
a.II - - -!!!! !!!! !!!!!

I:
--==:

••

THEREGENCYTOWER • su1TE21s • 770JAMESST. • svRAcuse;-Ni' 13203
PHONE(315)474-7858 • TELEX848740

}

A •Tour De PORTH·

vi th

ePORTll

by Charles B. Baker

copyright 1983 Frank Bogg Laboratory

2 A Tour De FOR'l'B

llAHDAL REVISION HISTORY

Revision Date Change

A 25oct83 Original Release, eFORTH 1 . 0

COPYRIGB'l' IRFORllATIOR

This entire manual is provided for the personal use and
enjoyment of the purchaser. Its contents are copyrighted by
Charles E. Eaker and Frank Hogg Laboratory, Inc. , and
reproduction in whole or in part, by any means, is prohibited.
Use of this program, or any part thereof, for any purpose other
than single use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described
in this manual. Use of undocumented features or parameters may
cause unpredictable results for which neither Charles E. Eaker
nor Frank Bogg Laboratory, Inc. can assume responsibility.
Although every effort has been made to make the supplied software
and its documentation as accurate and as functional as possible,
Charles E. Eaker and Frank Hogg Laboratory, Inc. will not assume
responsibility for any damages incurred or generated by such
material. Charles E. Eaker and Frank Hogg Laboratory, Inc.
reserve the right to make changes in such material at any time
without notice.

Prank Bogg Laboratory copyright 1983

(_

A Tour De PORTH 3

INSTALLING ePORTB

To get eFORTH up and running on your computer, follow the
instructions in the Appendix which applies to your operating
system or computer.

copyr ight 1983 Prank Bogg Laboratory

TABLE OF CONTENTS

1 WBY FORTH?
THE FORTH ENVIRONMENT
THE FORTH PHILOSOPHY
THE FORTH COMMUNITY

2 BOW DO YOO SAY •eELLO•?
THE FORTH INTERPRETER
TYPING MISTAKES
WORDS
STOPPING THE OUTPUT
THE DICTIONRY AND ITS VOCABULARIES
CONTEXT AND CURRENT
MORE WORDS
REDEFINING A WORD
FORGETTING A WORD
EVEN MORE WORDS
DEFINE BEFORE USE
STARTING FORTH WITH eFORTH

3 WHAT DO YOO SAY AF'l'ER YOU'VE SAID •eELLO•?
NUMBERS
EMPTY STACK
CONSTANTS
VARIABLES
AN AVERAGE EXAMPLE
MANIPULATING THE STACK
DECIMAL - BASE TEN
HEXADECIMAL - BASE SIXTEEN
BINARY - BASE TWO
CHOOSING NAMES

4 WHAT CAN I DO WITH IT?
GLOSSARY ENTRIES
LOOK, MA! NO VARIABLES
THE RETURN STACK
FOOD FOR THOUGHT
DEFINING A WORD THAT DEFINES OTHER WORDS
WHAT DOES does> DO?
GETTING FANCIER OUTPUT
USING FANCIER INPUT
DOUBLE NUMBERS
IT'S THE PHONE AGAIN

Frank Bogg Laboratory

A Tour De FORTH

8
8
8
9

10
10
11
11
1 2
1 2
1 2
1 3
14
15
15
15
1 6

18
18
20
2 1
2 1
2 2
2 3
2 4
2 4
2 5
2 5

28
29
29
30
3 1
3 2
3 2
3 3
3 4
3 4
3 6

copyr ight 1983

. -\
/

f

A Tour De PORTH 5

5 BOW DO I SAVE AND EDIT MY DEFINITIONS? 38
THE FORTH MEETS THE DISK 3 8
PUTTING TEXT ON A BLOCK 3 9
THE CURRENT BLOCK 40 ,.
THE CURRENT LINE 40
REPLACING AND DELETING LINES 41
THE INSERT BUFFER 42
STRING EDITING COMMANDS 42
THE FIND BUFFER 42
HOW 'l'O INTERPRET A BLOCK 43
ERRORS WHILE LOADING 44
ANSWBRING THE PHONE PROBLEM 44
BACK TO THE RESTAURANT 45
HOW DID YOU DO? 45
THE ANSWERS, PLEASE 46
ELIMINATING CRAMPS 46
BLOCK EDITING COMMANDS 47
DOCUMENTING YOUR APPLICATION 47

6 DOES PORTH HAVE WHAT COUNTS? so
LET ME COUNT THE A's 5 0
HOW DO LOOPS WORK? 5 1
DO THE I's HAVE IT? 5 2
CAN I MAKE IT RUN FASTER? 53

c
DON'T GO OUT OF BOUNDS 5 3
WHAT'S YOUR SINE? 5 4
IF • • • THEN 5 5
IF • • • ELSE • • • TBEN 5 6
WHAT DOES YOUR SINE LOOK LIKE? 5 6
INDEFINITE LOOPS 57
SOME ODDS AND ENDS 5 9
IT'S TIME TO leave 59

7 WHAT ' S IN A WORD? 62
THE LINK Fl:ELD 62
THE NAME FIELD 6 3
THE CODE FIELD 63
THE PARAMETER FIELD 6 3
VARIABLES 63

f! CONSTANTS 64
COLON DEFINITIONS 65
COMPILATION 6 6
IMMEDIATE WORDS 67
COMPILE TIME AND RUN TIME 6 8
COMPILE TIME 68
RUN TIME 6 8
CODE DEFINITIONS 69

copyr ight 1983 Prank Bogg Laboratory

6 A Tour De POR'l'B

8 BOW DOES PORTH WORK? 70
THE FORTH MACHINE'S REGISTERS 7 0
WHO'S NEXT? 7 1
IMPLEMENTING THE FORTH MACHINE 7 1
THE eFORTH 6809 FORTH MACHINE 7 2
THE INTERPRETER 7 2

9 BOW DOES PORTH COMPILE NUMBERS? 76
NUMERIC LITERALS 7 6
BRANCHING 7 7
WHEN if COMPILES 80
HOW compile WORKS 8 0
STRING LITERALS 82

10 VOCABULARIES 84
CONTEXT AND CURRENT VOCABULARIES 84
CREATING NEW VOCABULARIES 8 4
VOCABULARY CHAINING 84
DICTIONARY SEARCHING 8 5
SEALED VOCABULARIES 86

11 BOW CAN I PROTECT MYSELF? 88
COMPILER SECURITY 8 8
DISK ERRORS 8 9
EXECUTION VARIABLES 89 -.,

}
12 THE eFORTB 6809 ASSEMBLER VOCABULARY 90

code DEFINITIONS 9 0
;code DEFINITIONS 9 2
BRANCH INSTRUCTIONS AND PROGRAM STRUCTURE 9 3
eFORTH ASSEMBLER SYNTAX 9 4
IMMEDIATE ADDRESSING 9 5
EXTENDED ADDRESSING 9 5
DIRECT ADDRESSING 9 5
INDEXED ADDRESSING 9 5
RELATIVE ADDRESSING 97
6 8 8 9 MNEMONICS 9 7
MNEMONICS - NO OPERANDS 97
MNEMONICS - IMMEDIATE ADDRESSING ILLEGAL 9 8
MNEMONICS - IMMEDIATE ADDRESSING PERMITTED 9 8
MNEMONICS - IMMEDIATE OPERANDS REQUIRED 9 8 I
MNEMONICS - INDEXED ADDRESSING REQUIRED 9 8
MNEMONICS - REGISTER OPERANDS REQUIRED 9 9
MACROS 99

Prank Bogg Laboratory copyright 1983

I
r

(_

A Tour De PORTH

13

14

WBBRB DOES ePORTB POT THINGS?
THE DICTIONARY
THE PARAMETER STACK
THE TERMINAL INPUT BUFFER
THE RETURN STACK
THE DISK BUFFERS
THE USER VARIABLE AREA

TBB ERi> OP 'l'BB TOOR
LITERAL STRINGS
SMART WORDS
A CASE STRUCTURE

APPENDICES

A HOW DOES eFORTH DIFFER FROM nstarting FORTH n?
B THE eFORTH MASTER GLOSSARY

100
10 1
10 1
10 1
10 1
10 1

10 2
10 3
10 3

C LISTINGS - eFORTH STANDARD EXTENSIONS AND ELECTIVES
D eFORTH INSTALLATION - FLEX
E eFORTH INSTALLATION - TRS80 COLOR COMPUTER

7

100

102

copyright 1.983 Prank Bogg Laboratory

8 A Tour De POftll

CBAPrER 1

WHY PORTH?

Why would anyone choose to use FORTH to write programs
instead of a better-known language such as FORTRAN or Pascal or
even BASIC which probably came free with the computer? FORTH is
more than a programming language. It is a programming
environment, and it is a programming philosophy.

THE FORTH ENVIRORllBHT

FORTH is a "modeless• environment. At any given moment, the
FORTH disk operating system and its commands are available to
you. So are the FORTH editing commands, the FORTH compiler, the
FORTH interpreter, and the FORTH assembler. These are not
separate programs that you have to "get out of" in order to use
one of the others. The resources of each are available to the
others at all times.

FORTH is extensible. This means that you can build new
commands, new functions, and new data structures out of existing
ones. The new ones look and behave like the old ones.

FORTH is interactive. You can create and immediately test
new commands, functions, and data structures from the keyboard.
In FORTH, your "programs• are written in small pieces called
"words" that are combined to make new ones. Any word can be
tested from the keyboard. If what you are testing needs data,
you can supply it from the keyboard. If it returns data, you can
see what comes back at the keyboard.

THE FORTH PHILOSOPHY

The FORTH philosophy is based on this principle:

Only you should protect yourself from your mistakes.

Unlike other languages, FORTH does not stop running your program
and tell you that you tried to do something that is "wrong" and,
in its infinite wisdom, has prevented a "terrible" thing from
happening. On the contrary, FORTH will let you divide by zero,

Frank Bogg Laboratory copyright 1983

....) ,

I

...

I \

A 'rour De FORTH 9

overflow arithmetic operations all over the place, and all sorts
of other nevil n things.

Neither Pascal nor BASIC, for example, will allow you to
directly get the sum of an integer with a character. That's a
ntypen error. Presumably, it's an operation that doesn't make
sense. But both languages give you roundabout ways of doing it
because it is often a valuable thing to do. FORTH doesn't care.
FORTH holds you responsible for the correctness of your
programs. FORTE does not assume that it knows better than you
what a programming error is.

If you are a bad programmer in other languages, you Day well
be a terrible E'ORTH programmer. On the other hand, if you are a
bad programmer in other languages, it may be because those
languages are forever getting in your way, and much of your time
is spent circumventing the language's attempts to "protect" you
from yourself.

FORTH never gets in the way because of something built into
it. If FORTH is a bother at all, it's because things are
missing. Your job is to add them. And while you're at it, you
can add things to protect yourself. You, after all, know what
kinds of mistakes you tend to make, and you should decide whether
to have the computer spend time and effort looking for them.

THE FORTH COllllONI'rY

The community of FORTH users is small but intense, talented,
and growing. You can keep up to date with the goings on by
joining the FORTH Interest Group. The main membership benefit is
FORTH Dimensions which is published six times a year. A
membership <which includes a subscription) is currently $15 per
year. There may even be a FIG chapter in your area. Here's the
address.

copyr ight 1983

FORTH Interest Group
P.O. Box 1105

San Carlos. CA 94070

Frank Bogg Laboratory

10 A Tour De PORTH

CB.APTER 2

One of the first things
simply say "hello". You
primordial urge already, but
FORTH. Here's how. Enter

: bi • Bello, DUJDIYJ• •

people often have a computer do is
have probably been attacked by this
you don't know how to do it in

and hit the "return" key or "enter" key or whatever key your
computer has fo·r you to push when you finish typing a line of
input. Be sure you include the spaces, and be sure you include
the semicolon at the end. Unlike BASIC, spaces are crucial in
FORTH.

When you hit the return key, FORTH responds by saying "ok".
Now enter bi and FORTH will print "Hello, Dummy!" and that's all
there is to it.

You have just written your first FORTH program. Actually,
FORTH programmers don't •write programs•; they "define words".
so, you have just defined your first word in FORTH, and it's name
is bi •

The definition of a word obviously begins with a colon
followed by the name of the new word. Then we include the names
of the words to be executed when the new word is executed, and
the definition is terminated with a semicolon.

This means that .• (pronounced "dot-quote"> is a FORTH word.
It can only be used in a definition. What it does is to arrange
things so that the string which follows it will be printed when
bi is executed. In fact, it's the only FORTH word which is used
in the definition of bi •

'.rBB PORD INTERPRETER

You are communicating with the FORTH interpreter. After you
type a line of FORTH words, the interpreter executes them, one
after the other, from left to right, then says "ok". However,
the interpreter can only execute the words in the input if it can
find them in its "dictionary•. If you type in a word it can't

Prank Bogg Laboratory copyright 1983

'\ I

I .

(_,_ -

A Tour De FORTH 11

find, it will complain.

TYPING MISTAKES

Did you make a typing mistake and get an error �essage
instead of an "ok"? No problem. Just enter the whole line
again, but there may be an easier solution.

First, make sure that your keyboard is generating both lower
and upper case letters. To eFORTH, "hi" and "HI" and "hI" and
"Hi" are all different.

Did �ou mis-type just one character in the middle of the
line? Hold down the "control" key, then press the "A" key, then
release the "A" key and the control key. (In the future, we will
simply refer to this sequence as "control-A0. } The last line you
entered is printed out again. Use the backspace key to get back
to the character you messed up. Replace it with the correct
character. Now, hit 0control-A0 again, and you will see the tail
end of the line you backspaced over. Now you can hit the return
key just as if you had re-typed the entire line.

Did you notice a typing error before you hit the return key?
Use the backspace key to move the cursor back to the mistake and
re-type the line from that point.

Is the mistake so bad that you'd just as soon scratch the
whole line and start over? Hold down the "control" key, then
press the "X" key, then let up on the "X" key and the "control"
key C"control-X") . The line will disappear. Now try typing it
again.

WORDS

FORTH is just a collection of words, and any word in FORTH
can be executed or it can be used in the definition of a new
word. Do you want to see some of the FORTH words which have been
defined for you? Enter forth words and hit your "return" or
"enter" key.

Look at
find out soon
anything you
your own words
want done.

copyright 1983

all those words! What do they all do? You will
enough, but it may turn out that none of them do

want your computer to do for you. If so, just add
to the list by defining them to do whatever you

Frank Bogg Laboratory

12 A Tour De PORTH

Look, there's hi in the list. It's the first one. If you
look real hard, you will also find .• somewhere in that mess.

STOPPING TBB OUTPUT

Did the list of words fly by too fast for you? You can stop
the output by hitting the •escape" key on most terminals. Use
the " break" key on the Color Computer. When you are ready for
more output, press the "escape• key again. You can terminate the
output operation all together by hitting the •return• key.

TBB DICTIONARY AND ITS VOCABULARIES

where all of the words are stored is
each word in the dictionary is
The words we just listed are all in
eFORTH there are four others:

The portion of memory
called "the dictionary•, and
assigned to a •vocabulary".
the forth vocabulary. In
system editor assembler and
each of those vocabularies by
followed by words •

disking • You can see the words in
entering the name of the vocabulary

How large is the dictionary? Enter

here origin - u .

and hit return. Don ' t forget the dot, and
spaces. You will see the number of bytes
consumed by all the words in the dictionary.
word to the dictionary this number increases.

CONTEXT AND CURRENT

don't forget the
of memory presently
Each time we add a

Whenever we enter the name of a vocabulary, that vocabulary
becomes the •context" vocabulary which means that the interpreter
will always search that vocabulary first. If the context
vocabulary is not also the forth vocabulary, then the forth
vocbulary is searched next (and last> . In other words, the forth
vocabulary is always searched. The details of this are discussed
in a later chapter.

The "current• vocabulary is
words are added. Let's add
Enter the following line

system definitions

Prank Bogg Laboratory

the vocabulary to which new
a word to the system vocabulary.

copyright 1983

A Tour De PORTH 13

and hit return. The interpreter first executes system which
makes the system vocabulary the context vocabulary, and then the
interpreter executes definitions which sets the current
vocabulary to be whatever the context vocabulary happens to be at
the time. Now enter

: status? er .• Buzz off , Turkey!• ;

and you can amuse yourself by a.sking a friend to check the status
of your computer by typing in system status? and hitting the
return key. The er simply starts printing on a new line.

Before going on, enter forth definitions and hit return.
Now enter status? and note that it's not there. The ir1terpreter
can't find it unless we first make the system vocabulary the
context vocabulary.

MORE WORDS

Want to print a single character? Enter er 65 emit and hit
the return key. F'ORTH will start a new line and print an nAn on
it. A whole pile of nA'sn can be printed with a loop. Enter

: chars er 0 ?do 65 emit loop ;

Now enter 10 chars and hit the return key. Let's make chars a
little fancier. But first, let's get rid of the old one. Enter
forget chars and hit the return key. Now enter

variable char 65 char !

and hit the return key, then enter

: chars er 0 ?do char @ emit loop J

and hit the return key. Once again enter 10 chars and hit the
return key. The result is the same, right? Now enter 45 char 1
and hit the return key. Don't forget the exclamation mark. Now
enter 10 chars and see what you get. Change the 10 to some other
number. Change the value of char to some other character.

We have been using decimal numbers for the ASCII characters.
Perhaps you are more accustomed to expressing them with
hexadecimal numbers. Enter hex and hit. the return key. Now
enter 40 char 1 and hit the return key. 40 is the ASCII
hexadecimal code for the natn sign. What do you suppose entering
10 chars and hitting enter will print out? Sixteen of them
because the hexadecimal number 10 equals sixteen. Would you
rather have the numbers you enter be interpreted as decimal

copyr ight 1983 Frank Bogg Laboratory

14 A Tour De PORTH

numbers again? Enter decimal and hit the return key.

Would you like to set the value of char with hexadecimal
numbers and call chars with decimal· numbers? Ok, the ASCII hex
code for an up arrow is SE, right? And you want to print out 20
(decimal) of them? Enter

hez SE char I decimal 20 chars

and hit the return key.

Have you ever worked with a language as congenial as FORTB1
one that does what you tell it to do and says "ok" every time?
It's interactive just like BASIC, and it lets you use names that
are far more descriptive than "F2• or "A$". In fact, if you
don't like the name of a word in FORTH, change it. You can
rename chars to be something like characters or whatever name you
prefer, very easily by entering

: characters chars 1

and hitting the return key. Now whenever you enter characters it
does the same thing as chars • Prefer a shorter name to save
your fingers? enter

: c chars ;

hit the return key, and entering 10 c will do the same thing as
10 chars

You don't even have to restrict your names to numbers and
letters. Enter

: $ chars 1

and it will be "ok" with FORTH. Now 10 $ will do the same thing
as 10 chars • The names of your words can be any combination of
characters in any order you like.

REDBPIRING A WORD

You can define another word named chars if you wish. Enter

: chars er er chars er er ;

Then enter chars and see what it does.

Frank Bogg Laboratory copyright 1983

..

\ /

A Tour De FORTH 15

The new chars skips two lines, then executes the old chars ,
then skips two more lines. Enter words again, and you will see
that chars appears ln the list twice. However, only the last
one you defined can now be executed or used in a definition.

FORGE'l'TING A WORD

If you enter forget chars , the last one you defined will be
removed from the dictionary. Try it. Then enter words to verify
that it is gone. If you enter forget chars again, the first one
you defined will be removed. However, forget will also re.move
every word you have defined since you defined chars • You cal!l•Ot
selectively remove wcrd� from the dictionary; only a word and all
words defined since it was defined.

EVEN MORE WORDS

Want to crash once in a while? Define a word to do it.

: crash begin again J

{ Now, whenever you enter crash the only escape is to hit the reset
button. A bit drastic, perhaps, but it makes the point that
everything is easy in FORTH.

A less dramatic capability is ordering your computer to
sleep. Enter

: sleep begin snore key? until J

and you will get an error message because snore has not been
defined.

DEFINE BEFORE USE

FORTH obeys the rule noef ine Before Use n without exception.
You cannot execute a word which is not in the dictionary Chas not
been defined), and you cannot use a word in a definition which is
not in the dictionary.

so, let's define snore

: snore er .• z z z z z• . ,

Now, enter the definition of sleep again, and when your machine

copyright 1983 Frank Bogg Laboratory

16 A Tour De PORTH

is getting on your nerves just tell it to sleep • You can wake
it up again by gently nudging one of its keys.

Enough of this foolishness. All of the foregoing nonsense
has given you a quick taste of FORTH, but it has not given you
much that's useful in learning how to use FORTH to express the
demonic schemes lurking in the recesses of your own mind. You
will have to learn the 80k8 way to use words, numbers, and lots
of other things in FORTH. This manual will take you on a quick
tour of FORTH.

A more comprehensive introduction to FORTH is Starting PORTH
by Leo Brodie and published by Prentice-Hall. It can be ordered
from Frank Bogg Laboratory. Starting PORTH will also show you
some interesting things about the internal workings of
computers. It is an excellent introduction to both FORTH and
computers.

STARTING PORTH WITH ePORTB

If you decide to use Starting POR'l'll with eFORTH, there are a
few differences between eFORTH and the FORTH which Brodie uses
which you should be aware of. Most of them involve subtle and

.) advanced features of FORTH which you don't have to worry about
right now. Every word which Brodie uses in his examples and
exercises has been defined for you in eFORTH. A complete list of
differences is given in an appendix.

Prank Bogg Laboratory copyright 1983

< •

A Tour De PORTH

copyright 1983

17

Prank Bogg Laboratory

18 A Tour De PORTS

CBAPTBR 3

WHAT DO YOO SAY AFTER YOU'VE SAID •eBLLO•?

FORTH uses a stack for all calculations, holding
intermediate results, and passing parameters from one word to
another. The stack is a last-in, first-out stack which means
that you only have access to the last item which was pushed onto
the stack. The phrase 8top of the stack" is used to refer to the
last item pushed to the stack. Putting things on the FORTH stack
is like parking cars in a skinny driveway; you can't get the car
in the garage out until all the others have been moved.

Efficient use of the stack requires the use of Reverse
Polish Notation (RPN) which takes some getting used to. So,
let's start.

Enter 1 29 and hit the return key. FORTH will respond with
an "ok" and wait on the next line for more input. "Ok, what?"
you may be saying. 8What did it do?"

Your keystrokes are read and saved until you hit the return
key. After you hit the return key, FORTH attempts to interpret
your input, one word at a time. A word in FORTH is any sequence
of characters separated by spaces. So, FORTH first finds the
word 1 in your input. Now, FORTH searches for it in the
dictionary. You may have noticed that 1 is in the dictionary.
When 1 is found in the dictionary, the interpreter executes it,
and 1 does whatever it was defined to do.

ROMBBRS

1 is
integer one
as 16-bit,
interpreted
range from
interpreted
integers in

defined to push the binary representation of the
to the stack. FORTH stores integers in the computer

binary numbers. If that 16-bit binary number is
as a signed number, it can represent integers in the

-32, 768 to +32, 767. If the 16-bit binary number is
as an unsigned number, it can represent non-negative
the range from 0 to 65, 5 25.

Frank Bogg Laboratory copyright 1983

'\
i

(_

A Tour De PORTS 21

CONSTANTS

li'ORTH allows the declaration of constants. For example,
enter the following lines

50 constant fifty
40 constant forty
forty fifty + •

and figure
defined as
which that
diagram.

out what action is taken by a word which has been
a constant. Right. It pushes to the stack the number
constant has been defined to be. Here is a stack

WORD STACK --->

<The stack is empty . >
forty 40
fifty 40 50

+ 90
• CTbe stack is empty.)

VARIABLES

FORTH also allows the declaration of variables. For
example, enter these two lines

variable age
age •

and ponder what a variable does. The first line created a
variable named age , and words will now list it as being in the
dictionary. The second line caused age to be executed. It put a
number on the stack which the dot printed out. What is that
number? It is the memory address where the value of the variable
named age is stored. That's all well and good, but how does one
get the value stored at the address of the variable onto the
stack? Enter

age @ •

You will see the value that age was initialized to when it was
defined. so, @ (pronounced "fetch") is a word defined to remove
an address from the stack, then push the 16-bit contents of that
address to the top of the stack.

copyright 1983 Prank Bogg Laboratory

22 A Tour De FORTH

As we all know, age is a variable whose value is updated
Cwitb emphasis on the "up") on a periodic basis. How does one
assign a new value to age ? Enter 34 age 1 and hit the return
key. Now enter age ? and hit the return key. "34" will be
printed because ? is in the dictionary and has been defined as

. • ? @ • • •

which means that instead of typing I • you may simply type ?
and the result is the same.

Notice that when 1 (pronounced "store") is used, the data
to be stored is on the stack under the address at which it is to
be stored. Here is a stack diagram of an example.

WORD

forty
age

1

S'l'ACK __.:.._>

(The stack is empty.>
40
40 address-of-AGE
(The stack is empty. >

Furthermore, @ and 1 need not be used with the names of
variables. If you enter 40 100 I then 40 will be stored in the) two bytes <there are 8 bits in a byte> at addresses 100 and 101. ·

The words @ and I always fetch and store 16-bit numbers. If you
wish to manipulate single bytes in memory, the 8-bit memory
operations are .c@ and cl •

A fancier memory manipulation word is +I which is
pronounced •plus-store. • If you enter 2 age +I and hit the
return key, 2 will be added to the current contents of age •

Thus, if age equals 34 before this operation, it will equal 36
when it is completed. Similarly, -2 age +I will subtract 2
from the contents of age •

AR AVERAGE EXAMPLE

Suppose you want the sum and average of several numbers.
Suppose the numbers are 280 3 19 647 12 219 and 57 2. You can have
your results by entering

280 319 + 647 + 12 + 219 + 572 +- dup . 6 I .

and hitting the return key. Actually, you can hit the return key
any time you like and as often as you like. If you entered the
following four lines,

Prank Bogg Laboratory copyright 1983

,

A Tour De PORTH 19

Back to our l in e of inpu t . 29 , unl ike 1 , is not in the
dict ionary . Obv iously , the interpreter won ' t f ind it when i t
loo k s for it there . What happens then? The interpr eter attempts
to interpret the word as a number . 29 can certa inly be
interpr eted as a number . The interpr eter then convert s it to its
int ernal , b inary repr esentation and pushes it to the stack . So ,
1 and 29 have both been pushed to the stack .

Let ' s check i t . Ther e is a special word in eFORTH which
will pr int out all of the numbers which are pr esently on the
stack . Enter . s and hit r etur n . It should pr int out

0 1 29

followed by the usual "ok0•

Now enter + and h i t r eturn . Aga in , the in terpr eter looks
for + in the dictionary, f inds i t , and executes i t . + is def ined
to r emove the top two 1 6-bi t number s from the stack , add them
together (ignor ing any overflow> , and push their sum to the
stack . So , + r emoves 29 from the stack , remove s the 1 from the
stack , adds them together, and places the resul t , 30 , on the top
of the stack . Use .s to ver ify this .

1 The interpreter gets the next word, wh ich is the car r iage
�. r eturn , and executes i t . Th is results in the pr inting of nok , 0

and wa iting for a new l ine of inpu t (which i t has been doing
whi l e you were r eading thi s) .

Now enter a per iod and h it the return key . The "dot " is a
FORTH word wh ich i s defined to pr int the s igned , 16-bit number on
top of the stack followed by a space . The number is removed from
the stac k . Ah-ha ! FOBTH can be used inter actively as an RPN
calculator . Try some more l ines of input .

-346
3 2
8 s
10 3
10 3

-247
* •

•
I •
mod

+ •

•

Nex
·
t , decide what the result will be i f you enter

4 3 2 + * •

then try i t . Wer e you r ight? If not , do you see why ? Pr etend
that you are the FORTH interpreter . The first word in the inpu t
str eam is 4, so you push 4 to the stack , then 3, then 2. The
next word is + so you r emove the top two number s (3 and 2), add
them up , and put 5 on top of the stack . The next word is * so
you f ind it in the dictionary and execute i t . * i s def ined to

copyr ight 1983 Prank Bogg Laboratory

20

r emove the two top
mul tiply them, and put
the dot is interpreted
of "14 ") •

A Tour De FORTH

1 6-bit number s from the sta�k (4 and 5) ,
the result , 20, on the s tack . F inally,
which pr ints "20" on the terminal (instead

Her e is a "picture" of what happens when each word is
interpreted .

WORD STACK ->

<The stack is empty.)
4 4
2 4 2
3 4 2 3
+ 4 5
* 20
• <The stack is empty.>

If you have never seen Reverse Polish Notation befor e, you
may f ind it somewhat odd to express 4 * (3 + 2) as 4 3 2 + * and
you may think that the equivalent 3 2 + 4 * is only sl ightly mor e
"natural " . Be assured that if you hang around something long
enough, it will soon seem quite "natur al " . The advantages of RPN
are two . First, no parentheses in an expression are necessary, ,
s o you can console yourself with the prospect of fewe r J
key-strokes . Secondly , by using a notation which is "natural "
for a first-in , last-out stack , we ach i eve extr emely eff icient
parameter passing from word to word. St ick with it .

BllP'fi STACK

If you lose track of what is on the stack (and you will from
t ime to t ime) and you try to pr int a number from the stack Co r
r emove it in some other way) when the stack is empty , you will
get an error mes sage . FORTH is not harmed or bashed by this .
Try i t . Keep enter ing dots until you get the " Empty stack . "
message .

Prank Bogg Laboratory copyr ight 1983

(_

A Tour De PORTH

280 319 +
647 + 12 + 219
+ 572 + DOP
• 6 I •

you would get the same result s .

23

MANIPULATING THE STACK

Thi s l ine of input conta ins a new wor d . dup is def ined to
push to the stack a copy of the word wh ich is on top of th e
stack . I f you enter 10 dup there will then be two tens on top of
the s tack . w1len dup is executed in the above l ine , the· suro we
are after is on top of the stack . But we want to pr int it out ,
and we also want to use it to calculate the average . So , we
copy it , pr int out the copy , and use the or ig inal wh ich is still
on the stack to calculate the ave r age . The average is then
pr inted (ignor ing the remainder) .

Other words that per form operations on the stack are over
drop and rot • Suppose you have

10 12

,

on the stack . ewe henceforth use the convention of l isting the
top item on the stack on the r ight .) If you enter over you will
have

10 12 10

on the stack. And if you enter over aga in , you will have

10 12 10 12

on the stack. If you have

1 2 3

on the stack , rot will g ive you

2 3 1

on the stack .

To summar ize , the interpr eter fetches words from the input
stream one at a time , look s them up in the dictionary, and
executes them. I f the wor d is not found in the dictionary ,
FORTH wi ll attempt to interpret the word as a number , convert i t
to its binary form, and push it t o the stack . What if the word

copyr ight 1983 Frank Bogg Laboratory

24 A Tour De FOR'l'B

can ' t be interpreted as a number ? Then FORTH pr ints the word
followed by a question mark and waits for another input l ine .
The rest of the input text is ignored. As i t turns out , it i s
qui te possible that FORTH will not b e able t o convert 2 into a
numbe r . Read on .

DECIMAL - BASE 'l'BR

One of the words
cont a ins the number
conversion of numbers.
definition :

in FORTH is base • I t i s a var iable which
base which will be used for input-outpu t

decima1 is also a word. Here is its

: decimal 10 base 1 1

Whenever the interpr eter finds decimal in the input and executes
i t , 10 (decimal) is pushed to the stack followed by the addres s
o f the var iable base then 10 is stored a t the addr ess which base
put on the stack. In other words , when decimal is executed, it
sets the number base used by the interpr eter to ten .

BBXADBCillAL - BASE SIXTEEN

bez is also in the dictionary . It has been defined as

: bez 16 base 1 J

When bez is executed it sets the number base to s ixteen .

Now a mi ld mind-bender. The def initions of decimal and hex
l isted above assume that at the t ime they were put in the
dictionary the base was ten . If the base at the t ime they wer e
def ined was s ixteen , then thei r def ini t ions would have to be

: decima1
: hex

OA base 1
10 base 1

. ,
• ,

Changing the value of the base changes how str ings of digits ar e
interpreted in the input stream, and how bit patterns wil l be
translated on output .

Enter deci.Jla1 14 15 16 bez • • • and h it the return key .
You have an interactive base conversion calculator . Enter some
mor e number s , change the base (to someth ing as weird as ·21, if
you wish) , then pr int out the number s . 'l'ry any base you l ik e .
When you have had enough o f this foolishness , enter decimal and
h i t the return key. You will be on familiar tur f aga in .

Frank Bogg Laboratory copyr ight 1983

..

,.

I

l

A Tour De FORTH 25

hit the return key . You will be on fami liar tur f aga in.

BINARY - BASE TWO

Convers ion from decimal to b inary is certa inly a tiresome
activ j ty . Obv iously FORTH can do it for you. Enter

decimal 89 2 base I •

and h i t t�e return key . FORTH will pr int out "10 1100 1". If you
do a lot of decimal to binary or binary to decimal conversions ,
you may grow weary o f enter ing 2 base I all the t ime , so let ' s
def ine a wor d wh ich wil l set the number qas e to two .

As mentioned ear lier , a def inition.of a new word to be added
to the dictionary beg ins with a colon and ends with a sem icolon .
In addition , we must provide a name for the new word.
Remember that a name may be any sequence of cha r acters ycu lik e .
All our wo rd has to do is store a 2 into the var iable base •

CHOOSING NAMES

One of the mos t important aspects of FORTH pr ogr amming is
choosing g ood names for new words . One good rule is to focus on
what a wor d does r ather than how it does i t . We could def ine our
new wor d as

: 2basel 2 base ! • •

and it will certainly do what we want. But its name focuses on
how the wor d wor k s rather than what i t does . What ' s a better
name ? How about the one in this def init ion ?

.

. binary 2 base I • •

Did you enter this def ini tion and get an error ? We set the base
to two , r emember ? And 2 is not a val id number in base two . So ,
en ter decimal and try again .

You may put as many spaces as you like between the wo rds you
enter . But you mus t enter at least one space between each FORTH
wor d . For example ,

decimal : binary2base!:

will not do at all even though it is r elatively r eadabl e . Spaces
a r e the traffic cops in FORTH� they are the only way the

copyr ight 1983 Frank Bogg Laboratory

26 A Tour De PORTH

interpr eter can tell where one word ends and the next word
beg in s . You will have to r id yourself of that hor r ible BASIC
habi t of eliminating spaces to save space.

If everything went all r ight , FORTH should have said "ok " .
Now enter words and you will discover that binary is in the
d ictionary all r eady to be used . So , enter something l ik e

decimal 512 binary •

and h i t the return key.

The freedom you have in FORTH of speci fying the base wh ich
will contr ol numer ic output and input conve r s ion car r ies with i t
a respons ibility t o make absolutely sure that you always know
what the cur r ent base is; otherwise you will be in for some
surpr ises. Some will be amusing; others will be very painful. If
you don ' t know what the value of base i s , set i tl

Prank Bogg Laboratory copyright 1983

A Tour De POR'l'll 27

copyright 1983 Frank Hogg Laboratory

28 A Tour De POR'-'11

WllAT CAR I DO WI'l'B IT?

Suppose you want to charge the long distance telephone calls
on an obscene phone bill to the people who made the calls . The
people , let us suppose, are Adam, Betsy , Car l , and Denise . To
charge a 3 7 cent call to Car l we would l ike to be able to enter

37 Carl

and h it enter . The new total owed by Carl should be calculated ,
saved , and displayed. We will need to def ine var iables to hold
the totals being accumulated for each per son .

var iable Adam's
var iable Betsy's
var iable Carl's
var iable Denise's

Now we define the entry commands :

. Adam Adam's @ + dup • Adall's I . . I

. Betsy Betsy's @ + dup • Betsy's I • . ,

. earl Carl's @ + dup • Carl's I . . ,
• Denise Denise's @ + dup • Denise's I . . ,

but they are rather repetitious . It would be better if we could
n factor out • all the common operations and put them into a word
such as RewTotal and def ine the commands as

. Adam Adam's NewTotal . . ,
: Betsy Betsy's NewTotal . ,
. Carl Carl's NewTotal . . ,
. Denise Denise's NewTotal • . ,

Let ' s see what ' s involved in defining New'rotal •

Prank Bogg Laboratory copyright 1983

A Tour De FORTB 29

GLOSSARY ENTRIES

But f i r s t , let ' s r eally do this r ight . Before �e �r ite the
defir.it ion for New'l'otal , let ' s wr ite a descr ipt ion of what it
doe s . Th i s descr ipt ion is called a nglcssar y entry n . rt is a
good idea to wr ite a g lossary e�t ry for each wo rd }OU def ir.e . ·

Six month s from now you may look at New'l'otal and not have the
slightest idea of what it does or how to use it . He re is what
the glossary eutry for New'l'otal should look lik e .

WORD VOCABULARY BLOCK STACK EFFECT

NewTotal forth 0 C amt adr -- >
Adds "amt " to the value stored at nadr " , then print s
out the new value stor ed at nadr " .

Th is entry tells us that New'l'otal is in the forth vocabulary.
The "O" in the "BLOCK" column means that we are go ing to en te r
th is def ini tic1n from the keyboard wh ich means that we won ' t be
able to mak e changes to it or even look at it again . Th e next
chapter pr esents a better way to enter def ini tions . The stuff in
pa r entheses tel ls us what the "stack effect n of the wo1d i s .

'
�.. In the entry in the "STACK EFFECT n column , the two dashes

indicate the po int at wh ich the word execute s . Anyth ing on th e
left of the dashes indi cates what values the word expects on the
stack , and anyth ing on the r ight of the dashes indicates wha t
values the word leaves o n the stack . I n this case, NewTotal
expects two values to be placed on the stack for it to use . When
it f inishes executing, it will have r emoved those two value� from
the stack . It does not put any new values on the stack. Hoving
spec i fied what New'l'otal should do , we can turn to wr it i �g its
c1ef inition .

LOOK , MA ! NO VARIABLES !

Obviously , New'l'otal will need to use the addr ess it
r ece ives on the stack twice . So we will have to copy it and save
the copy somewher e . We could create a var iable for th is purpose,
but that ' s considered inelegant in FORTH circles . Stor ing and
fetch ing costs time a s well as memory for the var iable (including
its name) . We might try leaving it on the stack , but then the
addre·SS and its copy are on top of the number to be added to th e
var iabl e . We can shuffle things around on the stack with swap
and other stack manipulation words .

: New'l'otal swap over @ + dup • swap I J

copyr ight 1983 Prank Bogg Laboratory

30 A Tour De FORTS

Her e i s a stack diagram of wha t happens when thi s ver s ion of
New'.rotal executes . Not ice that aat and adr are already on the
s tack when it executes .

WORD STACK -->

. RevTotal aat adr .
swap adr amt
over adr amt adr
@ adr amt OldSma
+ adr Rew Sum
dup adr RevSum RevS11111.
• adr Rewsua
swap Revsum adr
1

• ,

The pr oblem her e i s that unless you have had lots of exper ience
with FORTH , this def init ion of Rev.rota! is virtually unr eadable
without the a id of a stack diagram. There is another way to get
s tack values temporar ily out of the way that may help th ings a
l i tt le bit . It i s t ime to introduce you to the Return Stack .

THE RftURR STACK

FORTH uses two s tacks . They are called •the s tack "
(technically, the •parameter stack•) and the •r eturn stack " . The
pr imary function of the r eturn stack is to hold FORTH r eturn
addresses and loop par ameter s , neither of wh ich we have discussed
yet . For now , we will look at another use of the r eturn stack : a
place to temporar ily put number s that a r e in the way .

Suppose that you have a value on top of the stack that you
wish to use, but the r e a r e values below it that you want to do
something to first . The value on top can be moved to the r eturn
s tack with the word >r (pr onounced "to R•) and r etr ieved with the
wor d r> (pronounced •from R•) . I f you wish to leave this value
on the r eturn stack , but have a copy of it put on the par amete r
stack , use r @ (pronounced •R fetch•) . Obviously , these words
must be used with car e , else you r tempor ary value on the r etur n
stack might be used as a r eturn address and FORTH will probably
crash . Every >r in a colon def ini t ion should be pai r ed with a
subsequent r> in the same colon definition .

Back to our problem of defining Rer.l'otal • We can move the
addre s s to the r eturn s tack with >r , get back a copy of it with
r @ , then use that copy of the address to fetch the value at that
addres s , take the sum , copy i t , pr int out the copy , get the
address back from the r eturn stack with r> , and f inally stor e

Frank Bogg Laboratory copyright 1983

(

A Tour De FORTH

the new sum.

. . RewTotal >r r @ @ + dup

Her e i s a stack di agr am.

:

. ,

WORD

RewTotal
>r
r @
@
+
dup
•
r >
!

STACK ---->

amt adr
amt
amt adr
amt OldSum.
Newsum
Newsum Newsum
Newsum
Newsum adr

31

• r> 1 . ,

Remember, the definition of NewTotal must be entered befo re you
enter the def init ions of the comn•ands wh ich use it.

FOOD FOR THOUGHT

Her e ' s another problem. A fr iend come s to you with th is
one. She bought a computer out o f cur iosity , then realized if she
took it down to her r estaurant , she could wr ite off what she pa id
for it as a tax deducti on. What she wants to do is set it by the
cash r egister and use it to add up her custome r ' s checks. Sh e
tr ied to wr ite a pr ogr am to do it (in BASIC , of cour se) without
any succes s . Can you help?

�he restaurant is busy and has lots of employees . The
pr og ram should be simple enough to use so that any of them can
oper ate i t . You suggest using �la in, ordinary Engl ish . How
about i f they step up to the computer and ente r

Total for blt fr ies and shake is

and hit r etur n? Tha t ' s great , she says , but can you do i t ?
Sur e. Won ' t it take a long t ime? Is three minutes a long time?
You ' r e k idding ! Not with FORTH.

The bas i c tr ick is to have Total push a zero to the stack ,
have the names of food· items add thei r pr ice to the total on th e
stack , and have is pr int out whatever is on the stack. Words
l i k e for and and shouldn ' t do anyth ing. So , we sta r t with th e
following def initions .

copyright 1983 Frank Bogg Laboratory

32 A Tour De FORTH

: Total 0 . ,
: is • . ,
. for . . ,
. and . . ,

Not bad so far . What about the names of food items ? We could
define them this way .

: blt 195 + 1
: fries 75 + 1
: shake 125 + 1

and define other items the same way . And , except for def ir.ing
eve ryth ing on the menu, we ' r e al l done . Not bad , huh?

DEFIRIRG A WORD TBA'? DEFINES O'l'BER WORDS

Actually ther e ' s a better way to define menu items . Each
itelt', on the menu i s a name associated with a pr ice a.nd an act ion
to be per formed on that pr ice . It would be much mor e convenient
if we could def ine menu items this way :

195 price blt
125 price shake

and so on . For this to work , we must define price in such a �ay
that when it executes it def ines a new wor d . And when price
defines another wor d, it should also specify what happens when
that word executes . Here ' s how .

. . price create , does> @ + . I

Enter the definitions of Total and is given above then enter the
def init ion of price then enter

195 price blt
125 price shake
Total blt shake is

and , Good Gr ief ! , it work s . Bow · does price do it?

WHAT DOES does> DO

When the interpreter looks at 195 price blt it first pushed
1 9 5 to the stack , then price was executed. When price executes ,
it f ir st executes create which gets the next word in the input ,
blt , and adds it to the dictionary . Next , the comma execute s

Frank Bogg Laboratory copyright 1983

\ !

l ..

A Tour De PORTH 33

which r emoves 1 9 5 from the stack and pl aces it in the dictiona ry
a s part of the definit ion of blt , then does> executes .

does> waves its mag ic wand
executes , it will first pus h , to the
195 wa s stored , then it will execute
in the dP.f init ion of price ,

ove r blt so that when blt
stac k , the addr c E s �here th e
the words wh ich fol low does>

So , when blt executes , it fetches the 195 to the stack then
adds it to whatever is alr eady on the stack . Tha t ' s just wha t we
want blt to do . Mow other menu items can be addecl t(I the
npr ogram n with ver� littl e effo r t and in a much mor e obv ious way.

GETTING FANCIER OUTPUT

On e thing abou t thes e two samples that is not ve ry n j ce i s
that we must work with number s that a r e whole nuF-be rs of pennies .
It would be better i f these appl icat ions pr in ted o� t th ing s l ik e
n $3 . 57 ° instead of s imply n 3 57 ° . Can w e do i t ? Su r e • . Al l we
have to do is define a word to be used in place of the dot . Her e
it i s :

.

. $. 0 <I I I ascii • bold Is ascii $ bold I > type . I

How does it work ? F i r s t , i t pushes a zer o to the stack . Th is
word will pr int a 1 6-bi t number which is on the stack . However ,
the words in this defin it ion wh ich do output formatt ing c f a
number on the stack as sume that it is a 3 2-bit number . So , the
adoi t ional zero s imply converts the 1 6-bi t number to a 32-bi t
number . (Th i s only works if the number is pos itive .)

The wor d <I sets th ings- up to beg in creat ing the pr intable
npictur e 0 of the 3 2-bit number on the stack . Th en , I converts
the r ight-most digit (the pennies digit) . The next I converts
the dimes dig i t , and the phrase ascii • bold inse r t s a per iod
into the output str ing we a r e building . Next , Is conver ts all of
the r en�a in ing digits in the number giving at least one zer o , then
ascii $ hold inserts a dollar s ign onto the output str ing . I>
cleans up by dr opping the 3 2-bi t number r e11ia in ing on the stack
C it is now a zero) , and pushes the addr ess of the first character
in the output str ing and the number of charact e r s i n the outpu t
st r ing to the stack . type uses these values to pr int out the
str ing . type does not pr int any leading or tra i l ing spaces .

Now you can enter the def init io� o f $. then re-enter the
definit ions of is and NewTotal replacing the dot with $. and
that ' s i t . 0What ? • you may be ask ing . n r have to r e-enter th e
whole def inition of Nev.rota! aga in? Can ' t I j ust edit it? 0 No ,
because you entered i t from the keyboard. There is another , far

copyright 1983 Prank Bogg Laboratory

34 A Tour De FORTH

mor e convenient way to do all of this which we w i ll get to in the
ne:>;t chapter .

USING FANCIER INPUT

Our output i s mor e "pr ofessional " look ing , but the input i s
not . Can ' t we enter th ings l ik e 3 . 95 o r 400 . and have them
interpr eted as $3 . 9 5 and $400. 00, respectively? Par tly. Go
ahead and enter them, i t ' s "ok " with FORTE. Now enter a dot . A
zer o ? Enter another dot . Ther e ' s the number you entered .
What ' s that extra zero do ing on top of it?

Any number you enter wi th a decimal point in it is
interpr eted by FORTH as a "double " number � as a 3 2-bit number
wh ich the interpr eter s imply pushes to the stack . The zero i s
j ust t h e "h igh-or der " 1 6 b i ts of the 3 2-bit number . F.nter
4000000 . then enter two dot s . Wei r d. Enter 4000000 . again then
enter d . and th ings will look bette r . d. does the saIDe th ing
the dot does except that it interprets the top two 1 6-bit numbers
on the stack a� be ing a s ingle 3 2-bi t number wh ich it i emoves ,

· conver ts to a str ing , and pr ints i t out .

DOUBLE NUMBERS

The interpreter will interpr et a number in the input a s
be ing a 1 6-bit (i . e . , " s ingle ") number i f it i s not •punctuated•
and as a 32-bit (i . e . , "double ") number i f it i s "punctuated" .
Th e fol lowing are interpr eted as s ingle pr ecis ion numbe r s :

0 -13000 13000

The following are interpr eted as double precis ion n umbers :

o . o o . . o -3556 . 22 . 4999

There may be more than one punctuation character in the number
and other punctua t ion characters besides the per iod are

, I . .

but the dash may not pr ecede the first digit .
speci f i es a negative number . Consequently , the
interpr eted as double numbers .

12 : 29 : 15 7/16/83 343-34-3434 555-1212

A leading dash
follow ing ar e

-23 . 56

The last one is interpreted as a negative double number .

Frank Bogg Laboratory copyright 1983

- -�

c

A Tour De PORTH 35

Notice, however, that the interpreter converts al l o f the
following to the same internal 32-b it, binary representation.

100 . 4 10 . 04 . 1004 100 4 .

The only d ifference is that the variable dpl is set to equal the
location of the rightmost punctuation character. After 0100 4. 0
is interpreted, dpl equals zero, after 0 10. 0 4 ° is interpreted,
dpl equals two and so on. If dpl is negative, then no
punctuation character was encountered and the number was
interpreted as a 16-bit number.

If you enter 123 . 45 the interpreter will push a 32-b it
number to the stack. Now enter d. and see what is pr inted.
Enter 1234 . S d. and see what is pr inted. They are the same.
And there is no dec imal point. What's the difference? The value
left in dpl after each one was interpreted. This opens the
pos s ibility of writing a word wh ich will scale a double number
according to the value of dpl • Here it is.

: scale dpl @ 0 3 within not
abort• Entry is out of range . •
drop 2 dpl @ ?do base @ * loop ;

(Don't bother to enter this . There are too many possibilities
for mistakes and we are almost to the previously mentioned next
chapter. > The f irst line fetches the value in dpl and checks to
see if it i s equal to or greater than zero and les s than three.

within removes dpl and the zero and the three from the stack
and leaves a 0flag 0 • If the flag is zero (false) , then dpl is
not within the specified range1 if the flag is -1 (true) , then it
is. not inverts the flag so that it is now true if dpl is not
w ithin the specified range.

abort• removes the flag, and if it is true, it pr ints out
the str ing which follows it and executes quit which terminates
execution of scale and returns control back to the keyboard. If
the flag is false, execution continues by dropp ing the high-order
part of the 3 2-bit number leaving a s ingle number. A loop then
multiplies the number by the current base the proper number of
times. (You may want to enter prices in base two.)

Once again, we can modify the definition of New'.rotal so that
we can make phone call entr ies with 1 . 16 Car l and 4. Denise •

: New'.rotal >r scale r @ I + dup $. r> ! ;

We can use scale in our definition of pr ice as follows :

: price create scale , does> @ + ;

copyright 1983 Prank Bogg Laboratory

36 A Tour De FORT&

and enter menu items with 1 . 95 price blt •

IT ' S THE PBOBE AGAIN

We can use the mag ic of does> to make our phone bill
appl i ca tion even better . In th i s cas e , we want to be able to
def i&e a number of people and associate with each one a name , a
running tota l , and an act ion . Her e ' s how .

: caller create 0 , does> HewTotal J
caller Adam
caller Betsy
caller Carl
caller Denise

When caller executes , it adds a word to the dict ionary, stores a
zero with i t , then does> waves its mag ic wand so that when the
new wor d executes , Adam , for exa�pl e , the address where the zero
was i n i t ially stored i s pushed to the stack and NewTotal is
called. Th is way we don ' t have to def ine both Adam and h i s
var iable .

But what i f we enter a bunch of phon e charges , decide we are
us ing the wrong bill and want to star t ove r ? With the first way
of doing it we can s imply reset all the var iables to zero with a
sequence l ik e 0 Adaa's I and sta r t ove r . Bow do we do that with
th is new way? Wow, look at the time . We ' d better be gett ing on
to the next chapte r .

Prank Bogg Laboratory copyright 1983

�)

,.

\..

'

A Tour De PORTH

copyright 1983

37

Prank Bogg Laboratory

3 8 A Tour D e FORTH

CHAPTER 5

BOW DO I SAVE AMI> EDIT MY DEPIRITIONS?

The point has been made that enter ing definitions from the
keyboard has ser ious limitation s . We cannot look at th e
def init ions we have entered when we have forgotten how the
ente r ed words wer e def ined. Even wor s e , we can ' t modify thos e
definit ions . There should be a better way , and there is . Like
most other languages , we can save our def ini t ions on disk wh ich
gives a pernanent r·ecord of what we have done and a l l<l\o:S us to
change things i f the need a r ise s . FORTH , however , views the disk
a bit d i fferently than other languages . There are no f i les .
< "What do you mean, there are no files ! You ' ve got to be
k idding ! ") S ince files are the backbone of every other disk
operat ing system, we will pr obably hear a lot of mutter ing in the
backgr ound throughout this chapter . Actual ly , a good way to tell
when you have f inally become a good FORTH pr ogrammer i s
discover ing that you n o longer wish you had f iles .

THE FORTH MEETS THE DISK

To
dat a . A
number
way .

FORTH , " the disk " is s imply a sequence of "blocks • of
block cons ists of 1 0 2 4 bytes of data . Each block has a
and the block s are mapped onto " the disk " in an obvious

Block 0 refer s to the first 1 0 2 4 bytes of data on the f irst
t r ack of the disk in the f irst disk dr ive . Block 1 refer s to th e
second 1024 bytes of data on the f irst track of the disk in the
f ir s t d isk dr ive . Block 1 5 2 (or 4 9 3 or 6 1 5 or whatever ,
depending on the capac ity of the disk) refers to the last 1024
bytes of data on the last track of the disk in the first dr ive .
Block 153 r efer s to the f i r st 1024 bytes of data on the f irst
tr ack of the disk in the second disk dr ive . And on it goes .

I n order for a program t o work on a block o f data, that
block mu st f i r st be read into memory . FORTH ma inta ins buf fe r s to
ho ld b lock s which have been read in from the disk . In addit ion
to 1 0 2 4 bytes of data , a buffer has two addit ional bytes to hold
the number of the block which is cur rently in the buffer , and two
null bytes follow ing the data bytes to mark the end of the
buffer . As suppl ied , eFORTH maintains four buffers , and this
number can be adjusted, but there must be at least two buffer s .

Frank Bogg Laboratory copyright 1983

A Tour De PORTH 39

A block of data is accessed with the word block which
expects the number of the r equested block to be on the top of the
stack . block searches through the buffers to see i f the
r equested block is already in memory . If it i s , block returns
the address of the f i r s t data byte in the buffer wher e it found
the block C by r eplacing the block number with the addr ess) . I f
the b lock is n o t i n a buffer , a buffer is selected, and the block
is r ead from the disk into the buffer , then , as befo r e , the
address of the f ir s t data byte is r eturned on the stack .

I f you r ead a block into a buffer and make changes to the
data in the block Cwith editing commands , fo r exampl e) , th e
buffer is mark e d as nupdated " { the word ndirty n is used in s ome
c i r cles > . I f that buffer is later r equi r ed for a requested block
wh ich is not in memory , the updated block in that buffer is
wr itten out to the disk , then the requested block is read into
the buffer .

You can force the wr iting of all updated buffers to
by executing flush • You can pr event the wr iting of all
buf fer s by executing empty-buffers but all changes made
block curr ently in the buffer s will be los t .

the disk
updated

to every

This scheme is quite s imple and powerfu l , and it is the
foundation of most disk operating systems . I f you absolutely
must have a f i le system FORTH g ives you the bas ic tools you need
to write one .

POTTING TEXT OH A BLOCK

We can interpr et the contents of a block as be ing any type
of data we l ik e having any k ind of structur e we lik e . An obv ious
pos s ibility is to view the 1 0 2 4 bytes on a block as be ing 1 0 2 4
characters of text . Text i s typically organized into lines with
some number of characters on each l ine . A simple scheme is to
suppose that each l ine has some exact number of characters on it,
say 64. 64 goes into 1024 exactly 16 time s , so we can view a
block which has text on it as contain ing 16 lines of text with 64
char acter s on each l ine .

Most FORTH edito r s make these assumptions , and the eFORTH
editor is no exception . Let ' s use the editor to save the
appl ications we developed in the last chapter starting with the
phone bill appl ication .

copyright 1983 Frank Bogg Laboratory

40 A Tour De PORTH

THE CORR.ENT BLOCK

We fir st
anyth ing . Enter
cu r r ent block
number .

need to find a block that isn ' t be ing used for
10 list and h it r eturn . list spec ifies �he
by sett ing the var iable scr equal to the block

No , that block has stu f f on it . Gee , wh iz ! There ' s the
def in it ion of list and it ' s only three l ines long ! Sur e enough ,
it stores th e block number into scr • Notice that l ine O
conta ins a " comment" wh ich br iefly descr ibes wha t is on the bloc k
and has a date on it . (The date is automat ically put the r e by
the ef'ORTH ed i tor every time a chang e is made to the bloc k . > It
also has the in it ials of the person who made the last
mod i f icat ion to the block . I f you want to see your in itials up
ther e i n the b r ight lights of l ine 0 enter

I ' m cee

except r eplace my init ials with your s .

Pu tt ing a comment on l ine 0 i s a common convent ion (not a
r equ i r ement) which helps to document what is on a d isk . The wo r d
index , wh ich i s defined on thi s block , take s advantage o f this
convention . For example , enter 48 60 index and h it r eturn . (I f
you ar e us ing eFORTH and followed the dir ections for sett ing it
up on your computer , you should have at least 85 block s
ava ilab le . > index will pr int out l ine 0 on b lock s 4 8 thr ough 5 9 .
Block 5 4 appears to be empty . Let ' s l ist it j u st to be sur e .
Al l 1 6 l ines appear t o b e blank s o let ' s use i t . Howeve r , ther e
may be j unk on this block wh ich list doesn ' t show us . To be
absolutely sur e that the block is clean for ed iting , ente r wipe
and hit r eturn .

Oh dear . Wh er e ' s wipe ? It ' s in the editor vocabulary , so
en te r editor wipe and it should be " ok " .

THE CORREN'!' LINE

All edit ing commands operate on the "cur r ent " l ine. We
specify that l ine 0 is the cur r ent line by enter ing 0 t • Try
i t . This command also pr ints the current l ine . Not ice the car et
at the beg inning of the l ine . Th is is the ft cur sor " and it
ind icates the cur r ent cursor pos ition . Mor e on th is later .

Let ' s put a comment on this l ine which ind icates what ' s on
the block .

p < NewTotal caller NamesOfCallers

Frank Bogg Laboratory copyr ight 1983

A Tour De FORTH 41

A comment beg ins with a left parenthes is , wh ich must be followed
immediately by a space , and ends with a r ight parenthesis . We do
not include the r ight par enthes is because the editor wil l
automatically put it on the l ine for us . (Later , when we g i ve
this block to the FORTH interprete r , everyth ing inside the
par entheses will b e ignored .)

Enter 1 C lower case •Ln)
always lists the cur ren t block .

and hit r eturn . This command
Now enter the following lines :

u : $. (n -- >
u 0 <I I I ascii • hold Is ascii $ hold I> type 1
u : scale (d -- n >
u dpl @ 0 3 within not
u abort• Entry is out of range . •
u drop 2 dpl @ ?do base @ * loop 1
u : NevTotal < amt adr - >
u >r scale r @ @ + dup $. r> I 1
u : caller < -- > create 0 , does> NevTotal 1
u caller Adam < amt - >
u caller Betsy < amt -- >
u caller Carl (amt -- >
u caller Denise (amt - >

r then use the 1 command to look at the block .
\._

The u command first moves all the l ines below
l in e down one l ine . Line 15 is rolled of f the bottom
The line nunde r n the cur r ent line is c lear ed then it
cur r ent line . Then the command puts the text which
onto the cur r ent l ine .

the cur rent
and lost .

becomes the
follows it

This block is a l ittle crowded , but we ' ll tak e care of that
later .

REPLACING AND DELETING LINES

Did you mak e a mistak e that needs to be cor rected? Mak e the
l ine with the mistake on it the cur rent l ine . Now use the p
command to replace i t . Is the r e an ext r a l ine you just want to
get r id of? Or did Denise move away? Mak e that l ine the cur rent
l ine then enter p followed by two spaces and hit return . The
line will be blank ed . Or make the line to be eliminated the
cur r ent l ine , then enter x and hit return . The cur r ent line will
be deleted and all l ines below it will be moved up. Line 15 is
f il led with blank s .

copyright 1983 Prank Bogg Laboratory

42 A Tour De FORTH

Do you need to shuf fle some l ines around? For example , you
might have put the def init ion of caller on a l ine above the
definit ion of NewTotal < wh ich you can ' t do because NewTotal has
to be def ined befor e you use it in the def inition of caller .)
For pract ice , let ' s move the l ine with caller Denise on it to the
l ine below the l ine with caller Adam on it . Actually , we want to
insert it at that po int . Mak e Den ise ' s l ine the cur r ent l ine
then ente r x and hit retur n . Now mak e Adam ' s line the c u r r ent
l ine· and enter u followed immediately by r etu rn . Now look at the
b lock .

'l'BE INSERT BUFFER

The editor ma inta ins an " insert " buffer . Any text wh ich
fol lows p and u is placed into the inse r t buffer , and any lin e
deleted with x ls also placed into the insert buffer . If the u
or p command is entered and followed immediately with a r etur n ,
i t uses the text i n the insert buffer rather than what fol lows it
on the line you enter ed .

STRING EDITING COIUIARDS

The
delet e ,
enter

str ing editing commands include commands to f ind ,
and inser t str ings . Mak e l ine 0 the cur r ent l ine , then

f Adam

and hit r eturn . Notice that the cursor (the caret) is pos it ioned
immediately to the r ight of "Adam" . Now ente r f fol lowed
immed iately by return . That error message means that "Adam"
wasn ' t found . The f command starts search ing at the current
cursor pos it ion and cont inues unti l an occur ence of the str ing is
found or unt il the end of the b lock is r eached in wh ich case it
r epor ts that it d idn ' t f ind the str ing . When a str ing is not
found , the cursor rema ins wher e it was before the str ing was
sear ched for .

THE FIRD BUFFER

The editor also ma intains a " f ind buffe r " . Any str ing which
follows f is placed into the f ind buffer . Whenever f. is fol lowed
immed iately by a r eturn (or just one space) it will search fo r
the str ing which j s alr eady in the f ind buffer .

Frank Bogg Laboratory copyr ight 1983

A Tour De PORTH 43

Let ' s r eplace all the occur r ences o f "caller " with "Caller " . ·
Make l ine 0 the cur r ent l ine , then enter

f caller

and hit r etu r n .
pr inted , enter

r Caller ·

When the f i r st line with "caller " on it is

and hit r eturn . Now enter f followed immediately by hitting
r eturn . The l ine with the next instance of "calle r " on it wil l be
displayed . Enter r followed immediately by h itting return.
Continue unt i l the editor r epor ts that there are no mor e
instances o f "caller " on the screen , then list the screen .

Once a str ing is found , it can be er�sed with the e command .
The d command comb ines the act ions o f f and e • It will search
for the str ing wh ich follows it (o r which is in the find buffer
if it is immediately followed with r eturn) then erase it .

Once the cursor has been pos itioned with one of the commands
that does searching , a str ing can be inser ted at that point with
the i command . It will e ither inser t the str ing which follows i t

r at the po int wher e the cursor is posi tioned or it will insert the
\. . . str ing already in the inser t buffe r i f i is followed immediately

by a r eturn .

The till command deletes everything between the cursor and
the str ing wh ich fol lows it (or i s in the f ind buffe r i f till is
immediately followed by a return> . till does not search beyond
the cur rent line .

BOW TO IftERPRET A BJ'..OCK

Now that we have some FORTH words on a bloc k , we want to
have the interpr eter interpret what ' s on the block instead of
stuff we ente r at the k eyboa r d . How is that done?

F ir s t , let ' s protect ourselves by enter ing flush and hitting
return . Thi s will wr ite the block we just edited to the disk .
Now , i f something goes wrong and we crash, all the ed it ing we did
will not be lost . Next , let ' s get r id of the words we have
entered from the keyboard so far . Enter empty and hit return .
Ever y wor d wh ich has been def ined s ince the computer was turned
on and FORTH started runn ing will be erased from the dictionary.
Now enter 54 load and h i t r eturn . Onc e the interpreter sees load
it will stop interpr et ing the l ine we typed in and go and
interpret the text on b lock 5 4 . The interpreter will interpret

copyright 1983 Prank Bogg Laboratory

44 A Tour De POR'l'B

everyth ing on the block unt i l it r eaches the end of the block or
until someth ing happens to k eep it from r eaching the end of the
block . Once i t f in isbe� ooing that it will cont inue interpreting
any text wh ich follows load • S ince ther e isn ' t any , it will
j ust say " ok " and wait for us to enter anothe r l ine .

ERRORS WHILE LOADING

It is qu ite poss ible ,
" ok " . Typically , th is happens
As usual , FORTH will pr int
mark .

of cour se , that loading did not go
when a wor d has been mis-spelled .
out the word followed by a question

Let ' s mak e this happen and see how to correct it . Mak e l ine
O the cur r ent line , then ente r

f Adam

and hit return . Then enter

f Caller

and h i t r eturn . Then enter

r caller

and h it r eturn . Th is block defines Caller but it does not define
caller because eFORTH does not believe that "c" is the same as
"C" . Now enter empty 54 load and h it r eturn . When the
interpr eter f inds caller on the block , it wi l l not f ind it in the
d ictionary or be able to convert it to a number , so it g ives up
and tells you it couldn ' t do anyth ing with it . Now enter v and
h it r eturn. · The cursor will be pos i t ioned immediately afte r th e
offending ·word . S ince you know what is wrong with it , f ix it by
enter ing

r Caller

then enter empty 54 load and hit return .

ANSWERING 'l'BE PBORB PROBLEll

Remember the problem we left you hang ing with at the end of
the previous chapte r ? Her e we have the solut ion . S imply r emove
the phone appl icat ion words from the d ict ionary with empty o r
forget and load them again. Eve ryth ing will b e pr ope rly
in itialized .

Prank Bogg Laboratory copyright 1983

(

A Tour De FORTH 45

BACK TO THE RESTAURANT

Let ' s put the r es taurant applicat ion words onto block s .
Thi s i s a test , s o you ' re on your own except for the following
suggestions . Mak e sure each block you use is empty , and wipe it
before putt ing anything on it . Put the def initions o f Total and

for is and price onto block 5 8 . Put the things defined with
price onto block 5 9 . Now put the fol lowing l ines onto block 5 7 :

58 load
59 load
ezit

exit will
Since the r e
interpreter
spac e .

cause the interpreter t o stop interpr eting the block .
isn ' t much on the block , we put it there so the

won ' t waste time look ing for words in all that empty

Block 57 is called a " load " b lock . All it does is control
the load ing of al l of the block s wh ich conta in wo rds related to
an appl icat ion . All we have to do to load all of our r estaurant
appl icat ion words i s enter 57 load and hit retur n .

BOW DID YOO DO?

Ready? Did you sta r t a comment on l ine 0 of all thr ee
b lock s including b lock 57? You ' d better , or the interpreter will
find you r in itials C o r the date} and not know what to do with
them . Did you flush you r work to the d isk ? All set? Enter empty
57 load and s it back . Rats ! When we executed empty we removed
scale and $. from the dict iona r y . We will have t o put them back
by load ing block 54 aga in . However , it was real handy to us e
empty when we encountered an error , fixed it , and r e-loaded .
What can we do?

Try this . Enter

• ***** • . ,
then enter 57 list to mak e b lock 57 the cur r ent block , then enter
O t to mak e l ine O the cur r ent l ine , then use the u command as
fol lows :

u forget ***** : ***** 1

Now when we load block 57 it will forget ***** and everything
that was added to the dict ionary before the er ror . Then ***** is
r edefined so that we are all set up to do the same thing in cas e
we r un into another mistak e . Now load block 57 . If you get an

copyr ight 1983 Frank Bogg Laboratory

46 A Tour De FOR'TB

e r ro r , f ix it , and load block S7 aga in . S imple . When we enter
words this word is real easy to see , and we can tell whe r e , in
the l is t of words , our appl icat ion beg ins .

Once we have successfully loaded all the words in our
appl icat ion and we ar e satisf ied that they a r e wo rk ing cor r ectly,
we can erase line 1 on block S 4 . It ' s j ust a program development
tool .

THE ANSWERS , PLEASE

At the end of this chapter there is a listing wh ich shows
what your block s should look like at this point . The vert ical
bar on block S7 is a special eFORTH word wh ich tel ls the
interpr eter to sk ip the r ema inder of the l ine . So , we fol low it
with at least one space then use the rest of the l ine for
comments . Ar e ther e any quest ions?

ELIMINATING CRAMPS

Block S4 is very crowded . List it . Now enter n 1 and hit
r eturn . The n command makes the "next " block the cur rent block
(in thi s case , block S S) . wipe it then enter b 1 wh ich mak es the
cur rent block go "back " one block . Not ice the l ine that the
f i r st caller is def ined on . It should be l ine 1 0 . Now enter n
to mak e block 5 S the cur rent block then ente r 1 t to mak e l ine 1
the cur rent line . Now enter

54 10 g

and hit return . Th is l ine "get s " line 1 0 on b lock 54 and inserts
it unde r the cur rent l ine of the cur r ent block . So , we have
copied line 10 on block S 4 to l ine 2 on block S S . Enter

54 11 3 gets

which w i ll copy 3 l ines beg inn ing with line 1 1 on b lock 5 4 to the
three l ines unde r the cur r ent l ine on the cur rent block . Not ice
that this command pushed the bottom thr ee l ines of block 55 off
o � the block . They are gone for ever .

Now enter b 10 t then enter x x x x which will erase the
l ines on block 54 that wer e copied to block 5 5 . We have
effectively moved them from block S4 to block S S .

Frank Bogg Laboratory copyr ight 1983

{.

A Tour De FORTH 47

One minor problem r emain s . Now , when we load block S 4 , the
wor ds on block 55 are not loaded as wel l . They should be . A
quick solut ion i s to mak e l ine 1 4 C o r some l ine near the bottom)
of b lock 5 4 the cur r ent l ine , then enter

p -->

and hit return . Thi s puts the "arrow " on that l ineo When the
a r r ow is executed by the interpreter , it stops loading of the
cur r ent block and forces loading to continue with the next block o
Any text on block 5 4 which follows the arrow wil l be ignored by
the interpreter .

Ent i r e block s
For example , 54 55
onto b lock S S .
destroyed .

BLOCK EDITING COMMANDS

can be moved around with the copy command .
copy wil l copy the entire contents of block S 4
Any data prev iously on block 55 will be

A sequence of b lock s can be copied with the copies command .
Enter ing 54 84 3 copies will copy block 5 4 to block 8 4 , block 5 5
t o b lock 85 , and b lock 56 to block 86 .

A block that i s not the cur rent edit ing block can be wiped
clean with the clear command . Enter ing 54 clear will f ill block
5 4 with spaces . Be car eful ! clear does not ask you if you ar e
sur e . And if you enter 20 clear think ing the interpr eter is in
base ten , you may be surpr ised to d iscove r it was in base sixteen
and you have destroyed valuable data on block 3 2 .

These wo rds obv iously prov ide other methods fo r eliminat ing
c ramps .

DOCUMENTING YOUR APPLICATION

Once everything is work ing the way it shou ld, you can pr int
a l ist ing of the block s which conta in the source code of the
words in you r application . For example , the l isting in Appendix
C was pr inted by enter ing

print O 72 show ok

The wor d pr int is defined to r edirect all output generated by any
words wh ich appea r between it and ok to the pr inte r .

copyright 1983 Frank Bogg Laboratory

48

The ver s ion of
thr ee block s per page .
con f igured to pr int
a lt ernate ver s ion you
It ' s on block 61 .

A Tour De FORTH

show which comes with eFORTH only pr int s
I f you have a pr inter wh ich can be

1 3 2 characters on a line, there is an
can use wh ich pr ints s i x block s to a page .

Suppose you make a change to the source on block S S . To get
an updated listing , you only have to enter 55 listing wh ich w ill
pr int out the page wh ich conta ins block S S . You do not have t o
pr int a new listing for the ent ire application or the ent ire
disk . The same block will always fal l on the same place on th e
same pag e .

Frank Bogg Laboratory copyr ight 1983

.•

l

A Tour De FORTH

Block I 54 Block SS
B i Ne1tTotal Cal l er Na1esOfCal l ers 12: 47p1 cee 23jan84 >
1 : t, < n --)

2 I <I I I ascii , hold Is asci i t hol d I> type ;

3 : scale I d -- n >
4 dpl i B 3 1tithin not

S abort• Entry i s out of range, 8

6 drop 2 dpl a ?do base a • l oop ;

7 : 14e1tTotal (at adr -- I
8 >r scale ri i + dup $, r> � ;
9 : Cal l er I -- > create ll , does> NewTotal i

It Caller Ada• (a1t -- !
1 1 Cal ler Betsy I a1t -- I
12 Cal l er Carl ! a1t -- I
13 Cal l er Denise I a1t -- l
1 4

1 5

Bl ock I 56 Block 57
ll

2

J
4

5

6
7

8

9

Uf
11
12
13

14

15

I "enu Appl icati on Load Block

SB l oad : Total is for and price

59 load l prices

exit

Block I 58

B (Total and for is price

Block 59

12: 47p1 cee 2ljan84 l I pri ces
1

2 : Total I -- ll > ll ;
3 : i s I n - l $,
4 : for I - > ;
S : and (-- l ;
6 : price ! n -- > scale create , does> i + ;
7

8

9

It

1 1

12
13
14

15

1 . 95 price blt

1 . 25 price shake

.75 price fries

exi t

49

copyright 1983 Frank Bogg Laboratory

50 A Tour De FORTH

CBAPTER 6

DOES FORTH DAVE WHAT COURTS?

FORTH implementations generally do not come with words wh ich
have a s their sole purpose the declaration and man ipulat ion of
ar rays as a separate data type . As usual , you may add your own
i f the need ar ises . And you are sur ely th ink ing that the need
will inevitably ar ise . Of cour se it will, but the cr eation and
man ipulat ion of arrays is quite easy with the FORTH tools alr eady
at hand .

LET ME COUNT THE A ' s

A fr equent appl ication for wh ich arrays are used is to count
things when ther e are a lot of the thing s to be counted . Th e
tr ick i s to assign a number to each of the th ing s , and use that
number as an index into the a r r ay . For example , let ' s count the
characters on a block and find out how many a ' s and other
char acter s there ar e on the block .

How many di fferent c�aracters are there? Current FORTH
standards specify that the internal repr esentation of character s
shall be the ASCII character codes . In the ASCI I charact er set
there are 96 pr intable char acter s and 3 2 control codes . Th e
ASCII codes start with zero and go as high as 127 . So let ' s j ust
use the internal ASC I I code of a char acter as the index into the
ar ray . Th is means that our array will have to have 128 elements .

How la rge should each element be? S ince we will also be
counting spaces , and since a block may be completely blank , we
may have to count as many as 1 0 2 4 spaces . Hence , at the least ,
each element of the array will have to be large enough to hold a
1 6-bit integer . We will have to r eserve two bytes for each
element . Her e ' s how to do i t .

create Letters 256 allot

Thi s l ine cr eates a word with the name Letters , then 2 5 6 bytes
(12 8 elements at two bytes each) are reserved wh ich can be
accessed us ing the word Letters When a word defined with
create is executed, it s imply pushes an addr ess to the stack . In
the case of Letters , this will be the addr ess of the first byte
of the 25 6 wh ich wer e allotted to Letters • Now , for any given

Frank Bogg Laboratory copyr ight 1983

A Tour De FORTH 51

ASCI I code , we can get the addr ess of its element in the a rray by
mul tiplying its ASCII code by two (because we a r e u s ing two bytes
for each element> then add that r esult to the addr ess returned by
Letters • Her e ' s the definit ion of a word wh ich does thi s .

: letter < c - adr) 2* Letters + 1

Once we have the addre s s of the element wh ich cor responds to a
char acter what do we do with it? Just add one to the count which
is alr eady sto r ed ther e .

: CountOne < c � > letter 1 swap + l 1

To count the char acters on a block , we need to get the ASCII code
for each of the 1 0 2 4 characters on a block and pass it to
CountOne to oper ate on . �ow do we do that?

Given the number of the block we want to process , we can use
block to get the addr ess of the first byte (wh ich holds the first
char acter) on that block . Adding one to that address g ives the
address of the second byt e , and so forth . The standard way to do
this sort of thing is to use a loop structure wh ich will execute
1 0 2 4 times and use the loop index to get each char acte r on the
block . Her e ' s how thi s i s done in FORTH .

: Count < blk - >
Letters 256 erase < initialize elements to 0 >
scr I C save the block number >
1024 0 do < begin the loop >

scr @ block < get the block address >
i + < add the loop index to it >
c@ < get ASCII code for i-th character >
CountOne C process it >

loop 1 < do it again >

The f i r st l ine of thi s definition presets every element in
the ar r ay to zero . For convenience , the block number is stored
in the user var iable scr wh ich is a " s ide-effect " of execut ing
Count wh ich you may not l ik e . In a moment we will see how to
avo id i t .

BOW DO LOOPS MORK?

Fo r now, let ' s cons ider what happens when the sequence
1024 O do executes . These words set up the execution of a loop
in FORTH . The two numbers ar e pushed to the stack , as usual ,
then do r emoves them, f iddles with them sl ightly , then puts them
on the r eturn stack . The zero becomes the initial value of the

copyr ight 1983 Frank Bogg Laboratory

52 A Tour De FORTB

loop index which Theans that the first t ime through the loop , the
word i , wh ich r eturns the cur rent loop index , will r eturn a
zer o . Each t ime the word loop executes , the index is incr emented
by one , then it is compar ed to the loop n 1 imi t n which in thi s
case i s 1 0 2 4 . As soon a s the index equals the limit , the loop is
terminated, and execut ion cont inues with the word wh ich follows
loop So , the last t ime the loop executes , i returns 10 2 3 . In
this cas e , the nbody n of the loop consists of all the words
between do and loop and they are the words which are executed
each t ime through the loop. The comment s indicate what they do .

DO THE I ' s HAVE IT?

Obviously, reporting the number of t ime s each character
appear s in a block requires another loop. Th is time we must loop
through the ar ray and pr int the contents of each element . Let ' s
think about what has to be done to pr ocess one char acte r .

We should at least pr int out the character
To avo id formatt ing pr oblems , let ' s just pr int
l ine . We need a word , then , wh ich will star t a
the character , then pr int its count .

and its count .
one char acter pe r
new l ine, pr int

: ReportOne < c -- > er dup emit letter @ • 1

Now we need a loop wh ich goes through all the charact er s and
calls ReportOne for each one . To mak e it easy , let ' s not repor t
the counts of control codes . Th is mean s , though , that our loop
should not start with an in itial index of ze ro . The first 3 2
ASC I I codes C O through 3 1 } repr esent control codes wh ich a r e not
pr intab le characters on most dev ices . So the first value
returned by i should be 3 2 and the last should be 127 .

: Report (--) 128 32 do i ReportOne loop 1

Not ice that the specified limit is 1 2 8 instead of 127 . Recal l
that loop adds one to the index and if it then equals the limit
the loop is terminated . Hence , the last time the body of the
loop executes , i r eturns 127 .

Frank Bogg Laboratory copyright 1983

'
\ ' �

,,.

l

A Tour De POR'l'B 53

CAN I MAKE I'l' RUN PASTER?

Usually when a program i s runn ing too slowly , the culpr i t is
a loop which executes a large number of time s . The best way to
speed things up is to try and cut down the time it takes the body
of the loop to execute . For example , suppose the body of the
loop in Count takes f ive seconds to execute . Since the body o f
that loop executes 1 0 2 4 t imes , shaving j ust one second o f f o f the
time of the body o f the loop wil l r esult in a savings of 1 0 2 4
seconds each time Count executes . It so happens that Count is
not coded very eff icientl y . Not ice that the address of the block
is calculated each time through the loop. It would be much mor e
eff icient t o calculate that address j us t once befo r e the loop
begins , save it somewher e , and grab a copy of it each time
through the loo p . I n fact it would b e even better if w e didn ' t
have to add the value of the index to that address . Why not
calculate that addr ess and have it be the initial index? Then
each time through the loop , the index will be automatically
incr emented to become the address of the next character on th e
block .

: Count C -- >
Letters 256 erase
b1ock
dup 1024 +
swap
do

i
c@
CountOne

loop r

C initia1ize e1ements to 0 >
C adr of lat char - initial indez >
< adr+l of last char - the limit >
< pat them in the right order >
< begin the loop >
< address of current character >
< get the character >
< process it >
< do it again >

Not ice that the body of the loop in this ver s ion conta ins far
fewer operations . Mor e work has to be done before enter ing the
loop, but that work is done only once instead of 10 2 4 times .
Notice one more thing . This ver s ion avoids the side-effect of
the earlier ver s ion : it does not change the contents of scr •

DON ' T GO OUT OP BOUNDS

Ther e is the pos s ibility of disaster in our counting
program . The value of a byt e , after all , can be as h igh as 2 5 5 ,
and the r e could well b e a byte o n a block wh ich is gr eater than
127 . What would happen? Clearly, letter would r eturn an addr ess
to s9meth ing wh ich is not in the Letters array . Consequently ,
COuntOne would increment something that probably should not be
incr emented . What can be done to avo id th is problem?

copyright 1983 Prank Bogg Laboratory

54 A Tour De PORTH

Other languages usually check that an index into an array is
within the declared dimensions of the array . However , th i s
check j ng takes addi tional t ime , and i t is done whether you want
it to be or not . FORTH leaves it to you . I t i s up to you t o
decide whether this check should b e per formed , and , if you
dec ide it should be , wha t to do when an index into an array i s
out of bounds . Th is is obviously a case when we should check .
Now , what should be done when we f ind a byte wh ich is gr eater
than 127?

Two strateg ies come to mind . The first is the strategy used
by other languages : abo r t the progr am . We can def ine a word such
as

: ?bounds (c --) 0 128 within not
abort• index out of bounds . • 1

and change the definit ion of CountOne as fol lows .

: CountOne < c -- > dup ?bounds letter 1 swap + 1 1

The other stragegy is to continue processing . However , we
will have to decide what to do with bytes gr eater than 127 . We
can e i ther ignore them, or expand the size of Letters so we can
count them, or we can subract 1 2 8 from them and process them
normally . It ' s up to you , and it depends on what you are trying
to do .

WHAT ' S YOUR SINE?

Another important use of ar rays is the cr eation of tables of
constant data such as a tax table or other data that s eldom, if
ever., changes . For example , it is a s imple matter to cr eate a
table of s ines and use the angle as an index into th e table to
get the s ine for that angle . Wa it a minute, you may be think ing ,
that will only wo rk if the angles a r e whole number s ; you can ' t
use a fract ion as an index into an array . That ' s r ight .
However , in many cases (graph ics , for example) el i�1inat ing
fr act ions may not result in any noticeable loss of accuracy , and
"calculating " a s ine wi l l be much faster . If you don ' t need nine
digits of float ing point accuracy , why spend pr ecious CPU time
extracting them?

Frank Bogg Laboratory copyr ight 1983

, :

A Tour De FORTH 55

Let ' s create a table wh ich conta ins the s ines for angles
from zero to ninety deg r ees . Her e ' s how .

create SineTable
0000 , 0175 , 0349 , 0523 , 0698 , 0872 , 1045 , 1219 , 1392 ,
1564 , 1736 , 1908 , 2079 , 2250 , 2419 , 2488 , 2756 , 2924 ,
3090 , 3256 , 3420 , 3584 , 3746 , 3907 , 4067 , 4226 , 4384 ,
4540 , 4695 , 4848 , 5000 , 5150 , 5299 , 5446 , 5592 , 5736 ,
5878 , 6018 , 6157 , 6293 , 6428 , 6561 , 6691 , 6820 , 6947 ,
7071 , 7193 , 7314 , 7431 , 7547 , 7660 , 7771 , 7880 , 7986 ,
8090 , 8192 , 8290 , 8387 , 8480 , 8572 , 8660 , 8746 , 8829 ,
8910 , 8999 , 9063 , 9135 , 9205 , 9272 , 9336 , 9397 , 9455 ,
9511 , 9563 , 9613 , 9659 , 9703 , 9744 , 9781 , 9816 , 9848 ,
9877 , 9903 , 9925 , 9945 , 9962 , 9976 , 9986 , 9994 , 9998 ,

10000 ,

When this FORTH code is interpr eted , each number is placed on the
s tack Cas usua l) , then the comma put s it in the dictionary. The
firs t number is "comma ' d " into the addr es·s returned when
SineTable executes . Hence , given an angle on the stack in th e
range C0, 90 1 we r eplace it with its s ine by executing

: sin90 < 0-90 -- sine > 2* SineTable + @ • •

L < we mus t mult iply by two because each s ine occupies two bytes) .

I f the angle is in the r ange of C 0, 180 1 degr ees , we can get
its s ine from this same table by r ef lection .

: sinl80 < 0-180 -- sine >
dup 90 > if 180 swap - then
2* SineTable + @ ;

and , for the first time , we see the FORTH vers ion of the
" if-then " structur e . As you might suspect , the usage of thes e
words in FORTH i s the " reverse" of what it is in other languages .

IF • • • TBBR

Enter the following definition from the k eyboard

: IfTest if . • true• then . • continue• ;

then enter true If'rest and see wha t happens , then enter
false IfTest and see what happens . Notice that in both cases the
number is removed from the stack . When execution reaches if it
pul ls the number on top of the stack and tests to see i f it is
equal to zer o . If it i s , the words between if and tben are
sk ipped, and execution cont inues with whatever words follow then

copyright 1983 Frank Bogg Laboratory

56 A Tour De FORTH

Bu t if the number is non-zer o , the words between if and then
are executed .

So , in FORTH , the condition to be tested comes befo r e the if
and the words to be executed if the condit ion is "true " C i . e . ,
non-ze r o > come befo r e the then •

IP • • • ELSE • • • TBEN

Can you have an "else" part? Sur e , but its pos it ion is
r ever sed as well . Try the following .

: BlseTest if . • true • else . • false • then . • continue� i

Then test it by enter ing true ElseTest and false ElseTest and you
should have the idea . Now we can wr ite a word wh ich will handle
s ines in the full range of 0 to 3 6 0 degr ee s .

: sin360 C 0-360 -- sine >
dup 180 > if 180 - sinl80 negate else sinl80 then i

WHAT DOES YOUR SINE LOOK LlltE?

Let ' s at least have the sati sfaction of see ing someth ing
done w ith these words . Try th i s .

: stars C cnt --) 0 do ascii * emit loop i
: bar C sine --) er stars i
: SineWave C --) 360 0 do i sin360 bar loop i

and the r esults wi ll be ter r ibl e . Why? A ful l cycle of a sine
wave will r equire pr int ing 3 6 0 l ines wh ich is six sheets of
pape r ! The obvious solution is to not pr int one l ine for each
deg r ee . Instead , pr inting one line for every five or ten degr ees
should give us the basic "pictur e " . How do we implement the
obvious solut ion? Introduc ing the fabulous +loop which can be
used in place of loop to incr ement the index by some value othe r
than one each t ime thr ough the loop . For example ,

: SineWave < -- > 360 0 do i sin360 bar 10 +loop i

will increment the index by t en each t ime through the loop which
means that sin360 will be called with values of O , 1 0 , 2 0 , etc .

Frank Bogg Laboratory copyright 1983

A 'l'our De POR'l'B 57

The fabulous +loop will even let us run through the indices
"ba�kwa rds " . For example ,

: SineWave (-- > 0 360 do i ain360 bar -10 +loop J

will call sin360 with angles of 3 6 0 , 35 0 , 34 0 , etc . In th i s
case , 360 i s the initial index , and 0 is the limit . There is one
sl ight catch when the l imit is lower than the initial index and
the loop counts "down • . The loop will not terminate until the
index value runs below the l imit (instead of becoming equal to
it) . For example , enter and execute the following

: up 5 0 do i • 1 +loop J
: down O 5 do i • -1 +loop J

and notice the di fference . The "up" loop will execute five times
with the index running from zero to four . The "down " loop wil l
execute six t imes with the index running from five to zer o . Try
these again with incr ements of 2 and -2 and see what happen s .

Even with these new ver sions o f SineWave the results are
s till ter r ibl e . The r eason i s tha t the number of sta r s pr inted
on a line could be -10 , 0 0 0 or +10 , 000 . That r ange is a bit out
of whack cons ider ing that mos t display dev ices wil l handle no
mor e than 80 stars on a l in e . It ' s obvious that bar should scale
things down a b i t .

Let ' s assume that we can get a s many a s 8 0 stars o n a
That means that whatever value i s given to bar should be
so that i t is in the r ange C-4 0 , +40) . We should then add
the result so that the loop l imit is in the range C l , 80) .
divide the s ine by 3 0 0 , the r esult wil l be in the des i r ed
so , we end up with this .

: bar (sine -- > 300 I 40 + er star� J

line ..
scaled
40 to

If we
range .

Although this isn ' t the most sophisticated application of
tr igonometr ic functions , it is still interesting to note that our
" impr ec ise " , • integer-only • , •whole-degr ees-only " (add your own
pej or ati ves her e> method prov ide s s in e values which have gr eate r
pr ec i sion than we need .

IRDBPIRI'l'B LOOPS

We have been look ing at how to cr eate pr ogram structures
which are- known as "de f inite• loop structur es . Before the loop
is enter e d , you know how many t imes it will execute . Sometimes ,
you will want someth ing to happen over and over again , but you

copyr ight 1983 Prank Bogg Laboratory

58 A Tour De FORTH

won ' t know how many t imes it should happen before you star t c1o ing
it . Th is latter type of loop structu r e is called -an " indef inite "
loop .

For example , you might want to have the s ine of 4 0 0 0 deg rees
o r -1 0 degr ees . 4 0 0 0 degrees can be interpr eted as go ing a r ound
in a c i rcle C to the r ight) over 10 time s , and -20 degr eec can be
inter pr eted as going around in a ci r cle 20 degr ees to the left .
Consequently , the s ine of -20 degr ees is equal to the s ine of 3 4 0
degr ees s ince turning 2 0 degr ees to the left leaves you heauing
in the same d i r ect ion as turning 3 4 0 deg r ees to the r ight . And
turn ing 4 0 0 0 degr ees to the r ight leaves you heading in the same
d i r ect ion as turning 40 degr ees to the r ight . You j ust don ' t get
as d i z zy .

How might we convert any number o f degr ees to the equ i valent
number of degrees within the C 0 , 3 6 0 1 r ange? If the numbe r o f
degr ees is pos itive and gr eater than 3 6 0 , w e can simply subtr act
3 6 0 unt i l the r esult is sti l l pos itive and less than 3 6 1 . Her e ' s
how .

: Right360 C nl -- n2 >
begin dup 360 > while 360 - repeat ;

I f the number on the stack i s greater than 3 60 , a true flag is \

left on the stack . If while sees a true flag on the stack (wh ich
it r emoves) the words between while and r epeat will b e executed
(the body of the loop) , then execut ion goes back to the point

marked by begin • Not ice that the body of a "wh ile" loop might
not be executed at all . Addit ional def initions will allow us to
get the cor r ect s ine for any number of degr ees .

: Lef t360 C nl -- n2 >
begin dup O < while 360 + repeat J

: s in C degrees -- sine)
dup O < i £ Left360 else Right360 then sin360 J

This definit ion of sin is coded in such a way that the wo rd
Left360 i s only called with a negat ive number of degr ees . Hence ,
it w i l l always add 3 6 0 to the number passed to it at least once .
Her e i s another way to code i t .

: Left360 C n l -- n2 >
begin 360 + dup -1 > until J

The body of th is "unti l " loop structur e wil l always execute at
least once, and it will loop unti l the number is zero or gr eater .

Frank Bogg Laboratory copyright 1983

,(a '\ _

A Tour De FORTH 59

SOMB ODDS AND ENDS

A few mor e deta ils about def inite loops should be men tionedG
Enter these words from the keyboard and t ry them out .

: up 4000 0 O do i . 10000 +loop ;

Probably not what you expected . Enter 40000 • and see what is
pr inted. The internal representation o f 40 , 00 0 is interpr eted by
FORTH as a negat ive number . The loop keeps go ing and adds 10 , 000
each t ime unti l the index over f lows and becomes negative , then it
keeps on going until adding 10 , 0 0 0 r eaches or passes that
negat i ve limi t . Try this one .

: up O O do i • 10000 +loop J

Obv iously this behavior of do can be most undes irable in some
s ituations . For example , imag ine wha t would happen i f you entered
0 stars • You would have to e ither h it the reset button or wa it
unt i l 65 , 52 6 star s are pr inted .

In s ituations such as stars there is a special wo rd , ?do ,
which can be used. I f you ente r

: stars < cnt - > O ?do aacii * eait loop J

then execute 0 stars , no stars wil l be pr inted : the body of the
loop will not be executed . Nothing will be pr inted i f you enter
-5 stars becaus e ?do is def ined to not execute the body of th e
loop i f the l imit i s equal to o r less than the init ial index .

IT ' S TIME TO leave

Ther e a r e t imes when a loop should be terminated before it
has executed the pr edetermined number of times . For example ,
look a t the def inition of s on block 4 1 . This word is des igned
to search for a str ing start ing at the cur rent block and the
block s wh ich follow it until reaching the block whose numbe r is
on the stack . So , i f the cur rent block is block 1 2 , enter ing

45 s c/l

will search for the str ing "ell " on all block s from 12 to 45 .
The bas ic structur e of s is a loop with an in itial index , in thi s
cas e , of 1 2 , and a loop l imit of 45 . However , i f an occur ence of
the str ing i s found, the l ine it i s on should be pr inted out , and
execut ion of s should be terminated so that the user can replace
that str ing with something else Cor per form some other oper ation
on it) . Th is is what the word leave does . If the str ing i s

copyr: igbt 1983 Prank Bogg Laboratory

60 A Tour De FORTH

found , the words between if and then are execut ed . When
execut ion finally gets to leave it immedia tely causes the loop t o
b e exited ; execut ion cont inues w ith the word wh ich follows loop •

Not ice that the 4 5 will be left on the stack . Th is means tha t
en ter ing s and h i tt ing return will resume the search for "ell " .

� s j m i lar wor d , ?leave , expect� a flag on the stack (wh ich
it r emove s) , and i f the flag is true , it immediately terminat�s
the loop. If the flag is fals e , execut ion con t inues with the
wo rd w� ich follows ?leave •

Frank 8099 Laboratory copyr ight 1983

'
I

A Tour De PORTH 61

(

copyright 1983 Prank Rogg Laboratory

62 A Tour De FORTH

CHAPTER 7

WHAT' S IR A WORD?

The di ct ionary begins somewhere in low memory and grows
upward as words are added to i t . Let ' s look at some of th e
deta ils of what is actually put into the dict ionary when a word
is def ined .

When the FORTH interpr eter tackles a line such as

var iable 11

it f j nds var iable in the dictionary and executes it. If you
r ecall , var iable tak es the next word in the input stream and put s
it in the dict ionary as the name of a word . In this case the
word will be a var iable and its initial value wi ll be zer o .

All defin ing words ultimately call create wh ich puts in the · -,
dict ionary those elements wh ich a r e common to every word in the /

dictiona ry whether it is a var iabl e , a constant , or a colon
definition . These elements ar e :

1 . The link field,
2 . The count byte,
3 . The name of the word,
4 . The code field,
s . The parameter field.

TBE LINK FIELD

The first field in a dict ionary entry is called the " link
field n . It is the 1 6-bit address of the count byte of th e
pr ev i ous word < in the same vocabulary) . The l ink field of the
last word in the vocabulary is zer o . By following these l ink s
every word in the vocabulary can be examined .

Frank Bogg Laboratory copyr ight 1983

,.

l .

A Tour De PORTH 63

THE NAME PIBLD

The count byte together with the char acters wh ich compr ise
the word ' s name are collectivly cal led the word ' s "name f ield " .
The lowest 5 bits o f the count byte a r e reserved for the count o f
char acters in the wor d ' s name . Hence , a word ' s name may be up to
3 1 characters long. The s ixth bit o f the count byte is not used .
The seventh b it is called the •precedence b it • . If this bit is
set , the word is an " immediate • wor d . The point of this will be
discussed in a moment . F inally , the e ighth bit of the count byte
is always set . So is the e ighth bit o f the last cha r acte r in th e
wor d ' s name . This a llows dictionary scanning wo rds to go from
one end o f the name field to the other .

THE CODE PIELD

The third f ield in a dict ionary entry is called the "code
f ield " . This f ield contains a 1 6-bi t addr ess . At this addr ess
will be found machine code wh ich is to be executed whenever the
word is executed .

THE PARMETER PIBLD

The last f ield is called the "parameter field " . This field
can be as shor t as a s ingle byte or as long as seve ral thousand .
The natur e of its contents can vary just as widely . In shor t ,
the parameter field conta ins some type of data . The code field
points to a mach ine language program wh ich determines what is
done with that data .

VARIABLES

Once again , take the simple case of a var iable . When

variable 11

is interpreted , variable calls create wh ich cr eates the new
wor d ' s l ink f ield , name f ield, and reserves space for the code
field . var iable then f ills in the code f ield with the addr ess of
a mach ine language routine wh ich per forms the operation
assoc iated with var iables : pushing the address of the var iable ' s
par ameter field to the stack . F inally , variable reserves two
bytes in the dict ionary for the new wor d ' s parameter field and
stores a zero there . Here is a pictur e of the orde r of things in
memory a fter a var iable is defined .

copyright 1983 Prank Hogg Laboratory

64 A Tour De PORTH

+--�-�------+---------------+
I link I field I
+---------------+---------------+

count byte
+---------------+---------------+

I I
+---------------+---------------+

code I field
+---------------+----------------+

0 0 , I
+---------------+---------------+

The wo rd here always r eturns the addr ess of the next free byte in
the d ict ionary . So every t ime someth ing is compi led into the
d ictionary the addr ess returne� by here is advanced .

CONSTANTS

When 31415 constant pi is interpreted , the act i ons taken are
ident ical to the pr ev ious descr ipt ion of what happens when a
var iabl e is defined except that the code field of a constant is
fi lled w i th the address of a di fferent mach ine language routin e :
one wh ich pushes the contents of the word ' s parameter field to
the s tack (instead of the address of the parameter field) .

+---------------+---------------+
link I field

+---------------+---------------+
count byte

+---------------+---------------+
p i

+---------------+---------------+
I code I field I
+---------------+---------------+
I 3 1415 I
+---------------+---------------+

Frank Bogg Laboratory copyright 1983

A Tour De PORTB 65

COLOR DBPIRITIONS

Th ings are a bit more involved for a colon def inition . w'ben

: binary 2 base ! '

i s interpr eted , the colon is first found and executed . The colon
calls create which adds the appropr iate link f ield and name field
to the dictionary and reserves space for the code field . The
colon then cal l s l wh ich is the word which puts things into the
pararoeter f ield of the colon definition which is being compiled .
The semicolon at the end of a colon def inition stops th e
execut ion of J • Next , the code f ield is filled in with the
address of the appropr iate mach ine code . F inally , the new word
is added to the dictionary so that other words can use it .

What , you may be wonder ing , i s put into the par ameter
of a colon definit ion? The answer is quite simple .
par ameter field of a colon def inition i s a list of code
addr esses . Here is what binary look s lik e .

++----------------+---------------+
I link I field

+--------------·-+-------------+
count byte I

I • •••··---+---·-------+t

b i I
+---------·-+•----.... ----�+

n a
+-------·-��--+---------------+

y
+--....... -FElf ----+•------·--·---------+

code I field
+---------------�------------+

cf a of 2
+----------------+------------...-�-+

cf a of base
+---------------+-----------�--+

cf a of 1
+--- ··---- I .. ----------+

cfa of exit
+-�·��----------+---------------+

field
The

field

Conver t ing the source text of a colon defin ition into this list
o f code field addresses i s called "compi l ing " .

copyr ight 1983 Prank Bogg Laboratory

66 A Tour De FORTH

· COMPILATION

In FORTH , compiling is a very s imple proces s . The lion ' s
sha r e of th i s wor k is done by the wor d J wh ich was mentioned
ear l i e r . For the sake of convenience , we will r efer to this wor d
as "the compiler " . Her e is i t s def init ion :

:] < -- >
true state 1 (
begin C

bl word C
find C
?dup C
if (

192 < (
if (

, (
else (

execute
?stack

then

indicate that compiling is in process >
start an infinite loop >
get next word from the input stream >
search for it >
was it found? >
it was found >
is it an immediate word? >
it is not immediate >
compile its code field address >
it is immediate >
C execute it instead of compiling it >
< check for stack underflow >

else C it wasn ' t found >
<number >
[compile]

then
again 1

< see .if it ' s a number >
literal < compile the number >

< process the next word >

I t should be fair ly clear how this word work s , but a few comments
a r e in orde r . Not ice that word i s used to get words from the
" input stream" . I f you entered a definit ion at the k eyboard ,
then word s imply gets each word you typed . If you are loading a
block with a colon definition on i t , then word gets each word in
that def inition off of the block be ing loaded . word is smar t
enough to know where it is supposed to get the

·
next wor d .

Next , the word is searched for in the dict ionary . If it is
not found, (number> i s called to see if the word can be
interpr eted as a number . If not , (number) pr ints an error
message and aborts the whole pr oces s . Otherwise , the number is
left on the stack , and literal r emoves it and compiles stuff so
that when the word be ing def ined is executed, the number i s
pushed t o the stack . How th is is done is discussed in the next
chapter .

If the word is found in the dict ionary , then that word is
either an " immediate " word o r it is not . If not , its execution
addr ess C code field addr ess> is " comp i led " into the dictionary by
the comma . Th is address was left on the stack by find and the
comma just r emoves it and st icks it in the dict ionary afte r
r eserving two bytes for it .

Frank Bogg Laboratory copyr ight 1983

{__

A Toor De PORTH 67

If the wor d i s immediate, then it is executed , after wh ich
we check for stac k under flow .

S ince th i s •compiling loop• is an inf inite loop, you may be
wonder ing how the coropil ing process eve r stops . Look at th e
defin ition o f binary again . When the colon executes , it adds
binary to the dict ionary, then cal ls l which compiles the
execution addres s of 2 and base and 1 into the par ameter field
of binary (adding two mor e bytes to its size each time> .
Finally , l fetches the semicolon from the input stream and finds
it in the dictiona r y . What happens now? Does J compile the
sem icolon ' s execution addr ess into the dictionary and go on to
the next wor d and compile its execut ion addr ess into the
dict ionary? Hopefully not . The semicolon should, among othe r
th ing s , terminate compilat ion .

IMMEDIATE WORDS

The solut ion is to dev ise some way of hav ing certain special
wor ds , such as the semicolon , executed by the compiler . These
words a r e called immediate words and this expla ins the existence
of the precedence bit in a wor d ' s count byte. In short , if a
wor d i s an immediate wor d , its pr ecedence bit is set and the
compiler will always execute this wor d .

The semicolon is an obviou s candidate for being an immediate
wor d , and it i s . Her e is its definition :

. . . , < � > compile exit r > drop ; immediate

When it executes , it compiles exit into the dictionary <wh ich
shows that J isn ' t the only wor d that can compile things} , then
it r emoves a numbe r from the return stack and throws it away
wh ich clear ly violates the rules for good use of the retur n
stack . Why is this done? This is t�e way the infinite loop in J
is terminated . We will tak e up the deta ils in the next chapter .

The wor d immediate which fol lows the
definition of the semicolon simply mar k s the
wor d as being an immediate wor d by setting its
its count byt e .

semicolon in the
pr eviously defined
pr ecedence b it in

copyr ight 1983 Prank Bogg Laboratory

68 A Tour De FORTH

COMPILE TIME AND RUN TIME

Look at the definition of 1 aga in , and notice that literal
i s preceded with [compile] • Why? It turns out that literal is
an immediate wor d . Consequentl y , i t would normally execute when
l i s being compiled, r ather than later when l is ·executed .
Instead, the use of [compile] for ces l iteral to execute when l is
executed , not when it is compi led . Let ' s look at th i s in a
little mor e deta i l .

The word literal i s typically used a s follows :

: linel5 C blk -- adr > block C 15 c/l * 1 literal + ;

Given a block number , this word r eturns the addr ess cf the first
char acter on the last l ine of that block .

COMPILE TIME

The phrase "compile t ime " r efer s to the time when linel5 is
compiled (added to the dictionary> . Wha t happens at this time?
Once the colon executes and adds an entry for linel5 to the
dictionary, it calls J to start compiling wh ich means that the
execut ion addr ess of block is compiled info the parameter field
of linel5 • However , the word I- stops compil ing and begin s
interpr etation aga in . Th is means that 1 5 i s pushed t o the stack ,
then c/l executes wh ich pushes 64 to the stac k , then * executes
which pulls 15 and 64 from the stack and leaves 960 on the stac k .
Then , 1 executes which stops interpretation and r esumes
compilation . S ince literal is an immediate wor d , it executes
anyway , and r emoves 960 from the stack and puts it into the
par ameter field of linel5 so that when linel5 executes , 960 wi ll
be pushed to the stack . Then the plu s is compiled, and , finally ,
the semicolon executes .

RUN TIME

The phrase " r un t ime " r efers to any t ime when linel5 is
executed . What happens at th is time? When linel5 is later
executed , block is executed which leaves an address on the stack ,
then 960 is pushed to the stack , then + is executed wh ich adds
9 6 0 to the buffer addr ess left by block and that ' s i t . Thi s
distinction between compile time and r un t ime is impor tant .
Remember that immediate words ar e executed a t compile time .

Frank Bogg Laboratory copyr ight 1983

A Tour De PORTO 69

It so happens that [compile] is also an immediate wo rd , s o
it executes when J i s compi led . What it doe s , is get the . next
word <wh ich , in this ca s e , i s literal) from the input str eam and
compi le i t . So i t is ther e to pr event literal from be ing
exect�tecl when J is compiled . It forces literal to be compi led so
that it will be pa r t of the r u n time behav i o r of J •

CODE DEFINITIONS

Many words in the dict ionary a r e not def ined with the c-olon
o r with var iable o r with constant • Many are defined w ith code
wh ich allows you to d�fin e words in te rms of wach ine code in st ead
of i� terms of other words . In this way you may add n ew
"pr imitive " oper at ions to FORTH including routines wh ich wi l l
respond to inter r upts and which do othe r hat dwa re r elated
pr ocessing . Soroetimes you may want to def ine wo rcf. with code
instead of the co lon simply because you wan t them t o execute as
fast as pos s ible .

Wr it ing code definit ions is gr eatly simpl i f i ed if a n
assembler vocabulary i s ava i lable for your pa r t icula r CPU . Th e
assembler vocabulary supplied with eFORTH will be descr ibed
later .

copyr iqbt 1983 Frank Bogg Laboratory

70 A Tour De FORTH

CHAPTER 8

BOW DOES FORTH WORK?

FOR'l'H i s most commonl y implemented on any g iven CPU by
wr i t ing code for that CPU wh ich wj l l simulat e an abs t r act
comput e r her e r efer red to as the °FORTP. mach in e 0 • The only
funct ion of the 1''0RTH mach ine i s to execute l is t s of code f i eld
addr e&�cs 1 i . � . , the l i s t o f code f ield addr esses in the
pa r amet e r f ield of a colon def ini t io n . In installat ions of t h i s
so r t , the only thing done b y a cold start r out ine wh ich gets
FORTB r unn ing is t o in j t i a l i z e the host CPU r egister s , then t o
sta r t t.t· e s imulated FOR'l'H mach ine < some t imes r e fe r r ed t o a s the
0 v j rtual mach ine " > .

I f you are us ing eFORTH , the FORTH mach ine is r unning the
ent i r e t ime you a r e u s ing FORTH . You r CPU is s imply execut ing
r out ines wh ich s imu l a t e var ious ope rations of the FORTH mach ine .
S i nc e your pr oficiency a s a FORTH pr ogr ammer wi l l be enhanced by
under s t anding the operation of the FORTH mach ine , we shall
descr ibe j t in deta i l .

THE FORTH MACHINE ' S REGISTERS

The FORTH mach ine has f ive r eg is t er s . Th ey a r e

1 . IP
2. w
3 . SP
4 . RP
S . UP

- The
The
The
The
The

instruction pointer ,
word pointer ,
pointer to the parameter stack ,
pointer to the return stack .
user pointer

The s tack pointer , SP , always points to the la s t number wh ich was
pushed to the pa r amete r stack . The r eturn 8tack poin te r , RP ,
always po ints to the last r eturn addr ess wh ich was pushed to the
r eturn stack . The u s e r point e r , UP , poin t s to the or i g in of th e
0 user var iab l e a r ea 0 • Th i s area make s i t pos sible to in•plement
mult i-task ing in FORTH . I t i s pos s ible to connect two terminal s
to a computer r unning FORTH and have two people u sing FORTE a t
t h e same t ime . Obviou sly , they should have separate copies o f
var iab l es s uch as base and other s . eFORTB can be expanded to
suppo r t �ult i-task ing .

Frank Bogg Laboratory copyr ight 1983

\

A Tour De FORTH 71

The wor d pointer , w, points to the code f ield of the wo rd
be ing executed . The instruct ion po inter , I P , always points to a
location ins ide some colon definit ion ' s parameter f ield . Th is
loca t ion , you recal l , conta ins an execut ion address . The code
field which th is execut ion addr ess points to contains another
address wh ich , final ly , points to mach ine code the host CPU can
execute . All of this is clearly ind i r ect but , ultimately, quite
s imple and power ful .

All the FORTH mach ine has to 'do is somehow see to it that
the mach ine code ultimately t-ointed to C)' the code field addr es s
wh ich IP points to is executed and then arrange th ings so that
the next code f ield addr ess is po inted to by IP and the mach in e
code wh ich it ult imately points to is executed , etc . Th is bas ic
operation of the FORTH n•achine is usually implemented in a hos t
CPU mach ine code routine cal led NEXT wh ich is al s o refer red to as
the " inner interpreter " or "address interprete r " . Thi s
terminol ogy j s intended t o dist inguish NEXT from the "outer
interpreter " or input text interpr ete r .

WHO ' S NEXT?

Implementat ions of NEXT are either pr e-incr ement or
post-incr ement depend ing on wh ich is most effic i ent to implement
on the host CPU . The post-incr ement ve rs ion is mor e common . It
assumes that when NEXT is f i r st enter ed , IP points to the code
f ield address to be processe d . Th is code field addr ess is loa ded
into th e W reg ister , IP is advanced to point to the next code
f i eld addres s , and the word whose execu tion addr ess is i n W is
executed .

In pr e- incr ement vers ions , when NEXT i s f irst entered , IP
po int s to the code f ield addr ess of the wo rd wh ich was j ust
executed . So , IP is advanced to the next code f ield addr ess a nd
it is processed a s befor e . W is loaded with the code field
address now po inted t o by IP and the word whose code field is
po inted to by W is executed .

IMPLEMENTING THE FORTH MACHINE

A FORTH mach ine i s implemented on a given CPU by deciding
how to handle the FORTH mach ine ' s reg isters , then wr it ing
suitable code for NEXT, DOCOL , EXIT and other pr imitives r equ i red
by FORTH . I f your FORTH progr amming will always be restr icted to
cr eat ing colon def inition s , you need not be concerned with th e
details of how the FORTH mach ine was implemented on your CPU
Cother than knowing whether it is a pr e-increment o r

copyr ight 1983 Frank Bogg Laboratory

1 2 A Tour De PORTH

post-increment mach in�) . You only need to know how the FORTH
mach ine work s . Bu t , i f you intend to wr ite code def i� it ions
wh ich use the FORTH mach in e ' s par ameter stack , you mus t know how
to find the pointer to the top of the parameter stack . I s it one
of your CPU ' s register s o r does your implementat ion hold j t in
n1emory somewhere?

Her e a r e the answer s to these question for eFORTH user s .

THE eFORTB 6809 POR"l'B MACHINE

Here is a br ief discussion of the implementation of the
FORTH mach ine in the 6 8 0 9 ver s ion of eFORTH .

Cons icerat ions of effic iency suggest that if it is at all
possible, the FORTH mach ine r eg isters sho uld be implemented with
reg ister s en the host CPU . Fortunately , the 6809 has bar ely
enough registers to do this . The 6809 Y reg ister se rves as th e
FORTE mach ine ' s IP regi ster , the 6 809 X reg ister serves as the
FORTH mach ine ' s W r eg ister , the 6 8 0 9 U reg ister serves as th e
FORTB rr.ach ine ' s SP r eg ister , the 6 8 0 9 stack pointer serves as the
FORTH mach ine ' s RP r egister , and the 6 8 0 9 DP reg ister se rves as
the FORTH machine ' s UP r eg i ster . Accordingly, NEXT, DOCOL, and
EXIT are coded in s tanda r d 6 8 0 9 assembly language as

* Y POIN'l'S TO THE CODE PIBLD ADDRESS TO BE EXECUTED
NEXT LDX , Y++ POINT W TO CODE FIELD

JMP [, XJ EXECUTE CODE

* X POINTS TO THE WORD ' S CODE FIELD
DOCOL PSBS Y SAVE IP ON THE RETURN STACK

LEAY 2 , X POINT IP TO FIRST CODE FIELD ADDRESS

EXIT

BRA NEXT

POLS
BRA

y
NEXT

GET RETURN ADDR INTO IP

Notice that NEXT implements a post-incremen t vers ion of the FORTH
machine . Cl early the 6 8 0 9 arch itectur e permits an eff icien t
implementation of the FORTH mach ine .

THE INTERPRETER

I t so happens that the interpreter is itself def ined with
the colon. In othe r words , it is a word in the dict ionary C its
name is interpret) , and its parameter field is a list of
execut ion addr esses . Here is its def in ition :

Frank Hogg Laboratory copyr ight 1983

l I

,.
\.

A Tour De POR'lB 73

. interpret (-) .
begin

false state 1 (indicate interpretation is in process
- · (get the next word and search for it >
if (it wasn ' t found >

' number @ (get tbe execution address of number >
then
execute (execute tbe execution adr on tbe· stack
?stack (cbeck for stack underflow)

again J (interpret tbe next word >

This word mak es sur e that the value in the var iable state
indicates that interpr etation is in process (instead of
compilat ion> . Then the next wor d in the input str eam is fetched
and sear ched for in the d ict ionary . Now the code gets a little
ntr icky n . I f the word isn ' t foun d , the execution addr ess of th e
word which att empts numbe r convers ion is put on the stack . The
address of the str ing to be conver ted is left under i t . If th e
word is found , its execut ion addr ess is left on the stack .
Either way , by the time things get to execute , ther e is an
execution address on the stack of a word to be executed . After
the word is executed, the stack is checked, and the process i s
repeated (another inf inite loop) .

Suppose the interpreter finds binary in the input stream,
and that it has been defined . Ultimately , binary will f ind its
execut ion addr ess on the stack , and interpret will execute i t .
What happens when binary is executed?

Wel l , the execution address of execute is in the
f ield of interpret , and when execute f inishes Cby
binary) , FORTH should go on to execute the word who se
address follows that of execute in the parameter
interpret (wh ich happens to be the execut ion address of

parameter
executing
execution

field o f
?stack > .

Obviously , FORTH has to remember wher e it should go back to .
Thi s is the j ob per formed by DOCOL . In the case of binary , for
example , th i s code pushes the addr ess in IP to the r eturn stack ,
then loads IP with the addr ess of the parameter f ield of binary •

The words whose execution addresses are in the parameter field of
binary are executed including exit When exit executes , it
pulls the addr ess on the r eturn stack and put s it back into I P ,
and the execution o f J is r esumed (by execut ing ?stack > . This
is why you must be extr emely car eful when using the return stack .

This is also why the semicolon is coded the way it i s . When
J found the semicolon and not iced that it was immediate, it
executed i t . S ince the semicolon is def ined with the colon , it
f ir s t pushes the address in IP to the return stack , then the
words in the semicolon ' s par ameter field are executed . The
phr as e r> drop removes the addr ess on the return stack and thr ows

copyr ight 1983 Frank Bogg Laboratory

)

)

74 A Tour De FORTH

it away . Th i s exposes the addr ess of a word in the par ameter
f ield of the colon <which called J in the first place .) So , when
exit at the end of the semicolon executes , it returns to the
colon instead of the compi ler . Th i s is how the inf inite loop i s
ternlinated .

Frank 8099 Laboratory copyr ight 1983

I
'

A Tour De PORTS

copyr::ight 1983

75

Prank Bogg Laboratory

1 6

CBAPTER 9

BOW DOES PORTH COMPILE NUMBERS?

Recall the definition of binary wh ich was

: binary 2 base I . ,

A Tour De FORTH

and recall that 2 is in the dictionary . That fact , that 2 is a
defined wor d , r esulted in FORTH compil ing the execut ion addr es s
of 2 into the dict ionary when binary was compi led

NUMERIC LITERALS

But what does FORTH do when it compiles something like

: octal 8 base I . ,

when a number such as 8 is not in the dict ionary? Unlik e 2 , 8
has not been def ined as a constant . It i s refer r ed to as a
literal val

'
u e : instead of being the name of a constant o r

var iable , i t is t o b e interpr eted , liter ally , as the number 8 .

S ince 8 is not the name of a word in the dictionary, the
interpr eter cannot compile its execut ion address into the
dictionary because 8 is not the name of anything which has an
execut ion addr ess . FORTH handles th is sor t o f situat ion by using
the special word (literal) • Look at the def init ion of J aga in
and not ice that when it gets a str ing from the input stream wh ich
is not in the dictionary but can be conver ted to a number , it
leaves that numbe r on the stack and cal ls literal which first
compiles the execut ion address of (literal) into the dictionar y ,
then it compiles the number into the dictionary . The number is
then refer r ed to as an n in-l ine par ameter n : it is compiled
in-line with the execut ion addr ess of the word wh ich will use
i t . This wor d is (literal) •

(literal) is a code def inition : a machine language
pr imitive . Her e is what happens when it executes . Given the
cur rent value of the FORTH machine ' s IP r eg ister , (literal) can
f ind the liter al number which was compi led with i t . In the 680 9
eFORTH implementat ion , IP is alr eady po inting two bytes beyond
the execut ion addr ess of (literal) • The number wh ich was

Frank Bogg Laboratory copyright 1983

(

A Tour De PORTH 77

compiled in-line with (literal) is at this addr ess . so,
(litera1) gets it and pushes it to the stack , then advances IP
two bytes to sk ip over the number . Th is prevents the FORTH
MACHINE from interpr et ing the number as an execution addres s . In
general , NEXT advances IP two bytes each time NEXT is executed
because each execution address is two bytes lon9 e However , when
C litera1> executes, IP is advanced a total of four bytes ; two for
the execut ion addr ess of (litera1) , and two for the number wh ich
follows it .

+---------------+---------------+

I link I field
+----- _, --------+

count byte I 0
+--�--------�--------------+

c t
+---......_------• I -------------+

a 1
+---------- •I ------------+

code I field
+---- _.....,...... ______________ +

cfa of (literal> •+--------------------+---·--·- 1 ---·-+
I 0 8 +---------------+---------------+
I cf a of base

+------------.. -1 ---------+

cfa of I
+---------------+--·-------------+

cfa of exit
+----�-------+---------------+

BRANCHING

In-line par ameter s are also used for the words in FORTH
wh ich control program flow . In shor t , what is compi led into th e
dictionary when FORTH runs into words such as if , else , then
and others? The word if , for example, should cause segments of
execution addresses to be sk ipped over when the condition
preceding it is not satisfied. If the condition is satisfied ,
and execution r eaches the else , program flow should sk ip over
the execution addresses compiled between the else and then • How
does FORTH handle the compilation of these words?

As it happens , they are immediate words ; they are always
executed even when FORTH is in the compil ing state . What they
must ultimately do is compile words into the dictionary which
will cause the FORTH mach ine to skip ove r segments of execution

copyright 1983 Prank Bogg Laboratory

78 A Tour De FORTH

addr esses . Th is is handled qu ite eas ily by manipulating the
contents of the IP reg ister . On e such word is branch • It
always causes a branch , bu t , we m ight ask , to wher e? Tha t
depends . The number of execution addr esses to be skipped can
vary depending on how many wo rds occur between if and else , for
exampl e . Accord ingly , branch i s always followed by an in-l in e
parameter wh ich conta ins the address t o branch to . All branch
has to do is put th i s address into the IP r eg ister .

branch always branches , so if must compile some other word
into the dict ionary ; a word wh ich wi l l branch or not depending on
what is on the stack . Th i s is the funct ion of Obranch wh ich will
cause a br anch if the number on the stack is zer o 1 otherwis e
execut ion continues wi th the execution addr ess wh ich follows the
in-l ine pa rameter wh ich fol lows Obranch •

Let ' s look at what happens when the interpr eter runs into a
defin i t ion such as

: O= if false else true then 1

F i r s t , O= is added t o the dict ionary. Since if i s an immediate
wor d , it is executed . Her e is the def inition of if :

: if (-- adr > compile Obranch here 0 , 1 immediate

The word immediate wh ich fol lows the def init ion of if sets its
precedence bit wh ich is what mak es if an immediate word .

When the phr ase compile Obranch executes , the execut ion
addr ess of Obr anch is compi led into the dict ionary (as part of
the def init ion of O= remembe r ?) . Then here is executed wh ich
pushes the addr ess of the next free byte in the dict ionary to the
stack . (This addr ess will later be used by else .) Next , th e
phr ase 0 , causes a zero to be compiled into the dict ionary .

Let ' s tak e a close r look at the sequence here 0 , in the
definit ion of if • The comma compiles whatever number is on th e
stack into the dict ionary . In this case , a zer o . The addr ess
wh ich here pushed to the stack po ints to th is zer o . The zer o ,
o f cou r se , i s the in-line parameter for Obranch to use when it
execute s . Why is a zero used? Because at this po int FORTH has no
idea of what this in-line parameter should be. Ult imately, it
should be an address wh ich Obranch will place in the IP reg iste r .
Th is is called an "un resolved forward r efer ence " and it will have
to be "r esolved " late r .

Remember , if should cause the words between it and else to
be executed if the top of the stack is true (non-zer o) . If the
top of the stack is zero , if should cause these words to be
sk ipped and the words between else and then should be executed .

Frank Bogg Laboratory copyright 1983

A Tour De FORTB 7 9

so , for the t ime being , the Obranch in-line par ameter is set to
zer o . It will be changed to the appropr iate address when tha t
address is known .

When will that address be known? When else executes .
is the definition of else :

: else < adrl -- adr2 >
compile branch here 0 ,
swap here swap 1 J immediate

Re r e

F ir s t , branch i s compiled into the dictionary with zero a s a
temporary parameter and bere pushes the address of this par ameter
to the stack so that then can change it to what it should be .
The point of thi s is to branch over the "else" part of the
conditional when the "true " par t has been executed . Next , thi s
address i s swapped with the one left o n the stack by if
< r emembe r ?) .

We now know what the par ameter of Obrancb compiled by if
sho u ld be 7 it should cause a branch to the next word compi led
into the dictionary . The cur rent address of this word is
r eturned by here • So , swap gets the addr ess of the in-l ine
par ameter which follows Obrancb (wh ich was compi led by if > onto
the top of the stack . Next , bere puts the addr ess to wh ich
Obranch should branch onto the stack , but they are in the wrong
o r der , so swap f ixes thi s problem, and the cor r ect address
f inally r eplaces the zero which was temporar ily compiled as the
in-l ine par amete r . And the unr esolved forward refer ence created
by if has been resolved . Not ice that the address of the in-l ine
par ameter of branch compiled by else is still on the stac k . Thi s
unr esolved forward r efer ence will be resolved by then • Here i s
the def init ion of then :

: then < adr -- > here swap 1 J immediate

It j ust resolves the forward r efer ence at the addr ess on the
stack .

eFORTH provides tools which make it very easy to create and
resolve forwa r d r efer ences . Her e are better def initions of the
program structur ing words .

: if system compile Obranch forward
: else system compile branch forward

swap resolve J illlaediate
: then system resolve J immediate

. , immediate

Notice that the systea vocabulary is speci fied because some of
the words in these def init ions a r e in that vocabulary .

copyright 1983 Frank Bogg Laboratory

80 A Tour De FORTH

When O= is finally compiled her e is what it look s l ike .

+---------------+---------------+
link I field

+---------------·---------------+
count byte

+---------------+---------------+
0 =

+---------------+----------- +
address code I field I

1000

1002

1004

1006

1008

1010

1012

+---------------+---------------+
cfa of Obranch

+---------------+----------------+
1010

+---------------+---------------+
cf a of false

+---------------+---------------+
cfa of branch

+---------------+i---------------+
1012

+---------------+----------------+
cf a of true

+---------------+---------------+
cfa of exit

+---------------+---------------+

WHEN if COMPILES

Let ' s consider what happens when the def init ion of if is
compi led . Fi rst , the colon is fetched from the input str eam and
executed creating the name , l ink , and code fields for if • Then
FORTH is put into the compilation state and the execution addr es s
of compile is compiled into the d ict ionary . The same th ing
happens to Obranch and forward The semicolon terminate s
compilation and compi les exit at the end of the l ist of execution
addresses . immediate is executed wh ich sets its pr ecedence bit .
Nothing extr aordinary about it at all . All the mag ic occur s when
if executes , not when it is compi led .

BOW compile WORKS

A br ief word should be said about the behav ior of compile
when it executes . It is another wor d wh ich expects an in-l ine
parameter . In the def inition of if , that in-line parameter
should be the execut ion addr ess of Obranch and , indeed , when if
is compiled , the execut ion addr ess of Obranch is compi led

Frank Bogg Laboratory copyr ight 1983

(

(

A Tour De PORTH 81

immediately after the execution addr ess of compile • When if is
executed, the FORTH mach ine will eventually reach the execut ion
address of compile and execute it . What happens?

Her e is the definit ion o f compile :

: compile r> dup @ , 2+ >r ;

Notice that th is def inition appears at first glance to satis fy
the r ul e wh ich r equires that every >r be balanced with a r> in
the same definition . However , they a r e backwards . Instead o f
pushing someth ing t o the r eturn stack with >r and getting i t back
with r> , compile pul ls a number from the r eturn stack , uses i t
to fetch someth ing t o the stack , incr ements i t by t�o , then
replaces i t . What number is on the r eturn stack when compile
executes , and what is the purpo s e of th is apparently " i l lega l "
use o f r> and > r ?

The number on the r eturn stack is the return addr ess saved
when compile was called . Th i s return addr ess po ints to a
locat ion in the par ameter f ield of if Assuming a
post-increment implementation of the FORTH .MACHINE , the retur n
address on the r eturn stack will be pointing two bytes beyond the
execut ion address of compile 1 that i s , pointing to the execution
address of Obrancb • The j ob of compile is to put the execution
address of whatever word fol lows it into the dictionary.
Whenever compile is executed , the address on the return stack
will point to the execut ion address wh ich compile is to put into
the d ict ionary . Consequently , r> is used to fetch this addr ess .
It is dupl icated, the copy is used to get the execut ion addr es s
to be compi led with the comma , then the return addr ess is
incr emented by two to sk ip over the execut ion addr ess to be
compiled by compile •

In the case of the compile in the def init ion of if , when
compile executes , the r eturn addr ess po ints to the execut ion
address of Obrancb which immed iately follows the execut ion
addr ess of compile in the par ameter f ield of if • compile uses
this address to fetch the execut ion addr ess of Obrancb to the
stack ·and uses the comma to compile it into the parameter field
o f whatever word is be ing defined when if is executed . compile
then advances the return addr ess by two so that the next word in
the parameter f ield of if to be executed is forward instead of
Obranch •

compile is a clear example of a word that would have to be
def ined di f fer ently for implementations of FORTH which do no t pu t
post-incr emented return addr esses on the r eturn stack .

copyright 1983 Prank Bogg Laboratory

82 � Tour De PORTH

ST.RING LITERALS

What does the compiler do when it r uns into a str ing
l iteral? For example , recall our very f i rst FORTH wor d .

: bi . • hello• J

What does the compiler do with the str ing so that when hi
executes the str ing is pr inted out ?

Actually, the compiler doesn ' t do anything with i t . It
turns out that . • is an immediate word, so the compile r just
executes i t . It is . • that has to do all of the work . What does
i t do ? Let ' s look at its def in ition .

: . • (-- > system compile < . • >
ascii • word c@ l+ allot J

The f i r st line compiles a spec ial run-t ime word, and the second
l ine gets the next str ing in the input str eam delimited by the
double quote mark . Th is word is moved to here but the byte at
here contains the number of characters in the str ing . We use c@
to get this count onto the stac k , add one to it, and use allot to
advance the address returned by here by that amount .

In sho r t , the str ing , pr eceded by its count, is compiled
into the dictionary as par t of the parameter field of hi • Here
is what hi look s l ike after it is compi led .

+---------------+---------------+
link I field

+---------------+---------------+
count byte

+---------------+---------------+
h i

+-----�------�+-----------�--+
code I field

+---------------+---------------+
cfa of < . •>

+---------------+---------------+
5 h

+-----.-------· i�--------------+
e 1

·-�-------�-----+---------------+
1 0

+---------------+---------------+
cfa of exit

+------------- I -------------+

What doe s (. •) do ? It mus t pr int out the str ing , then it must
ar range things so that exit is the next word executed after the

Prank Bogg Laboratory copyright 1983

)

(_

A Tour De FORTH

str ing i s pr inted. This means that
r eg ister pointing to the r ight plac e .
(. . , .

83

(. •) must leave the I P
Her e i s one way of coding

: (. •) < -- > r> count 2dup type + >r J

Not ice that i t uses the same tr ick with the return stack that
compi1e used . When c . •> starts executing , the addr ess on the
r eturn stack is the addr ess of the byte wh ich holds the count o f
characters in the str ing to be pr inted . So , we get this addr ess
and execute count wh ich adds one to the addr ess (giving th e
addr ess of the f i r st character in the str ing) , then pushes the
count of character s in the str ing on top of i t . These a r e the
paramete r s we must give to type • But first, we copy the addr ess
and the count . The copies a r e removed by type then th e or iginals
are added together . Mag ically , the r esult is the addr ess of the
f i r s t byte past the str ing . As you can see, th is addr ess
contains the execution addr ess of exit so we return it to the
r etur n stack and everyth ing works out just r ight .

copyr ight 1983 Prank Bogg Laboratory

84 A Tour De PORTH

CHAPTER 10

VOCABULARIES

Vocabular ies . are used to separate applicat ions . For
example, eFORTH is suppl ied with five vocabular ies , forth ,
system , editor , assembler and disking • The words in thes e
vocab ular ies are used in rather dissimilar situations, so they
are separ ated in a way that allows the wo rds they contain to be
removed from dictionary searches when they aren ' t needed . Th is
has the advantage of cutt ing . down on dictionary sea rch time s
dur ing compilation . Fur thermore, the same word can be defined to
do di fferent th ings in di fferent vocabular ies .

CONTEXT AND CURRENT VOCABULARIES

As ment ioned in Chapter 2 , the context vocabulary is the
vocabulary wh ich is searched first , and the current vocabulary i s
the vocabulary t o which new words a r e added . A vocabulary is
made the context vocabulary by simply execut ing its name , and a
vocabulary is made the cur rent vocabulary by f irst mak ing it the
context vocabulary, then executing definitions •

CREATING HEW VOCABULARIES

A new vocabulary is cr eated with the def ining word
vocabulary followed by the name of the new vocabulary . Enter ing
vocabulary files immediate will create a new vocabulary named
" f iles " . Any word which specifies a vocabulary should be declared
to be an immediate word . We shall see why in a moment . Enter ing
files definitions will then cause subs equently def ined words to
be added to the files vocabulary . With eFORTH , no more than ten
vocabular ies should be created .

VOCABOLARY CHAIRING

When a vocabulary is cr eated , it is "chained " to the current
vocabular y . In eFORTH , the system , editor and assembler
vocabular ies are each cha ined to the forth vocabulary . However ,
the disking vocabulary is chained to the system vocabulary. Th is

Frank Bogg Laboratory copyr ight 1983

A Toor De PORTH 85

means that i f forth i s the context vocabulary , to use words in
the disk ing vocabulary, you mus t ente r system then disk ing • The
point of this is that the disking vocabulary contains ver y
power fu l words which can cause a g reat deal of damage t o data o n
your disk s . Th i s scheme decr eases t h e l ikelihood that they wil l
be accidentally executed .

The vocabulary structu r e i s a •tree • structur e , and the
forth vocabular y is the • root • of the t re e . Cha in ing is o f
s ign if icance when the interpreter C o r the compiler > i s look ing
for a wor d in the dictiona r y .

DICTIONARY SEARCHING

Whenever the d ict ionar y i s searched by words such as • or - '
or find , the context vocabulary i s searched f irst . If the wo rd
is not found in the context vocabulary , the cur rent vocabulary is
sear ched C i f it is different from the context vocabulary) . I f at
this po int the word still hasn ' t been found , the vocabulary to
wh ich the cur r ent vocabulary is chained is searched. Th is chain
is followed unti l the forth vocabulary is f inally reached and
searched . (Vocabular ies to which the context vocabulary i s

, chained are not searched .)
t

Look at the def in i t ions of t and v on block 1 8 . We want to
be able to execute them no matter wha t the cont ext vocabulary i s ,
so we put them into the forth vocabulary . Not ice that t simply
sets the cur ren t l ine then cal ls v • Let ' s look at v for a
moment .

When v i s compiled, the forth vocabulary is both the context
and cur r ent vocabulary. If it wer e not also the context
vocabulary , the colon would mak e it the context vocabulary as
well . S ince the definition of v conta ins a wo rd wh ich is in the .
editor vocabulary, it will not be found unless we do someth ing
wh ich will result in the editor vocabulary be ing sear ched a s
well . S ince the f i r st wor d i n i t s definition i s editor , and
s ince editor is an immediate wor d , editor executes , and the
editor vocabulary becomes the context vocabulary . The cur rent
vocabulary i s not changed . So , while v is be ing compiled, the
editor vocabulary will be searched first, then the forth
(cur rent> vocabulary will be searche d . After v executes we will

probably want to do some editing , so when v executes it should
make the editor vocabulary the context vocabulary, so the
definition concludes with [compile] editor to cause this to
happen . Here aga in is the important difference between what
happens at compile t ime and what happens at run time .

copyr ight 1983 Prank Bogg Laboratory

86 A Tour De PORTH

S ince vocabulary words are typically used inside a
defin it ion to switch the context vocabulary, it is important tha t
vocabulary wor ds be immediate words .

SEALED VOCABULARIES

Remember the r estaurant applicat ion we developed in Chapter
4? Once this applicat ion is be ing' used in the restauran t , we do
not want the employees to be able to execute anything other than
the words defined in the appl icat ion . In pa rticular , i f someon e
wer e to enter a word such as move the result could be disast rous .
The solut ion i s to pu t the application wo rds in a separate
vocabulary, then " seal " that vocabulary so that FORTH will only
find words in the appl icat ion . A vocabulary is sealed by
"br eak ing " its chain .

We start by putt ing

vocabulary Menu immediate Menu definitions

on line 1 of block 57 . When we load block 57 all the new wo rds
will be placed into the Menu vocabulary . For conven ience , we
should add another word to the Menu vocabulary,

: ReturnToPorth < -- > forth definitions 1

so that we can gracefully use FORTH aga in . We should also add

forth definitions
: RunMenu < -- > Menu definit ions 1

to conven iently start the appl icat ion . Al l that r ema in s is to
seal the Menu vocabulary .

: seal < -- > 0 context @ 2+ c ! 1

Now , execut ing Menu seal will do the j ob . When we are all done ,
block 57 should conta in the fol lowin g .

vocabulary Menu immediate Menu definitions
58 ;load
59 load
: ReturnToPorth < -- > forth definitions 1
forth definitions
: RunMenu < > Menu definitions 1
: seal (-- > 0 context @ 2+ c ! 1
Menu seal
ReturnToPorth

Frank Bogg Laboratory copyr ight 1983

(
l.

A Tour De PORTH

copyright 1983

87

Prank Boqq Laboratory

8 8 A Tour De PORTH

CHAPTER 11

BOW CAN I •PROTECT• MYSELF?

A ma j o r d i f f ic u lty FORTH newcome r s have is gett ing used to
FORTH ' s prog r am cont r o l str uctur es . A fr equent mishap is to
wr ite a de f in it ion with an if in it and forget to pu t th e
necessary then after it . Somet imes d i ffer ent structures are
incor r ectly comb ined . For example ,

• • • do • • • if • • • then • • • loop

is j u s t f ine but

• • • do • • • if • • • loop • • • then

is defin itely not " ok " with FORTH . The pr ogram structur ing wo rds
in the pr e-comp i led port ion of eFORTH do not check for any of
these "mistak es " . Th ey assume that any wo rds be ing compi led ar e
co r r ec t , so they do not waste any t ime per forming th is k ind of
check ing . Indeed , the eFORTH elect ives and extens ion s have bee n
tho roughly tes ted , so the only th ing FORTH has to do is compi le
them into the d ict iona r y a s r apidly as poss ib le . We sho u ld no t
have to extend our wa it wh ile r edundant and unnec essary " e r r o r "
check ing is go ing on .

COMPILER SECURITY

Howeve r , when you a r e developing an appl ication , it would be
n i ce if FORTH did th is k ind o f ch eck ing to pr event you from
wast ing t ime trying to f ind what went wr ong . Blocks 39 and 40
contain r edef in it ions o f the program st ructur ing wo rds . Thes e
new ver s ions per form a s imple syntax check and pr int error
messages if someth ing i sn ' t r ight . Th i s is r e fer r ed to as
" c omp i le r secu r ity " . A do must be cor r ectly terminated by a loop
o r +loop o r else !

Block 41 contains r edef in it ions of the colon and semico lon .
The new definit ion of the colon mak e s sur e you don ' t leave of f
the semicolon of the pr ev ious wor d . The new def in it ion o f the
semicolon mak es sur e that the def in it ion d id not change the
stack . Presumab ly , chang ing the stack means that you used an i f
without a then o r comm itted some s imilar cr ime . Block 4 1 also
redef ines the wo r d wh ich is executed by create so that if you

Frank Hogg Laboratory copyr ight 1983

A Tour De POR'l'B 89

redef ine a wor d you will be told about it . Un intent ionally
redef ining a word can lead to a gr eat deal of head scratch ing .

DISK ERRORS

Block 3 conta ins a r edefinit ion of Crlv> which is the d isk
access word executed by riv because riv does not check for or
r epor t disk err or s , but it does save the statu s code r eturned by
the last d isk access . The new ver s ion of C rlv> checks this
status and repor t s any error and abort s . Th is gives you th e
flex ib ility to check for d isk errors in your appl ications and
r ecode C rlv> to per form whatever operat ion you feel . is
appropr iate when a disk error occu r s . Aga in , FORTH does not tak e
control away from you . It gives you the powe r Cand
respons ib i l ity) to decide what to do when except ional cond it ions
occur .

BXECO'l'IOR VARIABLES

The ab ility to r edefin e the behavior of low-level FORTH
(operat ions is based upon the very powerful but dangerous device
'· ·· called an •execut ion var iable " . For example , riv is a very

s imple wor d .

: riv system ' riv @ e%ecute 1

It s imply gets an execut ion address out of the system variable
' riv and executes it . so , to change the behavior of riv all we
have to do is define a word and put its execution addr ess into
' riv • Thi s is what is done on Block 3 . Notice that the new
ver s ion of C rlv> f ir s t executes the old ver s ion , then check s fo r
er rors . Not ice also that the word protect is executed once the
new ver s ion of Crlv> is installed in ' riv • The reason for thi s
is quite s impl e . Once installed , we do not want the new vers ion
to be removed from the d ict ionary with forget or empty because
the word executed by riv would no longe r ex ist . protect change s
the system so that everything in the dict ionary when it executes
will stay ther e as long as FORTH is running .

copyright 1983 Prank Bogg Laboratory

90 A Tour De FORTH

CHAPTER 12
f

THE eFORTH 6809 ASSEMBLER VOCABULARY

The assembler vocabulary is used when you need operations
that have not yet been implemented in FORTH <such as pr oce s s ing
inter rupts and other har dware capab i l i t ie s) or when a pr ocess
needs to be as fast pos s ibl e . And i t i s the ab i l i ty to code some
wo rds i n mach ine language that mak e s FORTH an ideal programming
too l in env i r onments whe r e one mus t have complet e control of a
computer ' s hardware and per ipherals . Th is sect ion assumes you
a r e fami l ia r w ith 6 8 0 9 assembly language .

The assembler vocabulary i s invoked automat ically when the
wo rds code and ; code are used .

code DEFINITIONS

code i s
speci f i ed with
FOR'l'H code .
6 8 0 9 us ing the

used to cr eate a word whose behav ior will be
assembly language mnemon ics instead of h igh-leve l
For example , her e is the def init ion of + f o r the
eFORTH assembler .

code + C nl n2 -- n3)
d pulu O , u addd
next end-code

O , u std

The 6 8 0 9 u r eg is ter is used fQr the FORTH mach ine ' s SP r eg i s t er .
So when + is executed , d pulu pul l s the 1 6-b i t number on top o f
the stack and puts it into the D accumu lator . Next , the number
now on top of the stack is added to the D accumu lato r by
O ,u addd and r eplaced with the r esult by 0 , u std . F inally ,
next i s a mac r o wh ich compiles the 6 8 0 9 code for NEXT .

You should recall that NEXT i s the r outine wh ich is executed
between e ach FORTH wor d , and eve r y wo r d in FORTH mu s t ultimately
j ump to NEXT .

The wor d end-code is used to s ignal the end of a code or
; code def in i t ion . It restores the con t ext vocabu lary to wha t i t
was befo r e the assemb ler vocabulary was cal led .

Frank Hogg Labor atory copyr ight 1983

A Tour De PORTH 91

As you may have not iced , even assembly code is wr itten in
r ever se order in FORTH . Basically, the rule is that all operands
must be specif ied befor e wr it ing the mnemon ic .

Her e is what happens when the interpreter sees a code
definition . When code i s executed it creates the name f ield , the
link f ield , and sets the code f ield to point to the par ameter
field. The mnemonics wh ich fol low the name put the appropr iate
mach ine codes in the par ameter field .

It i s importan t to point out that , unl ike the colon, code
does not put FORTH into the compil ing stat e . All the wo rds wh ich
follow it are executed . This means that each mnemonic must be
def ined so that when it executes it compiles the pr oper mach in e
code for that mnemon ic into the dict ionary . No wo rds in the
assembler vocabula ry are immediat e . Cons equently , it is an easy
matte� to wr ite macros . For example, by def in ing next as

: ne:zt , y++ ld:z 0 , :z] jmp 1

it b ecomes a macr o-instruct ion to compile code for several
machine instructions . Obviou sly , such macr os can be def ined to
use parameters passed to them on the stack .

i Let ' s look at the def initions of 21 and 2 1 • Double
'- pr ecision var iables mus t have four bytes reserved in thei r

parameter f ields . We shall speci fy that the byte in the
par ameter f ield with the lowest address holds the mos t
significant byte o f the 3 2-bit var iable. So , to push the four
bytes in the par ameter f ield of a 3 2-b it var iable we would code
it as follows :

code 2@ (adr - d >
:z pulu
ne:zt

2 , x ldd d psbu
end-code

0 , x ldd d psbu

S ince the 6 8 0 9 U reg ister serves as the FORTH mach ine ' s SP
reg ister , we pull the addr ess on top of the FORTH stack into th e
6809 X reg i ster , then load the D accumulator with the low 16 bits
of the 3 2-bit var iable and push them to the stack . The next l ine
of code loads the D accumulator with the high 16 bits and pushes
them to the stack .

S imilar i ly , 2 1 could b e coded as

code 2 1 < d adr -- >
x pulu d pulu , x++ std
ne:zt end-code

d pulu o , x std

The address of the var iable is pulled into the X reg ister and the
h igh 1 6 bits a r e pulled into the D accumulato r . These are stored

.

copyright 1983 Prank Bogg Laboratory

92 A Tour De PORTH

at th e add r e s s and the X r eg ister i s incr emented twice to point
to the low 1 6 b i t s in the var iabl e . The low 1 6 bits a r e p u l led
from the s tack and stored in the var iable . F inal ly , NEXT is
executed .

1 code DEFINITIONS

As you might su spect , def ini�g a word that def ines other
words i s a b i t mor e compl icated . Let u s d e f ine 2constant wh ich
when executed w i l l add 3 2-b i t cons tan t s to th e d i ct ionar y . As
w i th constant , we sha l l suppose that the constant to be entered
in to the dict iona ry i s on the stack when 2constant i s execute d .

: 2constant < d --)
constant , 1 code
4 , x ldd d pshu 2 , x ldd
next end-code

d pshu

When 2constant is executed , it executes constant wh ich cr eat es a
d ict ionar y ent ry and sets the code f ield to po in t to the rout in e
wh icl1 pushes 1 6-bit constants to the s tack and put s the 1 6-b it
number on top o f the stack into th e par amete r f i eld. The comma
put s the next 1 6-bi t stack item into the d ict ionary wh ich means
that the par ameter f ield be ing created now conta in s th e 3 2-bi t
consta nt . But the code f ield , you r ecal l , points to the rout ine
wh ich pushes 1 6-b i t constan t s to the stac k . Th is is r emed ied by
1 code wh ich overwr i tes the code f ield so that it po ints to the
code wh ich fol lows 1 code •

So , when you enter

100 0 0 . 2constant sample

sample w i l l b e added to the dictionary . Its parame ter f ield w i l l
con tain t h e 3 2-b i t r epr esentat ion of 1 0 , 0 0 0 , and its code f i eld
will po int to the mach ine code wh ich fol lows 1 code in the
definit ion o f 2constant •

Thi s code gets the contents of W wh ich po ints to the code
f i eld of the doubl e pr ecis ion constant be ing executed . In
eFORTH ' s 6 8 0 9 implementation of the FORTH mach ine , the W r eg ister
is implemented with the X r eg iste r , s o on entry to the mach in e
code we may assume that X i s po int ing to the code f i eld addr ess
o f the doubl e constant be ing executed .

Actually , we could have def ined 2constant a bit mo r e
econom ical ly . Th i s def in i t ion i l lustrates a n impor tant featur e o f
the assembler .

Frank Bogg Laboratory copyr ight 1983

,

· C

A Tour De PORTH

: 2constant
constant ,
2 , x leaz

(d -)
J COde

I 2@ 2+ 2+ jmp

93

end-code

Among other thing s , 1 code stops compilat ion wh ich means al l the
wor ds which follow it are executed rather than compiled into the
d ict ionary. This allows the pr ogrammer to use h igh-level FORTH
to calculate operands which is what i s done in the above
def inition . F i r st , the leaz instruct ion is compiled. Next , th e
phrase ' 21 pushes the code f ield addr ess of 21 to the stack .
Then we add two to it to get the par ameter field addres s . Now ,
if we look at the code for 21 , the instruct ions beg inning with 2
, z ldd on the second l ine are exactly what we want a double
prec i s ion constant to do . Th is instruct ion is located in the
second byte of the parameter field of 2@ so , we add two to th e
parameter f ield addr ess of 21 C wh ich is on the stack > and use
this as the ope r and for a j ump instruct ion .

BRANCH IRSTROC'l'IORS AND PROGRAM STRUCTURE

Mnemonics for condit ional br anch instruct ions are not
included . Instead , the following control structures are provided
in the eFORTB assembler . They automat ically compile th e
appropr iate branch instruct ions to implement the structure.

<condition> if • • • then
<condition> if • • • else • • • then
begin • • • <condition> until
begin • • • <condition> while • • • repeat
begin • • • again

These words may look identical to the same control wo rds
avai lable in h igh-level FORTH but they are quite dif fer ent .
Th is is a clear example of how the same words can be def ined
differently in different vocabular ie s .

if , while and until must be pr eceded by a condition code .
The ava i lable condit ion codes are

eq mi hi ls cc cs vc vs pl
mi ge lt gt le lo hs

and the condition specif 1ed by any of them may be inver ted with
not •

The phr ase eq if will cause the •true• par t of a condit ional
to be executed if the z-bit of the condition code reg ister i s
set ; otherwise control will br anch to the code which fol lows the
subs equent else or then Simi larly, mi until will cause the

copyright 1983 Frank Bogg Laboratory

94 A Tour De FORTH

loop to be terminated i f the n-b i t o f the cond it ion code reg ister
is set accor ding to the rule for a BMI instruct ion branch .
Otherwis e con t r o l br anches t o the pr ev ious begin •

The sequence eq not while w i l l cau s e the code following
while to be executed if the z-b i t of the cond it ion code reg ister
is clea r 1 otherwise execut ion continues with the code follow ing
the subsequent repeat •

The other cond i t ion codes a r e the 6 8 0 9 cond it ional branch
mnemon ic s without the ' B ' . So , the phr as e h i if w i l l cause the
" t r u e " par t to be executed if the cond i t ion code r eg ister
sat i sfies the cond i t ions wh ich would cause a BHI instruct ion to
b r anch .

The wo rds if , while and else a l l comp i le a (sho r t) relative
b r anch ins truction into the dict iona r y , s o it is po s s ible t o get
a " r elat ive b r anch too long " e r r o r message i f , for example, you
pu t an enormous amount o f code between an if and its
cor r espond ing else or then , or a begin and its corr esponding
unt il or a while and its corr esponding repeat • Th is cond it ion
is not detected unt i l the forward branches of these words ar e
r esolved . (See the i r definit ions on b lock 8 .)

For stra ight-forwa r d examples see the def in i t ion of roll on
b lock 1 1 and tne def i n i t ion of du< on block 2 6 . For a ver y
non-stra ight-forward example , see the defin i t ion o f -match on
b lock 1 9 . The stack is man ipu lated with swap and rot to move
a r ound the addresses ma rk ing forwa r d references wh ich need t o be
re solved . The r esult is very unstructu r ed but byte effic ient
code .

eFORTB ASSEMBLER SYN'l'AX

The mnemon ics provided in the eFORTH assemb ler vocabulary
a r e l i sted he r e accord ing to the numbe r and type of oper ands they
requ ir e . The eFORTH syntax follows Motorola ' s "gr een card"
except , as noted ear l ie r , ope rands a r e g iven befo r e the mnemonic .
The syntac t i c symbol <number > is used to r epr esent any sequence
of FORTH wo rds wh ich leave a 1 6-b it numbe r on the stac k . Th e
symbol <mmm> is used to repr esent an a rb itrary mnemonic .

Frank Hogg Laboratory copyr ight 1983

(�.

A Tour De PORTH 95

IIUIEDIATE ADDRESSING

The immediate addr ess ing mode is specif ied by pr eceding the
mnemonic with the usual • t • sign .

<number> I <mmm>

The following code would be used , for example , to compare the
contents of the A accumulator to the ASCII car r iage return code :

13 I cmpa

BXTERDED ADDRESSING

The extended addr ess ing mode is specified for the 680 9 by
simply pr eceding the mnemonic with the addr ess . Extended
address ing is the default addressing mode unless immediate ,
dir ect , or indexed addr ess ing is expl icitly spec if ied .

<number> �

DIRECT ADDRESSING

In the dir ect addr ess ing mode the byt e fol lowing the
mnemon ic is comb ined with the 6 8 0 9 direct page register to form
an effective addres s . Dir ect addr essing must be expl icitly
specified for the 6 8 0 9 with the symbol • < • placed pr eced ing the
mnemoni c . The eFORTH 6 8 0 9 implementation uses the di r ect pag e
reg ister as a po inter to the user var iable area. Consequently ,
direct addr ess ing will access the user var iables of the cur r en t
user .

buff er < ldx

INDEXED ADDRESSING

The constant-of fset indexed addr ess ing mode is specif ied by
pr eceding the mnemon ic w ith the name of an indexable reg ister
pr eceded with a comma . Th i s , in tur n , must be pr eceded with a
number wh ich speci f ies the constant offset . Note that a constant
offset of zero mus t be expl icitly given . Hence a constant of fset
from the o r eg ister is speci fied with

copyr ight 1983 Prank Bogg Laboratory

9 6 A Tour De FORTH

2 , u ldd

In add i t ion , the program counter can be used w ith a constant
offset . For examp l e ,

table , per leax

The accumulator o ffset indexed addr ess ing mode i s spec i f ied
by us ing on e of the fol lowing :

a , x
a , u

b , x
b , u

F o r exampl e ,

b , y lda

d , x
d, u

a , y
a , s

b , y
b , s

d , y
d , s

i s equ ivalen t to the standard 6 8 0 9 as sembly code

LDA B , Y

The auto inc r ement or auto dec r ement addressing mode is
spe c i f i ed by pr eceding the mnemonic with one of the fol low ing
words :

, x+
, -x

, y+
, -y

, u+
, -u

, s+
, -s

, x++
, --x

, y++
, --y

, u++
, --u

, s++
, --s

The ind ir ect addr ess ing mode i s spe c i f ied by pr eced ing the
mnemo n i c with a squa r e br acket . For example ,

<number > 1 ldx

and notice that the bracket must be separ ated �n both s ides with
space s . I f the wo rds ins ide the br acket j u s t push a numbe r to
the stack , as in the previous example , the addr ess ing mode w i l l
be ext ended indi r ec t . Th e br acket may a l s o fol low wo rds wh ich
speci fy other addr essing modes to g i ve the ind i r ect ver sion of
that mode . Constant offset indexed indir ect addr essing is
spec i f ied with

0 , u 1 ldd

Accumulator o ffset indexed ind i r ect addr ess ing is speci f ied with

b,y 1 lda

Auto doub le incr ement indexed ind i r ect addr essing is spec if ied

Frank Hogg Laboratory copyr ight 1983

A Tour De l!"ORTB 97

\ with
/

c:

, x++ J ldd

Program counter constant offset indir ect addr es sing is specif ied
with

table ,per J leax

RELATIVE ADDRESSING

�Relative addr ess ing is only used by two eFORTH assembler
mnemonics :

<nUllber > bra
<number> bsr

and <number > is taken to be the absolute addr ess to
The assembler will generate an 8-bit or 16-bit
requ ir ed .

branch to .
operand as

6809 MRBllORICS

The bulk of the 6 8 0 9 opcodes can be divided into thr ee
classes : C l > those which are used without any operands , (2) those
wh ich must be used with either dir ec t , extended, or indexed
addr ess ing modes but which cannot be used with the immediate
addr ess ing mode, and (3) those wh ich may be used with th e
immediate addr ess ing mode or with one of the other thr ee maj or
addr essing modes .

MNEllORICS - NO OPERANDS

The follow ing mnemonics are used alon e . They neither
r equ ire nor use any operands placed on the stack .

nop sync daa sex abx mul
rts rti svi svi2 svi3
nega COiia lsra rora asra as la rola de ca in ca ts ta clra
negb comb lsrb rorb asrb as lb rolb decb incb tstb clrb

copyr ight 1983 Prank Bogg Laboratory

98 A Tour De PORTH

MNEMONICS - IMMEDIATE ADDRESSING ILLEGAL

The mnemon ics l is t ed her e
e ither d i r ec t , extended , or
immediate addr ess ing mode is
be g iven .

r equir e an oper and wh ich speci f i e s
indexed address ing mode . The

i l lega l , but no e r r o r mes s age wil l

ne9
rol
sta
j sr

com
dee
stb
jmp

lsr
inc
std

ror
tst
stx

asr
clr
sty

asl

stu sts

MNEMONICS - IMMEDIATE ADDRESSING PERMI'r'rED

The mnemo n ic s l i sted her e mu st be pr eceded with wo rds wh ich
spec i fy immed iat e , d i r ect , extended , or indexed addr esss ing
modes .

subb subd
addb addd

suba
adda
cmpa
lda
sbca
sbcb

cmpb cmpd cmpx cmpy cmpu cmps
ldb ldd ldx ldy ldu lds
anda bi ta e�ra adca ora
an db bitb eorb a deb orb

MNEMONICS - IMMEDIATE OPERANDS REQUIRED

Th ese mn emon ics assume immediate addr ess ing and use the
number on the s tack for the immediate oper and

andcc or cc cwai

MNEMONICS - INDEXED ADDRESSING REQUIRED

The fol lowing mnemo n ic s mus t be pr eceded
spec i fy one of the indexed address ing modes .
pr ogr am counter constan t offset mode and the
modes .

leax leay leau leas

Frank Hogg Laboratory

with wo rds wh ich
Th i s includes the
indi r ect indexed

copyr ight 1983

(
'·--

A Toor De PORTH 99

MRBllOHICS - REGISTER OPERANDS REQUIRED

The mnemonics l isted her e may only have on e or more
reg isters speci f ied as operands .

pols polu psbs psbu tf r ezq

For example ,

a b dpr z y pulu

is the code to pull the A and B accumulators , the direct page
r eg ister , and the X and Y r eg isters from the stack pointed to by
the · U r eg ister . And

a dpr tf r ·

will transfer
page r eg ister .

the contents of the A accumulator to the direct
The legal reg ister name s ar e

a b d z y u s per dpr ccr

MACROS

Words can be def ined in terms of the ava i lable mnemonics to
produce macros or def ine new mnemonics . For example , an ASLD
mnemonic could be added to the 6 8 0 9 repoitoire with

: asld as lb rola 1

Not ice that th is is a colon definit ion so the asl and rol
mnemonics have the i r execution addresses compi led into the
par ameter f ield of asld • They are not executed until asld is
executed at wh ich · t ime they compile mach ine code into th e
dict ionary .

copyr ight 1983 Prank Bogg Laboratory

100 A Tour De FORTH

CBAPTER 13

WHERE DOES eFORTB POT THINGS?

eFORTH uses memory in accordance with this memory map .

End of Avai lable Memory
+--+

User Var iable Area
+--+

Disk Buffers

+--+
Return Stack

Terminai Input Buff er
+-----------------�---------------------+
I Parameter Stack I
I I
I I
I I
I I

limit

first

I I pad
I Free Dictionary Space I

+--+ here
I I
I Pre-compiled FORTH I
I I
I System Var iables I

+--+ origin
Beginning of Available Memory

THE DICTIONARY

The d i ct iona ry starts in low memo ry and g r ows upward as
wor ds a r e def ined . The wo r d here r eturns the addr ess of th e
f i r s t f r ee byte in the dictionary . Wo rds can be r emoved from the
d ict ionary with forget or empty , and memory r eleased by th i s
pr ocess is r ec l a imed .

Frank Bogg Laboratory copyr ight 1983

{

A Tour De FORTH 101

THE PARAMETER STACK

The sta r t ing addr e s s o f t h i s stack i s contained in the
var iable sO , and ' s r eturns the addr ess of the last number
pushed to the stack . The stack gr ows downwar d towa r d the
dict ionary . I t i s pos s ib l e for the s tack and the dict ionary to
col l ide . eFORTH does not check fo r t h i s cond it ion .

THE TERMINAL INPUT BUFFER

Th i s buffer i s r es e r ved to hold a l in e of t ext ente r ed f r om
the k eyboar d . Char acter s a r e s to r ed h e r e beg inning at the
addr ess conta ined in the var iable sO mov ing upwa rd toward the
r e turn stack .

THE RETURN STACK

Th i s s tack i s used to hold r eturn addr esses and var ious
s o r t s of temporary dat a . Its o r i g in i s conta ined in the var iable
r O , and the wo r d ' r r eturns the addr ess of the last numbe r
pushed to this stack . Th i s stack g r ows downward towar d the
term inal input buffer . They sha r e 2 5 6 bytes wh ich is mor e than
adequate .

THE DISK BUFFERS

eFORTH reserves 1 0 2 8 bytes for each disk buffer (1 0 2 4 a r e
u sed to hold the data on a block) and r eserves space f o r four
buf fer s when it star t s runn ing .

THE USER VARIABLE AREA

The addr ess at wh ich th i s area beg in s is r e turned by
Th i s area conta ins user var iables and al lows eFORTH
expanded for mul t i -progr amming .

' u
to be

copyr ight 1983 Frank Hogg Laboratory

1 0 2 A Tour De FORTH

CHAPTER 14

THE END OF THE TOUR

Th is concludes our tou r o f FORTH and some o f the intimate
det a i l s of eFORTH . I have found FORTH to be an ideal programming
env i r onment . I t does n ' t for ce th ing s on me , and i t al lows me to
interact ively explore my ha rdware and develop h igh-level
appl ication s . Desp ite the fact that I know dozens o f pr ogramming
languages and teach in a computer s c i ence depar tment whe re Pasca l
i s the ma j o r instruct ional language (soon to be replaced by
Modula-2) , whenever I have a cho i c e , I choo se FORTH . I have
wr itten a mu lt i-task ing system tha t al lows me to s ta r t any numbe r
o f programs runn ing , a l l of wh ich can communicate with one
another , tur t l e graph ic s , mu s i c synthes i s , and a var iety of f i l e
and data-base structu r es . I hope that FORTH helps you to be as
p r oduct ive as much as it has he lped me .

LITERAL STRINGS

A few odds and ends haven ' t been d i scussed that I would l i k e
to ment ion befor e leav ing you . eFORTH g ives you the ab i l ity to
use l iteral str ings . The word • (" quote " > , which is defined on
block 3 1 , is used in a number of places . I f you study them , yo u
should have no t r ouble u s ing it . It is used in the definition of
date on block 66 and in header on block 3 1 . Not ice tha t
. • hello• is equ ivalent to • hello • type < except that quote is a
" smar t " wor d but do t-quote is n ' t) . Quote is immediat e , and
whenever it executes , it puts the address and count of the str ing
wh ich fol lows it C t o the terminat ing quote) onto the stack .
However , i f FORTH is in the comp i lat ion stat e , it will compile a
run-t ime wor d , then the str ing into the par ameter f i eld of the
wor d be ing def ined . Later , . when the wor d be ing def ined executes ,
the run-time wor d compi led by quote will pu sh the address and
count of the str ing to the stack .

I t is used in header to j ust pr int out the str ing , but in
date a substr ing is ext r acted from the str ing .

Frank Bogg Laboratory copyr ight 1983

J

(

A Tour De FORTH 103

SMART WORDS

The quote i s a sma r t wo rd � it behave s one way in s ide a
definition C it comp i les) , and another way outs ide of a definit ion
C i t move s the str ing to pad > . In gene r a l , sma r t wo rds a r e be ing
d iscouraged these days , but quote str ik es me as be ing a rather
ben ign one . The wor d ascii , def ined on b lock 1 3 , is also a
sma r t wo rd .

A CASE STRUCTURE

When Chapte r 1 1 cal led your attent ion to block 3 8
have wondered how t o use those wo rds . (Notice that
con t a in s " s ecur e " ver s ion s . Ver s ions without compiler
ar e def ined on b lock 3 8 .) Here are two samples .

. is C n -- > .
case

1 <of • Less than one . • else •

1 of • One . • else •
2 s range • Two-Five . • else •

s >of • Greater than five . • else •
end case . ,

you may
block 4 0
secur ity

Test this wor d by enter ing th ing s l i k e 4 is and h it t ing r eturn .

. equals (adr cnt --) .
case

• one• •of 1 else .
• two • •of 2 else •
• ten• •of 10 else .
• • What?•

endcase . ,

Th i s last one i s tested by enter ing things l ik e

• one• equals
" three • equals
• ten • equals

but be r eady for a surpr ise when you try • tenth• equals • Oh ,
wel l , nobody ' s pe r fec t .

copyr ight 1983 Frank Bogg Laboratory

,.

_,

APPENDIX A

BOW DOES eFORTB DIFFER FROM •starting FORTH · ?

eFORTH was des igned to fol low contempo rary FOFTH standar ds .
The or ig inal intent ion was to follow the FORTH- 8 3 STANDARD ,
however , at this w r it ing , the standar d hasn ' t been publ ished .
Acco r dingly , eFORTH fol lows the FORTH des cr ibed in Broo e ' s
Starting FORTH except in those cases where we a r e fa i r ly sur e
what wi l l be in FORTH-8 3 .

Per haps the mos t s igni f icant di fference
of the do • • • loop str uctur e . The behav ior
implementat ion is descr ibed in Chapter 6 .
wh ich should be men t i oned a r e these .

LOOPS

is in the beh avio r
of the eFORTH
Other di f fe r ence s

F i r st , the wor d i doe s not s i mply r eturn the numbe r on top
. of the r eturn stack . It roust per form a calculation on it . There
l ar e s i tuat ions wher e Brode does not use i t ins ide a loo? Cpp .

1 1 1-1 1 2) . Th is w i l l not wor k in eFORTH . The words i and j must
only be used ins ide a loop , and only to r eturn the cur r ent loop
index . To move a copy of the number on the r eturn stack to the
pa r amete r stack , you mus t use r@ in eFORTH . Th e r e is no wo rd in
eFORTH which is equ ivalent to I ' in B r ode .

The wo r d DOUBLING def ined on page 1 3 4 is not r e str i cted to
an upper l imit of 3 2 , 7 67 in eFORTH . Try 65 , 5 2 5 , or try ze r o .
The wor d TEST def ined o n page 1 3 5 wi l l behave q� ite di f ferently
in · eF ORTH . The eFORTH loop impl emen tat ion el iminates the need
for /LOOP des cr ibed by Br ode on page 1 6 2 .

. execute

In Starting FORTH , the wor d execute expects a word ' s
par ameter f i eld addr e s s on the stack . In eFORTH , execute expects
a wor d ' s code fi eld addr e s s < execut ion addr es s) . Th i s i s also
tr ue of • (" t ick " > wh ich r eturns a code f ield addr e s s i n eFORTH ,
but a pa r amete r f ield addr ess in Starting FORTH • Howeve r , all
of the examples wh ich use them in Starting FORTH w i l l also wo r k
in eFORTH .

copyr ight 1983 Frank Bogg Laboratory

Starting PORTH DIPPERENCES APPENDIX A-2

)

cmove AND <cmove

These wor ds generally behave in the manner descr ibed on page
2 6 7 except that , when pos s ibl e , they wi l l move two bytes at a
t ime .

?stack

Thi s wor d does not r eturn a f lag . In eFORTH i t will abor t
i f the r e has been stack unde r f low . Th i s fol lows the cons istent
naming convention that wor ds whose names beg in with a question
ma r k conta in some sor t o f condi t iona l execut ion wh ich may r esult
in an abor t . I f a wor d s imply r eturns a f lag , the quest ion mark
sho�!d be at the end of its name .

NUMBER PORllAT'l'ING

Use the n set-up n phrases in the box on the top of page 1 7 2 .

Prank Bogg Laboratory copyr ight 1983

;

I
'

APPENDIX B

eFORTB MASTER GLOSSARY

Th i s g lossary conta ins an en try for each wo r d suppl ied w i th
er'ORTH except for those wh ich a r e implementat ion speci f i c . wo rds
wh ich a r e suppl i ed only for a pa r t icular implementat i on are
descr ibed in the append i x wh ich descr ibe s that implementation .

These ent r i es a r e l i sted acco r d ing to the i r ASC I I o r de r .
Th e f i r st l ine g ives the name o f the word be ing descr ibe d , th e
vocabula r y in which it i s found , the block number f r om which it
wa s loaded Ca z e r o means th a t i t was not loaded f r om a b loc k) ,
and its stack effect . The r ema in ing l in e s g i ve a br ief
descr ipt ion o f what the wo r d doe s .

In the stack effect , the two dashes j nu i cate the point at
wh ich the wo r d execute s . Th e pa r amet e r s wh ich mu st be placed on
the stack befo r e the wor d is execu t ed are on the left � the value s
the wo r d r eturns a r e on the r ight . In both case s , the i t em on
top of the stack is on the r ight .

·

The symbo l s used to ind icate stack items include :

b
c
n
u
d

ud
f lg

tf
ff

adr

8-bit byte C th e h igh 8-b i t s a r e zer o >
7-bit ASC I I cha r acter <the h i gh 9-b i t s ar e z e r o >
1 5-b it s i gned i n t eger
1 6-b i t uns igned int ege r
3 1-b i t si gned integ e r
3 2-b i t uns igned integer
boolean f lag (ze r o is fal se , non-zero i s t r u e >
t r u e boolean f lag (non-ze r o >
false bool ean flag (z e r o)
1 6-b i t memo ry addr e s s

The sequence "adr cnt " i s fr equently used a n d r e fe r r ed t o as
speci fying a str in g . Speci f i cal ly , "adr " r epr esents th e addr es s
of the f i r st char acter i n the str ing , and "cnt " r epresents the
number of cha r acter s in t h e s t r ing .

copyr ight 1 9 83 Frank Hogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-3

WORD

!

•

I

I

VOCABULARY

forth
Sto r e n at adr •

BLOCK

0

STACK EFFECT

C n adr --)

forth 13 (-- >
Comp i l e a l it e r a l str ing with a run-t ime wo rd wh ich
w i l l push its add r ess and count to the s tack . If
not comp i l in g , move the wo r d to pad and push its
add r ess and count to the s tack .

forth 3 8 C -- adr >
Beg ins a phrase to be executed if the case select
str ing is equal to the s t r ing iden t i f ied on the stack �
otherwise execut ion branches to the wo rds which fol low
the n ext " e ls e " . See ("o f) •

assembler 0 (-- >
Spe c i fy the immediate addr ess ing mode .

forth O C udl -- ud2 >
Gen e r ate f r om an uns igned doub le n umbe r , udl , the
next ASC I I character wh ich is placed in the output
str ing . Result ud2 is the quot ient a ft e r divi s ion
by base and is held for further process ing .

I I forth 10 C b -- >
P r int b as two hex d ig its .

1111 forth 10 < u -- >

I >

I f

I i

I s

P r int u a s four hex d ig it s .

forth O (d -- adr cnt >
Terminate p ictured nume r ic output conve r s ion . Leave
the address and count of the str ing . May be followed
by type .

editor 20 C -- adr)
Return the addr ess o f the edito r ' s f ind buffe r .

editor 20 C -- adr)
Return the addr ess o f the editor ' s ins e r t buffe r .

forth O (ud -- O 0)
Conver t a l l d i g it s of an uns igned 3 2-b i t numbe r add ing
each to the output str ing unt i l the r ema inder is
O . At least one d i g i t is gener ated . Us e between
<# and # > .

forth 0 C -- cfa >
Sea r c h the d ic t ionar y fo r the n ext wo r d in the input
str eam . Leave its execut ion addr ess i f found . Abo r t
i f it isn ' t found .

copyr ight 1983 Prank Bogg Laboratory

C.

eFORTB MASTER GLOSSARY APPENDIX B-4

WORD

' bell

' bs

' claim

' config

' er

� create

' depth

' device

' emit

' eol

VOCABULARY BLOCK STACK EFFECT

system 7 < -- adr)
A system var iab le wh ich contains the execut ion addr ess
o f the wo r d executed by bel l . Its initial va lue is
(bel l) •

system 7 (-- adr >
A system var iable wh ich cont a in s the execut ion addr ess
of the wo rd executed by b s . Its init ial value is
Cbs) •

disk ing SO < -- adr)
Retu r n the add r e s s o f a wo r d executed by C la im wh ich
per forms system dependent func t ions .

disk ing SO < -- adr >
Retu rn the addr ess o f the word executed by Conf ig ure .

system 14 < -- adr)
Retu rn the addr ess wh ich holds the execut ion addr ess
o f the wo r d executed by e r for the cur r ent output
device .

system 7 < -- adr >
A system var iable wh ich conta in s the execut ion addr ess
of the wo rd executed by c r eate . Its in itial value
is (c r eat e) .

system 14 (-- adr >
Return th e address wh ich holds the maximum numbe r
of l ines on the· cu r r ent output dev ice .

system 14 (b --)
C r eate a name for the
f r om the beg inn ing of
wor d . Standard device

f ield wh ich is o f fset b bytes
the par amete r f i e ld of a dev ice
wo rds a r e term and pr inter .

system 7 (-- adr >
Retu rns the address of the sys tem var iab le wh ich
holds the execut ion address of the wo rd executed
by emit . Its in it ial value is (emit) .

system 14
Retu rn the addr ess wh ich
of the wo r d executed by
device .

C -- adr >
holds the execut ion addr ess
eol fo r the cur r ent outpu t

' eos system 14 C -- adr >
Retur n the address wh ich holds the exec u t ion addr ess
of the wo rd executed by eos for the cur rent output
dev ice .

copyr ight 1983 Frank Bogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-5

WORD

' expect

' get

' home

' key

' key?

' number

' page

' put

' r

' r/w

' s

VOCABULARY BLOCK STACK EFFECT

system 1 < -- adr >
A system var iable wh ich contains the execution addr ess
of the wo r d executed by expec t . Its in itial va lue
is (expect) .

system 14 < -- adr >
A user var iable wh ich holds the address of the pa ramet e r s
fo r the cur r ent input dev ic e .

system 14 < -- adr)
Return the add r e s s which holds the execut ion address
o f the wo rd executed by home fo r the cur r ent output
device .

system 1 < -- adr >
Retu r n the addr e s s o f the system var iab le wh ich holds
the execut ion add r es s o f the wo rd executed by k ey .
Its in i t ial value i s C k ey > .

system 1 < -- adr >
A system va r iable wh ich conta in s the execut ion addr ess
of the wo rd executed by k ey? . Its init ial value is
(k ey ?) •

system 1 < -- adr >
Retur n the addr e s s o f the system var iable wh ich holds
the execut ion add r e s s of the wor<l wt: ich does input
number conve r s io n . I t s in i t i a l value is (numbe r) ,
but is usually set to numb e r .

system 14 C -- adr >
Return the add r es s which ho lds the execut ion addr ess
o f the wor d executed by page fo r the cur r ent output
dev ice .

system 14 < -- adr)
A user var iable wh ich holds the address o f the par amet e r s
fo r the cur r ent output devic e .

forth 0 < -- adr)
Return the contents of the r etu rn stack pointer .

system 1 < - - adr)
Return the add r es s o f the system var iab le wh ich holds
the execut ion add r e s s of the wo r d executed by r/w .
I t s in itial value i s C r/w) .

forth 0 < - - adr >
Return the contents o f the pa rame ter s tack po inter .

copyr ight 1983 Frank Hogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-6

WORD

' start

' type

' u

' update

' width

' xy

(

(+loop)

VOCABULARY BLOCK STACK EFFECT

system 7 C -- adr >
Retu r n the add r e s s of the system var iab le wh ich holds
the f i r st FORTH wo rd to be executed on a cold star t .
I t s init ial va lue i s qu it .

system 7 C -- adr >
Ret u r n the addr es s of the system var iab le wh ich holds
the execut ion addr ess o f the word executed by type .
Its initial va lue i s (type) .

forth 0 C -- adr >
Retur n the base addr ess o f the active user va r iable
ar ea .

editor 18 C -- adr >
An execut ion va r iab le wh ich ho lds the execut ion address
of the wo r d to be executed whenever chang e s a r e made
to the cur r ent ed i t ing bloc k .

system 14 C -- adr >
Ret u r n the addr ess o f the l ine width va lue fo r the
cu r r ent outpu t device .

system 14 C -- adr >
Retu r n the address wh ich holds the execut ion addr es s
o f the wor d executed by xy for the cur r ent outpu t
device .

forth O C -- >
Fo r ce s the int e rpr ete r to sk ip any text between this
wor d and the next ') ' ·

system 13 C -- adr cnt >
Run-t ime wo r d compi led by " wh ich r etu rns the addr es s
and count o f the l it e r a l str ing wh ich wa s be tween
the quotes .

system 37 C al cl a2 c2 -- al cl)
Run-t ime wo r d compi led by " o f • Al l fou r values
ar e d r opped if the str ing s are identica l ; otherwise
al and cl are left and exec u t ion br anche s to the
next case .

system 0 C n --)
Similar to (loop> except that n is added to the index .
I f th is r esults in c r oss ing the bounda ry between
the index and the index m inus on e , the loop is terminated .

copyr ight 1983 Frank Bogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-7

WORD VOCABULARY BLOCK STACK EFFECT

system 0 (--)
Run-t ime word comp i led by n

C i code) system 0 C)
The r un-t ime word c omp i l ed by ; code •

C <of) system 37 C nl n2 nl >
Run-t ime wo rd comp i led by <of • Both nl and n2
a r e dr opped i f nl i s les s than n2 ; othe rwis e nl i s
l e f t and execu t i on b r anches to the next case .

C >of) system 37 C nl n2 -- nl >
Run-t ime word comp i led by >of • Both nl and n2
are dr opped i f nl is greater than n2 ; otherwis e nl
is left and execut ion b r anches to the next case .

C ?do) system O C limit index -- >
Run-t ime wor d comp i led by ?do . index is the initial
index and l imit is the loop l imit . I f l imit is les s
than or equal to index , the loop is not executed .

(?leave) system 0 C flg --)
A r un-t ime wo rd wh ich forces immed iate terminat ion
of the cur r ently execut ing loop if the f lag is no n- ze r o .

(abort> system 0 C flg -- >
The run-t ime wo r d compi led by abo r t " • I t flg is
non-zero , the in-line text wh ich fol lows is pr inted
and qu it executed , otherwise ex�cut ion br anche s to
the f i r st word which follows the text .

(bell) system 0 C --)
Sound the "bel l " on the c u r r ent output device .

Cbs) system 0 C -- >
Transmit a destruct ive back space to the cur r ent output
dev ice .

Ccr> system 33 C -- >
Issue a car r iage r eturn and l ine feed to the cur r ent
output device .

<create) system 4 C -- >
Used in the form c r eate www to c r eate a d ict ionary
ent r y fo r www . When www executes , it w i l l r eturn
the address o f it ' s par ameter f ield unless subsequently
modi f i ed by doe s > or ; c ode •

copyr ight 1983 Prank Bogg Laboratory

eFORTB MASTER GLOSSARY . APPENDIX B-8

WORD

Cdo}

(emit)

VOCABULARY BLOCK STACK EFFECT

system 0 C limit index -- >
Run-t ime word comp i led by do . index is the init ial
index and lim i t is the loop l im i t . If l im i t equa ls
index , the loop is executed 6 4K t imes C if t erminated
by loop) •

system O C c -- >
Transmit the ASC I I coded char act e r on the s t ack to
the c u r r en t output devic e .

< expect) system O C adr cnt -- >
Accept a max imum o f cnt characters from the cur r ent
input device stor ing t hem a t adr . Input is terminat ed
when a car r iage r et u r n is r ece ived .

(forget) system 0 C cfa -- flg >
Forget the wo r d whose execut ion address is g i ven
(and fo rget a l l wo rds s ince it was def ined) . Leave
a z e r o if the ope r at ion was successfu l ; leave a non-zero
if the ope r a t ion was abo r t e d .

(key> system 0 C -- c)

Ckey?)

Wa i t fo r a char acter to be r eceived f r om the cur r en t
input dev ice , then push its ASC I I code to t h e s tack .

system O C -- f lg)
Retu r n a t r u e f lag i f a k ey has been pr essed on the
term ina l ; otherwise r eturn a false f lag .

C leave) system O C -- >
A ru n-t ime wo r d wh ich fo r c e s immediat e terminat ion
of the c u r r ently execut ing loop . See leave .

(literal> system 0 C -- n >
The r un-t ime wo r d comp i led by l it e r al • When executed ,
the 1 6 b i ts wh ich fol low i t a r e pushed to th e stack .

(loop) system 0 (--)
The run-t ime wo rd compi led by loop • When execut ed ,
the loop index on the r et u r n s tack is inc r emented
and the loop is t e r m inated i f the index equals o r
exceeds the loop l imi t ; otherwise , execut ion br anches
to the prev ious do

(number > system O C adr -- n)
Conve r t the str ing who s e count byt e is a t the spec i f ied
address us ing the c u r r en t base . A s ingle prec i s ion
numb e r is r eturned . Abo r t s i f conve r s ion is not pos s ible .
The byte at adr is not used .

copyr ight 1983 Frank Hogg Laboratory

ePORTB MASTER GLOSSARY APPENDIX B-9

WORD

Cof >

C r/w)

(range)

< type >

*

*I

*/mod

+

+ !

+load

+loop

VOCABULARY BLOCK STACK EFFECT

system 37 C nl n2 -- nl >
Run-t ime wo rd compi led by of • Both nl and n2 a r e
dr opped i f they a r e equa l ; otherw ise n l is left on
the stack and ex ecut ion branches to the next case .

system 0 < adr blk f lg -- adr >
I f the flag is no n- ze r o , the spec i f ied block is r ead
f r om d i sk and stored in memory beg inn ing at the spec i f ied
addr es s ; otherw ise , 1 0 2 4 byt es beg inn ing at the spec if ied
add r ess are wr itten to t he spec i f ied block on the
d is k .

system 37 C nl lo hi -- nl >
Run-t ime wo rd compi l ed by " r ange " . Al l thr ee numbe r s
a r e dr opped i f nl is " w i t h in " l o and h i ; otherwise
nl i s left and execut ion b r anches to the next case .

system 0 C adr cnt -- >
Transmit cnt cha r act e r s beg inn ing a t adr to the cur rent
output device .

forth O C nl n2 -- n3)
S igned mu lt iply of nl by n2 leav ing a 1 6 -b i t r esu l t .

forth 27 (nl n2 n3 -- n4 >
Mu l t iply nl by n2 leav ing a 3 2-b it r es u l t wh ich i s
div ided b y n3 .

forth O (ul u2 u3 -- u4 us)
Mu l t iply ul by u2 leaving a 3 2 -bit int ermediate r esu l t ,
then d ivide by u 3 g iving r ema inder u4 and quot ient
us . All va lues a r e uns igned .

forth O C nl n2 -- n3 >
Retu r n the si gned sum of nl with n2 .

forth O < n adr -- >
Add n to the 1 6-b it va lue a t adr .

forth 0 (n --)
Beg in int erpretat ion of the b lock wh ich is n b lock s
away f r om the block on which +load appear s . When
f i n i shed , int erpr etat ion con t in ues with the wo rds
fol lowing +load .

forth 40 < adrl adr 2 >
Use only in a defin i t ion . Ma rk s the end of a definite
loop s t ruct ure . See (+l oop) .

copyr ight 1983 Frank Hogg Laboratory

i
\..

eFORTB MASTER GLOSSARY APPENDIX B-10

WORD

,

, --s

, --u

, --x

, --y

, -s

, -u

, -x

, -y

VOCABULARY BLOCK STACK EPPECT

forth 0 < n -- >
Al lot two bytes of d ict iona r y space and sto r e the
numb e r on top of the stack into them .

assembler
Spec i fy the address ing
on the S r eg iste r . The
on the stack .

assembler
Spec i fy the address ing
on the U r eg i ster . The
on the stac k .

assembler
Spec ify the addr ess ing
on the X r eg i ster . The
on the stack .

assembler
Spec i fy the addr ess ing
on the Y r eg i ster . The
on the stac k .

assembler
Spec i fy the addr ess ing
on the S r eg ister . The
on th e st ack .

assembler
Spec i fy the addr ess ing
on the u r eg i ster . The
on the stack .

assembler
Spec i fy the addr ess ing
on the X r eg ister . The
on the stack .

assembler
Spec i fy the addr ess ing
on the Y r eg i ster . The
on the stack .

O < -- post >
mode of two-byt e auto-dec r ement
appr opr iat e po st byt e is left

O < -- post >
mode o f two-byt e auto-decr ement
appr opr iate post byte is left

0 (-- post >
mode of two-byt e aut o-decr emen t
appropr iate post byte is left

O < -- post >
mode o f two-byt e aut o-decremen t
appr opr iate post byt e is left

O < -- post >
mode of on e-byt e aut o-decr emen t
appr opr iate post byte is left

0 (-- post)
mode of on e-byt e aut o-dec remen t
appr opr iate post byte is left

O (-- post)
mode o f on e-byt e aut o-decr ement
appropr iate post byte is left

O < -- post >
mode of on e-byt e aut o-decremen t
appr opr iat e post byt e is left

, per assembler 0 < adr -- ???)
Spec i fy the pr og r am counter r e lative addr ess ing mode .

adr i s the absolute address of the ope rand . Stack
ef fect var ies depend ing on the d istance to adr .

copyr ight 1983 Prank Bogg Laboratory

ePORTB MASTER GLOSSARY APPENDIX B-11

WORD

, s

, s+

, s++

, u

, u+

, u++

, x

, x+

, x++

, y

VOCABULARY BLOCK

assembler O
Spec ify the addres s ing mode
f r om the S r eg iste r . Stack
on the s i ze of n .

STACK EPPECT

C n - - ??? >
a s a constant off set
effect var ies depend ing

assembler O C - - post >
Spec ify the addr ess ing
on the S r eg iste r . The
on the stack .

assembler
Spec ify the ad dr ess ing
on the S r eg i ster . The
on the stack .

mode o f one-byte auto- incr ement
appr opr iat e pos t byt e is left

O C -- post >
mode o f two-byt e auto-incr emen t
appr opr iate post byt e is left

assembler O C n -- ??? >
Spec ify the addr ess ing mode as a cons tan t offset
from the U r eg i ster . Stack effect va r ies depend ing
on the s i ze o f n .

assembler O C - - post >
Spec ify the address ing
on the U r eg ister . The
on the stac k .

mode o f one-byt e auto-incr ement
appr opr iate post byte is left

assembler O C -- post >
Specify the addr ess ing
on the U r eg i ster . The
on the stac k .

mode of two-byt e aut o-incr ement
appr opr iate post byte is le� t

assembler 0
Spec ify the addr ess ing mode
fr om the X r eg ister . Stack
on the s i z e of n .

C n -- ??? >
as a constant offset
ef fect va r ies depend ing

assembler 0 C - - post >
Spec i fy the addr ess ing
on the X r eg i ster . The
on the stack .

mode o f on e-byt e aut o-incr emen t
appr opr iate post byte is left

assembler O C -- post >
Spec i fy the addr ess ing
on the X r eg ister . The
on the stac k .

mode of two-byt e aut o-incr emen t
appropr iate post byt e is left

assembler 0
Spe c i fy the addr ess ing mode
f r om the Y r eg i ster . Stack
on the s i z e of n .

C n -- ??? >
as a constan t offset
effect va r ies depend ing

copyr ight 1983 Frank Bogg Laboratory

eFORTH MASTER GLOSSARY APPENDIX B-12

WORD

, y+

, y++

- ·

-->

-match

VOCABULARY BLOCK STACK EFFECT

assembler
Spec i fy the addr ess ing
on the Y r eg iste r . The
on the stack .

assembler
Spec i fy the addr ess ing
on the Y r eg ister . The
on the stack .

0 < -- post >
mode of one-byte auto-incr ement
appr opr iate post byt e is left

O < -- post >
mode o f two-byt e aut o- incr ement
appr opr iate post byte is left

forth 0 (nl n2 -- n3 >
Retu r n the s igned r esult o f subt r act ing n2 from nl .

forth 0 < -- adr f lg >
Sea r ch the dict ionar y fo r the n ext wo r d in the inpu t
s t r eam . I f found , r etu r n a false flag and the execut ion
add r e s s of the wo r d ; otherw is e leave a no n-zero flag
and h e r e •

forth 0 < -- >
Stop int erpr etat ion of the cur r ent block and cont inue
interpretation with the next sequent ial block . May
b e used with in a colon defin it ion tha t crosses a
b lock boundary .

editor 19 (A u a u -- al flg >
Sea rch fo r the str ing at a in the str ing at A . I f
found , r et u r n a false flag and set al t o point t o
the cha r acter wh ich fol lows the st r ing . Othe rwis e
r e t u r n a t r ue flag and set al equal to A+U .

-search editor 21 < -- f lg >
Sta r t in g at the cu r r ent cur sor pos it ion search for
the str ing in the f ind buffe r . Limit the search to
the cur r en t edit ing b lock . Retu rns a false flag if
the str ing i s found .

-text forth 12 (al ul a2 -- f lg >
Compa r e two str ing s . Return a false flag i f they
ar e equa l ; a pos it ive numb e r i f the str ing at al
i s " g r eate r " than the str ing at a 2 ; a negative number
if the str ing at al is " less " than the str ing at
a2 .

-trailing forth O C adr ul -- adr u2 >
Adj u s t the char acter count ul to ex clude t r a i l ing
b lank s .

copyr ight 1983 Frank Hogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-13

WORD

• •

. (

. r

. s

I

/mod

o .

O <

O=

Ob ranch

Osectorl

1+

VOCABULARY BLOCK STACK EFFECT

forth 0 C n --)
Pr int n followed by one space .

forth 0 C -- >
Use only in a defin it ion . When the wo r d be ing def ined
i s executed the text between the quotes will be pr inted .

forth O C -- >
Immediately pr in t the text wh ich fol lows unt i l the
f i r s t r ight pa r enthes is .

forth O C n u -- >
Pr int n r ight ad j u sted in a f i e ld u characters wide .

forth 10 C -- >
Pr int the cu r r en t values on the computation stack .
Th i s ope r a t ion do es not modify the stack in any way .

forth 0 C nl n2 -- quo)
Retur n the s igned r esult of dividing nl by n2 .

forth O C ul u2 -- u3 u4)
Un s igned divide of ul by u2 leaving uns igned r ema inde r
u3 and quot ient u 4 .

forth 25 C -- d >
Push a 3 2-b it z e r o to the stack .

forth 0 C n -- f 19)
Leave a true flag i f n is negat ive ; otherwise leave
a false flag .

forth 0 C n f 19)
Leave a t r ue flag i f n is equal to zer o ; otherwise
leave a false flag .

system 0 C f lg -- >
The run-t ime wo rd comp i led by i f and other condit ionals .
When executed , i f the flag is zer o , execut ion branches
to the addr ess spec i f ied by the 16 b its wh ich fol low .

disk ing
Return the addr ess
the sect o r s on the
numb e r ed f r om 0 or

forth
Inc r ement n by one .

49 < -- adr >
of a pa rameter wh ich tells whether
d i sk in the cur r en t dr ive a r e
1 .

0 C n -- n+l)

copyr ight 1983 Prank Ho99 Laboratory

I
'·· '

eFORTH MASTER GLOSSARY APPENDIX B-14

WORD

1-

lpass

2 !

2*

2+

2-

21

2>r

VOCABULARY BLOCK STACK EFFECT

C n -- n-1 > forth O
Dec r ement n by one .

editor 16 C from to cnt -- fr2 to2)
Used by copies to copy as many b lock s as ava i lable
memor y w i ll hold .

forth
Sto r e d at adr .

forth
Mu lt iply nl by

forth
Incr emen t n by

forth
Dec r emen t n by

forth
Divide nl by 2 .

forth
Tran s fe r nl and
most access ible
with 2 r > in the

0 (d adr)

0 (nl -- n2 >
2 . Ar ithmetic sh i f t left .

0 (n -- n+2)
two .

0 (n -- n-2)
two .

O C nl -- n2 >
Ar ithmetic sh i ft r ight .

O C nl n2 -- >
n2 to the r et u r n stac k . n2 is the
a fter the t r an s fer . Should be pa ired
same def in i t io n .

2@ for th O C adr -- d >
Leave on the stac k the 3 2 -b i t va lue at adr .

2constant forth 25 C d --)
De f in e a 3 2-b it constan t . When the def ined constant
is executed , d is pushed to the stack .

2drop forth O C nl n2 -- >
Drop the top two numb e r s f r om the pa rameter stack .

2dup forth 0 C d -- d d)
Copy the 3 2-b it number on top o f the stac k .

2over forth 11 C dl d2 -- dl d2 dl)
Leave a copy o f the second doub le number on the stack .

2r > for th O C -- n2 nl >
Tran s fer n l and n 2 f r om the r eturn stac k to the pa rameter
stack . nl was the mos t acce s s ible on the r e turn st ack
pr ior to t h i s operat ion .

copyr ight 1983 Frank Hogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-15

WORD

2rot

2swap

VOCABULARY BLOCK STACK EFFECT

forth 1 1 < dl d2 d3 -- d2 d3 dl >
Rotate the th i r d double numbe r to the top o f the
stack .

forth 1 1 (dl d2 d2 dl >
Exchange the top two doub le numbers on the stac k .

2var iable forth 25 (--)

. .

;

; code

<

<

<I

<cmove

<lf a

<nf a

Define a 3 2 -b it var iab le wh ich is initiali zed to
zero . When the def ined var iab le executes , it pushes
its addres s to the stack .

forth 41 C -- >
Used in the form x x • • • ; to cr eat e a new wo rd
with the name xx • The words r epr esented by • . •

determin e the behav i o r o f xx when it i s subs equen tly
executed .

forth 41 C -- >
Te rminate a colon defin it ion and resume interpr etat io n .

forth 9 C -- >
Used in the defin it ion of a def ining wo rd to spec ify
the run t ime behavior of the defined wo rds as be ing
the mach in e code comp i l ed by the assemb le r wo rds
wh ich fol low .

assembler 0 C -- >
Spec ify d i r ect page add r ess ing mode .

for th O C nl n2 -- f lg)
Leave a t r ue flag i f n l is less than n 2 ; otherwise
leave a fa lse flag .

forth O C --)
I n i t ia l i z e pictured numer ic output conve r s io n .

forth 0 C adrl adr 2 u -- >
Move u bytes from adr l to ad r 2 , the byt e at adr l+u-1
is moved f i r st .

forth 17 C cfa -- lfa >
Conve r t a wo r d ' s execu t ion address to the addr ess
of its l ink f ield .

forth 17 C cfa -- nfa)
Conver t a word ' s execut i on addr ess to the add r ess
of its count byte .

copyr ight 1983 Frank Bogg Laboratory

,.

(

ePOR'nl MASTER GLOSSARY APPENDIX B-16

WORD

<of

=

>

>Dr ive

>binary

>f

VOCABULARY

forth
Beg ins a phrase to
va lue is les s than
execu tion b r anches
" e lse " . See C <o f} .

BLOCK STACK EFFECT

3 8 (-- adr)
be executed i f the case s elect
the numbe r on th e stack ; otherwise
to the wo rds fol lowing the assoc i ated

forth O (nl n2 -- f lg)
Leave a t r u e f lag i f nl is equal to n2 ; otherwise
leave a false f lag .

forth O (nl n2 -- f lg)
Leave a true flag i f nl is g r eater than n 2 ; otherwise
leave a false flag .

disk ing SO < drl -- >
Set the cur r en t dr ive t o be the spec i f ied dr i ve .

forth O (dl adrl -- d2 adr 2 >
Conve r t the text a t adr l+l to a b in a r y va lue us ing
the cur r ent base . The new value is added to d l and
l e ft as d2 . ad r 2 i s the addr ess o f the f i r s t non-conve r t ib l e
char acter . S e t c t r equal to the numb e r o f c onver ted
d ig i t s .

editor 20 < -- >
Move the text wh ich fol lows the ed it ing c ommand • be ing
executed to the f ind buffe r . Do noth ing if no text
fol lows .

> i editor 20 (--)
Move the t ex t wh i ch follows the ed it ing command being
executed to the ins e r t buffer . Do noth ing if no text
follows .

>in forth 0 (-- adr)

>of

>r

A user var iab le wh ich hold s the offset into the buffe r
< terminal o r d isk) from wh ich the interpreter w i l l
fetch t h e next wor d .

forth
Beg in s a phr as e to be
value i s g r eater than
execut ion br anches to

else • See C > o f) •

3 8 (-- adr)
executed i f the cas e se lect
the number on the stack ; otherwise
the wo rd s fol low ing the n ext

forth 0 < n -- >
Tran s fer n to the r etu r n stack . Should be fol lowed
by r > in the same def in it ion .

copyr ight 1983 Prank Bogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-17

WORD

?

?comp

?er

?do

?dup

?found

?leave

?loop

?next

?pairs

?stack

VOCABULARY BLOCK STACK EFFECT

forth 0 C adr --)
Pr int the 1 6-b it value at adr .

forth 39 C >
Abo r t s i f FORTH i s not in the comp i l ing state .

forth 15 C cnt --)
I ssue a carr iage r eturn i f ther e is not enough r oom
on the cur r ent l in e o f the c ur r en t output dev ice
fo r the spec i f ied number o f character s .

forth 40 C -- adrl adr 2 >
Use only in a definit ion . Ma r k s the beg inn ing of
a definite loop wh ich mus t b e terminated by loop
or +loop . See C ?do) .

forth 0 C n -- n I n n n)
Dupl icate the top o f the s tack i f i t i s non-zero .

editor 21 C flg -- >
I f the flag i s n on-zer o , pr int the tex t in the f ind
buffer and an e r r o r mes sage and execute qui t .

for th 40 C -- >
An immediate wor d wh ich compiles code to force immediate
termina t i on o f a loop at run-t ime if the top of the
stack is non-zer o ; othe rwis e execut ion cont inue s .
Must be used in a definit ion and within a loop . See
(? leave) .

forth 40 C -- >
Abo r t and is sue an e r r o r mes sage i f a loop is not
b e ing compi led .

system 37 C ??? flg -- ??? >
Used by run-t ime case words to con t r o l execut ion
depending upon whether the case was matched . Stack
effect va r ies depend ing on whether the r e wa s a match
and whether the case s elect value is a number or
a str ing .

forth 39 C nl n2 -- >
Used in " s ecur e " ve rs ions of program structur ing
words to check syntax . Abo r t if nl and n2 a r e not
equa l .

for th 0 C -- >
Abor t i f the parameter stack i s in an unde r f low cond it ion .
Can only be u sed in a defin it ion .

copyr ight 1983 Frank Bogg Laboratory

_ ,

t• .. ,

eFORTB MASTER GLOSSARY APPENDIX B-18

WORD

?status

@

Back Up

Bounds

Claim

VOCABULARY BLOCK STACK EFFECT

system 3 (-- >
Abo r t s and issues an e r r o r mes s age i f the last d isk
access r esu lted in an e r r o r .

forth 0 < adr -- n >
Leave on the stack the 1 6-b it va lue at adr .

disk ing 52 < PromDr l ToDrl -- >
Copy a l l b lock s on the d i sk in the source dr ive to
the d i sk in the dest inat ion dr ive .

disk ing 50 < org limit -- >
Ret u r n the b lock numb e r o f the f i r s t b lock on the
cu r r ent dr ive and the number of the f ir s t b lock on
the n ex t dr i ve .

disk ing 53 < cnt -- >
Claim the spec i f ied numbe r of b lock s on the d i sk
in the cu r r en t d r ive for use by eFo r th . The d i sk
mu s t be fr eshly formatted .

ClearDisk disk ing 52 (-- >
Wipe a l l cla imed b lock s on the d i s k in the cur r en t
dr ive .

Configure disk ing 5 0 (-- >

Dr ive

Dr iveO

Set the t r ac k and s ecto r par ameter s fo r the cur r en t
dr ive t u those for which the cur r en t d i sk i n the
dr i ve was formatted .

disk ing 50 (-- adr)
Return the address o f a po in t e r to the par amete r s
f o r t h e cur r en t d r ive .

disk ing 50 < -- adr >
Ret u r n the addr ess o f the par ameters for dr ive O .

Dr iveF ield disk ing 49 < b -- >
C r eate a name for a f i e ld in a d r ive ' s pa ramete r
f ield .

Entr ies disk ing 51 (-- cnt >
Retur n the number o f ent r ies in the SectorCount s
tab le .

FormFeed system 33 < --)
Em its an asc i i form-fee d . Instal led in the ' page
vector of the system pr inter .

copyr ight 1983 Frank Bogg Laboratory

eFORTB MASTER GLOSSARY \. APPENDIX B-19

WORD

I ' m

Mark

Mount

VOCABULARY BLOCK STACK EFFECT

forth 43 (--)
Used in the form : I ' m cee to place the u s e r ' s init ials
into the var iable me .

editor 43 (--)
Ma rk the c u r r ent ed it ing b lock w ith the t ime , the
user ' s i n i t i a l s and the dat e .

disk ing 53 < drl -- >
Mount the d isk in the spec i f ied dr i ve . The d isk mu s t
have been c la imed p r eviously .

ReadSector disk ing 52 (adr dadr --)

Release

Remove

Restore

Read the sector at dadr on the d isk in the cur r ent
dr ive stor ing it at adr . The h igh byte o f dadr spec i fies
the track ; the low byte the s ector .

disk ing 53 < cnt -- >
C l a im all b lock s on the d i sk in the cur r ent d r ive
for use by eFORTH except fo r the speci f i ed numbe r
wh ich a r e r es e r ved for the system ' s ope r a t ing system .
The disk mus t b e fr eshly formatted .

disk ing 52 < drl -- >
Remove the spec i f ied dr ive f r om the system. I f dr ive
O is spec if ied , b lock O w i l l access the f i r st b lock
on the d isk in dr ive 1 .

disk ing 52 < -- >
Restor e the head on the cur r en t dr ive

SectorCounts disk ing 51 < -- adr >
Return the add r e s s o f a t able wh ich conta ins the
secto r s per s ide for each common count o f sectors
pe r t r ack .

SetDate for th 4 (-- >
Set the cur r en t date to the str ing that fol lows .

SetSides disk ing 51 (sectors -- >
Set the s/s f ield fo r the cur r en t dr ive g iven the
spec i f i ed numb e r o f s ecto r s per t rack .

SetTime forth 5 (--)
Set the cur r ent t ime to the str ing that fol lows .

Size disk ing 50 (-- cnt)
Return the number of bytes r equ i r ed for the pa rameters
for each dr ive .

copyr ight 1983 Frank Bogg Laboratory

' \

ePORTB MASTER GLOSSARY APPENDIX B-20

WORD VOCABULARY BLOCK STACK EPPECT

Wr iteSector disk ing 52 (adr dadr --)
Wr ite the data at adr onto the sector spec i f ied by
dadr on the d i s k in the cur r en t dr i ve . The h igh byt e
o f dadr spec i f ies the t r ack ; the low byte the secto r .

C forth 0 (--)
Suspend comp i lat ion and beg in interpr etat ion .

C ' J forth 0 < -- >
Comp i le the execut ion add r e s s of the next word in
the def i n i t ion a s a l ite r a l . At run-time , that addr ess
is pushed to the stack . May only b e u s ed in a def in it ion .

[compile] forth 0 (-- >
Comp i le the execut ion add r e s s o f the immed iate word
wh ich fol lows instead o f execut ing i t . The immediat e
wor d w i l l execute when the def ined wo r d executes .

J assembler 0 < ??? -- ??? >

J

a

Spec i fy the ind i r ect addr ess ing mode . Stack effect
var ies depend ing on the pr eviously spec i f ied address ing
mode , if any .

for th 0 ()
Enter the comp i l ing mode .

assembler 0 (-- >
Qpe c i fy the A accumu lato r as an ope r and of the subsequent
psh , pu l , tfr , o r exg ins t r uct ion .

a editor 23 (-- >
Append the str ing wh ich fol lows to the c ur r ent l ine .

a , s assembler 0 (-- post >
Spe c i fy the address ing mode o f A accumu lator offset
from the S r eg i ster . The appropr iate post byte is
left on the stac k .

a , u assembler 0 < -- post >
Spec i fy the address ing mode of A accumu lator offset
from the U r eg ister . The appr opr iate post byte is
left on the stac k .

a , x assembler 0 (-- post >
Spe c i fy the address ing mode o f A acc umu lator offset
from the X r eg ister . The appropr iate post byte is
left on the stack .

copyr ight 1983 Prank Bogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-21

WORD

a , y

abort •

abs

again

again

allot

VOCABULARY BLOCK STACK EFFECT

assembler 0 C -- post >
Spec i fy the add r e s s ing mode o f A accumu lator o ffset
from the Y r eg iste r . Th e appr opr iate pos t byte is
left on the stack .

forth 0 C -- >
An immediate word which comp i les code so that a t
run-t ime , i f t h e t o p of t h e stack is non-ze r o , the
text wh ich fol lows is pr inted and quit is executed .
See Cabor t) •

forth O C n -- u >
Retur n the absolute value o f n .

assembler 8 C adr -- >
Comp i l e an uncond it ional b r anch to the mach in e code
at the spec i f i ed add r e s s .

forth
Use only in
b r anch back
"beg in n .

39 C adr -- >
a defin it ion . Comp i les an uncond it ional
to the code ma r k ed with the pr ev ious

forth 0 C n -- >
Reserve n bytes o f space i n the d ict ionar y sta r t ing
at the c u r r en t add r es s r etu r n ed by her e .

and forth 0 C ul u2 -- u3 >

ascii

Leave the b itwise log ical and of u l with u 2 .

for th 13 C c >
Return the ASCI I code o f the fol lowing cha r acter .
I f comp i l ing , r emove i t f r om the s tack and comp i l e
it as a l itera l .

assembler for th 0 C)

at

Mak e the assemb l e r vocab u la r y the context vocabulary .

editor 1 8 C
Retu rn the buffer address o f the
in the cur r en t edit ing b lock and
r ema in ing in the c u r r ent l ine .

adr rem >
cur r ent cur sor pos it ion
the n umbe r of char acte r s

atO editor 18 C -- adr c/l)
Set the cursor at the start o f the c u r r ent l ine and
r et u r n its buffe r addr e s s and the length of the l ine .

b assembler 0 C -- >
Spec ify the B accumulato r a s an ope r and of the subs equen t
psh , pu l , tfr , o r exg instruct ion .

copyr ight 1983 Frank Bogg Laboratory

,

/ .

ePOR'l'B MASTER GLOSSARY APPENDIX B-22

WORD

b

b , s

b , u

b , x

b , y

b/blk

back

base

beg in

beg in

bell

VOCABULARY BLOCK STACK EFFECT

editor 20 C -- >
Mak e the previous b lock the cur r en t ed i t ing b lock .

assembler 0 (-- post >
Spec ify the add r e s s ing mode of B acc umu lat o r offset
from the S r eg i ster . The appropr iate post byte is
left on the stac k .

assembler O C -- post >
Spec ify the addr ess ing mode of B accumulato r offset
from the U r eg i ster . The appropr iate post byte is
left on the stac k .

assembler O C - - post >
Spec ify the addr ess ing mode of B accumulat o r offset
from the X r eg i ster . The appropr iate post byte is
left on the stac k .

assembler 0 (-- post >
Spec i fy the addr ess ing mode of B accumu lator offset
fr om the Y r eg ister . The appropr iate post byte is
left on the stac k .

forth 7 C - - u >
A system constant wh ich r eturn s the n umbe r of bytes
in a b lock . Th is implementat ion r etu r n s a value of
1 0 2 4 .

system 36 (adr -- >
Comp i le s a b r anch vecto r back to the address o n the
stack .

forth 0 C adr >
Retur n the add r e s s of the user var iab le wh ich holds
the base wh ich i s b e ing u sed for input a na output
conve r s ion o f numbe r s .

assembler
Push the cur r en t
Used t o mar k the
instruction .

39 C -- adr >
value r eturned by he r e t o the stac k .
destination o f a subsequent b r anch

forth 39 (-- adr >
Use only in a d e f in it ion . Used to ma r k the beg inn ing
of e ither a " beg in • • wh i le • • r epeat" o r "beg in • • aga in "
o r "begin • • unt i l " loo p .

forth O C -- >
Executes the wo r d whose execut ion addr ess is in the
va r iab le ' bell . Its initial value is (b e l l) .

copyr ight 1983 Frank Bogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-23

WORD

bl

blank

blk

b lk ?

b lock

b locks

body

bra

branch

bs

bsr

VOCABULARY BLOCK STACK EFFECT

forth O (-- bl J
A constant wh ich r eturns the code fo r an ASC I I b lank .

forth O (adr u -- J
F i l l memor y beg inn ing at adr with a s equence of u
b lank s . I f u is ze r o , no act ion is taken .

forth 0 (-- adr >
A user var iable wh ich holds the number of the b lock
be ing interpr eted . I f t h i s n umbe r is zer o , input
is being tak en f r om the terminal input buffe r .

system 0 (u -- adr ff I u -- u u J
Sea r ch the buffers for b lock u . I f found r eturn its
address and a zer o � othe rwise leave u and r eturn
a non-z e r o value .

forth 0 (blk -- >
Leave the address of the f ir st data byte in the d isk
b u ffe r wh ich cont a in s b lock b lk . The b lock is r ead
f r om d i sk i f necessary .

disk ing 49 < -- adr >
Retur the addr ess o f the pa r ameter wh ich tells how
many block s a r e on the d i s k in the cur rent dr i ve .

forth 17 (cfa -- pfa >
Conver t a wo r d ' s execut ion addr e s s to its pa r amete r
f i eld addr ess .

assembler 8
Comp i l e the mach in e code
on the s tack . Comp i l es a
i f necessa r y .

< adr -- >
fo r a br anch to the addr ess
long b r anch instruct ion

system 0 < -- >
The r un-t ime wor d compi led by r epea t and other cond i t ionals .
When executed , causes execut i on to b r anch to the
address spec i f ied by the 1 6 b it s wh ich fol low .

forth O < -- >
Executes the wor d whos e execut ion addr ess j s in the
va r iable ' bs . Its init i a l va lue is C b s) .

assembler 8 (adr -- >
Comp i le the mach ine code for a b r anch to subr out ine
at the address on the stack . Comp i les a long br anch
to sub r out ine if necessa r y .

copyr ight 1983 Frank Bogg Laboratory

eFOR'l'B MASTER GLOSSARY APPENDIX B-24

WORD

buf?

buff er

c !

cl

c ,

ell

c@

case

cc

ccr

center

cfa>

clear

VOCABULARY

system
As s ign a buffer to
a zero flag i f the
othe rwise th e flag

BLOCK STACX EFFECT

O C u -- adr f lg >
b lock u . Return its address and
buffer is not mar k ed as updated ;
is the numbe r o f the updated buffe r .

forth O < blk -- >
Obtain the next b lock buf fe r ass igning it to block
blk . The b lock is not r ead f rom d isk .

for th O < n adr -- >
Store the least s i gn i f icant 8-b its of n at adr .

forth 0 (-- adr >
Return the addr ess w ith in the c u r r ent output device
r ec o r d wh ich conta ins the number of char acte r s wh ich
have been pr inted on the cur rent l ine .

forth 0 C b -- >
Allot one byte of d ict ionary space and store the
low byte of the number on the stack into it .

forth 7 C -- u >
A sys tem constant wh ich r eturns the number o f char acte r s
o n one l ine o f a n edit ing b lock . This implementat ion
r eturns a value of 6 4 .

forth 0 (adr -- b)
Leave on the stack the 8-b it va lue at adr .

for th 3 8 C -- nl n2 >
Us e only in a def i n i t ion . Beg in s a k eyed case st ructur e .

assembler 9 C -- cond >
Spec ify the " car ry-clear " cond it ion cod e .

assembler 0 (-- >
Spec i fy the cond it ion code r eg iste r as an ope r and
of the subsequent psh , pu l , tfr , o r exg instruct ion .

forth 31 < adr cnt -- >
P r int the spec i f i ed str ing at the center o f the cur r ent
pr in t l ine .

forth 17 C nfa -- cfa)
Conve r t the addr ess of a word ' s count byt e to its
execut ion addr ess .

editor 16 < b lk -- >
F i l l the spec i f ied b lock w ith b lank s .

copyr ight 1983 Prank Bogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-25

WORD

clears

cmove

cnt

code

VOCABULARY BLOCK STACK EFFECT

editor 16 C blk cnt --)
F i l l the spec i f ied r ange o f bloc k s with blank s .

forth O C adr l adr 2 u -- >
Move u bytes f r om ad r l to ad r 2 . Th e byte adr adrl
is moved f i r s t .

forth O < -- adr >
A user va r iab le used as a character l imit for i/o
ope r a t ion s .

forth
Used to c r eate a
with the machine
wh ich fol low .

9 (--)
wo r d whose behavior is spec i f i ed
c ode comp i led by the assemb ler wo r d s

compile for th 0 C)
Comp i l e the execut ion addr e s s of the next wo rd int o
the d ict ionary .

constant for th 0 C n -- >
Used in the form n cons tant c c to c r eate a named
cons tant valu e . c c is added to the dict iona r y , and
when it is executed n is pushed to the stac k .

context for th 0 (-- adr)
A u ser var iable wh ich spec if ies the context vocabulary .

copies editor 16 (from to cnt -- >
Copy the spec i f ied number of block s beg i nn ing at
" f r om" mov ing them to "to " .

copy editor 16 C old new -- >
Copy the contents of the old block to the new bloc k .

count forth 0 C adr -- adr+l cnt)
Given the addr ess of a str ing ' s char acte r count ,
r eturn the addr ess of the f i r st character and the
length of the s t r ing .

er forth 0 (--)
Executes the wo rd whose execut ion address is in the
cur rent outpu t device va r iab le ' e r . See (e r) .

create forth 0 < -- >
Execute the wo rd whose execut ion addr ess is in the
sys tem va r i ab le ' cr eate . I t s initial value is (cr eate) .

copyr ight 1983 Frank Bogg Laboratory

' __,/

r

(
I

ePORTB MASTER GLOSSARY APPENDIX B-26

WORD

cs

esp

ctr

current

d

d

d+

d , s

VOCABULARY BLOCK STACK EFFECT

assembler 9 < -- cond >
Spec i fy the "car r y-set " cond i t i on code .

forth 39 (-- adr)
A user var iable wh ich holds the cur r ent stack pos i t i on .
Set by the co lon and check ed by the sem ic o lon (" secur e "
ve r s i ons only> to mak e sure that comp i l ing d id not
chang e the stack .

forth 0 (-- adr >
A user var iable used as a counte r fo r i/o ope r a t i on s .

forth 0 (-- adr)
A use r var iable wh ich spe c i f i e s the cur r ent vocab u la r y .

assembler 0 < -- >
Spec i fy the D r eg ister as an ope r and of the subs equer t
psh , pu l , tfr , o r exg instr uct i on .

editor 23 < -- >
Delete the str ing wh ich fol lows .

for th 25 < dl d2 -- d3 >
Retu rn the 3 2-b it sum o f d l with d 2 .

assembler 0 < -- post)
Spec i fy the address ing mode o f D accumu lator o f fset
f r om the S r eg ist e r . The appr opr iate post byt e is
left on the stack .

d , u assembler 0 < -- post >
Spec i fy the address ing mode o f D accumu lator of fset
f r om the U r eg iste r . The appr opr iate pos t byt e i s
left o n the stack .

d , x assembler 0 < -- post)
Spec i fy the add r e s s ing mode o f D accumu lator o f fset
f r om the X r eg iste r . The appr opr iat e post byte i s
left on the stack .

d , y assembler O < -- post >
Spec i fy the address ing mode of D accumu lator offset
f r om the Y r eg iste r . The appr opr iat e po st byt e i s
left on the stack .

d- forth 26 < dl d2 -- d3 >
Leave the d i fference of two s igned , 3 2-b it numbers .

copyr ight 1983 Prank Hogg Laboratory

ePORTB MASTER GLOSSARY APPENDIX B-27

WORD

d .

d . r

dO=

d<

d=

d>

dabs

date

decimal

VOCABULARY BLOCK STACK EFFECT

forth 28 < d -- >
Pr int double number d followed by one space .

forth 2 8 < d u --)
Pr int double numbe r d r ight-adj usted in a f i e ld wh ich
is u bytes wide .

forth 2 6 < d f lg >
Leave a t r u e f lag i f d i s equa l to zero ; otherwise
r eturn a fa lse f lag .

forth 26 < dl d2 -- f lg >
Leave a t rue f lag i f dl i s les s than d 2 ; othe rwise
leave a false f lag .

forth 26 < dl d2 -- f lg >
Leave a true f lag i f two doub le numb e r s a r e equa l ;
otherwise r et u r n a fals e f lag .

forth 26 < dl d2 -- f lg >
Leave a true f lag i f d 2 i s greate r than d l ; otherwise
leave a false f lag .

forth 26 < dl -- d2 >
Leave the ab so lute value o f a 3 2-b it number .

forth 4 < -- adr cnt)
Conve r t the system date to a str ing .

forth 0 < -- >
Set the input/output nume r ic conve r s i on base t o ten .

definitions forth 0 < -- >

delete

depth

disk

d isk ing

Mak e the cu r r ent vocabulary the same a s the context
vocabular y .

editor 21 < -- >
De lete the str ing wh ich was j u s t found with on e of
the sea r ch ing command s .

for th 15 < -- u >
Return the number o f l ines per page on the cur r ent
output device .

system 0 < -- adr)
Ret u r n the base addr ess o f the sys tem d isk pa r amet er s .

system 4 8 < --)
Mak e the d i sk ing vocab u la r y the context vocabulary .

copyr ight 1983 Frank Bogg Laboratory

_j

r

(

eFORTB MASTER GLOSSARY APPENDIX B-28

WORD

dlv

dmax

dmin

dne9ate

do

does>

dpl

dpr

drcode

drop

du<

dump

VOCABULARY BLOCK STACK EFFECT

system 0 < -- adr >
A user var iab le used dur ing the compil ing o f loops .

forth 26 < dl d2 -- d3 >
Leave t h e h ighest o f the two s igned doub le numbers .

forth 26 < dl d2 -- d3 >
Leave the lowest o f the two s igned double numbe r s .

forth 25 < dl -- -dl >
Leave the two ' s complement of a 3 2-b it number .

forth 40 < -- adrl adr2 >
Use only in a definit ion . Ma r k s the beg inning of
a defin ite loop wh ich mus t be terminated by loop
or +loop . See (d o) •

forth 0 < -- >
Used in the defin it ion o f a defin ing wo r d . Terminates
the wo rds to be executed when the defin ing wo r d executes
and b eg ins the wor d s to b e executed when the wo rds
def ined with the new def in ing wor d are executed .

forth 29 < -- adr >
A u s e r var iable wh ich g i ve s the numbe r o f d ig i t s
t o t h e r ight o f t h e last punctuat ion character in
the last double numbe r seen by the inte r pr eter .
A neg at ive value indicates that the last number was
no t punctuated .

assembler 0 < -- >
Spec i fy the a i r ec t page r eg ister a s an ope r and of
the subsequent psh , pul , t f r , o r exg instruct ion .

disk ing 49 < -- adr >
Return the address o f the system dependent dr ive
code fo r the cur r ent dr ive .

forth 0 < n -- >
Drop the top number f r om the stac k .

forth 26 < udl ud2 -- fl9 >
Leave a t r u e f lag i f udl is les s than ud2 ; oth e rwise
leave a false flag . Th is is an uns igned compa r ison .

forth 10 < adr cnt -- >
Pr int a memo r y dump of the spec i f ied number of byt es
beg inn ing at the spec i f ied addr es s .

copyr ight 1983 Frank 8099 Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-29

WORD

dup

e

editor

else

else

emit

empty

VOCABULARY BLOCK STACK EFFECT

forth 0 C n -- n n)
Leave a copy o f the number on top of the s tack .

editor 23 C --)
De lete the str ing wh ich was j u st found with one o f
the sea r ch ing command s .

forth 6 < -- >
Mak e the editor vocab u la r y the context vocab u lary .

assembler 8 C adrl -- adr2)
Comp i l e an uncondit ional b r anch leaving the addr ess
of the byte o ffset wh ich later must be r esolved ,
then r es olve the b r anch at a d r l so that its target
w i l l b e the code wh ich follows .

forth
Use on ly in
phr a s e , and
ph r ase .

39 C adrl -- adr2 >
a definit ion . Ma r k s the end of the " i f-true"
ma r k s the beg inn ing of the " i f-fa ls e "

forth 0 C c >
Executes the wor d who s e exec ut ion addr ess i s in the
var iab le ' emit . Its initial value i s (emit > .

forth 0 < -- >
Removes a l l words f r om th� u se r ' s d ictionary spac e .

empty-buffers forth 0 C --)
Mar k a l l b lock buffe r s as empty . Updated b lock s
ar e not wr itten t o d isk and the i r modif icat ions wi l l
be lost .

end-code forth 9 < -- >
Used t o terminate code and ; code def in i t ion s .

endcase forth 3 8 C nl n2 ??? --)
Us e only in a def in it ion . Ter m inates a cas e s t r uctur e .
Stack effect var ies acco r ding t o the number o f case s .

eol forth 15 C -- >
Executes the word whose execut i on address i s in the
cur r en t output dev ice var iab le ' eo l . Se e (e o l) .

eos forth 15 C --)
Executes the wor d who s e execut ion addr ess i s in the
cur r ent output device var iab l e ' eos . See (eo s) .

copyr ight 1983 Frank Bogg Laboratory

!

r ·

r
\.

ePORTB MASTER GLOSSARY APPENDIX B-30

WORD

eq

erase

execute

exit

expect

f

false

fill

find

first

flush

footer

VOCJ\BULARY BLOCK STACK EFFECT

assembler 0 (-- cond)
Spec i fy the " z -b i t-set " cond it ion cod e .

forth O C adr u --)
F i l l memo r y beg in n ing a t adr with a s equence o f u
nu lls . I f u i s z e r o , no act ion is tak en .

forth O < cfa -- >
Execute the wor d whos e execution add r es s i s on the
stack .

forth 0 < --)
When used in a c o lon d e f in it ion , execut ion o f that
def in i t ion w i l l stop at that point and r eturn to
the c a l l ing wor d . When u sed on a load bloc k , wi l l
terminate load ing at that po int and r eturn t o the
call ing wor d .

forth O < adr cnt -- >
Executes the wo r d who s e execut ion address is in the
system var iab le ' expect . Its i n i t ial va lue is (expect) .

editor 23 < -- >
Star t ing at the edit ing cursor pos it ion , " f ind " the
str ing wh ich follows . Abo r t s i f the str ing is not
found .

forth 11 < ff >
Leave the constant wh ich r epresents a boo lean fals e .

forth O < adrl u b -- >
F i l l memor y beg inn ing at adr with a sequence of u
copi es o f b . I f u i s z er o , no act i on is tak en .

system O C adr -- adr ff I cfa b >
Search the d ic t i ona ry for the s t r ing at adr . Leave
adr and r eturn a z e r o i f not found : otherwise leave
the wor d ' s execu t i on addr ess under its count byt e .

system 0 < -- adr >
A system constant which r etu rns the beg inn ing address
o f the system disk buffe r a r ea .

forth 0 < -- >
Wr i t e a l l b lock s t o d isk that have been f lag ged as
updated .

forth 31 C -- >
Move to the bottom l in e o f the cur r en t page and pr in t
the system copyr ight messag e , then move to the top
of the next pag e .

copyr ight 1983 Frank Bogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-31

WORD

forget

forth

forward

f xp

9

ge

gets

golden

gt

h

hO

header

VOCABULARY BLOCK STACK EFFECT

for th O (-- >
Used in the form forget www to r emove www C and a l l
words def ined s ince www wa s def ined) from th e dict iona ry .

forth 0 (-- >
Mak e the forth vocab u la r y the context vocabulary .

system 0 (-- adr >
Mar k the locat ion of a forwa r d b r anch wh ich should
subsequ ently b e r esolved with r esolve •

for th 28 (-- adr >
A user var iab le wh ich conta ins the max imum number
o f d ig it s wh ich may occu r to the r ight of the las t
punctuat ion character in a doub le n umber . Numbers
w ith fewe r d i g i t s will b e scaled . A n egative va lue
d isab le s this featu r e .

editor 22 < blk l ine -- >
Get the spec i fi ed l ine and insert it under the cur r ent
l in e wh ich then becomes the cur r en t l ine .

assembler 9 < -- cond >
Spec ify the " g r eate r -than-o r -equal " condit ion code .

editor 22 (blk l ine cnt -- i
Get the spec i f ied l ines f r om t�e specif ied block
and insert them under the cur r ent l in e . The cur r ent
l in e becomes the last l in e ins e r ted .

system 0 < -- adr >
Return the address o f the las t saved d ic t ionar y stat e .
The data a t this address i s u sed b y empty •

assembler 0 < -- cond >
Spec i fy the " g r eater-than " cond it ion code .

forth 0 < -- adr >
A user var iable wh ich contains the addr ess of the
next f r e e byt e in the d ict iona r y .

forth 0 < -- adr >
A use r var iable that conta ins the d ict ionary or i g in .

Used by empty to r e-or ig in the dict ionary .

forth 31 < -- >
P r int the system header on the n ext page .

copyr ight 1983 Frank Bogg Laboratory

I''

(

eFORTB MASTER GLOSSARY APPENDIX B-3 2

WORD

her e

hex

hi

hold

home

hs

i

i

VOCABULARY BLOCK STACK EFFECT

forth 0 < -- adr)
Ret u r n the add r e s s o f the next free byt e in the dict iona ry .

forth O < -- >
Set the inpu t/output numer ic conve r s ion bas e to s ixt een .

assembler 0 < -- cond >
Spe c i fy the "h i " cond it ion c od e .

forth 0 < c -- >
Inse r t c into the pictured numer i c output str ing .

Must be used between < # and # > .

forth 15 < -- >
Executes the wor d whose execut ion address is in the
cur r en t outpu t device va r iab le ' home . See (home) .

assembler 9 < -- cond)
Spec i fy the " h ighe r -than-o r-same " branch cond j t ion
code .

editor 23 < -- >
Ins e r t the str ing wh ich fol lows at the curso r .

forth 0 (-- index)
Retu r n the cur r en t loop index to the par ameter stac k .
Must on ly be used w i t h i n a loop .

id forth 17 < nfa -- adr cnt)
Conve rt a word ' s count byte addr ess to a str ing wh ich
can be u s ed by type . Th e str ing is placed at pad .

id . forth 17 < nfa -- >
Pr int the name o f the wo r d whose count byt e add r es s
is g iven on the stack . I ssue a car r iage r eturn i f
i t w i l l not f i t on t h e r ema inde r of t h e cur r en t output
line .

if assembler 8 < cond -- adr)
Comp i le the mac h in e code fo r a cond it ional fo rward
b r anch (the c ond it ion is g iven on the stack) . Leave
the add r e s s of the r e lat ive offset wh ich la t e r mus t
be r e so lved .

if forth 39 < -- adr >
Us e only in a defin it ion . Ma r k s the beg inn ing o f
a phrase to be executed i f t h e top of t h e s tack is
t r u e 1 otherwise exec u t ion sk ip s to the fol low ing
else or then . At run-t ime , the top of the s tack is
r emoved .

copyr ight 1983 Frank Bogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-33

WORD VOCABULARY BLOCK STACK EFFECT

immediate forth 0 (>
Mar k the last def ined wor d as an immed iate wo rd .

in@ forth 0 (-- adr >
Ret u r n the add r ess of the next char acter in the inte rpr eter ' s
inpu t s t r eam .

index forth 32 (beg lim -- >
Pr in t the f i r s t l ines of a l l block s between beg and
l im .

input system 0 (adr -- >
Mak e the spec i f ied dev ice the cur r en t input device
for the cur r en t user . Usage : term input

insert editor 21 (-- >
Insert the contents o f the insert buffer at the pos it ion
of the c u i: s o r .

interpret forth 0 (� >

j

Inte rprets the input str eam a t the char acte r indexed
by > in unt i l the input s t r eam is exhausted .

for th 0 < -- index >
Retur n the index of the n ext outer loop . May only
be u s ed within a loop w ith in a loop in che same definit ion . \

}
k

key

key?

1

11

editor 22 < -- 1
Exchange the conten ts o f the inse r t b uf fe r with the
contents of the f ind buffer . Al l ows the inser t ion
o f t ext wh ich has been delete d .

forth 0 < -- c >
Executes the wo r d whose execut ion addr ess is in the
var iable ' k ey . Its in it ial value i s C k ey) .

forth 0 < -- f lg >
Execute the word whose execut i on addr ess i s in the
syst em var iable ' k ey? . I t s i n i t i a l va lue is C k ey ?) .

editor 20 < -- >
List the cur r en t edit ing b lock

forth 0
Ret u r n the addr ess with in
record which contains the
wh ich th e cursor or pr int

< -- adr >
the cur r en t output device
cur r en t l in e n umber on
head i s pos it ioned .

copyr ight 1983 Frank Bogg Laboratory

l
l

ePORTB MASTER GLOSSARY APPENDIX B-34

WORD

last

le

leave

limit

list

listing

literal

lo

load

locate

loop

ls

lt

VOCABULARY BLOCK STACK EFFECT

forth O < -- adr >
A u s e r va r iable which conta ins the addr ess of the
count byt e of the las t wo r d wh ich was added to the
dict i onary .

assembler 9 C -- cond >
Spec i fy the " les s-than-o r -equa l " cond i t ion code .

forth 40 C -- >
An immed iate wo r d wh ich comp i le s code to fo rce immed iate
termina t i on o f a loop at r un-t ime . Must be used
in a d e f in i t io n and mus t be used with in a loop .

system 0 < -- adr >
A system constan t wh ich r eturns the addr e s s
end o f t h e system d i sk buffer a r ea .

forth 10 (blk)
L i s t the spec if ied b lock .

forth 3 2 (blk --)
Pr int the page on wh ich the spec i f i ed b lock

forth 0 C n -- >

of the

fa lls .

An immed iat e wor d which comp iles the number on the
stack int o the defin it ion as a l ite r a l . At run-time ,
n i s pushed to the stack .

assembler O < -- cond >
Spec i fy the " lo " cond it ion code .

forth 0 < blk -- >
Beg in interpretat ion o f b lock b lk . When fin i shed ,
interpretat ion cont inues with the wo rds fol lowing
load .

forth 44 C -- >
Used in the for m : locate www to l is t the block
from wh ich www was loaded .

forth 40 < adrl adr2 >
Use only in a defin it ion . Mark s the end of a defin ite
loop s t r uctur e . See (loop) .

assembler 9 < -- cond >
Spec i fy the " les s-than-o r-same " cond i t ion code .

assembler 0 < -- cond >
Spe c i fy the " les s-tha n " condit ion code .

copyr ight 1983 Frank Bogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-35

WORD VOCABULARY BLOCK STACK EFFECT

m* forth 27 C nl n2 -- d >
Leave the s igned 3 2-b it r esult o f mult iplying nl
by n2 .

m*/ forth 27 C dl nl n2 -- d2 >

m+

ml

mark

max

me

mi

min

mod

mon

move

n

ne

Mu lt iply dl by nl leaving a 4 8-b it intermediate r esult
wh ich i s then d i vided by n 2 leav ing a 3 2-b it r esult .

for th 27 C dl n -- d2)
Leave the 3 2-b it r esult o f add ing n to dl . All values
a r e s igned .

forth 27 C d nl -- n2 >
Leave the s igned 1 6 -b it r esult of dividing d by nl .

system 36 C -- adr)
Used by comp i l ing wo rds to ma r k the loca t ion of a
backward r ef e r ence .

forth 0 C nl n2 -- n3)
Leave the g r eater of the top two n umbers on the s tack .

forth 43 < -- adr cnt)
A str ing var iable wh ich contains the u se r ' s in it ials .

assembler 0 < - - cond)
Spec i fy the " n-b it-set " c ond it i on code .

forth O C nl n2 -- n3 >
Leave the lesser of the t op two numb e r s o f the stack .

forth 0 C ul u2 -- u3)
Uns igned d iv ide of u l by u 2 leaving unsigned r ema inder
u3 .

system O < -- >
Ex i t FORTH and r eturn to the ope r a t ing system .

forth O < adrl adr2 u -- >
Move u bytes from adrl to adr 2 . Unl ik e cmove and
<cmove there is no dange r of ove r -wr it ing .

editor 20 < � >
Mak e the next b lock the cur rent edit ing b lock .

assembler 9 C -- cond >
Spec i fy the " not-equa l " br anch cond it ion code .

copyr ight 1983 Frank Bogg Laboratory

. . .I

eFORTB MASTER GLOSSARY APPENDIX B-36

WORD

negate

next

noop

not

not

number

of

ok

or

or igin

output

over

VOCABULARY BLOCK STAClt EFFECT

forth O C n -- -n >
Retur n the two ' s complemen t o f n .

assembler 0 C --)
Comp i l e the mac h in e inst ruct ion s wh ich s imu late the
FORTH mach ine ' s " next " funct ion . Mu st b e used at
each exit po int in a code o r ; code defin j t io n .

system 0 C -- >
Th i s wor d per forms no ope r at ion .

assembler 0 C nl -- n2)
Negat e the mean ing of the pr eceeding cond i t ion code .
For example , " eq not" i s equ i valent to " n e " , and
" c c not " i s equ ivalen t to " c s " .

forth 11 C ul -- u2 >
Leave the on e ' s complement o f the numbe r on the stack
(each b it is inverted) •

forth 29 C adr -- n or d)
Conver t the str ing whose count byte i s at the spec i f ied
add r e s s us ing the cur r en t bas e . Leave s a double
numb e r if the str ing is punctuated ; otherw ise l eave
a s ingle n umb e r . Th e byt e at adr i s not used .

forth 3 8 C -- adr >
Beg in s a phr a s e to be executed i f the cas e s e l ect
value equals the number on top of the stack ; otherwise
execution b r anches to the words fol low ing the n ext

else • See (o f) •

forth 3 3 C -- >
Mak e s u r e pr inter is pos i t ioned at the top of a pag e .
I f not , issue a formfeed and pr in t the system foote r .

forth 0 (ul u2 -- u3)
Leave the b i twis e log ical o r o f ul with u 2 .

system O C -- adr >
Ret u r n the bas e address of the sys tem var iab le are a .

system 0 C adr --)
Mak e the spec i f ied device the cur r en t output device
for the cur r ent user . Usag e : pr inter output

forth 0 C nl n2 -- nl n2 nl >
Leave a copy o f the second number on the stack .

copyright 1983 Frank Hogg Laboratory

ePORTB MASTER GLOSSARY APPENDIX B-37

WORD

p

pad

page

per

pick

pl

prev

pr int

pr inter

protect

ptr

quit

VOCABULARY BLOClt STACK EPPECT

editor 22 C --)
Put the text wh ich fol lows onto the cur r en t l ine .

forth
Return the addr ess
84 bytes above the
to hold str ing s .

0 C -- adr >
of a scratch pad area wh ich is
addr ess r etu rned by here • Used

forth 15 C -- >
Executes the wor d whose execut ion address is in the
cu r r ent output device var iable ' page . See (pag e) .

assembler 0 C -- >
Spec i fy the prog r am c ounter as an oper and of the
subs equen t psh , pu l , tfr , or ex g inst ruct ion .

forth lJ. C u -- n >
Return the conten t s of the u-th stack value (not
count ing u itself) . Undef ined for u less than one .
2 pick i s equ i valen t to ove r . l p ick i s equ iva lent
to dup .

assembler 9 C -- cond >
Spe c i fy the "plu s " b r anch cond it ion code .

system 0 (-- adr)
A sys tem var iab le wh ich holds the addr es s of th�
most r ecently accessed d isk buffe r .

forth 3 3 C -- >
Red i r ect output to the system pr inter . All output
of fol low ing wo rds is sent to the pr inte r .

system 0 C -- adr >
Dev ice n ame fo r the system pr inte r .

system 0 C -- >
Save the cur r en t state o f the dict ionar y s o that
it can subsequently b e r estored by execut ing empty

forth 0 C -- adr >
A user var iab le used as a p o inter for i/o oper a t ion s .

forth 0 C -- >
Clear both stack s and r eturn con t r o l to the terminal .
No message i s g iven to the user .

copyr ight 1983 Prank Bogg Laboratory

, /

r·· .

eFOR".rB MASTER GLOSSARY APPENDIX B-3 8

WORD VOCABULARY BLOCK STACK EFFECT

r editor 23 < -- >
Replace the str ing wh ich was j u s t found with the
text wh ich fol lows .

r t forth 0 < -- adr)
A user va r iable wh ich contains the cur r en t charact er
po s i t ion (c u r so r) as an offset from the beg inn ing
of the c u r r en t ed it ing b lock .

r /w forth 0 < adr blk dir -- adr)
Executes the wor d whose execut ion address i s in the
va r iable ' r/w . I t s i n i t i a l value is C r /w) .

r O forth 0 (-- adr)

r >

r @

range

recurse

rel

repeat

repeat

A use r va r iable that conta in s the address o f the
bottom of the r eturn s tack .

forth 0 (-- n >
Tran s fer n f r om the r etu rn stack to the pa rame ter
stac k .

forth 0 (-- n)
Copy th e top of the r eturn stack onto the par amete r
stack .

forth
Beg in s a phr ase to be
va lue is "within " the
execution b r anches to
(range) .

3 8 < -- adr >
executed i f the cas e se lect
numbers on th� stack ; otherw ise
the assoc iated " e ls e " . See

forth 3 6 < -- >
Comp i le s a r ecur s ive cal l to the wo r d be ing define d .

assembler
Retur n the r elat i ve
Retu rns a t r u e f lag
wide .

0 (adrl adr2 -- rel flg)
offset between adr 2 and ad r l .
i f i t i s g r eater than 8 b its

assembler 8 < adrl adr 2 --)
Comp i l e a n uncond i t ional branch back to ad r l , and
reso lve the b r anch at adr 2 to point to the code wh ich
fol lows .

forth 39 (adrl adr2)
Us e o nl y in a def in it ion . Mar k s the end of a "beg in

• • wh ile • • r epeat " structu r e .

copyr ight 1983 Frank Bogg Laboratory

ePORTB MASTER GLOSSARY APPENDIX B-39

WORD

resolve

r ight

roll

rot

s

s

VOCABULARY BLOCK STACK EPPECT

system 36 < adr -- >
Used by c omp i l ing wo rds to r es o lve a forwa r d r e fe r ence
locat ed at the spe c i f ied addres s .

forth 31 C adr cnt --)
Pr int the str ing at the spec i f ied add r ess r ight adj usted
on the c u r r en t pr int l in e .

forth 11 C u -- >
Extr act the u-th s tack va lue to the top of the stack
<not count ing u itsel f) moving the r ema in ing values
into the vacated posit ion . Undef ined for u less
than one . 3 roll is equ ivalent to r o t . 1 r o l l is
a null ope r a t ion • .

forth O < nl n2 n3 -- n2 n3 nl >
Rotate the top three values b r ing ing the deepes t
t o the top .

assembler 0 { -- >
Spec i fy the S r eg iste r a s an ope r and o f the subsequent
psh , pu l , tfr , or exg instruct ion .

editor 23 < blk -- blk >
Star t ing at the c u r � ent ed it ing b lock search for
the str ing wh ich follows thr ough all b lock s up to
but not includ ing the b lock spec i f ied on the s tack .
Abo r t s i f the str ing i s not found .

s/b disk ing 49 C -- adr >
Retur n the add r e s s of the par ameter wh ich tells how
many sector s a r e r equ i r ed to hold one b lock on the
disk in the cur r en t dr ive .

sis disk ing 49 < -- adr >

so

scan

Ret u r n the address of the par amete r wh ich tel ls how
many sector s a r e on each s ide of the d isk in the
cur r en t d r ive .

forth 0 C adr >
A user var iable that conta in s the addr ess o f the
bottom o f the s tack and the s ta r t of the terminal
inpu t b u f fe r .

forth O C c adr l -- adr 2 cnt > >
Returns the start ing address and count of the n ext
word i n the input str eam del imited by the character
" c " .

copyr ight 1983 Prank Bogg Laboratory

\
.i

{
-·

ePORTB MASTER GLOSSARY APPENDIX B-4 0

WORD

scr

search

sector s

show

sign

space

spaces

speed

state

str ing

swap

sysI/O

VOCABULARY BLOCK STACK EFFECT

forth O C -- adr >
Retu r n the address o f the user var iab le wh ich hold s
the number o f the cur r en t edj t ing bloc k .

editor 21 C -- >
Sta r t ing at the cur r ent cursor po s i t ion , sea rch fo r
the str ing in the f ind buffe r . G i ve an e r r o r message
and abo r t if the str ing is not found .

disk ing 49 C -- adr >
Ret u r n the add r e s s of the par ameter wh ich tells how
many secto r s a r e on one t r ek of the d i sk in the cur r en t
dr ive .

forth 32 C beg lim)
Pr int the documentation pag e s fo r all b lock s between
beg and l im .

forth 0 C n d -- d)
Inse r t a minu s s ign into the pictur ed numer ic output
if n is negat ive . n is r emoved from the s tack .

forth O C -- >
Transmit one ASC I I b lank to the cur rent output dev ice .

forth 0 C u -- >
Transmit u ASC I I b lank s to the cu r r ent output device .

disk ing 49 C -- adr >
Retu rns the add r e s s o f the s tepping speed for the
cur r en t dr ive .

forth 0 C -- adr)
A user var iab le wh ich i f t r u e mean s that a wo rd is
being comp i led 1 otherwi s e the interpr eter is executing
each wo r d in the input str eam .

forth 13 C b -- >
De f in e a str ing var iabl e wh ich wi l l hold str ings
up to a max imum o f b bytes in length . When a wo rd
def ined with str ing execut e s , it pushes the s t r ing ' s
addr ess to the stack and its max imum count .

forth 0 C nl n2 -- n2 n l)
Exchang e the top two stack values .

system O C -- adr)
Ret u r n the base addr ess of the i/o vectors for the
unde r ly ing system . Th is is the device " type " of term
(the system termina l) .

copyr ight 1983 Prank Hogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-41

WORD

system

t

tab

term

text

then

then

till

t ime

tracks

true

type

u

VOCABULARY BLOCK STACK EFFECT

forth O < -- >
Mak e the system vocabulary the context vocabula r y .

forth 18 C l ine --)
Mak e the spec i f i ed l ine the cu r r ent edit ing l in e .

forth 31 < u -- >
Tab to column u . Back space i f column u is left of
the cur r en t cursor posit ion .

system O (-- adr)
Dev ice n ame for the system terminal .

forth 12 < c -- >
Accept a st r ing f r om the interprete r ' s inpu t str eam
de l imited by the cha r acter c and leave it at pad .
pad is b lank f i l led to 64 cha r act e r s .

assembler 8 < adr -- >
Resolve the byte of fset at the addres s on the stack
so that the target of the b r anch will be the code
wh ich fol lows .

forth 39 < adr -- >
Use only in a def i n i t ion . Mar k s the end of an " i f-then "
cond i t i onal s t r uctur e .

editor 23 (--)
Delete text f r om the c u r so r to C and inc lud ing) the
str ing wh ich follows .

forth s (-- adr cnt >
Conve r t the system t ime , i f any , to a str ing .

disk ing 49 (-- adr >
Return the add r e s s o f the numbe r o f t r ack s
cu r r ent dr ive .

forth 11 (-- tf)

on the

Leave the constant wh ich r epr esent s a boo lean t rue .

forth 0 (adr cnt --)
Executes · the wor d whose execut ion addr ess i s in the
var iab le ' type . Its in it ial va lue is (type) .

assembler 0 (--)
Spec i fy the U r eg i ster as an oper and o f the subsequent
psh , pu l , t f r , or exg instruct io n .

copyr ight 1983 Frank Bogg Laboratory

ePOR'TB MASTER GLOSSARY APPENDIX B-42

WORD

u

u*

u .

u . r

u/mod

u<

until

unt il

update

update

user

VOCABULARY BLOCK STACK EFFECT

editor 22 C -- >
Move a l l f o l low j ng l ines down (the last l ine is lo s t) ,
then pu t the text wh ich fol lows onto the l ine under
the cur r en t l ine . Mak e the inser ted l ine t he cur rent
line .

forth O C ul u2 -- ud >
Uns igned mu lt iply of ul by u2 leaving a 3 2-b it res u l t .

forth O C u -- >
Pr in t u followed by one space .

forth 0 C ul u2 -- >
Pr in t u l r ight adj usted in a f i e ld u2 cha r acte r s
wide .

forth O (ud ul -- u2 u3 >
Divide double number ud by ul leaving the r ema inder ,
u2 , and the quo t ient , u3 . All values a r e uns igned .

forth 0 C ul u2 -- f lg >
Leave a t r u e flag i f ul i s less than u 2 ; otherwise
leave a false f lag . ul and u2 a r e int e rpr eted as
uns igned 1 6-b it numb er s .

assembler 8 C adr cond --
Comp i l e the mach in e code fo� a cond it ional br anch
(the cond i t ion i s g iven on the stack) back to the
addr e s s on the stac k .

forth 39 C adr -- >
Us e only in a defin it ion . Mar k s the end of a "begin • • un ti l "
loop .

editor 18 C -- >
Mar k the cur r en t ed j t ing b lock as b e ing updated .
Opt iona lly ma r k the block w ith the t ime , the user ' s
in i t i a l s , and the dat e .

forth 0 C -- >
Mar k the mos t r ecently r efer enced b lock b u f fe r as
mod i f ied . I f the buffer is needed for anothe r block ,
the modi f ied b lock wi l l be wr itten to d isk . Wr j t ing
can b e for ced by execut ing flush .

forth 0 C u --)
C r eate a name for a user var iab le wh ich i s offset
u bytes above the base addr e s s o f the user var iable
area . When the name is subsequently u sed , it r eturns
the add r e s s of that user var iab le .

copyr ight 1983 Prank Hogg Laboratory

eFORTB MASTER GLOSSARY APPENDIX B-43

WORD VOCABULARY BLOCK STACK EFFECT

v forth 1 8 C --)
Pr int the cur r ent l ine in the cu r r ent edit ing b lock
and show the c u r s o r pos it ion .

var iable forth 0 C --)
Used in the form var i able vvv to create a 1 6-b it
var iab l e . vvv i s added to the d ict iona ry and when
executed , the add r e s s o f the var iable ' s 1 6-b it va lue
is pushed to the s tack .

vc assembler O C -- cond >
Spec i fy the " v-b it-clear " cond it ion code .

ver sion system 7 C)
Retu rns the addr ess o f the system va r i able wh ich
holds a 3 2-b i t ba s e 3 6 n umbe r ind i ca t ing the ve r s ion .

vocabulary forth 0 C --)

vs

while

while

width

wipe

within

Used in the form vocab u la r y vvv to create a new
vocabulary named vvv • When vvv i s executed , it
become s the context vocab u la r y . When created , vvv
is cha ined to the cur r en t vocabu lary .

assembler 9 C -- cond >
Specify the " v-b it-se t " b r anch cond it ion code .

assembler 8 (cond -- adr >
Comp i le the mach ine code for a cond it iona l fo rward
b r anch < the cond it ion is g i ven on the stack) . Leave
the add r ess o f the r elat ive of fset which later mu st
be r esolved .

forth 39 < -- adr >
Use only in a defin it ion . Mar k s the beg inn ing of
a phrase to be executed i f , at r un t ime , the top
o f the s tack i s non-zer o . The phr as e i s term inated
with r epeat •

forth 15 < -- u >
Return the number of cha r acte r s pe r l in e on the cur rent
output device .

editor 1 6 (-- >
F il l the cu r r ent edit ing b lock w ith b lank s .

forth 11 C n lo bi -- f lg)
Leave a t r ue f lag i f n i s less than h i and g r eater
than o r equal to lo ; otherwise leave a false flag .

copyr ight 1983 Frank Bogg Laboratory

·-
•

I

_,,

ePORTB MASTER GLOSSARY APPENDIX B-44

WORD
I

word

words

xor

xy

y

z

coovr ioht 1 9 8 3

VOCABULARY BLOCK STACK EPPECT

forth 0 (c -- adr)
Reads the input s t r eam unt i l c i s encountered . The
text i s placed a t her e w it h the char acte r coun t in
the f i r st byte . Leading occu r ences of c a r e sk ipped .

forth 17 < -- >
List the wor d s in the context vocabulary .

assembler O < -- >
Spec i fy the X r eg ister as an oper and o f the subsequent
psh , pul , t f r , o r exg instruct ion .

editor 22 < -- >
Delete the cur r en t l in e mov ing a l l fol low ing l ines
up . The last l in e is f i l led with b lank s .

forth 0 < ul u2 u3 >
Leave the b itwi se l og ical exclusive o r o f u l w ith
u2 .

forth 15 < col row -- >
Executes the wor d who s e execut ion addr es s i s in the
cur r ent output device var iable ' xy . See C xy) .

assembler 0 < -- >
Spec i fy the Y r eg ister as an oper and o f the subsequent
psh , pul , t f r , o r e�g inst ruct ion .

editor 22 < -- >
Z ip the c u r s o r t o the end o f the text on the current
l ine .

Prank Bogg Laboratory

r·

(\

APPENDIX C

ePORTB LISTINGS

This appendix contains l i s t i 11g s of all eFORTH source b lock s
wh i ch a r e common to mos t eFORTH implemen t a t ion s . L i s t ings fo r
i mplementat i on spec i f i c source block s a r e included w ith the
documenta t ion for the implementat io n .

copyr ight 1983 Frank Bogg Laboratory

eFORTB LISTINGS APPENDIX C-2

Block t 0
0 (eFORTH SYSTEM
1

D I SK 1 2 : 47pm cee 2 3 j an 8 4 >

2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

Block t 1

eFORTH Ve r s ion 1 . 0
by Char les E . Eak e r

D is t r ibuted b y F r ank Hogg Laboratory ,
The Regency Towe r
7 7 0 James Str eet

Syr acus e , New Yo r k 1 3 2 0 3
(3 15) 47 4-7 856

Inc .

0 e r • (eFORTH I NITIAL PROGRAM LOAD 1 2 : 47pm cee 2 3 j an84)
1 forth defin i t ion s dec ima l
2 2 l oad I r edefine (c r eate> for locate u t i l ity
3 3 load install d i s k e r r o r t r ap
4 6 load eFo r th s tandard extens ions
5 4 load system dat e
6 5 load system t ime
7 1 8 load eFo r t h stan da r d editor
8 2 4 load eFo r th doub le n umber elect ives
9 3 0 load eFor t h documentat ion elect ives

1 0 3 6 load eFo r t h c omp i l e r e lect ives
1 1 4 2 load eFo r t h miscel laneou s e lect ive s
1 2 4 8 load eFo r th d isk ing e lect ives
1 3 6 0 load hardwa r e dependen t elect ive s
1 4 7 2 load system d ependent exten s ions
15 I ' m cee system pr otect empty decimal exit

Block t 2
0 C cr eate r edef ined for locate u t i l ity 1 2 : 47pm cee 2 3 j an 8 4
1 C Th is b l ock r ed e f ines t h e behav ior o f the wor d executed
2 by c r eate . I t comp i les the numb e r of the b l ock a word
3 i s loaded f r om a s par t o f the wor d . Th i s numbe r is used
4 by locate to f ind and l ist the source b l ock for the word .
5 Th is mean s that each wo rd r equ i r e s two add i t ional bytes
6 o f memory . This featu r e can b e d isab led by s imply not
7 loading t h i s bloc k . I n that even t , locate , on block 4 4 ,
8 w i l l not work p r oper ly . >
9

1 0 system defin i t i ons
1 1 : (c r eate) C - - > b lk @ , (cr eate) ;
1 2
13 ' (c r eate) or ig in 2 0 + l p r otect
1 4 forth defin i t ion s
1 5

copyr ight 1983 Frank Bogg Laboratory

. \
: --

r ·

(

ePOR'l'B LISTINGS APPENDIX C-3

Block I 3
O (d i sk e r r o r t r ap · 1 2 : 47pm cee 2 3 j an 8 4
1 system defin i t ions hex
2 ?status C --)
3 d isk 2- @ ?dup i f
4 dup 80 and abo r t " D r ives not r eady . "
5 dup 4 0 and abo r t "
6 dup 2 0 and abo r t "

D isk i s wr ite pr otected . "
Wr ite fault . "

7 dup 1 0 and abo r t "
8 dup 0 8 and abo r t "

Sect o r not found on disk . "
CRC e r r o r . "

9 dup 0 4 and abo r t " Los t dat a . "
1 0 dup 0 2 and abo r t " Non-ex istent b lock . "
1 1 then 1
1 2
1 3
1 4
15

: (r/w) C adr b lk d i r -- adr)
dec ima l ' C r/w) o r igin 1 4 + 1
forth definit i on s

Block I 4

C r/w)
protect

?status ;

O (date SetDate 1 2 : 47pm cee 2 3 j an 8 4)
1
2 8 s t r ing date C -- adr cnt >
3
4 : SetDate C -- > b l word count d r op date cmove 1
5
6 SetDate 2 3 j an 8 4 C An example o f how to s et the dat e . >
7
8 ex it
9

1 0
1 1
1 2
13
1 4
15

Block I 5
0 t ime SetTime 1 2 : 47pm cee 2 3 j an84)
1
2 8 str ing t ime C -- adr cnt)
3
4 : SetTime { --) b l wo rd count d r op t ime cmove 1
5
6 SetTime 1 2 : 47pm (An example o f how to set the t ime .)
7
8 ex it
9

1 0
1 1
1 2
1 3
1 4
15

copyr ight 1983 Prank Bogg Laboratory

eFORTB LISTINGS APPENDIX C-4

Block I 6
0 e r . (eFORTH STANDARD EXTENS IONS 1 2 : 47pm cee 2 3 j an84)
1
2 vocabulary editor immed iate dec imal
3
4 1 +load system var iables and constants
5 2 +load as sembler cond it iona ls
6 3 +load as sembler extens i ons
7 4 +load # # # # # # dump l is t . s
8 5 +load stack and boolean extens ions
9 6 +load str ing ope r at ions

10 8 +load i/o extens ions
1 1 1 0 +load block edit ing ope r a t ion s
1 2 1 1 +load heade r operat i on s wo rds
1 3
1 4
1 5

Block I 7
O < system constants and
1 system def init ions

var iab les 1 2 : 47pm cee 2 3 j an 8 4 >

2 o r ig in 2+ dup constant
3 1 2 + dup constant
4 2+ dup c onstant
5 2+ dup constant
6 2+ dup constant
7 2+ dup constant
8 2+ dup constant
9 2+ dup constan t

1 0 2 + dup constant
1 1 2+ dup constant
1 2 2+ dup constant
1 3 2 + dup constant
14 f o r th definit ions
1 5 64 constant c / l

Block I 8

ver s ion
' r /w
' st a r t
' numbe r
' cr eate
' k ey
' k ey?
' emi t
' expect
' type
' be l l
' bs d r op

1 0 2 4 c onstant b/blk

0 { a ssembler cond it ionals 1 2 : 47pm cee 2 3 j an84
1
2
3
4

a ssembler defin ition s hex

5
6
7
8
9

b s r (adr --) here l+ r e l i f 17 c , , else SD c , c ,
b r a (adr -- > here l+ r e l i f 1 6 c , , else bl c , c ,
unt i l < adr cond - - > > r h e r e l+ r e l

i f
then

if 1- 10 c , r > c , , else r> c , c , then ;
cond -- adr > c , her e 0 c , ;
adr -- > her e ove r r e l
abor t " br anch t o o long . " swap c ! ;

e lse C ad r l -- adr 2 > b l if swap then ;
r epeat < adr l adr 2 --) >r b r a r > then ;
again { adr -- > b r a ;

1 0 :
1 1
1 2
1 3
1 4
1 5

: wh i le C cond -- adr) i f ;
for t h definit ions dec ima l

then ;
then

copyr ight 1983 Frank Bogg Laboratory

)

("'·

eFORTB LISTINGS APPENDIX C-5

Block I 9
0 (assembler extens ions 1 2 : 47prn cee 23 jan84
1 C branch conditions not def ined in the pr e-compi led po r t ion .)
2 as sembler definit ions
3 ne (cond) eq not ; pl (cond mi not . I
4 . ls (cond) h i not . hs (cond lo not . I
5 vs (cond) vc not ;
6 : ge (cond) lt not ; le (cond gt not ;
7 c c (cond) lo not ; c s (cond c c not
8
9 forth definit ions

1 0 . ; code system comp i l e C ; code) .

1 1 [comp i le] assemb le r r > drop ; immediate
1 2 . code create her e dup 2- ! [comp i l e] assembler ; .

13 . end-code c u r r ent @ context I . . . I
1 4
1 5

Block I 10
0 # # # # # # dump l i s t . s 1 2 : 47prn 2 3 j an 8 4
1
2 :
3 :
4
5 :
6
7.
8
9

1 0
1 1 :
1 2
1 3
1 4 :
15

C b) base @ > r hex O < t i # # > type space r> base ! ;
C u --) base @ > r

hex 0 < # i # # t i > type space r > base ! ;
dump C adr cnt ---) base @ > r hex e r 5 spaces

over 16 0 do dup 1 5 and 45 emit • l+ loop drop space
over 1 6 0 do dup 15 and 1 . r l+ loop dr op r> base !
over + swap do e r i i t i t 1 6 0 do i j + c @ # # loop space

16 0 do i j + c@ 127 and dup bl < if drop 95 then em it loop
16 +loop ;

list C s c r ---) dup scr ! e r . " Block # n • b/blk c/l I O
do e r i 2 . r space s c r @ O = i b/blk c/l I l- = and ?leave

scr @ b lock i c / 1 * + c / 1 -tr a i l ing type loop er ;
. s C pr in t stack) e r ' s sO @ 2- do i @ • -2 +loop ;

Block I 11
0 < s tack and boolean extens ions 1 2 : 47prn c ee 23 j an 8 4
1 code r o l l (u --)
2 O , u ldd 0 , u addd d , u leax O , x ldd O , u std
3 u pshs beg in , --x ldd 2 , x s td 0 , s crnpx eq u n t i l
4 2 , u leau 2 , s l eas next end-code
5 code pick < u -- n)
6 0 , u ldd 0 , u addd d , u ldd 0 , u s td next end-code
7 code 2ove r 4 , u ldd 6 , u ldx d x pshu n ext end-code
8 code 2swap 0 , u ldd 4 , u ldx 0 , u stx 4 , u s td
9 2 , u ldd 6 , u ldx 2 , u s tx 6 , u std

1 0 next end-code
1 1 : 2r ot >r >r 2swap r> r> 2swap ;
1 2 code not (bool -- bool) 0 , u com 1 , u corn next end-code
1 3 -1 constant true
14 0 constant false
15 : within (n lo hi -- f lg > r 1- over < swap r > < and ;

copyr ight 1983 Frank Bogg Laboratory

eFORTB LISTINGS APPENDIX C-6

Block I 12
O (str ing exten s i ons
l : text (c --)

l 2 : 47pm cee 2 3 j an 8 4)

2 pad c/l 2+ blank word pad over c @ 2+ cmove ;
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4

code -text adr l cnt adr 2
y pshs O , u ldx
2 , u ldd d , x leay
1 # b i tb eq not
if , y+ lda , x+ suba

-- f lg

O , u sty

eq
i f swap then
beg in O , u cmpx

i f swap , y++ ldd
then then

eq not
, x++ subd

4 , u std 4 , u leau
next end-code

y puls

4 , u ldy

eq not unt i l

15 -->

Block I 13
O C str ing exten s i ons
1 sys tem defin i t ions

1 2 : 47pm cee 2 3 j an 8 4

cnt > I run-t ime wo rd c omp i led by • 2 code c · > (-- adr
3 , y+ ldb c l r a d y pshu d , y leay next end-code
4
5
6
7
8
9

1 0
1 1
1 2
1 3
14
1 5

f o r th d e f i n i t ions
asc 1 1 (--) I c omp i le or interpr et an asc i i character

bl wo r d l+ c @ state @ C a • smar t • wor e >
i f C cJmp i le] l iteral then ; immed iate

• C --) I comp i le or inte r pr e t a str ing liter a l
state @ C a • smar t • word)
i f comp i le system < " > asc i i • wor d c @ l+ a l lot
else asc i i • text pad count then ; immediate

s t r ing C b -- > I create str ing var iable o f length b
c r eate dup c , 0 do b l c , loop does > count ;

Block I 14
0 C i/o extens ions 1 2 : 47pm cee 2 3 j an 8 4
1 syst em definitions
2 2 0 user ' put I holds addr ess o f cur r ent output device

holds address of cur ren t input device 3 2 2 user ' get I
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

' device
12 dup
2+ dup
2+ dup
2+ dup
2+ dup
2+ dup
2+ dup
2+

(b
' device
' device
' device
' device
' dev ice
' device
' device
' device

forth def i n i t ions

copyr ight 1983

) c r eate c , does> c@ ' put @ + ;
' depth addr es s o f device depth
' width addr ess of device width
' e r er execution vector fo r t h i s device
' page pag e n n " n n

' home home cursor n " " n

' xy pos it ion cur sor n n n

' eo l erase t o end of l ine " " "

' eos erase to end o f scr een " •
-->

Prank Bogg Laboratory

'
/

ePORTB LISTINGS APPENDIX C-7

Block • 15
r • . 0 (i/o exten s ion s 1 2 : 47pm cee 2 3 j an 8 4

1
2 . width (-- u system ' w idth @ ; .
3 . depth (-- u system ' depth @ . . I
4 xy (x y -- sys tem ' xy @ execute ;
5 pag e () system ' page @ execute 0 l t 0 c# . ,
6 . home () system ' home @ execute ; .
7 eol () system ' eo l @ execute . I
8 . eos () system ' eo s @ execute ; .
9

1 0 . ?er cnt -- width c t @ - > i f er then ; .
1 1
1 2
1 3
1 4
1 5

Block I 16
O C b lock ed it ing operat ions 1 2 : 47pm c ee 23 j an 8 4
1 ed itor definitions
2 : copy C o ld new) flush swap block 2- 1 update ;
3 : clea r (blk ---) b lock b/blk blank update ;
4 : clears (b lk cnt --) 0 ?do dup i + c lear loop d rop ;
5 : wipe C --) s c r @ c le a r ;
6 lpa s s C from to cnt -- nextf r om nextto

I 7 her e 4 pick 3 pick ove r + swap
� 8 ?do i t rue r /w b/b lk + loop drop

9 her e 3 pick 3 p ick ove r + swap
1 0 ?do i false r /w b/blk + loop drop
1 1 r o t ove r + r o t rot + ;
1 2 : c opies C from to cnt --)
1 3 ' s 2 5 6 - he r e - b/b lk I dup > r /mod swap > r
14 0 ?do ' r 6 + @ lpa s s loop r > !pass 2drop r> d r op ;
1 5 forth definitions

Block I 17

)

0 C header operations wor ds
1 code <nf a C c f a -- nf a)

1 2 : 47pm cee 2 3 j an 8 4 >

2 x pu lu -1 , x leax beg in
3 x pshu next end-code
4 code c f a> (n fa -- c f a >
5 x pulu , x+ ldb 3 1 # andb
6 next end-code

, -x tst

b , x leax

7 < lfa C c fa -- lfa) <nf a 2- ;
. I

mi unt il

x pshu

8 body C c f a -- pf a) 2+
9 : id C n fa -- adr cnt

1 0 pad dup c @ + dup c @
) count 3 1 and pad c ! pad count cmove
1 27 and swap c ! pad count ;

1 1 id . (n fa --)
1 2 i d dup l+ width c t @ - > i f e r then type space ;
1 3 : words C -- >
1 4 e r context @ @ beg in ?dup wh ile dup id . 2- @ r epea t
1 5

er ;

copyr ight 1983 Frank Bogg Laboratory

eFORTB LISTINGS APPENDIX C-8

Block t 18
0 er . (eFORTH STANDARD EDITOR 1 2 : 47pm cee 2 3 j an84 >
1 ed itor definit ions
2 var iable ' update ' update
3 update ' update @ execute ;

' update

4
5
6
7
8
9

at C -- adr r em > r t @ dup blblk 1- over u <
abor t " off o f cur r en t edit ing s c r e en . "
scr @ b lock + el l r ot c l l 1 - and - ;

atO C -- adr ell > at cll - r i + I dr op at ;

forth definit ion s
v (- - > ed itor e r space

1 0
1 1
12
1 3
1 4
1 5

a t 2dup e l l swap - dup > r - r > type 9 4 emit type
space r # @ ell I • [comp i l e] editor ;

: t (n -- > cl 1 * r t ! v ;
ed i tor defin it ions 1 +load for t h definit ions

Block t 19
0 C -match 1 2 : 47pm cee 2 3 j an84 >
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2

f lg) code -match C adrl cntl adr 2 cnt2 -- adr 3
0 , u ldd d y pshs 6 , u ldx 4 , u
b eg in 6 , u ldx 1 , x leax 6 , u stx
1 # subd 4 , u std swap then

ldd bl i f
4 , u ldd

0 , u cmpd lo not i f 0 , u ldd 0 , s std
b eg i n , y+ lda , x+ cmpa r o t eq unt i l
d puls J. # subd d pshs eq unt i l clrb
b eg in c l r a 4 , u leau 0 , u s td 2 , u s tx
swap then 4 , u ldd 6 , u ldx d , x leax 1
end-code

2 , u ldy

d y puls next
i ldb bra

13 -->
1 4
1 5

Block t 20
0 editor pr imit ives
1
2
3
4
5
6
7
8
9

1 C --) scr @ l i s t 1
b C -- > - 1 s c r + ! O r t ! ;
n C --) l s c r + ! 0 r t ! 1
i C adr > pad ell 2+ + 1
f C adr > pad e l l 2+ 2 * + 1
> i C > 9 4 t ext pad c @ i f pad
> f C) 9 4 t ex t pad c @ i f pad

1 0 -->
1 1
1 2
1 3
1 4
1 5

copyr ight 1983

1 2 : 47pm cee 2 3 j an84)

i i ell 2+ cmove then ;
i f e l l 2+ cmove then ;

Frank Bogg Laboratory

' •
_}

J
'\

eFORTB LISTINGS APPENDIX C-9

Block I 21
0 (ins e r t ae lete and sear ch pr imit ives 1 2 : 47pm cee 2 3 j an 8 4
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4

inse r t C --)
at dup i i c @ min dup > r - O max over dup r @ + r o t <cmove
i i l+ swap r @ cmove r > r i + ! update ;

delete C --)
i f c @ > r r @ negate r t + ! a t drop r @ + at r @ - 2dup + >r
cmove r > r> blank update ;

-sear ch C -- f lg)
at d r op dup > r b/blk r # @ - 0 max i f count -match
swap r > - ove r i f drop e ls e r t + ! then ;

? found C f lg --)
i f i f count type . " ? " qu i t then ;

search (--)
> f -sea r ch ? found ;

1 5 -->

Block t 22
O C l ine edit ing commands 1 2 : 47pm cee 2 3 j an84)
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

x C - -) atO -tr a i l ing i i c ! i i count cmove
at ove r + swap dup >r b/blk r t @ - c/l - dup >r cmove
r > r > swap + c / l b lank update ;

p C --) atO b lank > i inse r t ;
u (--) c / l r t + ! atO over + b/blk r # @ - c/l - < cmove p ;
g C s c r l ine --) c/l * swap b lock + c/l -tr a i l ing

t i c ! i i count cmove u ;
gets (s c r l ine cnt --) over + swap ?do dup i g loop d r op
z <) atO -t r a i l ing r t + ! dr op ;
k (--) # i pad 1 3 2 cmove pad i f 6 6 cmove ;

-->

Block t 23
O str ing ed i t ing commands 1 2 : 47pm cee 2 3 j an 8 4
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

t i l l (- -) > f at over > r i f count -match ? found r > -
dup # f c ! at drop # f coun t cmove r t + ! delete v ;

s C scr -- scr) > f 0 over scr @
?do d r op -search dup O = i f v forth i • leave then n loop
? found ;

f (
e <
i (
a <
r <
d (

)
)
)
)
)
)

search v
delete v
> i insert
z i . ,
delete i
search e

;
;

v . ,

. ,
;

copyr ight 1983 Frank Bogg Laboratory

eFORTB LISTINGS APPENDIX C-10

Block I 24
O er • < eFORTH DOUBLE NUMBERS 1 2 : 47pm cee 2 3 j an84)
1
2
3
4
5
6
7
8

for t h definit ions
1 +load I 2constant 2var iable d+ dnegate
2 +load I double numbe r ope r a t ion s
3 +load I mixed precis ion ope r at ions
4 +load I doub le numbe r output
5 +load I doub le number input - interpr etat ion

9 e x i t
1 0
1 1
1 2
1 3
1 4
15

Block I 25

only

0 2va r iable 2constant d+ dnegate 1 2 : 47pm cee 2 3 j an84
1
2 : 2constant C d -- > c r eate , , ; code 2 , x ldd 4 , x ldx
3 d x pshu n ext end-code
4 O 0 2constant O .
5 : 2var iable C --) var iable 0 , ;
6 code d+ C dl d2 -- d3)
7 2 , u ldd 9
8 0 , u 1dd 5
9 4 , u s td 4

1 0 code dnegate C dl -- -dl >
1 1 c l r a c l rb
1 2 1 , u sbcb 0
1 3 next end-code
1 4
15

Block I 2 6

, u addd
, u adcb
, u le au

2 , u subd
, u sbca

6 , u std
4 , u adca
next end-code

2 , u std 0 # ldd
0 , u s td

0 double number oper at ions 12 : 47pm cee 2 3 j an84 >
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

. dabs (d l -- d 2 .

d- (dl d2 --
dO= (d -- f lg
d= (dl d2
d< (d l d 2
d> (dl d2
dmin (d l d2
dmax (dl d2

)
d3)
)
f lg)
f lg)
f lg)
d3)
d3)

dup O < i f dnegate then ;
dnegate d+ ;
or 0= ;
d- dO= ;
d- swap d r op O < ;
2swap d < ;
2over 2over d> i f 2swap then 2drop
2ove r 2ove r d < i f 2swap then 2drop

code du < C udl ud2 -- flg)
4 , u ldd 0 , u cmpd
lo not i f 6 , u ldd 2 , u cmpd then

comb then
next end-code

0 # ldd lo i f coma
6 , u leau O , u std

copyr ight 1983 Frank Bogg Laboratory

.

.

· '

' .

ePORTB LISTINGS APPENDIX C-11

Block I 27
0 (mixed p r e c i s ion ar ithmetic 1 2 : 47pm cee 23 j an 8 4)
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

m+ < d l n - - d 2)
ml < d nl -- n2 >

dup O < d+ ;

2dup x o r > r ab s > r dab s r > u/mod
r> O < i f negate then swap drop ;

m* (n l n 2 -- d }
2dup x o r >r ab s swap abs u *
r > O < i f dn egate then ;

* I (nl n2 n3 -- n4 } >r m* r > ml
m*/ < d l nl n2 -- d 2 } 2 pick 4

>r ab s > r dab s r > 2 > r r @ u* 0 2 r >
r @ a b s u/mod r @ abs swap > r u/mod
2 r > x o r O < i f dnegate then ;

Block I 28

. I
pick xo r >r
u * d+
r > r ot drop

O (double number output
1

1 2 : 47pm cee 23 j an 8 4 >

2 52 user fxp -1 fxp
3
4 : d . r
5

d u -- }
> r swap over dabs < # fxp @ O < O=

6
7
8
9

i f fxp @ ?dup i f 0 do t loop then asci i • hold
beg in 3 O do 2dup o r i f i else leave then loop

2dup o r dup i f asc i i , hold then O= unt i l
else # s then s ign # > r > over - spaces type ;

1 0 : d . (d
1 1
1 2
1 3 ex it
1 4
15

Block I 29

--)
0 d . r space ;

0 (doub le number input
l

1 2 : 47pm cee 2 3 j an 8 4 }

2 5 4 user dpl
3
4
5
6
7
8
9

1 0
1 1

number < adr n o r d }
0 dpl ! dup l+ c @ asc i i - = dup > r - 0 0 r o t
beg in >b ina r y dup c @ b l -

wh ile dup c @ dup asci i : =
swap asc i i , asc i i 0 within o r dup O= abo r t " ? "

r epeat d r op r > i f dnegat e then
dpl @ if cnt @ else drop -1 then dpl ! ;

12 system ' number ' number !
1 3

protec t

1 4
1 5

dpl

copyr ight 1983 Frank Bogg Laboratory

eFOR'l'B I1IS'l'INGS APPENDIX C-12

Block I 3 0
0 e r . (eFORTH DOCUMENTATION ELECTIVES 1 2 : 47pm cee 2 3 j an 8 4)
1
2 for th de f i n it ions
3 1 +load I tab r ight center footer header
4 2 +load I index l i st ing show
5 3 +load I pr inter cont r o l wo rds
6 exit
7
8
9

1 0
1 1
1 2
13
1 4
1 5

Block I 31
O tab center r ight footer header
l tab (n --) c # @ - dup O <

1 2 : 47pm cee 2 3 j an 84 >

2 i f abs 0 do b s loop else spaces then ;
3 : center (adr cnt --) width 2/ ove r 2/ - t ab type ;
4 r ight (adr cnt --) width over - tab type ;
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

foot er (- -)
1 # @ depth mod depth 2- swap ?do e r loop
e r . " copyr ight 1 9 8 3 "
" Cha r les E . Eak er " r ight page ;

header (--) li @ i f footer then
er e r t ime type
" eFORTH DOCUMENTATION " center
dat e r ight er er ;

Block I 3 2
0 (index l is t ing show 3 /page 1 2 : 47pm cee 2 3 j an 8 4)
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

index
swap
do i

i
l oop

< n l n2 ---)
dup 6 0 mod i f heade r then

60 mod if e r else header then
block i 5 . r space c/l -tr a i l ing
e r ;

l i st ing (blk --) header

type

3 I 3 * dup 3 + swap do er i l is t loop ;

show (beg end -- swap do i l i s t ing 3 +loop ;

copyr ight 1983 Frank Bogg Laboratory

.

\

eFORTB LISTINGS APPENDIX C-13

Block I 33
O C pr inter cont r o l words 1 2 : 47pm cee 2 3 j an 8 4 >
1 C def ine and install pr inte r form-feed and fancy er >
2 sys tem defin it ions
3 FormFeed C --) 12 emit ; C d e f ine it)
4 (e r) C --) k ey ?
5 i f k ey 27 =
6 i f beg in k ey ? unt i l k ey 1 3 = abor t " abo r ted . " then
7 then C c r) 0 c # ! 1 1 # + ! ;
8
9 pr inter output ' FormFeed ' page ' C c r) ' er

1 0 term output ' C e r) ' er !
1 1
1 2 forth def i n i t ions
13 : pr int C --) sy�tem pr inter output ;
1 4 : ok C --) foote r ;
15

Block t 34
O C pr int vocabu lar ies
1
2
3
4
5
6
7

header
. (FORTH VOCABULARY) forth words er e r
. (SYSTEM VOCABULARY) system words e r e r
. (EDITOR VOCABULARY) editor words e r e r
. (ASSEMBLER VOCABULARY) assembler words

8 e x i t

1 2 : 47pm cee 23 j an 8 4)

e r e r

9
1 0
1 1
1 2
1 3
1 4

To g et a l i s t ing o f words i n the vocab u lar ies , j us t load this
block . To send it to the pr inte r , j u s t ente r

pr int 4 0 load ok

1 5

Block t 35
O C r eserved
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15

copyr ight 1983

1 2 : 47pm cee 2 3 j an 8 4)

Prank Bogg Laboratory

eFORTB LISTINGS

Block I 3 6
0 e r • (eFORTH COMP I LER ELECTIVES

system def i n i t ions
r eso lve (adr --)

: ma rk C -- adr)
: back C adr --)

forth definit ions

here swap
he r e ;
, ;

. I

APPENDIX C-14

1 2 : 47pm cee 2 3 j an 8 4)
1
2
3
4
5
6
7
8
9

: r ecu r se (--) I comp i le a r ecu r s ive call
last @ c f a> , ; immediat e

1 0
1 1
1 2
1 3
1 4 e x i t
1 5

1 +load
3 +load

Block I 37

pos i t i onal case s t r uctu r e
comp i le� secur i ty

0 C k eyed case r un-t ime words 1 2 : 47pm cee 2 3 j an 8 4
1
2 system def in i t ions
3 ?next (used by case r un-t ime words) r > d r op ?dup
4 i f O< i f d r op else 2drop then r > 2+ else r > @ then >r ;
5 C o f) over = ?next ;
6 (<o f) ove r swap < ?next ;
7 (>o f) over swap > ?next ;

. �-) 8 (r ange) 3 pick >r w ithin r > swap ?next ; _

9 < " o f) 2over d r op -text O= negate ?next ;
1 0 forth def init ion s
1 1
1 2 - - >
1 3
1 4
1 5

Block I 3 8
0 k eyed case comp i l ing words
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
14
1 5

o f
< o f
>of
r ange
" o f
case
endcase

system comp i l e (of) fo rward ;
system comp i l e C <o f) forwa r d ;
system comp i l e C >o f) fo rward ;
system comp i l e (r ange) fo rwa r d
system comp i l e c • o f) forwa rd 1
O ' s ptr ! 0 ; immediate
comp i l e d r op ptr @ @ i f comp i l e
beg in ?dup wh ile systen1 r es o lve
immed iate

1 2 : 47pm cee 2 3 j an 8 4)

immed iate
immediat e
immed iate

; immediate
ptr @ ! ; immed iate

drop then
r epeat drop

copyr ight 1983 Frank Bogg Laboratory

/ . .

eFORTB LISTINGS APPENDIX C-15

Block I 39
O C standard c ondit i onals r edef ined 1 2 : 47pm cee 2 3 j an 8 4 >
1 5 6 user esp
2 ?comp C -- > state @ O= abo r t " Comp i lation only . " ;
3 ?pa i r s C n n --) ?comp - abor t " syntax e r r o r . " ;
4 beg in ?comp [comp i l e] beg in 1 ; immed iate
5 un t i l 1 ?pa i r s [comp i l e] unt i l ; immediat e
6 else 6 over = i f drop [c omp i l e] else 5
7 e ls e 2 ?pa i r s [compi l e] else 2 then ; immed iate
8 if ?comp [c omp i l e] i f 2 ; immed iate
9 then 2 ?pa i r s [comp i l e] then ; immediat e

1 0 wh ile ?comp [comp i l e] wh i l e 4 ; immediate
1 1 r epeat 4 ?pa i r s >r 1 ?pa i r s r > [comp i l e] r epea t ; immediate
1 2 aga in 1 ?pa i r s [comp i l e] aga in ; immed iate
13 as sembler defin i t ion s
14 : beg in here ; I The one above won ' t wo r k in the assemb le r .
15 forth def init ions -->

Block I 40
0 (case and loop words r edef ined 1 2 : 47pm cee 2 3 j an 8 4
1 case ?comp [comp i l e] cas e 5 ; immediate
2 o f 5 ?pa ir s [comp i l e] o f 6 ; immed iate
3 <of 5 ?pa i r s [comp i l e] <of 6 . immed iat e I
4 >of 5 ?pa i r s [comp i l e] > o f 6 . immediate I
5 r ange 5 ?pa i r s [comp i l e] r ange 6 . immed iat e I
6 " o f 5 ?pa i r s [comp i l e] " o f 6 ; immediate
7 endcase 6 ?pa i r s [comp i l e] end case . immediate I
8 do ?comp [comp i l e] do 3 . immed iate I
9 ?do ?comp [c omp i l e] ?do 3 . immediat e I

1 0 loop 3 ?pa i r s [comp i l e] loop . immediate I
1 1 +loop 3 ?pa i r s [comp i l e] +loop . immediate I
12 ? loop system dlv @ O = abo r t " must be used in a loop. n ;
1 3 leave ? loop [comp i l e] leave . immediate I
1 4 ?leave ? loop [comp i l e] ? leave ; immediate
1 5 -->

Block I 41
0 C colon and semico lon r edef ined 1 2 : 47pm cee 2 3 j an 8 4
1
2 state @ abo r t " execut ion only . " ' s esp ! : ; immed iate
3 The o ld ve r s ion o f the colon i s not immediat e .)
4
5 ; C --) ?comp ' s esp @ - abo r t " incomplete defini t ion . "
6 comp i l e e x i t r > drop ; immed iate
7
8 Redefine word executed by c r eate to warn when a wo r d is be ing
9 r edef ined . >

1 0 system definit ions
11 (c r eate) > in @ bl wo r d system f ind fo rth
12 i f e r he r e count type . " isn ' t uniqu e . " then dr op >in
13 (c r eate) ;
1 4 ' (c r eate) ' cr eate !
15 system protect forth definit ions

copyr ight 1983 Frank Bogg Laboratory

)

eFOR'l'B LISTINGS APPENDIX C-16

Block I 42
0 e r • { eFORTH MI SCELLANEOUS ELECTIVES 1 2 : 47pm cee 23 j an8 4)
1
2 1 +load I b lock mar k ing u t i l ity
3 2 +load I locat e uti l ity
4
5 ex it
6
7
8
9

1 0
1 1
1 2
1 3
1 4
15

Block I 43
O { b lock mark ing fac i l ity 1 2 : 47pm cee 23 j an84)
1 forth def i n i t ions
2 4 str ing me (-- adr cnt)
3 : I ' m (--) b l text pad l+ me cmove ;
4 editor defin it ions
5 Ma r k (--) I Mark b lock w ith id str ing
6 s c r @ block >r
7 t ime r @ c / l 2 1 - + swap cmove
8 bl r@ c/l 1 4 - + c !
9 me r @ c / l 13 - + swap cmove

1 0 date r @ c/l 9 - + swap cmove
1 1 b l r @ c / l 2 - + c !
1 2 a s c i i) r > c/l 1 - + c !
1 3 forth update ;
1 4 ' Mar k ' update ! system protect
15 forth def in i t ions

Block I 44
0 (l ocate u t i l ity 1 2 : 47pm cee 2 3 j an 84)
1
2
3
4
5
6
7
8

Th i s word as sumes that b lock 2 has been loaded .)

9
1 0
1 1
1 2
1 3
1 4
15

locate (--)
' dup system ('] ? status < swap < lfa 2- @ dup O= r ot o r
abo r t " wasn ' t loaded . " l is t ;

copyr ight 1 9 8 3 F r ank Hogg Laboratory

eFORTB LISTINGS APPENDIX C-17

Block I 45
r 0 (r eserved 1 2 : 47pm cee 2 3 j an 8 4)

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15

Block I 46
0 C r ese r ved 1 2 : 47pm cee 2 3 j an 8 4)
1
2
3
4
5
6

; 7
\ 8

9
1 0
1 1
1 2
1 3
1 4
15

Block I 47
0 < r eserved 1 2 : 47pm cee 2 3 j an 8 4)
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15

copyr ight 1983 Frank Bogg Laboratory

ePORTB LISTINGS APPENDIX C-18

Block I 48
0 e r • (eFORTH D I SK ING ELECTIVES 1 2 : 47pm cee 2 3 j an84)
1
2 system d e f in it ions
3 vocabulary d isk ing immediate
4 d i sk ing de finit ions
5 1 +load I Dr ive tab l e f ield names
6 2 +load I d isk ing pr imit ives
7 3 +load I Sector coun t s SetS ide s
8 4 +load I ClearD i sk Remove Back up Resto r e ReadSector Wr it eSec
9 5 +load I Cla im Releas e Mount

1 0
1 1 f o r th definit ions exit
12
13
1 4
1 5

Block I 49
O d r ive parameter r ecord f ields
1

1 2 : 47pm cee 2 3 j an 8 4

2 : Dr iveF ield C o f f set bytes -- o ffset) I c r eate f ield name
3 cr eate over c , + does> c @ d i sk 2- 2- @ + ;
4
5 0
6
7
8
9

1 0
1 1
1 2

2
1
1
2
1
1
1
1
1 13

1 4
1 5

drop

Dr iveF ield
Dr iveF ield
Dr iveF ield
Dr iveF ield
Dr iveF ield
Dr i veF ield
D r iveF ield
Dr iveF ield
Dr iveF ield

b lock s
sect o r s
sis
b/s
s/b
Osect o r t
t r ack s
drcode
speed

number of b lock s .
numbe r o f s ect o r s/t r ack
sector s/s ide
byte s/secto r
sector s/block
f i r s t phys . sector t on t r ack
number of t r ac k s
phys ical dr ive code
stepping speed

Block I 50
O C d r ive dr iveO >dr ive bounds
1

1 2 : 47pm cee 2 3 j an84)

2 var iab le ' c laim C -- adr)
3 var iable ' conf ig C -- adr)

' 2drop
' noop

' cla im !
' conf ig !

4
5
6
7
8 :
9

1 0
1 1
1 2
13
1 4
1 5

Con f igure C --) ' conf i g @ execute ;
S i z e C -- cnt) d i sk 2+ c @ ;
D r ive C -- adr) d i sk 2- 2- ;
Dr iveO C -- adr) d i s k 3 + ;
>Dr ive C d r # --) I Set cur r ent Dr ive .

dup 3 > abor t " Non-ex isten t dr i ve . "
d i s k 2+ count r ot * + Dr ive ! ;

Bound s C -- org cnt >
0 D r ive @ Dr iveO ?do i @ + 1 6 +loop Dr ive @ @ ;

copyr ight 1983 Frank Bogg Laboratory

\
i

...

e.FOR'Tll LISTINGS APPENDIX C-19

Block t 51
0 (SectorCounts SetS ides 1 2 : 47pm cee 2 3 j an 8 4
1
2 c r eate Secto rCounts (-- adr }
3 (1 s ide 2 s ides
4 10 c , 1 0 c , 2 0 c , 1 0 c , (5 " s ingle-dens ity }
5 17 c , 1 7 c , 3 4 c , 1 7 c , (5 " doub l e-sen s i ty FHL FLEX }
6 1 8 c , 1 8 c , 3 6 c , 1 8 c , (5 " doub le-density }
7 15 c , 1 5 c , 3 0 c , 1 5 c , (8 " s ingl e-dens ity }
8 26 c , 26 c , 5 2 c , 2 6 c , (8 " doub le-den s i ty >
9 29 c , 2 9 c , 5 8 c , 2 9 c , (8 " SWTP extr a-dens ity

1 0 0 , (end o f t ab le sent inel }
1 1 h e r e Secto rCount s - 2- 2 / constant Entr ies (-- s i ze
1 2 SetSides (sector s -- } SectorCounts
1 3 Ent r ies O d o 2dup c @ = ? leave 2 + loop
14 l+ c @ ?dup O = abor t " Unr ecogn i zable format . n

1 5 sis c ! sect o r s c ! . I

Block I 52
0 C learDisk Remove Backup 1 2 : 47pm cee 2 3 j an 8 4)
1 : ClearDisk < --) pad b/blk b lank
2 pad Bounds over + swap ?do i false r/w loop drop ;
3
4 Remove (d r i --) >Dr ive 0 b lock s 1 ;
5
6 : Back up < F romD r i ToD r t --)

r 7 swap >Dr ive Bounds r ot >Dr ive Bounds min ed itor copies ;
8
9 Restore (--) o r i g in 1 0 + @ execute ;

1 0
1 1 : ReadSector (adr dadr --)
1 2 4 0 d o o r ig in 6 + @ execute O= ? leave Resto r e loop ?status ;
1 3
1 4 : Wr iteSector C adr dadr --)
1 5 4 O do o r ig in 8 + @ execute O = ? leave Restore loop ?status ;

Block I 53
O C Claim Release Mount 1 2 : 47pm cee 2 3 j an 8 4
1
2 :
3
4
5
6
7

C l a im (cnt --) Con f i g u r e sector s c @ SetS ides
dup block s ! s/b c@ * secto r s c@ /mod ' c la im
Bounds d r op dup scr ! b lock dup c/l b lank
1 0 27 2 ove r ! 2 r # ! editor >i inse r t
Dr ive @ swap 1 0 0 8 + S i ze cmove ;

8 : Re lease < cnt --)

@ execute

9 Configure t r a ck s c @ secto r s c @ * swap - C l a im ;
1 0
1 1
1 2
13
14
15

Mount (d r # --)
>Dr ive Bound s d r op block
dup @ 1 0 27 2 - abor t " Unc la imed
1 0 0 8 + Dr ive @ S i z e cmove ;

copyr ight 1983

D isk . "

Frank Bogg Laboratory

eFORTB LISTINGS APPENDIX C-20

Block I 54
0
1
2
3
4
5
6
7
8
9

1 0
11
1 2
13
1 4
15

Block I 5 5
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15

Block I 56
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15 -·

copyr ight 1983 Prank Bogg Laboratory

ePORTB LISTINGS APPENDIX C-21

Block I 57
, 0

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15

Block • 58
0
1
2
3
4
5
6

(7
8
9

1 0
1 1
1 2
13
1 4
15

Block I 59
0
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15

copyr ight 1983 Prank Bogg Laboratory

eFORTB LISTINGS APPENDIX C-22

Block I 60
0 er . < HARDWARE DEPENDENT OPTIONS 1 2 : 47pm cee 2 3 j an84
1
2
3
4
5
6
7
8
9

1 0
1 1

Remove the " I " f r om l ines which apply t o your system .
1 +load I 1 3 2 column pr int e r such as Epson MX80
2 +load I cur sor cont r o l - eFORTH/CoCo
3 +load I cur sor cont r o l - FHL FLEX
4 +load I cur sor contr o l - TeleVideo
5 +load I c u r s o r cont r o l - template

ex i t
The other b l ock s contain alternate definit ions o f date ana
t ime wh ich tak e advantage of va r io u s hardwa r e capab i l i t i e s .

1 2 I f you have FLEX then b lock 7 8 should r eplace b lock 4 .
1 3
14 I f you have a G imix CPU boa r d , then 7 8 should r eplace 4 and
1 5

Block I 6 1
0 index
1

l i s t ing show

2 index (n l n2 ---)

6/pag e

3 swap dup 6 0 mod i f heade r then
4 do i 6 0 mod i f e r else header then

1 2 : 47pm cee 2 3 j an84)

5
6

i b lock i 5 . r space c/l -tr a i l ing type loop e r ;
l i s t 2 (b lk --) scr ! e r . " Block # " scr @ 4 . r

7 5 4 spaces . " Block " s c r € l+ 4 . r b/blk c/l I 0
8
9

do e r i 2 . r space scr @ b lock i c / l * + c/l type space
s c r @ l+ b l ock i ell * + c/l type loop er ;

l i s t ing < scr --) header 1 0
1 1
1 2 :
1 3

6 I 6 * dup 6 + swap d o e r i l is t 2 2 +loop ;
show < beg end --) swap do i l i s t ing 6 +loop ;

14 system
1 5

pr inter o utput 1 3 2 ' w idth ! term output f o r th

Block I 6 2
O < cur sor contr o l - eFORTH/CoCo 1 2 : 47pm cee 2 3 j an 8 4
1 C Thes e ve r s ions a r e f o r t h e Colo r Comput e r ver s ion of eFORTF. .
2 system definit ions
3 (pag e) C --) 2 6 emit ;
4 C xy > (x y --) 2 0 emit 3 2 + emit 3 2 + emit ;
5 (home > C) 3 0 em it ;
6 C eo l) < > 5 emit ;
7 C e o s) C) 1 9 emit ;
8
9 term output

1 0
1 1
1 2
13
14
15

copyr ight 1983

' (page) ' page
' C x y) ' xy !
' (home) ' home
' C eo s) ' eo s !
' C eo l > ' eol !

Prank Bogg Laboratory

l
_ _,,

,

ePORTB LISTINGS

Block I 63

APPENDIX C-23

O (cursor control - FHL FLEX
1 (These ver s ions a r e fo r FHL
2 system definit ions

1 2 : 47pm cee 2 3 j an 8 4 >
Colo r Compute r FLEX >

3 : (pag e) (--) 2 emi t ;
4 : C xy) (x y -- > 2 0 emit 32 + emit 3 2 + emit ;
5 : (home > () 1 5 emi t ;
6 (eo 1 > () 5 emi t ;
7 C eo s > C > 1 9 emi t ;
8
9

1 0
1 1
1 2
1 3
1 4
15

term output

forth definit ions

Block I 64

' (pag e) ' page
' C xy > ' xy 1
' (home) ' home
' C eo s) ' eo s
' C eo 1 > ' eo 1 1

0 (cu r sor contr o l - TeleVideo 1 2 : 47pm cee 2 3 j an 8 4)
1 C These ver s ion s a r e for TeleVideo terminal s >
2 system definit ions
3 : (page) (--) 26 em it ;
4 : C xy > (x y -- > 27 emit asc i i = emit 3 2 + emit 3 2 + emit ;
5 : (home > () 3 0 emi t ;
6 : C eo l) () 27 emit asc i i T emit ;
7 : C eo s > C > 27 emit asc i i Y emit ;
8
9

1 0
1 1
1 2
1 3
1 4
15

t erm output

f o r th definit ions

Block I 65

' C page > ' page
' C xy > ' xy 1
' (home) ' home
' C eo s) ' eo s 1
' < eo 1) ' eo 1 1

0 (cursor control - template 12 : 47pm cee 2 3 j an 8 4 >
1 (Th i s block i s a form fo r defining these fo r other termina ls .)
2 system definitions
3 C pag e) C -- >
4 : C xy> C x y --
5 : (home > C >
6 : C eo l) C >
7 : C e o s) (>
8
9 term output

1 0
1 1
1 2
1 3
1 4
1 5 forth defin it ions

copyr ight 1983

. I

. I

. I

• I

' < page > ' page
' C xy > ' xy !
' (home) ' home
' C eo s) ' eo s !
' C eo l) ' eo l !

Prank Bogg Laboratory

ePORTB LISTINGS APPENDIX C-24

Block I 66
0 (date - FLEX
1

1 2 : 47pm cee 2 3 j an 8 4)

2 hex
3
4
5
6
7
8
9

date (-- adr cnt) C uses FLEX date r eg i ster s)
< # CClO c @ 0 # # 2dr op CCOE c @
1 - 3 * n j anfebmar aprmayj un j ulaugsepoctnovdec "
+ O 2 do dup i + c @ hold -1 +loop drop
CCOF c @ 0 # # # > ;

1 0 dec ima l
1 1
1 2
1 3
1 4
1 5

Block I 67

d rop

0 (date - G imix CPU board
1

1 2 : 47pm cee 2 3 j an84 >

2 hex 84 constant year
3
4
5
6
7
8
9

date (-- adr cnt) base @ hex
yea r 0 <# i # 2dr op E227 c@ dup 9 > if 6 - then
1- 3 * n j anf ebmar aprmayj unj ulaugsepoctnovdec " d r op
+ O 2 do dup i + c @ hold -1 +loop dr op
E226 c @ 0 # # i > r ot base ! ;

1 0 dec ima l
1 1
1 2
1 3
1 4
1 5

Block f 6 8
0 C t ime - G imix CPU board 1 2 : 47pm cee 2 3 j an84 >
1
2
3
4
5
6
7
8
9

1 0

hex
t ime (-- adr cnt >

base @ hex < # asc 1 1 m hold E224 c@ 11 >
i f asc i i p hold else as c i i a ho ld then
E 2 2 3 c @ O i i asc i i : hold 2drop
E2 2 4 c @ dup 1 < i f 1 2 + else dup 1 2 > i f dup 2 0 2 2 within
if 1 8 - else 12 - then then then
0 # # # > rot base ! ;

1 1 dec ima l
1 2
1 3
1 4
15

copyr ight 1983 Prank Bogg Laboratory

j

_ , .. ·.

eFORTB LISTINGS

Block t 69
0 (r eserved
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
15

Block t 70
0 < r eserved
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
13
1 4
1 5

Block t 71
0 < r es e r ved
1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
15

copyr ight 1983

APPENDIX C-25

1 2 : 47pm cee 2 3 j an 8 4)

1 2 : 47pm cee 2 3 j an 8 4)

1 2 : 47pm cee 2 3 j an 8 4)

Frank Bogg Laboratory

I

}

APPENDIX D

eFOR'l'B INSTALLATION - FLEX

REQUIREMENTS

The FLEX implementat ion o f eFORTH C eFORTH/FLEX) r equ ires the
FLEX operat ing system and at least 3 2K o f RAM C at leas t 40K is
r ecommended) . No special ha r dwa r e is r equ i r e d .

MAKE A BACKUP !

eFORTH/FLEX i s d istr ibuted on
s ingle-s ided 8 " d isk s or doub le-dens ity ,
The fol lowing ins t ru c t ions assume that
from us i n one of these formats .

e ithe r s ingl e-den s i ty ,
s ing le-s ided S " d i sk s .
you have r eceived a d isk

1 . Us ing FLEX , format one d isk for each d r ive
may u s e any format that wor k s on you r dr ive s .
d isk s "your " d i sk s . One w � 1 1 b e " your dr ive
w i l l be "your dr ive l " d isk , etc . We w i l l
sys tem dr ive i s d r ive O .

that you
We wil l

0 " d i sk ,
assume

have . You
call thes e
the second
that you r

I f you a r e us ing FHL FLEX for the Color Computer , fol low the
d i r ect ions in Append ix E fo r mak ing a back u p .

2 . Wr i te-pr otect t h e suppl ied d isk w ith eFORTH o n it b y cove r ing
the notch on the d isk C S " d isk s) or uncover ing it C 8 " d i sk s) .
We ' l l call t h i s " ou r " d i sk .

3 . Put " ou r " d i sk in d r i ve O and enter EFORTH . CMD and h it retu rn .

4 . Put "you r " dr i ve 1 d i sk into dr i ve 1 , etc . Set "you r " dr i ve 0
d i sk as i de for the moment .

S . When eFORTH starts runn ing , ent e r

system disk ing (You must use lower case .)
1 >Dr ive (The ' D I must be upper case .)
0 Release (The ' R I must be upper case .)
2 >Dr ive (Only if you have three drives .)
0 Release (Only if you have three dr ives .)
3 >Dr ive (Only if you have four dr ives .)
0 Release (Only if you have four dr ives .)

copyr ight 1983 Frank Hogg Laboratory

eFORTB-FLEX APPENDIX D-2

6 . Now r emove "your " dr i ve 1 d isk f r om dr i ve 1 and put "your "
dr ive 0 d i sk into dr ive 1 (yes , dr ive 1) . Enter

32 Re lease
o 1 Backup

C The ' R ' must be upper case . >
C Both ' B ' and • u • must be upper case .)

7 . Remove " our " d isk f r om dr ive 0 and r eplace it with your F L EX
system d i sk . eFORTH should s t i l l be r unn ing . Enter

here hex u .

and h i t r etu rn . Remembe r the number that ' s pr inted . Let ' s
suppos e i t ' s 4CDO . Now ent e r

• save , l . forth . cmd , 0 , 4CDO , O • dos

C b e sur e a space fol lows both quotat ion ma rk s) and wa it unt i l
FLEX i s done c r eat ing a FORTH . CMD f ile on " your " d r ive O d isk .

8 . Put " ou r " d isk away in a n ice , safe plac e , and don ' t use it
a g a in unless something ter r ib le happens to " your " d isk . In that
case , u s e " ou r " d isk to mak e anothe r "you r " disk .

9 . Remove your FLEX system d i s k f r om d r ive 0 and r eplace it with
" your " dr ive O d isk , then put "you r " dr ive 1 d isk back int o dr ive
1 .

1 0 . Go FORTH !

RUNNING eFORTB

After you have per for med the above installat ion process ,
eFORTH i s run by s imply putt ing "you r " dr ive O d isk into dr ive 0 ,
"you r " d r ive 1 d isk into d r ive 1 , etc . and enter ing FORTH (f rom
FLEX) .

eFORTB DISK ACCESS

I f you followed the above proc edu r e , " you r " dr ive O d isk is
" pa r t i t ioned " . Pa r t of it is u s ed by FORTH , and FLEX doesn ' t
know about that part . Par t of it is used by FLEX , and FORTH
doesn ' t know about that pa r t .

The
of
the

The ph rase 0 Release r eserves the ent i r e d isk for FORTH .
phr as e 3 2 Release r eleases 3 2K bytes on the d isk for the u s e
FLEX . S imila r ly , the phrase 32 Claim will c l a im 3 2K bytes of
d isk for FORTH , the r es t will be left for FLEX . Claim and

Frank Bogg Laboratory copyr ight 1983

eFORTB-FLEX APPENDIX D-3

Release w i l l only work on a f r eshly fo rmatted d i sk .

CHANGING DISKS

I f you change the d isk in a dr i ve and the new disk has a
d i f fe r ent fo rmat o r has a d i f fe r ent number o f b locks cla imed or
r e l eased then you mus t "mount " it with Mount wh ich must be
pr eceded with the dr ive numbe r . For example ,

1 Mount

w i l l mount a new d isk in d r ive 1 .

In o r de r for Mount to wo rk cor r ectly, the d i sk must have
been " c la imed " with e ithe r Claim or Release •

CALLING FLEX FROM FORTH

The above procedu r e uses the wo r d dos wh ich is used to pass
a s tr ing to FLEX to be interpreted as a FLEX command . Be car e ful
with it . Some FLEX commands , such a s COPY . CMD and NEWDISK . CMD
w i l l des t r oy eFORTH . Command s such a s SAVE . CMD , CAT . CMD , an d
LI ST . CMD which only use the u t i l ity command space work j u st f ine .
FLEX w i l l r epo r t any d isk e r r o r s that ar is e , but cont r o l wi l l
return to eFORTH .

The source code for FLEX spec i f ic wo rds w i l l be found on
block s 7 2 through 8 3 .

THE . COR FILE

I f you dec ide to change some of the wo rds wh ich appea r on
block s 1 thr ough 8 3 , then , after you have used the editor to
mak e you r changes , Execute the EFORTH . COR f i le . When eFORTH
starts , enter 1 load and p r epare for a wa it . When eFORTH f inally
says " ok " , you may use the "save " pr ocedur e de scr ibed above to
cr eate a new . CMD f i le which has a l l o f your changes in it .

copyr ight 1983 Frank Bogg Laboratory

I

.r

f ,

APPENDIX E

eFORTB INSTALLATION - COCO

The TRS-80 Color
(eFORTH/COCO) r equ i res at

BAS I C . It also r equ i r es
3 2K Color Computer s .

REQUIREMENTS

Computer implementat ion o f eFORTH
least one d i sk dr ive and D i sk Extended
6 4K of RAM . It wi l l not wo r k in 1 6K o r

MAKE A BACKUP !

eFORTH/COCO i s d istr ib uted on double-dens ity , s ing l e-s ided
5 " d i sk ettes . The fol lowing inst ruct ions as sume that you have
r ece ived a disk from us in th i s forma t .

1 . Wr ite-pr otect the suppl ied d i sk w ith eFORTH on i t by cover ing
the notch on the d is k . We ' l l cal l t h i s "our " d is k .

2 . Wh i l e in BASIC use the BACKUP command to copy "our " d isk o n t o
anothe r empty , freshly formatted d is k . We ' l l cal l t h i s "your "
d is k .

3 . Put "our " d i sk away in a n ic e , safe place , and don ' t use it
aga in unles s s ometh ing ter r ible happen s to "your " disk . In tha t
case , use " our " d i sk to mak e another " you r " d isk .

4 . Now put "you r " disk in dr ive 0 and ent e r

and h i t t h e enter k ey .

5 . When BAS IC says "OK " , enter EXEC and hit the enter k ey .
eFORTH w i l l s ign o n and wa it for you t o g ive i t someth ing t o do .

6 . Go FORTH !

copyr ight 1983 Frank Hogg Laboratory

eFORTH-COCO APPENDIX E-2

I f you have another d i sk dr ive (dr ive 1) , place an empty ,
f r eshly fo rmatt ed d isk in it and ent e r

system disk ing
1 >Dr ive

C You must use lower case . >

O Release
< The ' D ' must be upper case . >
C The ' R ' must be upper case . >

eFORTH DISK ACCESS

I f you f o llowed the above procedu r e , " you r " dr ive O d isk is
"pa r t it ioned " . Pa r t o f it is used by FORTH , and BASIC doesn ' t
know about that par t . Pa r t o f it i s u sed by BAS I C , and FORTH
doesn ' t know about that par t .

The phrase 0 Release r eserves the ent i r e d isk for FORTH .
The phrase 32 Release r eleases 3 2K byt e s on the disk for the u s e
of BAS I C . S imilarly, the phrase 32 Claim w i l l claim 3 2K bytes of
the d isk for FORTH , the r e s t wi l l be left for BASI C . Claim an d
Release w i ll only wor k on a fr eshly formatted d isk .

CHANGI�G DISKS

I f you change the d i sk in a dr ive and the new d isk has a
d i f f e r ent format o r has a d i f fe r en t numbe r of b lock s c la imed o r
r e l eased , then you must "mo unt" it w i t h Mount wh ich mu st b e
pr eceded with the dr i ve numbe r . F o r example ,

1 Mount

w i l l mount a new d isk in d r ive 1 .

In o r de r for Mount to work cor r ectly, the d i sk must have
been " c la imed " with e ither Claim o r Release •

I f you def in e new wo rds and wan t them to be ava i lab le
whenever you LOADM "FORTH " , then do the fol lowing :

F i r s t ente r hez here u . and wr ite
pr inted . Let ' s s uppos e that it ' s 3AB7 .
you w i l l b e back in BASI C . Now ent e r

SAVEM.FORTH• , &HlA00 , &B3AB7 , &HlA00

down the numbe r that is
Now enter system mon and

and h i t the ent e r key . I f the r e is enough r oom on the d isk , the
f i l e FORTH/BIN w i l l be c r eated . Now , whenever you run eFORTH ,
a l l o f the wor d s w i l l be in you r dict iona r y that we r e the r e when

Frank Bogg Laboratory copyr ight 1983

\
I

, -
l
L

eFORTB-COCO APPENDIX E-3

you saved i t .

The source code for Color Computer spec i f ic wo rds w i l l b e
found o n block s 7 2 thr ough 8 3 .

THE /COR FILE

I f you dec ide to change some o f the wo rds wh ich appea r on
block s 1 through 8 3 , then , after you have u sed the editor to
mak e you r change s , EXEC the EFORTH/COR f i l e . When eFORTH sta r t s ,
enter 1 load and prepa r e for a wa it . When eFORTH f inally says
n ok n , you may u s e the SAVEM procedur e des cr ibed above to cr eat e a
new /BIN f i le which has a l l of you r changes in it .

copyr ight 1983 Frank Bogg Laboratory

eFORTB-COCO APPENDIX E-4

eFORTB KEYBOARD INTERPRETATION

eFORTH interprets the k eyboard d i ff e r ently than BAS I C . The
fol lowing cha r t shows the ASC I I code that each k ey r eturns to
eFORTH . the " SH IFT " column means that the SHIFT k ey is held down
at the same time . The " CONTROL " co lumn means that the CLEAR k ey
is held down at the same t ime . So , " control-X" means to hold
down the CLEAR k ey , then pr es s the " X " k ey , then let up on bot h
of them . The codes are g iven in hexadec ima l (base 1 6) .

NORM SH IFT CONTROL
------+-----+--------

BREAK lB lB lB
ENTER OD OD OD
SPACE 2 0 2 0 2 0

< 0 8 1 8 1 0
> 0 9 1 9 1 1
v OA lA 1 2
A

OB lB 1 3

NORM SH IFT CONTROL
-----+-------+---------
0 3 0 0 3 0 *toggle*
1 3 1 2 1 I 7C
2 3 2 n 2 :.:! 0 0
3 3 3 # 2 3 - 7 E
4 3 4 $ 2 4 0 0
5 3 S 4 2S 0 0
6 3 6 & 2 6 0 0
7 3 7 I 27 ... S E
8 3 8 (2 8 [SB
9 3 9) 2 9] SD

3 B + 2B 0 0
, 2C < 3C { 7 B
- 2D = 3D SF
I 2F ? 3F \ SC

* togg le* means that t h i s wor k s the same way it does in BASIC .

Frank Bogg Laboratory copyr ight 1983

)

eFORTB-COCO APPENDIX E-5

r -·- .

NORM SHIFT CONTROL
- - - - -+- - - - - - -+- - - - - - - - -

@ 4 0 ' 6 0 0 0
... $ _, A 4 1 a 6 1 0 1

B 4 2 b 6 2 0 2
� �· c 4 3 c 6 3 0 3

t 1 ., D 4 4 d 6 4 0 4
E 4 5 e 6 5 0 5
F 4 6 f 6 6 0 6
G 4 7 g 6 7 0 7
H 4 8 h 6 8 0 8
I 4 9 i 6 9 0 9
J 4A j 6A DA
K 4B k 6B OB
L 4C 1 6C o c
M 40 m 6D OD
N 4 E n 6 E O E
0 4F o 6F OF
p 5 0 p 7 0 1 0
Q 5 1 q 7 1 1 1
R 5 2 r 7 2 1 2
s 5 3 s 7 3 1 3
T 5 4 s 7 4 1 4

I u 5 5 u 7 5 1 5 t v 5 6 v 7 6 1 6
w 5 7 w 7 7 1 7
x 5 8 x 7 8 1 8
y 5 9 y 7 9 1 9
z SA z 7A lA

.•

copyr ight 1983 Frank Bogg Laboratory

eFORTB-COCO APPENDIX E-6

THE ePORTB/COCO DISPLAY

The video d i splay uses a h igh-reso lut ion g r aph ics mode to
p r oduce a d isplay forma t o f 24 l in e s with 51 char act e r s on each
line . It is qu ite readab le on mos t TV s et s .

The d i splay can be cont r ol led by emitt ing cont r o l
character s . The ava i lable operat ions are :

1 emit (toggle the cursor from underline to block and back)
2 emit (toggle the cursor from steady to blink ing and back)
5 emit (erase from the cursor to the end of the line >
7 emit (r ing the bell >
8 emit (move the cursor to the left >
9 emit (move the cursor to the r ight >

10 emit (move the cursor down one line >
11 emit (move the cursor up one line >
13 emit (move the cursor to the left margin)
15 emit (move the cursor to the upper left corner)
19 emit (erase from the cursor to the end of the screen)
20 emit (move the cursor to the specified location >
23 emit (insert line)
24 emit (delete line >
26 emit (home cursor and erase the screen)

The " in se r t l in e " funct ion moves the cur r ent l ine and al l l ines
below it down one l ine . The bottom l in e i s lost . The " delete
l in e " funct ion move s the cur r en t l in e and all l ines above it up
on e l ine . The top l ine i s lost . The "move cur sor " funct ion
r equ i r es the l in e numbe r and the column n umbe r on that l in e to b e
spec i f ied . For example ,

20 emit 3 2 emit 32 emit

will move the cursor to the upper left corner (the " home "
funct ion) , and

20 emit 33 emit 32 emit

w i l l move the c u r sor to column 0 on l ine 1 . Not ice that 3 2 mu st
be added t o the column and l in e numbe r .

Frank Bogg Laboratory copyr ight 1983

r
I

(
(

,
f

(•·

I

I

I
I

• · 1

I

:· : �
&/ri�{11 , s(' ';,>-;lf - �
f 1 ·<'' �- � !' / 1· �\ I I \

i , ., , � r
' - i: lY The 1.s·c111 11,d11

Octal

iltl0
llfll
002
11113
tlfl4
l)f)5
006
007 I
011!
111 1 (
1112 I
1113
014
1115
016
111 7
020
1121
022
023
1124
1125
026 I
027
030
031
032 I
1133
1134
035

' 036
037

I

- '
,, ; '

• r •

n ,.J
Caolrol
Keybll. Dec. Hu Chafaclet Equiv.

0 il0 I NUL t,i
1 01 SOH A
2 02 STX B
3 03 ETX c
4 04 ' EQT D I
5 05 ENO E '
6 f'J6 ACK F
7 07 BEL G
B 011 BS H
9 119 HT I

1 0 0A LF J
1 1 011 VT K
1 2 0C FF L
1 3 00 CA M
14 0E so N
1 5 0F SI 0
16 1 0 OLE p
1 7 1 1 DCl Q
18 1 2 DC2 A
1 9 1 3 DC3 s
20 14 DC4 T
21 1 5 NAK u
22 16 SYN v
23 1 7 ETB w I
24 l B CAN x
25 19 EM y
:?6 l A SUB z
27 l B ESC I 2B lC I FS \ 29 1 D GS I
30 l E RS .
3 1 1 F us -

Allerwate Cade Names

NULL, CTRL SH IFT P, TAPE LEADER
START OF HEADER, SOM
START OF TEXT, EOA
END OF TEXT, EOM
END OF TRANSMISSION, END
ENQUIRY, WAU, WHO ARE YOU
ACKNOWLEDGE, AU, ARE YOU
BELL
BACKSPACE, FE0
HORIZONTAL TAB, TAB
LINE FEED, NEW LINE, N L
VE RTICAL TAB, VTAB
FOAM FEED, FOAM, PAGE
CARRIAGE RETURN, EOL
SHIFT OUT, RED SHIFT
SHIFT IN, BLACK S H I FT
DATA LINK ESCAPE, DC0

I XON, READER ON
TAPE, PUNCH ON
XOFF, READER OFF
TAPE, PUNCH OFF
NEGATIVE ACKNOWLEDGE, ERA
SYNCHRONOUS I D LE, SYNC
END OF TEXT BUFFE R , LEM
CANCEL, CANCL
END OF MEDIUM
SUBSTITUTE
ESCAPE, PREFIX
F I LE SEPARATOR
GROUP SEPARATOR
RECORD SEPARATOR
UNIT SEPARATOR I

'

Tu 11.-nmlt Jny1con1rnl code (hnl column I. dt�ptc..�' .. CTRL" 1hen the chtwdc1e1 on 1he

siHTie line unlk"f KeylJoafd Equ1W1len1

BASED ON ANSI X3.4 1968

Ocial Dec. Hex Ch1rac1er Altetn11es

I 040 32 20 SP SPACE, BLANK
04 1 33 21 I
042 34 22 ..

,1143 35 23 =

044 36 24 s
046 37 25 "'
046 38 26 &
1147 39 27 A?OSTROPHE
050 411 2B I
051 4 1 29 1·
052 42 2A
053 43 2B +
054 44 2C COMMA
055 46 20 - MI NUS
056 46 2E

I 057 47 2F
I 060 48 30 0 NUMBER ZERO

06 1 49 31 I NUMBER ONE
062 50 32 2
063 5 1 33 . 3

I 064 52 34 4
065 53 35 s
066 54 36 6

' 067 S6 37 7
070 56 38 B
071 57 39 9
072 SB 3A
073 69 3B I
074 60 3C <. LESS THAN
07S 6 1 30
076 62 • 3E ;;-. GREATER THAN
077 63 3F 7

I �

NEXT TYP
EIA DATA CURRENT LOOP START LSB 2 J 4 S 6 MSB PAR STOP STOP START CHART"W" 121•
I I-VI MARK ICLDSEDI I - � - r:I - I� n �. �OR 1 1 0 BAUD

0 C- VI SPACE IDPENI L!l_j l l l L_!l_j l tJ!.J l tJ!.j l l I_ 1 STOP BITS

t 1-VI

0 I • VI
MARK ICLOSEOI 1 - � _ r:1 - r:1 - r-;r�_!'�!.
Sl'ACE !OPENI L!l_j I 1 1 L_!l_j 1 tJ!.j I tJ!.j 1 � ALL 0 !HER Sl'EEllS

I STOP BIT

Ocial Dec. Hex Characl!f Altern11es Oclll Dec. H•x Ch•1acte1 Alt•rnales -- --
100 64 40 @ 140 96 60 ACCl::NT GRAVE
101 65 41 A 1 4 1 97 6 1 ,,
102 66 42 B 1 42 9B 62 "
103 S7 43 c 143 99 63 I •

104 68 44 D ' 1 44 100 64 c l

10S 69 45 E 145 1 01 6S "
1 06 7 0 4S F 146 102 Gil I
107 7 1 47 G 147 103 67 I)
1 1 0 72 48 H 150 1 04 68 II
1 1 1 73 49 I LETTER I 1 S 1 10s 69 I
1 1 2 74 4A J 152 1 06 6A I
1 1 3 75 4B K 153 1 07 68 k
1 1 4 7S 4C L 1 S4 108 6C I
1 1 S 77 40 M l SS 109 SD "'
1 1S 78 4E I N 1 56 1 1 0 6E "
1 1 7 79 4F ' 0 LETTER 0 157 1 1 1 SF 0
1 20 Bii 50 p 1S0 1 1 2 70 ,,
1 2 1 B l !il Q 161 1 1 3 7,1 IJ
122 B2 S2 R : , 162 1 1 4 72 I
1 23< B3 S3 s 163 1 lS /3 '
1 24 84 54 T 1S4 1 1S 14 I

I 1 25 BS 55 u lSS 1 1 7 75 II
1 26 86 56 v 166 l lB 76 v
1 27 B7 S7 w 167 1 19 77 w
130 88 58 x I 170 1 20 /8 x
1 31 B9 S9 y 1 7 1 1 2 1 79 v
132 911 ' SA z 172 122 7A I
133 91 SB ! '1 73 78 '

..,

1 34 92 SC I m

r. 1 23
1 24 7C I V ERTICAL S�ASH

1 3S 93 50 I 17S 12S m '
1 36 94 5E . 1 76 126 7E

' 137 9S 5F UNDERSCORE ' 17'7 1 27 7 F DH

I "-

,HOGG

:

I

I

-= ... I F.RANK
I LABOR A 'liORY· - -- - -== == = THE A!OENCY TOWEA • 770JAMESST • SYRACUSE NY l =tHl l • l2l&l"7 .. 1 l8H

