
EOT/ ASM Ill

128/ 512K COC0-3 DISK
EDITOR/ ASSEMBLER

PROGRAMMING SYSTEM
W/DEBUG

CER-COMP
5566 RICOCHET AVE.

LAS VEGAS, NEVADA 891 10
(702) 452- 0632

COPYRIGHT (C) 1987
BY

WILLIAM E. VERGONA

ALL RIGHTS RESERVED

I

EDT/ASM Ill
REFERENCE MANUAL IHDEX

EDT/Tt.SM-3 Text Editor

Introductions •.•• ••• ••••••••• . •..• .• ..•.•• . •• . ••. .•• 1
Startup Procedures ..••.....•...........••.•.......... 1
Backup Procedures • 1
RAMDISK & 512K•............... 1
What is a Text Editor 2
What is an Assembler . •. 3
Additional Keyboard Characters 3
Definitions of Special Characters 4
Line Entry Format and Printer requests 5

Text Editing Commands ...•... •..•. .. •.•• 6
LIST - list text lines .•.............•............... 6
NLINES - Supress line numbers 6
RESEQUENCE - resequence line numbers 6
DELETE - de lete lines of text 6
SEARCH - search & display selected text string• 7
RPLACE - replace text string withh new string 7
LED:T - edit single text line •....................... 7
AEDIT - enter automatic edit mode 8
EDIT KEYS - edit function key table 8
COPY - copy text lines to new location 9
MOVE - move text lines to new location 9
AUTO - automatic line number generator 9
SIZE - display memory free & in use 10
PRINTER - select printer for output 10
EXIT - exit to Basic 10
NEW - initalize program & clear buffer 10
BRATE - set printer baud rate 11
LF - enable line feed character output 11
RDELAY - adjust automatic key repeat delay 11
SWIDTH - set screen width 12
SCREEN - change screen colors 13
CCOLOR - change screen color/mono mode 13

Text Editor I/O Co-ands ...• . • .••............. 14
TLOAD - load tape f ile into text buffer 14
TSAVE - save text buffer to tape file 14
TAPPEND - append tape file to the end of buffer 14
SKIP - read & check tape file for errors 15
SAVE - save text buffer to disk 15
OPEN - open disk file for output 15
LOAD - load disk file into buffer 16
APPEND - append disk file to end of buffer 16
DRIVE - set disk drive default 16

-i-

I

EDT /ASM Ill
REFERENCE MANUAL INDEX

. • • • • 1 7
GET - input next part of disk file to buffer 17
END - write rest of file to disk & close 17
DIR - display disk directory contents 18
KILL - delete file from disk• 18
ASMBLER - Assemble text buffer or disk file ..••.... . 18

EDT/ASM III ASSEMBLER

ASSEMBLER Information 19
Source line format 19
Arithmetic Operators•..........•. 20
ASSEMBLER Register specifications 21

ASSEMBLER Directives 2 2
ORG <expression, value>•.... 22
END <execution address> ...•..... 23
RMB <expression, value> . ..•.... 23
FCB <value, value, etc > 23
FOB <value, value, etc > ...•....•....... 23
FCC <delim./text/delim> .. •.. 24
EQU <expression>•.............................. 24·
SET <expression> 24
SETDP <page value> 25
NAM <file name & conunent> 25
SPC <value> • 25
PAGE . . • . 2 6
ATH <name & conunen t > 2 6
OPT <DI 0 I LI GI s I p I > • •• • •••••••• • • •• • • •••••••••••• • ••• 2 6
LIB <disk file> 27
DRV <value> ... 27

Conditional Assembly Directives 28
IF <expression> 28
ELSE 28
IFN <expression> 28
ENDIF •..... 28

ASSEMBLER Error Messages 2 9

ASSEMBLER Pass options ...•.....•............. . 30

ASSEMBLER Differences 31
6800 to 6809 code translation 31
Forcing Direct or Extended addressing 31

ii

I

EDT/ ASM Ill
REFERENCE MAllUAL INDEX

EDT/ASM III Debug Commands

DEBUG Introduction . ••..•...•... • ..••..........•... •• 32
Loading & Executing DEBUG .•. . . .• ..•.......•.•.•.•... 32
DEBUG Conunand sununary . ••. •.• • .•..•...•...••••••..... 32
Error codes ...••..•.•.......•.•.•...••.•. . . . •.. 3 2
Memory Examine & Change • •.. . . . • .• . ..••....• . ..•..... 3 3
Set Break Points • . . .• ..• ••..... . •. . . . • 33
Remove Break Points • •. ...•.............. 34
Register Display & Setting contents ..•. . ..•. 34
Goto Address .•.••••••.•.•.....•• ••.............. 3 5
Dump Memory . . .••....•.•.....................•....... 3 5
Fill Memory with data .•.............•............... 36
Find byte sequence•. 36
Block Move•••..•• . •.•........................... 36
Disassemble memory•............... 37
Exit to Basic ..•........... 37
Initialize DEBUG • ••• • ...•............... 37

A Short Tutorial on using EDT / ASM III

Disk File Descriptions .. . • . •.• .••• •. 38

Tutorial ...•. •..••............... . .•.•.... 39

-iii-

•

INTRODUCTION

EOT/ ASM Ill
INTRODUCTION

This manual is written to acquaint the user with the features
of the "EDT/ASM-3" TEXT EDITING, ASSEMBLY LANGUAGE PROGRAMMING
SYSTEM. It should be noted by the user that this is a complex
program and cannot be fully understood with a single reading.
Because it can do so much, you will NOT master EDT/ASM-3 in a few
minute s. You WILL be able to start using it quite quickly though.

STARTUP PROCEDURES

This program is a M6809 machine language program written for
a Color Computer III using the R.S . Disk System. To execute the
program using R. S Disk simply load the program using the "LOADM"
command Example: LOADM"EDTASM3"<enter>. This will cause the file
to be loaded and automatically executed, the program will come up
wit h the program introduction message and then the "READY" prompt.
You are now ready to enter commands to the Text Editr. If an
error occurs while trying to load the program, check the disk
directory to make sure you are using the same file name as on the
disk. Those commands that specifically relate to disk operation
are listed separately at the end of the text editor command
section.

BACKUP PROCEDURES

R.S . Disk : Make a backup copy using the "BACKUP" command .
Put the backup disk in a safe place . Always use the original

disk to load and execute the program. Should the original disk
fail, use the "Backup Disk" you created to restore the original
disk. The original disk comes recorded on both sides for your
added protection against a disk failure. The only way the
original disk should be written to is with a "BACKUP" command
using the backup disk you created to restore the original .

RAMDISK & 512K

If your COC0-3 has 512K of memory installed, EDT/ASM- 3 will
automatically install 2 RAMDISKs as drives 2 & 3 . These RAMDISKs
can be used the same as normal disk drives only they are much
faster. You can use then to : save temporary files, assemble
source files and with files larger then the memory buffer. The
RAMDISK storage format is compatible with our own RAMDISK p r ogram
available separately for only $19.95 . When using our R.AMDISK,
files stored in them will be available when you enter or leave
EDT/ASM- 3 as well as any of our disk programs.

Cer-Comp does not guarantee this software in any way and will not
be liable for any damage resulting from its use.

-1-

•

EDT/ ASM Ill
IlfTRODUCTIOR

lfBAT IS A TEXT EDITOR?

Since EDT/ASM-3 creates normal ASCII files, ANY text material
can be edited . That includes BASIC programs, M/L programs and
anything else composed of printable characters. You can:

COMPOSE TEXT
STORE TEXT ON DISK OR TAPE
LOAD IT BACK FROM DISK OR TAPE
CHANGE TEXT
ADD TO TEXT
MOVE TEXT AROUND
DELETE SOME OR ALL TEXT
COPY TEXT
APPEND PREVIOUS TEXT
SEARCH FOR STRINGS IN THE TEXT

Additionally, the EDITOR provides:

AUTOMATIC LINE NUMBERING
SCROLLING UP AND DOWN
INSERT TEXT IN A LINE
DELETE TEXT IN A LINE
KEY OVER CORRECTION OF TEXT
DISK DIRECTORY DISPLAY WITHOUT LEAVING THE EDITOR
EDIT MORE TEXT THAN YOU HAVE MEMORY TO HOLD
KILL FILES FROM WITHIN THE EDITOR

So you see that if it can be done to text, EDT/ASM-3 can do it.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-2-

I

EDT/ASM Ill
INTRODUCTION

WHAT IS AH ASSMEBLER?

The ASSEMBLER portion of EDT/ASM-3 is the part that creates
the Machine Language program. It processes the Source file
created or edited by the Text Editor and creates a LOADM or CLOADM
binary file on either Tape or Disk.

The ASSEMBLER has several directives
control listing formats, conditional assembly,
and include source library files from disk.

that enable
addressing

Here is a partial list of the functions in the ASSEMBLER:

SET PROGRAM ORIGINS
SET OR EQUATE LABEL REFERENCES
RESERVE MEMORY AREAS
CREATE CONSTANT DATA AND TEXT AREAS
GENERATE FORMATED PROGRAM LISTINGS
CONDITIONAL ASSEMBLY CONTROL
LIBRARY FILE CONTROL
BINARY CODE FILE GENERATION
ASSEMBLY ERROR DETECTION

Additional Keyboard Characters

it to
modes,

EDT/ASM-3 has several keyboard characters that are not
normally available on the coco. Some of the additional keys
generate the same characters as the arrow & shift keys did
previously. The reason for this is, when editing, which uses the
arrow and clear keys, you can still generate these key codes if
necessary .

New Keyboard Characters

Clear/O = \ ($SC shift/clear) Clear/l = ($7C *n/a)
Clear/2 = - ($7E *n/a) Clear/3 = ($SB shift/down)
Clear/4 =] ($SD shift/right) Clear/5 = ($SE up/arrow)
Clear/6 = ($SF shift/up) Clear/7 = ($60 *n/a)
Clear/8 = { ($7B *n/a) Clear/9 = } ($7D *n/a)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-3-

I

DEFINITIONS:

EOT/ ASM Ill
TEXT EDITING COMMANDS

DISK TEXT EDITOR
INSTRUCTIONS

\ - A ",Reverse Slash" is displayed when the SHIFT & "@" keys
are depressed as a delimiter for the 'SEARCH' & 'REPLACE
commands. Also see editor command summary.

() - items enclosed within these characters are required by
that command to perform correctly.

[] items enclosed within these characters are considered as
optional, when used they must be in the required order.

< > - items enclosed within these characters are comments.

Enter - is used to denote the "ENTER" Key and is used to signify
the completion of a line entry.

- "Dash" is used as a delimiter between line numbers.

<- - Left arrow is recognized as a Backspace.

BREAK is used for Break control at any time to return to
'READY'. If BREAK is depressed during a line entry or
edit, any changes or entries will be ignored.

Any key can be used to stop the present output and it will be
resumed upon entry of any key but "BREAK".

All commands can be abbreviated by using the first two
characters of the command followed by its normal parameters.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-4-

I

LINE ENTRY:

EDT/ ASM Ill
TEXT EDITING COMMANDS

Enter a line number, followed by a space and text ending with
the "Enter• key.

The line buffer is preset to 255 characters and the cursor
will not advance past the last character position, nor will it
backspace beyond the first character position. Ten characters
before the end of line a medium tone beep will be heard and a
higher tone beep will be heard at the end of the line. Any time
during line entry if an invalid control character key is entered a
double low tone beep will be heard.

Entry of a line number over four digits will result in only
the last four digits being accepted .

Entry of a line number followed by "Enter" will delete the
line previously entered using that line number.

Entry of a new line using a previously entered line number
will cause that line to be replaced with the new line.

Entry of a line with a line number between two previously
entered line numbers will insert the new line between them.

Pri nter Requests :

Any time the printer is requested for an operation the status
of the printer is checked for ready. If the printer is found to
be in a "NOT READY CONDITION", a message to that effect will be
displayed and the program will wait for any key on the keyboard to
be pressed, except the "BREAK" key. IF the "BREAK" key is
depressed the printer output will be aborted. This will allow
those users not having a printer to abort an accidental printer
request and not hang up the system.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-5-

•

EDT/ASM Ill
TEXT EDITIRG COMKAllDS

LIST COMMAJfD

with
line
one.

SYNTAX : LIST [line number) (-) [line number)

Entry without line numbers will list the entire file. Entry
a single line number will list only that line . Entry of two

numbers will list from the first line number to the second
This is very similar the the "Basic" list function .

Example: LIST 100-JOO<ENTER>

RERUMBER COMMAND

Syntax : RENUMBER [1 digit increment) (starting line #J

Causes the memory file to be renumbered, if no incre~ent is
specified a value of 10 is used. If a starting line # is not
specified the increment value is used. If the line ts exce ed 9999
before the end of file is reached, the increment value is
automatically decreased. The resequence is repeated until a
workable va lue is reached.

Example: RESEQUENCE 5 100
Re-sequence the line numbers in the file begi n with '100' and
increment each line number by '5'.

DELETE COMMAND:

Syntax: DELETE <begin line#>-<end line# >

The delete function allows large segments of the text buffer
to be removed without having to enter each line number to be
deleted . If no line specifications are entered the user will be
prompted as to whether the entire contents of the buff er are to be
deleted. This is mainly to prevent the accidental deletion of the
text buffer contents.

Example: DELETE 100-199 <Enter>
Remove all the lines in the text buffer between and including
lines 100 thru 199.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-6-

I

EDT/ ASM 111
TEXT EDITING COMMANDS

SEARCH STRING COMMAND:

Syntax: SEARCH [line #](-)[line #]\[string)\

Searches for all occurrences of the string between the
delimiters (Shift @) . All the lines containing the specified
string will be displayed. If the optional start & stop lines is
omitted the search will begin at the beginning of the file to the
end of the file. If only the starting line# is specified it will
search to the end of file.

Example : SEARCH 100- 199 \TEST\
List all the lines containing the string 'TEXT' between lines
100 thru 199.

REPLACE STRING COMMAND:

Syntax: RPLACE (line #](-)(line #] \(string)\{string)\

This function will replace all occurrences of the first
string between delimiters (SHIFT @) with the second string. If
the optional line i's are not specified the entire file will be
used, if only the starting line t is specified only from there to
the end of file will be used, and if both start & end line #'s
are specified only the lines including them will be used.

Example: RPLACE 100-999 \TEST\TESTER\
This would tell the editor to replace all occurrences of
'TEST' between lines 100 and 999 with 'TESTER'.

LINE EDIT COMMAND:

Syntax:

Causes
cursor to be
EDIT mode is

LEDIT (line #]

the line number specified to be displayed and the
positioned under the first character of the line. The
then entered, see edit functions under 'AEDIT' .

Example: LEDIT 110 <Enter>
Edit line number 100 using the edit functions.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-7-

I

AUTO EDIT COMMAND:

EDT/ ASM Ill
TEXT EDITING COMMANDS

Syntax: AEDIT [line #]

Causes the automatic edit mode to be entered, if the starting
line # is specified the edit function will continue from that line
until the end or a cancel edit operation character is entered. All
the edit commands are the same as LEDIT (line edit). If no change
is required on a line press the Down-Arrow key and the next line
will be brought up for editing. If the line is to be deleted just
enter Sbift"Clear• .

Example: AEDIT 100 <Enter>
Begin automatic line editing starting at line 100.

EDIT FUNCTION KEYS

FUNCTION DEPRESS

MOVE CURSOR RIGHT Right arrow key
MOVE CURSOR LEFT (backspace) Left arrow key
MOVE CURSOR RIGHT 1 WORD Clear & Right Arrow
MOVE CURSOR LEFT 1 WORD Clear & Left Arrow
INSERT 1 SPACE Shift & Up arrow keys
MULTIPLE CHARACTER INSERT on/off Shift & @keys
DELETE 1 CHARACTER Shift & Down arrow keys
INSERT WORD (8 spaces) Clear & Up Arrow keys
DELETE WORD (right) Clear & Down Arrow keys
MOVE CURSOR TO END OF LINE Shift & Right arrow keys
MOVE CURSOR TO BEGIN OF LINE Shift & Left arrow keys
GOTO NEXT SEQUENTIAL LINE Down arrow key
GOTO PREVIOUS LINE Up arrow key
END LINE AT CURSOR POSITION Shift & Clear keys
REPLACE OLD LINE WITH NEW Enter key
EXIT FROM EDIT MODE Break key

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-8-

COPY LINES COMMAND:

EDT/ASM Ill
TEXT EDITING COHMAHDS

Syntax: COPY (from linet)-(to linet) (new location linet)

The copy function allows portion of the current text buffer
to be copied to another portion of the file. The lines included
in the specifications 'from' and 'to' are copied to the new
location line following the destination line. The portion of the
file copied is left intact and the file is automatically
renumbered upon completion of the copy .

Example : COPY 1100-1345 100
This would place a copy of the lines from 1100 thru 1345
following line 100 .

MOVE & DELETE LINES COMMAND:

Syntax: MOVE (from linet)-(to linet) (new location linet)

The MOVE command works almost exactly the same as the 'COPY'
function only the original lines 'from- to' are removed from the
file after they are copied to the new location. The file is
renumbered the same as in the copy function .

Example:
This
line

MOVE 1100-1345
would move the
following line

100
lines from 1100 t hru
100.

AUTOMATIC LINE NUMBER COMMAND:

1345 to the

Syntax: AUTO (1 digit increment value) (line #)

next

Causes the computer to type sequential line numbers
incremented by the specified 1 digit value. If not specified the
line # will be incremented by 10 . Also an optional starting line #
can be specified. This is used for entering sequential text lines
without having to specify line numbers, they will automatically
be typed after each line is entered.

Example : AUTO 100
Enter auto line typing beginning with line '100' with a
default increment value of '10'.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-9-

I

EDT/ ASM Ill
TEXT EDITING COMMAHDS

MEMORY SIZE COMMAND:

syntax: SIZE <Enter>

Displays the amount of memory in use, followed by the amount
of memory remaining in the text buffer .

PRINTER OUTPUT COMMAND:

Syntax: PRINTER (command line)

Specifies
the printer.
ease of use.
this command
<enter>

that the next output
Another command may

If you want a printed
must be used prior to

Example : PRINTER NLINE LIST<ENTER>

operation will be output to
follow the PRINTER command for
listing of the memory file,
the LIST command, ex: PR LIST

This would tell the editor to list the file to the printer
with no line numbers.

EXIT TO BASIC COMMAND:

Syntax : EXIT <Enter>

Causes control to return to 'BASIC'. Once EDT/ASM-3 is
exited you cannot return or re-execute the program, it must be
re-loaded from disk. If an output file is open the rest of the
file will be written to the disk before returning to Basic.

NEW FILE COMMAND:

Syntax: NEW <Enter>

Causes the memory file buff er to be cleared and all pointers
reset to the cold start condition. All previously entered
information will be lost . You will be prompted with the message
"ARE YOU SURE?", if you enter any character other than a "Y" the
command will be ignored. If an output file is open the rest of
the file will be written to disk before performing the new
function.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-10-

I

EDT/ ASM 111
TEXT EDITING COMMANDS

PRINTER BAUD RATE COMMAND:

Syntax: BRATE <value> Set Printer baud rate

This command will allow users having printers that run at
baud rates other than 600 baud, to change printer rates while
under EDT/ASM-3 control. The baud rates are set by entering a
value from zero thru seven (0-7) to represent the desired rate.
The rate values are as follows : 0=300, lt=600, a=1200,

3 , .. 2400, '/1=4800,S-f =9600. '= /'j)..00

Example: >BR S<enter> Set baud rate to 4800 baud

PRINTER LINE FEED COMMAND:

Syntax: LF<enter> Allow line feed character output

This function is for those users having printers that do not
automatically line feed upon receipt of a carriage return
character . Normally line feed character output is inhibited, once
this command is entered they will be output for each line and
cannot be inhibited once enabled.

AUTOMATIC KEY REPEAT DELAY COMMAND:

Syntax: RDELAY <value>

This command allows the user to program whether or not to
allow the keyboard keys to automatically repeat and if so, how
fast or often it is repeated. If the command is followed by a
value of "0" then automatic repeat will be disabled entirely. If
a value between 1 and 47 follows, that value will be used to
determine how fast the keys will repeat. The smaller the number
the faster the key will repeat. The default value is around 15
which causes a repeat at a reasonable rate. Each individual will
have to set this to their own personal taste. The delay from the
first time a key is pressed until it begins to repeat is
approximately 2 seconds and is not adjustable.

Example: RD 5 <enter> Set Repeat Delay to 5 (fast)
RD 0 <enter> Turn Auto Repeat off

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-11-

•

EDT/ ASM Ill
TEXT EDITING COJiOUUIDS

SCREEN WIDTH (Characters per line)

Syntax: SW <value>

The SW command allows the user to set the number of
characters displayed per line on the Screen . This can be varied
from 32 to 80 characters per line in defined steps . The default
d isplay comes up in 80 character mode by 24 lines at program
startup time, but can be changed to one of 8 different formats.
The following values correspond to the number of display
characters per line.

1 = 32 (192)
2 = 40 (192)
3 = 64 (192)
4 = 80 (192)

5 = 32 (225)
6 = 40 (225)
7 = 64 (225)
8 = 80 (225)

The numbers in the parenthesis represent the number of
vertical scan lines used on the display. The 225 mode gives an
extra pixel width between lines so that the decenders on
characters will not appear to touch the tops of the letters on the
line below. It makes for a little better display. If your TV or
Monitor can't handle the extra lines, select one of the 192 line
modes.

Example: SW 8 <enter> Set width to 80 chars/line (225)
SW 3 <enter> Set width to 64 chars/line (192)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-12-

•

EDT/ ASM 111
TEXT EDITING COMMANDS

SCREER COLOR SELECT:

Syntax: SCREEN <Foreground> <Background>

This command allows the user
(character color) and Background colors
program defaults to Black characters on
You can select any color you like from 0
your COC0-3 manual for some sample color

to select the Foreground
for the display. The
a Buff Background (0,63).
to 63, see page 297 of
values.

Example : SC 63 0 <enter >
SC 18 0 <enter>

BUff chars/Black Background
Green chars/Black Background

CHANGE COLOR/MONOCHROME MODE:

Syntax: CColor <enter>

This command allows the user to force the computer to supress
the color output to the display or to Enable the color output. By
default the program automatically select Monochrome mode when
first started up.

Example: CC <enter> Change screen color

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

- 13-

•

EDT/ ASM Ill
TEXT EDITOR I/O COMMANDS

~APE PILE LOAD COMMAND:

Syntax: TLOAD (file name) <Enter>

This is the tape file load command and is used to load
'ASCII' formatted 'BASIC' files or files previously saved by the
editor. The file name can be omitted and if so it will attempt to
load the next file on the tape. If an error should occur or an
attempt to load an invalid file type an error message will be
displayed and the load aborted. Note that quotation marks are not
used around the file name.

Example: TLOAD TEXTl <Enter>

TAPE FILE SAVE COMMAND:

Syntax: TSAVE (file name) <Enter>

The TSAVE command is used to save the contents of the current
text buffer in an 'ASCII' formatted tape file . Here again the
file name can be omitted but is recommended for ease of file
identification . The output file is fully compatible with the
'BASIC' tape format and can be reloaded with the BASIC 'CLOAD'
command.

Example: TSAVE TEXTl <Enter>

TAPE FILE APPEND COMMAND:

Syntax: TAPPEND (file name) <Enter>

The TAPPEND command allows a tape file to be appended to the
end of the current text file in memory. The file name can be
omitted and if so it will attempt to load the next file in the
tape.

Example: TAPPEND TEXT2 <Enter>

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

- 14-

EDT/ ASM Ill
TEXT EDITOR I/O COMMANDS

TAPE FILE SKIP/ CHECK COMMAND:

Syntax : SKIP <file name>

This command will allow the editor to search for and skip
over tape files much the same as BASIC does . If an error is
encountered while reading a file an error message will be
displayed and the tape stopped. This can be useful for checking
tape files as well as positioning tape for file additions. If a
file name is used with the command it will read tape until the
file name is found, when it is found the file will be read and the
tape stopped at the end of the file . If no file name is used it
will simply skip the next file on the tape.

Example: SKIP DEMO$ <Enter>
This would tell the editor to skip past the file DEMO$.

DISK FILE SAVE COMMAND:

Syntax: SAVE [file name.extension:disk drive)

The SAVE command writes the file with the specified file name
to disk. If no disk drive/id is entered a default drive of "0" is
assumed. The file extension is assumed to be a "DAT" file if not
specified. The entire file is saved from the text buffer. If the
output file is already in use from a previous file that was larger
than the text buffer an error message of 'OUTPUT FILE ALREADY IN
USE' will be displayed.

Example: SAVE BIOIA.ASM

DISK FILE OPEN COMMAND:

Syntax : OPEN [file name.extension:disk drive]

The OPEN command opens a disk file for OUTPUT! it is mainly
used when you are working on a file that will fit in the buffer
and you are running out of memory while trying to move, copy or
add text to the file. This will allow you to open up a file and
ROLE part of the text out to give you more space to work with.

Example : OPEN DATAFILE:2 <enter>

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-15-

I

EDT/ ASM Ill
TEXT EDITOR I / O COMMANDS

DISK FILE LOAD COMMAND :

Syntax: LOAD [file narne.extension:disk drive)

The LOAD command opens a disk file for input to the text
buffer, if line numbers are not included in the text file they
will be added. If the file is larger than the available text
buff er the user will be prompted for an output file drive and
name. If an output file cannot be opened the input file will be
closed and only that portion of the file will be accessable for
editing. When a duplicate output file is encountered it is
automatically removed by the R.S disk system so be aware when
specifying file names.

Example : LOAD BIOIA:3

Open the file BIOIA on drive #3 for input and read it into
the available text buffer.

DISK FILE APPEND COMMAND:

Syntax: APPEND [file narne.extension :disk drive]

The APPEND command adds the file to the end of the present
memory file. The Disk drive and file extension options are the
same as the'LOAD' command. If the input file is already in use an
appropriate error message will be displayed.

DISK DRIVE DEFAULT

syntax: DRIVE <number>

The Drive command allows you to specify a default disk drive
for Disk commands. The value can be in the range of 0 to 65, this
allows Hard Disk users to use up to a 10 Meg. drive.

Example : DRIVE 3

CER- COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-16-

EDT/ ASM Ill
TEXT EDITOR I / O COMMANDS

ROLL BUFFER OUT TO DISK

Syntax: ROLL <ending line J>

This function is used with files that are larger than
the available text buffer. When editing such a file, this
function allows the user to write a portion or all of the current
text buffer out to the new disk file. If an ending line number is
not entered the entire buffer contents are written out to the
file. After writing that portion of the file another portion of
the input file is read into the text buffer for editing. If the
end of the input file is found the user will be notified by the
message ' INPUT FILE CLOSED '

Example : ROLL 2000

This would tell the editor to write only those lines
from 0001 to 2000 to the output file and read the next portion of
the input file.

GET MORE TEXT FROM FILE

Syntax : GET

This function allows the user to input t he next portion
of the input file to fill the rest of the buffer. It would be
used when a portion of the current buffer was deleted or to get
the next line of the input file a single line at a time if the
buffer is already full. This would allow the user to get t~e next
few lines of a file to complete a logical block for an assembly
language program for editing. No parameters are used in the
command line.

END OF FILE EDIT

Syntax: END

This function notifies the editor that the user is
finished with the current file for editing . If the input file has
not been completely read it will be appended to the current text
buffer contents and the rest of the file will be written to the
disk and both the input and output files will be closed after all
data from the input file has been written to the output file.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-17-

•

EDT/ ASM Ill
TEXT EDITOR I / O COMMANDS

DISK DIRECTORY DISPLAY COMMAND :

Syntax: DIR <drive number>

The DIR command allows the user to examine the directory on a
specified disk drive. If the drive number is not specified a
default drive of "O" is assumed . The disk directory is displayed
the same as if the command had been executed from basic and the
"Shift @" must be used to pause the display during this command .

Example: DIR 2

This would list the entire directory from the disk on drive
number two.

KILL DISK FILE COMMAND:

Syntax : KILL [file name.extension:disk drive]

The KILL command allows you to remove unwanted files from the
specified disk. It works basically the same as the Basic "KILL"
command except the file extension will automatically default to a
"DAT" extension. If not specified the disk drive will
automatically default to drive "0". Any errors will be reported
the same as normal disk errors.

Example: KILL BIOIA.TXT:3

Remove the file BIOIA.TXT from the disk on drive number 3.

ASSEMBLE FILE COMMAND:

Syntax: ASMB [file name.extension:disk drive]

This command causes the Assembler mode to be entered.
Optionally a disk file can be specified for assembling instead of
using the text buffer. If not specified it assembles the text
buff er as it normally would except that there cannot be an input
disk file open, if so an error message will be displayed and
control returned to the editor.

Example: ASMB DEMO.TXT:l
Example : ASMB (assemble text buffer)

The first examples would be used
disk with the name "DEMO . TXT" on drive #1.
be used when you want to assemble the file

to assemble a file from
The last example would

in the text buffer.

CER-COMP 5566 RICOCHET AVE . LAS VEGAS, NEVADA 89110

-18-

I

EDT/ASM Ill
CER-COKP EDT/ASM-3 ASSEMBLER OPERATIOK

The EDT/ASM-3 assembler will assemble 6809 assembler source
code and generate executable binary object code either to tape or
disk. It will also cross assemble standard 6800 assembler source
code to 6809 code compatible object code. These instructions
assume that the user is familiar with assembly language
programming and, in particular, the language of the M6809
Microprocessor .

Sourc e Code:

EDT/ASM-3 will assemble source files from either the text
editor memory buffer, disk files or both (using the LIBrary
directive) . If the files do not contain line numbers, they will
automatically be generated by the assembler. The source line
format for EDT/ASM-3 is the same as the standard Motorola
Assembler which contains a LABEL (optional), OP CODE, OPERAND,
COMMENT (optional) . If the line contains a LABEL, it must begin
in the first column of the line, the op code is seperated from the
label by at least one space character. If a label is not used on
the line, the OP CODE or Directive must begin in the second column
position . Each element in a source line, must be seperated from
the preceeding element by at least one space character, this is
what is known as a free form assembler format. Example:

0010
0020
0030
0040
0050

NAM TEST
ORG $1000

START LOA #1000
ASLA
END

Notice that the first space following the line number is not
significant, this is because line numbers, when inserted or
deleted automatically remove the additional space . Therefore the
label "START" begins in column one and a single space is used to
seperate the label from the op code "LOA", no matter if the label
is 2 characters or 6 characters long. Also notice that the
Directives NAM, ORG and END begin in the second column position
since there is no label preceeding them, this is the same format
as an OP CODE line in a source file.

There are several Assembler Programming books availabl e for
the 6809 processor, we suggest that if you are not familar with
the 6809 processor and its instructions, you should use one of the
books available from Radio Shack and other sources

CER-COMP 5566 RICOCHET AVE . LAS VEGAS, NEVADA 89110

-19-

•

EDT/ ASM Ill
CER-COMP EDT/ASM-3 ASSEMBLER OPERATION

Arithmetic Operators ~ HWllber Bases

The following operations are permitted during assembly time,
which means that an expression is evaluated during the assembly
and thus becomes a part of the program being assembled. Numbers
may be expressed in one of three bases, which is specifie d by a
specia l character for Hex and Binary. The default is decimal.

+

*
I

$

'

Addition
Subtraction
Multiplication
Division

Hexadecimal, numbers 0-9 & A-F may follow
Binary numbers 0 or 1 may follow

All operations are evaluated from left to right in the order
in which they appear. All operations will be converted to 16 b i ts
and truncated t o 8 bits for required instructions.

CER-COMP 5566 RICOCHET AVE . LAS VEGAS, NEVADA 89110

-20-

EDT/ ASM Ill
CER-COMP EDT/ASM-3 ASSEMBLER OPERATION

Register Specification:

The 6809 has 9 registers that are accessible to the
programmer, four of which are 8-bits and the other five are
16-bits. They are referenced in this assembler by the following
notation:

(8) A
(8) B
(8) cc
(8) DP
(16) x
(16) y
(16) u
(16) s
(16) PC,PCR

Accumulator A
Accumulator B
Condition Code register
Direct Page register
'X' index register
'Y' index register
User Stack pointer
System Stack pointer
Program Counter & Program Counter RELATIVE

The Program counter (PC) can be used to instruct the
assembler to assemble code in a Position Independent manner when
used in the Indexed mode. When the Program Counter is referred to
as 'PCR' it instructs the assembler to determine the offset from
the current PC to some absolute address, thus making the code
executable anywhere in memory.

EXAMPLE: LEAX MSGl,PCR

This would determine the difference between the current PC
and the absolute address of MSGl and use it as the offset for the
PC register to calculate the effective address.

EXAMPLE : LEAX MSGl,PC

This would use the absolute address of MSGl to add to the PC
register and use that as the effective address to be loaded in the
X- reg. This code is not position independent.

CER-COMP 5566 RICOCHET AVE . LAS VEGAS, NEVADA 89110

-21-

•

EDT/ ASM Ill
CER-COHP EDT/ ASM- 3 ASSEMBLER OPERATION

Assembler Directives:

Beside the standard machine language mnemonics EDT/ASM-3
supports several Directives. They are instructions for the
assemble r only and most of them do not assemble into code. The
same format applies to these directives as the normal op codes.
Brief explanations are given for the directives supported by
EDT/ASM-3 .

ORG
END
RMB
FOB
FCC
FCB
EQU
SET
SETDP
PAG
SPC
NAM
OPT
ATH
LIB
ORV
IF
IFN
ELSE
END IF

define new ori gin (PC=)
signal the end of the source file
reserve memory bytes
form double byte
form constant character
form constant byte
assign value to symbol
re-assign or assign value to symbol
set a value for the DP register
s kip to top of next listing page
s kip specified number of lines
specify program name (must be first line of program)
set or reset assembler options
define author l ·ine contents, printed at bottom of page
include a disk library file
set default disk drive number
conditional assembly test (true)
conditional assembly test (false)
conditional assembly option
end of conditional assembly segment

ORG <expre s sion,value>

The ORG directive causes a new origin address to be used
for the code which follows the directive (PC= address). The
value may be a number or a label that has been previously
referenced in the source file. It can not be a reference to
a label that is later defined in the program.

Example: 0010 ORG $1000

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-22-

I

EDT/ ASM Ill
CER-COMP EDT/ ASM- 3 ASSEMBLER OPERATION

END <execution address>

The END directive tells the assembler that the end of
the source input fil e has occured. The END directive also
allows for the assignment of a starting execution address for
the b inary disk file i f c r eate d. The e xecution address will
default to the first byte of code produced by the assembler
if not specified. A label can b e used for the execution
address if previoulsy defined in the program.

Example: 0100 START LOA #55

0250 END START

RMB <expression , value>

This directive causes the assembler to reserve memory
f or variable or data storage. No code is produced o~ly the
address counter is changed, it should not be used in the
middl e of a program except if the object is generated to
disk, a tape file will not handle the address change
correctly as Basic does not have a provision to handle it.

Example: 0040 XTEMP RMB 2 temp storage for ix

FCB <v a lue , value , value , etc.>

This dire ctive causes an expression to be evaluated and
the resulting least significant 8 bits is stored in memory or
generated wit hin the object file . Multiple values may be
·used to generate severa l bytes of data each one seperated by
a comma .

Example : 1120 COLORS FCB $11,$22,$33,$55
1120 FCB 55 lines per page constant

FOB <va lue,value , value , etc.>

This d i rective i s e ssentially the same as the FCB
dire cti ve only the expre ssio n is evaluated to 16 bits of data
or 2 bytes for each expression .

Ex ample: 1120 DECIML FOB 10000,1000,100,10,1
1130 FOB $1844

CER- COMP 5566 RI COCHET AVE . LAS VEGAS, NEVADA 69110

-23-

•

EDT/ ASM Ill
CSR-COMP EDT/ ASM- 3 ASSEMBLER OPERATION

FCC <delimiter text string same delimiter>

This directive is used to create strings of characters
in the object file for messages or lookup tables etc. Each
character in the text string uses one byte of memory space.
The t wo allowable formats are: a count followed by a text
str ing in which case if the string is less than the count
specified it is f il l ed with spaces. The second form is where
a tex t string is used by enclosing it between two characters
(delimiters) that are the same character.

Example : 1390 ERRMSG FCC "AN ERROR HAS OCCURRED"
1400 FCC :This is a valid ''string":

label EQU <express ion>

This directive is used to equate a symbol or label to an
expression or value, no code is generated. A label must be
used and an expression or value must follow the directive.

Example: 1230 LINEND EQU $04
1240 PROGEND EQU ENDADD-BEGIN

label SET <expre s s ion>

This directive is used to set a symbol or label to an
expression or value, much the same as the EQU directive. The
difference is that a symbol may be SET to differert values
within a source file while a symbol may be EQUated only once.
The current value of a symbol is the last value SET. A label
is required and an expression or value must follow the
directive.

Example : 1230 DSKFLG SET 1

2020 DSKFLG SET 0 no more disk data

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-24-

I

EDT/ ASM Ill
CER-COMP EDT/ ASM-3 ASSEMBLER OPERATION

SETDP <page value>

This dire ctive is used to tell the assembler which
memory page it is to use for direct page addressing. The
de fault value is set to 00 for 6800 compatibility . The SETDP
directive doe s not generate any code to alt er the DP r egist er
value of the processor, it only affects the range of memory
that the assembler allows for direct page addressing. For
example if "SETDP $1 0 " is used, the range of memory from
$1000 thru $1FFF will be selected. Which means that the
assembler will select the direct addressing mode of any
instruction that accesses this range of memory as long as the
SETDP value is not changed. This directive can be used as
often as desired within a program, but remember that you must
generate the correct assembler code to alter the processors
DP register separately.

Example: 0100
0110
0120

SETDP $OF set DP range to $FOO-$FFF
LOA #$OF set DP=$0F
TFR A,DP

NAM <file name & comment>

This directive is used to assign a title
assembler listing and is also used for the disk or
name. It must be the first line of any program and
be used once in the program file .

Example: 0010 NAM DISKSORT.BIN disk sort routine

SPC <value>

to
tape
can

the
file
only

This directive is used to tell the assembler to space
down the specified number of lines in the output listing.

Example: 1490 SPC 3 space down 3 lines

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-25-

•

PAG

the
has

EDT/ ASM Ill
CER-COMP EDT/ ASM-3 ASSEMBLER OPERATION

This directive tells the assembler to skip to the
next page in the output listing. If the "NOPAG"
been set the directive will be ignored.

Example : 4000 PAG skip to next page, new section

top of
option

ATB <name ,comment>

This directive will allow the author or a comment line
to be printed at the bottom of each page in the output
listing. Any text string following the directive up to 50
characters can be used for the Author line.

Example: 0025 ATH Ralph Smith "CODER"

OPT <sp ecifiers>

The OPT directive determines how and if an object code
file is to be generated. There are two options for
generation object code, either one or both may be specified
they are:

D Disk binary file creation.
0 Object tape binary file creation.
G Generate data for FCC,FCB and FOB (default)
S List symbol table after listing
P List assembled data in page format (default)
L List assembled data (default)

These options can also be reset by the use of the "NO"
option, that is to reset the Listing option you would simply
use "OPT NOL " . For a Tape or Disk file to be closed correctly
the option must be set at the END directive.

Example: 0020 OPT NOG

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-26-

•

EOT/ASM Ill
CER-COMP EDT/ASM-3 ASSEMBLER OPERATION

LIB <disk file name . ext:drive>

The LIB or LIBRARY directive is used to allow a disk
"library" source file to be included in the assembly of the
source file currently being assembled. When encountered
during assembly, the assembler reads source lines from the
specified file until the end of file or an END statement is
encountered. It . will then resume assembling on the next line
following the LIB directive. The LIB directive may be used
within an IF/ELSE conditional statement to selectivly include
Library source files . LIBrary files may also be nested up to
9 levels, that is a LIB'ed file may call another LIB file up
to 9 levels deep.

Examplel : 2300 LIB DISKIO.DAT:3

DRV <value>

The ORV directive allows the user to change the default
disk drive number from within a source file. The value may
be greater than 3 so that hard disk users can access to that
storage. The ORV directive can be changed at any time so
that the input, output and library files may be called or
output to any drive . This give the capibility to assemble
almost an unlimited size source file.

Example: 0200 ORV 3

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-27-

•

EDT/ ASM Ill
CER- COMP EDT/ ASM-3 ASSEMBLER OPERATION

Conditional Assembly Dire ctives

EDT/ASM-3 supports the use of "conditional assembly", the
ability to assemble only the specified portions of a source file.
This ca n be use ful for assembling s everal diffe r ent versions of a
program whe re specified functions or different routines may be
needed for tape or disk versions of a program, etc . .

IF <expression> • ••.• ELSE ENDIF

The IF directive evaluates the results of the expression
that follows it for a True or False condition. If the result
of the expression is TRUE (not equal to 0) then the
statements that follow the IF directive up until an ENDIF
directiv e will be assembled, otherwise they will be ignored.
Reguardless of t he results, assembly will resume with the
next statement fo l lowing the ENDIF directive.

The ELSE directive can be used between the IF and ENDIF
directives to provide a more flexible confguration. If an
ELSE directive is used, it will effectivly divide the
IF/ENDIF format i nto two parts. If the expression evaluated
TRUE, all statement s following the IF up to the ELSE
dire ctive will be assembled, and those following will be
ignored. If the expression evaluated FALSE, all statements
following the IF directive up to the ELSE will be ignored and
those that follow it will be assembled. The ELSE directive
effectivly reverses the results of the expression TRUE>FALSE
or FALSE>TRUE .

Example: 2300 IF TEST

If TEST <> 0 these statements assembled

2420 ELSE

If TEST = 0 these statements assembled

2540 ENDIF

There is one other form of the IF/ENDIF directive, the
IFN which means "If Not" . This functions the same as the IF
directive except that the results of the test are revers~d.
If the e xpression results are NOT TRUE then the statements
t hat follow are assembl ed, otherwise they are ignored.

Example : 2300 IFN TEST

If TEST = 0 these statements assembled

2420 ELSE

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-28-

•

EDT/ASM Ill
CER-COMP EDT/ ASM-3 ASSEMBLER OPERATION

If TEST <> 0 these statements assembled

2540 ENDIF

EDT/ ASM-3 Error messages

Error codes are used to flag source statements that are in
violation of the rules and restrictions of this assembler . Error
messages are output with three asterisks and the word "ERROR"
followed by the error message. The line listed under the error
message is the line in error. The Assembler error codes are
listed below:

NAM used twice in the same program

EQU directive requires a label

Source statement syntax error

Invalid label. (syntax error)

Symbol has been previously defined

Invalid op code or assembler directive

Short relative branch out of range

Address mode not allowed with op code

Byte overflow. Single byte expression converts to >255

Undefined symbol (not in table)

Invalid register for indexed operation

Re-defined symbol (Pass 2 value differs from Pass 1, usually
caused by label address being referenced before assignment)

Directive operand invalid

Symbol table overflow (OUT OF MEMORY)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-29-

•

EDT/ ASM Ill
CER- COMP EDT/ ASM-3 ASSEMBLER OPERATION

ASSEMBLING WITH EDT/ ASM-3

When the source file has been created or loaded by the
editor and is ready to be assembled the assembler must be entered
by the use of the 'ASMB' command in the editor. The 'ASMB'
command may be followed by an optional Disk file name, extension
and drive number in the normal "NAME.EXT:DRIVE" format. If a file
name is specified, the assembler will assume that it is the file
to be assembled and not the file in memory. If the disk file
cannot be located or an error occurs, an error message will be
displayed. If the file is found, it is opened for input to the
assembler and the normal prompt message is displayed. If no file
name is specified following the 'ASMB' command, the assembler will
assume the memory file is to be assembled and proceed to the
normal pass prompt. Once the pass option prompt is displayed the
assembler will wait for an input, at this time a printer can be
specified to direct error messages (1 pass) or the listing to the
printer. The format is 'P' for printer, followed by the normal
Pass selection and option. Note that object code will be generated
only if the "2" or "3 " pass options have been selected. The "1P"
pass will clear any previous symbol table and read the source file
creating a new symbol table for those file(s). The "1S" pass will
keep the present table and add any new symbols to it generated by
those files. The •2• pass options require that either the •1• or
"3" pass has already been run if any forward references are made
in the program, otherwise errors will occur. The •2• pass can be
useful to generate a program listing only (2L) or object output
only (20), the "2P" pass will generate both if the output and
listing have not been inhibited thru the "OPT" directive. The "3"
pass options are the same as the "2" pass options only the 1st
pass is automatically run and then the 2nd pass is run with the
specified option. This is useful for programs that have already
been debugged and are error free.

Pass Options :

1P
1S
2P & 3P
2T & 3T
2L & 3L
20 & 30
2D & 30

- Build new symbol table
- Add to symbol table
- Generate object and listing for specified options
- Generate object only for specified options (OPT)
- Generate listing only
- Generate tape object file
- Generate Disk object file

Example: ENTER PASS: 1(P,S) ; 2/3(T,P;L,D,O)
>P3L

The printer output was selected by the first character
'P' and the "3L" pass was selected for 1st & 2nd pass listing
only.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-30-

I

......

EDT/ ASM Ill
CER-COMP EDT/ ASM-3 ASSEMBLER OPERATION

Differences in EDT/ASM-3

EDT/ASM-3 has some differences from the format
of the 6809 auto decrement. The normal specification is
,--R but in this assembler it can also be ,R- and ,R-
the same as the auto increment format of ,R+ and ,R++.

standard
,-R and
which is

Because of the way EDT/ASM-3 translates 6800 to 6809
code the same code can be generated with different instructions,
this can be very convienint in many cases, especially to those
who have written a large amount of 6800 assembler code. Some
examples are listed below.

6809

LEAX l,X
LEAX -1,X
ANDCC #$FE
ORCC #1
TFR A,B
TFR B,A
LDA #22
PSHS B
ADDA ,S+

= 6800

INX
DEX
CLC
SEC
TAB
TBA
LDAA

ABA

(CONDITION CODE NOT AFFECTED)
(CONDITION CODE NOT AFFECTED)
#22 (AVOIDS SYNTAX ERRORS)

As you can see it can be helpfull in some instances,
also note that in the translation of the 6800 op codes TAB and TBA
the condition codes are not affected on the 6809 as they were in
the 6800. So if a program is translated which uses conditional
branching following either of these instructions a "TST"
instruction must be added following it to insure that the proper
condition codes are set for the branch instruction.

EDT/ASM-3 supports the forcing of direct or extended
addressing by the use of the symbols "<" and ">". Also the
listing output will be flagged in the left margin next to the
address with a '*' when non-zero direct page addressing is forced.
The listing is also flagged with a '>' in the left margin when an
Extended Branch or Jump is not necessary .

CER-COMP 5566 RICOCHET AVE . LAS VEGAS, NEVADA 89110

-31-

I

EDT/ASM Ill
Debug Module Commands

The DEBUG module is an extension of the EDT/ASM-3
(Editor/Assembler) package. It allows the user to test and debug
machine language programs that have been assembled or loaded to
memory. To Begin execution of the DEBUG module use the commadn
LOADM "DEBUG" from basic and hit the enter key . The DEBUG program
module should load from the disk. When the "OK" message appears
enter "EXEC" and hit enter. the DEBUG module sign on message
should be displayed and a ">" character will be displayed for a
command prompt. The DEBUG module will load into memory beginning
at location $1000 (hex). It is position independent and may be
relocated by the use of the Block Move command. Ex . BM 1000 17FF
5000<enter> This would move it up to memory at $5000 (hex). To
execute the relocated version use the GOto command. Ex. GO
5000<enter> .

The DEBUG module commands are similar to the Editor commands
in that they can be abbreviated by the first two characters of the
command. The command input l ine is buffered and will recognize
the backspace, clear, break and enter keys for easy error free
command entry. Each command line is terminated by hitting the
"ENTER" key. Output from any command may be temporarily paused by
hitting any key and resumed upon hitting another key .

DEBUG MODULE Commands:

ME <address>
SB <address> <etc.>
RB <address>
RS <value> <name>
GO <address>
DM <begin> <end>
FM <begin> <end> <byte>
FI <begin> <end> <byte> <etc.>
BM <begin> <end> <destination>
DA <begin> <end>
EX
IZ

DEBUG error codes

Memory examine & change
Set and/or display breakpoint
Remove one or all breakpoints
Set and/or display registers
Goto address with stack
Dump Memory in Hex & ASCII
Fill memory with data byte
Find memory byte sequence
Move block of memory
Disassemble memory file
Exit monitor back to BASIC
Re-Initalize DEBUG

AD Address error (begin > end
CD Command error
CE Conversion error on address or data byte

CER-COMP 5566 RICOCHET AVE . LAS VEGAS, NEVADA 89110

-32-

EOT/ASM Ill
Debug Module Commands

MEmory <address> Memory examine & change

This function allows the user to examine and change the
contents of a specific memory locations on a byte by byte basis.
When the function is called and a valid hex address has been
entered it will display both the address & data contained in that
location of memory in hex . If the address was not a valid hex
address or none was entered the last address stored in BEGINl will
be used . Once the address & data are displayed the user can
change that byte, and/or move forward or move backward thru
memory . If the data is to be changed simply enter the new hex
2-digit value, if for some reason the new value cannot be stored
correctly a '?' will be displayed and the next location will be
displayed normally. If an up arrow •~• is entered the previous
location will be displayed and if a carriage return 'er' is
entered the function is ended. Any other non-hex character will
cause the next location to be displayed.

Example:
>ME 3FFE<cr>
3FFE 49 . period advances to next location
3FFF 98 55 hex value changed to 55
4000 27 11? new value not changed correctly
4001 31 ~ display previous location
4000 27<enter> end function

SBreak <address> <etc.> Set and/or display Breakpoints

The BReakpoint function allows the user to set program
breakpoints in memory in order to de-bug programs. If no valid
address is entered the function simply displays the contents of
the breakpoint table . If a valid address was entered and the
table is not full a breakpoint (SW!) will be set in memory and
the entry set in the table . It then displays all breakpoints set
in the table. When a breakpoint is executed in a program and the
SWI interrupt jump vector in memory has not been changed a dump of
the registers will be displayed on the system console and the
original code will be restored in memory removing the breakpoint.
Several breakpoint addresses may be entered on one command line.

Example:

>SB 1000 13FF 1103 Set SWI at 1000, 13FF & 1103
1476 1000 13FF 1103 Breakpoint table contents

shows 1476 was previously set & the new ones set.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-33-

I

EDT/ASM 111
Debug Module Commands

RBreak <address> Remove one or all Brea kpoin t s

This function allows breakpoints prev iously set by the SB'
command to be r e moved individually or all at once. If a valid
addre ss was ente r e d and it is found in the break table only that
breakpoint will be removed . If no address i s entered all
breakpoints i n the table will be removed . Not ice that 'RESET' will
not cle ar t he breaktable unl ess a s y stem inital- -ization is
r e quire d and that breakpoints encountered in a program are
automatical ly removed if they are contained in the breaktable .
Only one bre akpoint address can be removed at a time.

Example :

>RB 13FF
>RB

RSet <value> <name>

remove breakpoint at address 13FF
remove all breakpoints from table

Set and or dis pla y register c o nte nts

This function allows the user to change the value contained
in a particular processor register on the defined stack. If no
v alue was entered the function simply displays all the system
registers and their contents. If a valid hex value and register
name were entered t he contents of that register will be replaced
by the value entered . The registers will then be displayed for
visual verification of the change.

C
B
X
u
P-

condition code
Accumulator B
Index r egister X
user Stack pointer
Program Counter

Register
A
D
Y
S-

Names:
Accumulator A
Direct Page register
Index register Y
system stack pointer

Example:
>RS 9 9 A
>RS 100 X
>RS

change the contents of Ace-a to 99
change the contents of IX to 0100
display register contents

CER-COMP 5566 RICOCHET AVE . LAS VEGAS, NEVADA 89110

-34-

•

EDT/ ASM Ill
Debug Module Comma nds

GO <address> Goto defined addres s with stack

This function allows the user to resume processing of a
program that was interrupted by a breakpoint or other interrupt
that caused a syst em trap entry. If a valid address was entered
with the command that address will be placed in the program
counter register on the stack prior to calling an 'RTI' return
from interrupt .

Example:

>GO<cr> resume program at address contained in stack PC
>GO lOOO<cr> begin execution of program at address $1000

DMemory <begin> <e n d> Dump Me mory i n Be x & ASCII format

The Dump function allows the user to display & examine areas
of memory much easier then using the memory examine & change
function. the output is formatted with 8 bytes of data per line
with the ASCII characters underneath if printable . The contents
of memory between the begin and end addresses will be displayed,
if either the begin or end address is omitted or invalid the
function will be aborted and an error displayed. If the output is
directed to t he printer t he format will be 16 bytes per line
followed by the ASCII characters on the same line .

Example:
>OM 100 lOF Display memory from $0100 thru $010F
0100 16 00 79 7E 02 4E 44 SS

v N 0 U

>?OM 100 lOF Display $0100 thru $010F on prn.

CER-COMP SS66 RI COCHET AVE. LAS VEGAS, NEVADA 89110

-3S-

•

EDT/ ASM Ill
Debug Module CODDands

FHemory <begin> <end> <byte> fill memory with data byte

This function allows the user to fill a defined segment of
memory with a specific data pattern. All three paramaters must be
entered with the command or an error will be reported. This
function can be usefull for initalizing memory for a program or
filling memory with a SWI (3F) for trying to trap runaway
programs.

Example:

>FM 400 600 3F
>FM 2000 4000 00

fill memory from 400 thru 600 with 3F
clear memory from 2000 thru 4000

Find <begin> <end> <byte> <etc.> Find byte sequence

This function will allow the user to search a defined segment
of memory for a predefined byte sequence . Any number of bytes can
be searched for 1,2,3,4,5 etc. depending upon how many are
entered. At least the begin end, and 1 byte to search for must be
entered or an error will be reported. If the specified string of
bytes is found in the range of memory specified the address and
data byte of the previous location, search bytes, and the one data
byte following the string will be displayed. The search will then
continue until the end address is reached, displaying the
information for each occurance of the byte sequence.

Example:

>FI AOOO BFFF A3 90
A746 BO A3 90 SA
AA68 7E A3 90 9F

BMove <begin> <end> <destination> Block memory move

This function will move a defined block of memory from one
place in memory to another. The begin and end addresses def i ne the
block of memory to be moved and the destination address is where
it is to be moved to . If any of the paramaters are not entered an
error will be displayed.

Example :

>BM 1000 1500 6000 Move 1000 thru 1500 to 6000

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-36-

I

EDT/ASM Ill
Debug Modul e Commands

DAs mb <be gin> <end> Disass emble me mory i nto assembler format

This function will dis-assemble a specified segment of memory
displaying it in an assembler op code format. It will display the
address of each instruction, op code, and operand byte(s) . All
relative branch instructions will also display a '> ' followed by
the destination address of the branch instruction. This function
is not fool proof by any mea.ns and some sequences of memory will
be decoded as instructions which are really text characters or
data bytes. It is only designed to be an aid in debugging and
disassembling programs.

Example :

>DA AOOE A06F Disassemble from AOOE thru A06F

AOOE lOCE 03 D7
A012 86 37
A014 B7 FF23
A017 96 71
A019 81 55
AOlB 26 52 >A06E branch destination address
AOlD 9E 72

EXi t Exit t he Debug mo d u l e back to BASIC

This function simply allows the user to exit from the Debug
module back into Basic.

IZ Re- i nitalize mon i t or

This function simply re- initalizes the monitor to a cold
start condition, prior to initalizing all previously set
breakpoints will be restored. This can be usefull if some portion
of the monitor temporary storage were modified or simply to reset
the baud rates to 600 or any other reason the monitor may not be
functioning correctly.

CER-COMP 5566 RICOCHET AVE . LAS VEGAS, NEVADA 89110

-37-

EDT/ASM Ill
A Short Tutorial on using EDT/ ASM III

EDT/ ASM III Dis k file des cription

The original EDT/ASM
d iffer ent files that are not
list of the file names and a

III disk as provided contains several
mentioned in the documentation. A
br i e f description of them follows .

EDTASM3 .BIN
DEMO .DAT
DEBUG . BIN

The Editor & Assembler program
A short demonstration program.
The run-time machine language debugger

=D=E=M=O~~~~·~D~A=T - This is a short assembly language program to
help you get aquainted with both the Editor and Assembler in
EDT/ASM III . It is a simple program that inputs a line of text
from the keyboard and when the Enter key is pressed, it d i splays
t he line of t e.xt that was input.

DEBUG .BIN - This is a relocatable, free standing debug
{monitor) package that can be very useful for finding problems in
machine language programs and working with the computer on the
machine language level.

CER-COMP 5566 RICOCHET AVE . LAS VEGAS, NEVADA 89110

-38-

•

EDT/ ASM Ill
A Short Tutorial on using EDT/ ASM III

EDT/ASM III is a Disk based co-resident Text Editor and
Assembler. It will allow the user to create, edit and assemble
machine language programs with a minimum of effort. Its Text
Editor is far superior to the editors found in most
Editor/Assembler programs. It contains powerful search and
replace functions, extensive editing features, block copy and move
functions, and much more. You can easily create and merge files
larger than memory into a single file as large as disk . You have
the option of assembling programs stored in the text editors
buffer, directly from disk, or both with the use of Library files.
It is well suited to creating small utility programs as well a
extremely large complex programs. The following is a short
tutorial to get you aquainted with some of the commands and
features of EDT/ASH III.

Load the Editor/Assebler from the original disk by entering
the command:

"LOADM" EDTASM3" <enter>

Once the program is loaded, it will automatically execute and
the Startup & Ready messages will appear . It will also display
the amount of free memory available in your system. Whenever the
"READY" prompt appears, you are in the Text Editor command mode,
any of the commands listed in the text editor section of the
manual may be used when this prompt is displayed .

To start with, enter the command:

DIR< enter>

this should display the directory of the EDT/ASM III disk on the
screen. You should see a file with the name "DEMO.DAT" listed in
the directory. This is a short assembly language demonstration
program. To load the file into the editors buffer enter the
command:

LOAD DEMO<enter>

you should see the disk drive select light go on and hear the
drive start to load the file. When the file is completely loaded
into memory, . the message "Input file closed" should appear
followed by the ready prompt. If you enter the command:

LIST< enter>

you should see the file displayed on the screen. To
display, simply press any key on the keyboard, to resume
other key, if you press the "Break" key the display
aborted and return you to the ready prompt.

Cer-Comp 5566 Ricochet Ave., Las Vegas, NV 89110

- 39-

pause the
press any
will be

I

EDT/ ASM Ill
A Short Tutorial on using EDT/ ASH III

Now remove the EDT/ASH disk from the drive, we won't be
needing it any more. Put a fresh formatted disk in the drive and
e nter a DIR<enter> command, it should show a blank director. Now
we are going to save the demonstration program in memory to disk,
e nter the command:

SAVE DEMO<enter>

the disk select light should come on and you'll hear the drive
start to save the file. When the file is finished being written
to disk, the message ·output file closed" should appear followed
by the ready prompt. Now enter the command:

NEW<enter>

the screen should clear and the startup message should appear the
same as when EDT/ASM was first loaded. The edit or buffer is now
empty and ready to accept a new program.

We will now start to create a new program, this will help to
familarize you with using the text editor. We write a program a
line at a time by entering a line number, a space and then the
assembler source line. An option we have is to let the computer
assign the line numbers automatically. The AUTO command instructs
the editor to automatically generate line numbers for us.

AUTO [increment size] [line start t]

An option with this command is the size of the increment an
where to start numbering . For example AUTO 1 100 will instruct
the computer to start the line numbers at 100 and increment each
line by one. If we don't use the options it will start numbering
at 10 and use 10 as the increment value. For now we will just
enter the command :

AUTO< enter>

you should see the line number 0010 appear on the left edge of the
screen followed by a space with the cursor flashing. The cursor
is now positioned in the first column or position of the source
line . Type a space followed by NAM MYPROGRM<enter> . The "NAM"
directive is the first line of any program, it is used to tell the
assembler what name to assign to the binary program file when it
assembles the program to disk or tape. After you pressed the
e nter key, the next line number in sequence will automatically
appear and your ready to enter the next line. Enter in the rest
of the lines listed below.

0010 NAM MYPROGRM
0020 ORG $1 000

Cer-Comp 5566 Ricochet Ave., Las Vegas, NV 89110

-40-

EDT/ASM Ill
A Short Tutorial on using EDT/ASM III

0030 MYLINE LEAX MYMSG,PCR
0040 MYDISP LDA ,X+
0050 JSR ($A002)
0060 CMPA #4
0070 BNE MYDISK
0080 RTS
0090 MYMSG FCC /THIS IS MY FIRST PROGRAM/
0100 FCB 4
0110 END MYLINE

If you made a mistake when typing in the lines, don't worry
about it now, shortly we will be showing you how to edit a line.
After you entered the last line 0110, the next line number 0120
will appear automatically, press the "Break" key to return to the
editor. This little program will display the message "THIS IS MY
FIRST PROGRAM" on the screen . First lets try to assemble it and
see what happens, enter the command:

ASMB<enter>

When the PASS prompt appears enter 3L, this will tell the
assembler to do a lst pass on the file in memory and when
finished, do a 2nd pass with a listing on the screen. You should
notice that we had an error when assembling. Before the 2nd pass
started, it displayed MYDISK=FFFF, this means that the symbol
(label) "MYDISK" was used as a reference in the program but was
never defined as a label. During the second pass an error
message, "Symbol not defined" was displayed just before line
#0070, which means that line 0070 was where the error was
detected. To go back and fix the error we must first exit the
assembler, press the "E" key to exit the assembler.

There are two edit commands:

LEDIT <line#> single line edit
AEDIT <line#> automatic increment edit

The first edit command LEDIT, is used when you want to make
changes to a single line. If either command is used without
specifying a line #, the first line of the file will be used, in
this case line 10. Since we only have one line with an error in
it, line 70, ent er the command:

LEDIT 70<enter>

The line will be displayed with the cursor positioned in the
first column. Since the error is in the last word of the line
(MYDISK should be MYDISP) press the Shift & Right arrow keys. The
cursor will move to the end of the line, press the Left arrow key
(backspace) and the cursor should be under the letter "K" in
MYDISK. To make corrections you can delete the character by using

Cer-Comp 5566 Ricochet Ave., Las Vegas, NV 89110

-41-

•

EDT/ ASM 111
A Short Tut or ial on u s ing EDT/ASH III

the Shift & Down arrow key~, or in this case you can just type
over the letter in error with the correct letter. Just press the
"P" key and the error will be corrected. Now to make the change
permanent press the "Enter" key, other wise the line will be left
unchanged.

If you entered the wrong line number to edit, you can use the
Up and Down arrow keys to go to the previous or next line in
sequence . After pressing the "Enter• key to make the changes
permanent, the cursor will move to the left of the screen on the
next line below the edited line. You are now back in the editor
command mode .

The second edit command AEDIT, is used when you want to edit
more than one line in the file. If we used the command:

AEDIT 70<enter>

to edit the line, the procedure would be the same. The only
difference is that when the "Enter" key is pressed to ma!<e the
change permanent, the next line in the file would automatically be
displayed for editing . The only way to get out of the AEDIT mode
is to use the "Break" key or if you reach the end of the file.

When using either of the edit commands, all of the edit
functions listed under the section EDIT KEY FUNCTIONS are
available . For the most part, they are simple to use . In the
above editing example we could also used the Right arrow key to
move the cursor under the letter "K" or used a combination of the
Clear & Right arrow keys (move word right) to move to the
beginning of the word "MYDISK", and then use the single character
right key (Right arrow). Remember that all of the EDIT FUNCTION
KEYS except the ones that use the "Clear" key will automatically
repeat when held down, this can be handy when editing.

Now that we have the error corrected, lets add a few more
quick lines to make the displayed message a little longer. To add
lines to the file, just pick a line number in between the two
lines where you want the line to go. If you are adding more than
one line between lines you could also use the AUTO command with an
increment of one, starting with the next number higher. In this
case we want to add two more lines between the line 90 and 100.
Enter the command:

AUTO 1 9l<enter>

the line number 0091 should appear on the . screen.
following two lines.

0091 FCB $OD
0092 FCC /HOW'S THAT FOR ASSEMBLER PROGRAMMING/

Enter the

Cer-Comp 5566 Ricochet Ave., Las Vegas, NV 89110

-42-

I

EDT/ASM Ill
A Short Tutorial on using EDT/ ASM III

Now if you list from lines 90 to 100 using the command:

LIST 90-lOO<enter>

you should see that the new lines have been inserted into the
file.

Now return to the assembler by using the ASMB command . When
the prompt appears enter a "3L" to assemble the file with a
listing to the screen. There should not be any errors, if so go
back to the editor and correct them before proceeding. Now that
we know the program will assemble without errors, we are ready to
assemble it to disk. Enter "30" at the pass prompt. This will
tell the assembler to do both a 1st & 2nd pass but to output the
binary object file to disk. The file will have the name that we
assigned with the "NAM" direcive in line #0010 . When the
assembler is finished (pass prompt appears), press the "E" key to
return to the editor . If you enter a "DIR" command, you should
see the file name "MYPROGRM.BIN" listed in the directory. This is
the machine language, binary program file that was generated by
the assembler . It is a standard LOADM compatible file, so you can
load and execute it from Color Basic.

Disk and Library files

Now that we have successfully assembled the program
"MYPROGRAM", save the source file to disk using the command:

SAVE MYPROGRM<enter>

After it is saved to disk in its original form, we will modify it
so that it can be used as a library file in conjunction with the
DEMO program. We are only going to use the message display
section of the program for t his example. To do this, we will
delete the parts of the program that are not necessary. Enter the
commands:

DELETE 10-20<enter>
110 END<enter>

These commands will delete the range of lines listed (10 thru
20), in the second command line we changed the END statement so it
would not have a transfer address. Since we are only deleting a
few lines, we could also have just entered the line numbers
followed by the enter key, for example:

lO<enter>
20<enter>

Now if you list the file you should see that the lines have been
deleted and line 110 only has an END statement. The lines that

Cer-Comp 5566 Ricochet Ave., Las Vegas, NV 89110

-43-

•

EOT/ ASM Ill
A Short Tutorial on using EDT/ ASM III

remain will be our library tile. Save it to disk by entering the
command :

SAVE MYMESSAG<enter>

When the file is finished being written to disk, do a
directory command DIR, the file MYMESSAG.DAT should be listed in
the directory. We will now load the original demonstration
program using the command :

LOAD DEMO<enter>

After the
so that it will
earlier. To do

file is loaded, we will add a line to the program
automatically include the library file we created
this add the following to the program:

0340 LIB MYMESSAG<enter>

Since the original library file was saved with the default
extension DAT on the default drive, we do not have to specify the
extension or the drive number in the LIB directive. Now go to the
assembler using the ASMB command. When the pass prompt appears,
enter a "3L". Before the first pass is finished, you should see
the disk activity indicator light. This is because the assembler
must get t he library file f rom dis k for both the 1st and 2nd pass.
When the second pass starts (the listing displayed), you should
see the normal listing go by until the LIB statement is reached.
At this time the listing will pause, while the assembler goes out
to the disk to get the library file. The listing will resume, but
now the listing is for the library file "MYMESSAG". When the
library file is finished being read, the asse.mbler will continue
with the next line following the LIB directive. If you want to
see a printed listing of the assembler output, you can use the
"P3L" option at the pass prompt. Make sure the printer baud rate
is set correctly if you are using a print rate other than the
standard 600 buad. Once you are sure that there are no errors,
assemble the complete program to disk by using the "30" option at
the pass prompt . When done go back to the editor by pressing the
"E" key.

Now that you have successfully assembled a program using the
LIB directive, lets try using the conditional assembly directives
IF, ELSE, and ENDIF. Lets set up the program so that it will only
include the library file "MYMESSAG" if the value of the symbol
MYMSGF is true (not equal to zero) . Add the following lines to
the program:

0015
0335
0341
0342

MYMSGF EQU 0
IF MYMSGF
ELSE
RTS

Cer-Comp 5566 Ricochet Ave., Las Vegas, NV 89110

-44-

•

EDT/ ASM Ill
A Short Tutorial OD usi ng EDT/ASH III

0343 ENDIF

Now the program is set up so that if the symbol MYMSGF is
true, the library file MYMESSAG will be included in the program
and the RTS statement between the ELSE and ENDIF directives will
be ignored. If the symbol is false, only the RTS statement will
be assembled . To see this, goto the assembler using the ASMB
command . At the prompt, enter a •3L•, notice that the library
file was not included in the program, but the RTS instruction was
assemble d. Go back to the editor and change line 15 so that it
will be true (not equal to zero).

0015 MYMSGF EQU 1

When this is completed, go to the assembler once again (you
should know the command by now), and assemble the program. This
time you will notice that the library file was included
(assembled) and the RTS statement was not. Well this concludes
our short tutorial, I hope that it has proved helpful to you .
Remember that this is only a very small sample of what you can do
using EDT/ASM III, there are many other editing and assembler
commands that we have not explored. Use the demonstration
programs and explore some of the other commands and features , I'm
sure you'll find a lot of other possibilities available.

Thank You
Cer-Comp

Cer-Comp 5566 Ricochet Ave., Las Vegas, NV 89110

-45-

I

