
ML BASIC

REVISION _2.0

EXTENDED

BASIC

COMPILER

WASATCHWARE

DRAFT

MLBASIC

Revision 2.0

EXTENDED

BASIC

COMPILER

COPYRIGHT (CJ 1987

by WASATCHWARE

NOTICE

WASATCHWARE has prepared this manual for use by
customers of the basic compiler "MLBASIC". The
information herein is the property of
WASATCHWARE and shall not be reproduced in the
whole or in part without WASATCHWARE's prior
written approval.

WASATCHWARE reserves the right to make changes
without notice in the specifications and
materials contained herein and shall not be
responsible for any damages (including
consequential) caused by reliance on the
material presented, including but not limited
to typographical, arithmetic, or listing
errors.

MLBASIC 2.0 User's manual

Revision History:
Original Release -July 1987

Royalty Information

The policy for distributing compiled programs using
MLBASIC runtime subroutines is as follows:

- You can distribute and sell any
application program that you generate by
compiling with MLBASIC without payment of
royalties. A copyright notice reading
"PORTIONS COPYRIGHTED BY WASATCHWARE, 1987 "
must appear on the medium.

- You cannot duplicate any other software
in the MLBASIC compiler package except to
backup your software. Other duplication of any
of the software in the MLBASIC compiler package
is illegal.

PREFACE

This manual provides a step-by-step
introduction to WASATCHWARE's MLBASIC compiler.
It is intended for users who are unfamiliar
with the BASIC compiler. Users who are
familiar with MLBASIC can use this manual as a
reference for procedures and technical
information.

This manual assumes that you know how to
program in BASIC. Examples of how MLBASIC
syntax differs from interpreter BASIC syntax
are given.

Chapter 1 introduces you to WASATCHWARE's
MLBASIC Basic compiler. Chapter 2 provides a
description of the entire compilation process.
Chapter 3 explains the many commands that
MLBASIC has to offer. Chapter 4 explains all
about MLBASIC variables, constants and
expressions. Chapter 5 is devoted to the
advanced programmer who needs to know technical
information about MLBASIC. Chapter 6 goes
through compiling several programs that provide
uses for many of MLBASIC's commands. Chapter 7
contains explanations of the error messages
produced while compiling programs and when
running programs. Chapter 8 explains conversion
techniques for compiling programs written for
the Interpreter.

CHAPTER 1

1 • 1
1. 2
1. 3
1. 4

CONTENTS

INTRODUCTION

Overview of MLBASIC ••
System requirements.

•

Diskett contents •. . ••
Compilation Vs. Interpretation ••

1. 5
1. 6

Program Developement . ••. •. ••. ••••••••. ••••••••••••
Memory use by MLBASIC •••••• �··••••••••••••••••••

CHAPTER 2 HOW TO COMPILE A PROGRAM

2. 1 options ••. •••••••. Explanation of MLBASIC
Compiling a program using
Storage options •••.
Maping options ••

2. 2 default values.
2. 3
2. 4
2. 5
2. 6
2. 7
2. 8

CHAPTER 3

3. 1

Listing options.
Number Base Option.
Default String Length . . .
Compilemode Options •••. •

MLBASIC COMMANDS

I/O Commands
CLOSE . .
CLOADM.
CSAVEM •.
DIR •. .
DRIVE . ••••.
DSKI S .••••••
DSKO$.
FIELD . •.

. .

FI LES•
GET •. •

.

. . . •.

3. 1. a

3. 1. b
3. 1. C

3. 1. d
3. 1. e
3. 1. f
3. 1. g
3. 1. h
3. 1. i
3. 1. j
3. 1. k
3. 1. 1
3. 1. m
3. 1. n
3. 1. o
3. 1. p
3. 1. q
3. 1. r

INPUT.
KILL . .
LINE INPUT.

. • . .

LSET . . . •
OPEN •••••••••••.
PR I NT . . •. ••. ••.
PUT •. .
RSET . •••

Control Commands

. .

. . .

. . . .

3. 2 Program
3. 2. a
3. 2. b
3. 2. c
3. 2. d
3.2. e
3. 2. f
3. 2. g
3. 2. h
3. 2. i
3. 2. j
3. 2. k
3. 2. 1
3. 2. m
3. 2. n
3. 2. o

CALL .•.••..•. . . •
DEFUSR ••
END •••• . . � . . •
EXEC •••••.••••••••••
FOR-(STEP)-NEXT . . •. ••••• . . .

GOSUB ••••••••••
GOTO
IF-THEN-(ELSE) •••••••••
OFF ERROR . •••• �··••••
ON ERROR •••. •••••••••••
ON-GO(TO, SUB)
RETURN.
STOP . . ••••.••
SUBROUTINE •.
USR •.••••••••

PAGE

1
1
1
2

3
4

5

6

8

9

10
10
11
1 1

13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
31
32

3 3
3 5
36
37
38
39
40
41
42
43
44
45
46
47
48

3.3 Math Functions
3.3.a ABS•.........•....
3.3.b ASC.
3.3.c ATN •.••• _ ••••..•
3. 3. d cos •••••

3.3.e CVN ••••.
.

. . .

3 • 3 • f EO F • • • • • • • • • • • • • • • • • • ••• _ • • • • • • • • • ••••••
3.3.g EXP••......... _
3.3.h FIX •.••..
3.3.i HPOINT •.•.•..•...•..

. . . • . . .
•

3.3.j INSTR•..........•
3.3�k INT
3.3.bb JOYSTK •.. ��
3.3.1 LEN•..• �

. . . . •

3.3.m LOG. . � •
3.3.n LOC ..••••.•••• �··•• . •, .
3 • 3. o LOF .••..•••.•.••......•••.•.

. . . .

3 • 3 • p LPEEK ••••.••••••••••••••••••••••••••••••
3.3.q PEEK .•...• �
3.3.r POINT .. � •.
3.3.s PPOINT••.. �
3.3.t RND .••

. . . • . . .

3.3.u SGN

. • . . .

3 . 3 . v S IN • • •••• • .•• • .•• •. • • • • • • ••••• •. • • • • • • • • • • •

3.4

3 •. 3. \V SQR ••. • .••••••••• •. •.
3. 3. x TAN ..
3.3.y TIMER•..•......
3.3.z VAL ..• �
3.3.aa VARPTR ..

Functions
CHR$ •••.•.••.
INKEY$.

String
3.4.a
3.4.b
3.4.c
3.4.d
3.4.e
3.4.f
3.4.g
3.4.h

LEFT$ ••..•••.•••.•••••

3.5 Graphics
3.5.a
3.5.b
3.5.c
3.5.d
3.5.e
3.5.f
3.5.g
3.5.h
3.5.i
3.5.j
3.5.k
3.5.1

MID$
l\lKNS ••••••••••••••••••
RIGHT$.
STRS
STRING$.

•

. . . . • . .

and Sound commands
ATTR ••••••••••••••
AUDIO .••.
COLOR •.•••••
CLS ...•••••
CIRCLE •••..••.•••.
DRAW ..•.••.•
HCOLOR •.••.••..•.
HCLS •••••.•••••••••••
HCIRCLE •..•••.••
HDRAW •.
HLINE .••
HPAINT •. �····�··�

•

•. •
.

.

. . •
. . •

•
•
. . • . . .

• . . • . . • . .

PAGE

49
50
51
52
53
54
55
56
57
58
59
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83

84
85
86
87
88
89
91
92
93
94
95
96

3.5 Graphic
3.5.m
3.5.n
3.5.o
3.5.p
3.5.q
3.5.r
3.5.s
3.5.t
3.5.u
3.5.v
3.5.w
3.5.x
3 .,5. y
3.5.z
3.5.aa
3.5.bb
3.5.cc
3.5.dd
3.5.ee

and Sound commands
HPRINT.
HRESET ••
HSCREEN ••••••••••••••••••••••
HSET •••••••••
LINE ••
LOCATE ••••••••
PALETTE •••••••••••••••
PA I NT • . . • •.•• _ ._ •. • • • • • • • • • •.•••

. . . . •.
. . • . .

PCLEAR •••••••••• . . • • . . . • . . .
PCLS .•...•....•.... . . • . . • . . .
PLAY ••• . •, .•, • . . . • . . .
PMODE •.•••• _ ••••••.•.••••••••••••••••••••••
PRESET. . •. •
PSET .••. • ..••••• • . . .
RESET ••••••••••••••••.•••••••••••••••• _
SCREEN.
SET ••.••••
SOUND •••
WIDTH ••

. •. • • .
. . •

. • . . • . . .

. . • •

3.6 Other
3.6.a
3.6.b
3.6.c
3.6.d
3.6.e
3.6.f
3.6.g
3.6.h
3.6.i
3.6.j
3.6.k
3.6.1
3.6.m
3.6.n

Commands (Handled by Interpreter)
DATA ••••

3.7 Special
3.7.a
3.7.b
3.7.c
3.7.d
3.7.e
3.7.f
3.7.g
3.7.h
3.7.i
3.7.j
3.7.k

3.8 Compiler
3.8.a
3.8.b
3.8.c

DI M ••••••••••••
LLIST.
LPOKE ••••••••
MOTOR ••
POKE ••••
READ ••
REM •••
RESTORE ••
RUN ••.•..
TAB.
TROFF •••••••••••••
TRON •••
VERIFY.

Commands
DLD.
DST.
IBSHFT.
INT •••
LREG ••

• . . .

PCOPY ••••••
PTV •••
REAL •••••••••••
SREG ••••••••••••
VECTD ••
VECTI.

Directives
%INT ••••••
%REAL •••••
%STRING ••

. . •.

. . . . •. • . .

. . . •
. • • . .

•, . .

. . •.

PAGE

97
98
99
100
101
102
103
104
105
106
107
108
109
110
1 1 1
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140

141
142
143

CHAPTER 4

4. 1

4. 2

4. 3

4. 4

CHAPTER 5

PAGE

VARIABLES, CONSTANTS, OPERATORS and EXPRESSIONS

Constants
4. 1. a
4. 1. b
4. 1. c

Variables
4. 2. a
4. 2. b
4. 2. c
4. 2. d
4. 2. e

Variable
4. 3. a
4. 3. b
4. 3. c

Operators
4. 4. a
4. 4. b
4. 4. c
4. 4. d
4. 4 .e

Integer Constants •••••••••••••••••••••• 144
String Constants •. ••••••••••. •. ••. ••. •• 144
Real Constants. . .. 14 5

Scalar Variable Names. 14 5
Integer Variables . ••••. •••••••••••••••. 14 5
String Variables ••••••••••••. •••••••••. 146
Real Variables ••••••••••••••••••••. . ••• 146
Variable Type Conversions •••••••••••. •• 146

Arrays
Array Names. 147
Subscripts. 14 7
Memory requirements •••••. •••. ••••••. •. • 148

and Expressions
Arithmetic Operators and Expressions ••. 149
Integer Arithmetic ••••••. •. •••••••••. . • 150
Logical Operators . ••••••••••••••••••••. 150
Relational Operators ••••. ••••. . •••. •••. 15 1
String Operators and Expressions •. . •. . • 15 1

TECHNICAL INFORMATION

5. 1 Machine Language Interfacing. 152
5. 2 Interfacing with Interpreter BASIC . . . ••. . . •. •. . •. • 1 53
5. 3 Interpreter Calls . •. . ••. . . ••••. . . ••••••••••. •••. •• 154
5. 4 Subroutine Call description •••••••••••. . •••••. •. . • 15 5
5. 5 MLBASIC 2. 0 Memory Map . •. •. . •••. ••••••. ••••••. ••. . 157

CHAPTER 6 SAMPLE PROGRAMS

6.1Program #1 •..••.••.•...••••••••••••.•••••••••••..• 159
6 . 2 Program ;; 2 . • 1 6 0

CHAPTER 7 ERROR MESSAGES

7. 1 Compiler Error Messages ••••••••••••••. ••••••••. . •• 166
7. 2 Runtime Error Messages •••••. •••••••.••••••••••••••• 168

CHAPTER 8 PROGRAM CONVERSION TIPS

8. 1 Example Conversions ••••••••••. •••••• �············· 17 1
8. 2 Conversion of ASCII files ••••••••••••••••••••••. •• 172

1

CHAPTER 1

MLBASIC 2.0 USER'S MANUAL

INTRODUCTION

1. 1 Overview of MLBASIC

MLBASIC (Revision 2.0) is an enhanced Basic Compiler designed to
allow as much compatibility with existing Interpreter Basic programs as
would allow. MLBASIC is a full compiler that features most of the
commands that are available with Extended Disk BASIC. Furthermore,
additional commands offered by MLBASIC make it possible to interface
programs with assembly language and other Basic programs. The ability
to call subroutines and pass arguments between the subprograms and the
calling program makes it possible to write structured programs, only
available with languages like FORTRAN and PASCAL.

MLBASIC allows users who are unfamiliar with machine language
programs to create a machine language program from a Basic program with
little or no effort. Default options that make compilation easy for the
new users, can be replaced by specified values which allow the advanced
user the freedom of how the program is to be compiled.

1.2 System Requirements

The following hardware is needed for MLBASIC to run:

1. 128 K Color Computer 3
2. Radio Shack DOS

1.3 Disk Contents

File Name DescriEtion -
1
--

#.BAS MLBASIC loader program
2 COC03LB2.BIN MLBASIC loader subroutines
3 MLBASIC2.MAI MLBASIC main program
4 COC03LB3.BIN MLBASIC runtime subroutines
5 PROGRAM 1.BAS Sample program # 1 source
6 PROGRAM2.BAS Sample program #2 source
7 PROGRAM 1.BIN Sample program #1 object
8 PROGRAM2.BIN Sample program #2 object
9 R.BAS Second 6 4k program loader

10 LOAD5 12.BAS 5 12k program loader

2

MLBASIC 2.0 USER'S MANUAL

1.4 Compilation vs. Interpretation

A microprocessor can execute only its own machine instructions; it
cannot execute Basic statements directly. Therefore,·before the
microprocessor can execute a program, the statements contained in the
Basic program must be translated to the machine language of the
microprocessor. Compilers and Interpreters are both programs that
perform this translation. This section explains the difference between
these two types of translation programs, and explains why and when you
want to use the compiler.

Interpretation

An interpreter translates your BASIC program into machine language
instructions line-by-line at runtime. To execute a Basic statement,
the interpreter must analyze the statement, check for errors, translate
the BASIC statement into machine language, and then execute those
instructions. If the interpreter must execute a statement repeatedly
(inside a FOR/NEXT loop, for example) , it must repeat this translation
process each time it executes the statement.

Basic programs are stored as a list of numbered lines, so each
Basic program line is not available as an absolute memory address during
interpretation . The interpreter must examine all the line numbers in
the list, starting with the first, until it finds the line in a branch
such as a GOTO or GOSUB statement.

Variables in a Basic program do not have absolute memory addresses
either. When a Basic statement refers to a variable, the interpreter
must search through a list of variables from the beginning until it
finds the referenced variable.

Compilation

A compiler translates a source program and creates a new file,
called an object file. The object file contains machine code that can
be relocated or executed where it is. All translation takes place
before runtime, which means no translation of your Basic source file
occurs during the execution of your program. In addition, absolute
memory addresses are associated with variables and with the lines
referenced in GOTO and GOSUB statements, so that the computer does not
have to search through a list of variables or line numbers during
execution of your program.

The compiler also "optimizes" the program. This means that when
the compiler executes a program, it does so in the fewest possible
steps. This increases execution speed and decreases program size.

These factors combine to increase the execution speed of your
program measurably. In most cases, execution of compiled Basic programs
is 10 to 20 times faster than execution of the same program with the
interpreter. If the program makes maximum use of integer variables,
execution can be up to 100 times faster.

3

MLBAS IC 2.0 USER'S MANUAL

1. 5 Program Development

MLBASIC is designed to recognize a BASIC program as it exists in
memory. In other words, MLBASIC reads the compressed commands, called
tokens, as they exist in memory. Programs on disk are read in their
standard format (SAVE,A not needed) . This allows the user to develop
programs using existing software that was designed for development of
Interpreter BASIC programs (ie. Extended BASIC editor, fullscreen
editors, etc) .

The BAS IC source, once written, should be saved to disk. In most
cases, the source program can be run using the Interpreter in order to
debug the program for syntax or logic errors.

The final step in the program development process is to compile the
source code using MLBASIC. The final product after compilation is an
executable machine language program that is run by using the EXEC
command.

Programs that cannot run within the lower 3 2k of RAM are executed
using the loader program called "R.BAS". This program loads the
executable program into the second bank of 6 4k RAM. To prepare a
program to be run in this mode, copies of the loader file "R.BAS" and
the two subroutine files "COC03LB2.B IN" and "COC03LB3.BIN" must be made
on the disk that is to contain the compiled program. To execute this
routine, enter the command RUN "R and answer the question of the
filename you want to load and run.

4

MLBASIC 2.0 USER'S MANUAL

1.6 Memory use by MLBASIC

MLBASIC allows use of 64k of memory for program and variables, the
80 column high-resolution text screen, and the ROM routines all within
the same program. If a machine language program exceeds the lower 32k
of memory space, then the program is executed in a separate bank of 64k
memory. 128k computers can use the second bank of 64k for programs to
run, but the program that is running cannot have high-resolution
graphics, since the high-resolution graphics area is also in this second
bank of 64k.

Computers that have 512k of RAM can execute a compiled program so
that banks other than those needed for high-resolution graphics are
used. The loader program called "LOAD512" should be run instead of the
loader program "R". Normally memory segments &H30 thru &H37 are used
for storage for programs that can't fit in the lower 32k of the first
bank of 64k RAM. The loader program "LOAD512" on the other hand uses
segments &HOO thru &H06 to make up the second bank of memory (often
called the TASK #1 bank). This frees up segments &H30 thru &H36 for use
by the high-resolution graphics. The user may change the segments used
by "LOAD512" by modifying lines 440 thru 500 to poke the segments that
are desired.

CHAPTER 2

5

MLBASIC 2.0 USER'S MANUAL

HOW TO COMPILE A PROGRAM

In the following chapter, procedures on how to compile programs
using the many features offered by MLBASIC are given.

If you are new at using MLBASIC, try the following procedure to
compile a simple program that shows how fast the compiler works:

1) Follow step 3 on page 6
2) Type in the short program:

1 FORI=1TO65000
2 NEXT:END

3) Enter EXEC to start the compiler
4) Hi t CTRL to begin compilation
5) Wait 10 seconds
6) Enter EXEC to execute the machine program

Section 2.2 is the general procedure used to compile any program
using MLBASIC.

2.1 Explanation of MLBASIC Options

MLBASIC is a highly versatile BASIC compiler which allows the user
to select many of the param�ters that control the compilation process.
All the parameter options are set to default values initially so that
users may easily compile a code and not have to worry about all the
different options. These options allow the user to control compiler
operations such as where the program is to be located in memory, what
the storage medium for the source and object code is, how the computer
is to accept and display numbers and how the compiler listings are
handled.

The main categories of options available are the storage options,
mapping options, listing option, compilemode option, number base option,
and the default string length option. Sections 2.3 through 2.8 will
cover each of these categories in detail.

SPEED TEST PROGRAM:

10 WIDTH 32 : CLS
20 FOR X = &H400 TO &HSFP
30 FOR Y = 0 to &HFF
40 POKE X,Y
50 NEXT Y,X

ML BASIC

9 Seconds

MICROSOFT BASIC

12 Minutes, 49 Seconds
= 769 Seconds

6

MLBASIC 2. 0 USER'S MANUAL

2.2 Compiling a Program Using Default Values

For ease of use, MLBASIC uses default values for all of the
compilation options available. These default values cause the compiler
to compile a program that is in memory and store the compiled code in
the lowest address above the source code in memory. The only required
input from the user is the CTRL key. This simply tells MLBASIC to
start compiling the program.

How to Compile a Program

1. Develop the program to be compiled.

- Using the available syntax, as described in Chapter 3, develop
the BASIC source program that is to be compiled. If existing BASIC
software is to be compiled, make the needed syntax changes that are
identified in CHAPTER 8 (or those commands that give compiler
errors when compiling a program the first time) .

2. Save the BASIC program.

- SAVE the BASIC program to disk so that the program is safe if any
compile errors occur.

3. Load MLBASIC into memory.

- (A) Turn off the computer, and then turn it on (or enter
POKE113, 0 then hit the reset but ton).

(B) Insert MLBASIC diskette into Drive #0.

(C) Enter the command RUN 11,::
11

, and hit the ENTER key.

4. Decide on the storage option desired.

-If you want to compile a program "In Memory" (using the Mem
option) , LOAD from Disk the BASIC program.

7

MLBASIC 2. 0 USER'S MANUAL

5. Execute the compiler.

-To run the compiler, type in the command EXEC. The compiler will
come back with a screen that lists all of the options and what the
current default values are. The last line on the screen display
will indicate to the user information on the required inputs or
options being chosen.

6. Start compilation process.

-Enter any of the desired options. You may skip fields by hitting
the Enter key or the default option listed.

(A) If you want to compile the program in memory, simply enter
CTRL, and compilation will begin.

(B) If you want to read the BASIC source from disk, position the
cursor to the "BASIC SOURCE INPUT" option line, hit D for disk,
and enter the input filename. Hit CTRL to start compiling. Note
that the cursor is initially located next to this option when the
compiler is first executed.

(C) If you want to compile the obj ect code to disk, position the
cursor on the "MACHINE LANGUAGE OUTPUT" option line, hit D for
disk and enter the output filename. Hit CTRL to begin
compilation.

- MLBASIC compilation may be stopped by the user by pressing down,
and keeping down, the Break key. Once the compiler has
recognized the interrupt, it will wait for the user to hit another
key before it continues. If the user hits the T key, the
compiler will exit and display the message "ABORT COMPILATION". If
the user hits any other key, compilation will resume. This feature
is useful for pausing the compiler for examination of screen
listings.

The above instructions include the general procedure for
compilation. Variation from the outlined instructions are needed if
such options like Manual compilemode or specified mapping addresses
are used. The mapping options, as described in section 2. 4, describe the
capabilities of MLBASIC for experienced programmers who may want to
interface compiled programs with other machine language routines.

8

MLBASIC 2.0 USER'S MANUAL

2.3 Storage Options

There are six different combinations of how the compiler is to
handle program source and obj ect (compiled version) code. By default,
both input and output by the compiler are performed "In Memory". The
two main options for storage are:

(1) BASIC SOURCE INPUT This is where the compiler is to
obtain the BASIC program that is to be compiled. The two available
choices are to read the program from "M"-memory or "D"-disk. The
letters in quotes are the characters that are used to tell the compiler
which option to use. By default, the "M"-memory option is used where
the program has previously been entered or loaded into memory. The disk
option, if selected, will be followed by a query from the computer
asking for the input filename. This filename is the name of the program
that is on disk.

(2) MACHINE LANGUAGE OUTPUT This is where the compiler is to
put the final compiled program and necessary text and subroutine areas.
The two available choices for outputting the compiled code are; "11"
-memory or "D" -disk.

As in the BASIC INPUT option, the character in quotes is used to
identify each choice. By default, the "M" -memory option is used,
meaning that all compiled output is to be written to memory. This is
the fastest way to compile a program, and therefore should be used,
unless the compiled program .is too large to fit in memory, or is to be
saved on disk. In the case where the object code is too large to be
compiled in memory (as indicated by the error message 'ERROR, M.L.
OUTPUT EXCEEDS $7EFF'), the "D" -disk option must be used.

The disk option allows for storage of the compiled program on a
non-volatile medium. Once an error free program has been compiled and
saved to disk, the executable program may be loaded into memory, and
EXECuted with little effort. The disk option allows for unlimited size
programs to be written.

If the Disk option is used for either the input or output
options, the-disk in drive zero must not be write protected.

In summary, the various storage options allow flexibility in where
the program is to be compiled. For large programs, the "D" Output and
"D" Input option should be used. This allows for compilation of any
size program (final program size may be up to 60k long!)

9

MLBASIC 2. 0 USER'S MANUAL

2. 4 Mapping Options

MLBASIC automatically figures out where to locate the compiled
program when using the default Automatic compilemode. If the Manual
compilemode is selected, MLBASIC will allow the user to select the
locations of all four program segments that are produced when a BASIC
program is compiled. The locations are entered after the following four
g:r:oup headings:

(1) MAIN PROGRAM AREA - The number displayed is the starting
location for the main machine language program. The address in the EXEC
command used to run the compiled program is called the Entry Point. By
default, the Entry Point is the first location in the entire program.

(2) CHARACTER DATA AREA - The number entered is the starting
address of the area where all of the numeric string constants are stored,
including text contained in PRINT and INPUT statements, is called the
Text Table. The default value used for the Text Table beginning is the
address immediately following the main program area.

(3) SUBROUTINE LIBRARY AREA - The number entered here is the
starting address where the runtime machine language routines that contain
all the necessary interfacing between the main program and the computer
are located. This package of routines must accompany the final
program for successful execution. By default, the Subroutines follow the
Text Table in memory.

(4) VARIABLE STORAGE AREA - The value that needs entering is the
starting address of the area where scalar and dimensioned variables are
contained. This is an absolute address, and is only used during
execution of the compiled program. During compilation, this area may be
anywhere, but by default is located following the Subroutine library.

If one selects the Disk output option, the Entry point of the
program can be entered by the user. If no value is given, MLBASIC will
compile the program such that the end of the program (not variable table)
is in the last available memory location.

MLBASIC will compile programs in the lower 32k of the first bank of
6 4k (TASK #0) if the program can fit in it. The area above the lower 32k
in this mode cannot be used because it contains the BASIC and Disk

operating system. Programs that cannot fit within the lower 32k will be
mapped to run in the second bank of 6 4k RAM (TASK #1) . Large programs
like these must be executed using the special loader program called
"R. BAS".

In summary, the mapping options allow the user to specify where the
final compiled program is to be stored "In Memory". The first three
areas in the compiled program are written to memory or the storage medium
at compile time, whereas the fourth is not.

10

MLBASIC 2.0 USER'S MANUAL

2.5 Listing Options

MLBASIC allows three choices for listing the final compiled
program. They are:

1. "S" - Screen opt ion
2. "N" - No output opt ion
3. "B" - Both screen and printer output option

The Screen option allows for users to view the compilation
process line by line. Each line, as well as its location in the M.L.
program, is displayed as it is compiled. This option allows the user to
identify errors in the source code.

The No output option allows the user to see only the locations of
the four program segments as the compiler works. The original screen
that appears during initial execution of MLBASIC is kept for the
duration of compilation. This option is most useful for identifying
where the program is being written, and how long it is. By default, the
No output option is used during compilation.

The Both option gives a screen listing identical to the "S"
option, and in addition, produces a comprehensive printer listing of the
compiled program. Included in the listing to the printer is:

A. All of the beginning and ending locations of all four program
sections.

B. Locations of each BASIC line in the final compiled program.

C. Listings of all BASIC source lines that are compiled.

D. Variable tables for scalar and dimensioned variables showing
variable locations in memory, type of variable, and its name.

E. Listing of compiler errors encountered during the first pass.

2.6 Number Base Option

MLBASIC allows for the user to select the default number base to be
used in Integer Variable inputs and printing. This number base is
used only for integer variable I/O, and has nothi�g to do with how
real variables are input or printed.

The default number base used by MLBASIC is base 10, decimal. If
the user wants the compiled program to understand hexidecimal numbers
for example, the user must specify 16 as the number base before
compiling that program. In this case, any integer INPUT or PRINT
statements within the compiled program will only understand base 16
numbers. It is important to realize that only the selected base is
valid for integer I/O.

The allowable number bases to choose from are bases from 2 to 16.
Base 2 for example gives binary output when an Integer is printed and
only accepts binary when an integer is INPUT from the keyboard.

1 1

MLBASIC 2. 0 USER'S MANUAL

2. 7 Default String Length

MLBASIC allocates a predefined number of characters for each string
or string array element. The default string length used is 256
characters.

The user may change this value to any number from 1 to 3 2767.
Strings that have a length greater than 256 characters cannot be
manipulated using string functions because the string manipulation
buffer is only 256 characters long.

The default string length is used by the compiler unless the
%STRING compiler directive is used within the program code. The %STRING
directive will override the default string length with the length
supplied in the directive (see section 3. 8. c for more information on
%STRING) .

2. 8 Compilemode Options

MLBASIC allows the user to choose whether or not to let the
compiler perform all of the compilation processing. If the user doesn't
care about where the program is to reside in memory, then the
Automatic compilemode should be chosen. Often the user may want to
select all of the mapping options for compilation; in this case the
Manual compilemode should be used. These two options for how the
compiler is operated allows flexibility in the program development
process. By default, the Atitomatic mode is used by MLBASIC.

The Automatic compilemode allows the user to quickly compile a
source code into an EXECutable machine language program. In this mode,
the most efficient mapping options are figured out. The automatic mode
causes MLBASIC to perform a two pass compilation of the BASIC source
code.

During the first pass, each program line is scanned for syntax
errors. If any errors occur, the compiler will display the errors. If
there were any errors during the first pass, compilation will stop. If
there were no errors, compilation continues to the second pass.

During the second pass, all of the mapping parameters are figured
out and compilation of the entire program proceeds. At this time, the
source listing, if any, is output. At the end of the second pass, the
Subroutine library is relocated to its proper location, whether it be in
memory or disk. In addition, all of the GOTO and GOSUB vectors are
stored in the machine language program at this time.

The Manual compilation mode is not usually used. It only performs
one pass over the source code during compilation. This pass, similar to
the second pass of the Automatic compilemode, checks for errors,
outputs listings of compiled source and relocates the subroutines all at
once. The Manual compilemode is useful if the programmer is
interested in compiling two or more program that share the same
subroutine library, or use some of the same variable area. If the
manual mode is selected, the user is required to input the starting
addresses for the Entry Point, Text Table, Subroutine Library, and
Variable Table (see Section 2. 4 for more information on these four
locations).

CHAPTER 3

12

MLBASIC 2. 0 USER'S MANUAL

MLBASIC COMMANDS

In this chapter, each command allowed by MLBASIC will be fully
described. An entire page is devoted to each command, thereby making it
easy for the user to find a particular command in question.

Throughout this chapter, a general format accompanies the
description of each command. When more than one specific arrangement is
permitted, separate formats are shown. Within a general format,
keywords, connectives, and special characters are shown in proper
sequence. Unless otherwise stated, only the shown sequence can be used.

The general formats use the following convention:

- Each capitalized word or letter represents a required part of the
instruction line. You must type in all the CAPITALIZED items that
appear in the format line as CAPITALIZED words.
- Wherever an element is underlined, you must supply a legal BASIC
representative of that element.
- El�ments that are enclbsed in SlaShes (/) �re optiorial items.
- A colon (:) indicates a choice. When a colon appears in an
instruction line, you can choose a parameter from either side of the
colon.
- Items followed by ellipsis(•. .) may be repeated any number of
times.
- You must use all punctuation marks in an instruction in the
position they are shown in the format line. However, you should
never include in an instruction any of the symbols including
underlines, slashes and colons (although colons are used to
separate individual commands that on on the same program line).
- Blank spaces are ignored by the compiler, but are necessary for
separating variable names and commands.

The format item descriptions contain the allowable data parameter
types as shown in parenthesis that follow the general description of that
item. The following abbreviations are used to describe the allowable
parameter types for each item:

IV -Integer Variable
IC -Integer Constant
SIV -Scalar Integer Variable (no arrays)
RV -Real Variable
RC -Real Constant
SRV -Scalar Real Variable (no arrays)
SV -String Variable
SC -String Constant
IE -Integer Expression
RE -Real Expression
SE -String Expression

3.1 I/O Commands

3.1.a CLOSE

Function

13

MLBASIC 2.0 USER'S MANUAL

To close one or more files that were opened for I/O.

Format CLOSE /#channel/, .••

channel -device number to be closed (IV, IC)

Examples
1. CLOSE
-This closes all open channels
2. CLOSE#1, #2, #-1
-This closes channels 1, 2, -1

Comments

3.1.a

1. The CLOSE command should be used before program termination
whenever any disk or cassette files are open. It is especi ally
important to close files opened for output, since a close will
output any remaining data left in the file buffer.

Differences from Interpreter
1. NONE

Roms Needed (ECB=Extende d, DB=Disk, B=Standard)
B

1 4

MLBASIC 2. 0 USER'S MANUAL

3. 1 . b CLOADM

Function
To load a machine language program from cassette.

Format CLOADM /filename//,offset/

filename -Name of file (SC)
offset -Offset load value (IC)

Examples
1 . CLOADM "MLTEST"
-Loads machine language file "MLTEST"
2. CLOADM "TEST 1", 1000
-Loads file "TEST 1 " with an offset of 1000 bytes

Comments

3 . 1. b

1. The filename may be omitted, in which case the next file
found on the cassette will be loaded.

Differences from I n t erpreter
1 . Only Constan ts are allowed as arguments .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

15

MLBASIC 2.0 USER ' S MANUAL

3 . 1. C
3.1.c CSAVEM

Function
To save machine language programs or binary data to cassette

Format CSAVEM filename , start , end , exec

filename
start
end
exec

Examples

-Name of output file (SE)
-Starting address in memory to save (I V , IC)
-Address of last byte to save (I C , IV)
-Entry location for M.L . program (IC , IV)

1 . CSAVEM "MLTEST" , 10000 , 12000 , 1050 0
-Save the machine language program " MLTEST" to tape

starting at 10000 , thru 12000 and an exec address of 1 050 0

Commen ts
1. Extended Basic is not required.

D ifferences from I n terpreter
1 . NONE

Roms Needed (ECB=Ex tended , DB=Disk , B=Standard)
B

1 6

MLBASIC 2.0 USER'S MANUAL

3. 1 . d
3. 1. d DIR

Function
To display a directory of the disk in the drive number you

specify.

Format DIR /drivenumber/

drivenumber -Number of drive 0-3 (IC)

Examples
1 • DIR
-Display directory of drive 0
2. DIR 1
-Display directory of drive 1

Comments
1 . If no drive number is given, the default drive directory is

displayed.

Differences from I nterp�eter
1. 0nly Integer constants are allowed for drive number.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB, DB

3. 1 . e DRIVE

Function

1 7

MLBASIC 2. 0 USER'S MANUAL

3 . 1 . e

Changes the drive default to a specified number between O and
3.

Format DRIVE /drivenumber/

drivenumber - Number of drive to select (IC)

Examples
1. DRIVE3
-This makes DRIVE3 the default drive

Comments
1. If DRIVE is not used, drive O is the default drive.

Differences from Interpreter
1.0nly I nteger Constants are allowed.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB, DB

18

MLBASIC 2.0 USER'S MANUAL

3. 1 . f
3. 1.f DSKIS

Function
Directly input a sector from a given track and drive into a

string array that is dimensioned for at least 25 6 characters.

Format DSKI$ drivenumber, track, sector, string

drivenumber
track
sector
string

Examples

-Number of drive (IE)
-Track number (IE)
-Sector number (IE)
-Name of string (SV)

1. DSKI$ 1, 17, 3, A$
-Reads the directory track, sector 3 and stores it in array AS
2. 100 %STRING= 1: DIM A$ (25 6) : REM' I/0 BUFFER = 25 6 CHARACTER S

200 INT DR, TR, SE
300 DSKIS DR, TR, SE, A$
400 FORI= OT025 5: INT J: J=A$(I)
500 PRINT "BYTE ."; I ; "="; J: NEXT

- This is an alternative way read data into a buffer. In this
example, each byte of data can be examined more easily.

3. D i hlB$ (18) : FORI= 1T0 18 : DSKI$0, 17, I+ 1, B$ (I): NEXT
-This reads the entire directory track into a buffer calle d D� .

Comments
1. The track numbers may be a number from O to 34, the sector

may be a number from 1 to 18.

Differences from Interpreter
1. The array that is to hold the input sector can hold all 25 6

bytes, whereas the Interpreter uses two arrays of 128 bytes each.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB, DB

1 9

MLBASIC 2 . 0 USER'S MANUAL

3 . 1 . g
3 . 1 .g DSKO$

Function
Outputs a string buffer to a sector on a given track and

drive.

Format DSKO$ drivenumber , track, sector , string

drivenumber
track
sector
string

-Output drive (IE)
- Track number (IE)
-Sector number (IE)
-String array (SV)

Examples
1. 10
2. 10

20
-This

Comments

DSKO$0, 0, 1, ARRAY$
DIM BUFFER$ (18)
FORI= 1TO18 : DSKO$0, 3 4, I+ 1 , BUFFER$ (I) : NEXT

outputs buffer B$ to the last track on drive 0.

1 . As with DSKI$, the al lowable track numbers are 0- 34 and the
al lowable sectors are 1� 18.

Differences from Interpreter
1. Only one string is required to hold the 25 6 byt e da t a tha t

is to be written to disk with MLBASIC.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB, DB

3. 1. h FIELD

Function

20

MLBASIC 2. 0 USER ' S MANUAL

3. 1. h

Organizes the space within a direct access buffer into fields.
By assigning a name to each field, data can be written to the fields
using the LSET and RSET commands, and later used as a string
variable in PRINT statements, string expressions, etc.

Format FIELD #buffer , fieldsize /: AS fieldname ' . . .

buffer -Buffer to divide into fields (IC)
fieldsize -Size of field (IC)
fieldname -Name of field (up to 2 characters+ "$ ")

Examples
1. FIELD= 1, 100/A 1$, 200 AS A2$, 50/ A3 $
-This forms 3 new fields in buffer 1 of length 100, 200 and 50

bytes each.
2. LSET A1$ = "data= "+A$
-This example writes a string expression to the field, A 1$.
3. A$ =A 1$
-This example assigns the data stored in field, A1$, to the

string variable, A$.

Comments
1. The name of the field may be used as a string variable is

normally used (eg. PRINT, string exressions).
2. Data may only be written to a field using the LSET and

RSET commands . In-- other words, field names may not appear on the
left side of a string equation, or with the command INPUT.

3. If more than one FIELD command that use the same buffer
numbers are in a program, make sure no FIELD commands having
different buffer numbers appear in the middle of the FIELD
commands.

4. The maximum size of any field must be less than 25 6 bytes
(1- 25 5 allowed) .

Differences from Interpreter
1. The Interpreter only allows "AS" to be used to separate

field parameters. MLBASIC offers "/" as another allowable delimiter .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

2 1

MLBASIC 2.0 USER'S MANUAL

3. 1.i
3. 1. i FILES

Function
To tell the computer how many buffers to reserve in lower

memory, and the total number of bytes to reserve for the buffers.

Format FILES buffers , buffersize

buffers -Total number of buffers to reserve (IE)
buffersize -Total number of bytes to reserve (IE)

Examples
1. FILES4, 1300
-This reserves four buffers and a total space of 1300 bytes for

all disk buffers.

Comments
1. On startup of the computer, there are 2 buffers and a total

of 25 6 bytes for the buffers assigned before any FILES command is
given.

2. Care must be taken when using this command. Memory
available for buffers must be large enough to accommodate the
buffersize.

3. If a buffer is currently open when the FILES statement is
executed, the data in the buffer is lost as all buffer tables are
re-initialized.

4. The graphic pages conflict with the disk buffers, so make
sure that the first graphic page used is above the disk buffers.

Differences from I nterpreter
1. NONE

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B, ECB, DB

22

MLBASI C 2.0 USER'S MANUAL

3. 1. j GET

Function
Gets the record number specified and stores it in the

specified buffer.

Format GET #buffer, recordnumber

buffer
recordnumber

Examples
1. GET# 1, I- 1

-Buffer number (I E)
-Record to read (IE)

- This reads in record number (I - 1) into buffer # 1.

Comments

3. 1. j

1. This command does not support the graphics option for GET.
2. Non-Disk users may use this command for random access

cassette Inputting of individual cassette blocks.

Differences from Interpreter
1. Graphics mode not suppor t ed in MLBASIC.
2. Cassette option not allowed with I nterpreter.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

23

MLBASIC 2. 0 USER'S MANUAL

3 . 1 . k

3. 1 . k INPUT

Function
This command inputs data from the specified channel number and

stores the data in the variable specified in the argument list.

Format

string
buffer

arg

Examples

INPUT /string ; //#buffer, /arg / , : ; arg • • • / ; //

-Message to appear before keyboard input (SC)
-Device number (IE)

- 1 =cassette
0 =keyboard (not needed)

1- 15 =Disk files
-Name of variable or array where

input data is stored. (IV, RV, SV)
-Supress linefeed after input
-Linefeed after input

1. INPUT "ENTER A NUMBER "; A
-This prints "ENTER A NUMBER" to the screen and awaits an input

from the keyboard. When - you enter the number and hit RETURN, the number
is stored in the variable named A.

2. INPUT#- 1 , A, AS : %STRING= l : DIM B$(1000) : INPUT�- 1, $BS(100)
-This inputs data from the casset te in the following order : a

number is first input into the variable A, then an entire string is read
(characters terminated by a zero byte) into the array A$, finally one
character is input into the array element B$ (100).

3 . INPUT "ENTER A" ; A ;
-This is the same as example # 1, except a CR is not output to the

screen after inputting variable, A.

Comments
1. The format that is accepted as input from cassette and disk

files is binary format by default. This is the most efficient way to
store data, and since this is how it is stored in memory, no conversion
of data types is necessary. This means that CVN and MKNS are not not
needed for efficient I/O.

2. Data that has been written to the file previously using an
ASCII format must be read in as a string and converted to a real or
integer number using VAL.

24

MLBASIC 2.0 USER'S MANUAL

3. String variables may be input element by element by
specifying a string element in the argument list. By placing the
special character "$" in front of the string variable name, single
charaters can be input from a device.

Differences from Interpreter
1. When data is input from the keyboard, the "ENTER" key must

be hit after every entry.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

25

MLBASIC 2.0 USER'S MANUAL

3 . 1 . l K I LL

Function
To delete a file from the disk permanently.

Format K ILL filename

filename -Name of file to kill (SE)

Examples
1 • K I LL I I F I LE 1 11 + 1 1 : 1 11

- Delete FILE 1 from drive 1 ' s directory

Comments

3. 1. 1

1. The kill command closes all open files before deleting a
file.

Differences from I nterpreter
1. NONE

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB, DB

2 6

MLBASIC 2. 0 USER'S MANUAL

3. 1. m
3. 1. m LINEINPUT

Function
To input a record of bytes from a specified channel number.

Format LINEINPUT /string ; //#buffer, /arg , •••

string
buffer

arg

Examples

-Message to appear before keyboard input (SC)
-Device number (IE)

- 1 =cassette
0 =keyboard (not needed)

1- 15 =Disk files
-Name of variable or array where

input data is stored. (SV)

1. LINEINPUT "ENTER STRING " ; A$

2. LINEINPUT# 1, A$, B$, C$
-This example gets three records of data and stores the in

A$, B$ and CS respectively.

Comments
1. LINEINPUT will input bytes of data from a device and store

them into the specified string variab le until an end of line byte
(ASCII 13) is input. When this byte is input , a zero byte is stored
at the end of the string variable to terminate the string data.

Differences from Interpreter

1. None.
Roms Needed (ECB=Extended, DB=Disk, B=Standard)

B, ECB

3. 1 . n LSET

Function

2 7

MLBASIC 2. 0 USER'S MANUAL

3. 1 . n

To left j ustify a string into a previously specified field
within a random access buffer.

Format LSET fieldname=string

fieldname -Name of field in buffer (2 characters+ "$")
string -String to be stored into field (SE)

Examples
1. LSET A1$ = "The number is "+STR$ (A)
-This stores a string expression into field A 1 $

Comments
1. If the string expression is larger than the field, the

string is truncated to fit the field, and where the last byte in the
field is a zero .

2. If the string is shorter than the field, blanks (ASCII 3 2)
are filled in to the right of the string with a zero byte in t he
last position in the field .

3. In all cases, a �ero is used to terminate the field that is
being written to . This means that a zero should be accounted for in
the allocation of the buffer . Each field in that buffer will have a
zero as its last character .

4 . Data that is written to fields can be used as a string in
string expressions . The zero byte that terminates the field is
needed to terminate the field string when used in an expression .

Differences from Interpreter
1 . The format for terminating the field with a zero is

different than the Interpreter .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

28

MLBASIC 2. 0 USER'S MANUAL

3. 1. o
3. 1. o OPEN

Function
To open a file for input, output or direct access. The device can

be either cassette or disk.

Format

buff
mode
fname
ftype

reclen

Examples

OPEN "mode" , #buff, fname /, #ftype//, reclen/

-Buffer number (IC, IV)
-I=input, O=output, D=direct (random) access

- Name of file to open (SE)
-Type of file as follows :

$000 Basic program
$ OFF Basic program in ASCII
$ 100 Bi nary data
$ 1FF ASCII data
$ 200 Machine language program
$ 300 Text stored in binary
$ 3FF Text stored in ASCII

-Length of direct access file (IE)

1. OPEN"I", # 1, "TESTFILE : 1"
- This opens buffer # 1 for input from file "TESTFILE" on drive# 1.
2. OPEN"D", #5, A$ +". DAT", # $ 200, 100
-This opens buffer #5 to file A$ plus the extensi on ". DAT" for

random access I/0. The file type is specified as text stored in binary.
The record length is 100 bytes.

3. OPEN"0", # 1, "FILE", #&H200
- This opens channel # 1 to an output file named "FILE". The type of

the file is a machine language program.

Comments
1. The default record length for random (Direct) access files is

256 bytes.
-

2. The random access option can be used for cassette I/0 provided
the proper steps are made to make sure that the recqrder is on record
when you PUT a record, and that the recorder is on play when you GET a
record.

3. Although the OPEN#- 1, "D" option is not allowed, the cassette
file may be opened for direct access using the following mode:

"I" -Open for input if file exists
"0" -Open for output if file is to be created
4. The maximum length of a cassette record is 25 5 bytes, as opposed

to an unlimited size with disk files.

Differences from Interpreter
1. Interpreter does not support direct access cassette I/0.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3 . 1 . p PRINT

Function

29

MLBASIC 2. 0 USER'S MANUAL

To output data to a buffer, the printer or the screen.

Format PRINT /#buffer , //USINGformat ; //TAB (pos) / arg ct • •
buffer -Buffer to print data to (IV, IC)

-

format
pos
arg
d

If @number is used instead of #buffer
screen output is started at number

(IV or I C between O and 5 1 1)
-PRINTUSING format allowed (SE)
- column position to print next argument (IE)
-Data to print (IE, RE, SE)
-separation character for arguments:

3 . 1 . p

", "=skip to next line (except with USING)
" ; "=do not skip a line or space

(with USI NG, use only at end of arg. list)

Examples
1. PRINT"This is text "
-This prints a string const ant to the screen.
2. PRINT#- 1, USING"##. #- " ; - 123 . 9, A, B, C ;
- This prints a real constant and two variables to the cassette

file using a specified format in the form of ASCII characters.
3. PRINT#2, TAB (5-I) ; "DATA= "; TAN(A/S IN (1 + 1. 9 *COS (A)))
-This prints to disk a string and real expression starting at

column position 5-I.
0 A= l . 9 9 9: B=50000: C= l . 9E+ 10

10 OPEN"0", = 1, "TEST. 1 "
20 PRINT# l , A ; B ; C; : CLOSE
3 0 OPEN"I", # 1, "TEST. 1 "
4 0 INPUT� l , A, B, C: CLOSE
50 PRINTA, B, C: END

- This simple program writes and then reads back three variables to
disk.

4. PRINT#2, STR$ (A) ; ", " ;
- This example prints to device #2 the character equivalent of the

variable, A with a delimit er, as the interpretor would in the command
PRINT#2 , A ; .

Comments
1 . MLBASIC prints all real number s to cassette and disk in their

binary format , unless the USING format is used in the command. Likewise,
the I NPUT command will read in the data in the binary format, thereby
making PRINT and INPUT compatible ways of storing and later recalling
numeric data.

2. Strings that are written to disk or cassette are terminated with
a zero byte as a means of separating the items in the file.

3. The semicolon is usually used after all arguments that are
written to a file so they can easily be read back using INPUT.

4. If the character "$ " is placed in front of the string variable
name , only the first byte of that string will be output to the device.

3 0

MLBASIC 2.0 USER'S MANUAL

5. The following characters may be used as field specifiers in
the PRINTUSING format string:

The position of digits as they are to be printed. The number
of #s establishes the numeric field. Unused digits are left as
blanks (ASCII 32) to the left and zeros (ASCII 48) to the right of
the decimal point.
. The position of the decimal point is marked by a "." in the
numeric field.
L The comma, when placed anywhere between the firs t digi t and
the decimal point in the field, will display a comma to the left of
every thir d digit that lies to the lef t of the decimal point.
* * Two as terisks a t the beginning of the numeric field
indicates that all unused positions to the left of the decimal point
will be filled with asterisks "*" ·
$ By placing a dollar sign in front of the format , a dollar
sign will appear in fron t of the output number.
$ $ Two dollar signs placed at the beginning of the format will
make the dollar sign appear one space to the left of the largest
digit.
* * $ If these characters are used at the beginning of the format
string , then the vacant positions to the left of the number will be
filled with as terisks and a dollar sign one space to the left of the
largest digi t.
+ The plus sign will appear before positive numbers and a
negati ve sign before al � negative numbers if the "+" appears in
front of the format string.

If the minus sign appears at the end of the format string ,
a negative sign will appear after all nega tive numbers and a space
af ter all positive numbers.
i i i i If four "Up arrows " appear at the end o f the format string ,
the number will be printed out in standard exponen tial form.

An exclamation mark alone in the format s tring will cause
the firs t string character to be printed by itself.
% % To specify a s tring field of more than one character ,
where the number of spaces that lie between the %s is equal to the
length of the field.

Differences from Interpreter
1. The Interpreter uses the ", " delimiter as a tab , where

MLBASIC uses ", " as a new line indica t or.

Roms Needed (ECB=Extended , DB=Disk, B=Standard)
B

3 1

MLBASIC 2. 0 USER'S MANUAL

3. 1. q
3 . 1 . q PUT

Function
To assign the data in the desired buffer a record number and

store information on disk or cassette.

Format PUT #buffer, recordnum

buffer -Output device number (IE)
recordnum - Number of record on file

Exampl es
1 • PUT# 1, 1

(or record length of cassette) (IE)

-assigns current data in buffer # 1, the record number 1.
2. PUT# - 1, 100
-writes the first 100 bytes in buffer #- 1 to a cassette record

(or block in this case).

Comments
1. The PUT command has been al lowed to use the cassette for

direct access input/output. The record number in this case must be
accounted for in the applications program that uses the PUT command .
The recorder must be positioned to the next block to be writ ten (or
overwritten), and the recorder must be on RECORD. A way o f
positioning the cassette to the proper block in a cassette file that
is being written is to (1) make sure the cassette is in the PLAY
mode by using prompts in the program, (2) to use GET# - 1, R- 1 , where R
is the record that is to be written. The internal software for the
GET command wil l prompt the user to rewind the cassette tape to the
beginning of the file, and then the correct block number wil l be
searched for in the file.

2. The cassette option, PUT#- 1, must include the length of the
record, or errors wil l occur when writing to tape. Maximum cassette
record lengths are 25 5 bytes. If graphics commands are used while
data is stil l in a cassette buffer, the data in that buffer wil l be
lost (because graphic commands use the cassette buffer area for
temporary variable storage).

Differences from Interpreter
1. The graphics opt ions for the PUT command are not supported

with MLBASIC.
2 . The cassette option for PUT is not supported by the

Interpreter.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3 2

MLBASIC 2. 0 USER'S MANUAL

3. 1 . r
3. 1. r RSET

Function
To right j ustify a data string within a given field and

buffer.

Format RSET fieldname= string

fieldname -Field Identifier name (2 characters+ "$ ")
string -Data string to be put in field (SE)

Examples
1. RSET A 1 $ =VARIABLES (O) +STRING$ (10, "* ") +STR$ (A- 100)
-This example right j ustifies a complex string expression

within the previously declared field named A 1 $

Comments
1. If the st ring expression is larger than the field, the

string is truncated to fit the field, and the last byte in the field
is a zero.

2. If the string is shorter than the field, blanks (ASCII 3 2)
are filled in to the left of the string with a zero byte in the last
position in the field.

3. In all cases, a zero is used to terminate the field that is
being written to. This means that a zero should be accounted for in
the allocation of the buffer. Each field in that buffer will have a
zero as its last character.

4. Data that is written to fields can be used as a string in
string expressions. The zero byte that terminates the field is
needed to terminate the field string when used in an expression.

Differences from Interpreter
1. The format for terminating the field with a zero is

different than the Interpreter.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3 3

MLBASIC 2. 0 USER ' S MANUAL

3 . 2 Program Control Commands

3. 2. a CALL

Function

3. 2 . a

The CALL statement is used to execute a subroutine by
referencing its name and a list of parameters. These parameters are
shared between the subroutine (subprogram) and the calling program.

Format CALL subroutine (arg, . ••)

subroutine
arg

-Name of subroutine (7 characters max.)
-Parameter to be passed to subprogram

Examples
1 •

Value is shared with subroutine
(IV, IC, RV, RC, SC, SV)

10 CALL EXAMPLE(A, 9. 9, B (1, 10))
20 REM ' PROGRAM
30 REM ' CONTINUES

1000 SUBROUTINE EXAMPLE (I, J, K(O, O))
100 1 REAL J: DIMK(20, 20)
1 002 I=INT (J/SIN(K (O, O)))
100 3 RETURN

-This example shows the way one may call a subroutine. In this
example, the subroutine EXAMPLE is called with the three parameters
A, 9. 9 and B(1, 10) being passed in the argument list. The subroutine
identifies the data that is in the caller ' s variable, A, as the
variable I, J as the number 9. 9 and K (O, O) as 8 (1 , 10) . The result of
the subroutine call puts the value of INT(9. 9/SIN (B (1, 10))) in the
main program's variable A. Note that the variable I and J in the
calling program is unaffected by the call.

34

MLBASIC 2. 0 USER'S MANUAL

Comments
1 . The arguments that are passed in the argument list of the

CALL statement are pointers that are referenced by the subroutine
program. The value or array of values that is pointed to in the
argument list is contained in the calling program's storage area.
This means that the calling program can share its variables with the
subprogram that is being called.

2. The subroutines, also called subprograms, return values to
the calling program unit only through actual-dummy argument
correspondence. In other words, the first variable in the SUBROUTINE
statement's list is set equal to the constant or variable that is
first on the list in the CALL statement, and so on for all the
arguments in the list.

3. If an array is an argument on the list in a CALL statement,
the first element that is referenced by the subroutine is the
element that appears on the CALL statement list.

4. If the SUBROUTINE is to return a value to the calling
program, the argument in the list of the CALL statement must be a
variable.

Differences from Interpreter
1 . Interpreter does not support CALL.

Roms Needed (ECB =Extended, DB=Disk, B=Standard)
B

3 5

MLBASIC 2. 0 USER'S MANUAL

3.2.b
3. 2. b DEFUSR

Function
To define the entry location for a user machine language

subroutine.

Format DEFUSRn=start

n -User function number (0-9)
start -Entry location of machine language routine (IE)

Examples
1. DEFUSR 1= M+N

Comments
1. DEFUSR must be called before calling the function, USR.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

36

MLBASIC 2. 0 USER'S MANUAL

3.2.c
3. 2. c END

Function
The END command is used to indicate where compilation is to

terminate. When the program is run, and an END is encountered,
program termination will occur.

Format END

Examples
1. 1000 PRINT"Exi t" : END
-When the program gets to line 1000, the message "Exit" will

appear on the screen and the program will terminate.

Comments
1. The END is compiled the same as the STOP statement. Normal

termination within the program should be done using STOP.
2. The END is the last statement of the program to be compiled .

In other words, the END statement is used to tell the compiler that
it has reached the end of the source to be compiled.

Differences from Interpreter
1. Interpreter allows the END to be anywhere in the source,

while MLBASIC only permits the command at the end of the source.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3 . 2.d EXEC

Function

3 7

MLBASIC 2.0 USER ' S MANUAL

To execute a machine language program.

Format EXEC address

address -Entry locat ion of machine
language program (IE)

Examples
1 . EXEC 1 0000

3.2.d

-Execute the machine language program beginning at address
1 0000

2. POKE65502, 1 : EXEC$A 1 C 1 : POKE65503, 1
-In this example, the 64k RAM mode is f irst turned off, then

the address t o poll the keyboard in ROM is called (star t ing at
hexi decimal $A 1 C 1) . When the machine language program f in ishes (with
an RTS f or those M.L. programmers), the map type is re turned from
the 32k ROM enabled to the 64k RAM enabled map type.

Comments
1 . The EXEC command is used to execute an absolut e address in

memory. This means that a machine language program mus t ex is t at t he
address that is t o be executed, or else unpredictable results wi ll
occur.

2. As many levels of calls using EXEC may be perf ormed, as long
as the memor y permits.

3. The EXEC command, when compiled, is a usef ul way to execu te
a machine language program, located in the upper 32k of RAM, while
running under In terpreter BAS I C.

Differences from In terpreter
1 . None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3 8

MLBASIC 2.0 USER'S MANUAL

3.2.e
3.2.e FOR . • NEXT (STEP)

Function
To allow a series of instructions to be performed in a loop for a

given number of times.

Format FOR counter=start TO finish /STEPstep/

counter

start

finish
step

Examples

NEXT/counter/

-Index variable used to count thru
a given loop (IV)

-Initial value counter assumes
when entering loop (IV, C)

-Final value counter assumes in loop (IV, IC)
-Increment to be added to counter (IV, IC)

1 . 10 FORX= l TO 10: NEXT
-In this example, the count er variable, X, is incremented by 1 from

1 to 10.
2. 10 FORA (I) =J TO B (10, 10) STEP-C (I, J)
-In this example, the counter variable, A (I) , is decremented by the

amount contained in the .integer array element C (I, J) . Furthermore, the
initial value is the integer variable J and the final value, (which in
this case is less than the initial value) is B (l 0, 10).

Comments
1. The coun ter variable must be of type INTEGER. If it is not,

MLBASIC will convert that variable over to type INTEGER automatically.
2. The commands following the FOR statement are executed until the

NEXT command is encountered.
3. The counter is incremented by a specified amount when the NEXT

command is executed. At this point, after incrementing, the counter
variable is compared to the final value. If the counter is now out of
the range of the initial and final values, program control will continue
to the command following the NEXT command.

4. If the STEP is not specified, the increment is assumed to be 1.
If the step is negative, the final value must be less than the
initial value.

5. FOR • . NEXT loops may be nested, that is, you can place a
FOR . • NEXT loop inside another FOR • • NEXT loop. Nested loops must have a
unique counter for each loop. The NEXT command for the inside loop must
appear before the NEXT command for the outer loop. Up to 20 nested loops
are allowed.

Differences from Interpreter
1. Interpreter allows for expressions for the counter, initial and

final values.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3 . 2 . f GOSUB

Function

3 9

MLBASIC 2.0 USER'S MANUAL

3.2.f

To branch to and return from a subroutine beginning at a
specified line number.

Format GOSUBlinenumber

linenumber -The first line in the
subroutine. (0- 6 5 5 3 5)

Examples
1. 1 GOSUB 1000: STOP

1000 PRINT"Entering Subroutine 1000": RETURN
-In the above example, line 1000 is called from line 1 and then

execution is termintated by the STOP.
2. 10 ON 1+J/ 100+I GOSUB 1000, 2000, 3000, 4000
-In this example, the line number used in the GOSUB is computed

in the expression 1+J/ 100+I.

Comments
1. You can call a subroutine any number of times in a program.

Subroutines may be nested within another subroutine.
2. A RETURN statement in a subroutine causes a branch to the

command following the most recent GOSUB statement.
3. A subroutine may contain as many RETURNS as logical flow

requires.
4. If linenumber contains a nonexecutable command (eg.

REM, DIM, REAL), then execution proceeds at the first executable
statement encountered after "linenumber".

D ifferences from Interpreter
1. NONE

Roms Needed (ECB=Extended , DB=Disk,B=Standard)
B

40

MLBASIC 2. 0 USER'S MANUAL

3. 2. g
3. 2. g GOTO

Function
To perform an unconditional branch from the current position

in the program to a designated line number.

Format GOTOlinenumber

linenumber

Examples
1. 10 GOT0 1000

-Line number in BASIC source
(integer between O and 6 5 5 3 5)

-In the above example, program control is transferred to the
statements on line 1000.

Comments
1. If linenumber contains a nonexecutable command (eg.

REM, DIM, REAL) , then execution proceeds at the first executable
statement encountered after "linenumber".

Differences from Interpreter
1. NONE

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

4 1

MLBASIC 2. 0 USER ' S MANUAL

3. 2. h
3 . 2 . h IF �. THEN (ELSE)

Function
To make a decision regarding program flow based on the result

returned by an expression.

Format IF relation THEN st /ELSE st/

relation

st

-A comparison, using any relational
operator, between two expressions (IE, SE, RE)

-Commands or statements (except IF •• THEN)

Examples
1. 10 IF A= 100 THENGOT030

20 REM' skipped if A= 100
30 REM ' continue program

-This example shows a simple IF THEN statement. A shortcut for
THENGOTO is j ust THEN, therefore line 10 may read- IF A= 100 THEN30 .

2. 10 IF A$ =B$ THENPRINT A$; " ="; BS ELSEPRINT AS; "()"; B$
-In this example, two string variables are compared, and the

result is to print the relation of the two strings on the screeen.
3. 10 IF A+ 10. 9/SIN (9*R)< P+R/TAN (U) THENGOSUB 1000: GOT0 10

ELSEGOT0 1000
-In this example, two real expressions are compired.

Comments
1. If the relation is true (its value is not zero), the THEN

clause is executed. Execution continues unt il an ELSE is reached or
the end of the BASIC compiled line is reached, in which case the
program continues on the next BASIC compiled line.

2. If the relation is false, the THEN clause is ignored and the
ELSE clause (if present) is executed. Execution continues unt il the
end of the compiled BASIC line is reached.

3. The combination of commands THENGOTOlinenumber may be
abbreviated as THENlinenumer for simplicity, as long as an ELSE
does not follow.

Differences from Interpreter
1. The Interpreter allows nested IF •• THEN statements.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3. 2. i OFF ERROR

Function

42

MLBASIC 2. 0 USER'S MANUAL

3. 2. i

To disable any previously defined error handling routine.

Format

Examples
1 •

OFF ERROR

10 ON ERROR GOTO l OO
20 INPUT"Enter a number" ; A
30 OFF ERROR: REM' disable error vector

100 PRINT"INPUT ERROR , TRY AGAIN"
10 1 GOT020: REM' RETRY IF ERROR OCCURS

-In the above program, OFF ERROR is used to turn off the ON
ERROR that was defined on line 10.

Comments
1. OFF ERROR causes control to bypass any error called during

execution of the sta tements tha t f ollow this command, until another
ON ERROR statement is executed.

2. If the program does not contain any ON ERROR commands , the
OFF ERROR is assumed and therefore does not have to be included in
the program.

Differences from I nterpreter
1. The Interpreter does not handle OFF ERROR.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3 . 2. j ON ERROR

Function

4 3

MLBASIC 2.0 USER'S MANUAL

3.2. j

To enable control to pass to a line or a subroutine when an
error condition occurs during execution of the compiled program.

Format ON ERROR GOTO: GOSUB linenumber

linenumber -Line number where control is passed
(Integer value 0-6 5 5 3 5)

Examples
1 • 10 ON ERROR GOT0 1000

20 I NPUT "Enter input filename " ; A
30 OPEN "I", #3, A$
40 OFF ERROR

1000 PRINT"FILE NOT FOUND": GOT020
In this example, if the file that is to be opened for input is

not found on the disk, an error occurs, in which case the computer
asks for the filename again.

Comments
1. ON ERROR GOSUB calls must call a routine that contains a

RETURN, otherwise program execution may be altered if an error
occurs.

2. If the program does not contain any ON ERROR commands, the
OFF ERROR is assumed and therefore does not have to be included in
the program.

Differences from Interpreter
1. The Interpreter does not handle ON ERROR.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

4 4

MLBASIC 2. 0 USER'S MANUAL

3. 2. k
3. 2. k ON GO(TO, SUB)

Function
To branch to one of several specified line numbers , depending

on the value returned when an expression is evaluated.

Format ON expression GOTO: GOSUBlinenumber , •••

expression -Value which determines what
the destination line is (positive I E)

linenumber -Line number in BASIC source
(integer between O and 6 5 5 3 5)

Examples
1. 1 0 ON TT-INT(SIN (U- 1)) GOSUB 100 , 200 , 300
20
30
In this example , subroutines 100 , 200 and 300 are called if t he

expression has the respective values of 1 , 2 or 3.

Comments
1. In the ON • •. GOSUB statement , each line number in the list

must be the first line number of the subrout ine .
2. If the expression has a value of zero or a value greater

than the number of linenumbers in the list , execution will continue
to the next statement.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended , DB=Disk , B=Standard)
B

4 5

MLBASIC 2. 0 USER'S MANUAL

3. 2. 1 RETURN

Function
To return program control to the calling routine.

Forrnat RETURN

Examples
10 GOSUB 1000

20

1000 REM' subroutine entry
1000
1002 RETURN

3. 2. 1

In the above example, the subroutine 1000 was called, and when
a RETURN in line 1002 is executed, program control goes to line 20.

Comments
1. The RETURN command must be used at the end of a subroutine

that is called using GOSUB.
2. The RETURN command must be used to return control to the

calling program when used with CALL and SUBROUTINE.

Differences from Interpreter
1. None

Roms Needed (ECB =Extended, DB=Disk, B=Standard)
B

46

MLBASIC 2. 0 USER'S MANUAL

3. 2. m
3. 2. m STOP

Function
To terminate program execution, and to resume control to the

command level.

Format

Examples
1 •

Comments

STOP

10 STOP

1. The STOP should be used for program termination within the
main body of the program.

2. Execution of the STOP command is the same as the END
command.

3. When the STOP is executed, the 6 4k RAM mode is changed back
to the 3 2k RAM-3 2k ROM mode, and control is returned to the
interpreter.

Differences from Interpreter
1. The STOP does not allow re-entry into the machine language

program using CONT, whereas the I nterpreter allows this.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

47

MLBASIC 2. 0 USER'S MANUAL

3. 2. n
3. 2. n SUBROUTINE

Function
To allow reference to a set of statements or commands by a

single name and a list of parameters.

Format

name
arg

Examples
1 •

SUBROUTINE name (arg, . • .)

10
20
3 0
4 0
100
101
102
200

-Name of Subprogram (up to 7 characters)
-Variable to be passed to calling program

or used as constant in subprogram
(IV, RV, SV)

REM' test of how to call a subroutine
INPUT"enter a number "; A: PRINT
CALL TESTONE(A)
STOP
SUBROUTINE TESTONE(B)
PRINT"NUMBER=" ; B
RETURN
END

In this example, the subroutine TESTONE is called and the
number that was input on line 20 is printed.

Comments
1. The subroutines, also called subprograms, return values to

the calling program unit only through actual-dummy argument
correspondence. In other words, the first variable in the SUBROUTINE
statements list is set equal to the constant or variable that is
first on the list in the CALL statement, and so on for all of the
arguments on the list.

2. If the SUBROUTINE is to return a value to the calling
program, the argument in the list of the CALL statement must be a
variable.

3. Within the subroutine, name may only appear in the
SUBROUTINE statement immediately following the word SUBROUTINE.
Subroutine names are uniquely distinquished by their first seven
characters.

4. The subroutine list must contain the same number of
arguments as is contained in the CALL statement's list.

5. The arguments that are passed in the argument list of the
CALL statement are pointers that are referenced by the subrout ine
program.

6. If an array is an argument on the list in a CALL statement,
the first element that is referenced by the subroutine is the
element that appears on the CALL statement list.

Differences from Interpreter
1. The Int erpreter does not handle the SUBROUTINE statement.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

48

MLBASIC 2. 0 USER ' S MANUAL

3. 2. o
3. 2. o USR

Function
To call a user defined machine language subroutine within an

integer expression.

Format m=USRn(arg)

m -Variable that excepts the INTEGER value
passed by the user function (IV)

n
arg

Examples
1 •

-User function number (0- 9)
-Argument of user function (IE)

100 FORI= 1 TO 1000
200 B(I) =USR 1 (A(I)) : NEXT

with
-In this example, the user function is filling
values that are a function of the array A.

Comments

the array , B

1. Subroutines that are called by USR must end with a RTS or
equivalent PULS PC.

2. The USR function first loads the [D J register with the
integer argument. The machine language routine is then called via
the JSR instruction. After returning from the routine, the integer
value in the [D J register is transferred back as the result of the
function.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

4 9

MLBASIC 2.0 USER ' S MANUAL

3. 3 Math Functions

3.3.a
3.3.a ABS

Function
To return the absolute value of the expression given as the

argument.

Format ABS(expression)

expression -The value that gets passed to
the function. (RE)

Examples
1 . 10 A=ABS(100-S I N(10-I)* 2)

Comments
1. Negative expressions are made positive and the magnitude is

unchanged . Positive numbers are unchanged.

Differences fr om Int erpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B= Standard)
B

50

MLBASIC 2. 0 USER'S MANUAL

3. 3. b
3. 3. b ASC

Function
To return the ASCII value of the string expression given as

the argument.

Format ASC (expression)

expression -The value that gets passed to
the function. (one letter SE)

Examples
1. 10 A=ASC (A$)
In this example, the value of byte A$(0) is returned to A.

Comments
1. This command is not necessary in MLBASIC, but is used only

for compatibility with the interpreter. Example 1 could just as well
be written as 10 A=AS and the result would be the same.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B

5 1

MLBASIC 2. 0 USER'S MANUAL

3 . 3.c
3.3.c ATN

Function
To return the arc tangent of the expression given as the

argument.

Format ATN (expression)

expression -The value that gets passed to
the function. (IE,RE)

Examples
1. 10 DEGREES=ATN (Y/X)

Comments
1. The result is in the range of -pi /2 to pi/2.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB =Disk, B=Standard)
B, ECB

52

MLBASIC 2. 0 USER'S MANUAL

3.3.d
3.3.d cos

Function
To return the cosine of the expression given as the argument.

Format COS (expression)

expression -The value that gets passed to
the function. (IE , RE in Radians)

Examples
1. 10 X=R*COS (THETA)
This is the conversion from polar coordinates to the

rectangular coordinate -X.

Comments
1. The value returned is a real value from -1 to 1.

Differences from I n terpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk , B=St andard)
B, ECB

5 3

MLBASIC 2. 0 USER'S MANUAL

3. 3. e CVN

Function
Converts a binary coded string into a real number.

Format CVN(expression)

expression -The stri ng containing the 5 byte
binary representation of a real number

(SE at least 5 bytes long)

Examples
1 . 1 0 X=CVN (A$)

Comments

3 .3. e

1. The string that gets passed to the CVN routine usually has
been previously encoded using the MKN$ string func t ion .

Differences from Interpreter
1 . None .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB , DB

3. 3. f EOF

Function

54

MLBASIC 2. 0 USER'S MANUAL

3. 3. f

To return the end of file status of the expression given as
the argument.

Format EOF (expression)

expression -The buffer that is being
checked for the end of file

(IE values -2, 0, 1, 2, ••• 15)

Examples
1. 10 IF EOF(- 1) = - 1 THENCLOSE: STOP
In this example, if the end of file is reached on the cassette

file, all files are closed and program execution stops.

Comments
1 . The EOF function must have as its argument a buffer number,

whose buffer was previously opened for input (OPEN "I" type) .
2. If the end of file has been reached after an INPUT, the EOF

call will return a - 1, otherwise it returns a zero.

Differences from Interpreter
1. MLBASIC treats the values returned from an EOF cal l as an

integer value.
2. The Interpreter a l lows the EOF call to be a true or false

(LOGICAL) value.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

5 5

MLBASIC 2.0 USER'S MANUAL

3.3.g
3. 3 . g EXP

Function
To return the natural exponent of the expression given as the

argument.

Format EXP (expression)

expression - The value that gets passed to
the function. (IE, RE)

Examples
1. 1 0 A=EXP(4.988+I)

Comments
1. If the expresion is too large, an overflow error will occur

when called.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB =Disk, B = Standard)
B, ECB

56

MLBASIC 2. 0 USER ' S MANUAL

3. 3. h
3. 3 . h FIX

Function
To return the truncated (integer) value of the expression

given as the argument .

Format FIX(expression)

expression -The value that gets passed to
the function. (RE)

Examples
1. 10 WHOLENUMBER=FIX(A)

Comments
1. The difference between FIX and INT is that FIX does not

return the next lower number for a negative expression .

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

3 • 3 • i HPO I NT

Function

57

MLBASIC 2. 0 USER'S MANUAL

3.3.i

To return information on point x, y from the high-resolution
graphics screen.

Format

X
y

Examples

HPOINT (x, y)

-X coordinate of point (IE)
-Y coordinate of point (IE)

1. A=HPOINT (R, J+3)

Comments
1. HPOINT returns a non-zero integer value if the point is set.

Differences from I nterpretor
, .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

58

MLBASIC 2. 0 USER'S MANUAL

3. 3. j INSTR

Function
To return the location in a string of another string.

Format

start
search
target

INSTR (start, search, target)

-Beginning character to start search (IE)
-String in which the search is made (SV)
-The string that is being searched for (SV)

Examples
1. 10 POSITION=INSTR (1, A$, "Target")

Comments

3 . 3.j

1. If the start is greater than the length of the search
string , a zero is returned.

2. If the string to be searched for is not found , INSTR will
return a zero.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended , DB=Disk , B=Standard)
B

59

MLBASIC 2. 0 USER'S MANUAL

3. 3. k
3. 3. k INT

Function
To return the next highest integer value of the expression

given as the argument.

Format INT (expression)

expression -The value that gets passed to
the function. (IE, RE)

Examples
1 • 1 0 IF I NT (I/ 4 .) =I/ 4 • THENPR I NT
In this example, a new line is printed to the screen when

I=0, 4 , 8 and so on. A real expression is formed when the variable, I,
is di vided by the real constant, "4. " (otherwise, the expression
I/4 will be integer if I is integer) .

Comments
1. The INT function will truncate the decimal part of a number.
2. To r ound a number to the nearest whole integer, one must ,

add 0.5 to the real expression. For example, the statement
AB=INT (I+.5) rounds the variable, I, to the nearest whole number.

Differences from Interpreter
1. None .

Roms Need ed (ECB=Extended, DB=Disk, B=Standard)
B

3. 3. bb JOYSTK

Function
To return the horizontal or verticle coordinate of the

j oysticks.

FORMAT JOYSTK (j)

j -Joystick number (IE value O to 3)

Differences from Interpreter
1. None.

3. 3 . bb

60

MLBASIC 2. 0 USER'S MANUAL

3. 3. 1 LEN

Function
To return the length of a string.

Format LEN (expression)

expression -The string value that gets passed to
the function. (SE)

Examples
1. 10 A$ =A$+STRING$ (20-LEN (A$)," ")

3. 3. 1

In this example, the string variable, A$, is made to be 20
characters long with the help of the LEN function.

Comments
1. If the string is of zero length, (the first element in the

string is a zero) , LEN returns a 0.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk,B=Standard)
B

61

MLBASIC 2 . 0 USER'S MANUAL

3. 3. m
3. 3. m LOG

Function
To return the natural logarithm of the expression given as the

argument .

Format LOG (expression)

expression -The value that gets passed to
the functi on. (IE, RE)

Examples
1 . 1 0A=LOG (1 . 987)

Comments
1. The LOG is the power to which the number e, 2. 7 1 827 1828 ,

must be raised to result in the given argument.

Differences from Interpreter
1 . None .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

62

MLBASIC 2. 0 USER'S MANUAL

3. 3. n
3. 3. n LOC

Function
To return the next record number of the specified buffer.

Format LOC(expression)

expression -The buffer number (IE)

Examples
1. 10 A=LOC(BUFFER)

Comments
1. The LOC function may only be used with files that have been

opened for direct access ("D" option in OPEN) .
2. The location of the next record is set to 1 if no records

have been read (using GET) .
3. The current record that exist s in the buffer is equal to the

LOF of that buffer minus one.

Differences from Interpreter
1. MLBASIC al l ows LOC (- 1) , while the Interpreter does not.

Roms Needed (ECB=Extended , DB=Disk , B=Standard)
B , ECB , DB

63

MLBASIC 2. 0 USER'S MANUAL

3. 3. o
3. 3. o LOF

Function
To return the last record of a specified buffer.

Format LOF (expression)

expression -The buffer number (IE)

Examples
1. 1 0 IF LOC (1) - 1 =LOF (1) THENCLOSE : RETURN
In this example, if the location of the current record is the

last record, execution terminates .

Comments
1. The buffer must have been opened using the direct access

("D") mode.

Differences from Interpreter
1. None .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB, DB

64

MLBASIC 2. 0 USER'S MANUAL

3. 3 . p
3. 3. p LPEEK

Function
To return the one byte value of the specified virtual memory

location.

Format LPEEK (expression)

expression - The memory location that gets passed to
the function. (RE)

Examples
1. 10 A=LPEEK (6 5 5 36. *6)
In this example, the expression is equivalent to &H60000, but

since MLBAS I C sees the &H as an integer number, numbers greater than
&HFFFF are truncated to 16 bits.

Comments
1. The argument passed to LPEEK is a virtual memory location .

Since the ROM and lower 3 2k of RAM area for BAS I C star t at &H70000,
the virtual address for regular memory location &H500 is virtual
location &H70 500 .

2. LPEEK is the compliment to the LPOKE statement.

Differences from I nterpreter
1. MLBASIC does not allow the &H type numbers as arguments for

the function .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

6 5

MLBASIC 2.0 USER'S MANUAL

3.3.q
3.3. q PEEK

Function
To return the one byte value of the specified memory location.

Format PEEK (expression)

expression -The memory location that gets passed to
the function. (IE)

Examples
1 . 1 0 A=PEEK(25)*25 6 +PEEK (26) ·

Comments
1. The argument must be an allowable memory location (0 -6 553 5).
2. PEEK is the compliment to the POKE statement.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B

6 6

MLBASIC 2. 0 USER'S MANUAL

3. 3. r POINT

Function
To return the value of the specified graphics cell.

Format POINT (x coord, y coord)

x coord -X coordinate in current graphics page (IE)
y coord -Y coordinate in current graphics page (IE)

Examples
1. 10 IF POINT (10, 5) =O THENPRINT"OFF" ELSEPRINT"ON"

Comments

3. 3. r

1. The value returned is equal to - 1 if the character mode is
on.

2. If the graphics mode is on , the value returned is the
current color which is any allowable non negative integer.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

67

MLBAS IC 2. 0 USER'S MANUAL

3. 3. s PPOINT

Function
To return the color of the specified graphi cs cell .

Format PPOINT (x coord, y coord)

x coord
y coord

Examples

-X coordinate in current graphics page (IE)
-Y coordinate in current graphics page (IE)

1. 10 C=PPOINT(X, Y)

Comments

3. 3. s

1. The X and Y coordinates must be within the allowable range
of the current graphics mode, otherwise misleading values will be
returned.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B= Standard)
B, ECB

68

MLBASIC 2. 0 USER'S MANUAL

3.3.t RND

Function
To return a pseudo-random number between one and the

expression given as the argument.

Format RND (expression)

expression -The value that gets passed to
the function. (IE, RE)

Examples
1. 10 A=RND (100)

Commen ts
1. The argument in RND must be greater than one.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B

3. 3. t

6 9

MLBASIC 2. 0 USER'S MANUAL

3. 3. u
3. 3. u SGN

Function
To return the sign of the expression given as the argument.

Format SGN (expression)

expression - The value that gets passed to
the function. (IE , RE)

Examples
1. 10 IF SGN (A)< O THENPRINT"NEGATIVE" ELSEPRINT"NON-NEGATIVE"

Comments
1. The value returned is as follows:

1 if expression>O
0 if expression= O

- 1 if expression<O

Differences from Int erpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

70

MLBASIC 2. 0 USER'S MANUAL

3. 3.v
3.3. v SIN

Function
To return the sine of the expression given as the argument.

Format SI N(expression)

expression -The value that gets passed to
the function. (IE, RE)

Examples
1. 10 A=SIN (THETA-3. 14 159)

Comments
1. The argument must be in radians.

Differences from I nterpreter
1. None .

Roms Needed (ECB=Extended , DB=Disk , B=Standard)
B

7 1

MLBASIC 2. 0 USER'S MANUAL

3 . 3.w
3 . 3.w SQR

Function
To return the square root of the expression given as the

argument.

Format SQR (expression)

expression -The value that gets passed to
the function. (IE,RE)

Examples
1. 1 0 DISTANCE=SQR (X*X+Y * Y)
The square root function is used to find the distance between

two points.

Comments
1. The argument must be greater than or equal to zero. Negative

arguments result in a function call error.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

7 2

MLBASIC 2. 0 USER'S MANUAL

3. 3. x
3. 3. x TAN

Function
To return the tangent of the expression given as the argument.

Format TAN (expression)

expression -The value that gets passed to
the function. (IE, RE)

Examples
1. 10 OPPOSITE=ADJACENT*TAN(THETA)
The tangent function can be used to find the length of an

unknown side, given one side and the angle between the two sides .

Comments
1 . The argument must be in radians
2. The tangent function is undefined at pi/2 and -pi/2. An

overflow error will occur if the argument is sufficiently close to
these points.

Differences from Interpre t er
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B,ECB

73

MLBASIC 2. 0 USER'S MANUAL

3. 3. y TIMER

Function
To return a timer value from the microprocessor clock.

Format TIMER

Alternate Format TIMER=initvalue

initvalue -Value that the clock is
initialized to (IE)

Examples
, .

2.

Comments

10 A=TIMER
10 TIMER=0

3.3.y

1. The cassette and printing operations st op the counter.
2. The counter is incremented about every 1/60th of a second.

Differences from Interpreter
1. None .

Roms Needed (ECB=Extended, DB=Disk, B =Standard)
B, ECB

74

MLBASIC 2.0 USER'S MANUAL

3.3.z VAL

Function
To return the numeric representation of a string.

Format VAL(string)

string -The numeric string (SV)

Examples
1. 100 NUMBER=VAL (" 1234.999")

3.3.z

- I n this example, the variable, NU, is loaded with the number
1 234.999. If NU was an integer (ie. it was not declared with REAL) ,
the variable will be loaded with the number 1234.

Comments
1. The value returned is a real number.
2. The string expression must be a legal numeric string,

otherwise an error will oc cur.

Differences from I nterpreter
1. None.

Roms Needed (ECB=Extended, DB =Disk, B=Standard)
B

3 . 3 . aa VARPTR

Function

75

MLBASIC 2. 0 USER'S MANUAL

To return the starting address in memory of a specified
variable.

Format VARPTR(arg)

arg -Variable or variable array name (SV,IV,RV)

Examples
1 . A=USR 1(VARPTR (A$))

3. 3. aa

The VARPTR function is used to pass the location of variable A$
to a USR function.

Comments
1 . VARPTR returns an i nteger number between O and &HFFFF.

Differences from Interpretor
1 . None.

Roms Needed (ECB=Extended, DB=Disk,B=Standard)
B,ECB

7 6

MLBASIC 2. 0 USER'S MANUAL

3. 4 String Functions

3 . 4 . a CHR$

Function
To return the character for the given argument.

Format CHR$ (expression)

expression -Any integer number
between O and 255 (IE)

Examples
1. 100 PRINT#-2, CHR$(18) ;

3. 4. a

The CHR$ function is being used to select the graphics mode for
the line printer.

2. 1 00 PRINT#-2, CHR$(27) +CHR$(20) ;
The CHRS function can be used to send escape codes to a printer

as in this example.

Comments
1. The CHRS function returns a single byte that contains the

quantit y specified in the argument.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

7 7

MLBASI C 2. 0 USER'S MANUAL

3 . 4 . b

3 . 4 . b INKEY$

Function
To return the character code for one scan of the keyboard.

Format INKEY$

Examples
1. 100 A$=INKEY$: IFA$ = ""THEN 100

10 1 PRINTA$; : RETURN
In this example, the keyboard is scanned using the INKEY$

function. The routine continues to scan the keyboard until a key is
typed in. When the key is typed, the character is output to the
screen and program control returns with the ASCII character code in
element #0 of the string array, A$.

Comments
1. If no key is typed when the INKEY$ routine scans the

keyboard, the routine will return a zero.
2. No characters are echoed with the INKEY $ routine.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB =Disk , B=Standard)
B

78

MLBASIC 2.0 USER'S MANUAL

3.4.c
3.4 . c LEFT$

Function
To return a specified amount of the left si de of a specified

string.

Format LEFT$ (string, length)

s tring -The string from which the final s tring
is formed (SV)

length -The length of returned string (IE)

Examples
1. 100 A$=LEFT$ (A$, LEN (A$) -1)
In this example, all but the last character in the string

variable , AS is returned.

Comments
1. The max imum len �th of the string expressi on is 255 bytes.
2. If the length of the final s tr ing is grea t er than the stri ng

argumen t, the result i n g s tr i ng will only be as long as the initi al
string argument.

Differences from Interpreter
1. Only a str i ng var i able is allowed as the str i ng argument in

MLBASIC.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

7 9

MLBASIC 2. 0 USER'S MANUAL

3 . 4. d
3 . 4 . d M ID$

Function
To return a specified amount of the middle of a specified

string.

Format MID$ (string, position, length) /=midchars/

string

position

length
midchars

-The string from which the final string
is formed (SV)

- The locat ion in original string
where new string starts (IE)

-The lengt h of returned string (IE)
-String to insert into final string (SE)

Example
1 • 100 Z$ =MIDS (AS, 10, LEN (A$)-5)

2. 2 0 0 M I D $ (A$, 5 , 2)= " XX"
This example sets the fifth and sixth characters of string A$,

to the string "XX" .

Comments
1 . Th e maximum lengt h of the st ring expression is 2 5 5 b ytes.
2. If the length of the final string is great er than the string

argument, the resulting string will only be as long as the initial
string argument.

Differences from I nterpreter
1. Only a string variable is allowed as the string argument in

MLBASIC.
2. The length must be included with MLBASIC.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

80

MLBASIC 2. 0 USER'S MANUAL

3. 4. e
3. 4. e MKN$

Function
To return a 5 -byte coded string that represents a real number

in binary form.

Format MKN$ (number)

number -The real value that gets coded
into the 5 byte string (RE)

Examples
1. 100 A$=MKN$ (99. 99999+I)
2. 1 00 LSET A 1 $=MKN$ (A) +MKN$ (12345.)
The MKN$ function is most useful in forming data withi n a

direct access buffer field.

Comments
1. The MKN$ function may form real numbers on mass storage

devices such that the INPUT command may read the data back into a
real v ariable without having to call the CVN function.

Differences from Interpreter
1. MLBASIC allows more general use of the MKNS function. The

Interpreter only allows the use with fielded strings.

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B, ECB , DB

8 1

MLBASIC 2 . 0 USER ' S MANUAL

3.4.f
3 . 4 . f RI GHT$

Function
To return a specified amount of the right si de of a specified

s tring.

Format RIGHT$ (string, leng th)

string -The s tring from which the f inal string
is formed (SV)

length -The length of returned s tring (IE)

Examples
1. 100 A$=RIGHT$ (B$, 100)

Comments
1. The maximum length of the s tring expression is 255 bytes.
2. If the length of the final s tring is grea ter than the string

argument, the resulting string will only be as long as the initial
string argument.

Differences from In terpreter
1. Only a string variable is al lowed as the string argument in

MLBASIC.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

82

MLBASIC 2. 0 USER'S MANUAL

3. 4. g STR$

Function
To return the ASCII string of a given real number.

Format STR$ (number)

number -The number that gets converted to
an ASCII string (IE,RE)

Examples
1. 100 A$=STR$ (100+A)

Comments

3. 4. g

1. The first character in the string returned is the sign
character. If t he number is negative, this character is a "-"
otherwise it is a space ..

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended , DB=Disk , B=Standard)
B

8 3

MLBASIC 2.0 USER'S MANUAL

3.4.h STRING$

Function
To return a string containing a specified number of a

specified character.

Format STRING$ (length, character)

length -The number of times the character is
to be repeated in the string (IE)

character -The one byte character code (IC, IV, SC)

Examples
1. 10 A$=AS +STRING$ (20-LEN (A$), " ")

3.4.h

In the above example, the string variable , A$, is padded wi th
spaces on the end such that the s t ring is always 20 bytes long.

Comments
1 . The maximum lenith of the string is 255 bytes.

Differences from Interpr eter
1. None.

Roms Need e d (ECB=Extended, DB=Disk, B=Standard)
B, ECB

84

MLBASIC 2. 0 USER'S MANUAL

3. 5 Graphic and sound commands

3. 5. a
3. 5. a ATTR

Function
To set the display attributes of the high-resolution text

screen.

Format ATTRforeground , background/ , B// , U/

foreground
background
B

-Foreground color number (IE)
-Backgound color number (IE)
-Character blink ON

u -Underline text

Examples
1. 100 ATTRO, O

2 . PALETTEO, O: PALETTE8, 6 3 : ATTRO, O: WIDTH8 0: CLS 1
This wil l give white letters on black backgr ound.

Comments
1. The PALETTE slot numbers
Color Foregr ound slot

0 8
1 9
2 10
3 1 1
4 12
5 13
6 14
7 15

Differences from Interpretor
1. None.

for ATTR are as fo l lows :
Background slo t

0
1

2
3
4
5
6
7

Roms Needed (ECB=Extended , DB=Disk , B=Standard)
B , ECB

8 5

MLBASIC 2 . 0 USER'S MANUAL

3 .5.b AUDIO

Function
To turn on the sound from the cassette.

Format AUDIO ON: OFF

Examples
1 . 100 AUDIO ON

Comments

3.5.b

1 . The audio is normally turned off , so AUDIO OFF is not
needed.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B =Standard)
B

86

MLBASI C 2.0 USER'S MANUAL

3.5.c COLOR

Function
To specify the background and foreground colors of the

graphics screen.

Format COLORforeground, background

foreground -Color of foreground
(I E as allowed in current PMODE)

background -Color of background
(I E as allowed in current PMODE)

Examples
1 . 100 COLOR 5, 7

Comments

3.5.c

1 . If COLOR is not used, the computer sets the foreground to
the highest color code �llowed and the background to the lowest
allowable color code.

2. The following numbers represent the allowable color codes :

0 - Bla ck
1 - Gr een
2 - Yellow
3 - Blue
4 - Red
5 - Buf f
6 - Cyan
7 - Ma genta
8 - Orange

Differences from Interpreter
1 . None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

8 7

MLBASIC 2 . 0 USER'S MANUAL

3 . 5. d CLS

Function
To clear the text screen to a desired color .

Format CLS /color/

color -Color of foreground screen (IE)

Examples
1 •
2 .

Coments

100 CLS
100 CLSG

3 . 5 . d

1. If the color is omitted, the screen is cleared to the color
green .

2 . In the high resolution text mode, CLS clears the screen,
changes the background color and displays the selected color.

3 . The following numbers represen t t he allowable color codes: � Color Palett e slo t
O - Black 8
1 - Green 0
2 - Yellow 1
3 - Blue 2
4 - Red 3
5 - Buff 4
6 - Cyan 5
7 - Magenta 6
8 - Orange 7

D ifferences from Interpreter
1 . None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

88

MLBASIC 2.0 USER'S MANUAL

3.5.e CIRCLE

Function
To draw a circle to the graphics screen.

Format

X

y
radius

CIRCLE (x , y), radius, color/, hw/, start, end/

-X coordinate of circle's center (IE)
-Y coordinate of circle's center (IE)
- The circle's radius. One unit of

3.5.e

color
hw
start

radius is equal to one point on the screen (IE)
-The color code of the circle

end

Examples

-The height/wi dth ratio (RE from O to 256)
-The starting point on circle where

circle is made (RE from O to 1)
- The point i n the arc where the circle

�s terminated (IE fr6m O to 1)

1 . 1 00 CIRCLE (50 , 50) , 1 0 , 1
Thi s example dr aws a circle 1 0 un i ts i n radius , cen tered a t

(50 , 50)
2. 1 00 CIRCLE (50 , 50) , 1 0 , 1 , 1 , . 1 , .2
This example draws an arc centered at (5 0 , 50) , with a rad ius of

ten un its , from . 1 to .2 in the color green.

Comments
1. Items that appear in the lis t before an optional item that

is selected must be included. For example , if st art and end are
used , hw must be included.

2-.-If the end ing po int is less than or equal to the start ing
point , a complete circle is draw.

3. The default values for the optional items are as follows :
hw -The value 1
start - The value 0
end -The value 1

Differences from Interpreter
1 . The color is required with MLBASIC.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B , ECB

89

MLBASIC 2.0 USER ' S MANUAL

3.5.f
3.5 . f DRAW

Function
To draw in t he graphics mode according t o a given sequence of

pre-established commands.

Format DRAWcommand s tring

command string -The s tring tha t contains the
s hape to draw (SE)

Examples
1. 100 DRAW"BM100, 50, U10, R10, D10, L10 "
In this example, a box, 10 units per side, is drawn.

Commen ts
1. The foll owing commands are al lowable :

Motion Commands
M - Draw to X, Y co ordin a te equal to

t he origin p l us a specified X, Y offset.
U - Move up a speci±ied number of uni ts
D - Move down a specified number of units
L - Move left a specified number of units
R - Move right a specified number of u n i ts
E - Move up t h e n r i gh t a s pec i f i ed numb e r o f units
F - Move up t h en l e f t a specif i ed numb e r of u n i ts
G - Move down and l ef t a spec ified number of units
H - Move down and right a specified number of un i ts
X - Execute a BASIC defined substr ing

Mod es
C - Co l or code t o use

0 - Bl ack
1 - Green
2 - Yel low
3 - Blue
4 - Red
5 - Buff
6 - Cyan
7 - Magen ta
8 - Orange

A - Ang le (O=O degrees, 1=90, 2=180, 3=270)
S - Sca le fact or in 1/4 increments

(1=1/4 scale, 2=1/2, 3=3/4, 4=ful l, 5=5/4, •.)

90

MLBASIC 2.0 USER'S MANUAL

Options
N - Do not update cursor origin
B - Do not draw, j ust move

Differences from Interpreter
1. The substring execute command must execute a string defined

in the Interpreter mode. The " [" special character is used in the
following example :

1 00 [A$="D10 ; R10 ; U10 ; L10 ; "
101 DRAW"BM 1 00, 50 ; XA$ "
In this example, the subs tring defined has no effect on the

string variable A$, if used elsewhere in the program.

Roms Needed (ECB=Exten ded, DB=Disk , B=Standard)
B, ECB

3.5 . g HCOLOR

Function

9 1

MLBASIC 2.0 USER'S MANUAL

To specify the background and foreground colors of the
high-resolution graphics screen.

Format HCOLORforeground, background

foreground -Color of foreground
(IE value 0-15)

background -Color of background
(IE value 0-15)

Examples
1. 100 HCOLOR 5, 7

Comments

3.5.g

1. By default, the foreground color is slot # 1, and the
background color is slot· #0. The slot that gives t he needed color
depends on the current HSCREEN mode. In the 16 color mode, colors 1
thru 15 correspond with slots 1 t hru 15 (ie. slot� 1=color# 1,
slot=2=color#2, etc.)

Differences from I nterpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

92

MLBASIC 2. 0 USER'S MANUAL

3. 5. h
3. 5. h HCLS

Function
To clear the high-resolution graphics screen to a desired

color.

Format HCLS /color/

color -Color of background screen (IE)

Examples
1. 100 HCLS
2. 1 00 HCLS 1 1

Coments
1 . If the color is omitted, the screen is cleared to the

current background color.

Differences from I n terpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

9 3

MLBASIC 2. 0 USER'S MANUAL

3. 5. i
3. 5. i HCIRCLE

Function
To dr�w a circle to the high-resolution graphics screen.

Format

X

HCIRCLE(x,y) ,radius,color/ , hw/,start,end/

-X coordinate of circle ' s center (IE)
y
radius

-Y coordinate of circle's center (IE)
-The circle's radius. One unit of

color
hw
start

end

Examples

radius is equal to one point on the screen (IE)
-The color code of the circle
-The height/width ratio (RE from O to 25 6)
-The starting point on circle where
circle is made (RE from O to 1)

-The point in the arc where the circle
is terminat ed (IE from O to 1)

1. 100 HCIRCLE (90, 90), 10, 1
This example draws a circle 10 units in radius, centered at

(90,90)

Comments
1 . Items t h a t appear in the list before an optional item that

is selected must be included. For example, if start and end are
used, hw must be included.

--

2-.-If the ending point is less than or equal to the starting
point, a complete circle is drawn.

3. The default values f or the optional i tems are as follows :
hw -The value 1
start -The value 0
end -The value 1

Differences from Interpreter
1. The color is required with MLBASIC.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

94

MLBASIC 2.0 USER ' S MANUAL

3.5.j
3. 5. j HDRAW

Function
To draw in the high-resolution graphics mode according to a

given sequence of pre-establis hed commands.

Format HDRAWcommand string

command string -The string that contains the
shape to draw (SE)

Examples
1 . 1 00 HDRAW"BM500, 50, U90, R50, D30, L20"

Comments
1 . See section 3.5.f comments on the allowab le commands for

HDRAW.

Differences from Interpreter
1 . The subs tring execute command must execute a string defined

i n the Interpreter mode._ The " [" speci al character is used in the
fol low i n g examp le :

7 00 [AS =" D 7 0 ; R 7 0 ; U 1 0 ; L 1 0 ; "
1 0 1 HDRAW " B.M 100, 5 0 ; XA S "
In this example, t he subs t r i n g de fi ne d has no e f fe c t o n the

string variable AS, if used elsewhere in the program.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

3.5. k HLINE

Function

9 5

MLBASIC 2. 0 USER'S MANUAL

To draw a line between two points.

Format HLINE(x1, y1) - (x2, y2) , action/, gption/

x1
y1
x2
y2
action

option

Examples
1 •
In
2.

100
this
100

-X coordinate of starting point (IE)
-Y coordinate of starting point (IE)
-X coordinate of ending point (IE)
-Y coordinate of ending point (IE)
-How to draw the line. Al lowable are:

PSET - Sets line to foreground color
PRESET - Sets line to background color

-Box option :
B - Draw a box using points as the

corners of the box
BF Draw a box, and fill it in

HL I NE (1 , 1) - (1 1 , 1 1) , PS ET
example, a line is drawn from (1, 1)
HLINE (1, 1) - (11, 11) , PSET, BF

to (11, 11) .

3 . 5 . k

In this example, a box is filled in between (1 , 1) and (1 1 , 11) .

Comments
1. The allowable limits on the X and Y coordinates are from 0

to 6 3 9 in the X-direction and from O to 191 in the Y-direction when
in the highest resolution mode (HSCREEN4) .

Differences from Interpreter
1. MLBASIC requires that the starting point be defined.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

96

MLBASIC 2.0 USER ' S MANUAL

3.5.1
3.5. 1 HPAINT

Function
To paint the screen between a pre-established border, in a

specified color.

Format HPAINT (x coord, y coord), color, border

x coord
y coord
color
border

-X coordinate where painting begins (IE)
-Y coordinate where painting begins (IE)
-Color code to paint with (IE)
-Color code of border where

painting is to stop (IE)

Examples
1 • 1 0 0 HP A I NT (9 0 , 6 0) , 4 , 4

Comments
1. The color used in the HPAINT command must be allowable under

the current high-resolution HSCREEN mode.

Differences from In terpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

9 7

MLBASIC 2. 0 USER'S MANUAL

3. 5. m
3.5.m HPRINT

Function
To print a character string on the high-resolution screen.

Format HPRINT (x, y) , message

x -X coordinate of first character to print (IE)
y -Y coordinate of first character to print (IE)
message -String to print (SE)

Examples
1. HPRINT (20, 20) , "Your score is"+STR$ (SC)
2. HPRINT (15, 10) , "The Answer is : "+A$

Comments
1. The character size that is printed to the screen depends on

the current HSCREEN mode. HSCREEN 3 or 4 modes allow 80 columns and
24 rows of characters . HSCREEN 1 or 2 modes allow 40 columns and 24
rows of tex t.

Differences from Interpretor
1. MLBASIC only allows the message to be printed in the form of

a single string . STRS and other functions can be used to convert
numbers to strings for printing.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

3. 5. n HRESET
I

Function

98

MLBASIC 2. 0 USER'S MANUAL

To reset a point to the background color on the
high-resolut i on graphics screen.

Format HRESET(x coord, y coord)

x coord -X coordinate of point (IE)
y coord -Y coordi nate of point (IE)

Examples
1. 100 HRESET(l O, 10)

Comments

3. 5. n

1. The HRESET command does not need a color for the argument
since the color used is always the current background color.

D ifferences from Interpreter
1. None.

Roms Needed (ECB=Extended , DB=Disk , B=Standard)
B , ECB

9 9

MLBASIC 2. 0 USER'S MANUAL

3. 5. o HSCREEN

Function
To define a high-resolution graphics screen mode.

Format HSCREEN mode

mode -High resolution screen mode (I E value 0-4)

Examples
1. 100 HSCREEN 4

Comments

3. 5. o

1. The HSCREEN modes O thru 4 have the following
Y gri d points

settings:
mode X grid points --0

-
low res.

1 3 20
2 3 20
3 640
4 6 40

low res.
192
192
192
192

Colors

4
16
2
4

2 . HSCREEN also clears the screen of the requested high-resolution
mode.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

100

MLBASIC 2. 0 USER'S MANUAL

3. 5. p
3.5 . p HSET

Function
To set a point to a specified color on the high-resolution

graphics screen.

Format HSET(x coord,y coord/,color/)

x coord -X coordinate of point (IE)
y coord -Y coordinate of point (IE)
color -Color code of point to set (IE)

Examples
1. 100 HSET(20,20,2)

Comments
1 . I f the color code is omitted, the current foreground color

is used.

Differences from I nterpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

1 0 1

MLBASIC 2 . 0 USER'S MANUAL

3.5. q L I NE

Function
To draw a line between two points .

Format

x 1
y 1
x2
y2
action

option

Examples

LINE(x 1 , y 1) -(x2, y2) , action/, option/

-X coordinate of starting point (IE)
-Y coordinate of starting point (IE)
-X coordinate of ending point (IE)
-Y coordinate of ending point (IE)
-How to draw the line . Allowable are:

PSET - Sets line to foreground color
PRESET - Sets line to background color

-Box option:
B - Draw a box using points as the

corners of the box
BF Draw a box, and fill it in

1 . 100 L I NE(1, 1) -(. 1 1 , 1 1) , PSET
In this example, a line is drawn from (1, 1) to (1 1, 1 1).
2 . 100 LINE(7 , 1) -(1 1, 1 1), PSET, BF

3 . 5 . q

In th i s example, a box is filled in between (1, 1) and (1 1, 1 1) .

Comments
1 . The allowable limits on the X and Y coordinates are from 0

to 255 in the X-direction and from O to 7 9 1 in the Y-direction .

Differences from Interpreter
1 . MLBASIC requires that the starting point be defined .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

102

MLBASIC 2. 0 USER'S MANUAL

3. 5. r
3 . 5 . r LOCATE

Function
To locate the cursor on the high-resolution text screen.

Format

X

y

Examples

LOCATE x, y

-Column number starting with 0 (IE)
-Row number starting with 0 (IE)

1. 100 LOCATE 0, 22 : PRINT"ERROR" : LOCATE0, 0

Comments
1 . The column number may be between 0 and 39 for WIDTH40 mode,

and between 0 and 7 9 for WIDTHB0 mode. The row can be between 0 and
23 for both widths.

Differences from Interpretor
1. None.

Roms Needed (ECB =Ex t ended, DB =Disk, B =Standard)
B , ECB

1 0 3

MLBASIC 2.0 USER'S MANUAL

3 .5 . s PALETTE

Function
To set the palette slots used to display colors.

Format

slot
color
RGB
CMP

Examples

PALETTE slot, color: RGB: CMP

-Palette register (IE value 0-63)
-Color Code (IE value 0- 1 5)
-For RGB color monitors
-For composit monitors

1. 100 PALETTE 0, 0: PALETTEB, 6 3
2 . 100 PALETTE RGB

Comments

3.5 . s

1. If RGB or CMP are used, the slot and color must not be used.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

3. 5. t PAINT

Function

1 04

MLBASIC 2. 0 USER'S MANUAL

3. 5. t

To paint the screen between a pre-established border, in a
specified color.

Format PAINT (x coord, y coord) ,color, border

x coord
y coord
color
border

Examples

-X coordinate where painting begins (IE)
-Y coordinate where painting begins (IE)
-Color code to paint with (IE)
-Color code of border where

painting is to stop (IE)

1 . 100 PAINT (10, 10) , 4, 4

Comments
1. The color used in the PAINT command must be al l owable under

the current PMODE and color set.
2. When the col or specified is higher than the allowable color,

the color has the col or set number sub tracted from it. For example,
if there were four available colors and the color code 5 was used,
the actual color painted will be the code 1 (=5 -4) .

Differences from Interpreter
1 . None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

105

MLBASIC 2. 0 USER'S MANUAL

3 . 5. u PCLEAR

Function
To reserve space in memory for a graphic page.

Format PCLEARpage

page - Total number of 1 . 5K graphics pages (IE)

Examples
1 • 1 0 PCLEAR 16

3. 5. u

In this example, 16 graphics pages are being reserved in
memory. This allows 4 high resolution screens to exist in memory at
the same time.

Comments
1. The PCLEAR command clears memory in order to make room for

the graphic pages.
2. The PCLEAR command, if used improperly, will crash the

program , or give runtime error warnings.
3. The maximum allowable number of pages that can be cleared

depend on the amount of memory available in the lower 3 2k of memory.
4. Graphic pages are not allowed to ex ist in the upper 3 2k or

RAM (3 2768-6 5 5 3 5)

Differences from Interpreter
1. MLBAS I C allows more than 8 graphi c pages to be cleared.

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B, ECB

106

MLBASIC 2. 0 USER'S MANUAL

3. 5. v PCLS

Function
To clear the graphics screen.

Format PCLS/color/

color -Color code to clear screen in (IE)

Examples
1. 100 PCLS3

Comments

3. 5. v

1. If the color is omitted, the current background color is
used.

2. The PCLS command is used to clear the graphics screen in the
same way as CLS is used to clear the text screen.

3. The fol lowing nu_mbers represent the allowable color codes:
0 - Black
1 - Green
2 - Yellow
3 - Blue
4 - Red
5 - Buff
6 - Cyan
7 - Magenta
8 - Orange

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

107

MLBASIC 2. 0 USER'S MANUAL

3. 5. w
3.5. w PLAY

Function
To play music according to a pre-established sequence of

commands.

Format PLAYstring

string -Sequence of commands that define
the musical "score". (SE)

Examples
1 . 1 00 PLAY A$+B$ + " CDEFG; 03; ABA02; FEDCBA"

Comments
1. The following commands are allowed i n the PLAY statement

string:

Command
No te

0
L

T

V

p

X

Function
- The No t� t o be played c onsist ing of :

A number from 1 to 1 2 o r
The let ters A t o G (plus #=sharp, -=flat)

- Allows selection of other octaves (1 - 5)
- Allows choosing of the note length

where t he number that follows has
the length in 1 /L time. For example :
L 1 =whole, L2=half, L4=quar ter , L1 6 =one sixteenth

(allowab le leng t hs are 1 to 25 5)
- The tempo to be selec ted (1 t o 25 5)

The tempo T2 is used by default
- The volume may be selected (1 t o 3 1)

The volume V 1 5 is used by default
- The pause-length (1 to 25 5)

where the duration is 1/P. For example:
P 1=full, P4=quar�er, P8=eighth, P2P4= 3/2, etc

- Execute a substring defined in BASIC

Differences from Interpreter
1. The substring execute command must execute a string defined

i n the Interpreter mode. The " [" special character ,is used i n the
following example :

1 00 [A$ = " CDEFG; 03; ABA02; FEDCBA"
1 0 1 PLAY"T4; V5; XA$ "
In this example, the substring defined has no affect on the

string variable AS, if used elsewhere i n the program.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

1 08

MLBASIC 2 . 0 USER'S MANUAL

3.5 . x
3. 5 . x PMODE

Function
To select the desired low-resolution graphics mode and page.

-Format

mode
page

Examples
1 •

Comments

PMODEmode, page

-Graphics mode to select (IE value O to 4)
-Starting graphics page (IE value 1 to 8)

100 P:MODE4, 1

1 . If the PMODE is not used in a graphics program, the default
is PMODE2 , 1 .

D ifferences from Interpreter
1 . None .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

3 . 5. y PRESET

Function

1 0 9

MLBASI C 2. 0 USER'S MANUAL

To reset a point to the background color .

Format PRESET (x coord, y coord)

x coord -X coordinate of point (I E)
y coord -Y coordinate of point (I E)

Examples
1 , 100 PRESET (10, 10)

Comments

3.5.y

1. The PRESET command does not need a color for the argument
since the color used is always the current background color.

2. The RESET command differs from the PRESET command in that
the first is for low-resolution graphics , and the latter is for
all-resolut ion graphics.

D ifferences from Interpreter
1. None.

Roms Needed (ECB=Ex tended, DB=Disk, B=Standard)
B, ECB

1 1 0

MLBASIC 2. 0 USER'S MANUAL

3. 5. z PSET

Function
To set a point to a specified color.

Format PSET(x coord, y coord/, color/)

x coord
y coord
color

-X coordinate of point (IE)
-Y coordinate of point (IE)
-Color code of point to set (IE)

Examples
1. 100 PSET(20, 20, 2)

Comments

3. 5. z

1. If the color code is omi tted, the current foreground color
is used.

2. The following numbers represen t t he allowable color codes :
0 - Black
1 - Green
2 - Yellow
3 - Blue
4 - Red
5 - Buff
6 - Cyan
7 - Magenta
8 - Orange

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

3.5 . aa RESET

Funct ion

1 1 1

MLBASIC 2. 0 USER'S MANUAL

To reset a point to the background color.

Format RESET(x coord,y coord)

x coord
y· coord

Examples

-X coordinate of point (IE)
-Y coordinate of point (IE)

1. 1 00 RESET(1 0, 1 0)

Comments

3. 5. aa

1 . The RESET command does not need a color for the argument
s ince the color used is alway s t he current background color.

2. The RE SET command differs from the PRESET command in that
the first is for low- resolution graphics, and the latter is for
al l -resolution graphics.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

1 12

MLBASIC 2. 0 USER'S MANUAL

3.5. bb
3 . 5 . bb SCREEN

Function
To define the low-resolution screen display and color set .

Format SCREENtype, set

type
set

-Type of screen 0=text, 1=graphics (I E)

Examples

-Color set to use
0=Green, Yellow, Blue, Red -4
0=Black, Green -2
1=Buff, Cyan, Orange, Magenta -4
1=Black, Buff -2

1 . 1 00 SCREEN 1 , 1

Comments

Color
Color
Color
Color

Mode
Mode
Mode
Mode

1. If the color set is greater than one, the value one is used.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B, ECB

3.5. cc SET

Function

1 13

MLBASIC 2. 0 USER'S MANUAL

To set a point to a specified color.

Format SET (x coord, y coord/,color/)

x coord
y coord
color

Examples

-X coordinate of point (IE)
-Y coordinate of point (IE)
-Color code of point to set (IE)

1 • 1 0 0 SET (2 0 , 2 0 , 2)

Comments

3. 5. cc

1. If the color code is omitted, the current foreground color
is used.

2. The fo llowing numbers represen t t he allowable color codes :
0 - Bla ck
1 - Green
2 - Yellow
3 - Blue
4 - Red
5 - Buff
6 - Cyan
7 - Magenta
8 - Orange

3. SET only allows low-resolution graphic mode .

Differences from Interpreter
1 . None.

Roms Needed (ECB=Extended,DB=Disk, B=Standard)
B

1 14

MLBASIC 2. 0 USER'S MANUAL

3. 5.dd
3. 5. dd SOUND

Function
To sound a specific tone for a specific duration.

Format SOUNDtone , duration

tone -Tone of sound (IE from 1 to 255)
duration -Length of note (IE from 1 to 255)

Examples
1 • 100 SOUND 100, 1 00

Comments
1. The duration of one unit is about 6/ 100ths of a second. This

means that the range of durations is from 6/ 100ths of a second to
15.3 seconds.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended , DB=Disk, B=Standard)
B

1 15

MLBASIC 2. 0 USER'S MANUAL

3. 5.ee
3.5. ee WIDTH

Function
To set the number of columns in the text screen and to select

low- or high-resolution graphic modes.

Format WIDTH mode

mode -Column width (3 2, 40 or 80)

Examples
1. WIDTH3 2
2 . WIDTH 80

Comments
1. WIDTH changes the screen display to the specified mode and

clears the screen in that mode.
2. Be careful not to call WIDTH40 or WIDTHBO wh�le in WIDTH3 2

mode and after issuing CLEAR commands that set the top of BASIC
between &H2000 and &H3FFF. This is because, BASIC needs to occupy
this region with the high-resolution text screen .

Differences from I n terpretor
1. None.

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B, ECB

1 16

MLBASIC 2. 0 USER'S MANUAL

3. 6 Other Commands

3. 6. a
3. 6. a DATA

Function
To store string and numeric constants for use with the READ

statement.

Format

mode

data

Examples

DATA/mode, /data, . . •

-Mode
$
% -

of storing data constants
Store data in a character format
Store number as one byte integer
(two byte integers are default)

-String or numeric data (SC, IC, RC)

1. 100 DATA "THIS IS A STRING"
In this example, a string constant is stored, which can later be

read using a command like READ A$.
2. 1 00 DATA% 7 6 0 , 99 , 56 , 200, 1 0 9 , 1 07, 23 , 123 , 88

1 0 1 DATA% 1 90, 1 9 3 , 1 9 8 , 9 9 , 8 7 , 5 7
1 0 2 GOSUB 1 00 : REM ' Exe cu t e a M . L . ROUTINE

In this example, the data lines 100- 1 0 1 contain machine
language instructions. Each item in the data list occupies only one
byte in memory. It is possible to store machine language routines in
data statements, and execute them using GOSUB or GOTO.

Comments
1 . If the "$" mode is used with s trings, a terminating zero is

not stored . In this case, a READVAR (I) type command might be used
to read the string data one character at a time.

2. All DATA statements must be grouped together. In other
words, the DATA statements must not have any other commands like
PRINT, INPUT, etc, between them. The location of the group of DATA
statements can be anywhere in the program.

3. A RESTORE must be used to initialize the data pointer to the
beginning of the data list.

Differences from Interpreter
1. A RESTORE must be used to initialize the data pointer to the

beginning of the data list in MLBASIC.
2. Data statements must be grouped.

)

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

1 1 7

MLBASIC 2. 0 USER'S MANUAL

3. 6. b
3 . 6 . b DIM

Function
To reserve space in memory for a variable array.

Format DIM arrayname, • • •

arrayname - Name of array followed by number
of elements to reserve for each dimension

Examples
1. 100 DIM A (100, 10), BS(10, 10) , CS(100)
In this example, a 100 by 10 integer array i s defined. Also, a

10 by 10 and a 100 element string array are declared.

Commen ts
1. Only single character variable names are recognized,

although any length name is acceptable.
2. The command REAL is used to dimension real arrays when using

the %INT directive.
3. If the %INT directive is used in a program , all non string

arrays declared using DIM wil l be o f t ype INTEGER , otherwise the
array will be of t ype REAL.

Differences from Interpreter
1. Only single letter array names are recognized in MLBASIC.
2. A maximum of 2 dimensions are allowed by MLBASIC.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

1 18

MLBASIC 2. 0 USER'S MANUAL

3. 6 . c LLIST

Function
To list a sequence of BASIC lines to the printer.

Format LLISTrange

range -Value or range �of values (IC)

Examples
1. 100 LLIST0-65000

3. 6. c

In this example, all possible lines will be listed to printer
if line 100 is executed (in the compiled program) .

Comments
1. Only BASIC program lines are printed. Compiled programs are

not listed.

Differences from Interpreter
1 . None .

Roms Needed (ECB=Extended, DB=Disk, B= S tandard)
B

1 19

MLBASI C 2. 0 USER'S MANUAL

3. 6. d LPOKE

Function
To store one byte of data to virtual memory.

Format LPOKE virtual,data

virtual
data

Examples

-Virtual memory location (RE)
-Byte to store (I E)

1. LPOKE 460000. , 123

Comments

3. 6. d

1. The LPOKE command is the compliment to the LPEEK f unction.
2. See LPEEK for more inf ormation on virtual addresses.

Differences from Interpretor
1. MLBASIC does not allow numbers beginning with &H to exceed

&HFFFF, therefore numbers like &H 10000 must be converted to a real
constant (like 655 3 6.).

Roms Needed (ECB=Extended, DB=Disk, B=St andard)
B, ECB

(

120

MLBASIC 2. 0 USER'S MANUAL

3. 6. e MOTOR

Function
To control the cassette motor.

Format

Examples
1 •

Comments

MOTOR ON: OFF

100 MOTOR ON

1. The cassette motor is OFF by default.

Differences from I n terpreter
1 . None.

Roms Needed (ECB=Extended, DB=Disk , B = S t andard)
B

3. 6. e

1 2 1

MLBASIC 2. 0 USER'S MANUAL

3. 6 . f POKE

Function
To store a byte in memory.

Format

memory
byte

Examples

POKE memory, byte

-Location in memory to store byte (IE)
-Value from O to 25 5 (IE)

1. POKE25, 6 : POKE26, 1

3. 6. f

The POKE command is often used to control Interpreter
functions . In thi s example, the start of the BASIC program in memory
is POKEd into memory.

Commen ts
1. The POKE is complemen ted by the command PEEK.

Differences from Interpreter
1 . None.

Roms Needed (ECB=Ex tended, DB=Disk, B=Standard)
B

1 22

MLBASIC 2. 0 USER'S MANUAL

3. 6. g
3. 6 . g READ

Function
To read a numeric or string value from a DATA list and to

assign it to a variable.

Format

mode

name

Examples

READ/mode/name, . •.

-Type of data to be read.
$ =read one character into array
%=one byte binary data

-Name of variable to read data into (RV, IV, SV)

1. 100 RESTORE
1 0 1 READA
10 2 READ%B
1 03 READA$

Commen t s
1. If the " S " mode is used with a string variable, the READ

will return one byte to the specified string element.

Differences from Interpreter
1. The Interpreter does not support the " $ " and "%" options.
2. With MLBASIC, a RESTORE must be u sed before the first READ

statement, so that the DATA list--rs-initial i zed to the first item .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3. 6. h REM

Function

1 2 3

MLBASIC 2. 0 USER'S MANUAL

To display a message within a program .

Format REMremarks

remarks -Any nonzero byte.

Examples
1 . 1 000 GOSUB20000: REM' CALL ROUTINE TO SORT

3. 6. h

The REM is often used to indicate to the programmer what is
going on in the program itself.

Comments
1 . The REM statement must be the last st atement in a BASIC

line.
2. The REM statement does not oc cupy any space in the final

compiled program. MLBAS I C simply skips over these commands, and does
not have to translate them .

3. If the line containing a REM has no executable instructions
(ie. PRINT, INPUT, etc) , then program control passes to the first
executable command after the REM statement.

4. REM statements can be branched into from a GOSUB or GOTO
call. Execution will begin with the first executable command that
follows the REM statement .

Differences from Interpreter
1 . MLBASIC only allows REM to appear at the end of a line.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

124

MLBASIC 2. 0 USER ' S MANUAL

3. 6. i
3. 6. i RESTORE

Function
To initialize the data pointer to the first item in DATA list.

Format RESTORE

Examples
1. 100 DATA 1 , 2, 3, 4

Comments

10 1 RESTORE: REM ' initialize data
102 FORI=1T04: READA (I): NEXT

1. The RESTORE must be used before any READ statement is
executed.

2 . After a RESTORE is executed, the next READ statement will
begin reading data from the first item in the first DATA statement
that appears in the program.

Dif ferences from Interpre ter
1. MLBASIC requires the RESTORE to be used before any READ

command is executed.

Roms Needed (ECB=Ext ended, DB=Disk , B=Standard)
B

1 2 5

MLBASIC 2. 0 USER ' S MANUAL

3 . 6. j RUN

Function
To execute a BASIC program.

Format RUN/linen umber/

linenumber -Number of entry into BASIC program (IC)

Examples
1 • 1 00 RUN 1000

Comments

3. 6. j

1. This command is used to run a BASIC program from within a
compiled machine language progam .

Differences from Interpreter
1. None .

Roms Needed (ECB=Extended, DB=Disk , B= S t andar d)
B

126

MLBASIC 2. 0 USER'S MANUAL

3. 6. k
3 . 6 . k TAB

Function
To position output in a PRINT statement to a specified column .

Format TAB (position)

position -Position of tab (IE)

Examples
1. 100 PRINT#- 2, "TOTAL="; TAB (30) TOTAL

Comments
1. If the current column position is less than the tab

position, spaces (ASCII # 3 2) are output to the device, until the tab
position is reached.

2. If the current column position is greater than the tab
position , backspaces are output until the tab position equals the
current column position. Note that printers that do not support
backspacing (ASC I I �8) , cannot have a TAB less than the current
print location .

Differences from Interpreter
1. With MLBASIC, the TAB will output backspaces if the current

column position is greater than the tab.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

1 2 7

MLBASIC 2. 0 USER'S MANUAL

3.6.1 TROFF

Function
To turn off the line tracing routine .

Format TROFF

Examples
1 . 100 TRON

100 0 TROFF: REM' END DEBUGGING HERE

Comments
1 . The TROFF is the default value used by MLBASIC.

Differences from Interpre tor
1. None .

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B

3.6.1

1 2 8

MLBASIC 2. 0 USER'S MANUAL

3. 6. m
3. 6. m TRON

Function
To turn on the line execution tracing routine .

Format TRON

Examples
1. 100 TRON

1000 TROFF: REM' END DEBUGGING HERE

Comments
1. The TRON command will cause the display of the current line

number j ust before execution of that line. It is therefore useful
in pin-pointing errors in a program after it has been compiled.

2. TRON does not display commands that follow the " · " command
separator.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

1 2 9

'MLBAS I C 2 . 0 USER ' S MANUAL

3. 6. n
3 . 6 . n VERIFY

Function
To select the verificat ion option for disk output.

Format VERIFY ON: OFF

Examples
1. 100 VER IFY ON

Comments
1. If the VERIFY ON command is used , all disk output wi ll be

verified with memory contents.
2. By default , the VERIFY option is not "ON", therefore a

VERIFY OFF is not necessary in a program.

Differences from Interpre ter
1. None.

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B, ECB, DB

130

MLBASIC 2.0 USER'S MANUAL

3.7 Special Commands

3.7.a
3. 7. a DLD

Function
To load a 16 bit integer value from memory into a variable.

Format

memory

name

DLD(memory, name)

-Location in memory of first byte
of the two byte integer (IV, IC from O to 6 5 5 3 5)

-Name of variable which stores the
16 bit integer (IV)

Examples
1. DLD(25, BSTART)
The DLD command is used to find the starting location of the

BASIC program in memory and store the result in an int eger variable
called BS .

Comments
1. The DLD command is the 16 bit equivalent to the PEEK

command.
2. DLD is not allowed inside an expression as PEEK is allowed.
3 . DLD is the complement to the command DST .

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended � DB=Disk, B=Standard)
B

13 1

MLBAS IC 2. 0 USER'S MANUAL

3. 7. b DST

Function
To store a 16 bit integer into two bytes of memory .

Format DST (memory, value)

memory -Location in memory of first byte

3. 7. b

of the two byte integer (I V, IC from O to 6 5 5 35)
value - 16 bit integer that is stored (IC, IV)

Examples
1 . 1 00 DST (40000, 1 000)

Comments
1. The DST command is the 16 bit equivalent to the POKE command

(which only stores an 8 bit v alue) .

Differences from I n terpret er
1 . The I n t e r p r e ter does not a l l ow use of this command.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3. 7. c I BSHFT

Function

13 2

MLBASIC 2 . 0 USER ' S MANUAL

3. 7. c

To shift a 16 bit integer by a specified number of bits either
to the right or to the left.

Format I BSHFT (name, shift, direction)

name -Variable that is to be shifted (I V)
shift -This is the number of bits the

integer is shifted by (IC, IV from 1 to 16)
direction -This determines whether to shift

left or right. (IC, IV)
If the direction is:

0 = > shift to the left
greater than O =) shift to the right

Examples
1 . 100 I BSHFT (A1, 5, 1)
I n this example, the integer variable, A1, is shifted to the

right 5 bits. This is equivalent t o the command A1=A1/3 2, but is
much faster.

2. 100 I BSHFT (A, 8, 0)
In this example, the integer variable, A, is shifted to the

left by 8 bits. This is equivalent to the command A=A* 25 6, but is
much fast er.

Comments
1. The IBSHFT command is very useful for graphics routines that

perform alot of bit manipulation .

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

3. 7. d I NT

1 3 3

MLBASIC 2. 0 USER'S MANUAL

Function
To declare INTEGER type variables and variable arrays.

Format INTname, • •

name -Name of variable

Examples
1. 100 INT A, A 1, A(10, 10) , B (1000)

3 . 7 . d

In this example, the scalar variables A and A 1 are declared as
INTEGER variables. In addition, the array A is declared as INTEGER
and is dimensioned for a 10x 10 array. The array B is declared
INTEGER also, and is dimensioned as having 1000 elements.

2. 100 INT A 1, A (10, 10) , B(10 0 0)
This example produces the same result as in the first example.

The scalar variable, A, is not included because t he array A was
declared INTEGER.

Comments
1. The INT command is required to declare a variable if that

variable is used for an index to an array.
2. If an array is declared using INT, the corresponding scalar

variable with the same name is forced to be type INTEGER.

Differences from In terpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended, DB=Disk , B=Standard)
B

1 3 4

MLBASIC 2 . 0 USER'S MANUAL

3 . 7 . e
3. 7. e LREG

Function
To load a specified hardware register with an integer value .

Format LREG (register, value)

register -Name of hardware register . Allowable names are:
"X" -Index Register, X
"Y" -Index Register, Y
"U" -User Stack pointer
"S" -Hardware stack pointer
"D" -Data register
"PC"-Program counter
"CC"-Control register
"DP"-Direct page Register

value -Integer to be stored in register (IC , IV)

Examples
1 . 1 0 0 LREG (" S " , INITVALUE)
In this example, the stack i s being reset to a value contained

in the integer variable, IN .

Comments
1 . The LREG command is most useful for setting up calls to

machine language routines that requ i re ini t ial values for the
hardware registers .

Differences from Interpreter
1 . The Interpreter does not allow use of this command .

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

135

MLBASIC 2. 0 USER'S MANUAL

3. 7. f
3 . 7 . f PCOPY

Func tion
To copy a specified amount of memory to another location in

memory .

Format PCOPYstart, destination, end

start -Beginning location of data t o move (IC, IV)
destination -First location in memory where data

is moved to (IC, IV)
end -Ending location of data to move (IC, IV)

Examples
1. 100 PCOPYA, 15 3 7, B

Comments
1. This command is the fastest way to transfer a section of

memory from one location to another.

Differences from Interpreter
1. The Interpreter rloes not allow use of t his command.
2. The PCOPY command used in the Interpreter allows for only a

specified "page" of memory to be copied from one locati on t o
another. The way to convert an Interpreter PCOPY into the MLBASIC
form is as follows :

To convert PCOPY A TO B
(A) Let A 1=A* 15 36
(B) Let A2=A 1+ 1535
(C) Let B 1=B* 15 36
(D) The command is ready to form

PCOPY A 1 , B 1 , A2

Example-

Interpreter form
100 PCOPY A TO B

MLBASIC form
100 A 1=A* 1536 : B 1=B* 1536: A2=A 1 + 15 35
10 1 PCOPYA 1, B 1, A2

The alternative way to do an Interpreter BASIC PCOPY would be to use
the interpreter call symbol " [" before the command. For example, 100
[PCOPY 1 to 5.

Roms Needed (ECB=Extended, DB=Disk, B=S tandard)
B

136

MLBASIC 2. 0 USER'S MANUAL

3. 7. g
3 . 7 . g PTV

Function
To load a specified integer variable with the pointer to a

specified variable.

Format PTV (variable, pointer)

variable
pointer

Examples

-Variable or array element name (IV, RV, SV)
-Variable where pointer is stored (IV)

1. PTV (A$, S TART)
In this example the integer variable, ST, is loaded with the

pointer to string array element, A$(0) .
2. PTV (A (l 0, 1 0) , A)
In this example the integer variable, A, is loaded with the

pointer to A (l 0, 10) .

Comments
1. The PTV may not be used in an expression like A=PTV (A, A).
2. The PTV command is equivalent to the VARPTR command.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

137

MLBASIC 2. 0 USER'S MANUAL

3 . 7 . h REAL

Function
To declare real type variables and variable arrays.

Format REALname, • •

name -Name of variable or
array

Examples
1. 1 00 %INT

1 0 1 REAL A 1 , A (10, 10) , B(1 000)

3.7.h

In this example, the scalar variable A 1 is declared as a real
variable. In addition, the array A is declared as real and is
dimensioned for a 10x 10 array (note that the scalar variable, A,
will be of type INTEGER). The array B is declared real also, and is
dimensioned as having 1000 elements.

Comments
1. The REAL command is used to declare a variable as a real

variable if the %INT directive is used to globally declare all
variables as type INTEGER.

2. After a variable has been declared as a real, that variable
will be compiled in the following lines as a real variable. If the
variable was used in lines that came before the line containing the
REAL declaration, the variable i s treated as an INTEGER.

3. Compiler printouts will indicate whether a variable has been
declared a real or not.

4. If the %INT directive is used, scalar variables that have
the same one letter name as the array, when declared using REAL,
will be of type INTEGER and cannot be type real.

Differences from Interpreter
1. The Interpreter does not allow use of this command.
2. A maximum of two dimensions are allowed by MLBASIC.

Roms Needed (ECB=Extended, DB=Disk, B= Standard)
B

3. 7. i SREG

Function

1 3 8

MLBASIC 2. 0 USER'S MANUAL

3. 7 . i

To load a specified variable with the contents of a specified
hardware register.

Format SREG (register,name)

register -Name of hardware register. Allowable names are:
"X" -Index Register, X
"Y" -Index Register, Y
"U" -User Stack pointer
"S" -Hardware stack pointer
"D" -Data register
"PC"-Program counter
"CC" -Control register
"DP" -Direct page Register

name -Variable where register is stored (IV)

Examples
1 . 1 00 SREG ("PC",START)
In this example , the curre�t l o cation of the machine language

program counter is stored in variable, ST .

Comments
1 . The SREG command is most useful for program debuggi ng .

Other uses for the SREG command would be to recover data from the
"D" register after a ROM call using the VECTI and VECTD commands .

Differences from Interpreter
1. The Interpreter does not allow use of this command .

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

1 39

MLBASIC 2. 0 USER'S MANUAL

3. 7. j
3 . 7 . j VECTD

Function
To execute a machine language routine address located in ROM.

Format VECTD(address)

address -Address in ROM to be executed (IC, IV)

Examples
1. 100 VECTD(4 1 175)
In this example, the location that prints the Interpreter

revision number is executed .

Comments
1. This command is designed to switch from the all RAM map type

(which enables y ou to use all 6 4k of memory), to the 3 2k-RAM/3 2k-ROM
map type. After execution of the ROM routine, the map is switched
back to re-enable all 6 4k of RAM.

Differences from Interpreter
1. The Interpreter does not allow use of t his command.

Roms Needed (ECB=Ex tended, DB=Disk, B=Standard)
B

1 40

MLBASIC 2. 0 USER ' S MANUAL

3. 7. k
3. 7. k VECTI

Function
To execute a machine language routine contained in ROM using

indirect addressing.

Format VECTI (address)

address -Location in ROM that contains the 1 6 bit
address that is to be executed (IC, IV)

Examples
1. 100 VECTI ($A004) : VECTI ($A006)
In this example, the routines that turns the cassette on and

reads a block from the cassette are executed.
2. 100 VECTI ($AOOA) : REM ' SAMPLE ALL FOUR JOYSTICKS

10 1 A 1=PEEK ($ 15A) : A2=PEEK ($ 15B)
102 B 1=PEEK ($ 15C) : B2=PEEK ($ 15D)

This example is how the JOYSTK function can be duplicated. It
is equivalent to the commands :

A 1=JOYSTK (O) : A2=JOYSTK (1)
B 1=JOYSTK (2) : B2=JOYSTK (3)

Comments
1. The Indirect addressing all ows th e user t o execute a machine

language routine in ROM that is pointed t o in a tabl e contained in
ROM.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended, DB=Disk, B=Standard)
B

1 4 1

MLBASI C 2.0 USER ' S MANUAL

3 . 8 Compiler Direct ives

3 . 8. a %INT

Function
To change the default var iable type within a program to

INTEGER.

Format

Examples
, . 1 00

1 0 1

Comments

%INT

%INT
DIM A (1 09) : REAL B (1 000) , C

3.8.a

1 . %INT is a compiler d irect ive that is used t o change the way
a program is compiled.

2. The %INT direc t ive causes all single le t ter scalar var i ables
to be type INTEGER .

3. % I NT shoul d be used in t he beginning of a program so as to
avo i d confl icts w i th any prev i ously d i mens ioned arrays .

4. When the %INT directive is used, variables may be de clared
t ype real by us ing the REAL command.

14 2

MLBASIC 2. 0 USER'S MANUAL

3. 8. b
3. 8. b %REAL

Function
To change the default variable type within a program back to

REAL.

Format %REAL

Examples
1 . 10 %INT

100 CALL TEST(A)

9000 SUBROUT INE TEST (B)
900 1 %REAL : REM' Need a lot of real variables
9002 INT B

This exampl e shows that the %REAL dir ective is needed to force
variables within SUBROUTINE sub -programs back to t ype r e a l , since
the %INT direct ive was used in t h e calling program.

Comments
1 . %REAL is a compiler directive that is used to change the way

a program is compiled ,
2. The %REAL directive is the default used by MLBASIC , so it is

not needed unl ess %INT is used.
3. %REAL will re-map the single letter scalar variables (A-Z) ,

to the next available locations in the variable table area.

1 43

MLBASIC 2. 0 USER ' S MANUAL

3. 8. c %STRI NG

Function
To change the default string length within a program.

Format %STR) NG=length

length -Maximum length of all str i ngs (IE)

Examples
1. 1 0 %STRING=5

20 INPUT A$
30 PRI NT A$
40 %STRING= 10
50 INPUT B$
60 PRINT B$
70 GOT0 10

3.8. c

This example shows ways to use %STRING. Try inputting a string
for A$ that is larger than 5 characters, when you print A$, only the
first five characters are saved, the rest of the characters have
been over-written by the B$ string.

Comments
1. The %STRING directi ve must be used with caut ion; be sure

that any string that is to be used is used with t he same default
string length throughout the program.

2. If %STRING is not used, the default string length is used.
3. Strings can have lengths greater than 256 characters, but

cannot be manipulated using string functions or the "+" operator
because the string manipulation buffer is limited to 25 5 characters.

1 44

MLBASIC 2. 0 USER ' S MANUAL

CHAPTER 4 VARIABLES, CONSTANTS, OPERATORS and EXPRESSIONS

4. 1 Constants

MLBASIC allows for 3 different types of constants; INTEGER,
STRING and REAL. All constants are fixed values that are stored in
the text area of the machine language program during compilation.
Constants therefore cannot be changed when the program is run.

4 . 1 . a Integer Constants

An integer constant contains an optional sign(+ or -) followed
by decimal or hexadecimal digits. If hexadecimal digits follow, the
"$" or "&H" letters must precede the digits. No decimal points or
commas are allowed. The Value an unsigned integer may have ranges
from O to 6 5 5 3 5. Numbers larger than 3 2 , 767 are treated as negative
"two's complement" values when used with Real variables or constants
in an expression. Arithmetic statements that do not contain real
values use integers as positive numbers only (see Section 4.2.e for
more info on conversions). Certain commands allow for Integer
Constants to be expressed as one or two characters in quotes.

4. 1. b

Examples of
Valid
1 23 4 5
- 1 00
6 5000
$FF0 1
&HA 10B
"Ap"
I I A I I

Integer Constants
Invalid
1 2 , 3 4 5
- 100000
-6 5000
FF0 1
A 10B
Ap
A

String Constants

A string constant is a sequence of up to 25 5 characters enclosed
in quotation marks. String constants may contain any character except
a zero (ie. any value between 1 and 25 5) . Strings are terminated by a
logical zero byte when stored in memory by the compiler.

Examples of String Constants
1 . "This is a string"
2. "$ 25,000.0 1"
3. "$,& and any character can be in strings"

145

MLBASIC 2.0 USER ' S MANUAL

4. 1.c. Real Constants

A real constant contains an optional sign (+ or -) followed by
decimal digi ts which must contain, be preceded by, or followed by a
decimal poin t. A real constant may be in exponential format, where
the number is followed by an "E", followed by a + or - and decimal
digits that describe the exponent.

In all cases, the decimal point is mandatory. If the decimal
point is omitted, integer conversion will occur, resulting in possible
overflow or underflow errors. Real constants are stored in the text
area in their actual 5 byte binary format.

Examples of Real
Vali d
-100. 10
1.99 E+10
1. 0 E-110
-99.6E+10

4.2 Vari ab les

Constants
Invali d
-100
199E+12
1 E- 10
-99

Vari ables are names tha t represent v alues used in BAS I C programs.
Variables can represent either a numeric value or a string expression.
Allowable names of vari ables are unlimited, except for reserved Basic
words that are used to i den tify BASIC commands and statements (ie.
PRINT , GET, etc) . There are two main groups of vari ables ; scalar
vari ables (vari ables tha t hav e n o t b e en dimensi oned) and vari able
arrays (v ari ables that have been d i mens i oned) . There are also three
types of variables ; Real, Integer , and S t r i ng.

4.2.a Scalar Var i able Names

MLBASIC allows a unique variable using the first 2 characters in
the vari able name. In other words , any letters that follow the first
two letters in a variable name are ignored by the compiler. For
example, the 3 vari ables ; "A123", "A1VAR", and "A 12 " are all
equivalent to "A l ".

String vari able names, as with all array names , can only be one
character long (ie. A$, B$, C$, .•. Z $). Any character that follows the
first character in a string name is ignored.

4.2.b Integer Variables

Integer vari ables follow the same gui delines as constants ; values
may be between zero and 65535 (&HFFFF).

The default type for variables is real. The INT command or %INT
directive is used to define INTEGER type vari ables.

146

MLBASIC 2. 0 USER'S MANUAL

4. 2. c String Variables

String variables are variables that can store a -sequence of
characters. Like other variable types, the string variable can be
changed any number of times throughout the execution of a program.

String variable names can only be one character long. This means
that there are 26 possible string variables that can be used in a
program unit.

String variables occupy a predefined amount of storage, as
defined when the program is compiled. The maximum allowable length of
a string, as with the Interpreter, is 2 5 5 characters. This is the
default space allocated by MLBASIC, but can be changed by using the
%STRING compiler directive or by entering a value in the start-up menu
of MLBASIC.

4. 2. d Real Variables

Real variables are variables that contain floating point numbers.
Allowable values are in the range of +/- 1 .0E+ 3 8 . The Binary Format
is the same as the Interpreter, (ie . 5 Bytes with a one byte
exponent). This means that computation using the Interpreter should
give the same results as MLBASIC compiled REAL expression
computation.

4. 2. e Variab l e Conversions

Whenever necessary, MLBASIC converts a nume r i c constant or
variable from one type to another.

The following rules apply to conversion o f variable types in an
arithmetic expression :

(1) Expressions that involve both Real and Integer type
variables, constants or functions, will be considered of type
Real.

(2) Expressions that involve only Real variables, constants or
functions, will be of type Real.

(3) Expressions that only contain Integer type variables,
constants or functions, will be of type Integer.

(4) Functions or commands that require a specific type
expression will convert that expression to the required type, if
it is not so already.

(5) Integer expressions are converted to real expressions as
"Two's Complement" integers. This means that an integer whose
value - is greater than 3 2767 will be converted into a negative
real number.

(6) Real expressions that are outside the range of +/- 3 2767
cannot be converted to type integer. If conversion is performed,
a runtime error #5 will occur.

14 7

MLBASIC 2. 0 USER'S MANUAL

4 . 3 Variable Arrays

MLBASI C allows up to two dimensions for any variable array. In
al l cases, arrays must be declared using the D IM or REAL commands,
before that array is used in an expression.

4. 3. a Array Names

The allowable names for arrays are the same as with scalars,
except only the f irst letter is used to identify the name. This
means that there are only 26 unique variable array names to choose
from. All in all, there are 5 2 arrays available for use, since
MLBASI C does allow for 26 String arrays and 26 Real/Integer arrays.

When real arrays are declared the first letter of that name must
not appear in any other Integer variable array name.

4. 3 . b

Example

DIM A(100), A$(255): REAL A 10(10)

Real variable array, A 10(100), would have the effect of
overriding the first dimensioned vari able A () with the REAL array
A 10(). The string array A$ is defined t o have 2 5 6 (0 t hru 25 5)
elements .

Array Subscripts

MLBASIC does not support expressions as the subscript . The
only allowable parameters are Integer Variables and Integer Constants.
For example, the command A(10+IV)=B is no t al l owed, but instead should
be set up like: A= l O+IV: A(A)=B. Furthermore, the index variable must
only be one character in length, and of type INTEGER. If the index
is not a counter variable of a FOR- NEXT loop, then the variable must
be declared as INTEGER in the beginning of the program using the INT
command (see section 3. 7 . d).

14 8

MLBASIC 2. 0 USER'S MANUAL

4.3.c Memory Requirements

Arrays are allocated space in RAM at compilation time, as opposed
to allocation when a program is "run" under the Interpr.eter. This
makes array addressing very fast, since the program knows exactly
where the array is when it is "accessed" by the program.

String arrays are allocated at compilation time, just as the
Integer and Real arrays are. This speeds up the time needed to
manipulate and access strings greatly, as opposed to the Interpreter
which may spend large amounts of time just allocating strings and
collecting the "garbage" that builds up rather quickly. The slow
speed of string manipulations under Interpretive Basic is because the
strings have to be allocated dynamically at run time.

Two dimensional arrays are arranged in the order of 1st
dimension elements next to each other, repeated for each of the 2nd
dimension elements.

For example, the array A(l , 2) is arranged like:

Address Element

LOW MEM

H I GH MEM

Relative Location W . R. T. 1st Element

A (O , O)
A (l , O)
A (0, 1)
A (l , 1)
A (0, 2)
A (l , 2)

0
1
2
3
4
5

Note that A (O, O) is the first element, not A (l , 1) .

1 49

MLBASIC 2 . 0 USER ' S MANUAL

4 . 4 Operators and Expressions

Expressions can be ar ithmetic , and/or logical. They consist of
a combination of cons tants , variables, array elemen ts and operators .

4 . 4 . a. Ari thme t i c Expressi ons and Operators

Arithmetic expressions can be comprised of both logical and
arithmetic operators. This allows for extremely f l ex i ble manipulation
of variables, constants, and other expressions. Arithmetic
expressions can have two types of data ; Integer and Real. The type of
computation invol ved in the expression depends on the function,
variable and constant types used in the expression .

When the operators appear in an ari thmetic/logical expressi on ,
computation is performed from lef t to right in the following order :

(1) Multiplication, Di vision, Exponentiation , NOT, OR , AND

(2) Addit ion, Subtraction

The differences from Interpreter Basic is that exponentiation is
at the same priori t y level as mult iplication and divisi on. To
change the order of priority , use parenthesis. Expressions within the
i nnermost paren t hesis are calculated f irst. Insi de the parenthesis,
the usual order of computat ion is used.

Operators allowed
Operator Operation

i
*

I
AND
OR
NOT

+

Exponentiation
Mult iplication
Division
Log i cal AND
Logical OR
Exclusive OR
Subtracti on
Addi tion

Sample Expression

X i Y
X* 1 0 . 1
X/Y
X ANDSFO O O
X OR 1 28
X NOT Y
X- 10
X+ 10

The following are some sample algebraic expressions and the
MLBASIC counterpart :

Algebraic Form

X+2Y (S- 12. 9/Y)
X-Y/Z
12A+ 13B-CLOGI

MLBAS I C Form

X+2*Y*(S- 12. 9/Y)
X-Y/Z
12*A+ 1 3 *B-C*LOG (I)

150

MLBASIC 2. 0 USER'S MANUAL

4. 4. b Integer Arithmetic

MLBASIC will compile an expression using integer arithmetic i f
all constants, functions, and variables i n the expression are of the
Integer type. Integer operators are ; +, -, /, *, AND, OR and NOT. Integer
arithmetic allows for extremely fast calculations where the final
result is an integer value. Where fractions or large numbers are not
a concern, Integer arithmetic should be used.

4. 4. c Logical Operators

MLBASIC allows arithmetic expressions to contain logical
operators along with the normal arithmetic operators. Logical
operators perform a full 16Bit operation on the operands. The
allowable operators are: AND, OR, and NOT. The following examples
illustrate the effect of logical operators between two 16Bit Integers.

set

1. Example . AND

0 100 10 1 10 1 10000 1
AND 1 1 100000 1 1 1 1 10 00

0 10000000 1 100000

-Final result has bi ts iet only if b oth bits above are set

2 . Example OR

0 10 10 10 10 1 1 1 1 100
OR 1 1 1 10000 1 1 1 10000

1 1 1 10 10 1 1 1 1 1 1 1 00

-Final result has bits set if one of the bits above are set

3. Example NOT

0 10 10 10 10 10 10 10 1
NOT 0 10 1 10 10 100 1 1000

0000 1 1 1 1 1 100 1 10 1

-Final result has bits set if only one of the above bits are

1 5 1

MLBASIC 2. 0 USER'S MANUAL

4 . 4. d Relational Operators

Relational operators are used to compare two values. Relational
operators are only allowed in IF . • THEN •• ELSE commands and are not
allowed in arithmetic expressions. Available operators are :
> , < , <> , =< , => , and =

4 . 4. e String Operators and Expressions

A string expression is an expression made up of string constants,
string variables, and string functions. The plus sign "+" is used to
concatinate the elements within an expression into one final string.
Maximum lengths of the final concatinated string is limited to about
25 5 bytes.

You can compare strings using the same relational operators that
are used with numbers. String comparisons, performed with the
IF-THEN-ELSE command, are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes are
the same, the strings are equa l. If the codes differ, the lower code
number precedes the higher. Comparisons between unequal length
strings wil l always make t he shorter st ring less than the larger one.

152

CHAPTER 5

MLBASIC 2. 0 USER ' S MANUAL

TECHNICAL INFORMATION

5. 1 Machi ne Language Interfacing

MLBASIC allows programmers to interface their own assembly language
programs with the compiled program. This enables more flexibility in how
the program is to operate.

The special commands LREG and SREG allow for exchange of data
between the 6809 registers and variables used in the program compi led
with MLBASIC.

The method that an externally assembled machine language program can
be interfaced is as follows:

(1) Store the assembled program in DATA statements using the "%"
mode.

(2) Load the hardware registers with any initial values using LREG
(if required with the assembly program).

(3) Call the assembly program that is contained in the DATA
statements using GOSUB l inenumber , where linenumber is the first
line containi ng the machine language program data.

(4) After the call to the machine language program, any data that
is to be obtained from the hardware registers may be stored in an
integer variable using t.he SREG command.

The follow i ng examp le u ses t he prev i ous l y des cri bed method to call a
machine language routine th a t will po l l t he keyboard unt il the keyboard
is pressed and then store t he value i n the integer variable, A.

100 REM ' Test of DATA c alls
101 REM
102 DATA% 1: REM 1st item to be skipped
103 DATA% 183, 255, 222, 28, 175, 17 3, 159, 160
104 DATA%0, 39, 250, 26, 80, 183, 255, 223 , 5 7
120 GOSUB 103: REM ' Call Keyboard Poll Rout i ne
12 1 SREG("D", A) : REM ' Load variable A with [D J register
122 A=A/256: REM ' A now has ascii value of key
123 PRINT"Number =" ; A
124 END

1 5 3

MLBASIC 2. 0 USER'S MANUAL

5 . 2 I nterfacing MLBASIC with the Interpreter

MLBASI C allows programmers to use machine language routines
contained in the ROM of their machine. These routines may be executed
from within a compiled program with the use of the VECTD and VECTI
commands.

The VECTD and VECTI commands allow for calls to routines contained
i n ROM by performing a map switch between the all RAM and the half RAM -
half ROM map types. I n addition, the X, Y, and U register are saved on
the stack and are returned unchanged after completion of the ROM routine .

The following example illustrates the use of the tokenization
routine found in the ROM of the computer.

1 00 REM' Tokenize a string
1 0 1 REM' Fi nal Token is stored i n A
1 02 %STRING= 1 : DIM AS(20) : REM' Word to Tokenize
1 03 INPUT"Enter BASIC Word "; A$
1 04 A=LEN(A$) : REM' Number of Bytes to Poke
1 05 FORI= OTOA: POKEI+50 0, A$ (I) : NEXT: REM'Store Stri ng
1 06 DST (1 66, 500): REM'Point to string
1 07 VECTD (47 1 37) : REM' Call ROM Tokenization Routine
1 08 DLD (7 3 2 , A) : REM ' Load A wit h 2 byte t oken
1 09 PRINT" ", "Token = " ; A
1 1 0 END

15 4

MLBASIC 2. 0 USER'S MANUAL

5. 3 Interpreter Calls

MLBASIC allows a compiled program to execute a BASIC command via the
special character " [" (or shift down arrow key) .

By placing the " [" character in front of a command, the compiler
will use the Interpreter call routine to execute the command, at run
time, under the Interpreter. With the exception of the INPUT, GOTO,
GOSUB, and FOR- NEXT commands, all of the BASIC commands normally used in
an Interpreter BASIC program can be executed using the Interpreter
Call.

The Interpreter usually is not needed because most of the available
BASIC commands may be compiled using MLBASIC. One example of why an
Interpreter call might be needed is to define a string for use in the
DRAW and PLAY commands.

The DRAW and PLAY commands have a sub-command, called "X", that
executes a substring of commands. This substring of commands must be
contained in an Interpreter defined string variable. To accomplish
this, the string that is executed must be defined with the aid of an
Interpreter Call.

The following example shows how a DRAW command, using the "X"
sub-command, uses the Interpreter Call method to define a string
variable.

100 REM' Example DRAW using BASIC SUB-Command string
102 PCLEAR4: PMODE3, 1: SCREEN 1, 0: PCLS
103 [A$ = "BL 16 ; R 16 ; D 16 ; L 16 ; U 16 "
104 [B$ = "BL4 ; BU4 ; R24 ; D24· ; L24 ; U24 "
105 FORS= 1T020: C$= "S"+STR$(S)
106 DRAW "C3 ; BM 128, 85 ; "+C$ + "XA$; XB$; "
107 DRAW " C 1 ; BM 1 28 , 85 ; "+C$ + "XA$; XBS ; "
108 NEXT
109 FORS=20T0 1STEP- 1 : C $ = " S" +STR$ (S)
1 10 DRAW "C3 ; BM 128, 85; " +C$+ " XA$; XB S ; "
1 1 1 DRAW "C 1 ; BM 128, 85 ; " + CS + " XAS ; XB S ; "
1 12 NEXT
120 GOT0 104
130 END

The following example shows how to use HGET and HPUT (low-resolution
graphics GET/PUT can be performed in the same way) , using the Interpreter
Call method.

100 [HBUFF 1, 2000
200 HSCREEN4
300 HLINE (10, 0) - (20, 10) , PSET, B
400 [HGET (10, 0) - (20, 10) , 1
500 HCLS
600 FORI= 1 TO 150 STEP5
700 POKE 1000, I
800 [I=PEEK(1000) : REM' PASS MLBASIC I TO INTERPRETER I
900 [HPUT (50+I, 10+I) - (60+I, 20+I) , 1, PSET
1000 NEXT
10 10 GOTO 10 10

1 5 5

MLBASIC 2. 0 USER'S MANUAL

5 . 4 Subroutine Call Description

In this section a description of how the CALL and SUBROUTINE
statements operate internally is given. The way a CALL statement passes
parameters and program control to the SUBROUTINE is discussed for
information purposes.

The following sequence describes what happens when a CALL statement
is executed.

(1) The pointers to each variable or constant in the CALL statement
argument list are pushed onto the "S" stack. Each pointer occupies
2 bytes of memory on the stack. The f irst argument in the list is
the f irst pointer on the stack, the second argument is the second
pointer and so on.

(2) The variable table pointer ("U" register) is saved on the
stack.

(3) The jump is made to the SUBROUTINE with the return address
being the last item saved on the stack.

(4) The SUBROUTINE is executed. Program control returns to the
calling routine when a RETURN is executed in the subprogram.

(5) The variable table po inter is loaded with its original value
(obtained from the stack) .

(6) The stack is reset to its or iginal pos i t ion before the CALL
statement was execu t ed. This in affect moves the stack beyond the
argumen t list variable/const ant po inters which were saved in the
f irst step of the process.

(7) Program control resumes with the next executable st atement
after the CALL statement.

1 5 6

MLBASIC 2.0 USER'S MANUAL

The following diagram illustrates how the "S" stack looks after Step
3 of the process (this is how i t looks immediately before the SUBROUTINE
is executed).

[arg 1]

[arg2]

[arg3]

[argN]

[U]

[P.C.]

[Vacant]

HIGH MEMORY

Pointer to 1st argument in list

Pointer to 2nd argument in list

Pointer to 3rd argument in list

Pointer to Last argument in list

Calling program variable table pointer

Return address to call i ng program

Nex t availabl e location on stack

LOW MEMORY

1 57

MLBASIC 2 . 0 USER'S MANUAL

5 .5 MLBASIC 2. 0 Memory map

Address (Hex) Segment Contents

1 0000

E000

cooo

A000

8000

6000

4000

2000

0000

<
<

)

)

3 F

3 E

3D

3C

3 B

3A

3 9

3 8

- I/0 Vectors, ROM interrupts, Etc .
---- $FFO O

Enhanced BASIC

Disk
Operating system
RAM

Color BASIC RAM

Extended BASIC RAM

MLBASIC runtime subroutines &MMU slo t table
---- $7FO O

RAM area used for storage of Mac�ine
l anguage and BASIC source programs

This page gets swapped out with
segment $ 3 6 for the S O-column screen

Disk buffers, Low-resolution graphics screens,
---- S 1D 1

MLBASIC ROM call and task switching routine
---- $1AE

Task #0 Set of MMU slots (RAM mode)

1 58

MLBASIC 2. 0 USER'S MANUAL

Address (Hex) Segment Contents

1 0000

EOOO

cooo

AO OO

8000

6000

4000

2000

0000

3 7

3 5

3 4

3 3

3 2

3 1

30

3 8

- I/0 Vectors, ROM interrupts, Etc .
- - - - $FFO O

MLBASIC

program

RAM

Disk buffers, Low-resolution graphics screens,
- - -- $ 1 D 1

MLBASIC ROM call and task switching routine
- - - - $ 1 AE

Task # 1 Set of MMU slots (RAM mode)

159

MLBASIC 2. 0 USER'S MANUAL

CHAPTER 6 SAMPLE PROGRAMS

Program # 1

This program is used
useful for programs that

to delete remarks in a
exceed memory in BASIC.

program. It can

MLBAS IC R@v l 1 l on 2 . 0 - COPYR l '3HT I C l 1 �87 t, , 'lASATCH-&ARE
----------------------------------- ------------------------------- --------------
I NPUT •MEMORY
OUTPUT•ME!IORV

1 9 REM ' UtUUttUHUtUtUUO
20 REM ' * DELETE REMARKS IN A *
30 REM ' * BAS IC PROGRAM t
40 REM ' t STORED IN IAEMORY t
�0 REM ' * - (C l WASATCH'IAIIE - t
69 REM ' t 1 987 *
79 REM ' UUUUtUUUUUUUU
ee UNT
99 lST II I NG• I
1 09 REM '
I 1 0 CLS t PR I NT ' THI S PROGRAM DELETES REMARKS ' , ' FROM THE PROGRAM EX I ST I NG I N " , '
MEMORY , •

1 20 D I MA. 1 3Hl 1 REM ' L I NE BUFFER
1 30 DLD r 2, , A l 1 0LD l 2 7 , 8 l 1 8•B-2 1 DLO I A , C l
1 40 D•A t llEM ' SET START OF NEW L I NE TO OLD
1 �0 E•AU 1 F•C- l 1 J•9
1 69 rDR l •E TO F t REM ' LOOP ON CHARACTERS IN L I NE
I ?t G•PEEK I I l I I rG• I 3eTHENI 99
t ee tAf l J l •G 1 J•J+ l 1 GOT02 l 0 1 REM ' r i ll OUTPUT BUFFER . NEXT CHARACTER
1 99 I F I >E THEN22t
200 tAt ! 0 l •G 1 J• l 1 GOT023t
2 1 0 NEXT ! 1 GOT0240
220 J•J- l t REM ' GET 1110 OF COLON
230 G•0 1 fAf 1 J l •G 1 J•Jt l 1 REM ' ENO OF L I NE MARKER
240 REM ' STORE NEW L I NE OVER OLD , J•LENGTH , O•START
2�0 L•A +2 1 0LO I L , L l , REM ' L CONT A I NS L I NE I
260 E•0+4 1 F•E+J 1 F•F- l 1 H• 0 1 FOR l •E TO F 1 G•At fH l 1 H•HH 1 POKE l , G 1 NEXT
�70 F•F+ I 1 0S T (O , F) 1 JIE M ' STORE NEXT L I NE LOCA T I ON
280 H•Ol 2 1 0ST (H , L l 1 REM ' STORE CURRENT L I NE N\MlER
290 O•F t REM ' SET NEW L I NE LOCAT I ON
300 A•C 1 0LO I A , C) 1 REM ' A•START OF NEXT OLD L I NE , C•NEXH I
3 1 0 I FA<B THEN I �0
320 REM · STORE F I NALE POI NTERS
330 OST I 0 , 0 1 1 0•0+ 2 1 0ST l 27 , 0 l
340 '/ECT I 1 1 1 4 1 , REM ' PERFORM A WARM START TO I N I T I AL I ZE VARI ABLE PO INTERS

3 4 PROGRAM L I NES
� GOTOt GOSUBS

***** L I NE NUMBER LOCAT I ON MAP ****'
L I NE LOCN L I NE LOCN L I NE lOCN L I NE LOCN L I NE lOCN

1 9 1 9008 20 1 9008 30 1 9008 " 1 9008 ,0 I 900B
60 I '300B 70 1 9008 B0 1 9008 90 1 9008 1 00 I 90 I �
I I t I 90 I � 1 20 1 9039 1 30 1 9039 1 40 1 9079 i ,0 1 9086
1 69 I 9 I 2B 1 70 1 9 1 34 1 90 1 9 1 ,� 1 9 0 1 9 1 97 200 I 920B
2 1 0 1 9227 220 1 92�0 230 I 926B 240 1 93 1 2 2,0 1 93 1 2
260 1 9336 271 1 9466 280 1 9496 291 1 9,23 300 I 9� 3 I
3 1 1 1 9,43 321 1 9�,2 330 1 9,,2

***** VAR I ABLE TABLE *****
I . SCALAR VARI ABLES

NAME L OC"T I ON TYPE NAME LOCAT I ON TYPE NAME LOCAT I ON TYPE

A 2J9?6 I I J T E •;EI< � 24998 I MTE'3E�
0 2,002 HHE'jER E 2,0N I MT EGER
G 2�008 JMTEGER H 2�0 1 0 !I ITE'3ER
J 2 ,0 1 4 I IITEGER I(2,0 1 6 ! I ITE'3ER
M 2,020 HITEGER N 2'922 I NTEGER
p 2�02S l f 1TE'3ER Q 2�028 l t1TE'3Eli>
s 2�032 HITE'3ER T 2,034 I NTEGEli>
V 2 5038 I NTEGER • 25040 HITE'3ER
y 25044 I HT EGER z 25046 I NTEGER

2 . O I MEI-IS l mlEO VARI ABLES

NAME LOCAT I ON TYPE l • t D I MENS I ON

A. 250�0 STR I NG 30 1

MA I N PROGRAM AREA - 1 9000 TO 1 9609
CHARACTER DATA AREA - 1 % 1 3 T O 1 %82
SUBROUT I NE L I BRARY AREA - 1 9683 TO 24993
VAR I ABLE STORAGE AREA -24384 TO 2,3�0

' ERRORS

be

C 25000 I IITE-;E11
F 2,0�6 l mEr,ER
I 2,0 1 2 I MTEGEII
L 2,0 1 0 I NTEGER
0 2�024 I MT EGER
R 2�030 I NTEGER
u 2'9?6 INTEGER
X 2�042 I NTEGER

160

MLBASIC 2. 0 USER'S MANUAL

Program #2

This program is a basic text editor with wordprocessing
capabilities. The program can be used to become familiar with the part
of MLBASIC that is not available with regular Interpreter BASIC.

To compile the program:

(1) Load in MLBASIC
(2) Enter CLEAR 200, 1930 1
(3) LOAD "PROGRAM2"
(4) Enter EXEC
(5) Hit CTRL , and wait for it to be compiled
(6) Save program to disk: SAVEM"TEXT", 19500, 32375 , 19500

To load the program and execute it, you must use the 64k task # 1
loader program called "R. BAS". To run the program, the menus will help
you thru most of the functions. In edit mode, the "H" key lists the
options. Some of the more complicated functions are:

"U" -Bank a section o f text (up to 2500 bytes in this version)
You first position t he cursor to where you want in the tex t
and then hit "U" t o start banking. Move cursor along
to the end of the tex t you want to bank, then hit "U" again.

"V" -Insert t h e banked buffer (using "U") . It may be inserted more
than once .

Other things to know about the edit or sec tion are that the following
keys perform the function of moving the cursor position around the tex t
as:

-Go t o top of Text.
-Same as ", "

ENTER -Go to next page

Hopefully this will get one started into a better understanding of
the optins available with MLBASIC.

1 6 1

MLBASI C 2.0 USER ' S MANUAL

l!LllAS [C R•v l � lon ! . 0 - CDPYR l (JHT I C) 1 387 by WASATCH'IIARE
---------------------·----- - - --------------------------- - - - ------------ -------- -
t tlPUT •MEIAORY
OUTPUT•MEl!CJl!V

1 9 PEM ' u

I I PEIi '
1 2 REM '
1 3 REM '

0 IOt:IOPRO 2 , ll ·0 1 51(0
0 06 / ll l /87 U
.............................

U REM
t , X I NT
1 6 XSTR I NG• I
3 1 DATA9999
51! DATAf "
5 1 DATAf '
52 DATAf '
53 OATAf '
5• OATA f ' Than� You . '
55 DATAf ' John Doe '

�NYNAMEH£RE '
1 234 Road Lano •
Wholc.now,wh @ r • , U , S ,

98765

56 DATAf "Manag@ r , A'lYNAMEH£RE "
71! D I M Ft f 21l l , Gf f 21l l 1 REM ' F I LENAMES
86 D I M A ! l ll 1 , Ef l 81l l , Dt f 25Hl , B f f 81l l , Ct l l t l , Af (2Cllllltl
87 A (2 l •8 1 5• 0 1 B•0 1 A (3 1 •VAIIPTR ! A f l : REM ' SET BUFFER 5TARt
88 A ! 4 1 •ll : REM ' I N I T I AL I ZE BANIC I NG BUFFER
1 00 CLS 1 PII I NT ' WORDPIID (VERS I ON I . Il l " , ' (C l 1 997 IA5ATCH'IARE ' , " ENTER D
P T I OII 1 • , • 1 , - I NPUT ' , ' 2 . - D I R ' , ' 3 , - PR I NT ' , " • . - ED I T '
t il t PII I HT ' 5 , - TEXT SAVE / LOAD ' , " 6 , - EX I T '
1 29 PII I NT 1 I NPUTZ
1 2 1 I F Z • t THEN l ll01l
1 22 I FZ•2THEN201l0
1 23 I FZ •3THEN301lll
1 2• I FZ • HHEN•ll00
1 25 I FZ•5THEN71l00
1 26 I FZ 06THEN! llll
1 21 STOP
1 009 A•B 1 GOTD6000 1 REM ' 5ELECT I NPUT MENU
1 00 1 G05\J9 1 I 1 00 1 GOTO l 00
2000 0 1 11 , ,:;oro t ee
3000 G05UB l 2 1 01l 1 CLS 1 PR I N T " READV PR I NTER f ENTER , ' , ' LEFT , R I GHT MARG I N ' I I J N1'1JT0 1
1 PP I NT ' , ' 1 1 I NP1JTE 1 PR INT ' ' . " T OP , BOTTDM OF PAGE ' I
300 1 I NPUH : PR I NT " , ' I I I NPUT G I PII I NT 1 T • I
3002 FII J rlT " ENTER 2ND MARG I N ' i , I NPUTA (l l
3003 PRINT ' " . 'EIITER FORM LENGTH • 1 1 I NPUTL
3004 IFS• I TMEN31l l 0
3005 PR HJT ' ' , ' 1 5 I T A LETTER ! l •YE6l ' ' t , I NPUTS
3009 PR I N T ' ' , "ENTER STAR T I NG PAGE ' 1 1 I NPUTP
30 1 9 PR I NT ' ' , ' ENTER TH£ T I TLE '
31l l l ltlPUT Bf : T•LHI I B f l
3020 Q• l 1 R• t 1 F• F• l 1 K• 0 1 T•T-I
302 1 GOSUB5201l : I FZ•3THEN l 00
3022 REM ' BEG I N LOOP TO PR I NTOUT TEXT
3023 FDR l •A TD B 1 Z•Af (l l
302• GDS\J9 1 l ll00 1 REM ' SCAN F OR I NTERRUPT
3028 I FQ>•O THEN3032
1030 OOSU85 I 00
3032 I FZ • l 3THEN3070
303• I FZ•64THEN3099
3036 I FZ•32THEM3069
3038 I FZ•9THEN31l90
3039 I FZ • t 9THEN3 1 00
3040 l FZ • l 2THErrn?09
3051! K•K + t I fES I K) •Z I OOT0351lll
3060 l FK•0THEN31l68
306 1 Q•r.J+K I I FQ>E THEN3g56

3i,62
3;)6d
3066
3068
3070
3072
3074
3075
30 76
3080
3082
3083
3030
303 1
3092
3 1 01!
3 1 0 1
3200
3500
4 01'0
41'0 1
4002
4003
400•
4005
•006
4007
4008
4 009
4 0 1 1!
4 0 1 1
4 0 1 2
4 0 1 3
4 1l U
40 1 5
4 0 1 6
4 0 1 7
4 0 1 8
40 1 9
4021!
402 1
4022
4023
4024
4040
40,0
40, 1
4052
4061!
406 1
4 052
4063
406,
4079
4080
4085
4030
4 035
4 1 01!
4 1 0 1
4 1 1 0
4 1 1 1
4 1 1 2
4 1 20
4 1 2 1
4 1 22

G05U85400
PRI I J Tl - 2 , ' " 1 1 Q•Q+ I I (;0T03500
PR I IIT l - 2 : R=RH : Q= l 1 G!)SU8,3�0 : Q•Q+K : GOT030S2
P R I I I T l - 2 , ' ' : : Q=QH 1 GOT03500
I r K < > 0TH[M3074
PP J IH 1 - 2 : R•R+ I I Q• I : A (2 1 •ll : GDS\J95301l I GOT03,llll
Q•Q I I(: J rQ,E THEll 3076
G051JB5400 : GOT03072
l'R l flT l - 2 1 R•IH I I Q• I I GOSIJ8531lll : Q•Q+l(1 GOT03075
A 1 2 1 • 0 1 FOR J •P TO L I PR I NTl-2 : NEXT 1 P•PH: R• I
Q • I : GD5UB5201l : I FZ •3THEN l llll
GOT03500
I FK •0THEN3092
Q•Qtl(: G05UB5401l
PRINTl-2 , ' ' 1 1 Q•Q+ 5 1 GOT035H
A 1 2 1 • 1 : REIA ' SET FLAQ TD I NDENT TO 2ND MAR G I N
GOSU8561l0 : GDT03500
Z • 2 5 1 GOT03050
MEXT
A•0 : CLS : PR I NT "E > " I
GOSUB,00 1
l rz =94THEM4051l
l FZ • l 0THEN4060
l FZ • 3THEtl l 00
I FZ •9THENd085
I F Z • 8THEN4�80
I FZ• ' I ' THEN4091l
I F Z • ' D ' THEN4 l 00
I FZ • " C ' THU14201l
I FZ • ' B " THE l-l d 2 ,ll
I FZ • l 3THEM4 300
I FZ • "A " THEN4 3 1 0
I FZ• ' G " THEr.1 43,0
I FZ • ' S ' THEN4 381l
I FZ• "R " THEt-14400
I FZ• ' H " THEN4420
I FZ • " U ' THEN4 500
I FZ • ' V ' THEN4521l
I FZ• • , " THEN4001l
I F Z • ' , " THEN4001l
IF Z • ' ' THENd085
IF Z • l ll3 THENH 1 0
I F Z • 4 THENd l 21l
I F Z • ' J ' THENFORX• I TO l ll 1 GDSUB406� 1 NEXT 1 00T0400 1
GOTD401l l
J FA< l 00THEN4001l
CLS : PR IN T " ' ' : 1 A•A- l 01l 1 rDR l • I TO l l'll
GOSl.184065 : llE�T I A•A- 1 ee I GOT1Jd00 1
Z •At l A I I I FZ • l 3THEN4063
G05UB4065 1 I FA>•B THElldll0 1
GOT040S0
PR I fJT : A=A+ I I GOT0401l I
Z=At f A I : GOSU8 1 1l01l0
A >t,+ I : PEHll;>N
P P I NUCt (1 1 1 : A•A- 1 1 ODT0400 1
GD5UB41l6 , , GOT0400 1
,:;osue t 1 900
GOSUB 1 1 70 0 1 GOT0401l I
! NPIJTZ
GOSIJB I 1 60 0 : GOT0401l l
REM · F t JUMP TO LOcAT I ON IN BUFFER
PP J I IT ' • , ·' PO I NTER• ' : A1 J l,IPUT 'ENTER ADDRESS ' I A
GOTO 400 1
REM ' F2 SET BllFFER L EMGTH
C LS : PR HIT " RUFFER• · 1 B : I NPl1T 'ENTER BUFFEP S I ZE 1 0 -) LEAVE AS I S l ' t Z
I F Z >ol) THEil B•Z

1 62

MLBASIC 2 . 0 USER ' S MANUAL

4 1 24 GOTl:14�0 1
4200 GOS1Jl35100 : fAf I A I •Z , A•A+ 1 , Gi:ito,e0 1
4250 PR INT ' ' , "BUFFER• " ; E : " BVTES " : GOT0400 I
4300 Z•AS (A I , I FZ•64THHJJ303
4301 GOSU84065 1 I FA>•B THEN400I
4302 GOT04300
431!'3 GOSU84065 : GOT0400 1
4 3 1 0 PR HJT ' " , ' L ltJE P,:l l NTER• " 1 A 1 "BVTES " i 'GOT0400 I
4350 REM ' GRAPH ICS ROUT I NE
435 1 PR INT " ' , " G > " 1 1 Z •Af (A l
4 352 PRI NUAt l A I 1 ' (" 1 Z 1 ' l " I I I NPUTZ
4353 I FZ•0THEN'355
'354 fAf f A l • Z 1 GOT0400 1
4355 PR I NT " , . . , NO CHANGE MAOE " 1 GOT0400 I
4 380 GOSUB 1 1 800
4383 GOSllB 1 1 509
4 390 A•A-C , PR I NT ' ' , ' FOUND I T ' 1 GOT041!1! 1
U00 CLS , PR I N T ' INPUT STR I NG TO BE REPLACED "
U0 1 GOSUB I 1 800
U02 PR INT ' ' , •• THE REPLACEIIENT STR I NG "
441!3 X•C : GOSU8 1 1 901! : 0•C i C•X
UU GOS\/8 1 1 500 , A•A-C : I FA>B THEN41!91l
4405 GOSue,00 1 , 1 F2•3THEN4091l
U06 I FZ•93THHIUl!B
'41!7 A•A+C : GOT04404
4409 Z•C : G051JB 1 1 600 1 Z•8 1 009U8 1 0000 1 REM ' OELETE STR ING, PR I NT BACKSPACE
4409 X•C : �•0 : GOSU8 I 1 71!0 1 C•X : GOTOUU
'420 CLS 1 PR I NT ' EDIT COMMAND I NDEX • , 'A -D I SPLAY CURSOR LOCAT I ON " , "9

-DI SPUIY BUFFER S I ZE " , ' C -CHANGE CURRENT CHARACTER "
4 422 PR I IIT 'O -DELETE N CHARACTERS ' , ' I - I NSERT TEXT ' , "G -D I SPLAY/ENTER NEW 1/ALUE
' , "R -REPLACE STR I NG " , 'S -SEARCH FOR STR I NG '
:��; ��J�T · u -BANK ,. SECT I ON O F TEXT ' . · v -UNBAN!((I NSERT BUFFER) • • ' BREAK -EX I T
U25 PR INT ' . -GO T O START O F BUFFER " , ' F l -JUMP T O A LOCAT I ON I N BUFFER ' , ' F 2 -CH
A'JGE B1JFFER S ! ZE ' 1 GOT0400 I
4 500 REM ' HISERT DATA INTO Dt BUFFER
4 502 1 F A ' 4 ! 00THEN4 5 1 0
4 �04 CLS : PR I NT 'BEt; t N BANl< INO TEXT , M OVE CURSOR " , ' T O ENO OF ARE A , THEN H I T ' U ' •
4506 A l 4 1 •A 1 GOT04 3 1 0
4 5 1 0 Z •A-A (4 1 1 C•0 1 I FZ >2499THEN45 I B
45 1 2 FORX•A f 4 1 T O A 1 C•C+ l 1 V•Af (X) 1 tOf (C) •Y 1 NEXT
4 5 1 4 A•A-Z I G06UB 1 1 600
4 5 1 6 A 1 5 1 •2 1 A 1 4 1 •0 : PR I NT " " , A f 5 1 J " BYTES ARE NOi BANl<ED " 1 GOT04001
4518 PR I NT ' " , " BUFFER OVERFLOl ' 1 Z•24991 GOT04 5 l 2
4320 C•A ! 5) : PR ! NT " ' , C ; " BYTES I NSERTE!l " 1 GOT04093
5000 GOSU85001 : PR INUCt (I) I I RET1JRN
500 1 Cf l I I • INl<EVt I Z•Cf (1) 1 I F2 •0THEN500 1
501!2 RETURN
50 1 0 PR t r-lT " ', 'HIT ANY KEY TO CONT I N\JE ' 1 GOT0500 1
5 1 00 F011J• I TO O : PR I NTl-2 , • • 1 1 Q•Q+ I 1 NEXT
3 1 02 t r A 1 2) •0THEN!! 1 04
5 1 03 GOSl.1!'5600
5 1 0A RETURN
5200 I FR >•F THEN5205
520 1 I FSO I THE'J,21!3
5202 PR I NT ' ' , " READY NEXT PAGE ' 1 OOSUB5000 1 Goro,205 3203 PR lNU-2 , ' ' J P , • ' : R•R+2 5204 GOSU85500 1 FORJ•R TO F 1 PR I NTl-2 1 R•R+ I 1 NEXT
!!20!! RETURN
5300 I FR<•O THEN5392 m1 �g;i;; . �g , �����TM1 NEXT 1 R• I 1 P•P+ I 1 GOS\/85290 1 Q• I
3400 FORJ• I TO 1(1 PR ! NT l -2 , tEt (J J 1 1 NEXT : 1<•0 1 RETIJRN !!500 GOS\J8 5 l 00 1 PR INTl -2 , Bt
550 1 Q• l 1 R•RH 1 RETUPN
5600 FORJ• I TO A (l l 1 PR ! Nll-2 , ' ' 1 : NEXT 1 Q•Q+A (l l : �ETl1Ri.J

6g�0 CLS , PP. I I I T 'HITER l l·JPVT QP T ! ON 1 ' , ' 1 7- LETTER 0 , • 2 . - TE<T ' ! I NP•JTZ : PR I NT
61!02 I FZ • I TH[l /6�%
6f03 PEI! ' J I IP'J T LET TEP HEAD HJt; HITO TUT B'JFFE'< , At
6,•N cLS : PR I MT " I > • ; 1 GQ TO l 00 1
50% l:'ESTORE
6008 Rgo 1 : I F I 09?93THEN6008
61'• 1 0 S• I
60 12 FOl:'A•0T030 : REAOtAf l A I I NEXT
60 1 4 \' • I 3 : Si.S f 3 I I •Ill
60 1 6 FO�A •32TIJ66 1 REAOtAt (A l 1 NEXT
60 1 8 SAS 1 6 7 1 ,1
6�20 rQRA•68TIJ 1 07 , REAOAt (A I I NEXT
6022 fl,t 1 1 08 1 •W
6e24 roRA• 1 09T0 1 4 3 : READtAf (A l 1 NEXT
6i!26 A• I 4 4 : t;QSIJB I 1 400 : GOSUB 1 1 40t t G05UB 1 1 400
6028 GOSIJ8 I I 1 00
5030 1' • 3 5 : GIJSIJB l l 200 : V• 1 0 1 GOSUB I l 300 1 00SU8 1 1 400
603 I t;051J!' I I 40? : GOS'.'B 1 1 400 : GOSUB I 1 400
6032 Y•35 : t;IJS ' !B I 1 2�0 : V• 1 0 : G05U8 1 1 300 : G05U8 1 1 400
6034 V • 3 S : GQSIJB l 1 200 : Y•20 1 GIJS1J8 1 I 300 : GOSU8 1 1 400 1 B•A 1 00TD 1 00
7000 l1E'-' ' I 10 SECT I ON
7002 CLS : PR I N T · S TORAGE SECT I ON ' , ' ' , " ENTER OPT I ON I '
7004 PR I IIT " 0 . -EX I T MEM'J " , " I . -LOAD TEXT FRQIA D I SK ' , " 2 , -SAVE TEXT T O 0 1 5 1(' , ' 3 .

-APPEND T EXT FROM [) I Si(" , ' 4 , -SA'JE SEGMENT OF TEXT T O D I SK '
700!! PR I NT ' !! . -V IE\11 D I SK D I RECTORY "
70�6 I MPUTZ I U• I
7000 I FZ • I THEN7 1 00
70 1 0 I F Z •2THEN72�0
70 1 2 I FZ • 3THHl7300
701 4 I F2 • 4THEIJ7600
70 1 5 I FZ•5THEll7700
70 1 6 t r 2 •0 THEN l 00
70 1 8 GOT07002
7 1 1!0 1>[1,1 ' LIJAD TEXT
7 1 02 GOSU87400 1 l>EM ' ! N I T F I LE
7 1 1 0 B•ij : A•0
7 1 1 2 REM
7 1 1 4 1NPUTl1J , tAf (A l 1 Z •Af / A l I IF Z O l 3THENA•A+ I , GOT07 1 1 4
7 1 1 5 A•A+ l : I F EOF !U l •0THEN7 1 U
7 1 1 6 l'•A : CL,:1SE , GOT0 1 00
7200 PEM ' SAI/E F I LE
7202 G0Sll875�0
7204 A•0 : REl,I ' ! N I T TO START OF BUFFER
7206 Y•B- 1 : REM · ENO OF TEXT TO OUTPUT
7208 REIi
72 1 0 FOPX•A Tl) V 1 Pl> ! NTIU, tAt (X) I 1 NEXT 1 RE M ' OUTPUT BUFFER
72 1 1 x,x- 1 : Z •Af (X I I IF 20 1 3 THENPR I NT IU , ' ' 1 REIA ' EOL IS REQU I RED
72 1 2 CLOSE
72 1 8 GOT 0 1 00
7?00 �El,! ' APPEND
730 1 GOSL'B7400 : A•B : GOT07 l 1 2
7400 ll-lPl)T "ENTER J MPUT F I LENAME • I F,
7402 OPEM ' l " , W1J , Ft
7408 RE TURN
n00 HJPUT " ENTEi:' OUTPUT F I LEl·IAME ' I Gf
7�e2 OPEll"O ' , WU , Gt
n0s RETURN
7600 REM · O'JTPUT A SEGMENT
760 1 Gosuen00 : PR I IH " ENTER START , END OF TE�T · : I NPIJT A , v, GOT07208
7700 D I R : PR I NT 'NUIIBER OF FREE GRANULES• ' 1 : (PRHJT FREE (0 1
770 1 GOTO 7006
1 0000 G,:1S1JE' I 1 oe0 , I F2 09THEN l 0002
1 0e� I PR ! IH " " ; : PETVl:'tl
1 �e02 I F Z < '64THEf.1 l 000J
1 0�(:\3 CLS : f;IET1.ls-'M
1 0004 1 rz o 1 ,THE11 1 e0%

1 63

MLBASIC USER'S MANUAL

L ! IIE LOOI L HIE LOCN L I NE LOCll L l ! JE LOW L HIE LOCI)
1 ��e� Y= l d ll : 130Tr) t �0�:1

1 ee�6 I FZ < > l 2 THPl l 00�8 1 0 1 �509 I I 1 ��01:1 1 2 1 9508 1 3 1 9508 1 4 l 9 �08
1 0007 V• l 4 0 : GOTO l 0009 I 5 1 �508 , 1 6 1 9�08 3 1 1 9� 1 5 50 1 9�20 5 1 1 95 5 1
1 0008 V=Z 52 1 9�% 53 1 %26 " 1 %6 1 '' 1 % 7 1 56 1 969 1
1 0009 10 1 1 l •V 1 F'l> INHCt ! I l I 70 I T� ! 86 1 9 , e t E' 7 1 970 1 89 1 9736 1 00 1 9744
1 1 000 REM · BREAK PO')T HIE 1 0 1 I T68 l i:0 1 9795 1 2 1 1 9805 1 22 1 99 1 6 1 23 1 9827
1 1 00 1 Cl 1 2 1 • I NKEVI I t•CI 1 2) 1 24 1 99313 1 25 1 9349 1 26 l 98E0 1 2 7 1 987 1 1 000 1 9875
1 1 002 I F 'll• l 9THEN I 1 00' 1 11 0 1 1 9e34 2000 1 �?�0 3000 1 9900 300 1 1 9967 3002 20021!
I I 003 RETUl1N 3003 c0N 5 3004 20070 300� 2009 1 3009 20 1 �6 30 1 0 20 1 3 1
1 1 004 REM ' POLL rQR ANY ICEV T O CONT Hr.'E 30 1 I C0 t 48 3020 20 1 76 302 1 29236 3022 20250 3023 202�0
1 1 0M 'l•Z : G05U!'�00 I , Z •1 : RETUl!N 3�24 20n0 3029 20273 3031! 20294 3032 20287 3034 20298
I I I 00 GOSU8500 I : PEM ' GE T I PIPUT CHAR 3036 20209 303!:I i:0320 3039 2033 1 3N� 20342 3050 20353
1 1 1 0 1 I FZ OSTHEtll I ! 0 3 31'60 2�395 3% 1 2N06 3062 20432 3064 20435 3066 20470
1 1 1 02 PR l 'HIC$ \ l l 1 uhA• l 1 GOTO l l l 00 3068 20529 3070 2M64 3072 2�,75 3074 20621 307' 20650
1 1 1 0 3 I FZ03THE1l l I 1 0 5 3076 206,6 3080 . 207 1 , 3082 20784 3083 20806 3030 20809
1 1 1 04 B•A : l'IET'JRN 309 1 2013?0 3092 208 4 1 3 1 00 20876 3 1 0 1 20884 3200 20930
1 1 1 05 I F Z •8THEN I 1 1 00 3500 20�0 I 4000 20920 400 1 20946 4002 20949 101'3 20960
1 1 1 06 I FZ •91THEHI 1 1 00 4004 2097 1 4005 20382 4006 20993 4007 2 l 0i!I 4008 2 1 0 1 5
1 1 1 07 I FZ • l 0THEN I 1 1 00 4 003 2 1 025 40 1 0 2 1 037 41i'I I 2 1 048 4 0 1 2 2 1 0,9 10 1 3 2 1 070
1 1 1 1 0 fAI I A l •Z , G05�'81065 : GOTO l l 1 09 4 0 1 4 2 l icl'l l 40 1 ' 2 1 092 40 1 6 2 1 1 03 40 1 7 2 1 1 1 4 4 0 1 8 2 1 1 2 5
1 1 200 'l/•32 : rQR l • I TO V : IAl (A l •• : A•M I I NEXT r RETURN 4 0 1 9 2 1 1 36 4020 · 2 1 1 47 402 1 2 1 1 ,0 4022 2 1 1 69 4023 2 1 1 80
1 1 300 FOR l u t TO Y 1 1'1EAOfAf f A I r A•A+ I 1 NEXT 1 RETURtl 4024 2 1 1 3 1 4040 2 1 240 41',0 2 1 243 40, 1 2 1 253 1052 2 1 294
1 1 400 1• 1 3 : IAS (A l •W : A•A+ t 1 1!ETURN 4060 2 1 336 4'l6 I 2 1 36 1 4062 2 1 373 4063 2 1 376 4065 2 1 402
1 1 500 V•ES (l l 1 Z •Al (A l : GOSV8 l 0000 1 I FA)•8 THEN l l 905 4079 2 1 422 4�80 2 1 439 4095 2 1 472 4090 2 1 478 4095 21 aet
1 1 50 1 A=A+ l , I FZOV THEtl ! l 500 4 1 00 2 1 487 4 1 0 1 2 1 500 4 1 1 0 2 1 506 4 1 1 1 2 1 506 4 1 1 2 2 1 552
1 1 502 IF C> I THEN FOl! l •2TO C 1 ELSERETUl!N 4 1 20 2 1 5'5 4 1 2 1 2 1 , 55 4 1 22 2 1 609 4 1 24 2 1 633 1200 2 1 636
1 1 503 Z•Af 1 A l 1 Y•Ef f l l 4 2'9 2 1 678 4 300 2 1 7 1 5 430 1 2 1 740 4302 2 1 752 4303 2 1 75 5
1 1 , e a I F V O Z THEtl l 1 507 4 3 1 0 2 1 76 1 4350 2 1 798 435 1 2 1 798 4352 2 1 827 4353 2 1 899
1 I 5ic\5 A•A+ I : NEXT , RET'JRN 43,4 2 1 900 43�� 2 1 ?23 4 300 2 1 943 4383 2 1 946 4390 2 1 949
I I 5% GOTO ! 1 500 4 4 00 2 1 994 4 4 0 1 22009 4402 220 1 1 4 403 22028 4404 22052
1 1 507 A=A- 1 : A•M2 : GOTO l l 500 r l!EM ' RESET ' TRY AGA !tl u0, 220"17 4 4 06 2209 1 4407 22 1 02 4408 22 1 20 U09 22 1 4 1
1 1 600 FOR l •A TO 8 1 Y • l +Z 1 X•Al (V l 4 4 2 0 22 1 68 4 422 22 1 '>2 4424 22209 4425 22226 4 500 22246
I I 60 1 tAl f l l •X , NEXT : B•B·Z : RETUl!N 002 222 J 6 4 504 22257 4 '96 2229 1 4 ' 1 0 2229 1 4 5 1 2 22326
I 1 700 FOQ 1 •8 TO A STEP· ! 1 Z • l + C , V•At 1 1 1 4 5 1 4 22402 4 i l 6 2242 1 4 5 1 8 22480 4520 22508 5000 22!557
1 1 70 1 SAS (Z) •Y 1 NEXT 500 1 22,n 5002 22�07 50 1 0 22608 5 1 00 22628 5 1 02 22686
1 1 702 FOR l • I TO C : Z•Of f l l 1 fAf 1 A) •Z 1 A•A+ l : NEXT 5 1 03 226?7 5 1 04 22700 5200 227N 520 1 227 1 2 5202 22723
1 1 703 B•B•C : PET\J1UI 5203 22746 52�4 222�� 52e, 22962 5300 22863 530 1 22974
1 1 800 C • 0 : FEM · J tll'UT Et BUFFER 5302 22"'46 5400 22?50 ,�·�0 23009 550 1 23030 5600 231'57
1 1 80 1 GOSIJ85000 : I FZ •3THEN I 1 905 6000 23 1 1 6 6002 23 1 50 6003 23 1 7 1 6004 23 1 7 1 6006 23 1 93
1 1 8�2 1 r z o0THEN I 1 804 6008 23202 60 1 0 23228 60 1 2 23236 60 1 4 23286 60 1 6 22300
1 1 803 C•C - l : '30TO I 1 80 1 60 1 9 23?50 602� 23359 6022 23405 6024 234 1 4 6026 23464
l ! Bic\4 C =O l : 1E l 1 � 1 •2 1 GOTO l l 8 0 I 61129 234':'0 6030 23483 6031 235�8 6032 235 1 7 6034 23542
1 1 3110 C•0 , 1-'EM ' JMPIJT Df BUFFER 7000 23576 701'2 23576 7004 2%00 700' 236 1 7 7006 2?634
1 1 ?0 1 '30'5U8500 1 : GOS'.10 1 0000 1 I FZ•3THEN l l 905 70�8 23&�5 70 1 0 2?666 70 1 2 23677 70 1 4 23688 70 1 !5 23699
1 1 302 I F2 09THENI 1 901 70 1 6 237 1 0 70 1 8 2372 1 7 1 00 23724 7 1 02 23724 7 1 1 0 23727
1 1 903 C•C · I : '30TO l 1 30 1 7 1 1 2 2374 1 7 1 1 4 2374 1 7 1 1 5 238 1 9 7 1 1 6 23860 7200 23876
1 1 304 C•C + t : IOt lC l =Z : GOTO I I 90 1 7202 23876 7204 2?879 7�eG 238% 7208 23903 72 1 0 23"'03
1 1 905 FETVRN 72 1 1 23'>53 72 1 2 24"20 72 1 8 24027 7300 24030 730 1 24030
1 2000 PF INT " • , "PEAOV CASSETTE ' ' 1 00SV8500 l 1 RET1JRN 7400 2 ,1 042 7402 2J06' 7408 24086 7500 24087 7!502 24 1 1 0
1 2 1 00 CL5 : PR INT "ENTER 84'J(j RATE ' , " I ·600 BAUD " , " 2 · 1 200 BAUO " 7�0G 24 1 3 1 760� C 11 1 32 7t,0 I 24 1 ?2 7700 24 1 78 770 1 24204
1 2 1 02 IIJPUT2 1 I F2•2THE" 1 2 l 06 1 1:'0�0 24207 1 000 1 2 J22 1 1 0002 24234 1 0003 i:4245 1 0004 24253
1 2 1 04 POKE 1 50 , 87 : P.ETUQN 1 0005 24264 1 00% 24275 1 0007 242e& 1 0009 24297 1 0009 24305
1 2 1 06 POKE: 1 50 , 4 1 1 P.ETURN 1 1 1'00 24 328 1 1 0-� 1 24 329 I 1 �02 243�2 1 1 003 2431;3 1 1 00 4 2l3GI
1 2200 Z =PHl((l 291 : I F2 =0THEN l 2204 1 1 1:'05 243�4 1 1 1 00 24394 1 1 1 0 1 24397 1 1 1 02 2 1338 1 1 1 03 2 4 4 3 1
1 2202 PP. 1 '1T " I /O ERPOR • • , z 1 1 1 0 4 244 42 1 1 l 0� 2 4 4 4 9 1 1 1 06 24460 1 1 1 07 2J 47 I 1 1 1 1 0 24482
1 2204 RETUl!N 1 1 200 24 508 1 1 3N' 24 579 1 1 400 246 4 '1 1 1 5�0 24;,:,1 1 1 50 1 24730
1 2300 GOSU8 1 2200 , I FZ •0THEN l 2304 1 1 ,02 24757 1 1 5�3 24783 1 1 ,04 2 J8 l 8 1 1 50, 24829 I 1 506 24865
1 2302 Pl! l tlT " S I ZE• ' I I : ' LOC• " I J : J•J- 1 1 J•Jf25' 1 1 507 2J8S9 I I ENI 24'30 1 1 1 60 1 24936 1 1 700 24993 1 1 70 1 2,030
1 2304 RETURN 1 1 702 2��71' 1 1 7<?3 2� U 3 1 1 8(.10 2 � 1 ''1 1 1 80 1 2, 1 66 1 1 802 2, 1 00
30000 ENO 1 1 803 25 1 � 1 1 1 904 25? 1 0 1 1 900 2,249 I 1 '10 1 2,2,s 1 1 902 252"'3

1 1 903 25284 I 1 '104 C":', '303 1 1 �11, 2�3J2 1 2()00 2'34 3 1 2 1 110 25364
3 1 0 PROGRAM L I NES 1 2 1 02 2,,s� 1 2 1 �4 2�·-1 1 ? 1 2 1 •:'.S 2� ·1 ?� 1 ?20� 2 � J ?8 1 2202 2,459
1 35 GOTOIGOSUBS 1 22P4 '25484 l 230ic' C�JI?� 1 2302 2�J::':I l 230J i:5�7,

HU$ L I ME).IIJMBEP. LOcAT I Otl MAP U t H

1 64

MLBASI C 2.0 USER ' S MANUAL

UUt VAR I ABLE TABLE tOU
I . SCALAR VAR I ABLES

NAME LOCAT ION TYPE NAME LOCAT I ON TYPE NAME LOCAT I OII TYPE

I, 32398 I NTE'3ER B 22390 HITEGER C 3233? INTEGER
D 12394 I IITEGER E 32396 l tlTEGER F �2338 INTEGER
G 32400 l tlTE•;ER H 32402 I NTEGER I 324�4 INT EGEi>
J 32406 l flTEGER I(3Z40B INTEGER L 324 1 0 IN TEGER
M 324 1 2 INTEGER II 324 1 (I NTEGER a 324 1 6 l tlTEGER
p �24 1 8 I NTEGER 0 32420 I NTE'3ER R 32422 I NTEGER
s 32d24 I NTE'3ER T 32d26 INTEGER u 3242B HITEGER
V 32d30 I rlTE'3ER • 32432 I NTEGER X 32434 HIT EGER
y 324 36 INTEGER 2 32438 I NTE'3ER

2 . D IMENS I ONED VAR I ABLES

NAME LOCAT ION TYPE l i t D IMENS I ON

A 32484 INTEGER I I
Al 35 1 g0 STR I N'3 20001
Bl 35eBB STR ING B l
Cl 3 5 1 69 STl> ING I I
DS 32587 STR I NG 25e l
El 32�06 STR I NG B l
F S 32442 STII ING 2 1
GI 32463 STR ING 2 1

MA HI PR0'311AM AREA - 1 9500 TO 25579
CHARACTER DATA AREA -25583 TO 2707'
sueROUT ! NE L I BRARY AREA -27075 TO 32375
VAR I ABLE STORAGE AREA -32376 TO 55 1 80

0 ERRORS

1 65

MLBASIC 2.0 USER'S MANUAL

CHAPTER 7 ERROR MESSAGES

The error handling por tion of MLBASIC allows for easy detection of
program errors. There are two types of errors that can occur, they are :
(1) errors tha t occur during �ompilation of the program and (2) errors
that occur during execu tion of the compiled program.

During compilation, COMPILER ERRORS are the result of syn tax errors
in the BASIC program tha t i s being compiled. The BASIC program that does
no t conform to required specifications of MLBAS I C wi l l no t be compiled
correctly. The compiler will make a note of any compiler error and
continue to the nex t command. This means tha t all errors may be
det ected by the compiler at one time. Too many errors may cause MLBASIC
to misread the final END s ta temen t, resulting in compilation of non
exis ting lines (If this occurs, abor t compilation by pressing down the
BREAK key for about 5 seconds , then enter T) .

The RUNTIME ERRORS are errors tha t occur because a command is
executed improperly. One example of this might be division by zero.
Run time errors occur only during execut ion of a compiled BASIC program.
Diagnostic messages will be output indica ting what the error was and what
the values of certain har dware regis ters were when the error occurred.

1 6 6

MLBASIC 2. 0 USER'S MANUAL

7. 1 Compiler Error Messages

In the following section, all of the COMPILER ERROR numbers will be
described so that one can determine what the possible causes for the
error are. In some cases the compiler error number will not indicate the
actual problem in the command that was being compiled.

The compiler error message consists of the following three values:

(1) Compiler error number -This is a number that identifies what
type of error occurred.

(2) Line number -This indicates the line number of the BASIC
program that contains the error.

(3) Character number -This indicates what character in the
command being compiled caused the error. If an error occurred in a
line that has more than one command, make sure to start
counting the characters from the start of the command and not from
the start of t he line.

Sample error message to screen

ERROR# (1) L INE (2) CHR (3)

Sample error message t o printer

•. •. . . . BAS I C COMPILER ERROR ;: (1) AT L INE # (2) - CHARACTER ;: (3)

* *Note- Remember, when an error occurs during compilation, you can
abort further compilation of the source by pressing down the BREAK
key for a few seconds and then hitting the T key. The message
"ABORT COMPILAT ION" will indicate that the compiler was properly
aborted.

1 67

MLBASIC 2. 0 USER'S MANUAL

Compiler Error Messages

Number Meaning

1 Improper command terminator.
Either a ": " or an end of line (zero byte) is expected .
Syntax error in the previous command.

2 Error in GOTO or GOSUB statement.
The word "SUB" or "TO" is missing.

3 Error in IF •• THEN routine. Illegal logical operator.
4 Error in FOR •• NEXT command. Missing " = ".
5 Error if FOR •• NEXT command. Missing "TO".
6 Error in DATA statement. Illegal data type.
7 Error in equation evaluation routine. Missing 1 1 = "

Possible error in spelling of command.
Command may need Extended or Disk BASIC ROM (s).

8 Error in numeric expression. Missing 1 1
)

1 1
•

The numeric expression may be too complex to compile.
Must break expression up into compilable parts.

9 Illegal integer operator.
Allowable are " + ", " -", "/ 1 1

, 1 1 * " , "0R 1 1
,

1 1 AND " and "NOT"
10 Illegal real operator.

Allowable are " + ", " - 1 1
,

1 1 / 1 1 , " * 1 1 and 1 1 1 1

1 1 Unknown command error.
12 Unknown function. Function not supported by compiler.
13 Illegal integer constant.

Allowed are decimal and HEX
1 1 $ 1 1 or "&H" must precede hex number.

14 Unknown string function .
. String function not supported by MLBASIC.

15 Undimensioned REAL or INTEGER variable array.
Must use DIM or REAL to declare variable arrays.

16 Undimensioned STRING variable array.
17 Undefined FIELD.

The FIELD must be defined before RSET or LSET use that field.
18 Missing DATA statements.
19 RESERVED
20 Illegal compiler directive
2 1 FOR with no NEXT
22 NEXT without FOR
23 Multiple IF •• THEN statement on same line.

Break up line into single IF •• THEN statements

1 68

MLBASIC 2. 0 USER'S MANUAL

7. 2 Runtime Error Messages

Runtime errors occur during execution of the compiled program. These
errors occur because of many reasons. The most common errors are
arithmetic and Input/Output (I/O) errors.

Runtime errors are printed on the screen if it is currently open. If
the printer was being used last , the output will go to the printer
instead of the screen.

All runtime errors can be handled by software to resolve certain
problems that may arise when operating a program. The ON ERROR command is
used to perform error trapping when any runtime error occurs (see section
3. 2. i) .

The following message is output when a runtime error occurs :

RUNTIME ERROR # (1)
(D) (X) (Y) (U) (CC) (DP)

Index to items in parenthesis
(1) -This is the runt ime error number
(D) -The contents of hardware register "D" (in HEX)
(X) -The contents of "X" hardware index register (in HEX)
(Y) -The contents of "Y" hardware index register (in HEX)
(U) -The user stack register (in HEX)
(CC) -The control code register (in HEX)
(DP) -The direct page register (in HEX)

Number
1

2

3

169

MLBASIC 2. 0 USER'S MANUAL

Runtime Error Messages

Meaning
"NF" -There is a NEXT without a FOR.

"SN" -There was an error in compilation.

"RG" -Return without a GOSUB call. Interpreter only.

4 "OD " -No more data in data list. Interpreter only.

5 "FC" -There was an illegal value passed to a function .

6 "OV" -Real number overflow.
Value outside of the allowable range of +/- 1. 7E+ 38.

7 "OM" -There is not enough memory to execute current command.
Interpreter only.

8 "UL" -Undefined line referenced by a GOTO or GOSUB command.
Interpreter only.

9 "BS" -The subscript of the variable array is out of range.
Interpreter only.

10 "DD" -The array has already been dimensioned.
Interpreter only.

1 1 "/0" -The calculation involved a division by zero .

12 "ID " -INPUT from keyboard used in an Interpreter call
(See 5. 4) . Interpreter only.

13 "TM" -Type of argument conflict with function.
Interpreter only.

14 "OS" -Not enough string space to perform Interpreter call.
Interpreter only.

15 "LS" -The string exceeds the maximum length of 25 5 bytes.
Interpreter only.

16 "ST" -The string formula is too complex to evaluate.
Break the string into shorter parts.
Interpreter only.

17 "CN" -CONT command not allowed in compiled program.

18 "FD" -Wrong file mode. Interpreter only .

19 "AO" -The buffer is already open.
CLOSE buffer before trying to open this channel.

17 0

MLBASIC 2. 0 USER'S MANUAL

Number Meaning

20 "DN" -Device numbe r not allowed.
Use only allowable device numbers.

2 1 "IO" -Input error in reading data from device.

22 "FM" -Bad mode for input/output of data.
Use mode selected in the OPEN statement for buffer.

23 "NO" -The buffer has not been opened.
Use OPEN to open a file.

24 "IE" -Input of data past the last item in the file.

25 "DS" -There is a direct statement in the file (ie . [INPUT) .
Interpreter only.

26 NOT USED

27 "NE" -The file opened for input was not found.

28 "BR" -The record is not within the allowable range.

29 "DF" -The disk is full. Use another diskette.

30 "OB" -There is not eno ugh buffer space.
Reserve more space using FILES.

3 1 "WP" -The disk is write-protected.

3 2 "FN" -The filename is unacceptable. Interpreter onl y.

3 3 "FS" -The disk direc t ory has been incorrecly writ ten to.
Try to recover as many files from disk as possibl e.
Disk needs t o be re-formattted.

34 "AE" -The file already exists.
KILL file, or RENAME it to another name.

35 "FO" -Field overflow error. Interpreter only.

36 "SE" -The string used in LSET or RSET has not been fielded.
Interpreter only �

37 "VF" -Error in verification of data written to disk.

38 "ER" -Too much data in I/O on Direct access file.

39 "HR" -High-resolution graphics error.

40 "HP" -High-resolution print error.

1 71

CHAPTER 8

MLBASIC 2 . 0 USER ' S MANUAL

PROGRAM CONVERSION TIPS

s . 1 Example Conversions

There are certain differences between programs wri tten for ordinary
Interpreter BASIC and a s imi lar program written for MLBASIC . In th is section ,
there are exampl es showing the changes needed so that a command wri tten for
Interpreter BASIC wi l l perf orm the same when comp i led by MLBASIC .

Interpreter Form

1 . LOADM Command

LOADM"FILENAME"

MLBASIC Form

2 . IF-THEN Command

IF A=B OR B=C THEN1

IF A=B THEN 1 00ELSE200
IF A=B AND B=C THEN1
IF A(> B AND B<> C THEN1
IF EOF (1) THEN1
IF A=BTHEN IFC=BTHEN 1 00

3 . PCOPY Command

PCOPYA TO B

4 . FOR Loops

FORI=1 00T0-1 00STEP-1

5 . Array Indexes

A (IC) =A (I+1)

6 . REAL Constants

A=&H65000

7 . Graph i cs GET/PUT

DI M V (20 , 20)
GET (I , J) - (K , L) , V

PCLS
PUT (I +M , J+M) - (K+M , L+M) , V

OPEN"I" , #1 , "FILENAME"
INT A , B
INPUT#1 , A , A , B : B=B-A+3
FORI=O TO B : INPUT#1 , A
POKEI+A , A$: NEXT
INPUT# 1 , A : DST(1 57 , A) : CLOSE# 1

IF A=B THEN1
IF B=C THEN1
IFA=B THENGOT01 00ELSEGOT0200
IF (A-B) OR (B-C) =O THEN1
IF (A-B) OR (B-C) (> O THEN1
IF EOF (1) () 0THEN1
5 2 IFA(>B THEN5 4
5 3 IF C=BTHEN1 00
54 • • • •

A1 =A * 1 5 3 6 : A2=A 1 + 1 5 3 5
A3=B* 1 5 3 6 : PCOPY A 1 , A3 , A2

FORJ=200TOOSTEP-1 : I=J-1 00 .

INT Y , Z : Y=IC : Z=I+1 : A (Y) =A (Z)

A=6 . *65536 . + &H5000

[DIM V (20 , 20)
POKE1 000 , I : POKE1 001 , J : POKE1 002 , K : POKE1 003 , L
[I=PEEK (1 000) : [J=PEEK (1 001)
[K=PEEK (1 002) : [L=PEEK (1 003) : [GET (I , J) - (K , L) , V
PCLS
POKE1 000 , M : [M=PEEK (1 000)
[PUT (I+M , J+M) - (K+M , L+M) , V

1 7 2

MLBASIC 2.0 USER ' S MANUAL

8 . 2 Conversion of ASCII fil es

Disk or cassette files that have be en created f rom programs writ ten by
the Interpreter can be read us ing MLBASIC in most cases. MLBASIC and norma l
Basic use dif ferent i t em separator s . MLBASIC use s a zero byt e to separat e
s t rings , whil e th e Interpre ter uses commas or the CHR$ (13) charact er to
separate i t ems in th e fil e . If a number was writ t en to a fil e wi th t he
Int erpre t er (for exampl e PRINT# l , 1 23 . 4) , the number is stored as a string. In
order to read that number back using a MLBASIC compi l ed program , the numbe r
must be read as a s t ring , and th en converted into a r eal number (ie .
INPUT# 1 , A$: A=CVN (A$)).

The fol lowing program can be used to convert an ASC I I disk fil e , that has
be en creat ed wi th an Interpr e t ed Basic program , into th e proper format so it
can be read back by a MLBASIC compi l ed program.

1 OPEN"I" , # 1 , "FILENAME"
2 OPEN"0" , #2 , "FILENAME" + " . ML"
3 %STR I NG= 1 : DIM A$ (2) : I NT A
4 INPUT# 1 , SAS : A=A$
5 IF A= " , "THENSAS =O
6 IF A= 13 THENA=0
7 IF EOF (l) () O THEN CLOSE : STOP
8 PR I NT=2 , SA$; : GOT04
9 END

	MLBASIC2_Page_001
	MLBASIC2_Page_002
	MLBASIC2_Page_003
	MLBASIC2_Page_004
	MLBASIC2_Page_005
	MLBASIC2_Page_006
	MLBASIC2_Page_007
	MLBASIC2_Page_008
	MLBASIC2_Page_009
	MLBASIC2_Page_010
	MLBASIC2_Page_011
	MLBASIC2_Page_012
	MLBASIC2_Page_013
	MLBASIC2_Page_014
	MLBASIC2_Page_015
	MLBASIC2_Page_016
	MLBASIC2_Page_017
	MLBASIC2_Page_018
	MLBASIC2_Page_019
	MLBASIC2_Page_020
	MLBASIC2_Page_021
	MLBASIC2_Page_022
	MLBASIC2_Page_023
	MLBASIC2_Page_024
	MLBASIC2_Page_025
	MLBASIC2_Page_026
	MLBASIC2_Page_027
	MLBASIC2_Page_028
	MLBASIC2_Page_029
	MLBASIC2_Page_030
	MLBASIC2_Page_031
	MLBASIC2_Page_032
	MLBASIC2_Page_033
	MLBASIC2_Page_034
	MLBASIC2_Page_035
	MLBASIC2_Page_036
	MLBASIC2_Page_037
	MLBASIC2_Page_038
	MLBASIC2_Page_039
	MLBASIC2_Page_040
	MLBASIC2_Page_041
	MLBASIC2_Page_042
	MLBASIC2_Page_043
	MLBASIC2_Page_044
	MLBASIC2_Page_045
	MLBASIC2_Page_046
	MLBASIC2_Page_047
	MLBASIC2_Page_048
	MLBASIC2_Page_049
	MLBASIC2_Page_050
	MLBASIC2_Page_051
	MLBASIC2_Page_052
	MLBASIC2_Page_053
	MLBASIC2_Page_054
	MLBASIC2_Page_055
	MLBASIC2_Page_056
	MLBASIC2_Page_057
	MLBASIC2_Page_058
	MLBASIC2_Page_059
	MLBASIC2_Page_060
	MLBASIC2_Page_061
	MLBASIC2_Page_062
	MLBASIC2_Page_063
	MLBASIC2_Page_064
	MLBASIC2_Page_065
	MLBASIC2_Page_066
	MLBASIC2_Page_067
	MLBASIC2_Page_068
	MLBASIC2_Page_069
	MLBASIC2_Page_070
	MLBASIC2_Page_071
	MLBASIC2_Page_072
	MLBASIC2_Page_073
	MLBASIC2_Page_074
	MLBASIC2_Page_075
	MLBASIC2_Page_076
	MLBASIC2_Page_077
	MLBASIC2_Page_078
	MLBASIC2_Page_079
	MLBASIC2_Page_080
	MLBASIC2_Page_081
	MLBASIC2_Page_082
	MLBASIC2_Page_083
	MLBASIC2_Page_084
	MLBASIC2_Page_085
	MLBASIC2_Page_086
	MLBASIC2_Page_087
	MLBASIC2_Page_088
	MLBASIC2_Page_089
	MLBASIC2_Page_090
	MLBASIC2_Page_091
	MLBASIC2_Page_092
	MLBASIC2_Page_093
	MLBASIC2_Page_094
	MLBASIC2_Page_095
	MLBASIC2_Page_096
	MLBASIC2_Page_097
	MLBASIC2_Page_098
	MLBASIC2_Page_099
	MLBASIC2_Page_100
	MLBASIC2_Page_101
	MLBASIC2_Page_102
	MLBASIC2_Page_103
	MLBASIC2_Page_104
	MLBASIC2_Page_105
	MLBASIC2_Page_106
	MLBASIC2_Page_107
	MLBASIC2_Page_108
	MLBASIC2_Page_109
	MLBASIC2_Page_110
	MLBASIC2_Page_111
	MLBASIC2_Page_112
	MLBASIC2_Page_113
	MLBASIC2_Page_114
	MLBASIC2_Page_115
	MLBASIC2_Page_116
	MLBASIC2_Page_117
	MLBASIC2_Page_118
	MLBASIC2_Page_119
	MLBASIC2_Page_120
	MLBASIC2_Page_121
	MLBASIC2_Page_122
	MLBASIC2_Page_123
	MLBASIC2_Page_124
	MLBASIC2_Page_125
	MLBASIC2_Page_126
	MLBASIC2_Page_127
	MLBASIC2_Page_128
	MLBASIC2_Page_129
	MLBASIC2_Page_130
	MLBASIC2_Page_131
	MLBASIC2_Page_132
	MLBASIC2_Page_133
	MLBASIC2_Page_134
	MLBASIC2_Page_135
	MLBASIC2_Page_136
	MLBASIC2_Page_137
	MLBASIC2_Page_138
	MLBASIC2_Page_139
	MLBASIC2_Page_140
	MLBASIC2_Page_141
	MLBASIC2_Page_142
	MLBASIC2_Page_143
	MLBASIC2_Page_144
	MLBASIC2_Page_145
	MLBASIC2_Page_146
	MLBASIC2_Page_147
	MLBASIC2_Page_148
	MLBASIC2_Page_149
	MLBASIC2_Page_150
	MLBASIC2_Page_151
	MLBASIC2_Page_152
	MLBASIC2_Page_153
	MLBASIC2_Page_154
	MLBASIC2_Page_155
	MLBASIC2_Page_156
	MLBASIC2_Page_157
	MLBASIC2_Page_158
	MLBASIC2_Page_159
	MLBASIC2_Page_160
	MLBASIC2_Page_161
	MLBASIC2_Page_162
	MLBASIC2_Page_163
	MLBASIC2_Page_164
	MLBASIC2_Page_165
	MLBASIC2_Page_166
	MLBASIC2_Page_167
	MLBASIC2_Page_168
	MLBASIC2_Page_169
	MLBASIC2_Page_170
	MLBASIC2_Page_171
	MLBASIC2_Page_172
	MLBASIC2_Page_173
	MLBASIC2_Page_174
	MLBASIC2_Page_175
	MLBASIC2_Page_176
	MLBASIC2_Page_177
	MLBASIC2_Page_178
	MLBASIC2_Page_179
	MLBASIC2_Page_180
	MLBASIC2_Page_181

