

THIS WARRANTY SUPERSEDES ALL PRIOR WARRANTIES

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

L CUSTOMER OBLIGATIONS
LIMITED WARRANTY

A CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the "Equipment"),
and any copies of Radio Shack software included with the Equipment or licensed separately (the "Software") meets the
specifications, capacity, capabilities, versatility, and other requirements of CUSTOMER

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which
the Equipment and Software are to function, and for its installation

IL RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE
A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase

of the Equipment, RADIO SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which
the Software is stored is free from manufacturing defects THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF
RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM RADIO SHACK COMPANY-OWNED COMPUTER
CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED
LOCATION. The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has
been subjected to improper or abnormal use If a manufacturing defect is discovered during the stated warranty period, the
defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio
Shack franchisee or Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The original
CUSTOMER's sole and exclusive remedy in the event of a defect is limited to the correction of the defect by repair,
replacement, or refund of the purchase price, at RADIO SHACK'S election and sole expense. RADIO SHACK has no
obligation to replace or repair expendable items

B RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software,
except as provided in this paragraph Software is licensed on an "AS IS" basis, without warranty The original CUSTOMER'S
exclusive remedy, in the event of a Software manufacturing defect, is its repair or replacement within thirty (30) calendar
days of the date of the Radio Shack sales document received upon license of the Software. The defective Software shall be
returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack
dealer along with the sales document

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any
warranties of any nature on behalf of RADIO SHACK.

D Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

E Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not
apply to CUSTOMER

III LIMITATION OF LIABILITY
A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO

CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED
OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT" OR "SOFTWARE" SOLD, LEASED,
LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM
THE USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE " IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE,
LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE."

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY
HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID
BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE" INVOLVED

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or
Software.

C No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought
more than two (2) years after the cause of action has accrued or more than four (4) years after the date of the Radio Shack
sales document for the Equipment or Software, whichever first occurs

D Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above
limitation(s) or exclusion(s) may not apply to CUSTOMER

IV. RADIO SHACK SOFTWARE LICENSE
RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on .Q!!.l!.

computer, subject to the following provisions:
A Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to

CUSTOMER, but not title to the Software
C CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the

Software permits this function.
D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and

as is specifically provided in this Software License. Customer is expressly prohibited from disassembling the Software.
E CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if

additional copies are required in the operation of one computer with the Software-;liirt only to the extent the Software allows
a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a limited number of additional
copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one sold or distributed. The provisions of this Software License shall also be applicable to third
parties receiving copies of the Software from CUSTOMER

G All copyright notices shall be retained on all copies of the Software

V. APPLICABILITY OF WARRANTY
A The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a

sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys
such Equipment to a third party for lease to CUSTOMER

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the
author, owner and/or licensor of the Software and any manufacturer of the Equipment sold by RADIO SHACK

VI STATE LAW RIGHTS
The warranties granted herein give the riginal CUSTOMER specific legal rights, and the original CUSTOMER may

have other rights which vary from state to sta e.

Radio Shack® Color LOGO

B y

L arry Kheriaty

and

G eorge G erhold

First Edition

Color LOGO program:
© 1982 Micropi

All Rights Reserved.
Licensed to Tandy Corporation.

Color LOGO manual:
© 1982 Micropi

All Rights Reserved.
Licensed to Tandy Corporation.

Reproduction or use, without express written permission
from Micropi and Tandy Corporation, of any portion of this
manual is prohibited. While reasonable efforts have been
taken in the preparation of this manual to assure its
accuracy, Micropi and Tandy Corporation assume no liability
resulting from any errors or omissions in this manual, or
from the use of the information obtained herein.

Please refer to the Software License in the front of this
manual for limitations on the use and reproduction of this
Software package.

Foreword

F'or more than a decade, the authors have been involved in the use of computers in education,
and particularly with Computer-Assisted Instruction. Our experience made us aware of the
problems of getting students started right in programming and of LOGO's potential to help
solve that problem, and we determined that it would be worthwhile to develop a version of
LOGO which ran on low-cost hardware and allowed relatively long sets of procedures. A review
of the features of other versions of LOGO revealed that list processing features were not used
in most applications. List processing was therefore eliminated, allowing the design objectives to
be met and allowing the addition of some features, notably multiple turtles.

Our debt to the original designers of the LOGO language is acknowledged in Chapter 1 . We
would also like to thank our children Aaron, Jenell, and Kirstin, whose responses to early
versions of Color LOGO convinced us that we were on the right track.

b�ye-
George Gerhold

Larry Kheriaty

lll

Table of Contents

I ntroduction . 1

1. A B it A bout C olor LO GO . 3

2. G etting S tarted . 5

3. M odes and E diting . 13

4. P rocedures . 17

5. R epeat and S ubprocedures. 2 1

6. V ariables . 2 7

7. C olors . 3 1

8 . O ther Turtle C ommands . 35

9. S aving, L oading, and P rinting P rocedures 39

10. R ecursion . 43

11. DOODLE M ode - P rocedures Without Typing 53

12. O ne K ey D oodling . 5 7

13. U se of DOODLE M ode and OK S et 6 1

14. M ultiple T urtles. 7 1

15. N ew S hapes for Turtles . 8 1

16. G ames . 89

17. G rab B ag. 99

A ppendix 1: L anguage Summary 107

A ppendix 2: M aking a B ackup C opy of the
C olor LOGO D iskette 123

INTR ODUCTION

Radio Shack® Color LOGO is an educational computer language. The language can be used to
draw pictures on the computer' s video display, using a shape on the screen called a "turtle. "

Color LOGO is designed to let children learn by exploring. Children plan an action, then enter
simple commands that move the turtle forward or back, or turn it in any direction. Here are a
few of the special features of Color LOGO:

• Line-oriented editing allows you to write and save sequences of turtle movements (called
''procedures' ') .

• A " doodle mode" lets children who are too young to read or type accurately use the
program.

• A "SLOW" command lets you control how fast the turtle moves.

• Screen colors can be changed.

• Limited animation is possible with Color LOGO.

• Variables and arithmetic expressions can be used in the sets of turtle movements that you
write and save.

Color LOGO is a language for beginners. For this reason, the Color LOGO manual has been
written to guide you through use of the language, step by step, with many examples and
illustrations. Here is a summary of the organization of the manual:

1 . Chapters 1 through 10 introduce turtle graphics and the LOGO syntax. Readers who are
already familiar with LOGO may wish to skim these chapters or to bypass them in favor of
the language summary in Appendix 1 .

2 . Chapters 1 1 through 17 cover features unique to Color LOGO.

a. Chapters 1 1 through 13 provide hints for using Color LOGO with very young children.

b . Chapters 1 4 through 16 introduce the use o f multiple turtles and new turtle shapes.

c . Chapter 17 contains sample sets of turtle movements that you may wish to explore.

This Radio Shack Color LOGO package can be used with a ROM-based TRS-80 Color

Computer with Color BASIC and with at least 16K of memory. Procedures that you
write can be saved on cassette tape.

1

1. A B IT AB OUT C OL OR L OG O

Color LOGO is a computer language for children. Like all the best things for children, Color
LOGO can provide endless fascination and challenge for adults as well. At first glance Color
LOGO may seem to be simply a language for drawing pictures, since the result of running a
Color LOGO program is almost always a picture. However, Color LOGO is far more than an
easy way to draw pictures. Color LOGO is a tool for learning about some of the most powerful
concepts in mathematics, physical sciences, computer science, and problem solving-but in a
way so appealing and simple that "even a kid can do it. "

Notice that we said that Color LOGO is a language for learning; we very intentionally did not
say that Color LOGO is a language for teaching. The role of the learner is all important. Color
LOGO puts the student in the role of explorer, one who sets goals (problems to solve) and tries
to find a way to those goals. The role of the teacher is guide, one who stays in the background
as much as possible, one who does not set the goals for the learner, and one who only assists
when asked. Effective use of Color LOGO has much of the flavor of play: "It's not whether you
win or lose, but how you play the game." The goal the student reaches is not as important as
the process of seeking the goal.

Color LOGO is based on a set of ideas for use of the computer first developed under the name
LOGO. Many people have contributed to the LOGO project, too many to list, but we must
mention the names Wallace F'eurzeig, Harold Abelson, Andrea diSessa, and-with special
emphasis-Seymour Papert. Most of the development and testing of LOGO was done at MIT.
There were two vital steps in bringing the LOGO approach to the attention of the educational
community. One was the publication of two books; Mindstorms by Papert and Turtle Geometry

by Abelson and diSessa. Any serious user of LOGO will want to read those books. The other
was the implementation of the LOGO language on microcomputers, a step which decisively
moved LOGO from the laboratory into the classroom. If you are already familiar with LOGO,
you will find much of Color LOGO to be familiar too. Wherever possible we have kept the same
syntax as LOGO, and the logical structures of the two languages are essentially the same. Most
of the graphics programs in books on LOGO will run in Color LOGO without change.

Color LOGO is not just LOGO under another name for another computer; there are some very
important differences between the two. Color LOGO is a graphics language, but LOGO also
includes a number of string operations drawn from the LISP language. Color LOGO uses
strings only as labels on graphics. Color LOGO provides multiple turtles, whereas most versions
of LOGO provide only a single turtle. Color LOGO thus can be used to introduce important
concepts like multi-programming and messages via mail boxes, but still with great simplicity.
Consequences of multiple turtles include provision for simple animation and the potential for
user-created games. All these are possible because, in contrast to LOGO, the memory
requirements of Color LOGO are modest. Color LOGO also provides a mode for doodling,
designed for children who are too young to type keywords reliably.

If you are just starting on computers, all that sounds rather complex. That's because we're just
talking about it instead of doing it. Let's do it.

3

2. GETTING STARTE D

There are two ways you can start Color LOGO running on your TRS--80 Color Computer: from a
plug-in cartridge or from disk. You will want to have some way to store your favorite creations
for future display, so you will want to have either a disk drive or a cassette player attached to
your computer system. Consult the chapters on "Installation" and "Operation" in your copy of
the TRS-80 Color Computer Operation Manual for instructions as to proper cable connections
for the disk and/or the cassette player. DO NOT TURN ON THE POWER YET!

NQ'fE: If you. nave .the ROM version .of Color LOGO
.
(Cat .• No .. 26�2722), followthe

steps. Ul}d�r. ''J?lug�fo ROM Cartridge;'' Then. turn the pag� to ''u�ing
.
theColor

LOGQProgram:".Forthe diskversion(Cat;
_
No; 26-2721),followthe steps under

•· 'fl)isk,'' then urtder ''UsiI1gthe.GolofLOGO Program.''
.

Plug-In ROM Cartridge:
Plug the Color LOGO cartridge into the slot on the right side of your TRS·80 computer. Check
that the label is up and that the cartridge is seated firmly. Then turn the power on. (The power
switch is on the back left corner of the computer.) The screen should display the prompt

Disk:

COLOR LOGO COPYRIGHT 1982
LARRY KHERIATY & GEORGE GERHOLD

ALL RIGHTS RESERVED.
LICENSED TO TANDY CORP.

LOGO:

Plug the Color Computer Disk Controller into the slot on the right side of the computer. Then
turn the system on. (The computer power switch is on the back left corner of the computer. The
disk drive switch is on the back of the drive, upper left corner.) You should see the prompt

DISK EXTENDED COLOR BASIC 1.0
COPYRIGHT © 1981 BY TANDY
UNDER LICENSE FROM MICROSOFT

OK

Follow these steps:

1 . Insert the Color LOGO diskette with the square notch up and the label facing right, into
Drive 0 (the drive closest to the Color Computer on the cable).

2 . Close the disk drive latch.

3 . Type lr][Q]IAJ[Q]!MJDCJITJ[Q]�[Q]r::J and press !ENTER! .

5

4. After the light on the disk drive goes out, type �[R]�[g and press !ENTER!.

The system will now display the prompt shown above under "Plug-In ROM Cartridge."

5. Remove the Color LOGO diskette from the disk drive.

Using the Color LOGO Program:

Whichever way you started, you should now be in BREAK mode, which is indicated by the
prompt which ends

LOGO:

at the left of the screen. You can return to BREAK mode at any time by any one of three
actions:

1 . !BREAK! key will interrupt whatever you are doing and return to BREAK mode

2 . Reset button (located o n the right rear corner of the computer) will always return you to
BREAK mode, but you will lose all programs in memory

3 . A complete restart (as described above) will place you in BREAK mode.

BREAK mode will be covered in detail in Chapters 3 and 9; for now let's move into RUN mode
by pressing [fi]. There is the turtle, sitting in the center of the screen facing straight up.
Admittedly this turtle does not bear a strong resemblance to the ordinary pond-type turtle,
but-like an ordinary turtle-it can crawl forwards and backwards, it can turn right and left.
Unlike ordinary turtles, computerized turtles can drag their tails to leave tracks (in colors) or
raise their tails and not leave tracks. Turtles can even be made invisible.

The name turtle was given originally to a tiny mechanical robot which could be made to crawl
around the floor under computer control. The name probably had much more to do with the
speed of the robot than with the shape of the robot. The track left by the turtle was called a
"turtle graphic. " The term turtle graphics is now used to indicate a way of drawing where lines
are described by a direction and a length (the alternative is to describe a line by giving the
coordinates of the two end points of the line, a method called-strangely-vector graphics). The
item which moves is called the turtle, even when it is just a shape on the screen. Color LOGO is
a language for controlling turtles.

We have a turtle in the center of the screen, itching for action. Let's tell the turtle to move
forward. Simply type*

FORWARD 40

*Commands or program lines which you are to enter into the computer will be represented by
the typeface which you see in " FO RWAR D 40" above. (Some messages from the computer
will also appear in this typeface, but the context will make the difference clear.)

6

Then press I ENTER! .* The number tells the turtle how far forward to move. After you type
FORWARD 40 the screen will show

See the turtle track?

It won't be long before you get tired of typing FORWARD all the time, so there is an
abbreviation which has the same effect. Enter the following (type it and press I ENTER/):

FD 10

Try to get a feel for the screen size and resolution. Try

FD 1

It' s almost too little to see. Then try with a larger number, like

FD 100

The turtle moved, but it didn't leave a track. When the turtle goes off the top of the screen, it
reenters at the bottom, a process which is called "wrapping around." A turtle can wrap around
only by temporarily raising its tail, so no track appears for any step where the turtle wraps
around.

*NOTE: If you forget to leave a space between "FORWARD" and "40," you'll see

the message "I DON'T KNOW HOW TO FORWARD40." You'll get a similar

message if you make any other typing error. Just press I ENTER! to get another
chance to enter "FORWARD 40." You can use the left-arrow key to correct typing

errors before you press I ENTER! . Simply backspace to the beginning of the error,
and retype the turtle instruction.

7

Now I want you to find out how far it is from the center of the screen to the top. To get a fresh
start and a clear screen, enter the word (not the single key)

CLEAR

Then try to make the turtle track go to the top of the screen with a single FD command. When
you have it exactly right the turtle itself will wrap around (appearing at the bottom of the
screen), but the line will be drawn to the top of the screen. No doubt it will take you several
tries of CLEAR, FD to hit the top exactly.

By now you're probably tired of drawing vertical lines. It' s time to turn the turtle. Clear the
screen (CLEAR I ENTER I) and enter

FO RWARD 40
R I G HT 90

To make the change more obvious enter

FORWARD 50

The turtle understands degrees.

If you are using Color LOGO with small children, we have a suggestion. There is now quite a bit
of information gathered about effective use of LOGO with small children, and that information
applies to the use of Color LOGO as well. Color LOGO is a language for experimentation, not a

language to l earn by imitation of items from a textbook. Resist any temptation to explain
degrees to the child who does not already know about them. The child will learn about degrees
easily from experimenting with Color LOGO.

Again we soon get tired of typing RIGHT, so we abbreviate RT. Try

RT 90

8

(Think "right turn" for RT.) Now the turtle points down. We're half way to drawing a
rectangle, so let's finish it. Enter

FD 40
RT 90

and see if you can finish it.

Once you've finished the rectangle (by entering FD 50), clear the screen and enter

RT 45
FD 50

Just what you expected, I hope, but now try

RT 15

It looks like nothing happened! But to check try

FD 30

9

Obviously there is a bend in the line even though the turtle did not appear to turn. The turtle
knows its heading to the nearest degree and moves accordingly, but the turtle shape on the
screen turns only in 45 degree steps. Thus the turtle shape on the screen points close to, but not
exactly along, the turtle heading. This seems inconvenient now, but in Chapter 14 we'll find that
there are some real benefits of this.

We want you to notice one very important thing about turtle behavior. Clear the screen and
enter

RT 45
RT 45

This produces the same heading as RT 90. When the turtle is told to turn, it turns that far from
whatever its current heading is. We are telling the turtle how to change its heading; we are not

telling the turtle to head towards some point. In the same way, when we tell the turtle to go
forward we are telling the turtle how to change its position; we are not telling the turtle to go
to some point on the screen. Thus the position and heading of the turtle after one of these
commands will depend on where the turtle started.

Thus far we have learned three primitive turtle commands. (Papert would say, three words in
"turtle talk.") They are CLEAR, FORWARD, and R IGHT. With these three we can draw any
figure which will fit on the screen and which could be drawn on paper without lifting the pencil
from the paper. You might try drawing a triangle (3-sided figure) and a pentagon (5-sided
figure) for practice. If you're like us, you don't remember the angles for pentagons, so
experiment.

You've probably noticed that only three lines of instructions are shown at any one time. When
you type a fourth line the lines scroll up, and the top line disappears. If you have drawn a turtle
track through these three bottom lines, the scrolling will mess up the line by scrolling a line
segment upwards. If you leave the turtle in these three bottom lines while scrolling, the turtle
will not erase properly when moving to another spot. These are minor consequences of some
characteristics of the Color Computer which will not trouble us once we get to Chapter 4. For
now, either avoid moving the turtle into the bottom three lines, or press ! ENTER! enough times
to scroll away the line and turtle fragments, or ignore the fragments.

We could go a long, long way with just R IGHT and FORWARD, but LEFT and BACK are useful
too. Clear the screen and try

LEFT 90

(We could have used the abbreviation l T for "left turn.") Now let's make the turtle move
backwards. Try

BACK 40

(or in abbreviated form Bl< 40). Notice that the turtle is somewhat transparent. You can see the
track through the turtle. If you'd rather not see the turtle at all, you can hide it. Enter

HIDETU RTLE

1 0

(Here the abbreviation HT is much shorter.) The turtle is still there but invisible. Enter

LT 30
BK 30

to see the invisible turtle's track. To make the turtle visible again type

SHOWTU RTLE

(you guessed it, abbreviated ST), and to turn it away from the track type

LT 120

At this point the only thing between us and an endless variety of stunning graphics is an
immense amount of typing. To learn how to minimize the typing we have to learn how to create
and use procedures.

11

3. MODE S AND E DITING

New users of computers often find the idea of modes awkward. Mode is the term used to
describe the separation of the various things a computer language can do into groups. There are
a number of good reasons for having various modes. One is that there are not enough different
keys on the keyboard to control all the different things that need to be done. The same keys can
be used for different tasks in different modes without confusion (at least on the computer's
part).

The following diagram is a map of the modes in Color LOGO.

y /1 _BRE
_

AK
___.I �REAK

/BREAK Ri !BREAK �
.----

E
-
0
-
IT
--, 8 @ I DOODLE I

The keys which trigger the jumps between modes are indicated on the arrows. You've already
been in BREAK mode; that' s the mode that you are in when you start. You've already been in
RUN mode; you got there from BREAK mode by pressing [BJ. Now we want to move into
E DIT mode. The map shows us that we need to leave RUN mode (by pressing the I B R EAK I
key) and then get into E DIT mode (by pressing the � key).

E DIT mode provides what is called a line-oriented editor. E DIT mode is used to create and alter
programs written in Color LOGO, but for the rest of this chapter we will forget Color LOGO
and concentrate on the mechanics of using E DIT mode. We'll do something familiar-write a
note to Grandma.

Upon entering E DIT mode, you' ll see a short horizontal line appear at the start of the bottom
line of the screen. This line is called the cursor. The cursor indicates where any typed letters,
numbers, etc . , will appear. Start the note by typing

D EAR G RANDMA,

Press I ENTER I , and the cursor moves to the start of the next line. 'l'ype the next line as

l 'M STARTIN G TO U S E AN EDITOR.

Again press [gfil1BJ to complete the line. Notice that this editor produces only upper-case
letters; Color LOGO uses only upper-case letters.

We could continue to enter as many lines as we wanted in the same fashion. Let' s assume that
this is to be a very short note and that we now want to quit editing. Press I B REAKI . Upon
reflection we decide to alter the note, so we return to E DIT mode (press�). The first line of
our note appears with the cursor at the start of the line. We decide to change the word
" STARTING" in the second line of the note to the word " BEG I N N ING ." To do this, we must

13

first display the second line and position the cursor under the Sin STARTI NG. We move the
cursor by use of the arrow keys. Up-arrow ([I]) and down-arrow ([fl) change lines, and left
arrow (I�]) and right-arrow (8) move the cursor within a line. Changing lines always resets the
cursor to the start of the line. Arrow commands which make no sense are ignored. Thus if we
press right-arrow when the cursor is under the comma following G RANDMA, nothing happens
because there is no more line.

To see the second line of the note, press the up-arrow key once. Then press the right-arrow key
several times to position the cursor under the Sin STARTING. Then type

B EG IN

Notice that the overtyping simply replaces the letters. Now we have another kind of change to
make because BEG I N N I N G has one more letter than STARTING. We want space for another N
before the ING . To create a space we hold down the I SH IFT I key and press the right-arrow key.
Now we can type the extra N in the created space. Remember: to insert, press I SH I FT 18 to
create the space, then type in what you want.

Next let' s change the line from

l'M B EG I N N I N G TO USE A N EDITOR .

to

l 'M LEARNING TO USE AN EDITOR .

Again position the cursor at the start of BEGINN ING and type over the characters you want to
change. Here the problem is that an extra N remains. To delete a character (or space) hold
down the I SH I FT I key and press the left-arrow key. Try it, and remember: press I SH IFT I� to
delete.

Poor Grandma isn't going to know who the note is from unless we add a line at the end. Use
the up-arrow key to move the cursor as far down as you can. It should be at the start of a blank
line following the text. We want to skip a line before signing the note, so press IE NTE RI once.
Notice that pressing I ENTER I adds a line at the end. But if the cursor is within the text,
pressing I ENTERI has the same effect as the up-arrow. Now space over and sign your name.
While we are at it, we should skip a line after DEAR G RANDMA. That is, we want to change

DEAR G RANDMA,
l 'M LEARNING TO USE AN EDITOR .

LOVE, ANN

to

DEAR G RANDMA,

l 'M LEARN ING TO USE AN ED ITO R .

LOVE, AN N

14

Position the cursor at the beginning of the line " l 'M . . . " . Then hold down the I SH IFT! key and
press the down-arrow key. Move the cursor down to check that you got what you wanted.
Remember: to insert a new line, position the cursor at the start of the following line; then press
/ S H I FTl[IJ.

We want to make one last change. We want to change the closing to

LOVE,
ANN

We want to break one line into two. Position the cursor where you want the break to occur;

then press I S H I FTl[IJ to break the line. You'll have to insert some spaces to move the name
over as shown above.

This we think is the final form of the note, so we exit E DIT mode (press I B R EAKI) . To make a
last check we get back into E DIT mode (press �). To get the whole note on the screen without
repeated pressing of up-arrow or I ENTERI we press I SH I FTl[JJ . This will show us everything in
memory. If we want to interrupt this process, just press any key to stop the scan. To restart the
scan, press I S H I FTl[JJ again. To jump back to the start of the text, press !CLEAR! .

That is all there is to using the editor. We suggest that you practice a bit with it so that when
we return to Color LOGO you can concentrate on the language and not have to worry about the
mechanics of the editor.

To conclude this chapter we give a summary of the editing features.

To:

get into E DIT mode

display the next line of text

add a line at end

move text down one line

move cursor right

move cursor left

replace character

insert character

delete character

Press:

I BREAK I , �

rn or I ENTER I
([JJ has no effect at last line)
(! ENTER! adds line after last line)

I ENTER I , type line of text

[IJ (no effect at top line)

El (no effect at line end)

8 (no effect at line start)

position cursor, type over error

position cursor, I S H I FTIEJ
(no effect if line full), type character

position cursor, I SH I FTl8

15

insert line

break line

return to top line

scroll or scan through text

stop scroll or scan

16

position cursor at start of following line,
ISH IFTl[I]

position cursor at break point, ISH IFTl[I]

ICLEARI

I SH IFTl[il

press any key.

4. PR OCE DURE S

You've now mastered five primitive turtle commands (CLEAR, FORWARD, BACK, R IGHT, and
LEFT). Next we want to combine these commands into a unit which we call a procedure. The
first step is to tell the computer not to obey each command as it is typed, but to .store the
commands. This is what happens in E DIT mode. Press [Bf[EAKJ , then hold I S H I FT I down and
press ICLEARI (to clear the memory of old programs). Then get into E DIT mode (press �).

The screen should be blank with the cursor in the lower left corner. If the screen is not blank,
return to I B R EAK I mode (by pressing the I B R EAKI key), hold the l S H I FTI key down, and press

the lCLEARI key firmly. Return to E DIT mode by pressing � .

You are now using a line-oriented editor. W e will practice using the editor as we create and edit
procedures. Our first exercise will be to write a procedure for drawing a rectangle. First we
must give the procedure a name. We' ll call this first one "RECTANGLE." The first line of the
procedure contains the name, and we let the computer know that we' re naming a procedure by
starting the first line with the keyword "TO." To name this first procedure RECTANGLE, enter

TO R ECTANGLE

The limitations on procedure names are that they must fit on a single line, they must contain no
spaces, and they must not be the same as any of the keywords or abbreviations (for example,
FORWARD or FD).

If you made a typing error when you were using RUN mode, you got the error message
" I DON'T KNOW HOW TO" followed by your mistyped command. Because a procedure name

can be almost anything, the computer assumes that any characters which don't form a correct
keyword must form a procedure name. If the characters are really a typing error, then the
name is not found in the list of procedures and the error message is sent.

Next type in the turtle commands for drawing the rectangle. That is, type

FD 50 RT 90 FD 30 RT 90 FD 50
RT 90 FD 30

Many commands can be typed on a single line as long as they are separated by one or more
spaces. To finish the procedure type

E N D

o n a new line and press I ENTER I .

17

To try out R ECTANGLE, you must leave E DIT mode (by pressing the I BREAKI key) and get

into the RUN mode (by pressing the IBJ key). To actually run the procedure, enter

R ECTANGLE

That' s so neat that we should try it again and again. Type and enter the procedure name at
least three more times. Now the screen should show

By placing procedure R ECTANGLE in the computer's memory we have taught the turtle to
understand a new word. The turtle now understands RECTANGLE in the same way that it
understands LEFT, R IGHT, FORWARD, and BACK.

Before moving on to other procedures, we want to review use of the editor. Press I B R EAKI to
return to BREAK mode and press � to reenter E DIT mode. The screen should now show the
first line of the procedure R ECTANG LE. Let' s change the name to " BOX." Use the right-arrow
key (!:!]) to position the cursor under the IBJ in R ECTANGLE. Then type BOX. Remember,
overtyping replaces characters. We need to delete the remaining letters, which we do by holding
down the ! S H I FT ! key and pressing the left-arrow key (�). We can see the rest of the lines in
the procedure by pressing either I ENTER! or the up-arrow key (I]]) several times.

18

It is good programming practice to clarify the structure of a procedure by indentation. Here we
want the procedure BOX to look like this

TO BOX
FD 50 RT 90 FD 30 RT 90 FD 50
RT 90 FD 30

E N D

To make these changes w e must insert a couple spaces at the beginnings of the second and third
lines. Move the second line to the bottom of the screen by using the up- and down-arrow keys.
The cursor will move to the start of the line whenever you change lines. To insert spaces, hold
down the I S H I FT I key and press the right-arrow key. If this does not insert spaces, it means
that the line is already full . Insert spaces at the start of line 3 as well.

The structure of the procedure would be even clearer if it were typed as follows.

TO BOX
FD 50 RT 90
FD 30 RT 90
FD 50 RT 90
FD 30

E N D

These changes require us to break single lines into multiple lines. To break a line, position the
cursor where you want to break the line, hold the I SH I FT I key down and press the down-arrow
key.

What if we want to add lines to a procedure; for example if we want to add a diagonal line
through the box? We'll have to tell the turtle to turn and go forward. You'd better run BOX to
get an estimate of the angle and distance (remember press ! B R EAK! , then press [Bl, then enter
BOX). The turtle needs to be turned more than 90 degrees to point along the diagonal. Make a
guess and return to E DIT mode (! B REAK\, �). Now place the cursor under the E in E N D; hold
down ! S H I FT! and press [I]. This inserts a blank line (try the up-arrow key to check that END
has just been bumped down one line) . You can now insert your RT and FD commands in this
new blank line. It will no doubt take you several tries to get the angle and length exactly right;
that will give you good practice in bouncing back and forth between RUN and E DIT modes. (No
fair using your knowledge of trigonometry; with turtles you are supposed to experiment.)

In this chapter we have covered two main topics. We have learned how to enter and change
multiple-command procedures, and we have learned how to teach the turtle to understand more
complex commands via procedures.

1 9

5 . REPEAT AN D S UBPR OCE DURE S

Once we have taught the turtle a new word by writing a procedure, we can use that new word
in further procedures. Return to E DIT mode and remove the commands for drawing the
diagonal (I used RT 122 FD 59) from BOX. Now move to a new line (press I E NTER!). In fact a
blank line between procedures will help keep things easy to read, so press I ENTER I again. We're
going to write another procedure to draw the pattern of four boxes. We'll call it "FO U R ," so
type

TO FOU R
BOX
BOX
BOX
BOX

E N D

Notice that we've used BOX as a turtle command i n the same way that we used FORWARD and
RIGHT within BOX. Run FOU R to see that it works. The result is the same as that shown on
page 18 .

To run the procedure FOU R, the computer must have available the subprocedure BOX. Both
procedures must be in the program space when FOU R is run, but their order within that space
is of no importance. We could have written FOU R first and then written BOX with exactly the
same result.

The procedure FOU R can be shortened by use of the REPEAT control statement. The altered
form of FOU R is

TO FOU R
REPEAT 4 (BOX)

E N D

The R EPEAT tells the turtle to repeat the actions within the parentheses the designated number
of times, in this case, four. The space after the number 4 is optional. The parentheses can
include a whole list of turtle commands and subprocedure names. The list in parentheses can
extend over many lines , but the parentheses are essential.

Now that we have taught the turtle what FOU R means, we can move to a higher-level
procedure. Try

TO MANY
R EPEAT 10 (FO U R R T 9)

E N D

21

By now you probably are tired of following the manual and are consumed with curiosity. What
would happen if I changed the number on the REPEAT in MANY; what would happen if I
changed the angle in MANY; what would happen if I restored the commands to draw the
diagonal in BOX? Don' t hesitate to find out by trying; that' s the whole point of Color LOGO.
Try triangles, pentagons, hexagons, threes and fives instead of just boxes and fours.

Here is another sample.

22

TO DIAMOND
FD 50 LT 45 FD 50 LT 135
FD 50 LT 45 FD 50

END

TO DIAMOND2
REPEAT 29 (D IAMOND RT 40)

END

Color LOGO is a structured language. A complex program written in Color LOGO could have
the following structure.

Each letter within a box represents a procedure; each line of type on the page includes the
subprocedures of a particular level; the lines indicate which subprocedures are used by each
procedure. There are four levels of procedures within this program. The master procedure A
(level 0) might use the subprocedures of level 1 in the order B , C, D, C. Subprocedure B might
use the subprocedures of level 2 in the order E , F , E ; subprocedure C might use the
subprocedures of level 2 in the order G, F, H, etc. Notice that subprocedures can be used many
times and many places within the overall program.

Thus far in our examples we have been working from the bottom up, defining a first procedure,
then writing a second procedure that uses the first procedure as a subprocedure, etc. That is
typical of programming manuals where the emphasis is on the mechanics of a language instead
of on problem solving. It is especially fun to adopt that approach with Color LOGO at times
because the results are often unpredictable and interesting. However, as we become more
serious we often will have a problem we wish to solve. Then we should work from the top level
down. Now we illustrate that process.

The sample problem is to create the following pattern.

23

Obviously the figure is so symmetrical that there is a repeat pattern. Furthermore the number
of repeats must be six. The crucial step is to recognize that the element that is repeated six
times is a square with a circle inside.

PATl

Therefore our main procedure should be

TO PATTER N
REPEAT 6 (SQUARE-CIRCLE RT 60)

E N D

The six-fold symmetry tells us to repeat 6 times with turns of 6 0 (as 6 * 6 0 = 360). As yet we
have no idea how to draw a square with a circle inside.

Now we move to the next lower level.

TO SQUARE-CI RCLE
SQUARE
CIRCLE

END

Again we break the task into simpler tasks. This time the breakdown i s obvious; you draw a
square with a circle inside by drawing a square and then a circle.

Now we drop down to level 2. The obvious procedure for drawing a square is

TO SQUARE
REPEAT 4 (FD 70 RT 90)

E N D

This will draw a square, but it will leave us with a problem. W e also have to draw a circle inside
the square, and SQUARE leaves the turtle at a corner of the square. The corner is an awkward
place to start drawing a circle which is to be inside the square. This example shows that when
procedures are to be used together some attention must be devoted to making them fit. The
circle and the square touch at the center of a side. We choose to make the two procedures fit by
starting and ending the square at the center of a side.

24

TO SQUARE
R EPEAT 4 (FD 35 RT 90 FD 35)

EN D

Now how do we get the turtle to draw a circle? One very good way to figure this out is to play
turtle. That is, walk in a circle and think about what you are doing in terms of turtle commands.
You'll discover that to make a circle you go forward a little and turn a little until you get all the
way around. The best circle should be drawn by the following, right?

TO C IRCLE
R EPEAT 360 (FD 1 RT 1)

END

Wrong! This gives an eight-sided figure. (I'll explain why, but if you find this confusing for now,
skip the next paragraph.) When a turtle moves forward one step it has eight choices of where to
go.

8 I 2

7 x 3

6 5 4

We start with the turtle pointing straight up (towards 1) and turn the turtle a small amount, say
5 degrees right. Clearly the only two choices are to go to square 1 or to square 2 , and square 1
is closer to the correct direction than square 2. Because Color LOGO does only integer
arithmetic the turtle is now assumed to be in the center of square 1 and the process repeats on
the next move. With larger steps there are more squares to which the turtle can move, and we
get a better circle. In general, avoid combining tiny steps with tiny turns for turtles.

A reasonable circle can be drawn by the procedure

TO C IRCLE
R EPEAT 36 (FD 6 RT 10)

END

This gives the same problem as the first procedure for the square: the circle will not be centered
in the square. We can fix the procedure if we realize that what we are really drawing is a
36-sided polygon which looks like a circle because of the limited screen resolution. The fix is the
same as before; start in the center of the side.

TO CI RCLE
R EPEAT 36 (FD 3 RT 10 FD 3)

END

Now run PATTERN to verify that this set of procedures is a solution to the original problem.

25

Let's analyze what we've just done. The road map for attacking the problem was to break the
problem into a set of subproblems, and in turn to break each subproblem into even simpler
subproblems until the subproblems can be solved by a single REPEAT statement. Specifically,
we broke the original problem into the problem of drawing SQUARE-CI RCLE six times; we
broke SQUARE-CIRCLE into the problems of drawing a square and drawing a circle. These last
two problems were easily solved with a single R EPEAT statement. In general, we follow this
sequence in attacking a problem, although we do not insist that the lowest level procedure
consist of a single REPEAT statement.

One of the reasons for using Color LOGO with children is that it is an excellent way to teach
children a most powerful and useful general problem-solving approach. That approach is what
we have just illustrated. Basically, it involves working from the overall view down to the details
by breaking each problem into pieces.

26

6. VARIAB LE S

Variable is the name used to describe unique storage locations where numbers can be kept. The
name of a variable consists of a colon (:) followed by any number of letters and/or numbers.
Variables can be used anywhere numbers can be used; in this way procedures can be used for a
much wider range of applications.

A typical use of a variable is the following:

TO SQUARE :S I DE
REPEAT 4 (FD :SI D E RT 90)

E N D

I f you came here directly from the last chapter, then there is another version of SQUARE in
memory. To clear out the memory, press ISH I FT I !CLEAR! while you are in BREAK mode.
Then get into the E DIT mode and enter the new version of SQUARE. Now to run SQUARE get
into RUN mode and enter

SQUARE 40

Because we have listed the variable :S IDE on the TO statement, we must give a value when we
call (or use) the procedure SQUARE. Now try a variety of other numbers, for instance

SQUARE 60
SQUARE 20

What happens if we forget the number? Try

SQUARE

If we don't provide a number, then the computer provides a zero. The brief flicker is due to the
turtle turning in place while drawing a square with zero-length sides.

Variables can be used in other positions as well. Here's another example.

TO DESIGN : LENGTH :TI MES
R EPEAT :TIM ES (SQUARE : LENGTH

RT 360/ :TI MES)
E N D

Enter this and try running it with a few different values of :TIMES and : LENGTH. For
example:

D ESIGN 40 24
DESIGN 50 10

2 7

The computer keeps track of the variables by the order. Because the order in the TO statement
for DESIGN is : LE NGTH :TI M ES, the command DESIGN 40 24 causes the value 40 to be
assigned to : LENGTH and the value 24 to be assigned to :TI M ES. Notice also that the name of
the variable in the call of SQUARE (SQUARE : LENGTH) need not be the same as the name in
the definition of SQUARE (TO SQUARE :S I DE) . At the time SQUARE is called : LENGTH has a
value (for example, 40) which is assigned by SQUARE to the variable :S IDE .

Variables listed on the TO statement are local to the procedure. Again we illustrate using the
previous programs. Enter:

TO DESIGN : LENGTH : N
REPEAT : N (SQUARE :LENGTH

RT 360/ :N I
END

TO SQUARE :N
REPEAT 4 (FD : N RT 90)

END

Here the variable name : N i s used for two different quantities, one in the main procedure
DESIGN and another in the subprocedure SQUARE. This causes no problems or confusion
because the variables for the two procedures are kept completely separate in the memory. The
variable :N in the main procedure is not the same memory location as the variable : N in the
subprocedure.

If we want a variable to be local to a procedure, we mention it in the TO statement which
begins the procedure. The maximum number of local variables for a procedure is five. We also
can create global variables, variables which use a common memory location in all procedures in
which they appear. Global variables are created by using them in a procedure without including
them in the TO statement. This provides a convenient way to share information among
procedures.

28

DESIGN contains our first example of arithmetic expressions, here 360/ : N . Color LOGO allows
the standard four arithmetic operations: addition (+), subtraction (-), multiplication (*) , and
division (/). No parentheses are needed unless the order of operations is non-standard.
Fractional parts of numbers are dropped. Thus in Color LOGO

5 I 3 = 1
2 * 3 +4 = 10
2 * (3 + 4) = 14

Numbers in the range -32768 to 32767 can be handled. To throw away the sign of a number,
use the ABS function ("ABS - 10" is " + 10") .

The following procedures give additional examples of the use of variables and arithmetic
expressions.

TO SQUIGGLE
FD 7
REPEAT S

(FD 4 RT 45)
FD 7
REPEAT S

FD 7
END

(FD 4 LT 45)

TO SQU IGGLES :SI D E :ANGLE
REPEAT 360/ :ANG LE

(R EPEAT :SI D E (SQU IGGLE)
RT :AN GLE)

REPEAT 360/ :ANG LE

END

(REPEAT :SI DE (SQUIGGLE)
LT :ANG LE)

Notice the use of the nested REPEAT twice in SQUIGGLES . If :ANGLE were 1S0 and :S IDE
were 4 , then each of the pairs of nested REPEATs will repeat 2*4 or 8 times. Try

SQUIGGLES 1 20
SQUIGG LES 3 60
SQU IGGLES 4 90

29

30

7. C OLOR S

Turtle tracks can be colored, and they can change color. Your TRS-80 Color Computer offers
two color "sets" (or "settings") in the high resolution screen on which turtles live. Thus far you
have been running in color set 0. You can shift color sets by the COLORSET command. Get into
the RUN mode and enter

COLORSET 1

to change color set. Then enter

COLORSET 0

to change back.

Within each color set there are four colors, numbered 0, 1 , 2, and 3. The normal drawing color
is color 0 and the normal background color is color 3. Change the background color by entering

BACKG ROUND 1

or abbreviate

BG 1

Change the pen (or drawing) color by entering

PENCO LOR 2

or abbreviate

PC 2

A portion of a drawing can be erased by setting the pen color to the same color as the
background color is set and drawing over the unwanted part of the drawing.

Let's add color to some of our earlier procedures. One interesting choice is FOU R. Retype BOX
(see page 19), then enter the procedure FOU R as:

TO FOU R
REPEAT 2 (PC 1 BOX

PC 2 BOX)
END

and to allow easy experimentation, make MANY into

TO MANY : N
R EPEAT : N (FO U R R T 90/ : N)

END

3 1

We would like to be able to name the colors you will get with specific pen colors and color sets,
but colors vary from TV to TV, they vary with the color settings on the TV, and they may even
switch when you restart your computer. Try running MANY with a value of 10. Then adjust the
color and tint controls on your TV set to your satisfaction. On many TV's, color set 1 will give
more interesting colors, so be sure to try that too. You can change color sets without redrawing
the figure by typing

COLORSET 1

!'rfi-'.:t ff(1 ;J
COLORSET 1

An interesting variation can be created by the following changes.

32

TO BOX
PC 1 FD 50 RT 90
PC 2 FD 30 RT 90

FD 50 RT 90
PC 1 FD 30

END

TO FOU R
R EPEAT 4 (BOX)

END

TO MANY :N

REPEAT 2* : N/3 (FO U R RT 90/ : N)
END

Try it with : N = 90. If it is too slow, or if you feel sorry for any turtle that has to run around at
that speed for so long, hide the turtle (HT) before calling MANY.

You might prefer the colors you get with a dark background. Try setting the background to 0,

and rerun the preceding two examples, MANY 10 and MANY 90.

33

8. OTHER TURTLE C OMMAN DS

There are a few additional turtle commands which we have not yet used. We can raise and
lower the turtle's tail, so we have the choice of leaving a track or not leaving a track. The
commands are just what you'd guess, PEN U P (abbreviated PU) and PENDOWN (abbreviated
PD).

Let's illustrate by removing the lines of one color from the previous figure. Change BOX to

TO BOX
PU FD 50 RT 90
PD PC 2 FD 30 RT 90

FD 50 RT 90
PU FD 30

E N D

and again run MANY 90.

Every figure thus far has started in the center of the screen at a position called home. When we
get into the RUN mode the turtle automatically moves to home. If we want to start the turtle
somewhere else, we can. The turtle can be moved to an arbitrary and absolute screen position
by means of the SETX (abbreviated SX) and the SETY (abbreviated SY) commands. The results

of these two commands are absolute, not relative to the current position of the turtle. No line is
drawn, and no change in heading is made. F'or example,

TO DOU BLE
SETX 60
MANY 90
SETX 180
MANY 90

E N D

f '

35

The heading of the turtle also can be set to an absolute value independent of its current
heading. The command is SETH EADING (abbreviated SH or SETH). The heading can be
anything between 0 and 359 degrees. Zero degrees is straight up. Try

TO DOU B LE
HT
sx 60
MANY 90
SX 180 SH 0
MANY 90

END

The remaining turtle instruction i s HOME. HOME returns the turtle to the home position (the
center of the screen) with a heading of 0 degrees (straight up).

Procedures which draw circles and parts of circles (arcs) are very useful in other projects. There
are some drawbacks to the CI RCLE procedure given in Chapter 5, page 25. It's hard to
predict the size of the circle from the size of the step, it's hard to find the optimum number of
steps for the best circle, and it' s hard to figure where the circle is centered. The following
procedures are a useful alternate set.

TO ARC :X :Y : RADIUS : DEGREE
PU SX :X SY :Y
REPEAT : D EGREE (FD : RADIUS

DOT B l< : RADIUS RT 1)
END

TO DOT
PD FD 1 B K 1 PU

END

These are slower than C IRCLE, but they give the most accurate circles which can be drawn on
the screen. With some values of : RADIUS you might be able to get the same accuracy with
fewer steps (for example, REPEAT 180 and RT 2), but then the number of degrees will have to
be divided to get the right number on the R EPEAT. You also might want to enlarge the dots.

TO DOT
RT 90 B K 1 PD FD 1 FD 1 BK 1
PU LT 90

E N D

The following program again makes use of the SX and SY, here to get the right relative spacing
of independent parts. The correct numbers for the two are found by trial and error. Try the
procedures with a variety of pen colors and backgrounds:

36

TO KI RSTIN
CLEAR SX 60 SY 80
REPEAT 18 (PENT 20 RT 201
SX 95 SY 82
REPEAT 9 (PENT 15 RT 40)

END

TO PENT :S IDE
REPEAT 5 (FD :S IDE LT 721
FD :S IDE

END

3 7

9. SAVING, LOA DING, AN D PRINTING
YOUR C O LOR LOGO PROCE DURE S

Although Color LOGO procedures can do an amazing amount with very little code, we still don't
want to have to retype procedures every time we start up. Procedures can be stored on cassette
tape or on disk (just cassette on ROM version). For simplicity all procedures in memory are
stored as one module, and all procedures in a module on disk or tape are loaded. No directories
are kept for the modules (a directory entry could be almost as long as many of the procedures in
Color LOGO).

To move procedures to and from cassette or diskette we must be in BREAK mode. By now you
probably have a number of procedures in memory that you would like to keep. Get into EDIT
mode and delete any you do not want to save. (To delete a procedure you must delete it
character by character.) Then get into BREAK mode (I B R EAKI key) and press � . At this point
the prompt will be

LOGO : SAVE:_

You now have to tell the computer where to save the procedures in memory. Let's first learn
how to save on tape. Of course the tape recorder must be plugged in as described in the
Operation Manual for the TRS-80® Color Computer. Make sure that the volume control is set
close to 5. Rewind the tape (REWIND, STOP). Next press the RECORD and PLAY buttons
down together. If you are not using leaderless tape, pull out the MIC plug for about 5 seconds.
(This will make sure that you begin recording on blank tape.) Now you are ready to record the
procedures. Simply respond [I] ! ENTER! to the SAVE : prompt:

LOGO : SAVE: T

When the recording is done, the BREAK mode prompt will be displayed again. If a number and
a question mark appear after the T, then the procedures were not saved properly, so try again.

Disks must be formatted before use with Color LOGO. Disks can be formatted using the
DSKINI0 command when the computer is running BASIC. However, Color LOGO does not use
the BASIC directory, so once a disk is used for storing Color LOGO programs, it must not be
used with BASIC programs.

If you do not have a formatted disk, save your procedures on tape (as described above) and turn
off the Color C omputer. Then turn the computer back on. The computer will be running BASIC
now. Insert a blank disk (remember, label towards the latch). Then type DSKIN l0, and press
I ENTER! . If you get an error message, remove the disk, center it in its paper wrapper, and try
again. Because it is always a good idea to keep duplicates of programs on disk, format a second
disk while you' re at it. Once you get the OK response, you can reload Color LOGO as covered in
Chapter 2 and reload your procedures from tape as described below.

A disk for Color LOGO programs is divided into 16 modules. Each module occupies 2 tracks or
36 sectors, so the capacity of a module is 9K. It is doubtful whether you will ever come very
close to filling a module with a set of procedures because LOGO procedures tend to be relatively
short. (If you do fill the 9K, the editor will refuse to accept additional text.) The modules are

39

indexed by the letters A through P. To save all the procedures in memory on the disk type one
of the letters A through P in response to the BREAK mode prompt

LOGO : SAVE:_

You must press ! ENTER! to start the save. While you're at it, remove this disk, insert the
second formatted disk, and save the procedures on the same module (again press �

'
the module

letter, and I ENTER! .

We have on rare occasions had trouble storing programs on the disk. The trouble seems to be
related to the relative positions of the disk or the ribbon cable and the TV set. Whatever, after
saving on disk we try reloading the module immediately. If the load is not successful, we get an
error message (a 6 followed by a question mark), but the procedures are still in memory, and so
we can try another save without retyping the procedures.

We suggest that you immediately start an index card for any new disk of Color LOGO
programs. No diskette labels are likely to be large enough for you to indicate all the procedures
on a disk, and it is a poor idea to write on labels once they are on the disk. Make sure that you
write the disk name on both the card and the disk label before they have a chance to get
separated. One reasonable format is:

Disk Name

A I

B J

c K

D L

E M

F N

G 0

H p

Loading programs from cassette and diskette is also simple. Again it is necessary to be in
BREAK mode. In response to the BREAK mode prompt, press OJ . The prompt then will read

LOGO : LOAD:_

The responses here are exactly the same as for SAVE: use letters A through P to load a disk
module, and T to load from tape. In both cases pressing I ENTER! will start the process. Of
course with the cassette tape you will have to have the volume set to about 5, have the tape
rewound, and have the PLAY button depressed before pressing I ENTER! .

40

If you have a printer for your Color Computer, you can print all the procedures in memory.
Again it is all or nothing, except that you can interrupt the printing by pressing I B R EAKI
without damaging or losing the programs in memory. To print, connect the printer as described
in the Owner's Manual; load the paper and turn on the printer. From BREAK mode, enter [e:]
for single space, or IQ] for double space, and the procedures in memory will be printed. If for
some reason you want to eliminate the line feed at the end of any line (thus using a larger
portion of the paper width), get into EDIT mode and insert an @ character at the end of every
line for which you want to eliminate the carriage return and line feed. (To place an @ character
in a line in EDIT mode, you'll need to press the � key twice.)

There remains the question of saving results, the pictures on the screen. We find that the best
way is to take pictures (this is the only way to get color at any reasonable price) . To avoid false
patterns due to interactions of the camera shutter with the video display, we recommend a
shutter speed of 1/2 second. Use a tripod and a cable release for the camera. The lens setting is
somewhat dependent on the brightness setting of the TV, and of course on the film speed. A
good starting point is to set medium brightness on the TV and use a lens opening of about f8
with film speed of 1 00 ASA. The reds are likely to come out rather brownish, and commercial
developers are likely to overexpose prints with large dark backgrounds. However, the
illustrations in this manual are typical of what can be done without much trouble. You will
minimize distortion if you use a telephoto lens.

This chapter is short because there is very little complication in saving, loading, and printing
programs. Remember that you have a very large procedure space available, so if you are
starting a new project and think you may want to use some pieces of a previous project, load
the previous project before you start. You can always delete what you don't need from memory,
and you have plenty of space.

4 1

10. RECURSION

In the Color LOGO language, any procedure can call any procedure. When the procedure calls
itself, we have a very powerful logical structure called recursion. One clever example of
recursion was given by Hofstader in his book Godel, Escher, Bach.

Hofstader's Law: It always takes longer than you expect,
even when you take into account Hofstader's Law.

There are actually two types of recursion. We'll start with the easier one: recursion where the
call is the last statement of the procedure. As usual, it is easiest to look at examples. Recursion
can be used in place of the REPEAT statement.

TO CIRCLE
FD 3 LT 10
C IRCLE

END

When we run CI RCLE the turtle moves forward three steps and turns. Then CIRCLE is called,
which causes the turtle to move forward three steps and turn, etc. In principle this process
could continue forever. However, every time a procedure is called some memory is used up.
Eventually the memory is all used up and we get the message,

"MY M EMORY IS TOO FU LL."

Try it.

So although recursion can be used exactly like REPEAT, there are some disadvantages to doing
this. We have to find some way of stopping the computer, or it will run out of memory. There
are also some great advantages to using this type of recursion. The following program appears
in all LOGO books and manuals .

TO POLYSPI :S IZE :ANGLE :STEP
FD :S IZE
RT :ANGLE
POLYSPI (: S IZE + :STEP) :ANGLE

: STEP
END

This procedure is so much fun to play with that I think you should do so before we get involved
in any explanations. One suggestion before you start: the figures created are likely to outgrow
the screen long before the memory runs out. The wrap-around feature of the screen will then
lead to some striking but puzzling effects. To start with, let's prevent wrap-around. Enter RUN
mode and type

NOWRAP

43

Then try a variety of runs, for example

POLYSPI 1 90 1
POLYSPI 1 90 5
POLYSPI 1 120 3
POLYSPI 1 122 3
POLYSPI 1 144 5
POLYSPI 1 145 1
POLYSPi 1 176 3

If you then want to see what happens when the computer allows wrap-around, type

WRAP

and try some more runs.

Now let's try to figure out what is going on with this POL YSPI . It is useful to think of a Color
LOGO program in terms of levels: the main program is a procedure at level 0, a subprocedure

called from level 0 is at level 1 , a subprocedure called from level 1 is at level 2, etc. The
operation of a program like MANY can be diagrammed as

L ev e l 0 (MANY)

Leve l (F OU R) etc.

Leve l 2 (BOX)

The transitions down and up between levels 0 and 1 are controlled by the R EPEAT statement in
MANY (down to level 1) and the END statement in FOU R (up to level 0). The transitions down
and up between levels 1 and 2 are controlled by the REPEAT 4 statement in FOU R (down to
level 2 four times) and the END statement in BOX (up to level 1).

44

In a program like POL YSPI the path is actually less complex.

Lev e l 0 (POLY S P I)

Leve l (POLYS P I)

Leve l 2 (POLY S PI)

L ev e l 3 (POLY S P I)

The transitions down are controlled by the statement

POLYSPI (:S IZE + :STEP) :ANGLE :STEP

There are no transitions back up because the procedure never reaches the END statement. Thus
the computer sinks down level after level until it finally runs out of memory.

POL YSPI gives interesting figures because of the difference in the values of the variables at the
different levels. We begin the program with the command

POLYSPI 1 90 5 (Level 01

The recursive call of the procedure is (when we substitute the current values of the variables)

POL YSPI 6 90 5 (Level 1 1

Therefore at level 0 the FD command is for length 1 and at level 1 the FD command is for
length 6 . The pattern continues

POL YSPI 1 1 90 5
POLYSPI 16 90 5

(Level 21
(Level 31

until the turtle runs off the screen (NOWRAP) or the computer runs out of memory (WRAP).

Another procedure of this type is called INSPI . In I NSPI , the angle is incremented recursively.

TO I NSPI :S IZE :ANGLE :STEP
FD :S IZE
RT :ANGLE
I NSPI :S IZE (:ANGLE + :STEP)
:STEP

END

Again this i s one to play with. Try

I NSPI 10 90 5
INSPI 10 90 3
I NSPI 7 5 3

I NSPI 3 5 2

(do SX 80 SY 140 first to get it all
on the screen)

45

(16K users won't see all of this picture.)

Incidentally, if you want to get rid of the type at the bottom of the screen, you can use a
procedure like the following:

TO TEST :S IZE :ANGLE :STEP
CLEAR
I NSPI :SIZE :ANGLE :STEP

E N D

The analysis of I NSPI is so similar to that o f POL YSPI that we won't bother to give it.

We now turn to the more complex type of recursion, recursion where returns to the higher
l evels are actually made. Another popular program in turtle geometry is called TREE.

TO TREE :N
1 I F : N <2 (STOP)
2 FD : N
3 RT 15
4 TREE (3* : N/4)
5 LT 30
6 TREE (3* : N/4)
7 RT 15
8 B K : N
9 E N D

46

The line numbers are not part of the procedure; they are there for reference in our discussion of
the procedure. Enter this procedure (without the line numbers, of course) and try running it
with a value of 20 to 30 for : N . You might try making the numerical factors in the two calls of
TREE (lines 4 and 6 of the procedure) somewhat different, thus producing an asymmetrical tree.
You also could try changing the angles, but notice that the sum of the two right turns is equal
to the left turn.

Now let' s try to understand the program. We have introduced two new ideas in line 1 . The first
is the conditional I F. The I F must be followed by an expression which has a truth value. In TREE
the expression is

: N < 2

If the current value of : N is less than 2 , then this expression is true and the rest of the
statement will be executed. If the current value of : N is 2 or greater, then this expression is
false and the rest of the statement will be skipped. The rest of the statement is placed in
parentheses; it may consist of many commands, and it may extend over many lines.

The second new item in line 1 is the control statement STOP. The STOP statement ends a
procedure. STOP has the same effect as an END statement, but an END statement can appear
only at the end of a procedure.

It will be easier to understand TREE if we make some changes to simplify it. Change the
condition in line 1 to :N <18, and change the right turns (lines 3 and 7) to 45 and the left turn
(line 5) to 90. Then run TREE 32 to get a simpler tree.

The following diagram and table outline the operation of TREE.

Leve I 0 : N = 32

Level : N = 24

Level 2 : N = 18

Leve I 3 : N = 1 3

4 7

STEP : N START E N D LINES

a 32 0 R45 1-4
b 24 R45 R90 1-4
c 18 R90 R135 1-4
d 13 R135 R135 1
e 18 R135 R45 5,6
f 13 R45 R45 1
g 18 R45 R90 7-9
h 24 R90 0 5,6

18 0 R45 1,4
j 13 R45 R45 1
k 18 R45 L45 5,6
1 13 L45 L45 1

m 18 145 0 7-9
n 24 0 R45 7-9
0 32 R45 L45 5,6
p 24 145 0 1-4

etc.

First look at the diagram. The program tries to reach the lowest level of the procedure until
forced to rise in level by the STOP or the END statement. By a method which we will explain in
Chapter 14 we can single-step the program by running it as follows. Type

HATCH 1 TREE 32

Now every time you press I E NTER! , one command in the procedure will be executed. For
example, when you start (step a), the first I ENTER! executes I F : N <18, the second ! ENTER!
executes FD : N (which you can see), the third I ENTER! executes RT 45 (again visible), and the
fourth I ENTERI executes the recursive call. You can follow the table exactly, as long as you
realize that the statement

I F : N <18 (STOP)

is one statement if the condition is false, but two statements if the condition is true (execute the
STOP). A step in the table is counted as all the lines executed from when a level is entered until
the level is exited. A level can be exited in three ways: by a STOP or an EN D, which completes
the procedure at that level and goes up; or by a call of another procedure, which leaves the
current procedure incomplete and goes down.

Instead of giving an elaborate account in words of what is happening, we recommend that you
run the program in single-step mode and follow the table and the program in parallel. If you get
confused, start over and try again. Recursion is a little complex, but it is so powerful that it is
worth the effort to understand .

48

The next program draws a figure which is called a fractal. A fractal is a figure which looks the

same no matter what magnification is used to view it (of course we are limited by the screen
resolution here). In this example we'll start with the basic shape

__/_

The idea is that each of these four lines should be made up of that same shape. At one
additional level of detail that gives

Each of the lines in this drawing is in turn made up of four lines with the basic shape, etc. This
is a place to use recursion.

TO FRACTAL : N
I F : N <15 (F D : N STOP)
FRACTAL (: N/3)
LT 60
FR ACT AL (: N /3)
RT 120
FRACTAL (: N/3)
LT 60
FRACTAL (: N/3)

END

Running FRACTAL 50 will show the pattern. (You may want to enter RT 90 and SX 0 before
running FRACTAL 50 to turn it the way we've drawn it in the manual.) Notice that the pattern
divides the whole length into thirds; that is why we divide by 3 on the recursive calls. However,
the resulting length will change somewhat depending on the conditional IF' statement because of
the roundoff loss in integer arithmetic. You'll see that if you change the conditional to
something finer-say, :N < 4. That pattern looks like the edge of a snowflake. Why not make it
into something six-sided?

49

TO FLAKE : N
CLEAR
REPEAT 6 (FRACTAL :N RT 60)

E N D

You may have to play with the starting position (SX and SY) and the size to get a nice figure
without wrap-around. You may also prefer the figure you get when FLAKE is made to draw
three sides at 120 degrees.

Other variations are possible. We can replace FD : N in the I F statement with a more elaborate
series of commands. A few examples follow.

TO FLAKE : N
CLEAR
sx 50
SY 50
R EPEAT 3 (FRACTAL : N RT 120)

END

Replace the conditional statement in FRACT Al with

and try

I F : N <9 (FD : N/4 RT 80
FD : N LT 160 FD : N
RT 80 F D :N/4 STOP)

FLAKE 150

Another variation is

50

I F : N < 9 (F D : N /4 RT 80
FD 2* : N LT 160 FD 2* : N
RT 8 0 FD :N/4 STOP)

and try

FLAKE 150
FLAKE 70

Recursion can be used to draw endless space-filling patterns. The following example is typical.

TO FOO :SIZE : LEVEL : PAR ITY
HT
IF : LEVEL = 0 (STOP)
LT : PAR ITY*90
FOO :S IZE (: LEVEL- 1)

(: PAR ITY*-1)
F D :S IZE
RT : PAR ITY*90
FOO :S IZE (: LEVEL-1) : PARITY
FD :S IZE
FOO :SIZE (: LEVEL-1) : PARITY
RT : PAR ITY*90
FD :S IZE
FOO :SIZE (: LEVEL-1)

(: PAR ITY*-1)
LT : PAR ITY*90

EN D

5 1

An appropriate set of numbers is

FOO 6 6 1

In this chapter we have tried to give you some ideas for recursive programs. However, we have
just scratched the surface of the designs that are possible. Go ahead and experiment, and let
others know if you discover any new beautiful designs.

52

1 1 . DOODLE MODE -
PROCE DURE S WITHOUT TYPING

Color LOGO provides a way to enter graphic procedures into the computer without typing the
turtle commands like FORWARD and R IGHT. The reason for including this feature is to provide
a way for children who are not yet able to read or not yet able to type reliably to use the
language and to benefit from the practice in structured thinking that the language offers. The
features of DOODLE mode are arranged with that audience in mind. Obviously the children are
not going to be able to read the manual, so a parent or teacher will have to assist them in
learning. In this and the next chapter we will teach the assistant the mechanics of two ways to
use Color LOGO with children; actual suggestions for activities with the children are gathered
together in Chapter 13. In this chapter we will cover the mechanics of DOODLE mode.

The idea of DOODLE mode is that a minimum set of turtle commands can be entered by single
keystrokes from the keyboard. Before proceeding, you should get the plastic overlay for the
keyboard which was supplied with the Color LOGO package. This overlay fits over the top row
of the keyboard. The symbols on the overlay show the meanings of the numeric keys in

DOODLE mode (see Appendix 1 , page 107). These symbols will appear at the bottom of the
screen in DOODLE mode when the keys are pressed, and they will appear in the procedures
that you create in DOODLE mode.

DOODLE mode is entered from RUN mode by pressing the � key. When the � key is
pressed, an = appears at the bottom of the screen. This is the indication that it is time to name
the procedure you are creating. Simply type the name you want to use; the name can be as
simple as a single letter or number. After typing the name, press / E NTER/. The computer is
now in DOODLE mode and the top row of keys has its new meaning.

The meanings of the keys are

(1) CLEAR
(5) RT 45
(9) RT 15

(2) HOME
(6) LT 45
(0) LT 15

(3) PENU P
(7) F D 1

(4) PEN DOWN
(8) FD 10

Try each of the keys in turn. Of course 1 (CLEAR) will clear the screen, so you won't have much
time to see that one. Note the correspondence between the symbols on the keys, the symbols on
the bottom of the screen, and the action of the turtle. Remember that a turn of 15 degrees is
not enough to turn the turtle shape, but three 15 degree turns in a row is enough to produce a
visible turn.

OK, now that you have a bit of the idea of DOODLE mode, let's try to make something useful.
To get a fresh start, exit DOODLE mode by pressing / B R EAl< I . This puts you in BREAK mode.
Clear the procedure space by pressing / S H I FT I /CLEARI . Get into the RUN mode (press !BJ) and
then get into the DOODLE mode (press �). The reason that we always get into the DOODLE
mode from RUN mode is that we may want to draw patterns on the screen in RUN mode for
the child to interact with or copy in DOODLE mode. Notice that the screen is not cleared when
we enter DOODLE mode. Now let's name the procedure we are creating "S" by typing an [§]
and pressing I ENTER/ .

53

Begin by drawing a box using the top row of keys. When the box is completed, exit DOODLE
mode by pressing the I B REAKI key. Then get into the RUN mode and run the procedure S. The
only difference between this and the procedure we earlier called BOX is that S is a little slower.
To see that S actually exists as a procedure, get into EDIT mode and look at procedure S.
Notice that it is there with exactly the symbols used in its definition.

We can actually edit S in E DIT mode just as we edit any other procedure. For example, we can
add a diagonal to the box in several ways. We can add the type of turtle commands we are
already familiar with, like

RT 45
FD 60

This shows that DOODLE mode turtle commands can be mixed with regular turtle commands.
However, in some sense this way of editing defeats the purpose of DOODLE mode, as the child
is not likely to be able to understand the change. To keep it understandable for the child, we
edit using the DOODLE mode symbols in EDIT mode. Each DOODLE mode symbol can be

made by pressing � followed by the appropriate key. Thus we could insert the above
instructions for a diagonal by the series of keystrokes

@5@8@8@8@8@8@8

That is, an RT 45 (@5) followed by six FD 10's (@8). Try it.

Obviously this kind of editing would be most useful in a cooperative project where the child was
using DOODLE mode and the helper was using EDIT mode. A more likely type of error
correction or editing is to make changes during the doodling process. For example, "I should
not have taken that last step forward," or " I should not have turned that far." To see how to
handle this, get into DOODLE mode (IBR EAKI , IBJ, �) and enter a new name, say � . Now
doodle out a box, but go one step too far on the last side. Left-arrow (backspace) will now erase
the last step in the procedure. Unfortunately it also erases the listing of the procedure from the
screen and clears the screen, but it does redraw the shape with the last step now eliminated.
Try eliminating step after step by repeated use of the left-arrow key. The edited version of the
procedure is stored in the memory in correct form and can be seen in EDIT mode.

Another type of editing the child may wish to do is to add on to the end of a previous
procedure. There is no simple way to do exactly that, but it is easy to produce the same effect.
Get into RUN mode and run the current version of the procedure. That will draw the shape on
the screen. Get into DOODLE mode and give a second name. Notice that the turtle is at the
home position instead of at the end of the shape. Start the new procedure with HOME (key 2),
raise the pen (key 3), move to the end of the shape, and lower the pen (key 4). Now you are
ready to proceed with completing the shape. To get the whole shape while running, either run
the two procedures in sequence or, in EDIT mode, remove the END statement from the first
procedures and the TO name statement from the second procedure. If you do the latter, you can
remove all the turtle commands from HOME to PENDOWN at the start of the second
procedure, as well.

54

Thus far we have limited ourselves to horizontal, vertical, and 45-degree lines. What about other
angles? It might be useful for you to reread the discussion about circles in Chapter 5 at this
point. There we saw that with a step forward of one unit the only angles which were possible
were 45 degrees apart (0, 45, 90, . . .). In DOODLE mode the only steps forward possible are one
unit and ten units. We've already said that the only turns that make any difference with one
unit forward are turns which are multiples of 45 degrees. The only turns which make sense with
ten units forward are multiples of 15 degrees. (This is not as obvious or as absolute as the one
unit forward case, so if you don't see the problem, try the following procedure.

TO TEST :ANGLE
RT 90 + :ANGLE
REPEAT 2 (FD 10)

E N D

The design decision was that 15 degrees was the smallest divisor of 45 degrees that gave a
smooth line at an angle.)

If you want to make a line at some other angle in DOODLE mode, you can. It just requires
more keystrokes. The combination of FD 1 operations and either no turn or a turn of 45 degrees
will allow the drawing of a line at any angle. For example, a very small angle could be drawn by
repeating the series- FD10 (key 8) followed by nine FD 1 ' s (key 7), an RT 45 (key 5), an FD 1 ,
and an LT 45 (key 6)-the desired number of times. This sounds awkward, but remember that it
will be necessary very seldom. Most young children will find sufficient accuracy with turns of 15
and 45 degrees.

DOODLE Mode characters are not available on printers. If you try to print a procedure created
in DOODLE mode, the special characters will appear as lower case letters. Thus it is impractical
to print DOODLE mode procedures. Also notice that the @ character has a special meaning in
EDIT mode. If you want to include an @ character in a line of a procedure to prevent a line
feed when printing, you must press � twice in a row.

5 5

12. ONE KEY DOODLING

The idea of DOODLE mode can be extended to an open-ended set of single keystroke operations
if we give up the ability to store and edit the child's input as a procedure. This requires a set of
procedures which we hereafter refer to as the OK Set (One Key Set). To start we define a set of
procedures with single-character names. Then pressing the single key and I ENTER I will call
forth the desired action. This is easier shown than described.

The first step is to define a set of procedures which match the individual keys in DOODLE
mode. Because we are not going to save or edit the procedures, we do not bother to draw the
special symbols at the bottom of the screen (although if there was some reason to have them we
could draw them with turtle commands). Clear the memory and enter the following procedures.

TO 1 TO 2
CLEAR HOME

END END

TO 3 TO 4
PU PD

END END

TO 5 TO 6
RT 45 LT 45

END END

TO 7 TO 8
FD 1 FD 10

END END

TO 9 TO 0
RT 1 5 LT 15

END END

This set of procedures will allow the child to move the turtle freely around the screen in RUN
mode using the keys he or she already knows from DOODLE mode.

The advantages of this approach become evident when we add to the list of procedures. The
following procedures are typical.

TO T
SH 0 HT PD FD 8
RT 1 50 FD 15
TRI 15
SH 0 FD 5 PU ST

EN D

5 7

TO TRI :S I D E
I F :S IDE<2 (STOP)
R EPEAT 3 (RT 120 FD :S IDE)
TR I (: S IDE-2)

E N D

T will draw a triangle. You might wonder why T is so elaborate; after all we could use the
following to draw a triangle.

TO QU ICKT
R EPEAT 3 (FD 15 RT 120)

EN D

The problem here is that the orientation of a triangle drawn by QUICKT will depend on the
prior heading of the turtle. For the applications we have in mind we want all the triangles to
have one vertex pointing up (SH 0). We also want to color-in the triangle, and we want to draw
the triangle around the turtle's starting position. Therefore, we use the procedure TRI and we
move forward eight units before starting the triangle ; hiding the turtle gains speed. TRI uses
recursion to make a filled-in triangle. To get complete filling-in we must start at the correct
vertex of the triangle (this is not obvious, but is a consequence of the way in which the Color
Computer produces color in high resolution). Thus the line RT 150 FD 15 in T moves us to a
different vertex. You might try replacing this line with RT 30 to get a striped triangle, and then
make TRI read REPEAT 4 (RT 129 FD :S I DE) to get an even more interesting pattern. The
commands in T after TRI 15 return the turtle to the starting position with a heading of 0
degrees.

A similar set of procedures can be used to define a square and a circle.

58

TO S
SH 45 HT PD FD 10 RT 45
SQU 14
RT 135 FD 10 SH 0 PU ST

E N D

TO SOU :S IDE
I F :S IDE <2 (STOP)
REPEAT 4 (RT 90 FD :S I DE)
SQU (: SIDE- 1)

END

TO C
SH 0 HT PD FD 8 RT 90
REPEAT 15 (FD 4 RT 24)
RT 22 MAKE :X 7
REPEAT 7 (C I R :X RT 90 FD 1

LT 90 MAKE :X :X- 1)

RT 135 F D 2 SH 0 PU ST
END

TO C IR :STEP
R EPEAT 8 (FD :STEP RT 45)

END

The last line before the END in C restores the turtle to the original position. I t i s not easy to
compute what moves are necessary to reach the original position, so we do it by experiment.
Run C immediately upon entering R U N mode, so that the starting position for the turtle is at
the home (128,96) position. When the procedure has finished, do an SX 128 and an SY 96.
Watch which way the turtle moves, if at all. F'rom those moves we can tell what changes must
be made in the last line of C to restore the turtle to the original (home) position.

With these procedures the child can move the turtle around the screen using the number keys,
and the child can produce triangles by pressing T, squares by pressing S, and circles by pressing
C. But, I hear you say, this is for children who don't know the letters. We suggest that you

cover the selected keys with small adhesive labels on which the symbols have been drawn. In
this example this would mean putting a label with a triangle on the T key, a label with a square
on the S key, and a label with a circle on the C key. Of course you could use any other keys
instead by renaming the procedures.

8
8
T

As in DOODLE mode we want to have some way to erase mistakes. The way to do this is to
redraw the shape with the pencolor set to the background color. We also have to pick a way for
the child to control the erase. One possibility is to use double presses of the same key to specify
erase. With a minor name change, then, we have the procedures

TO T
PC 1
T1

END

TO T1
SH 0 HT PD FD 8
RT 150 FD 15
TRI 15
SH 0 FD 5 PU ST

END

TO TT
PC 3
T1

E N D

The fact that we return the turtle to its original position makes this erase possible.

59

Similar changes in S and C give

TO S TO SS
PC 2 PC 3
S1 S1

END END

TO C TO CC
PC 0 PC 3
C1 C1

E N D END

We have not bothered to reprint the original versions of C and S which must be renamed C1
and S1.

While we are at it we should allow for double keystrokes of the DOODLE mode commands. One
example should be sufficient.

TO 77
PC 3 B K 1

E N D

W e are in effect building a special language consisting o f one-keystroke commands. Because of
the low frustration tolerance of the audience that we are building the special language for , it is
especially important to make the language "user-proof." To do that, we should define a
procedure for every other key on the keyboard. The procedures are

TO A
TO B
TO D

E N D

Note that we skipped C because it is actually used. Note also that it is not necessary to have
individual E N D statements for each procedure because the following TO statement automatically
ends each procedure. These procedures actually prevent the message

I DON'T KNOW HOW TO . . .

if the child accidentally presses an unlabeled key.

In this chapter we have introduced the idea of building shapes or complex picture elements
which the young child can call forth with single keystrokes. The examples we have given are
simple, but the only limit to what is possible is your time and imagination. Let' s now start
thinking about ways to use these tools with very young children.

60

13. U SE OF DOODLE MODE AND OK SET

In the previous chapters we covered the operations of the DOODLE mode and the OK Set.
What is possible and what is worthwhile are two separate questions. In this chapter we will pass
along some suggestions. Our suggestions are aimed at the adult who is working with small
children. We have collected ideas from a number of sources. However, we should make it clear
that, because Color LOGO offers possibilities for working with much younger children than
could be reached previously, no one at this time really knows what is possible or what is most
beneficial. Also remember that this is a user's manual for a computer language, not a textbook
on early childhood education. Don't be hesitant to question our suggestions, and don't hesitate
to try out new ideas.

Perhaps the best way to start with very young children is to let them play. By play we mean to
allow them to explore the effects of the various keys. If the children are very young, this will
take quite a bit of time. If you've changed the shapes available in the OK Set since the last
session, then you should give the child another chance to explore the new set of keys. Keep in
mind that a child's attention span is not as long as yours, so don't try to prolong the sessions.
Our own first ideas for Color LOGO grew from an effort to create something for a four-year-old
to do because he wanted to be like Dad and "work on the computer." This suggests that
another way to start is to master DOODLE mode yourself and to prepare a set of procedures
for the OK Set. Then you'll be ready when an interested face appears at your shoulder some

evening.

The users of LOGO have had consistent success with one technique for getting children started.
They repeatedly relate the turtle commands with body movement. That is, ask the child to play
turtle and ask them to keep track of the turtle movements they make. Thus, if the task is to
draw a box, the child is asked to walk in a box-shaped path and then to tell the turtle what he or
she did. The success on which this recommendation is based comes from work with somewhat
older children, so it may not be quite as effective with the pre-reading group. It might help to
give them objects to actually walk around to make the shape less abstract.

One heavily used technique in early childhood teaching is to ask the student to copy something.
A book titled Mathematics Their Way by Mary Baratta-Lorton (Addison-Wesley Publishing
Company, 1976) makes use of this technique for beginning mathematics and is a rich source of
ideas for DOODLE mode projects. Basically, the approach is to write a procedure in the
conventional way which will draw a figure or shape. This can be placed on the screen in RUN
mode. The child is then asked to copy, complete, fill in, invert, rotate, or in some way proceed
with reference to the figure on the screen. If the procedure the child develops while doing this is
likely to be worth keeping for future use, then the child should be working in DOODLE mode. If
it is not worth keeping, or if it requires the more complex shapes, then the child should be
working with the OK Set of procedures.

Let's turn now to some specific activities. A large number of exercises could be built around the
idea of pattern continuation and generalization. These activities are best suited to the OK Set,
so the following procedures should be added to that set. One of the simplest types is a pattern
which can be imposed on a line of dots. First we draw two parallel lines of dots.

6 1

TO DOTS
CLEAR
HT RT 90
SX 5 SY 150
L INE-OF-DOTS
SX 5 SY 50
L INE-OF-DOTS

E N D

T O L INE-OF-DOTS
REPEAT 20 (DOT FD 12)

E N D

T O DOT
FD 1 PD RT 90 FD 1
REPEAT 4 (RT 90 FD 2)
PU
B K 1 LT 90 B K 1 PU

END

DOT i s a bit more elaborate than we need right now, but later on we'll want to be sure that the
dot is centered on the starting point. We'll use DOT in later examples. Next we draw some very
simple repeating pattern on the upper row of dots. We'll use DOTS in the pattern drawing
procedure. Several examples follow.

TO PATTERN1
DOTS
SX 5 SY 150
R EPEAT 10 (PD FD 12 PU

FD 12)
SX 5 SY 50 ST PD

EN D

Try running PATTERN1 . The idea is that the child is to reproduce the pattern on the upper set
of dots on the lower set, and then, after that is mastered, the child is to give an equivalent
pattern with some other shapes. Before you try this with a child, try it yourself! Try to copy the
pattern on the lower row of dots. You'll find that it is more difficult than necessary. It is
needlessly difficult to move the turtle the correct number of units (12 as the procedure is
written). We can make the exercise much less bothersome by some minor adjustments. Notice
that these adjustments in no way detract from the point of the exercise, which is to recognize
and continue the pattern.

TO L INE-OF-DOTS
R EPEAT 12 (DOT FD 20)

END

The change to FD 20 means that the child can connect dots with two keystrokes (key 8
producing FD 10 on each stroke). We have to adjust PATTERN1 as well.

62

TO PATTERN1
DOTS
SX 5 SY 150
REPEAT 6 (PD F D 20 PU

FD 20)
SX 5 SY 50 ST P D

E N D

You may b e wondering we didn't just give you the final versions immediately. The point is that
we hope you will try creating your own exercises, and we want you to see that a little attention
to detail can make the exercises much more effective. Especially with very young children, be
sure to try out the task to check the difficulty level before they are around. This is supposed to
be fun as well as instructive, and not a new source of frustration.

The same pieces can be used for a slightly more difficult exercise.

TO PATTERN2
DOTS
SX 5 SY 150
REPEAT 6 (PD LT 60 FD 40

RT 120 FD 40
LT 60)

SX 5 SY 55
LT 90 FD 10 RT 90 FD 40
RT 90 FD 10 BK 1 0 LT 90
ST

E N D

r fl

63

Here the task is to reproduce the indicated pattern by continuing the shapes started on the
lower line. Because the two shapes forming the pattern are different, the focus is on the shape
rather than straight copying.

We may as well make use of some of the fancier shapes that we have defined in the OK Set.
The following is another example of complete-the-pattern, but one which is visually more
interesting.

TO PATTERN3
MAKE :X 0 MAKE :Y 50
CLEAR HT
R EPEAT 10

(REPEAT 7 (SX :X SY :Y
SQUARE MAKE :V :Y + 20)

MAKE :X :X + 20 M AKE :Y 50)
MAKE :X 1 1 MAKE :Y 58
REPEAT 4

(REPEAT 5 (SX :X SY :Y
T MAKE :X : X + 40)

MAKE :X 1 1 MAKE :V :Y + 40)
SX 31 SY 158 ST

E N D

T O SQUARE
REPEAT 4 (FD 20 RT 90)

E N D

The child's task is to complete the pattern by moving the turtle and by pressing the key with
the triangle. Many other variations on this theme are possible.

The PATTERN3 procedure makes heavy use of the MAKE statement, and we have not discussed
that before. The MAKE statement changes the variable following the MAKE to the value given
by the next expression or number. For example

MAKE :X :X + 40

replaces the starting value of :X with a value which is 40 greater.

64

Of course not all the tasks using the triangles, squares, and circles need to be directed towards
specific goals. Ask the child to create a design, or to create a border to the screen.

Another group of projects can be based on completion of design. The screen can be thought of
as consisting of four quadrants divided at the home position. The idea is to have the turtle draw
a pattern in one quadrant and to have the child complete the pattern in the other three
quadrants. Either DOODLE mode o r the OK Set can be used here. If you've included the erase
procedures for the DOODLE turtle commands in the OK Set, then that set is preferable. A
simple pattern is

TO PATTERN4
CLEAR
RT 90
REPEAT 2 (FD 60 SX 128 SY 96

RT 45)
H O M E

END

(!, ___ _

""""'

We have written the procedure so that it is easy to add lines to make a more elaborate pattern.
However, we recommend that you restrict the patterns to those using angles which are easy to
produce in DOODLE mode (that is, multiples of 15 or 45 degrees). We reset the turtle to the
home position with the SX and SY instead of with H O M E so that the turtle heading is
preserved. Again the FD should be some multiple of 10 to minimize the number of keystrokes
needed.

This gives a more complex pattern.

TO PATTERNS
CLEAR
LIN ES 60 128 10
HOM E

END

65

TO LIN ES : LENGTH :X :STEP
I F : LENGTH = 0 (STOP)
SX :X SY 36 SH 0
FD : LENGTH RT 90 FD : LENGTH
LI N ES (: LENGTH - :STEP)

(:X + :STEP) :STEP
E N D

The starting points for the pattern are picked s o as to center the pattern o n the home position.
Thus because home is at 128,96 the starting point for the first line is at 128,36 which is 60 units
below home. We've chosen to orient the pattern so that the child can begin drawing without
turning the turtle.

At some point the child will need practice in learning letters and numbers. Part of learning to
recognize them is to look at them very carefully, and this can be encouraged by use of DOODLE
mode activities. The child will probably want to use the letters later to write simple words, so
we'll save the procedures they make. The first tasks could be simply copying from a model.
Because most people identify computers with mathematics, here we'll counter that tendency by
using letters for examples. We'll begin with the letter F. We need a procedure to draw the
model.

TO DRAW-F
CLEAR
sx 50 SY 146 RT 180
FD 50
sx 50 SY 146 LT 90 IFD 30
sx 50 SY 126 FD 20
HOME

E N D

This will draw a large capital F , as you can see by running the procedure. H owever, it will draw
the F so quickly that it gives the child no hint as to the order in which the lines should be
drawn. The order can be indicated in several ways. Color can be used (draw the red part, then
draw the blue part). We can put delays between the strokes to make the sequence on the
example visible. We'll use both techniques .

66

TO D RAW-F
CLEAR
SX 50 SY 14S RT 180
PC 1 FD 50
WAIT S
SX 50 SY 14S LT 90
PC 2 FD 30
WAIT S
SX 50 SY 12S FD 20
WAIT S
HOME

E N D
T O WAIT :T

REPEAT :T (REPEAT 820 ())

E N D

Notice that the procedure WAIT does nothing but count. The number o n the inner REPEAT is
picked so that the number :T is approximately the number of seconds that are used up counting.
Be sure that the child's procedure is named F so that there is a simple correspondence between
the name and the drawing. If you still have the OK Set in memory, you'll have to delete F from
that set.

Once the child is familiar with the shape of the letter, or of several letters, you can let them try
making letters by connecting dots. Here the procedure must draw the dots, preferably starting
at the home position.

TO DOTM
CLEAR
DOT FD S0 DOT RT 135
FD 30 LT 45 DOT
LT 45 FD 30 RT 45
DOT RT 90 FD S0 DOT
HOME

E N D

67

..

In this procedure we've been careful to always have the turtle pointing in the horizontal
direction to keep the spacing of the dots perfectly regular. That may not be essential.

This dot-to-dot exercise works best for those letters and numbers where the pen never need be
raised. Most letters require that the pen be raised. The dot pattern for these may be a bit of a
puzzle, perhaps a worthwhile challenge. If that is too difficult, color coding the dots into two or
three sets or adding intermediate dots may help.

The ability to visualize how things will appear in other positions may be worth developing. The
idea here is to give a figure in one position and to ask the child to doodle it in another position.
We are going to reuse the child's procedure for final comparison, so here we use DOODLE
mode. One task is to ask the child to complete a partially drawn figure, but in another position.

TO PATTERN6
RT 180
sx 70 FD 50 RT 90 FD 20 RT 90
FD 20 LT 90 FD 10 RT 90 FD 10
LT 90 FD 10 LT 90 FD 10 RT 90
FD 10 LT 90 FD 20 RT 90 FD 20
RT 90 FD 50 RT 90 FD 70
SX 198 SY 96 SH 180
FD 50 RT 90 FD 70 RT 90 FD 50

END

L __ J

68

Remember that in entering DOODLE mode it will be necessary to name the procedure that the
child is creating. The comparison of the two figures can be made nicely. Let' s assume that the
child' s procedure is named ZZ. After ZZ is completed, enter RUN mode and do the following.

RT 180
PATTERN6
sx 70
SY 146
PC 2
zz

This will rotate the original figure and draw the child's figure over the rotated original in
another color. The result will be even more satisfying when the child is drawing the whole
figure in the new position. Of course the above set of instructions could be combined into
another procedure so as to speed the comparison.

The DOODLE mode projects can become quite complex. For example, a long DOODLE mode
project could be teaching the turtle to write in handwriting. The key is to name each procedure
for drawing a cursive letter with that single letter as the name. Thus, cursive a should be given
the procedure name A, cursive b the procedure name B, etc. Then in RUN mode every time a
letter is typed (followed by I ENTER!) the cursive letter will be drawn. Or one could define a
procedure with a word spelled out (spaces between the letters) and the result would be the word
in cursive letters.

TO CU RSIVE
C A T

E N D

will write cat i n cursive if the procedures C , A , and T are correctly defined. To make it all work
smoothly, the turtle will have to end up in the right position after each letter.

If that is not enough of a challenge, then how about making the computer draw letters as they
appear in a manual on calligraphy? No doubt you will have to make them a bit bigger to get the
desired effect. The only limitation is that you can't have both upper and lower case letters at
once. There are limits, even with Color LOGO!

This chapter has given some idea of what can be done with the OK Set and DOODLE mode. At
this point there are several ways you might continue with a child. One is to continue with
DOODLE mode giving them even more challenging tasks or encouraging them to create useful
procedures which you help them use in RUN mode. If they are reasonably good with the
keyboard, they may not need much help. An alternative is to teach them how to extend the OK
Set by adding procedures they create in DOODLE mode (they can make their own key labels and
attach them as they name the procedures). For example, you could suggest that they draw a
truck, a house, a tree, and a person in DOODLE mode, and then let them draw street scenes
using these additions to the OK Set. Of course they'll soon want to add color. To do that they'll
have to learn how to insert PC commands into their procedures, and before long they'll be
typing and editing in the standard way.

69

14. MULTIPLE TURTLE S

So far we have been drawing on the screen with a single turtle. Complex figures were made by
drawing one piece at a time, first one piece completely, then a second piece, etc . , until the
drawing was complete. In Color LOGO there is another way to produce a complex drawing. We
can draw all the parts at once using several turtles.

Multiple turtles provide many extra possibilities. Games are one obvious application. It is much
easier to program games if each player is assigned a turtle which maintains its position until
that player's next turn. This is especially true in Color LOGO as we often do not know the
position of the turtle in absolute coordinates, in which case it is hard to store a return point. We
shall see that it is often possible to simplify the programming by giving individual turtles
different subtasks in a game. We can make drawings by assigning turtles to the tasks of
drawing individual pieces of the whole. In this way the drawing will seem to evolve instead of
appearing piecemeal. At a more serious and abstract level, we can use the multiple turtles to
illustrate the process of multiprogramming.

Let' s begin by entering a few procedures for the turtles to run. Clear the memory and enter

TO BOX :S IDE :X : V
SX :X SY :Y
R EPEAT 4 (FD :SIDE RT 90)

E N D

T O CI RCLE : S I D E :X : Y
S X :X S Y : Y
REPEAT 20 (FD : S I D E RT 18)

E N D

Run each o f these to verify that they are entered correctly.

We create new turtles by means of the HATCH command. The form of the command is

HATCH turtle number procedure for the turtle

or to give a specific example

HATCH 1 BOX 50 30 60

Here the meaning of HATCH is obvious. The following number, here 1, is the name or label of
the turtle. Turtles can be labeled with any number between 1 and 254. (Turtle (/) is the master
turtle-always present, even if hidden by an HT command-which we have been using
exclusively up to now.) BOX is the name of the procedure which we are telling turtle 1 to run.
The numbers following BOX are, as usual, the values to be fed into the local variables within
BOX.

71

Next we try out a simple multiple turtle program. Enter the following

TO TEST

HATCH 1 BOX 50 30 60
HATCH 2 BOX 40 180 90
HATCH 3 BOX 60 100 90

END

Notice that each turtle has its own procedure and its own set of values for the variables. Of

course several turtles can be using the same procedure, but each still has its own current set of

values for the variables. When you run it you may get less than you expected. Why does the

program stop before drawing the boxes? Notice that there are four turtles on the screen: the

three you created with the HATCH commands and, as always, the master turtle. When there

are multiple turtles, Color LOGO gives each turtle a turn in sequence. A turn is a single turtle

command or a logical operation in a control statement. (A control statement is a statement

which controls the sequence of operations in the procedure, for example: " I F" or " REPEAT.")
Therefore having created turtle 1 , Color LOGO gives turtle 1 a turn and creates turtle 2 , then it

gives turtles 1 and 2 each a turn and creates turtle 3. Next it gives turtles 1 , 2, and 3 each a

turn and encounters the END instruction. Because turtle 0 is always there, turtle 0 is now

waiting to find out what to do. We have not given turtle 0 anything else to do, so it is waiting

for a command from the keyboard. If we press ! ENTER! (a command for turtle (/) to do nothing),

then all the other turtles get another turn. Try it. Remember this as a way to single-step

through procedures to find errors.

Of course we do not always want to have to sit at the keyboard pressing I ENTER I. We can get

the whole thing to work as planned if we give turtle 0 some procedure to run as well. Try

TO TEST
HATCH 1 BOX 50 30 60
HATCH 2 BOX 40 180 40
HATCH 3 BOX 60 100 20
BOX 20 150 120

END

The last call of BOX has no HATCH preceding, so i t is addressed to turtle 0 . That's more like it!

If you want to see in a bit more detail what is actually happening you might want to slow down

the speed. You can slow any procedure by inserting a SLOW command.

72

TO TEST
SLOW 30
HATCH 1 BOX 50 30 60
HATCH 2 BOX 40 180 40
HATCH 3 BOX 60 100 20
BOX 20 150 120

END

The number after S LOW tells the computer how much to slow down. The number must be

between (/) and 127. Zero is full speed and 127 is the slowest speed. The S LOW command sets a

speed for all procedures which will remain unchanged until reset with another SLOW command

or until RUN mode is exited and then reentered.

Before we leave this example, notice that at the completion of each turtle's procedure the turtle

disappears so that at the end only turtle (/) remains.

Of course we can use many procedures for the various turtles. Try

TO TEST2
HATCH 1 BOX 50 30 60
HATCH 2 BOX 40 180 90
HATCH 3 BOX 60 100 20
HATCH 4 CI RCLE 3 30 140
HATCH 5 CI RCLE 4 180 120
C I RCLE 5 90 90

END

This procedure can be used to point out one potentially troublesome point. What if we altered

the procedure by making the procedure for turtle (/) BOX (say BOX 80 90 90)? If you try this,

you will find that the circles are not completed and the two turtles drawing the circles remain

on the screen. This is because turtle (/) runs out of commands before the others are finished. To

avoid the problem, always put the procedure for turtle (/) last, and assign turtle (/) the most

complex procedure.

Another solution to the problem mentioned above is contained in the procedure ABSTRACT.

TO ABSTRACT
CLEAR COLORSET 1
RT 25
HATCH 1 PATH 1 4 30
RT 43
HATCH 2 PATH 2 4 20
RT 67
HATCH 3 PATH 3 4 40
RT 105
HATCH 4 PATH 0 4 10
VANISH

END

Notice that turtle (/) i s turned between each HATCH. The initial position and heading of each

new turtle is the same as that of the parent turtle (the turtle which hatches the new one). In

this example turtle (/) is the parent, so each new turtle will have the position and heading of

turtle (/) at the time of HA TC Hing. After the four new turtles are created, then turtle (/) is given

the VAN ISH command. The VAN ISH command tells a turtle to go out of existence. Once turtle

(/) is out of existence, it no longer gets a turn, and it cannot bring the procedure to a halt by

running out of commands.

73

Of course this procedure needs PATH to function.

TO PATH : COLOR : I : L
HT P C : COLOR
W H I LE 1

(FD : L RT 90 PU FD : I
RT 90 P D FD : L
LT 90 P U F D : I LT 90 P D

I F N EAR 255 > 150
(RT 108)

EN D

PATH contains some new ideas which we should explain. The first is the WH I LE statement. The

WH I LE is somewhat like a R EPEAT, but with a condition. The most common use is to repeat

while some condition is true (for example, WHILE :X < 3). The computer evaluates the

condition and returns the value zero if the condition is false or a non-zero value if the condition

is true. Here we want it to repeat forever, so we assign the condition the value 1 which always

is interpreted as true. The parentheses following the W H I LE enclose the commands which are to

be repeated. The other new idea is the use of the NEAR function. The N EAR function returns

an indication of the distance from the current turtle to the designated turtle. Actually, what you

get is the total of the steps in the x direction and in the y direction to the designated turtle. In

PATH the statement is

I F N EAR 255 > 150 (RT 108)

The current turtle (remember 1, 2, 3, or 4) is asking the distance to turtle 255. But turtle 255

does not exist. When you request the distance to a non-existent turtle, you get the distance to

the home position. Therefore this statement says, if the current turtle is more than 150 steps

away from home, then turn right 108 degrees.

After such a long explanation, we should get a program which runs a long time. ABSTRACT
will surely fit the bill; it will run until you hit the I BR EAKI key or until there is a power failure .

74

Perhaps you'd like a different design.

TO M IXIT
COLORSET 1 BG 0
HATCH 1 SWEEP 1 3 60 30 0
HATCH 2 SWEEP 2 3 60 160 90
HATCH 3 SWEEP 3 3 190 160 180
HATCH 4 SWEEP 2 3 190 30 270
VAN ISH
END

TO SWEEP : COL : I NT :X :Y :H
R EPEAT 12

END

(HT PC :COL
SX :X SY :Y SH : H
R EPEAT 92/ : I NT

(PD FD 100 PU BK 100
RT : I NT

)
MAKE :COL :CO L + 1
)

There is no question that the turtles slow down as the number of turtles on the screen

increases. After all, more is going on. Thus far we haven't had so many that the slowing is that

noticeable. But how about a program which generates a lot of turtles? One interesting test is to

return to a recursion program and implement it using multiple turtles. TREE is an ideal

example. Try the following.

TO TREE :S
I F M E = 0 (CLEAR SETY 0)
IF :S>6

END

(FD :S LT 30
HATCH 1 TREE (3* :S/4)
RT 60
HATCH 2 TREE (3* :S/4)
VAN ISH)

75

Again we've introduced a new idea with this procedure, here the M E function. The M E function

returns the identification number of the current turtle. The statement

I F M E = 0 (CLEAR SETY 0)

says if the current turtle is turtle (/), then clear the screen and move. Because turtle (/) is

subsequently told to VANISH , this will happen only once. This procedure recursively hatches

new turtles, all named either 1 or 2. Because the recursive calls keep levels distinct, this is

satisfactory, but functions like N EAR would give unpredictable results because the various

turtles are not uniquely named.

There are a number of interesting things that can be tried with this procedure. One is to

compare it in speed with the earlier version of TREE. In one case you have all the backing up

necessary for a pure recursive program, and in the other you have the overhead necessary to

keep track of all the turtles. To make the comparison meaningful you'll have to make the two

versions draw the same size tree, but by now that is easy. The comparison may give some idea

of why multiprogramming is worth learning about. You can speed the multiple-turtle version by

reducing the number of times the turtle has to be drawn. Simply insert a HT command as the

first command in the procedure. One other change converts the tree into full blossom. Try

TO TREE :S
I F M E = 0 (CLEAR SY 0)
I F : S > 6

END

(FD :S LT 30
HATCH 1 TREE (3* :S/4)
RT 60
HATCH 2 TREE (3* :S/4)
VANISH)

ELSE (R EPEAT 500 ())

The addition is the ELSE statement. The E LSE is a partner of the I F statement. The combination

says if the current value of :S is greater than 6 then obey the commands in the following set of

parentheses (from FD :S through VAN ISH, but if :S is not greater than 6 then obey the

commands in the parentheses following ELSE. The commands following ELSE simply delay the

completion of the procedure so that we can see the tree with a turtle at the end of each branch.

76

Trees are so easy to draw with multiple turtles that we may as well draw a complete forest. In

fact we'll look at two forests, one a deciduous forest in winter and the other an evergreen forest

in whatever season you like.

TO FIR1 : N :X :Y

HT SX :X SY :Y PC 0
B K : N /2 RT 90 FD : N/4
LT 90 FD 6+ : N /2 RT 90
F IR 1 1 : N :X

E N D

T O F I R 1 1 : N : X
P C 1 RT 1 5 FD : N
LT 129 F D 3* : N
WHILE XLOC M E > : X (FD 2)

E N D

T O F IR2 : N : X :Y
HT SX :X SY :Y PC 0
B K : N /2 LT 90 FD : N /4
RT 90 FD 6 + : N /2 LT 90
FI R22 : N :X

E N D

T O FI R22 : N :X
PC 1 LT 15 FD : N
RT 129 F D 3* : N
WHILE XLOC M E <:X (FD 2)

END

TO F IR : N :X : Y :T
HT
HATCH :T FI R 1 :N :X :Y
HATCH :T + 1 FI R2 : N :X :Y
IF : N > 20 (STOP)
FIR (: N + 1) :X :Y :T

END

TO EVERGREEN :TREES
HT
WHI LE :TREES > 0 (

MAKE :X RAN DOM 200 + 20
MAKE :Y RANDOM 100 + 30
MAKE :T :TREES*3
HATCH :T FIR 2 :X :Y :T
REPEAT 30 ()
MAKE :TREES :TREES-1)

VANISH
E N D

77

Try running this set of procedures, first with one tree and then with several. With some TV sets

you may be able to get green tops and brown trunks, so try playing around. If not, you can

always claim that they're intended to be blue spruce. There are a couple of new ideas in the last

two procedures. In F IR1 1 we have used the XLOC function. This returns the X screen coordinate

of the designated turtle. Here :X is the starting point for the right half of the tree. When XLOC
has returned to the starting point, the procedure is finished. In FIR notice the use of the

variable :T to indicate the turtle number. In EVERGREEN we have introduced the RANDOM
function. RANDOM produces a random number between 0 and the argument-1 . For example

RAN DOM 200 + 20

adds 20 to a random number between 0 and 199. The result must be a number between 20 and

219. We do this to keep the trees away from the edge where the wrap-around will give some

rather lopsided trees. Also note the use of WHILE in combination with the

MAKE :TREES :TREES-1

This gives a number which is one less every time through the WHILE loop. :TREES is used to

vary the turtle numbers for each tree drawn.

The deciduous forest uses the TREE procedure we've already seen.* To that we must add

TO FOREST
BACKG ROU N D 1
sx 236
REPEAT 3 (SY 10

SX XLOC M E + 40
HATCH 1 TREE 20
SX XLOC M E + 40
HATCH 2 TREE 30)

CLO U DS
END

*(Use the tree procedure from page 75.)

78

TO CLO U D :SIZE :X
SETH EADING 90
R EPEAT (:S IZE/6)

END

(MAKE :X RAN DOM (:S IZE/2)
PU FD :X/2 P D
F D :S IZE- :X P U
B K :SIZE- :X/2
SY YLOC M E-2)

TO CLO U DS
PC 2 SX 10 SY 180
CLO U D 60
SX 100 SY 164
CLO U D 30
SX 190 SY 176
CLO U D 65

END

Again in this example we have created many turtles with the same numbers by hatching them

recursively. The two multiple tree drawings show the two ways in which multiple turtles can be

created. It makes no difference which way you do it unless you are going to refer to the turtle

by number. In that case, each turtle must have a unique number.

Notice the statement

SX XLOC M E + 40

This has the meaning

SX (XLOC ME) + 40

not

SX XLOC (M E + 40).

79

1 5 . NE W S HAPE S F OR TURTLE S

All turtles are created equal; at least they all look the same. In the examples we have seen so

far that didn't matter, but often we want the different turtles to look different. For instance, it

would be impossible to play many games if all the pieces or players looked the same. So Color

LOGO includes a way to change the shape of individual turtles. As we shall see, this gives us a

bonus: a way to do simple animation.

The shape of the turtle is changed by means of the S HAPE statement. Following the SHAPE is

a list of turtle shape commands. Turtle shapes are drawn using a very limited set of turtle

graphic commands, basically forward and back a single step, right or left by 45 degrees, and

penup and pendown. The commands in a SHAPE statement have absolutely no effect on the

turtle position, heading, or pen state. The symbols used for these commands are listed in the

following table.

TURTLE SHAPE COMMAND

F

B

R

L

u

D

E FFECT

Step forward one dot. If the pen is down,

complement (reverse the color of) the dot.

Step backward one dot. If the pen is down,

complement the dot.

Turn right 45 degrees.

Turn left 45 degrees.

Pick up the turtle shape pen. This pen is always

down at the start of a SHAPE command. The turtle

shape pen is completely independent of the

standard turtle pen; PU and PD commands have no

effect on the turtle shape pen, and U and D have no

effect on the turtle pen.

Put the turtle shape pen down. If the turtle shape

pen was up, the putting it down will cause the

current dot to be complemented.

Notice that because the only forward or back possible is one dot, then the only turns which

make sense are 45 degree turns.

This will be clearer if we give an example. Let us assume that the current orientation of the

turtle is heading straight up. Then the command

SHAPE U R RFFFLLDFFFFL
FFFLLFFFLFFFF

8 1

will draw the following turtle shape.

Notice that the turtle shape commands can extend over more than a single line. Multiple lines

must be connected with a hyphen and must start in column 1 . This in turn means that there is

no limit on the size or complexity of a turtle shape. However, the turtle shape must be redrawn

every time the turtle moves, so the larger and more complex the turtle shape, the slower the

system will run.

It is fairly difficult to create desired turtle shapes by trial and error at the keyboard. It is

especially difficult to locate an error in the middle of a string of turtle shape commands. We

have found the following to be effective ways to proceed. First design the turtle shape on a

piece of graph or engineering paper. The possibility of rotating the paper as you enter the shape

may save you from getting a stiff neck trying to play turtle at the keyboard. Once the shape is

designed on the graph paper, there are two methods which we use. If the turtle shape is a

simple one, enter the shape in DOODLE mode. Remember that the keys 3, 4, 5, 6, and 7
correspond exactly to the turtle shape commands U, D, R, l, and F. Only B is missing, and

while B is very useful, it is not essential. Use of DOODLE mode continually shows you the

current heading, which is a big help. However, the turtle drawn in DOODLE mode will not look

exactly like the final turtle for several reasons. Lines drawn in DOODLE mode are two dots

wide, but lines drawn as turtle shapes are one dot wide. Also, lines which cross, complement

when they are parts of turtle shapes, but they do not complement in DOODLE mode. However,

you will get to see the shape in about the final form and of exactly the final size while drawing

it. Once you have the shape completed in DOODLE mode you can enter EDIT mode and convert

the procedure into one to draw a new shape. Simply insert the S HAPE command before the

command list and convert each 3 to U , each 4 to D, each 5 to R, each 6 to l, and each 7 to F, all

by overtyping.

Let's begin with a very simple example. We want the turtle to appear as an arrow. On graph

paper we draw the dot pattern.

The actual turtle position is to be at the tail end of the arrows. Enter DOODLE mode, naming

the procedure N EW, and draw the figure. The keystrokes are 777777766677555537755747. You

may be surprised at the small size of the turtle, but you can always draw a new one after you've

learned the technique. Now enter EDIT mode and look at N EW. Insert SHAPE before the list of

82

symbols and replace the DOODLE symbols with the appropriate turtle shape commands. Don't

forget to include the hyphen at the end of the first line of commands. At this point your

procedure should be

TO N EW
SHAPE FFFFFFFLLLFFRRRR
U FFRRFDF
END

To see how your shape looks, run N EW and then enter commands like FD 20 and RT 90.
Remember that the turtle can be drawn in eight positions. Be sure to try the diagonal positions

(for example, RT 45) because there will be some change in shape as the turtle rotates to these

positions. To see why that is so, return to the graph paper and follow your turtle instructions

beginning along a diagonal. It is a good idea to do this on graph paper before going to the

computer, as your turtle shapes might come apart upon rotation if they are drawn in the wrong

sequence. To show you that it can happen, try the following. We could have drawn essentially

the same shape by the steps

FFFFFR R U FFD LLLFFLLFF

in the vertical or horizontal positions, but in the diagonal positions this pattern comes apart, as

you can see if you follow the instructions on graph paper.

Now we move to a bit more complex example, an outline of a plane. The dot pattern is

xxx x xxxxx � � xxx x xx x x xxxxx xi ixxxxxx
� �xx x �*

and the procedure created in DOODLE mode and translated in EDIT mode is

TO PLANE
SHAPE RRFFFLLFLLFRFR
FFFFFFRRFFFFFFF
LFLLFLFFFFFFFRR F
FLFLLFLFFR R FFFF
FFFLFLLFLFFFFFF-
FR R FFFFFFR FR FLL-
FLLFF
END

When we go to more complex shapes we prefer to work with paper rather than with DOODLE

83

mode. There are several reasons for this. One is that the B command is very useful. The other is

that we must be very careful if we are to avoid problems when the turtle shape is turned to the
45 degree positions. As is our custom we will illustrate with an example. We want to use the

following stick figure as a turtle shape.

n 4.
I _/ ;: 2 .

_ _ _ _ 7
' ,

� ,' ' , .,

; 3 .

I .

We must choose our pathway through the figure carefully. The problem points are points where

lines meet. To avoid problems we avoid shortcuts and return to junction points by backtracking

exactly. The pathway we take is indicated on the second figure. The dotted lines indicate

backtracking with the pen raised. Remember, if we did not raise the pen when backtracking,

then the lines would be complemented a second time (that is, erased). The only place where we

don't backtrack is on the head. If a closed figure is symmetric , then it will stay closed when

rotated.

The other point to note carefully is when to raise and lower the pen. A dot will be

complemented if the pen is down when we move into the dot or if the pen is lowered while we

are in the dot. Notice that this means that if we draw a line and then cross that line with the

pen down, the crossing dot will be erased.

Following the pathway indicated gives the following procedure. As stated earlier, we would

work this out on paper and enter it directly in EDIT mode so that we could use the B command.

TO ONE
SHAPE LLULLFFFFDFFRR R FFFFFF

R R FFFFFFLLFFU BB LLFFFFFFR FD
FFFFFFFFR RFFFFLFFU B B R B B B B
RFDFFFLLFFU B B LLFFFFRFD
FFLFRFFRFRFFRFRFFRFRF
E N D

Try this out by running O N E. Try rotating it to other positions. Notice that when you turn it far

enough it is upside down. You may not want turtles that do strange things like that for some

purposes. You can sometimes avoid it if it is a problem by shifting your point of view. For

example you might decide that it would be nice to have a turtle which actually looked like a

turtle. If you draw a side view of the turtle, then it will look strange with headings like 180

84

degrees. But if you draw a top view of the turtle, then it looks fine in any orientation.

The reason that we drew the stick figure is that we want to show you how to use Color LOGO

to do some very simple animation. We want to have a figure that will walk. We'll need another
position for the stick figure, so we define another turtle shape. The process is the same as before.

Translating the indicated path into a procedure gives

TO TWO
SHAPE LLU R RFFDB B LLFFFFFFRRR

FFFR R RFFFFLFFU B B R B B B B R FFFRFD
FFFFFFFFFR R R FFFFLLFF-
U BB LLFFFFLLFD FFFLLFU-
B LLFFFFLFDFLFR FFR FR
FFRFRFFRFRF
END

,,,-<f

3.,(, ,

...
,

Now that we have the shapes, we can have some fun. First let's make them walk.

85

TO WALK
HT PU SX 100 RT 90
R EPEAT 100 (ONE ST WAIT 100

HT FD 6 TWO ST
WAIT 100 HT FD 6)

E N D

TO WAIT : T
R EPEAT :T ()

E N D

Notice that in this case we want the turtle shape to be drawn at right angles to the turtle

motion. That is taken care of in the SHAPE statement. Notice also that we have to slow down

the process by including the WAIT instruction. Otherwise it runs so fast that we have trouble

seeing the shape. Try other values for :T to vary the speed. We can make the figure climb; just

enter LT 15 before running WALK again. We can even make the figure walk in a circle.

TO WALK-ARO U N D
HT PU SX 100 RT 90
R EPEAT 100 (ONE ST WAIT 100

HT RT 15 FD 6

E N D

TWO ST WAIT 100
HT RT 15 FD 6)

You may prefer the motion you get with a different control procedure. Try this as an

alternative to WALK

86

TO WALK 1
HT PU SX 100 RT 90
R EPEAT 100

E N D

(HATCH 1 WALKA
REPEAT 8 ()

)

HT FD 6
HATCH 1 WALKB
REPEAT 8 {)
HT FD 6

TO WALKA
HT O N E ST
R EPEAT 10 {)

END

TO WALKB
HT TWO ST
R EPEAT 10 ()

END

The trick here is to get the delays (that is, the REPEATS with empty parentheses) synchronized.

The delays in WALK1 must match with the delays in WALKA and WALKB. If there is a

mismatch one direction the two figures will appear together, and if there is a mismatch the

other way the motion will be unnecessarily jerky.

After all this talk about turtles, we feel an obligation to actually draw something which looks a

bit like a turtle. As our last example we give a HERD of turtles.

I .�,/��--�
, 2 ' 3 .

.. / " '�

TO TU RTLE1
SHAPE LL

B R R FR R FLLFR R FLLFFFFLBBB RFL
FFFR FLB B B U FFFR FDFFFFFR FFF
LFR B B BLFRFFFU B B B LFDFFFFFFFF
LLFFLFFLLFFR B LB LLFR FR R FFFFF
RFR FLFFFLFFFFFFFFLFFFLFRF
EN D

TO TU RTLE2
S HAPE LL

BRRFRRFLLFRRFLLFFFFRR FFU B B
LLFDRRFFFLLFFU BLLFDFFR RFFFFFFF
RR FFU FLLFDLLFFFR RFRRFFFLLFU B
LLFFFR R FDFFFFFFF-
LLFFLFFLLFFR B LB LLFR FR R FFFFF-
RFR FLFFFLFFFFFFFFLFFFLFR F
END

TO CRAWL :T :X :Y
HT PU SX :X SY :Y
RT 90
R EPEAT 100 (

E N D

HATCH : T + 1 T1
REPEAT 8 ()
HT FD 2
HATCH 1 T2
REPEAT 8 ()
H T F D 2
I F XLOC M E > 230 (VANISH)

87

TO T1
HT TU RTLE1
ST
REPEAT 10 ()

E N D

TO T2
HT TURTLE2
ST
REPEAT 10 ()

END

TO H ER D
CLEAR HT
MA KE : I 0 MAKE :T 1
R E PEAT 20 (

END

I F : I < 10 (MAKE : I : I + 1)
MAKE :J 1
WHI LE :J < : I
(HATCH : T CRAWL : T 0 (:J*18)
MAKE :T :T+ 2
MAKE :J :J + 1 J

REPEAT 900 1 J

It i s clear that while much i s possible with the turtle shapes, Color LOGO i s not likely to become
a tool for the generation of Saturday morning TV shows. It was never intended that it should
be so. It is a tool that will allow the child to produce results which can be immensely satisfying
to the creator.

88

16 . GAME S

One of the most popular applications of computers is gaming. Color LOGO can be used to create

a great variety of games. In this chapter we will give two examples of turtle games. These are

included not as competitors for the local video arcade, but as illustrations of some very useful

techniques for communication between turtles.

Before getting into the details of the simple game we're going to use, we want to point out a

few things which may be obvious. Most of the popular video-arcade and computer games rely

very heavily on speed. Things happen which force the player to react faster and faster until

finally they fail. You've already gotten some feel for the speed at which animation runs in Color

LOGO; it' s not going to be fast enough to create shoot-em-up space games that will hold

interest for long. H owever, it does have capabilities such that the user can create rather than

just play such games. If you want to create games which will also be challenging to play using

Color LOGO, then you might try to think of games where coordination of several moving objects

is the challenge (thus lower speed is no limitation) or games where there is sufficient strategy

that the player must think while playing.

Our first sample game is called CATCHEM. There are two players (or one two-handed player)

who manipulate objects on the screen by pressing keys on the keyboard. The object is for the

chaser to catch the runner. When the chaser catches the runner, the scorekeeper changes the

score, and a new chase starts. There is an advantage to using multiple turtles here, as we can

assign each turtle one task. This simplifies the programming greatly; for example, we do not

have to move a cursor to the scoreboard to change the score and then return to make the next

move.

The master procedure simply names the procedures and assigns the four tasks to four turtles.

We use turtle (/) and three others.

TO CATCH EM
CLEAR
HATCH 1 GETKEVS
HATCH 2 R U N NER 20
HATCH 3 CHASER
SCOREKEEPER 0

E N D

The names of the procedures for the four turtles are pretty descriptive. R U NN ER controls the

runner and CHASER controls the chaser. SCO REKEEPER keeps the score. GETKEYS reads

input from the keyboard. Of course the various turtles need to communicate, and that is the

main new idea we will illustrate in this example.

89

Let' s begin with the keyboard.

TO GETKEYS :X

HT
WH I LE 1 (MAKE :X KEY

END

I F : X = 'S (SEND 2 1)
I F :X = 'D (SEND 2 45)
I F :X = 'A (SEND 2 315)
IF :X = 'K (SEND 3 1)
I F : X = ' L (SEND 3 45)
I F :X = 'J (SEND 3 315)

First we see a trick we used before: the use of WHILE 1 as an effective R EPEAT FOR EVER.
The second new item is the KEY function. The KEY function looks at the keyboard to see if any

key has been pressed. If no key has been pressed, then KEY returns the value </J. Thus, if at the

time turtle 1 is executing the statement

MAKE :X KEY

no key is depressed, then the variable :X is given the value </J. If on the other hand a key is

depressed, then the variable :X is given the ASCII value of the key. So the KEY function

returns either the ASCII value of the key depressed or </J if no key is depressed. The ASCII

value is a number assigned to each key on the keyboard according to an industry-wide

convention. In this procedure we do not have to know what the particular number is because the

literal (for example, 'S) automatically computes the ASCII value as well.

The next task for this procedure is to recognize which key has been depressed and to send a

message to the appropriate turtle. We have to decide what keys to use for what actions of the

runner and the chaser. We decided on the following key assignments.

s move runner forward

A turn runner left

D turn runner right

K move chaser forward

J turn chaser left

L turn chaser right

So now we see what (if any) key was pressed. First look at the statement

I F :X = 'S (SEND 2 1)

90

The literal 'S gives the ASCII value of the argument S. That is, the condition :X = 'S in

combination with the previous KEY function checks to see whether the S key was depressed. If

the S key was depressed, then the statement SEND is run.

The SEND statement sends a message to another turtle by leaving the message in a mailbox.

The first number after the SEND is the address of the message. In the line we are analyzing the

address is 2, so this message can be picked up from the mailbox only by turtle 2. The address

can be an expression as well as a number. The second number after the SEN D is the message.

Here the message is the number 1 ; in general the message can be any number in the range

covered by Color LOGO (-32768 to 32767) or an expression which gives a number in this range.

To review,

SEND 2 1

leaves the message 1 in the mailbox for turtle 2. Because the S key is to move the runner (turtle

2), the message 1 must mean move. We'll see that in the procedure R UNNER .

Although we aren't going to use i t in this example, there i s a way to send a general message to

the first turtle that picks up its mail. We just use the turtle address 255; then the next turtle

that inquires will get the message. If we wanted to send an all points bulletin to all turtles, we

could do so by setting a global variable (see Chapter 6).

The rest of GETKEYS is just more of the same. We check for each of the keys which control the

runner and send a message to turtle 2 if one of them is depressed, and we do the same for the

three keys which control turtle 3. Notice that the WH I LE 1 causes turtle 1 to continue to poll

the keyboard forever. There are certain features of Color LOGO which make this part of the

programming very simple. By assigning one turtle the task of watching the keyboard at all

times we make sure that the two players have equal access to control; we are very unlikely to

lose keystrokes while something else is happening, and provision for regular polling of the

keyboard is handled automatically by the logic which handles multiple turtles.

Now let' s turn our attention to R U N N ER.

TO R U N NER :X
PU SX : X
SHAPE FFFFFFFFU B B B R R FD

FFU B B B D B B B
WHILE 1 (MAKE :X MAIL 1

I F :X

END

(IF :X = 1 (FD 81
ELSE (RT :X I

RUNNER sets a starting position for the runner, lifts the pen so that the runner leaves no

tracks (which makes no difference in the chase, but keeps the screen clean), and draws a shape

so that the runner will look different. We then enter another WHILE 1 , which will run forever.

9 1

The runner turtle now checks its mailbox by using the MAIL function. The number following

MAIL (the argument) is the number of the turtle that the runner turtle will accept mail from.

Here turtle 2, the runner turtle, is asking for mail from turtle 1, the keyboard turtle. If there is

no message, then MAIL returns the value 0. The statement

I F :X

checks for the value of :X. If it is 0 , then the statements in parentheses are skipped. Since the

parentheses enclose all the rest of the commands, a 0 causes the loop to start again. Thus the

turtle just keeps checking its mail until it gets a message from turtle 1 .

If we look back at G ETKEYS we see that a message 1 meant to move. Therefore i f :X = 1 the

runner is moved forward 8. If at this point the message is not 1 , then it must be either 45 or

315. The runner is turned right by either amount (remember that RT 315 is the same as l T 45).
This completes the move, so the turtle goes back to checking its mail from turtle 1 .

Before going further, look carefully at the arrangement of the two I F statements in R U N NER.
Notice that the parentheses after the first I F enclose the second I F and the ELSE. This pairs the

E LSE with the second I F. The meaning is: if :X is not 0 (the first I F), then do one or the other of

the following; if :X is 1 move forward-otherwise turn.

The CHASER procedure is similar to R U N N ER, but it includes the test for a successful c atch.

TO CHASER :X

WHILE 1

END

(HOME PU
WHI LE N EAR 2 > 12

(MAKE :X MAIL 1

I F :X

(I F :X = 1 (FD 16)

ELSE (RT :X)

)

SEND 0 1

)

C HASE R includes nested WHILE statements. The first one starts the chaser and runs forever.

The inner one runs until a capture is made. The definition of a capture is that the value

returned by the N EAR function is 12 or less. The portion of the procedure controlled by the

condition N EAR 2 > 12 is identical to that in R UNNER. Remember that the N EA R function

returns the total number of X and Y steps from the current turtle to the designated turtle, here

to turtle 2. Thus the inner part of the procedure says to continue checking mail and making

moves as long as the runner is more than 12 steps away.

If the runner is not more than 12 steps away, then turtle 3, the chaser, sends a message (1) to

the scorekeeper (turtle 0). Having sent the message, the chaser returns to the home position

and the chase begins again.

92

Now we turn to the procedure for the scorekeeper.

TO SCOREKEEPER : S
HT S X 200 S Y 180
WHI LE 1

E N D

(PR INT " " PRINT : S
WHILE M A I L 255 = 0 ()
MAKE : S :S + 1

)

Again there are several new ideas in this procedure. The first steps are to hide the turtle and to

position it to keep the scoreboard. We set the initial score to 0 by the call of the procedure and

again use a WH I LE 1 . The PR INT statement causes anything contained in quotes to be printed

on the screen at the current turtle position. The turtle is not moved. The PRINT statement also

can be used to print the current value of a variable in the same way. Both are used here.

MAIL 255 is a special version of the MAIL function. MAIL 255 will accept messages from all

other turtles. Here we could use MAIL 3 just as well, since turtle 3 is the only one sending

messages to the scorekeeper. The following line:

WHI LE MAIL 255 = 0 ()

continues to check until mail is received.

One useful characteristic of the MAIL function is that like any decent mail system it will collect

messages. Thus if several messages have collected from one or more sources, the MAIL function

will deliver the oldest undelivered message and keep the others for future reference. A SEND
255 goes onto every turtle's list. That message disappears from all lists when one turtle accepts

it.

Now that you have the whole set of procedures in, you can try running the game. To start it,

run CATCHEM. Just remember that this is an educational experience, not pure entertainment.

You may discover that there is a flaw in the game. If the runner is caught close to home, then,

because the chaser is returned to home after each successful catch, the runner is unable to

escape and the score mounts. You could fix this by moving the chaser elsewhere if the runner is

too close to home, or by just incrementing the x position of the chaser by some large number

(say 100) after each catch.

The second game is called REBOUND. It makes use of the game controllers. The object of the

game is to bounce a ball off two turnable paddles onto a target. Here we'll need a few more

turtles. We first assign four tasks: reading of the two controllers, a scorekeeper, and a trigger

to start the whole thing off.

TO R E BO U N D
CLEAR HT
HATCH 2 PADD LE1
HATCH 3 PADDLE2
HATCH 6 SCO REKEEP
TRIGGER

END

93

Let's look at the paddle controls first.

TO PADDLE1
HT SX 60 SY 180
TU R N 0

E N D

T O TU RN : P : X

WHI LE 1

E N D

(MAKE : X PADDLE :P/2
L INE 3

SH 45 + 3*:X

L INE 0
WH I LE PADD LE : P/2 = : X ()

)

TO L INE : CO LO R
PC : COLO R
FD 15 B K 15 B K 15 FD 1 5

E N D

PADDLE1 establishes the position o f the first paddle on the screen. I t calls T U R N which

actually reads the game controller. The new idea in TURN is the use of the PADDLE function.

The PADDLE function returns a number between 0 and 63 for the designated input; the number

depends on the position of the controller handle. The inputs are 0 and 1 for the horizontal and

vertical positions of the left game controller and 2 and 3 for the horizontal and vertical positions

of the right game controller. Thus PADDLE1 by the instruction TURN 0 tells the procedure

TURN to read the horizontal position of the left controller (left refers to the position of the plug

on the rear of the Color Computer). Because the instruction is

MAKE : X PAD D LE : P/2

the variable :X is a number between f/J and 31 . This division of the controller reading by 2

reduces the sensitivity of the display and speeds response. Notice that, after the first pass

through TURN, the procedure looks for a change in the controller setting. It stays in the loop

WH I LE PAD D LE : P/2 = :X ()

until there i s a change. When there i s a change, i t runs through the outer loop which updates

:X , erases the old paddle (LIN E 3), computes a new heading (SH 45 + 3*:X), and draws a new

paddle (LI N E 0). Remember that :X can be between 0 and 31 , so the heading for the paddle can

be between 45 and 45 + 3*(31) = 138. The procedure LIN E actually draws the paddles and

erases them. The B K is broken into two steps so that it exactly duplicates the FD steps; this

insures a successful erase.

9 4

The second paddle is controlled by the second controller. We can use TURN and L INE again.

TO PADDLE2
HT SX 180 SY 12
TURN 2

END

Now we have to create the ball and the target. TRIGGER starts a new round.

TO TRIGGER

HT
HATCH 4 BALL
VAN ISH

END

The ball should come from a randomly selected point towards the first paddle. The easiest way

to do that is to create the ball turtle at the first paddle and to move it (invisibly) in the randomly

selected direction. These two tasks will be carried out by the procedures LAU NCH BALL and

STARTSPOT.

TO BALL
LAUNCH BALL
WHILE MAIL 5 = 0

(STARTS POT
HATCH 5 TARGET
REPEAT 45

(FD 10
I F N EAR 2 <20

(FD 10 LT (H EADING 4 -
H EADING 2 + 180)*2 FD 35)

I F N EAR 3 <25
(FD 10
LT (H EADING 4 -
H EADING 3)*2 FD 45)

TRIGG ER
END

At the same time we create the target at a randomly selected position (HATCH 5 TARGET).
The REPEAT loop actually moves the ball. If the ball is close to the first paddle (turtle 2), the

heading of the ball is changed

LT (H EADING 4 - H EADING 2 + 180)*2

There is a similar change when the ball is close to the second paddle (turtle 3). Notice that when

the ball has moved the maximum distance it triggers a new ball before disappearing.

95

TO LAU NCH BALL
HT PU
SHAPE U FFRRDFR FRFFRFRFFRFRFFR

FRF
MAKE :Y RANDOM 60 + 160

E N D

T O STARTSPOT
HT SH :Y SX 60 SY 180

REPEAT 6 (FD 1 0)

WHILE XLOC 4>7 & YLOC 4>7
(FD 10)

RT 180 ST FD 10

E N D

LAU NCH BALL creates an appropriate shape for the ball and effectively picks a random starting

point by picking the heading. STARTSPOT hides the ball turtle, locates it at the first paddle,

moves it until it reaches the edge of the screen, and finally turns it around and makes it visible.

TARGET does the scoring. First it picks a random position and creates a target shape. Then it

watches for a close approach of the ball from below (if the ball approaches from above, it has

not bounced off the second paddle). If the ball (turtle 4) comes close enough, then a message is

sent to the scorekeeper and to the ball.

96

TO TARGET
SH 0

HT SX RANDOM 100 + 135

SY RANDOM 40 + 120

SHAPE U R RFFFFFFFFFLLLDFFFF
FLFFFFFFFFFLFFFFF

ST
R EPEAT 100

(I F N EAR 4 <15 &
ABS (H EADING 4 -180) > 90

(SEND 6 1 SEND 4 1)

VANISH
END

The SCOREKEEP procedure is essentially the same as before.

TO SCO REKEEP :SCORE
HT SX 200 SY 180

WHI LE 1

END

(PR INT " " PR INT :SCORE
WHI LE MAIL 5 = 0 ()

MAKE :SCORE :SCOR E + 1

COLORSET 1 COLO RSET 0

These two examples should help you to implement your own ideas for more complex games.

97

1 7 . GRAB BAG

In this last chapter we give a final set of sample programs which we hope will give you ideas for

your own projects. We have introduced all the features of Color LOGO earlier, so we will give

these without lengthy comments.

The first set is controlled by the procedure BOND.

TO BON D
WHILE 1

END

(COLORSET 1
CLEAR HT DELAY 1000
TU NNEL
WALK
PAI NT)

TO WALK
SX 28 MAN2 ST DELAY 2000
R EPEAT 29

(MAN2 DELAY 100
HT SX XLOC M E + 3
MAN1 ST DELAY 100

)
MAN2
DELAY 800 SX XLOC ME - 8
DELAY 500 SX XLOC M E + 16
DELAY 500 SX XLOC M E 16
DELAY 500 SX XLOC M E + 8
REPEAT 3 (

HT DELAY 20
ST D ELAY 30)

END

TO TU N N EL
PC 1 HT SX 60 SH 0
R EPEAT 18

END

(FD 20 RT 124 FD 56
B K 56 LT 104)

TO MAN1
SHAPE R R U FFFLLDFLFR
FFLFFRR RFLLFFRR F
LFLLLFFR RFLFRRFL
FFLFLFLFLFFLFRFF
FFLLFRR RFLFFRFL
FFRRFF
EN D

99

1 00

TO MAN2
SHAPE R R UFFFLLDFF
FFLFFRR RFLLFFRRF
lFlLLFFR R FLFR R FL
FFLFLFLFLFFLFR FF
FFLLFR RR FLFFFFFF
E N D

T O PAINT
PC 2 HT MAKE :X 1
REPEAT 3 (COLORSET 0

DELAY 100 COLORSET 1
D ELAY 100)

SX 1 14 SY 102 SH 0
REPEAT 13

E N D

(RAGGED : X
S X XLOC M E 6

SY Y lOC M E - 2
MAKE :X :X + 5

TO RAGGED :X
REPEAT 8

E N D

(FD : X R T 135 FD 8
B K 8 LT 90)

TO DELAY :TIM E
REPEAT :TIM E ()

E N D

The next set is for a younger audience.

TO CLOCK : DELAY : I NT
C LEAR
C LOCK FACE
T I M E : DELAY : I NT

EN D

TO CLOCKFACE
MAKE : N U M B ER 12
SY 180 SX 104 SH 90
R EPEAT 12

END

(FD 22 RT 90 FD 5 B K 5

PU B K 10 PR INT : N U M B ER
FD 10 PD LT 90 FD 22
RT 30
MAKE : N U M BER : N U M BER + 1
I F : N U M BER > 12

(MAKE : N U M B ER 1))

TO TIM E : DELAY : INTERVAL
HT
R EPEAT 24

EN D

(MAKE : H R 0
WH ILE : H R < 12

(MAKE :MIN 0
WH ILE : M I N <60

!D IG ITAL : H R : M I N
PC 1 LITTLEHAND : H R : M I N
P C 2 B IGHAND : M I N
REPEAT :DELAY ()
PC 3 LITTLEHAND :HR : M I N
B IGHAND : M I N
MAKE : M I N

: M I N + : INTERVAL)
MAKE : H R : H R + 1))

TO B I G HAND : M I N UTE
SX 128 SY 96 SH 6* : M I N UTE

LT 8 FD 60 RT 30 FD 18
RT 130 FD 18 RT 32 FD 60

EN D

1 0 1

TO LITTLEHAND : H O U R : M I N UTE
SX 1 28 SY 96
SH 30* : H O U R + : M I N UTE/2
LT 32 FD 30 RT 60 FD 30
RT 1120 FD 30 RT 60 FD 30

E N D

T O D I G ITAL : HO U R : M I N UTES
SX 0 SY 1 80 PR INT "
SX 8*(: H O U R < = 9 & :HOU R < > 01

I F : HOUR (PR I NT : H O U R)
ELS E (PR I NT 12)
SX 16 PRI NT " : " SX 24
I F : M I N UT ES < 10

(PR INT "0" SX 32)
P R I NT : M I N UTES

END

Notice that you can set the interval to any number of clock minutes and that you can set the

speed with : DELAY. Try running

CLOCK 300 5

1 2 : 80

9 .

Next we give another colorful design.

1 02

TO SPIDER : X
COLORSET 1 B G 0
REPEAT 36

(HATCH 1 OFFSET :X :C
MAKE :C : C + 1 RT 10)

VAN ISH
END

TO OFFSET : LENGTH : COLOR
PC : COLOR FD : LENGTH
LT 30 FD : LENGTH
RT 30 FD : LENGTH

END

11 2

Try this with

SPI DER 45

Next we give one which will remind you of the start of every science fiction film you've ever

seen. There is no picture in the manual for this one, as the effect is all in the motion.

TO SPACETRAVEL
COLO RSET 1 BG 0 HT
MAKE :X 4
WHILE 1

(HATCH 1 STAR1
RT 67

HATCH 1 STAR2
RT 207

HATCH 1 STAR1
RT 1 14
HATCH 1 STAR2
RT 87

SETX XLOC M E + :X
IF N EAR 255>30

(MAKE :X :X*-1

HATCH 1 PLAN ET)

VAN I S H
E N D

T O STAR1
HT
SHAPE FFRRFRRF
PU FD 2 ST
R EPEAT 25 (FD 3)

E N D

103

TO STAR2
HT
SHAPE F
PU FD 2 ST
REPEAT 35 (FD 3)

END

TO PLANET
HT
IF XLOC M E > 128 (SETH 75)
ELSE (SETH 300)
FD 10
SHAPE FFRFFRFFRFFRFFR

FFRFFRFF
PU FD 6 ST
REPEAT 20 (FD 4)

END

Here's one which shows the orbit of a moon around a planet and which makes use of multiple

turtles to simplify the mathematics.

1 04

TO O RB IT
COLORSET 1 BG 0
FD 10 RT 90 PC 3
REPEAT 8 (FD 6 RT 45 FD 6)
H O M E
P U S ETH 90 S Y 164
MAKE :MOONPOS 0
SHAPE U-

FFFFFR R DFFR FFFFR FFFFRFFFF
R FFFFR FFFFR FFFFR FFFFR F

WHILE 1

END

(R EPEAT 4
(HATCH 1 MOON : MOONPOS
REPEAT 6 ()
MAKE : MOONPOS : MOONPOS + 20

FD 10 RT 9

TO MOON : POS
HT PU RT :MOONPOS
FD 20
SHAPE U FFFFRRDFRFFRFFRFFR-

FFRFFRFFRFFRF
ST
R EPEAT 9 ()
VANISH

END

As our last example we give a final pretty pattern.

TO SAM PLE
COLORSET 1 BG 0
NPOLY 8 12 3
SX 70 SY 72
N2POL Y 8 48 12

END

TO N PO LY :N :S :C
PC :C
REPEAT : N

(PO LYGON : N :S
RT 360 / : N)

E N D

T O POLYGON : N : S
REPEAT : N (FD :S RT 360/ :N)

END

TO N2POLY : N :S 1 :S2 : I
H T PU MAKE : 1 1
WHILE : I < = : N

(HATCH : I NPOLY : N :S2
(1 + : 1 - : 1 /2*2)

FD :S1 RT 360/ : N
M AKE : I : I + 1

)
VANISH

END

105

Of course you can try this set with other inputs than those given in SAM PLE.

Well, we have now reached the point where you are on your own. We are sure that the

examples herein have just scratched the surface of what is possible. We hope that you have as

much enjoyment working out your own demonstration procedures as we have had in developing

these.

1 06

APPENDIX 1

LANGUAGE S UMMARY OF MICROPI C OLOR LOGO
FOR THE RADIO SHACK COLOR COMPUTER

STARTING LOGO

F'rom Plug-in ROM:

F'rom Disk:

MODES IN COLOR LOGO

Plug the Color LOGO cartridge into the game slot, then

turn on the computer.

Put disk in drive 0, type LOADM "LOGO" and press the

I ENTER I key, wait for the drive light to go out, type

EXEC and press I E NTERI .

The Color LOGO system can be in one of 4 "modes" depending upon what the user is doing at

the time. A brief explanation of each is given here.

BREAK MODE

EDIT MODE

RUN MODE

DOODLE MODE

BREAK MODE

is entered upon system startup and by pressing I BR EAKI
at any time. In this mode the user can load and/or save

programs from tape or diskette, make printed copies of

programs or get into EDIT or RUN modes.

is entered from BREAK MODE by pressing the []] key.

In this mode the user can view, create or modify

programs.

is entered from BREAK MODE by pressing the [BJ key.

In this mode the user can enter turtle commands, call

programs to be run, or enter DOODLE MODE .

is entered from RUN MODE by pressing the � key. In

this mode the user can doodle a picture while creating a

procedure using specially marked keys.

BREAK MODE is entered automatically upon starting Color LOGO, and can be entered from

any other mode by pressing the I B R EAKI key at any time.

It is signified by the " LOGO:" prompt on the screen.

107

The following commands may be used in BREAK mode.

! SH I FT! ICLEARI

E DIT MODE

clears the internal program area.

enters RUN MODE.

enters EDIT MODE.

prints contents of internal program area on the printer

connected to the serial port.

prints same as P command except the Q sends a line

feed after a return character.

prompts for module, designation with "LOAD: , " then

reads from the specified source into the internal program

area. To load from tape enter "T." To load from disk

enter the module identifier, which is a single letter from

A to P. Both require an I E NTER/ to start. The disk

version allows program loading from disk or tape. The

ROM version loads programs only from tape.

prompts for the module name with "SAVE: ," then writes

the internal program area to the specified destination.

To save on tape enter "T," to save on disk enter the

module identifier, which is a letter from A to P. Both

require an I ENTER I to start. The disk version allows

program saving to disk or tape. The ROM version saves

programs only on tape.

E DIT MODE is entered from BREAK MODE by pressing � - In EDIT MODE one can edit the

currently loaded modules. To start with a blank program area, press I SH I FT I ICLEARI in

BREAK MODE before pressing � .

The editor is very easy to use. It works on the principle that "what you see is what you get. "

The first line of text (if there is one) is displayed on the bottom line. To enter lines of text just

type them on the screen. The cursor will always appear on the bottom line, but the text may be

moved up or down the screen at will. The following keys cause special actions to take place.

I ENTERI

108

moves the text up one line on the screen, or if already on

last line, then adds a new line to the text end.

moves the text up one line unless already on the last line.

moves the text down one line unless already on the first

line.

!CLEAR!

l S H I FT l[f]

I S H I FTllIJ

I S H I FT I B

I S H I FT I EI

! B R EAK!

moves the cursor left one character unless already at the

beginning of line.

moves the cursor right one character unless at the line

end.

moves to the top line of the text.

scrolls the text up continuously until any key is pressed.

inserts a blank line in front of the current line if the

cursor is in column 1 (the current line bumps down off

the screen); if not in column 1, then the current line is

split at the cursor location into two lines.

deletes the character under the cursor and moves the

remainder of the line left to close the gap. If the line has

no characters, then the blank line is removed.

inserts a blank into the line at the cursor location by

moving the remainder of the line right one space. If the

line is already full, then no action takes place.

exits EDIT MODE and returns to BREAK MODE.

allows the next character to be one of the specially

marked single key command codes. To enter a real " @"

press � twice.

In general, to enter new lines just type each line followed by an I ENTER I press. To modify a

line, move the cursor into place with the arrow keys, then modify text by typing the new text

over the old or by inserting or deleting characters as described above.

NOTE: If the editor quits accepting new text, then the program area is full.

The editor is general enough to be used not only for writing Color LOGO programs but for

simple word processing applications. After you edit a text file you may print or save it on disk

or cassette for later use. One such use would be writing documentation for modules written in

Color LOGO. Since the editor has a maximum line length of 32 characters, a facility is provided

to allow for printing of longer text lines on the printer. If a line is ended with an "@"
character, then no R ETU R N is output at the end of the line. The result will be that the following

line on the screen will be printed on the same printer line.

109

INTERNAL PROGRAM AREA

Color LOGO procedures are entered in the EDIT mode. They can then be saved on disk or tape

and re-loaded later to be run again. The program area can have any number of Color LOGO

procedures in it. Each procedure begins with a "TO" statement. The "TO" statement must be

the first and only statement on a line. Other than that, any number of statements can share a

line; each one is separated from the previous one by one or more spaces. Each procedure should

end with an "END" statement. The work area may contain many procedures at once. It is a

good practice to leave at least one blank line between procedures to improve readability. It is

also suggested that program lines be indented to show the logical structure of the program. The

examples in this manual are all written in this manner.

TURTLE SPACE

The TURTLE is a creature that has a visible SHAPE, a POSITION and a HEADING. The

position is defined by an (X,Y) coordinate pair. The heading is defined by an angle from fJJ to 359.

In general, the turtle lives on the plane of the display screen. Using TURTLE GRAPHICS

COMMANDS, you can make the turtle move about and, if desired, leave a trail. Initially a turtle

starts at the HOME position. The home position is the approximate middle of the screen

(X = 128, Y = 96). The turtle heading at HOME is zero degrees or straight up. The screen

dimension in the X direction (across the screen) goes from 0 at the left edge to 255 at the right

edge. The screen dimension in the Y direction (up and down) goes from 0 at the left edge to 255

at the right edge. The screen dimension in the Y direction (up and down) goes from 0 at the

bottom to 191 at the top. The lower left hand corner of the screen has coordinates (0,0). The

upper right corner has coordinates (255 ,19 1). The screen is normally a wrap-around space; that

is, if the turtle runs off the top of the screen it appears on the bottom. If it runs off the left it

appears on the right, etc. In that sense, the plane on which the turtle walks is infinite in any

direction. The turtle may be pointed in any direction from 0 to 359 degrees. Straight up is 0

degrees, and the direction increases as the turtle rotates to the right, or in a clockwise

direction.

RUN MODE

RUN MODE is entered from the BRE AK MODE by entering [BJ. When RUN MODE is entered,

the screen is cleared, and the turtle appears at the bottom position. A TEXT WINDOW of three

lines exists at the bottom of the screen. The user enters turtle graphics commands or calls Color

LOGO procedures that have been entered earlier via the EDIT or DOODLE MODE. The user

can enter any of the following commands directly in RUN MODE. However, in RUN MODE no

more than one command may be entered on a line. Once the I ENTER I key is pressed, the

command is executed.

1 1 0

COMMANDS WHICH CAN BE ENTERED DIRECTLY IN RUN MODE

CLEAR HOME FORWARD BACK

R IGHT LEFT PEN U P PEN DOWN

PEN COLOR SHOWTU RTLE H I D ETU RTLE SETX

SETY SETHEADIN G SLOW COLORSET

BACKG R O U N D WRAP NOWRAP SEND

PR INT HATCH VAN ISH

Some of these commands may be abbreviated as shown below. Other Color LOGO commands

may not be entered in RUN MODE; they may only be used within a Color LOGO procedure.

TO EXECUTE A COLOR LOGO PROCEDURE FROM RUN MODE

To run a procedure entered earlier via EDIT or DOODLE MODE, just enter the name of the

procedure. Follow the procedure name with any arguments to be passed to the procedure, then

press !ENTER! . Each argument is preceded by at least one space. An argument can be a

number, a variable or an expression. If an expression is used it must be enclosed in parentheses.

DOODLE MODE

DOODLE MODE is entered from RUN MODE by pressing the � key. DOODLE MODE allows

the creation of a turtle graphics procedure that will draw a shape without requiring that the

user even know how to read. In DOODLE MODE the screen displays an " = " sign. The user

enters a word (nonsense or otherwise) of at least one letter or number and presses I ENTER! .
The word is the name of the procedure to be created as a picture is drawn. Now the numeric

keys (marked by the special keyboard overlay) can be used to enter turtle graphics commands.

Each time a key is pressed, the specified command is executed by the turtle. At the same time,

a procedure is created in the program area. This procedure can be viewed by entering EDIT

MODE. When entering commands, the BACKSPACE key can be used to erase the last

command. In this case, the entire screen is erased and the shape is re-drawn without the last

entered command. To exit the DOODLE MODE press I B R EAKI . A procedure created in

DOODLE MODE can be called out from RUN MODE to re-draw the picture again. To do so,

just enter the name that was given when DOODLE MODE was entered.

The DOODLE MODE commands are:

(1) CLEAR (2) HOME (3) PU (4) PD (5) RT 45

(6) LT 45 (7) FD 1 (8) FD 10 (9) RT 15 (0) LT 15

1 1 1

COLOR LOGO STATEMENTS AND COMMANDS

CONTROL STATEMENTS

IF expr

(list of statements)

ELSE
(list of statements)

REPEAT expr

(list of statements)

WHI LE expr

(list of statements)

STOP

TO procname parmlist

1 12

The expression is evaluated. If the value is true (non

zero) the list of statements in parentheses is executed. If

it is false (0) then the list of statements is skipped. The

word THEN may be inserted after the expression if

desired. The I F statement may be followed by an ELSE
statement. The " list of statements" denoted here and

below (see ELSE, R EPEAT and WHILE) consists of zero

or more statements enclosed in parentheses. The state

ments may include any turtle commands or other control

statements except the TO statement. There may be

multiple statements per line and any number of lines

may be used.

This statement must follow an I F statement. If the

expression value on the I F statement is false, then the

list of statements after ELSE is executed. Otherwise it is

skipped.

The expression is evaluated; if it has a value less than or

equal to zero, then the list of statements is skipped.

Otherwise the list of statements is executed the specified

number of times.

The expression is evaluated; if it is false (0), then the list

of statements is skipped. If it is true (non-zero), then the

list of statements is executed. After the list is executed,

control returns to the WHILE again. The expression is

then evaluated again. The list of statements is executed

repeatedly until the expression is found to be false.

This terminates the execution of a procedure. Control is

returned to the calling procedure if there is one. If the

procedure was called from RUN MODE, then control

returns to RUN MODE. If the procedure was called by a

HATCH statement, then the associated turtle goes out of

existence.

This statement defines the start of a Color LOGO proce

dure. It must start in column 1 of a line and must be the

only statement on the line. The " procname" may be any

name of one or more letters. The parameters in the

"parmlist" may be from 0 to 5 variables. Each one con

sists of a colon " : " followed by any word of one or more

letters.

EN D

VAN ISH

MAKE :var expr

PR I NT "text"

PR I NT expr

NOWRAP

WRAP

HATCH expr procname arglist

SEND expr expr

This is the last statement in a procedure. Execution of

an E N D is equivalent to that of the STOP statement.

VAN ISH takes the current turtle out of existence.

The value of the expression is assigned to the variable.

The literal text or the expression value is displayed at

the turtle location. The turtle is not moved.

Normally, the screen is in "wrap" mode. That is, a turtle

which runs off the screen will come back on the opposite

edge. Execution of the N OWRAP statement takes the

screen out of wrap mode. If a turtle then runs off the

screen, the program will terminate with an "OUT O F
BOUNDS" error message.

Puts the screen back in wrap mode.

Creates a new turtle. The turtle will start at the same

(X,Y) position as its parent (the turtle that HATCHed it)

and will be pointed in the same direction. It will have the

standard turtle shape. The expression value becomes the

new turtle' s identification number (a number from 1 to

254). The "procname" specifies the procedure to be exe

cuted by the new turtle. The "arglist" is optional; it

specifies the arguments to be passed to the procedure.

The new turtle runs simultaneously with the other active

turtles.

A message is sent to the specified turtle. The first ex

pression value denotes the identification of the turtle to

which the message is sent. A value of 255 denotes that

the message is being sent to the first turtle that requests

its mail. Any other value denotes that the message can

be received only by a turtle with the specified identifica

tion (see also the MAIL function). The value of the sec

ond expression is the value sent to the other turtle.

1 13

procname arglist

SLOW expr

This is referred to as a CALL statement, even though it

does not contain the word CALL. To CALL any pro

cedure, just enter its name followed by any arguments to

be passed. If arguments are present, they are separated

by one or more spaces. Each argument may be a num

ber, a variable, a function reference or an expression

contained in parentheses. The argument' s values are

passed to the parameter variables on the TO statement

of the called procedure. If there are fewer arguments

than there are parameters on the TO, then extra

parameters are set to 0 . If the called procedure executes

a STOP or END, then control continues with the next

statement after the call statement.

The SLOW statement causes execution to slow down so

that it can be watched more closely. The value of the ex

pression denotes how slow to go. A value of 127 is the

slowest speed. A value of 0 is full speed.

TURTLE GRAPHICS COMMANDS

Statement

BACK expr

BACKG ROUND expr

COLORSET expr

CLEAR

FORWARD expr

H I DETURTLE

HOME

1 14

Abbreviation Meaning

B K

BG

FD

HT

moves the turtle backward the number of steps denoted

by the value of the expression. If the turtle's pen is

down, then a line of the current pen color is drawn as

the turtle moves.

sets the background color of the screen to color 0, 1, 2 or

3. The default background color is 3 .

selects color set 0 or 1 . For each set there are four

distinct colors. The default colorset is 0 .

paints the entire display area the background color and

moves the current turtle to the home position.

moves the turtle forward the number of steps denoted by

the value of the expression. If the turtle' s pen is down,

then a line of the current pen color is drawn as the turtle

moves.

makes the turtle invisible.

sends the current turtle to position (128,96) with heading

0 .

LEFT expr LT turns the turtle left (counter-clockwise) the specified

number of degrees.

PENCOLOR expr PC sets the pen color of the current turtle to color 0, 1, 2 or

3. The default color is 0. The actual color depends on the

current color set. If the pen color is set to the same color

as the screen background color, then the turtle pen will

erase as it moves.

PEN DOWN PD tells the current turtle to draw a line as it moves in

response to FORWARD or BACK commands.

R IGHT expr RT turns the turtle right (clockwise) the specified number of

degrees.

SETHEADING expr SETH and SH points the turtle in the direction specified by the expres-

sion. The heading can be from 0 to 359 degrees.

0 degrees is straight up.

SETX expr sx moves the turtle by changing its X coordinate to the

value specified. No line is drawn. The value may be from

0 (left edge) to 255 (right edge).

S ETY expr SY moves the turtle by changing the Y coordinate to the

value specified. No line is drawn. The value may be from

0 (bottom) to 191 (top).

SHAPE shape list changes the shape of the current turtle to a shape

denoted by the shape list. See TURTLE SHAPE LIST

below.

S HOWTU RTLE ST makes the turtle visible.

E XPRESSIONS

The "expr" designation above denotes a place in which an expression can be substituted. An

expression can be a number, a variable, a function reference or a combination of these and the

operators shown below. An expression is always evaluated to a number from -32768 to 32767.

Expressions may contain parentheses and are, in general, evaluated in the same manner as

those in BASIC or other languages.

1 15

ARITHMETIC OPERATORS

These operators result in a number from -32768 to 32767.

+ addition subtraction

* multiplication I division

LOGICAL AND RELATIONAL OPERATORS

These operators always result in a 1 for TRUE or a <JJ for FALSE.

& logical AND logical OR

N OT logical negation

< less than > greater than

equal to < > not equal to

< = less than or equal to > = greater than or equal to

VARIABLES

A variable consists of a colon followed by a word containing any number of letters or numbers.

A variable represents a unique storage location for a number. If a variable is given on a TO
statement, then that variable is said to be a LOCAL variable. That is, each time the procedure

is invoked, a new storage location is assigned to the variable. Thus, if a procedure is invoked

recursively or by several turtles at once, then each invocation has its own set of local variables

which, though they have the same name, are kept distinct. There may be up to 5 parameters on

a TO statement; thus there may be up to 5 local variables in a procedure.

If a variable is referenced in a procedure but is not on the TO statement for the procedure, then

the variable is said to be a GLOBAL variable. There is only one storage location assigned to

each particular global variable. Thus all references to the global variable refer to the same

storage location even if the references are in different procedures. This provides a way of

sharing information among procedures or among turtles.

LITERALS

'C

1 16

A quote (') followed by one character is called a literal. It

can be used anywhere a number can be used. The value

of a literal is the ASCII value of the character. For

example, 'A is equal to 65. A literal is particularly useful

in checking for values returned by the KEY function.

FUNCTIONS

M E

KEY

ABS arg

RANDOM arg

XLOC arg

YLOC arg

H EADING arg

N EAR arg

MAIL arg

returns the identification of the current turtle. The main

turtle is number 0. The others are numbered from 1 to

254.

returns 0 if no key is depressed. If a key is depressed,

then the value is the ASCII value of the character.

returns the absolute (positive) value of the argument.

returns a random number from 0 to arg-1 .

returns the X coordinate of the turtle with the specified

identification (note "XLOC M E" gives your own X coor

dinate). If no turtle exists with the identification, then

128 is returned.

returns the Y coordinate of the turtle with the specified

identification (note "YLOC ME" gives your own Y coor

dinate). If no turtle exists with the identification, then 92

is returned.

returns the heading (0 to 359) of the turtle with the

specified identification (note " H EADING M E" gives your

own direction). If no turtle exists with the identification,

then 0 is returned.

returns a measure of the distance from the current turtle

to the one with the specified identification. The measure

is equal to the number of steps in the X direction plus

the number of steps in the Y direction. If no turtle exists

with the specified identification, then the distance to

HOME is measured.

returns a number value. MAIL is used to check for and

receive messages sent via the SEND command. The

argument of the MAIL function denotes the source from

which messages are to be received. If the argument is

255, then mail is received from any turtle that has sent

mail addressed to the current turtle. If the argument is

not 255 then it denotes the identification of the turtle

from which mail is to be received. If more than one

message is available for delivery, then the oldest

undelivered message is the one returned. If no messages

are available, then a value of zero is returned.

1 1 7

PADDLE arg returns a value from f/J to 63 denoting the position of one

of the game paddles (joysticks). The arg is a value from f/J
to 3. PADDLE 0 gives the UP/DOWN of the left paddle.

PADD LE 1 gives the RIGHT/LEFT of the left paddle.

PADDLE 2 gives the UP/DOWN of the right paddle. And

PADDLE 3 gives the RIGHT/LEFT of the right paddle.

For UP/DOWN the minimum value is UP. For

RIGHT/LEFT the minimum value is LEFT.

The "arg" designation shown above denotes an argument value passed to a procedure or ±Unc

tion. The argument can be a variable, a number, a function reference or an expression. If the

argument is an expression, it must be enclosed in parentheses.

TURTLE SHAPE LIST

The SHAPE statement is used to assign a new shape to the current turtle. The shape of a turtle

is made up of a pattern of dots on a grid. The shape list tells Color LOGO how to draw the

turtle pattern. The turtle shape is automatically rotated to face in the direction the turtle is

headed. Drawing the turtle shape is similar to using normal turtle graphics commands to draw

any shape. The difference is that the commands which make up the shape list are a restricted

and simplified form of the normal turtle graphics commands. The commands allow a step of one

pixel (one square on a piece of graph paper) in any of the 8 possible directions. The 8 directions

are: up, down, right, left, and the four diagonal directions. The one-letter commands that may

be used in a shape list are shown below. The shape list can be any length. If it runs over a line

boundary, put a hyphen "-" at the end of the line, then continue in column 1 of the next line.

The turtle shape drawing pen complements the affected pixels. That is, the complement of "a

dot present" is " no dot present" and vice versa. This allows a turtle to pass over a picture

without destroying the picture.

1 1 8

TURTLE SHAPE COMMAND

F

B

R

L

u

D

MULTIPLE TURTLES

MEANING

step forward one pixel; if the pen is down, complement

the pixel.

step backward one pixel; if the pen is down, complement

the pixel.

rotate right by 45 degrees.

rotate left by 45 degrees.

pick up the turtle shape pen; this pen is always assumed

down at the start of a shape list. This pen should not be

confused with the turtle pen that draws when a FOR
WAR D or BACK turtle graphics statement is executed.

put the turtle shape pen down; if the pen was previously

up, then putting it down will cause the current pixel to

be complemented.

Normally one turtle exists. The user can create additional turtles by using the HATCH
statement. Each turtle then runs its procedures independently of the other turtles. The HATCH
statement assigns an identification number to each turtle. That number may be used by other

turtles to send mail or request location information about the turtle. The main turtle is always

number 0. Other turtles can have a number from 1 to 254.

When a turtle other than the main one exists from the procedure given it when it was

HATCHed, it goes out of existence leaving behind only the lines it drew on the screen. The

VAN ISH statement also causes the turtle to go out of existence. The main turtle, in contrast,

can only go out of existence by executing a VANISH statement.

If the main turtle exits from the procedure given to it from RUN MODE, it will return to RUN

MODE where the user can then enter its next command or procedure to run. If when the main

turtle is in RUN MODE there are other turtles, then the other turtles cease to move. Each time

the I ENTER I key is pressed, each of the turtles executes one program statement. This has the

effect of stepping the hatched turtles along at a controlled pace. A useful debugging method is

to HATCH a turtle from RUN MODE and tell it to run the procedure which is to be tested.

Then the procedure is run by pressing I ENTER! repeatedly. If you enter a VAN ISH command,

then the main turtle will disappear and the hatched turtle will run at full speed.

1 19

ERROR ME SSAGE S FROM COLOR LOGO

In BREAK MODE a " ?" is displayed if any key other than a valid command letter is pressed. A

load or save command may also display a digit followed by a "?" .

1 ?

2?

3?

4?

6?

memory error

tape checksum error (probably a bad tape or the volume

not set correctly

attempt to load a tape that is not a Color LOGO program

attempt to load a module that is too long for memory

disk drive not ready, or an attempt to write on a write

protected diskette, or an improperly formatted diskette.

In RUN MODE there are several possible messages that may be issued. These messages

attempt to identify the error in the program, but remember that the message is only a "guess"

as to what is wrong. It is possible that the message does not exactly fit the problem.

Each time one of the following messages is displayed, the user must press any key to continue.

MESSAGE

I DON'T KNOW H OW TO . . .

I CAN'T FIG URE O UT . . .

I DON'T KNOW HOW M UCH

120

PROBABLE MEANING

" . . . " is filled in with the name of what Color LOGO

thought was a procedure name to call; but the procedure

name is not found in the program area. If the name is

one which should be in the program area, make sure that

it is preceded by "TO" (not "T0" (zero)). Also make sure

"TO" is in column 1 . Check also that the name is cor

rectly spelled. If the name was not supposed to be a pro

cedure, then probably there is something wrong with the

immediately preceding command.

" . . . " is filled in with the word that caused the confusion.

Color LOGO was attempting to compute the value of an

expression when it encountered the problem. Possibly

the syntax of the expression is in error; or a colon is left

out before a variable name; or a function name is

misspelled.

This message means that a command such as R IGHT or

FORWAR D which should be followed by a number is not

followed by a number. Either an expression is not pres

ent where one should be or the very first item in the ex

pression is not valid.

"(" OR ")" NOT R IG HT A left parenthesis is not found as expected after an I F,
WH ILE or REPE/\T expression or after an ELSE. Or, un

balanced parentheses are detected.

I CAN'T DO THAT I N TH IS MODE A command (such as REPEAT) other than one of the

ones allowed is entered directly from the keyboard in

RUN MODE. Remember, some commands may be exe

cuted only within a Color LOGO procedure.

MY M EMORY IS TOO FU LL

O UT OF BOUNDS

FORMAT OF A COLOR LOGO DISK

The internal program and work area is filled. This will

always happen eventually if a program is allowed to do

infinite recursion (call itself repeatedly forever). In
general, procedure calls, hatching turtles and sending

messages consume memory. The longer the text in the

program area, the less available memory for these

operations.

The screen has been placed in NOWRAP mode and a

turtle has run off the boundaries of the screen.

A Color LOGO program disk is formatted with the " DSKI N l0" command under BASIC.

However, Color LOGO does not use the BASIC directory. Color LOGO divides the diskette into

16 modules named A through P. Once a diskette is used under Color LOGO it should not be

written upon under BASIC. Each Color LOGO module occupies 2 tracks or 36 sectors on the

diskette.

1 2 1

APPENDIX 2

MAKING A BACKUP COPY OF THE COLOR LOGO DISKETTE

It is a good idea to make a copy of the Color LOGO diskette for everyday use. The original

Color LOGO diskette can be stored in a safe place to protect it from damage. To make a backup

copy, follow the steps below.

One-Drive TRS-80 Color Computer Disk System

1 . Make sure that the Color Computer is properly connected to the color television or color

video. Plug the Color Computer Disk Controller into the slot on the right side of the

computer.

2. Turn the color video and the Color Computer system on. (The computer' s power switch

is on the back left corner of the computer. The disk drive switch is on the back of the

drive, in the upper corner.)

3 . When you see the "OK" prompt, insert a new, blank diskette into the disk drive. Then

type [Q] rnJ [Kl OJ [NJ OJ rn:J and press I ENTER I .

4. When the " O K" prompt reappears, remove the new diskette from the disk drive.

5 . Place an adhesive tab (provided with new diskettes) over the square notch in the Color

LOGO diskette. (If you do not have any tabs, use a small piece of opaque tape.)

6. Insert the Color LOGO diskette with the square notch up and the label facing right, into

the disk drive. Close the disk drive latch.

7. Type rn] [8] [Q [R] [Q] t:e:J 0 rn:J and press !ENTER! .

8. When you see the message, " I NSERT DESTI NATION D ISKETTE AND PRESS ENTER" ,
remove the Color LOGO diskette (called the "SOU RCE" diskette) from the disk drive.

Insert the new diskette that you used in Step 3 (the " DESTI NATION" diskette) into the

disk drive. Close the disk drive latch. Finally, press I ENTER! .

9. When you see the message, " I NSERT SOU RCE D ISKETTE AND PRESS ENTER",
remove the DESTINATION diskette from the disk drive, insert the Color LOGO

diskette, close the disk drive latch, and press I ENTER I .

10 . Continue to switch between the SOURCE diskette and the DESTINATION diskette as

instructed by the computer. When the BACKUP process is complete, you'll see the

"OK" prompt reappear.

123

Two-Drive TRS-80 Color Computer Disk System

1 . Make sure that the Color Computer is properly connected to the color television or color

video. Plug the Color Computer Disk Controller into the slot on the right side of the

computer.

2 . Turn the color video and the Color Computer system on. (The computer' s power switch

is on the back left corner of the computer. The disk drive switch is on the back of the

drive, in the upper corner.)

3. Insert a new, blank diskette into Drive 1 (the disk drive second from the Color

Computer on the cable). Close the disk drive latch.

4. Type [QJ [§J [RJ [O INJ [j] [i] and press I E NTER I .

5. Place an adhesive tab (provided with new diskettes) over the square notch in the Color

LOGO program diskette. (If you do not have an adhesive tab, use a small piece of

opaque tape.)

6. Insert the Color LOGO diskette in Drive iJJ (the disk drive closest to the Color Computer

on the cable). Close the disk drive latch.

7. Type lm � [Q [RJ [!JJ � 1]] 0 ITJ [QJ 0 [i] and press I ENTERI .

8 . The computer will copy the contents of the diskette in Drive iJJ onto the diskette in Drive

1 . When the BACKUP process is complete, you'll see the "OK" prompt reappear.

124

INDEX

Note that the language summary in the Appendix begins on page 107. Therefore, page numbers

below 107 refer to discussions within the tutorial, and page numbers above 107 refer to

summaries in the language reference appendix.

ABS . 29, 1 1 7 Error message . 120
Address . 91 Expression . 29, 1 12
Animation . 81
ARC . 36 FD . 7 , 1 14
Arithmetic . 29, 1 16 Format . 39
ASCII . 90 FORWARD . 6 , 1 14

Fractal . 49

BACK . 10, 114 Functions . 1 17

BACKGROUND 3 1 , 1 14
B G . 3 1 , 1 14 Game controller . 93

Binary tree . 46 Gaines . 89

BK . 10, 1 14 Global variable 28, 1 16

BREAK . 6
BREAK mode 6, 107, 120 HATCH . 7 1 , 1 1 3

Heading . 3 5
Call . 1 14 HEADING . 1 17
Can1era . 4 1 HIDETURTLE 1 0 , 1 14
Cartridge . 5 , 107 HOME . 35 , 1 14
Cassette . 5 , 39 Home position . 35
Circle . 25 HT . 10 , 1 14
CLEAR . 8, 1 14
COLORSET . 3 1 , 1 14 IF . . 47 , 1 12
Complement . 8 1 Indentation . 1 9
Communication . 89 Insert . 14, 15 , 109

Conditional . 4 7
Control statement . 72 KEY . 90, 1 17

Cursor . 13 Keyword . 17

Delete . 14 , 109 LEFT . 10 , 1 1 5

Directory . 39 Level . 44

Diskette . 5 , 39, 107 LISP . 3
DOODLE mode 53, 1 1 1 Literal . 9 1 , 1 1 6
DSKINI0 . 39, 123, 124 Load . 5 , 39, 107

Local variable . 28, 1 16
Edit, DOODLE . 54 Logical operator . 1 16
EDIT mode . 13 , 108 LT . 10 , 1 1 5
Editor . 1 3 , 108
ELSE . 76 , 1 12 Mailbox . 91
END . 1 13 MAIL . 9 1 , 1 17
End loop recursion . 43 MAIL 255 . 93, 1 1 7
Erase . 3 1 MAKE . 64 , 1 13

Erase, DOODLE . 59 Master turtle . 71

125

ME . 76, 1 17 Save . 39
Message . 91 Scan . 16
Modes . 6, 107 Screen dimension . 1 10
Module . 39 Screen position . 1 10
Multiple turtles . 71 Scroll . 16
Multiprogramming . 71 SEND . 90, 1 13

SETH . 36, 1 1 5
Names . 17 SETHEADING 36, 1 15
NEAR . 74, 1 17 SETX . 35, 1 1 5
NOWRAP . 43, 1 13 SETY . 35, 1 1 5

SH . 36
OK Set . 57 SHAPE . 81, 1 1 5
Overlay . 53 SHOWTURTLE 1 1 , 1 1 5

Single step . 72
PADDLE . 94, 1 17 SLOW . 73, 1 14
PC . 31 , 1 15 Speed . 73, 1 14
PD . 35, 1 1 5 ST . 1 1 , 1 1 5
PENCOLOR . 3 1 , 1 15 STOP . 47, 1 12
PENDOWN . 35 , 1 15 Structure . 23
PENUP . 35, 1 15 Subprocedure . 21
Photograph . 41 sx . 35, 1 1 5
PRINT . 93, 1 0 1 , 1 13 SY . 35, 1 1 5
Printing procedures 39
PU . 35 , 1 15 TO . 17, 1 12

Turtle 255 . 9 1
Queuing mail . 93 Turtle graphic . 3, 1 10

RANDOM . 78 , 1 17 VANISH . 73, 1 13
Recursion . 43 Variable . 27, 1 16
Relational operators 1 16
REPEAT . 2 1 , 99, 1 12 WAIT . 67
Reset . 6 WHILE . 74, 1 12
RIGHT . 8, 1 15 WRAP . 44, 1 13
ROM . 5 , 39 Wrap-around . 44, 1 13
RT . 8, 1 1 5
RUN m ode . 13 , 107 XLOC . 78, 1 1 7

YLOC . 78, 1 17

126

	Front Cover
	Limited Warranty
	Title Page
	Copyrights
	Foreword
	Table of Contents
	Introduction
	1. A Bit About Color Color
	2. Getting Started
	3. Modes and Editing
	4. Procedures
	5. Repeat and Subprocedures
	6. Variables
	7. Colors
	8. Other Turle Commands
	9. Saving, Loading, and Printing Your Color Logo Procedures
	10. Recursion
	11. Doodle Mode - Procedures Without Typing
	12. One Key Doodling
	13. Use of Doodle Mode and OK Set
	14. Multiple Turtles
	15. New Shapes For Turtles
	16. Games
	17. Grab Bag
	Appendix 1 - Language Summary
	Color Color Statements and Commands

	Appendix 2 - Making a Backup Copy of the Color Logo Diskette
	Index
	Back Cover

UU<�€TO RECTANGLE FD 50 RT 90 FD 30 RT 90 FD 50 RT 90 FD 30ENDTO BOX FD 50 RT 90 FD 30 RT 90 FD 50 RT 90 FD 30END,UU<ÿ�ÿUU

UU<�ÿTO FOUR REPEAT 4 (BOX)ENDTO MANY REPEAT 10 (FOUR RT 9)ENDTO DIAMOND FD 50 LT 45 FD 50 LT 135 FD 50 LT 45 FD 50ENDTO DIAMOND2 REPEAT 29 (DIAMOND RT 40)ENDTO PATTERN REPEAT 6 (SQUARE-CIRCLE RT 60)ENDTO SQUARE-CIRCLE SQUARE CIR“UU<�¦CLE ENDTO SQUARE REPEAT 4 (FD 28 RT 90 FD 28)ENDTO CIRCLE REPEAT 36 (FD 3 RT 10 FD 3)ENDTO BOX FD 50 RT 90 FD 30 RT 90 FD 50 RT 90 FD 30END§UU<ÿ�ÿUU

UU<�ÿTO DESIGN :LENGTH :N REPEAT :N (SQUARE :LENGTH RT 360/:N)ENDTO SQUARE :N REPEAT 4 (FD :N RT 90)ENDTO SQUIGGLE FD 7 REPEAT 8 (FD 4 RT 45) FD 7 REPEAT 8 (FD 4 LT 45) FD 7ENDTO SQUIGGLE8 :SIDE :ANGLE REPEA�UU<�…T 360/:ANGLE (REPEAT :SIDE (SQUIGGLE) RT :ANGLE) REPEAT 360/:ANGLE (REPEAT :SIDE (SQUIGGLE) LT :ANGLE)END‡UU<ÿ�ÿUU

UU<�ÿTO FOUR REPEAT 2 (PC 1 BOX PC 2 BOX)ENDTO MANY :N REPEAT :N (FOUR RT 90/:N)ENDTO BOX PC 1 FD 50 RT 90 PC 2 FD 30 RT 90 FD 50 RT 90 PC 1 FD 30ENDTO FOUR2 REPEAT 4 (BOX)ENDTO MANY2 :N REPEAT 2*:N/3 (FOUR2 RT 90/:fUU<��N)ENDpUU<ÿ�ÿUU

UU<�ÿTO BOX PU FD 50 RT 90 PD PC 2 FD 30 RT 90 FD 50 RT 90 PU FD 30ENDTO DOUBLE SETX 60 MANY 90 SETX 180 MANY 90ENDTO DOUBLE HT SX 60 MANY 90 SX 180 SH 0 MANY 90ENDTO MANY :N REPEAT 2 * :N/3 (FOUR RT 90/:N)ÜUU<�ÿENDTO FOUR REPEAT 4 (BOX)ENDTO ARC :X :Y :RADIUS :DEGREE PU SX :X SY :Y REPEAT :DEGREE (FD :RADIUS DOT BK :RADIUS RT 1)ENDTO DOT RT 90 BK 1 PD FD 1 FD 1 BK 1 PU LT 90ENDTO KIRSTIN CLEAR SX 60 SY 80 REPEAT 18 (PENT 20 RpUU<�mT 20) SX 95 SY 82 REPEAT 9 (PENT 15 RT 40)ENDTO PENT :SIDE REPEAT 5 (FD :SIDE LT 72) FD :SIDEEND�UU<ÿ�ÿUU

UU<�ÿTO CIRCLE FD 3 LT 10 CIRCLEENDTO POLYSPI :SIZE :ANGLE :STEP FD :SIZE RT :ANGLE POLYSPI (:SIZE+:STEP) :ANGLE :STEPENDTO INSPI :SIZE :ANGLE :STEP FD :SIZE RT :ANGLE INSPI :SIZE (:ANGLE + :STEP) :STEPENDTO TEST :SIZE :ANGLE æUU<�ÿ:STEP CLEAR INSPI :SIZE :ANGLE :STEPEND TO TREE :N IF :N < 2 (STOP) FD :N RT 15 TREE (3*:N/4) LT 30 TREE (3*:N/4) RT 15 BK :NENDTO FRACTAL :N IF :N < 15 (FD :N STOP) FRACTAL (:N/3) LT 60 FRACTAL (:N/3) RT 120 FRACTALùUU<�ÿ (:N/3) LT 60 FRACTAL (:N/3)ENDTO FLAKE :N CLEAR REPEAT 6 (FRACTAL :N RT 60)ENDTO FLAKE2 :N CLEAR SX 50 SY 40 REPEAT 3 (FRACTAL2 :N RT 120)ENDTO FRACTAL2 :N IF :N < 9 (FD :N/4 RT 80 FD :N LT 160 FD :N RT 80 FD :N/4 (UU<�ÿSTOP) FRACTAL2 (:N/3) LT 60 FRACTAL2 (:N/3) RT 120 FRACTAL2 (:N/3) LT 60 FRACTAL2 (:N/3)ENDTO FLAKE3 :N CLEAR SX 50 SY 40 REPEAT 3 (FRACTAL3 :N RT 120)ENDTO FRACTAL3 :N IF :N < 9 (FD :N/4 RT 80 FD 2*:N LT 160 FD 2ŒUU<�ÿ*:N RT 80 FD :N/4 STOP) FRACTAL3 (:N/3) LT 60 FRACTAL3 (:N/3) RT 120 FRACTAL3 (:N/3) LT 60 FRACTAL3 (:N/3)ENDTO FOO :SIZE :LEVEL :PARITY HT IF :LEVEL = 0 (STOP) LT :PARITY*90 FOO :SIZE (:LEVEL-1) (:PARITY*-1) FD :SIZE�UU<�² RT :PARITY*90 FOO :SIZE (:LEVEL-1) :PARITY FD :SIZE FOO :SIZE (:LEVEL-1) :PARITY RT :PARITY*90 FD :SIZE FOO :SIZE (:LEVEL-1) (:PARITY*-1) LT :PARITY*90ENDuUU<ÿ�ÿUU

UU<�ÿTO 1 CLEARENDTO 2 HOMEENDTO 3 PUENDTO 4 PDENDTO 5 RT 45ENDTO 6 LT 45ENDTO 7 FD 1ENDTO 8 FD 10ENDTO 9 RT 15ENDTO 0 LT 15ENDTO T PC 1 T1ENDTO TT PC 3 T1ENDTO T1 SH 0 HT PD FD 8 RT 150 FD 15CUU<�ÿ TRI 15 SH 0 FD 5 PU STENDTO TRI :SIDE IF :SIDE < 2 (STOP) REPEAT 3 (RT 120 FD :SIDE) TRI (:SIDE-2)ENDTO QUICKT REPEAT 3 (FD 15 RT 120)ENDTO S PC 2 S1ENDTO SS PC 3 S1ENDTO S1 SH 45 HT PD FD 10 RT 45 SQU 14 RT 135 F�UU<�ÿD 10 SH 0 PU STENDTO SQU :SIDE IF :SIDE < 2 (STOP) REPEAT 4 (RT 90 FD :SIDE) SQU (:SIDE-1)ENDTO C PC 0 C1ENDTO CC PC 3 C1ENDTO C1 SH 0 HT PD FD 8 RT 90 REPEAT 15 (FD 4 RT 24) RT 22 MAKE :X 7 REPEAT 7 (CIR :X RT 90 FD�UU<�€ 1 LT 90 MAKE :X :X-1) RT 135 FD 2 SH 0 PU STENDTO CIR :STEP REPEAT 8 (FD :STEP RT 45)ENDTO 77 PC 3 BK 1END	UU<ÿ�ÿUU

UU<�ÿTO DOTS CLEAR HT RT 90 SX 5 SY 150 LINE-OF-DOTS SX 5 SY 50 LINE-OF-DOTSENDTO LINE-OF-DOTS REPEAT 12 (DOT FD 20)ENDTO DOT FD 1 PD RT 90 FD 1 REPEAT 4 (RT 90 FD 2) PU BK 1 LT 90 BK 1 PUENDTO PATTERN1 DOTS SX 5 SY 150 REPHUU<�ÿEAT 6 (PD FD 20 PU FD 20) SX 5 SY 50 ST PDENDTO LINE-OF-DOTS REPEAT 12 (DOT FD 20)ENDTO PATTERN2 DOTS SX 5 SY 150 REPEAT 6 (PD LT 60 FD 40 RT 120 FD 40 LT 60) SX 5 SY 55 LT 90 FD 10 RT 90 FD 40 RT 90 FD 10&UU<�ÿ BK 10 LT 90 STENDTO PATTERN3 MAKE :X 0 MAKE :Y 50 CLEAR HT REPEAT 10 (REPEAT 7 (SX :X SY :Y SQUARE MAKE :Y :Y+20) MAKE :X :X+20 MAKE :Y 50) MAKE :X 11 MAKE :Y 58 REPEAT 4 (REPEAT 5 (SX :X SY :Y �UU<�ÿ T MAKE :X :X+40) MAKE :X 11 MAKE :Y :Y+40) SX 31 SY 158 STENDTO T SH 0 HT PD FD 8 RT 150 FD 15 TRI 15 SH 0 FD 5 PU STENDTO TRI :SIDE IF :SIDE < 2 (STOP) REPEAT 3 (RT 120 FD :SIDE) TRI (:SIDE-2)ENDTO SQUARE REPEAT {UU<�ÿ4 (FD 20 RT 90)ENDTO PATTERN4 CLEAR RT 90 REPEAT 2 (FD 60 SX 128 SY 96 RT 45) HOMEENDTO PATTERN5 CLEAR LINES 60 128 10 HOMEENDTO LINES :LENGTH :X :STEP IF :LENGTH = 0 (STOP) SX :X SY 36 SH 0 FD :LENGTH RT 90 FD :LENGTHzUU<�ÿ LINES (:LENGTH - :STEP) (:X + :STEP) :STEPENDTO DRAW-F CLEAR SX 50 SY 146 RT 180 FD 50 SX 50 SY 146 LT 90 FD 30 SX 50 SY 126 FD 20 HOMEENDTO DRAW-F2 CLEAR SX 50 SY 146 RT 180 PC 1 FD 50 WAIT 6 SX 50 SY 146 LT 90 PŸUU<�ÿC 2 FD 30 WAIT 6 SX 50 SY 126 FD 20 WAIT 6 HOMEENDTO WAIT :T REPEAT :T (REPEAT 820 ())ENDTO DOTM CLEAR DOT FD 60 DOT RT 135 FD 30 LT 45 DOT LT 45 FD 30 RT 45 DOT RT 90 FD 60 DOT HOMEENDTO PATTERN6 RT 180 SX 70 FD 50 RT 9ÀUU<�Â0 FD 20 RT 90 FD 20 LT 90 FD 10 RT 90 FD 10 LT 90 FD 10 LT 90 FD 10 RT 90 FD 10 LT 90 FD 20 RT 90 FD 20 RT 90 FD 50 RT 90 FD 70 SX 198 SY 96 SH 180 FD 50 RT 90 FD 70 RT 90 FD 50END`UU<ÿ�ÿUU

UU<�ÿTO BOX :SIDE :X :Y SX :X SY :Y REPEAT 4 (FD :SIDE RT 90)ENDTO CIRCLE :SIDE :X :Y SX :X SY :Y REPEAT 20 (FD :SIDE RT 18)ENDTO TEST1 SLOW 30 HATCH 1 BOX 50 30 60 HATCH 2 BOX 40 180 90 HATCH 3 BOX 60 100 90 BOX 20 150 120ENDTO TESTjUU<�ÿ2 HATCH 1 BOX 50 30 60 HATCH 2 BOX 40 180 90 HATCH 3 BOX 60 100 20 HATCH 4 CIRCLE 3 30 140 HATCH 5 CIRCLE 4 180 120 CIRCLE 5 90 90END TO ABSTRACT CLEAR COLORSET 1 RT 25 HATCH 1 PATH 1 4 30 RT 43 HATCH 2 PATH 2 4 20 RT 67 HATC”UU<�ÿH 3 PATH 3 4 40 RT 105 HATCH 4 PATH 0 4 10 VANISHENDTO PATH :COLOR :I :L HT PC :COLOR WHILE 1 (FD :L RT 90 PU FD :I RT 90 PD FD :L LT 90 PU FD :I LT 90 PD IF NEAR 255 > 150 (RT 108))ENDTO MIXIT COLORSET 1 �UU<�ÿBG 0 HATCH 1 SWEEP 1 3 60 30 0 HATCH 2 SWEEP 2 3 60 160 90 HATCH 3 SWEEP 3 3 190 160 180 HATCH 4 SWEEP 2 3 190 30 270 VANISHENDTO SWEEP :COL :INT :X :Y :H REPEAT 12 (HT PC :COL SX :X SY :Y SH :H REPEAT 92/:INT (PD¢UU<�ÿ FD 100 PU BK 100 RT :INT)) MAKE :COL :COL+1ENDTO TREE1 :S IF ME = 0 (CLEAR SETY 0) IF :S > 6 (FD :S LT 30 HATCH 1 TREE1 (3*:S/4) RT 60 HATCH 2 TREE1 (3*:S/4) VANISH)ENDTO TREE2 :S IF ME = 0 (CLEAR SY 0)KUU<�ÿ IF :S > 6 (FD :S LT 30 HATCH 1 TREE2 (3*:S/4) RT 60 HATCH 2 TREE2 (3*:S/4) VANISH) ELSE (REPEAT 500 ())ENDTO FIR1 :N :X :Y HT SX :X SY :Y PC 0 BK :N/2 RT 90 FD :N/4 LT 90 FD 6+:N/2 RT 90 FIR11 :N :XENDTO ùUU<�ÿFIR11 :N :X PC 1 RT 15 FD :N LT 129 FD 3*:N WHILE XLOC ME > :X (FD 2)ENDTO FIR2 :N :X :Y HT SX :X SY :Y PC 0 BK :N/2 LT 90 FD :N/4 RT 90 FD 6+:N/2 LT 90 FIR22 :N :XENDTO FIR22 :N :X PC 1 LT 15 FD :N RT 129 FD 3*:N WHILE XLOC ME <�UU<�ÿ :X (FD 2)ENDTO FIR :N :X :Y :T HT HATCH :T FIR1 :N :X :Y HATCH :T+1 FIR2 :N :X :Y IF :N > 20 (STOP) FIR (:N+1) :X :Y :TENDTO EVERGREEN :TREES HT WHILE :TREES > 0 (MAKE :X RANDOM 200 + 20 MAKE :Y RANDOM 100 + 30 MAKE :T :TÜUU<�ÿREES * 3 HATCH :T FIR 2 :X :Y :T REPEAT 30 () MAKE :TREES :TREES - 1) VANISHENDTO FOREST BACKGROUND 1 SX 236 REPEAT 3 (SY 10 SX XLOC ME + 40 HATCH 1 TREE1 20 SX XLOC ME + 40 HATCH 2 TREE1 30) CLOUDSENDþUU<�ÿTO CLOUD :SIZE :X SETHEADING 90 REPEAT (:SIZE/6) (MAKE :X RANDOM (:SIZE/2) PU FD :X/2 PD FD :SIZE-:X PU BK :SIZE-:X/2 SY YLOC ME-2)ENDTO CLOUDS PC 2 SX 10 SY 180 CLOUD 60 SX 100 SY 164 CLOUD 30 SX 190 SY 176 CLOÕUU<�
UD 65END UU<ÿ�ÿUU

UU<�ÿTO NEW SHAPE FFFFFFFLLLFFRRRR-UFFRRFDFENDTO PLANE SHAPE RRFFFLLFLLFRFR-FFFFFFRRFFFFFFF-LFLLFLFFFFFFFRRF-FLFLLFLFFRRFFFF-FFFLFLLFLFFFFFF-FRRFFFFFFRFRFLL-FLLFFENDTO ONE SHAPE LLULLFFFFDFFRRRFFFFFF-RRFFFFFFLLFFUBBLLFFFFFFRFD-FFFFFFFFRRFFúUU<�ÿFFLFFUBBRBBBB-RFDFFFLLFFUBBLLFFFFRFD-FFLFRFFRFRFFRFRFFRFRFENDTO TWO SHAPE LLURRFFDBBLLFFFFFFFRRR-FFFRRRFFFFLFFUBBRBBBBRFFFRFD-FFFFFFFFFRRRFFFFLLFF-UBBLLFFFFLLFDFFFLLFU-BLLFFFFLFDFLFRFFRFR-FFRFRFFRFRFENDTO WALK HT PU SX 100 RT 90 REPEAT æUU<�ÿ100 (ONE ST WAIT 100 HT FD 6 TWO ST WAIT 100 HT FD 6)ENDTO WAIT :T REPEAT :T ()ENDTO WALK-AROUND HT PU SX 100 RT 90 REPEAT 100 (ONE ST WAIT 100 HT RT 15 FD 6 TWO ST WAIT 100 HT RT 15 FD 6)ENDTO WALK1 HTõUU<�ÿ PU SX 100 RT 90 REPEAT 100 (HATCH 1 WALKA REPEAT 8 () HT FD 6 HATCH 1 WALKB REPEAT 8 () HT FD 6)ENDTO WALKA HT ONE ST REPEAT 10 ()ENDTO WALKB HT TWO ST REPEAT 10 ()ENDTO TURTLE1 SHAPE LL-BRRFRRFLLFRRFLLFF�UU<�ÿFFLBBBRFL-FFFRFLBBBUFFFRFDFFFFFRFFF-LFRBBBLFRFFFUBBBLFDFFFFFFFF-LLFFLFFLLFFRBLBLLFRFRRFFFFF-RFRFLFFFLFFFFFFFFLFFFLFRFENDTO TURTLE2 SHAPE LL-BRRFRRFLLFRRFLLFFFFRRFFUBB-LLFDRRFFFLLFFUBLLFDFFRRFFFFFFF-RRFFUFLLFDLLFFFRRFRRFFFLLFUB-LLFFFRRFDFFFFFFwUU<�ÿF-LLFFLFFLLFFRBLBLLFRFRRFFFFF-RFRFLFFFLFFFFFFFFLFFFLFRFENDTO CRAWL :T :X :Y HT PU SX :X SY :Y RT 90 REPEAT 100 (HATCH :T+1 T1 REPEAT 8 () HT FD 2 HATCH 1 T2 REPEAT 8 () HT FD 2 IF XLOC ME > 230 (VANISH))ENDTO °UU<�ÿT1 HT TURTLE1 ST REPEAT 10 ()ENDTO T2 HT TURTLE2 ST REPEAT 10 ()ENDTO HERD CLEAR HT MAKE :I 0 MAKE :T 1 REPEAT 20 (IF :I < 10 (MAKE :I :I+1) MAKE :J 1 WHILE :J < :I (HATCH :T CRAWL :T 0 (:J*18) MAxUU<�>KE :T :T+2 MAKE :J :J+1) REPEAT 900 ())END¬UU<ÿ�ÿUU

UU<�ÿTO CATCHEM CLEAR HATCH 1 GETKEYS HATCH 2 RUNNER 20 HATCH 3 CHASER SCOREKEEPER 0ENDTO GETKEYS :X HT WHILE 1 (MAKE :X KEY IF :X = 'S (SEND 2 1) IF :X = 'D (SEND 2 45) IF :X = 'A (SEND 2 315) IF :X = 'K (SEND 3 1) IFÁUU<�ÿ :X = 'L (SEND 3 45) IF :X = 'J (SEND 3 315))ENDTO RUNNER :X PU SX :X SHAPE FFFFFFFFUBBBRRFD-FFUBBBDBBB WHILE 1 (MAKE :X MAIL 1 IF :X (IF :X=1 (FD 8) ELSE (RT :X)))ENDTO CHAQUU<�ÿSER :X WHILE 1 (HOME PU WHILE NEAR 2 > 12 (MAKE :X MAIL 1 IF :X (IF :X=1 (FD 16) ELSE (RT :X))) SEND 0 1)ENDTO SCOREKEEPER :S HT SX 200 SY 180 WH�UU<�SILE 1 (PRINT " " PRINT :S WHILE MAIL 255 = 0 () MAKE :S :S+1)ENDÊUU<ÿ�ÿUU

UU<�ÿTO REBOUND CLEAR HT HATCH 2 PADDLE1 HATCH 3 PADDLE2 HATCH 6 SCOREKEEP TRIGGERENDTO PADDLE1 HT SX 60 SY 180 TURN 0ENDTO PADDLE2 HT SX 180 SY 12 TURN 2ENDTO TURN :P :X WHILE 1 (MAKE :X PADDLE :P/2 LINE 3 SH 45 + 3*:©UU<�ÿX LINE 0 WHILE PADDLE :P/2 = :X ())ENDTO LINE :COLOR PC :COLOR FD 15 BK 15 BK 15 FD 15ENDTO TRIGGER HT HATCH 4 BALL VANISHENDTO BALL LAUNCHBALL WHILE MAIL 5 = 0 (STARTSPOT HATCH 5 TARGET REPEAT 45 (FD .UU<�ÿ10 IF NEAR 2 < 20 (FD 10 LT (HEADING 4 - HEADING 2+180)*2 FD 35) IF NEAR 3 < 25 (FD 10 LT (HEADING 4 - HEADING 3)*2 FD 45))) TRIGGERENDTO LAUNCHBALL HT PU SHAPE UFFRRDFRFRFFRFR�UU<�ÿFFRFRFFR-FRF MAKE :Y RANDOM 60 + 160ENDTO STARTSPOT HT SH :Y SX 60 SY 180 REPEAT 6 (FD 10) WHILE XLOC 4>7 & YLOC 4>7 (FD 10) RT 180 ST FD 10ENDTO TARGET SH 0 HT SX RANDOM 100 + 135 SY RANDOM 40 + 120 SHAPE URRFFFFFFFFFLLLD¯UU<�ÿFFFF-FLFFFFFFFFFLFFFFF ST REPEAT 100 (IF NEAR 4 < 15 & ABS (HEADING 4 - 180) > 90 (SEND 6 1 SEND 4 1)) VANISHENDTO SCOREKEEP :SCORE HT SX 200 SY 180 WHILE 1 (PRINT " " PRINT :SCORE WHILE MAIL 5=0 () MA“UU<�7KE :SCORE :SCORE + 1 COLORSET 1 COLORSET 0)END›UU<ÿ�ÿUU

UU<�ÿTO BOND WHILE 1 (COLORSET 1 CLEAR HT DELAY 1000 TUNNEL WALK PAINT)ENDTO WALK SX 28 MAN2 ST DELAY 2000 REPEAT 29 (MAN2 DELAY 100 HT SX XLOC ME+3 MAN1 ST DELAY 100) MAN2 DELAY 800 SX XLOC ME-8 DELAY 500ÉUU<�ÿ SX XLOC ME+16 DELAY 500 SX XLOC ME-16 DELAY 500 SX XLOC ME+8 REPEAT 3 (HT DELAY 20 ST DELAY 30)ENDTO TUNNEL PC 1 HT SX 60 SH 0 REPEAT 18 (FD 20 RT 124 FD 56 BK 56 LT 104)ENDTO MAN1 SHAPE RRUFFFLLDFLFR-FFLFFRRRF”UU<�ÿLLFFRRF-LFLLLFFRRFLFRRFL-FFLFLFLFLFFLFRFF-FFLLFRRRFLFFRFL-FFRRFFENDTO MAN2 SHAPE RRUFFFLLDFF-FFLFFRRRFLLFFRRF-LFLLLFFRRFLFRRFL-FFLFLFLFLFFLFRFF-FFLLFRRRFLFFFFFFENDTO PAINT PC 2 HT MAKE :X 1 REPEAT 3 (COLORSET 0 DELAY 100 CvUU<�øOLORSET 1 DELAY 100) SX 114 SY 102 SH 0 REPEAT 13 (RAGGED :X SX XLOC ME-6 SY YLOC ME-2 MAKE :X :X+5)ENDTO RAGGED :X REPEAT 8 (FD :X RT 135 FD 8 BK 8 LT 90)ENDTO DELAY :TIME REPEAT :TIME ()ENDñUU<ÿ�ÿUU

UU<�ÿTO DELAY :TIME REPEAT :TIME ()ENDTO CLOCK :DELAY :INT CLEAR CLOCKFACE TIME :DELAY :INTENDTO CLOCKFACE MAKE :NUMBER 12 SY 180 SX 104 SH 90 REPEAT 12 (FD 22 RT 90 FD 5 BK 5 PU BK 10 PRINT :NUMBER FD 10 PD LT 90 FD 22 RT ÑUU<�ÿ30 MAKE :NUMBER :NUMBER+1 IF :NUMBER > 12 (MAKE :NUMBER 1))ENDTO TIME :DELAY :INTERVAL HT REPEAT 24 (MAKE :HR 0 WHILE :HR < 12 (MAKE :MIN 0 WHILE :MIN < 60 (DIGITAL :HR :MIN PC 1 LITTLEH{UU<�ÿAND :HR :MIN PC 2 BIGHAND :MIN REPEAT :DELAY () PC 3 LITTLEHAND :HR :MIN BIGHAND :MIN MAKE :MIN :MIN+:INTERVAL) MAKE :HR :HR+1))ENDTO BIGHAND :MINUTE SX 128 SY 96 SH 6*:MINUTE LT 8 FD 60 6UU<�ÿRT 30 FD 18 RT 130 FD 18 RT 32 FD 60ENDTO LITTLEHAND :HOUR :MINUTE SX 128 SY 96 SH 30*:HOUR + :MINUTE/2 LT 32 FD 30 RT 60 FD 30 RT 120 FD 30 RT 60 FD 30ENDTO DIGITAL :HOUR :MINUTES SX 0 SY 180 PRINT " " SX 8*(:HOUR<=9 & :HOUR<>0) I�UU<��F :HOUR (PRINT :HOUR) ELSE (PRINT 12) SX 16 PRINT ":" SX 24 IF :MINUTES < 10 (PRINT "0" SX 32) PRINT :MINUTESEND,UU<ÿ�ÿUU

UU<�ÊTO SPIDER :X COLORSET 1 BG 0 REPEAT 36 (HATCH 1 OFFSET :X :C MAKE :C :C+1 RT 10) VANISHENDTO OFFSET :LENGTH :COLOR PC :COLOR FD :LENGTH LT 30 FD :LENGTH RT 30 FD :LENGTHEND÷UU<ÿ�ÿUU

UU<�ÿTO SPACETRAVEL COLORSET 1 BG 0 HT MAKE :X 4 WHILE 1 (HATCH 1 STAR1 RT 67 HATCH 1 STAR2 RT 207 HATCH 1 STAR1 RT 114 HATCH 1 STAR2 RT 87 SETX XLOC ME+:X IF NEAR 255 > 30 (MAKE :X :X*-1 HATCH 1 PLANUU<�ÿET)) VANISHENDTO STAR1 HT SHAPE FFRRFRRF PU FD 2 ST REPEAT 25 (FD 3)ENDTO STAR2 HT SHAPE F PU FD 2 ST REPEAT 35 (FD 3)ENDTO PLANET HT IF XLOC ME > 128 (SETH 75) ELSE (SETH 300) FD 10 SHAPE FFRFFWUU<�9RFFRFFRFFR-FFRFFRFF PU FD 6 ST REPEAT 20 (FD 4)END1UU<ÿ�ÿUU

UU<�ÿTO ORBIT COLORSET 1 BG 0 FD 10 RT 90 PC 3 REPEAT 8 (FD 6 RT 45 FD 6) HOME PU SETH 90 SY 164 MAKE :MOONPOS 0 SHAPE U-FFFFFRRDFFRFFFFRFFFFRFFFF-RFFFFRFFFFRFFFFRFFFFRF WHILE 1 (REPEAT 4 (HATCH 1 MOON :MOONPOS REPEAT 6 () *UU<�± MAKE :MOONPOS :MOONPOS+20) FD 10 RT 9)ENDTO MOON :POS HT PU RT :MOONPOS FD 20 SHAPE UFFFFRRDFRFFRFFRFFR-FFRFFRFFRFFRF ST REPEAT 9 () VANISHEND²UU<ÿ�ÿUU

UU<�ÿTO SAMPLE COLORSET 1 BG 0 NPOLY 8 12 3 SX 70 SY 72 N2POLY 8 48 12ENDTO NPOLY :N :S :C PC :C REPEAT :N (POLYGON :N :S RT 360/:N)ENDTO POLYGON :N :S REPEAT :N (FD :S RT 360/:N)ENDTO N2POLY :N :S1 :S2 :I HT PU MAKE :I 1 /UU<�w WHILE :I <= :N (HATCH :I NPOLY :N :S2 (1+:I-:I/2*2) FD :S1 RT 360/:N MAKE :I :I+1) VANISHENDmUU<ÿ�ÿUU

