more infor-
mation.
5.3 EXTERNAL Attribute
The external attribute is the complementary attribute to the public at-
tribute. All variables defined in a var statement with the external at-
tribute are not actually allocated by that var statement. This statement
causes the static allocation performed by the var public statement to
be used. Example:

VAR EXTERNAL A, B : Char;

C: Integer;
In the above example the variables A, B and C have been declared pub-
lic in another module where memory for them has been allocated. All
references to A, B and C in the module with the external attribute will
access the publicly defined variables. See the section on Separate Com-
pilation for more information.

 Background 13

Adv

6 Separate Compilation

This section details a facility in the DEFT Pascal Compiler that allows
a programmer to break up a large program into a number of smaller
programs. These smaller programs (known generically as modules) can
then be compiled and (usually tested independently. One of the primary
advantages or separate compilation is the additional level of identifier
scoping that is provided.
6.1 Rationale
In general, identifiers (constants, types, variables, procedures and func-
tions) defined within a module are known only within that module.
These identifiers are thought of as private and are not known to other
modules. Of course if all the identifiers are private Then there is no way
for the module to be used. For this reason some identifiers are always
made public so that controlled access to the module is assured.
For example, a complete set of routines to handle high-resolution
graphics could be a module. Some of these routines would be called from
outside the module and would constitute the interface to your graphics
package. These routines would be declared public.
Other routines would be utilities whose express purpose is to perform
functions common to several of the public routines. These utility rou-
tines would remain private so that they would not be inadvertantly in-
voked by other modules. This also ensures that their names would not
conflict with other names used in other modules.
The variables used by this graphics module are also divided into public
and private. The public variables may provide a means to pass data to
or from several of the procedures in the module or may be used to
specify operational modes. The private variables would be used to store
temporary or intermediate results.
A special DEFT Pascal language construct called an interface module,
could be used to provide the compile time linkage between the graphics
module and those other modules that use it. This interface module
would be included at the beginning of the other modules and would pro-
vide all the external declarations for the public procedures, functions
and variables. In addition, it would include const and type statements
in order to define any special constants or types required by the
graphics module.

14 Background

Asm
Lang

6.2 MODULE Block
In standard Pascal, a complete program is a self-contained unit. For
many smaller programs this is quite adequate and provides a simple
environment in which to develop them. However, when you wish to di-
vide your program into several relatively independent pieces; you have
a problem if these pieces do not map, one-to-one, into procedures or
functions. It is this problem that DEFT Pascal’s module solve.
A module is a DEFT Pascal construct that allows you to group a set of
procedures. functions and variables into a sort of a self-contained sub-
program which is compiled by itself. This Pascal module can then be
combined with other Pascal modules. DEFT Macro/6809 assembler
modules and to only one Pascal program, via DEFT Linker, to create
a complete program.
The syntax of a MODULE is as follows:

 Background 15

Adv

MODULE <module name>;

 CONST <identifier> = <constant>;

 .

 .

 .

 TYPE <identifier> = <type definition>;

 .

 .

 .

 VAR <identifier> : <type definition>;

 .

 .

 .

 PROCEDURE <identifier> <parameter definition>;

 <block>;

 .

 .

 .

 FUNCTION <identifier> <parameter definition>;

 <block>;

 .

 .

 .

 END.

As you can see, this is almost the same as a program. ln fact, with
DEFT Pascal, a program is merely a special type of module. A program
is the only module which contains its own BEGIN <executable state-
ments> END. It is with these <executable statements> in the final bi-
nary program that execution begins.

One other difference between a program and a module is variable allo-
cation. In a program, the default allocation is automatic. In a module,
the default type of allocation is static. Since there is no way of explicitly
specifying automatic allocation, a module’s variable types are all static.
The primary reason for this is that there is no frame structure, (see As-
sembler Interface), for a module in which to automatically allocate a
variable.
Linkage between modules and the program is provided via the public
and external attributes described below.

16 Background

Adv

6.3 PUBLIC Procedures and Functions
Public procedures and functions are declared at the outer most block
level of a program or module, and contain a public attribute immedi-
ately following the procedure or function statement. Procedures and
functions which are nested with in other procedures or functions may
not have the public attribute. The syntax of a public procedure is as fol-
lows:

PROCEDURE <identifier> <formal parameter definition>;

 PUBLIC;

 <declaration statements>

 BEGIN

 <executable statements>

 END

The only difference between this and a standard procedure (or function)
is the public attribute immediately following the procedure or function
statement.
Once a procedure or function has been declared public, it may be in-
voked from other modules which have declared the same procedure or
function as external (see EXTERNAL Procedures and Functions). Note:
you may not use the same identifier to declare a procedure. function or
variable as public in more than one module. However, once it is declared
as public, you may declare it as external in as many modules (or the
program) as you wish. An identifier cannot be declared as both public
and external in the same module or program.
6.4 EXTERNAL Procedures and Functions
An external declaration allows a public procedure or function to be
known and invoked in any module or program in which it is declared
as external. A procedure or function is declared as external by following
the procedure or function statement with only the external statement.
The syntax is as follows:
 PROCEDURE <identifier> <formal parameter definition>;

 EXTERNAL

 Background 17

Adv

This type of procedure or function does not have a <block> associated
with it. However, it must have a corresponding public procedure or func-
tion declared in another module whose procedure or function statement
is identical to the one used with the external statement. Note that like
the public statement, the external statement can be used only with
procedures and functions which are declared at the outer most block
level of a module or program.
6.5 PUBLIC and EXTERNAL Variables
The public and external attributes, in the VAR statement, cause static
memory allocations to be made, as described in the section on Static
Variable Allocation. Public variables (like public procedures) are those
variables whose scope has been explicitly extended beyond The enclos-
ing module or program. External variables are those variables which
actually exist in other modules (OR the program) as public variables,
but whose scope has been extended into this module or program.
As mentioned in the section on public procedures. you may not use the
same identifier to declare a procedure, function or variable as public in
more than one module. However, once it is declared as public, you may
declare it as external in as many modules (or the program) as you wish.
Any identifier cannot be declared as both public and external in the
same module or program.
6.6 INTERFACE Block
An interface Block is a special DEFT Pascal compiler construct which
is used in conjunction with a program or module. Its purpose is to sim-
plify the compile time module linkage (which would normally occur via
external attributes and statements).
The interface block is an optional construct which may be included 1 or
more times before the module or program statement. The syntax is as
follows:

INTERFACE <interface name>;

<special declaration statements>

END
The <special declaration statements> are generally the same as <dec-
laration statements> with the exception that all procedure, function
and VAR statements are assumed to be external. That is, procedure and
function statements don’t have public, FORWARD or external state
18 Background

Adv

ments following them. Nor do they have <block>s following them. They
are assumed to be external, since they are found in the interface Block.

VAR statements also cannot have public, external or STATIC attributes
associated With them since they are assumed to be external.

6.7 Use Of INTERFACE Block

In general, you will create an interface block for each module that you
create. The module will contain all the public definitions and will be
compiled to create an object module that contains those procedures,
functions and variables. The interface module will exist only in the form
of Pascal source code and contain the external (by default) definitions
that are then used in all the other modules (or the program) that refer-
ence this module.

In our graphics example, we might have the following module:

 Background 19

Adv

MODULE HiResolution;

CONST ScreenSize = $1B00;

TYPE ScreenByte = -128..127; (* 1 Byte Integer *)

 Screen = ARRAY[1..ScreenSize] OF ScreenByte;

 GraphTypes = (GTalpa, GTsemi4, GTsemi6, ...);

VAR PUBLIC

 GraphMode: GraphTypes;

PROCEDURE MapScreen (VAR ScreenVar: Screen);

PUBLIC;

 .

. (* procedure block *)

 .

PROCEDURE ClearScreen (VAR ScreenVar: Screen);

PUBLIC;

 .

 . (* procedure block *}

 .

 .

 . (* other public and private procedures

 . and functions required for package *)

.

END.

This module contains a number of public interfaces including proce-
dures, functions and at least one variable. Another module which is re-
sponsible for creating pie-charts may reference this module as follows:

20 Background

Adv

INTERFACE HiResolution;

CONST ScreenSize = $1800;

TYPE ScreenByte = -128..127; (* 1 Byte Integer *)

 Screen = ARRAY[1..ScreenSize] OF ScreenByte;

 GraphTypes = (GTalpa, GTsemi4, GTsemi6, ...);

VAR GraphMode: GraphTypes;

PROCEDURE MapScreen (VAR ScreenVar: Screen);

PROCEDURE ClearScreen (VAR ScreenVar: Screen);

.

END;

.

MODULE PieCharts;

.

.

END.
The module PieCharts uses the module HiResolution and sees its in-
terface to HiResolution in terms of the interface block. Note that in gen-
eral, the source code comprising the interface block will be in an
independent file which is copied at compile time via the compiler %C
directive.

One final note. The file PASCALIB/EXT is actually an interface block
with a %N at the beginning and a %L at the end which is automatically
copied by DEFT Pascal at the beginning of every compilation. You can
force it to be listed by including an L directive in the directive prompt
on The compiler startup screen.

 Background 21

Adv

7 Assembler Interface

One of the primary advantages to using both DEFT Pascal and DEFT
Bench is the ability to easily mix Pascal and assembler language as
appropriate in the development of a program. This section provides the
information on using variables, procedures and functions from assem-
bler and in turn creating variables, procedures and functions in assem-
bler for use from Pascal, with DEFT Pascal.
A pre-requisite required for this section is a familiarity with the Moto-
rola 6809 Assembler Language, and the DEFT Macro/6809 Assem-
bler. Information on linking object files produced by the DEFT Pascal
Compiler and the DEFT Macro/6809 Assembler can be found in the
section on the DEFT Linker.
7.1 Code Generation Strategy
The DEFT Pascal compiler is a single-pass, recursive descent compiler
which directly produces 6809 object code suitable for linking by DEFT
Linker. In order to produce this object code, a code generation strategy
is required so that the state of the machine can be predicted from state-
ment to statement. This strategy defines how code, data and stack
memory areas are organized as well as how the 6809 registers are used.
In addition, the actual memory organization of all the various Pascal
types should be understood.
Variable Sizes and the Stack
As can be guessed by the ordinal and pointer types available with
DEFT Pascal, the language is 16 bit oriented to a large extent. This is
due to the registers and functions available on the 6809. By keeping to
a 16 bit organization, the resulting compiler is both smaller and more
efficient.
In general, all instructions generated by the compiler are oriented
around the program stack. As factors are encountered in an expression,
they are pushed on the stack. Operators then operate on the top of the
stack or combine the top two elements of the stack to form a result
which is left on the top of the stack.
The number of bytes of data pushed on the stack depends on the type of
the expression. The following table shows the number of bytes for each
type:

22 Background

Adv

ordinal type 2 bytes

pointer type 2 bytes

real type 7 bytes*

set type 32 bytes

file type 286 bytes + type size

string type string size+ 1 bytes

array and record types sum of components
Although real types have a size of 6 bytes, when a real type is pushed
on the stack, an additional byte is added in order to limit loss of
precision during arithmetic operations. The symbol table printed at
The end of each block shows the size of all the variables and types
defined within that block.
Anytime parameters are passed to a procedure or function, they are
first pushed onto the stack. Values returned by functions are left on
The stack when the function returns.
Memory Organization
The general memory organization of a Pascal program is shown in the
following diagram:

As can be seen from the above diagram, the code and static data items
are allocated in low memory and the stack with its associated dynamic
data items are allocated in high memory.

The code and static data items are interspersed in the order in which
they were encountered by the compiler. The code and static data area
is built from low addresses to high addresses by the compiler. The re-
sulting area is what is linked by DEFT Linker and eventually Loaded
via the LOADM command. Because DEFT Linker essentially handles
all the code and static data linkage, the actual organization of memory
is of little concern to the programmer.

 Background 23

Adv

High Memory Addresses

 Stack & Dynamic

 Data Area

 Code & Static

 Data Area

Low Memory Addresses

The stack and dynamic data area is organized by the compiler but not
actually allocated until execution of the resulting program. As a result
the actual memory addresses cannot be predicted. The organization of
this stack area is the key to interfacing Pascal and Assembler.
Register Usage
The use of the registers is oriented around the stack. The following lists
the 6809 registers and summarizes their use:
• The S register is the program stack register. It always points to the

youngest element on the stack. This stack always grows or shrinks by
the size of the type being pushed or popped. Elements are added by
decrementing the S register and are removed by incrementing the S
register.

• The D register is the primary accumulator, and so is considered to be
the top of stack for most operations. This is done by placing data in
the D register before actually pushing it on the stack. Data is popped
from the stack into the D register. By considering the D register to be
the top of stack, operating on the top stack element is easy with the
6809 instruction set.

• The U register is the frame pointer, which identifies what group of
data on the stack which is associated with the most recent procedure
activation. See the section on Procedure Frame Structure for a com-
plete description.

• The X register is used as a secondary frame pointer, when traversing
the static frame links in order to access an identifier which is global
to a procedure. See the section on Procedure Frame Structure for a
complete description. It is also used for array indexing and variable
addressing.

• The Y register is used for temporary storage. loop counting and com-
pare operations.

On return from a procedure or function, only the U, S and DP registers
will be preserved. All other registers may have been modified.

24 Background

Adv

7.2 Procedure Frame Structure
A frame is a contiguous portion of the stack that contains all the dy-
namic information relating to a specific procedure activation. Anytime
a procedure or function is invoked, a frame is pushed unto the stack.
The structure of a frame is:

The base of the frame is the static link. The U register always contains
the base address of the most recently active frame (last one pushed on
the stack). The following notes apply to the individual fields of the
frame:

1. The function return value is only present on a function activation
and can be considered to be the “zeroth” parameter.

 Background 25

Adv

High Memory
Addresses

 FUNCTION return value

 (present only if this is a
 FUNCTION activation)

 Parameters Passed to the
 procedure *if any).

U -> 16 bit Static Link

 16 bit Return Address

 16 bit Dynamic Link

 Local Dynamically
 Allocated Variables

 Temporary Expression
 Values

S ->

Low Memory Addresses

2. The parameters are pushed on the stack in the order in which they

occur in the <parameter list>. That is, the first parameter has the
highest memory address and the last parameter has the lowest
memory address. Each occupies the amount of memory specified
in the section on Variable Memory Requirements.

3. The static link contains the base address of the most recent frame
activation for the immediately enclosing procedure. This address
is used when referencing variables which are global to the current
procedure.

4. The 16 bit return address is the last element of the frame that is
created by the calling procedure with a JSR or BSR instruction.
The called procedure creates the remainder of the frame before ex-
ecuting its first statement.

5. The 16 bit dynamic link is the base address of the calling proce-
dure’s frame. It is placed on the stack by the called procedure via
a PSHS U instruction. The U register is then immediately reset to
the current frame’s base address via a LEAU 4,S instruction.

6. The local dynamically allocated variables are then allocated via an
LEAS -n,s instruction which only allocates and does not initialize.

7. As <executable statement>s are executed additional stack space is

used for temporary intermediate expression values.
Returning from a procedure is easily accomplished with the following
two instructions: LEAS -4,U and PULS U,PC. The calling procedure is
then responsible for removing the parameters from the stack and using
the function return value (if there is one).
The reason for having separate static and dynamic links is to provide
for the ability to handle recursive procedure (or function) activation.
The static link provides execution time identifier scoping, regardless of
the number of times the current procedure has activated itself. The dy-
namic link provides the ability to return to the frame that activated the
current procedure (or function).
As can be seen, as long as the assembly language program obeys these
rules, it can either invoke a Pascal procedure or function or be invoked
as if the assembly language procedure or function was written in Pas-
cal.

26 Background

Adv

7.3 Linkage
Linkage between Pascal modules is implemented via public and exter-
nal attributes and statements as described in previous sections. Link-
age to assembly language modules is exactly the same.
You can declare your own Pascal callable routine as public in your as-
sembly language program so that it is visible to DEFT Linker. You
then use the same name to declare the corresponding external proce-
dure or function in the Pascal module(s) from which it is to be called.
The same is true of shared, static variables which would be declared as
public in your assembly language modules and external in the appro-
priate Pascal module.
Alternatively, you can create a Pascal interface that corresponds to your
assembly language module in order to provide a more formal interface.
All Pascal modules that reference any of your assembly language proce-
dures, functions or variables would then %C the interface module to the
beginning of their code. Language identifiers that are declared external
in Pascal must be declared as public in your assembly language pro-
gram.
Any Pascal procedures, functions or variables you wish to access from
assembly language, must be declared as public in the corresponding
Pascal module or program. The identifiers are then declared as external
(via the EXT directive) in your assembly language program.
7.4 Initialization
All programs produced by DEFT Linker have a first instruction. For
Pascal programs produced with the DEFT Pascal Compiler, this is in
the runtime support module named PASBOOT. This is the module that
determines the amount of memory in your system, sets the stack
pointer appropriately, sets up all interrupt vectors for the device driv-
ers, setups the initial frame on the stack and then calls the main Pascal
program.
7.5 PIC and ROM
The code produced by the DEFT Pascal Compiler is generally position
independent and non-self modifying (can be placed in Read Only Mem-
ory-ROM). There are certain conditions under which this is not true:

 Background 27

Adv

1. Any presence of static or public variables within a Pascal program

will result in a module that is self-modifying.

2 Any procedure, function or variable that is declared as external in a

Pascal program, and whose actual address is an absolute memory
location, will result in a module that is not position independent. Ab-
solute memory access can be accomplished in DEFT Pascal via the
BYTE, WORD and CALL language elements so that the resulting
module will be position-independent.

28 Background

Adv

Index

* operator Debug 16, Pascal 29, 32,
 AsmLang 4
+ operator Debug 1.5, Pascal 29, 32,

AsmLang 4
- operator Debug 15, Pascal 29, 32,

AsmLang 4
/ operator Debug 15, Pascal 29,

AsmLang 4
32K operation Intro 1, 9-11, 14, Link

10, Pascal l, Adv 11
64K operation Intro 10-11, Link 10,

Pascal 1
6809 Instruction Summary

AsmLang 7
< Operator Pascal 33
<= Operator Pascal 33
<> Operator Pascal 33
= Operator Pascal 33
> Operator Pascal 33
>= Operator Pascal 33

A
ABS Pascal 55
Absolute Address Operator (@) Adv

10
Absolute Memory Access Adv 10
actual parameter Pascal 24
ADD OBJECT FILE: Lib 3
Adding a Library File Lib 4
Adding an Object File Lib 3
Additional Mark Functions Edit 15
ADDR MODE AsmLang 27
Addressing Modes AsmLang 5
AND operator Pascal 30,33
Appending The Saved Text Edit 14
ARCTAN Pascal 55
Arithmetic Operators Pascal 29
Arithmetic Precedence Pascal 31
ARRAY Compile 1,4, Debug 7, Pascal

13, 16-17, 20-21, 28-29. 40, 43,
60, 64-65, Adv 2, 8-10, 24

ARRAY element reference Pascal
28

Assembler Execution Asm 3
Assembler Interface Adv 22
Assembler Listing Control Compile 8
Assignment Statement Pascal 34
Auto-Repeat Edit 3
Automatic Allocation Pascal 22

B
BAD OPCODE AsmLang 27
BAD RMB AsmLang 27
BEGIN Pascal 2-8, 28, 36-87, Adv 16

24
BEGIN Statement Pascal 36
BINARY FILE I/O ERROR Link 8
BINARY FILE: Link 8
Blinking Square Edit 2
Block Structure Pascal 2
Blue Square Edit 2
Boolean Expressions Pascal 33
Built-in Procedures and Functions

Pascal 55
BYTE and WORD Arrays Adv 10

C
CALL Function Adv 10
CASE Pascal 18, 40
CASE Statement Pascal 40
Changing Text Patterns Edit 12
CHAR Pascal 14, 17, 20, 45, 47-55, 60,

Adv 2, 8-9
Character Constant Pascal 10
Checking Program State Debug 4
CHR Pascal 44,75, Adv 7-8
Clear Breakpoints (CB) Debug 9
CLOSE Statement Pascal 48
Code Generation Strategy Adv 22
Commands Debug 5
Comments Pascal 11, AsmLang 2
Compiler Controls Compile 8

 1

Index

Compiler Execution Compile 3
Compound and Control Statements
 Pascal 36
CONST Pascal 11-12, Adv 14
Constant Identifiers Pascal 11
Constants Debug 12, Pascal 9,
 AsmLang 3
Copy Compile 9, AsmLang 16
COPY NEST AsmLang 27
COPY NESTING TOO DEEP
 Pascal 62
Copying and Moving Text Edit 14
COS Pascal 55
CPU Intro 6, Pascal l
CURSOR Pascal 6
Cursor Positioning Edit 5

D
Debug Screen Debug 2
DEBUG?: Compile 3
DEBUGGER/LIB Intro 13, Link 4, 8
DEBUGGER? (Y) Link 3
Decimal Integer Constant Pascal 9
Declaration Statements Pascal 5
DECODE Procedure Adv 5
DECODEREAL Procedure Adv 6
DEFT Bench Exer 1, Link 1, Adv 22
DEFT vs. Standard Pascal Pascal 60
DELETE SECTION: Lib 3
Deleting Characters Edit 8
Deleting Lines Edit 8
Design Exer 2
DIRECTIVE: Compile 3
Directives AsmLang 16
Display Byte (DB) Debug 6
Display Floating Point (DF) Debug 6
Display Hex (DH) Debug 7
Display Next (DN) Debug 7
Display Register (DR) Debug 5
Display String (DS) Debug 6
Display Variable (DV) Debug 6
Display Word (DW) Debug 5
DIV operator Pascal 29

2

DO Pascal 37-38, 42
Document Divisions Intro 4
DOWNTO Pascal 38-39
DUPL MACRO AsmLang 27
DUPL SYMBL AsmLang 27
DUPLICATE ...IN... Link 8
DUPLICATE MAIN IGNORED
 Link 8
DUPLICATE SYMBOL Pascal 62

E
Edit Intro 1,7,13, Exer 2-3, Edit 1-2,
 6-8, 10-12, 14, Compile 1,
 Asm l, Pascal 1
EJECT AsmLang 25
ELSE Pascal 36, 40
ENCODE Function Adv 4
ENCODEREAL Function Adv 3
END Pascal 17, 86, AsmLang 16
ENTER Key Edit 4
Enumerated Pascal 14
EOF Function Pascal 48
EOLN Function Pascal 48
EQU AsmLang 16
Error Messages Link 8, Lib 5, Pascal
 62, AsmLang 27
Evaluate (EV) Debug 9
Executable Statements Pascal 6
Executing Your Program Debug 3
EXIT Statement Pascal 41
Exiting Edit 11
EXP Pascal 56
EXPECTING ... Pascal 62
exponent Pascal 14, Adv 5
EXPR TYPE ERROR Pascal 62
Expressions Debug 12, AsmLang 4
Expressions and Assignments Pascal
 28
EXT and EXTA AsmLang 24
extended Intro 1,9,11,14, Link 1, Adv
 l8, AsmLang 5
EXTERNAL Attribute Adv 13
EXTERNAL procedures and
 Functions Adv l7

Index

F
factor Pascal 28-29, 32-33, 63, Adv 2
FCB AsmLang 17
FCC AsmLang 16
FDB AsmLang 17
File Errors Edit 11
FILE IS NOT OBJECT OR
 LIBRARY Lib 5
File Names Pascal 44
FILE OPEN ERROR Pascal 62
File Variables Pascal 45
FILEERROR Pascal 49
filename Intro 12, Debug 14, Lib 3,
 Pascal 44, 46, 50-51
files Intro 1-2,7-9,11-14, Exer 1,3-5,7,
 Edit L 7, 10, Compile 1, 8,
 Link 1-2,4,9-10, Lib l-3,
 Pascal 7, 20, 44, 46, 48, 51-53,
 60-61, Adv 22, AsmLang 1-2,
 16
Finding a Text Pattern Edit 12
FOR Statement Pascal 38
formal parameter Pascal 23
FORWARD References Pascal 27
FUNCTION Declaration Pascal 25
Function Invocation Pascal 26
Functions Edit 7

G
GET Statement Pascal 49
Getting A File Edit 10
Go (GO) Debug 10
GOTO Statement Pascal 41

H
heap Pascal 56-58, 60
HEX Procedure Adv 6
HEX WORD PARM MISSING IN
 OBJECT RECORD Link 8
hexadecimal Compile 4, Asm 4, Link
 5-6, Debug 5, 8-9, 12, Pascal
 9-10, 12, AsmLang 3
HexadecimalIntegerConstant
 Pascal 9

I
I/O ERROR ON NEW LIBRARY
 Lib 5
I/O ERROR ON OBJ/LIB FILE Lib
 5
I/O ERROR ON OLD LIBRARY Lib
 5
Identifiers Pascal 9, AsmLang 2
IF Statement Pascal 36
immediate AsmLang 5
IN Operator Pascal 33
indexed AsmLang 5
indirection Debug l5
inherent AsmLang 5
Initialization Adv 27
inline set constants Pascal 29
INPUT and OUTPUT File variables
 Pascal 45
Input/Output Pascal 44
Integer Pascal 4,9-10,12-15,29-31,34,
 49,52-53,55-59,61,63 Adv
 4-5,8,10
Integer/Real Expressions Pascal 30
INTERFACE BLOCK Adv 18
Interrupting Program Execution
 Debug 3
INVALID CONSTANT Pascal 62
INVALID DEBUG MODULE Link
 8
INVALID FACTOR Pascal 63
INVALID IDENTIFIER Pascal 63
INVALID MARKER Link 8
INVALID OBJECT RECORD Link
 9
INVALID ORDINAL TYPE Pascal
 63
INVALID SIGNED TERM Pascal
 63
INVALID STATEMENT Pascal 63
INVALID TYPE DECLARATION
 Pascal 63,
INVALID TYPE IDENTIFIER
 Pascal 63
INVALID VARIABLE REFERENCE
 Pascal 63
 3

Index

K
keyboard Intro 12, Edit 3, 5, 8, 11,
 Debug 4, Pascal 20, 44-48, 51,
 60, Adv 11

L
label Pascal 9, 41, 63, 65, AsmLang 2,
 16, 20-22, 24, 27-28
LABEL ERROR Pascal 63
LABEL RQ'D AsmLang 27
Labels Pascal 9
Language Elements Pascal 8
Language Syntax AsmLang 2
Lazy Keyboard Input Pascal 47
library Intro 2, 8, 18, Link 1, 3-4,
 Debug 14, Lib 1-5
Limitations Link 10
Line Format AsmLang 2
Link Exer 7
Linkage Adv 27
Linkage Directives AsmLang 23
Linker Map Link 5
Linking in DEFT Debugger Debug
 2
LIST AsmLang 25
LIST FILE: Asm 3, Link 3
LIST: Compile 2
listing Exer 5-7, Compile 1-2,4-6,89,
 Asm 1-5, Link 5-6, Pascal 1,
 14,62,65, AsmLang 2, 25-27
Listing Control Directives Compile
 8,AsmLang 25
LN Pascal 56
Load Module Development Intro 8
Location Counter AsmLang 3
LSL operator Pascal 30
LSR operator Pascal 30

M
MAC SPACE AsmLang 28
Macro Definition AsmLang 19
Macro Invocation AsmLang 20
MACRO NEST AsmLang 28

4

Macros AsmLang 19
MAIN AsmLang 17
Major Cursor Positioning Edit 7
mantissa Pascal 14, Adv 5
MARK Pascal 56
Marking and Saving Text Edit 14
MEMAVAIL Pascal 56
Memory Organization Adv 23
MLST AsmLang 25
MOJD operator Pascal 29
Modify Byte (MB) Debug 8
Modify Floating Point (MF) Debug 8
Modify Register (MR) Debug 7
Modify String (MS) Debug 9
Modify Variable (MV) Debug 9
Modify Word (MW) Debug 8
module Intro 2,7-8,11,13, Exer 1, 5,
 Compile 2-8,5, Asm 2, Link
 1-3, 5-6, 8-9, Debug 1, 2, 5,10,
 13, 14, Lib l, Adv 12-21, 27,
 28, AsmLang 23-24
MODULE Block Adv 15
MODULE TOO BIG Link 9
multi-register AsmLang 6

N
NEW Pascal 20, 57
NEW LIBRARY: Lib 2
NO MAIN ENTRY Link 9
NOLIST AsmLang 25
NOMLST AsmLang 26
non-terminator Pascal 2
NOT Operator Pascal 33

O
OBJ I/O ERROR Pascal 64
OBJ NAMES FILE: Link 4
Object Code Development Intro 7
OBJECT FILE I/O ERROR Link 9
OBJECT FILE: Asm 2, Link 4
OBJECT: Compile 2
ODD Pascal fi7
OF Pascal 40

Index

OLD LIBRARY: Lib 2
opcode Asm 4, Pascal 22, AsmLang
 2-3, 5-7, 16-20, 27-28
OPEN ERROR: Lib 5
operand AsmLang 2-3,5,16-20,23-28
OPRND RQ'D AsmLang 28
OPRND SIZE AsmLang 28
OR operator Pascal 30,33
Orange Square Edit 3
ORD Pascal 57
ordinal Pascal 13-17,29,33,38-41,57-
 59,63, Adv 7,22
ORIGIN Link 2
OTHERWISE Pascal 40
OUT OF RANGE Pascal 64

P
PACKED Types Pascal 21
PAGE Pascal 50
parentheses Debug5, Pascal 7, 31-32,
 34, Adv 2
PASCAL? (Y) Link 3
Pattern Processing Edit 12
PHASE Asm Lang 28
PHASE ERROR Link 9
PIC and ROM Adv 27
pointer Edit 8, Compile 4, Pascal 13
 19-20, 29, 43, ,45, 56-58, 60,
 65, Adv 2, 8, 10, 22, 24, 27
Pointer/Integer Conversions Adv 8
pointer type Pascal 19
PRED Pascal 58
printer Intro 12, Exer 4-8, Edit 1, 10-
 11, 15, Compile 1-2,Asm 3,
 Lib 5, Pascal 20, 44, 46-50, 52
Procedure Frame Structure Adv 25
Procedure Invocation Pascal 24
Procedures and Functions Pascal 23
Program Design Development Intro
 6
Program Statement Pascal 7
PUBLIC->EXT AsmLang 27
PUBLIC AsmLang 23
PUBLIC and EXTERNAL Variables
 Adv 18

PUBLIC Attribute Adv 12
PUBLIC Procedures and Functions
 Adv 17
PUT Statement Pascal 50

Q
Quit (QU) Debug 11
Quitting and Reentering Edit 10

R
READ Statement Pascal 51
Reading from a FILEOFChar Pascal
 51
Reading from a Typed File
 Pascal 51
READLN Statement Pascal 52
real Debug 6,8, Lib 1, Pascal 10-14,
 29-30,51,53,55-56,58-59,G3,
 Adv 5-6,23
Real Constant Pascal 10
RECORD field reference Pascal 29
Records Pascal 17
recursion Pascal 22
reference parameter Pascal 24-25
REGISTER AsmLang 28
REGISTER Usage Adv 24
register-register AsmLang 6
Registers Debug 2-5, 7, 9-10
registers Debug 12
registers Debug 15, Adv 22,24,
 AsmLang l
Registers AsmLang 4
relative Edit 2, Compile 5, Asm 4,
 Link 5, AsmLang 2-5, 24
RELEASE Pascal 58
REPEAT Statement Pascal 38
Replace/Insert Edit 8
Reserved Words Pascal 8
RESET and REWRITE Statements
 Pascal 50
RMB AsmLang 17
ROUND Pascal 58

 5

Index

S

scope Debug 15
Scope Pascal 3
scope Pascal 24, 42, Adv 12-1:{, 18
screen Intro 1, 12, Exer 4, 6, 8 Edit
 2-3, 5-7, 12, 14, Compile 2-3,
 8, Asm 2-3, Link 2, Debug 1-
 5, 7, 9, Pascal 20, 44-48, 50,
 52, 56, 62, Adv 21
Scrolling Edit 6
Separate Compilation Adv 14
set difference Pascal 32
Set Expressions Pascal 32
set intersection Pascal 32
set union Pascal 32
SETDP AsmLang 18
Sets Pascal 15
Setting Breakpoints Debug 3
SHIFT-0 Keys Edit 4
SIN Pascal 58
Single Disk Drive Operation
 Intro 14
SIZEOF Pascal 59
SKIP AsmLang 26
SKIPPING TO: Pascal 64
Software Development Intro 6
Source Code Development Intro 7
SOURCE FILE: Asm 2
SOURCE I/O ERROR Pascal 64
Source Listing Compile 4, Asm 4
SOURCE: Compile 2
Special Operators 11
SQR Pascal 59
SQRT Pascal 59
stack Intro 10, Compile 5, Link 6,
 Debug 4, 10, 15, Adv 22-27,
 Asm Lang 5, 20, 24
STATIC Attribute Adv 12
Static variable Allocation Adv 12
Status Line Edit 3
Step (ST) Debug 11
STITLE AsmLang 26
String Assignments Adv 2
String Constant Pascal 10

6

STRING CONSTANT TOO BIG
 Pascal 64
String Relations Adv 3
STRINGCOPY Procedure Adv 3
STRINGDELETE Procedure Adv 3
STRINGINSERT Procedure Adv 4
STRINGPOS Function Adv 4
Strings Adv 2, AsmLang 4
Subrange Pascal 15
subscript Compile 5, Pascal 28, 40,
 adv 2, 10
SUCC Pascal 59
SYMBOL MISSING IN OBJECT
 RECORD Link 9
SYMBOL TABLE FULL Pascal 64
SYMBOL TABLE FULL - ... IN ...
 Link 9
Symbols Debug 13
SYNTAX ERROR Pascal 64

T
term Debug 15, Pascal 14, 63 Adv 2,
 AsmLang 23
terminator Pascal 2
Terms and Indirection Debug 15
Text File Pascal 14, 20
Text Screen Edit 2
The CLEAR Key Edit 7
The Pascal Program Pascal 2
THEN Pascal 36
TITLE AsmLang 26
Title and Subtitle Compile 9
TITLE: Asm 2
TO Pascal ,38-39
Top of Page Compile 8
Trace (TR) Debug 10
TRUNC Pascal 59
Type Conversions Adv 7
Type Extensions Adv 7
Type Identifier Pascal 13
Types Pascal 13

Index

U
UNDEF SYM AsmLang 28
** UNDEFINED** Pascal 65
UNDEFINED - ... IN ... Link 9
UNDEFINED SYMBOL Pascal 65
UNEXPECTED END Pascal 65
UNEXPECTED EOF Pascal 65
UNTIL Pascal 38
Up Arrow Character Entry Edit 8
up-arrow Pascal 29
Use Of INTERFACE Block Adv 19
User Screen (US) Debug 9

V
value parameter Pascal 24-25
VAR Declaration Pascal 22
VAR Parameter Pascal 24
Variable Sizes and the Stack
 Adv 22
Variables Pascal 22
variant Pascal 17-19

W
WHILE Statement Pascal 37
WITH ERROR Pascal 65
WITH Statement Pascal 42
WRITE Statement Pascal 52
WRITELN Statement Pascal 54
Writing A File Edit l0
Writing To a File of Char (Text)
 Pascal 53
Writing to a Typed File Pascal 52

X
XOR operator Pascal 30

7

Index

TM

SYSTEMS INC.

